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Abstract

Inhibitory effects of surface-grafted
polylactide-co-glycolide nanoparticles on the
pro-inflammatory polarization of macrophages

Sang Hoon Choi, B.S.

Department of Dental Biomaterials Science,
School of Dentistry, Seoul National University

(Directed by Professor Hyeong-Cheol Yang, Ph.D)

Macrophages are known to play a key role in the inflammatory
response and regeneration process. M1 macrophages, which are pro-
inflammatory macrophages, create an inflammatory environment and
produce pro-inflammatory cytokines such as TNF-a, IL-1pB, IL-6, and IL-12.
Due to these properties, the sustained expression of M1 macrophages can
inhibit the wound healing process. Phosphatidylserine (PS) is a type of
phospholipid present inside the cell membrane, and acts as an “eat-me”
signal in apoptotic cells, resulting in macrophage phagocytosis and anti-
inflammatory activity. In previous studies, it has been reported that PS
inhibits the expression of M1 macrophages in the form of liposomes. To

increase the utility of PS molecules, we considered the other vehicle to



delivery. PLGA (polylactide-co-glycolide) is known to have excellent
biocompatibility and biodegradability, and it has been widely used in
nanoparticle fabrication. In this study, the surface of PLGA nanoparticle is

modified with PS, and their biological properties are investigated.

PLGA nanoparticles (PLGAnPs) containing phosphatidylcholine (PC)
and PS were prepared using emulsification-solvent-evaporation (ESE)
technique and classified as follows: 1) PC 100% (PCnP); 2) PS:PC = 50:50
(PSPCnP); and 3) PS 100% (PSnP). The size and distribution of PLGA
nanoparticles were analyzed by a nanoparticle analyzer, and the surface
charge was measured by a zeta potential analyzer. For cell experiments,
mouse bone marrow-derived macrophages (BMDM) were used, and
cytotoxicity by nanoparticles was measured after treatment with WST-8
for 12 hours. Lipopolysaccharide (LPS) was used for induction into M1
macrophages, and nanoparticles were treated with LPS to determine the
degree of inhibition. Changes in cell morphology were observed with an
inverted digital microscope after treatment for 12 hours. The markers
representing M1 macrophages (TNF-a, IL-1p, IL-6, IL-12p40, CD86 and
iINOS) were analyzed after treated with LPS for 6 hours. Whereas the M2
macrophages markers (Arg-1, YM-1, CD206) were analyzed after 12 hours

of treatment. All the gene expression markers were assessed by RT-qPCR.

The size of the nanoparticles was assessed about 210 nm in all groups.
The zeta potential was close to 0 mV in the negative control group,
PLGANnP. Meanwhile, the surface charges were below -12 mV in the PCnP,
PSPCnP, and PSnP groups. None of the nanoparticles used in this study
showed cytotoxicity. LPS-treated macrophages differentiated into M1
macrophages, and distinct morphological changes could be observed. In

contrast, the M1-type morphological change was inhibited by PSPCnP and



PSP cotreatment with LPS. TNF-q, IL-1f3, and IL-6 mRNA expressions were
decreased in all nanoparticle-treated groups, and in IL-12p40, only PSPCnP
and PSnP were decreased. Although there were no statistically significant
differences in the results of CD86 and iNOS, the PSPCnP group showed
the highest tendency to inhibit the expression. Therefore, it was
demonstrated that the PSPCnP group, in which PS and PC were present
in the same ratio, maximally inhibits M1 differentiation of macrophages.
However, there was no significant difference in the markers of M2
macrophages compared to the negative control group. The reason of
these results is considered as the insufficient numbers of PS attached to
PLGA during the particle generation process or insufficient numbers of

particles which had interacted with cells.
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Chapter 1. Introduction

1.1. Characteristics and Classification of Macrophages

Macrophages are known to play a vital role in the inflammatory
response and regeneration process. When inflammation occurs,
neutrophils flow into the inflammation site. Then, monocytes arrive to
differentiate into macrophages [1, 2]. Macrophages can be classified into
the following phenotypes: broadly M1 (classically activated) and M2
(alternatively activated) states [3]. M1 macrophages are known to secrete
a prominent level of pro-inflammatory cytokines [tumor necrosis factor-a
(TNF-a), IL-1B, IL-6, and IL-12], and reactive oxygen and nitrogen species.
[4] Given that the M1 macrophages provoke an inflammatory environment,
they can aggravate the inflammation impeding the wound healing
procedure [5]. The M2 macrophages, countering the M1 phenotype, are

well known for their anti-inflammatory and tissue regeneration effects [6].

1.2. Interaction between Macrophages and

Engineered Phosphatidylserine

Phosphatidylserine (PS) is a type of phospholipid present inside of the
healthy cell membrane bilayer. PS exposed outside of apoptotic cells acts
as an “eat-me” signal, resulting in macrophage phagocytosis and anti-

inflammatory activity. PS receptors on the macrophages bind with PS, and



their interaction plays a key role in inflammatory modulation [7]. The PS-
dependent ingestion of apoptotic cells can induce the secretion of TGF-
B1 which is classified as the anti-inflammatory cytokine under the
inflammatory environment. TGF-31 can also suppress the M1 macrophage
by inducing to M2 polarization [8]. The encounter between PS and PS
receptors on macrophages provokes the inhibitory effect of inflammation
[9]. PS is frequently utilized in PS-contained liposomes (PSLs), which could
mimic the anti-inflammatory apoptotic cells [10-12]. PSLs inhibit an
inflammation by deregulating the expression of M1 macrophages and
inducing M2 polarization [13]. The immunomodulatory effect of PSLs was
determined to be reinforced with arginine-glycine-aspartate (RGD)
peptides on surface and co-treatment with sodium butyrate [14, 15].
Furthermore, other reports have revealed that PS accelerates the
phagocytosis of curcumin loaded acetalated dextran nanoparticles [16].
These studies suggest that PS-contained nanosized particles have a
potential for upregulating the immunomodulatory effect with other

elements.

1.3. PLGA Nanoparticle Synthesis

Polylactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic
acid. The ratio of two monomers affects their properties, including the
biodegradation rate and hydrophilicity [17, 18]. PLGA has been used
widely because of its biocompatibility, biodegradability, and mechanical
strength. [19]. Due to these attributes, the PLGANP is considered as one
of the most suitable nanoparticles for drug delivery systems [20]. the

PLGAnP could be synthesized by numerous techniques, such as
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emulsification-evaporation [or emulsification-solvent-evaporation (ESE)],
emulsification-diffusion, interfacial deposition, salting out, dialysis, and
nanoprecipitation [21]. The PLGAnP can be dissolved in highly
hydrophobic and volatile solvents, such as dichloromethane, and
chloroform, using the ESE method [21-23].

Lipid surface-engineered PLGANPs have been used in numerous
studies owing to their biomimetic and biocompatible advantages [24, 25].
The synthesis methods can be categorized into the classical two-step and
contemporary single-step processes [26]. In the two-step method,
PLGANPs are synthesized first and mixed with preformed liposomes later
[27]. In the single-step method, however, lipids are self-assembled around
the PLGANnP core by hydrophobic interactions [28]. The appropriate
method for the experiment depends on numerous factors, including size,

shape, and characteristics of the lipids (Fig. 1) [29].

Single step method: Lipid-surface engineered PLGA NPs
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Figure 1. Single step method for lipid-surface engineered

PLGA nanoparticle



1.4. Purpose of Research

In the present study, we hypothesized that PS on the surface of
PLGAnPs would mimic the apoptotic cells to upregulate the
immunomodulatory effects of macrophages. Furthermore, PS-PLGANnPs
had been speculated to be able to improve the stability and stockage, as

a carrier of PS.



Chapter 2. Materials and methods

2.1. Nanoparticle preparation

L-a-phosphatidylserine (PS, porcine brain) and L-a-
phosphatidylcholine (PC, egg yolk) were purchased from Avanti Polar
Lipids (Alabaster, AL, USA). Poly(D,L-lactide-co-glycolide) (PLGA,
lactide:glycolide (50:50), MW: 30,000-60,000) and other reagents were
purchased from Sigma-Aldrich Co. (Saint Louis, MO, USA), unless
otherwise specified. The single ESE technique (w/o0) was exploited to
synthesize the nanoparticles [22, 23]. The brief procedure is as follows: PS
and PC were dissolved in chloroform/methanol (9:1 v/v) solvent; each
group contains 24 pymol PC (PCnP) / 12 uymol PC, 12 ymol PS (PSPCnP) /
24 pmol PS (PSnP) respectively. The organic solvent was evaporated by
nitrogen gas streaming for 30 min in a glass tube and vacuum chamber
for 2 h. The remaining phospholipid film was dissolved in polyvinyl alcohol
(PVA, Mowiol® 4-88) 2% (in DW, w/v) / dimethyl sulfoxide (DMSO) (9:1
v/v) solution by stirring for 1 h. PVA is emulsifier for synthesize
nanoparticles and DMSO is solution for dissolve PS and PC. Then 40 mg
PLGA, dissolved in dichloromethane (DCM), is add to the aqueous phase
dropwise with vortexing; the PLGA nanoparticles were dispersed and
combined with phospholipids by sonication (1/4" probe, 40% amplification)
(VCX 130, Sonics & Materials, Newtown, USA). To demonstrate the effect
of phospholipid in nanoparticles, pure PLGA nanoparticle group (PLGANnP)
begun to be included from this procedure. The organic phase was
removed by a stirring in vacuum chamber for overnight. For an efficient

5
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stirring, 0.1% PVA solution (in DW, w/v) was added to the solutions. The
samples were extruded through Minisart® Syringe Filter (Surfactant-free
Cellulose Acetate (SFCA), Pore Size 1.2 um) purchased from Sartorius AG
(Gottingen, Germany) for size determination, purification, and facile

quantification [30]. After this procedure, nanoparticles were collected by

centrifugation (15,000 rpm, 20 min) (Avanti J-E, Beckman Coulter, California,

US) and the supernatant was removed. The pallet was completely
suspended in DW with sonicator and vortexer. Subsequently, these steps
were repeated twice more for completely remove the other impurities.
Before transfer to deep freezer, added 15 mg trehalose (D-(+)-Trehalose
dihydrate) for a cryoprotectant. After freezing the nanoparticles overnight
at -80 °C, freeze-drying in lyophilizer (Alpha 1-4 LSCbasic, Martin Christ,
Osterode am Harz, Germany) 48 h, and stock the samples in 4 °C.
Whenever the samples were utilized for experiment, the syringe filter was

employed to remove the agglomerated nanoparticles.
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2.2. Characterization of nanoparticles

The size of the PLGANnP was measured by using a nanoparticle tracking
analyzer (NanoSight, Malvern Panalytical, Malvern, UK). The surface charge
of the nanoparticles was surveyed by using a zeta potential analyzer (ELSZ-
1000, Otsuka Electronics Co., Ltd, Osaka, Japan). The zeta potential was
gauged in distilled water using the following parameters: avg. electric field,
-16.50 V/cm; avg. current, 0.00 mA; temperature, 25.0 °C; refractive index,

1.3328; viscosity, 0.8878 cP; and dielectric constant, 78.3.

2.3. Cell culture of mouse bone marrow-derived

macrophages

Mouse bone marrow-derived macrophages (BMDMs) were used to
investigate the effects of nanoparticles on the polarization of
macrophages. For this study, 5-week-old Institute of Cancer Research (ICR)
male mice (OrientBio Inc. Seongnam, Korea) were used with humanely
sacrifice. After harvesting femur from the mice, bone marrow was
extracted with flushing DPBS (pH 7.4) from the end of the femur by using
a syringe under aseptic conditions. The extract was centrifuged at 1500
rom for 5 min (MF80, Hanil science, Daejeon, Korea) and followed by
resuspension of pellet in R10 media (RPMI 1640 supplemented with 10%
non-heated FBS, 1% antibiotics, 2 mM I-glutamine, and 20 mM HEPES; pH
7.0) containing macrophage colony-stimulating factor (M-CSF, 20 ng/mL).
All constituents of fresh R10 media were purchased from Welgene (Daegu,
Korea). The cell suspension was prepared as 1 x 10° cells/mL counted by

LUNA-II™ automated cell counter (Logos Biosystems, Anyang, Korea). A 1
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mL cell suspension was subsequently cultured in each well of a 12-well
plate for 24 h and then 1 mL of fresh R10 medium was added to each
well during further 24 h culture. Finally, half of the culture media was
exchanged by fresh R10 media containing M-CSF for the last 24 h culture

before the treatment of macrophages.

2.4. Cell viability and cytotoxicity assay

Cell viability and cytotoxicity were measured using with water soluble
tetrazolium salt (WST-8) assay kit (EZ-Cytox, Dogenbio, Seoul, Korea). After
12 h of treatment, washed out with DPBS twice and incubated on R10
media with 10% EZ-Cytox for 4 h. Absorbance was gauged using an
enzyme-linked immunosorbent assay reader (Sunrise, TECAN, Salzburg,

Austria) at 450 nm.

2.5. Morphological analysis

The mode of M1 macrophage polarization provides a useful system
to study the macrophages in vitro. For the polarization of M1 phenotypes
in this study, 50 ng/mL lipopolysaccharide (LPS) (Escherichia coli; serotype
0111:B4) was added to the culture medium for 12 h. To demonstrate the
anti-inflammatory effect, 200 pg/mL of each nanoparticle was treated
together with LPS; 20 ng/mL IL-4 was used for a positive control for LPS
co-treatment group. The cellular morphology images were taken by DS-

Ri2 / Nikon Ti (Nikon, Tokyo, Japan).



2.6. Gene expression analysis by reverse transcription-

quantitative polymerase chain reaction (RT-qPCR)

To evaluate the anti-inflammatory effects of nanoparticles,
macrophages were treated with nanoparticles in the presence of 50 ng/mL
LPS for 6 h; then, the mRNA expression of pro-inflammatory genes (TNF-
a, IL-1B, IL-6, IL-12p40, CD86, and iINOS) was assessed by RT-qPCR. The
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene was employed
as a control housekeeper gene. RT-qPCR was performed as follows: total
RNA was isolated using an RNA isolation reagent (QlAzol Lysis Reagent,
QIAGEN, Hilden, Germany); cDNA was synthesized from total RNA using
a 100 mM dNTP set, Oligo(dT)+s primer PrimeScript™ Reverse Transcriptase,
and RNaseOUT™ Ribonuclease Inhibitor; and PCR was performed using
TB Green™ Premix Ex Taq (Tli RNaseH Plus) and ROX Reference Dye I,
cDNA, and gene-specific primers (Table 1). 100mM dNTP set and
RNaseOUT were purchased from Invitrogen (Massachusetts, USA);
Oligo(dT)s was purchased from thermoscientific (Massachusetts, USA);
PrimeScript, TB Green and ROX dye Il were purchased from Takara Bio,
(Otsu, Japan). Thermo-cycling conditions for RT-qPCR were consisting of
holding stage (50 °C for 2 min and 95 °C for 10 min), and denaturation &
annealing stage (40 cycles of 95 °C for 15 s and 60 °C for 1 min) (ABI
PRISM 7500 (Applied Biosystem, Carlsbad, CA, USA). The expression levels
of all targeted cytokines were calculated based on their threshold cycle
values and were noted as the relative mRNA expression ratios normalized

to a reference gene (GAPDH).



Table 1. Reverse transcription-quantitative polymerase chain reaction

(RT-qPCR) primers

Genes Forward sequence Reverse sequence
GAPDH TGTGTCCGTCGTGGATCTGA CCTGCTTCACCACCTTCTTGAT
TNF-a GGCAGGTCTACTTTGGAGTCATTGC  ACATTCGAGCCAGTGAATTCGG
IL-1B TGGAGAGTGTGGATCCCAAG GGTGCTGATGTACCA GTTGG
IL-6 ATAGTCCTTCCTACCCCAATTTCC GATGAATTGGATGGTCTTGGTCC
IL-12p40  AGCAGTAGCAGTTCCCCTGA AGTCCCTTTGGTCCAGTGTG
CD86 TCTCCACGGAAACAGCATCT CTTACGGAAGCACCCATGAT
iINOS ACCATGGAGCATCCCAAGTA CCATGTACCAACCATTGAAGG
Arg-1 CTCCAAGCCAAAGTCCTTAGAG CACGGCACCTCCTAAATTGT
YM-1 CAGGGTAATGAGTGGGTTGG CACGGCACCTCCTAAATTGT
CD206 GTCAGAACAGACTGCGTGGA GCATTCCAGAGAAGCCTGAC

2.7. Statistical analysis

All data obtained from three independent experiments were
presented as the mean + standard deviation (SD). Differences among the
groups were assessed by one-way analysis of variance (one-way ANOVA)
followed by Tukey's test. Statistical analyses were performed using IBM
SPSS 26 statistics software (IBM, Armonk, NY, USA). P values of <0.05 were

considered statistically significant.
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Chapter 3. Results

3.1. Characteristics of nanoparticles

The effect of size of nanoparticle is substantial on their
immunomodulatory function [31]. The size differences of nanoparticles
caused by phospholipids were measured and evaluated. As shown in Fig.
3, the mean diameters of PLGANnP, PCnP, PSPCnP, and PSnP were 212.6 +
60.4, 215.9 + 554, 209.1 + 58.1, and 207.0 £ 53.3 nm, respectively. The
average size among all the groups was not statistically significantly
different. The zeta potential is a significant parameter used to assess the
phospholipids attached to the surface of nanoparticles. PS is known as the
most negatively charged glycerophospholipid in eukaryotic membranes
[32]. The zeta potentials of PLGANP, PCnP, PSPCnP, and PSnP were -2.38, -
12.01, -15.47, and -16.28, respectively (Fig. 4).

11
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Figure 3. Size and distribution analysis of nanoparticles. Size analysis

and particle distribution was no significant difference in (A) PLGAnP, (B)
PCnP. (C) PSPCnP,. and (D) PSnP.
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Figure 4. Zeta potential analysis of nanoparticles. The zeta potential was

-2.38, -12.01, -1547, and -16.28 for PLGAnP PCnP PSPCnP and PSnP

0.0

respectively.

3.2. Effect of nanoparticles on cell viability and

cytotoxicity assay

The effects of nanoparticles on the viability of BMDM were evaluated
depending on concentration and type of nanoparticles. The cell viability
of BMDM was not different according to the concentration of PLGAnPs
(Fig 5A.). In Figure 5B, the treatment with different types of nanoparticles
showed no significant difference in cytotoxicity. Therefore, none of the

nanoparticles used in this study showed cytotoxicity.
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Figure 5. Cell viability assay for nanoparticles. The WST-8 assay depends

on (A) concentration of PLGANP, and (B) types of nanoparticles.

3.3. Effect of nanoparticles on cell morphology

The polarization of macrophages is accompanied by remarkable
changes in cell shape. The M1 macrophages exhibit a flat and spread-
like pancake shape, meanwhile the M2 macrophages exhibit a spindle
and elongated shape [33]. Therefore, the morphological changes of
cells could be observed under an optical microscope after 12 h of
treatment. Figure 6 shows bone-marrow-derived macrophages that are
slightly spindle or round in the untreated group. LPS stimulation
induces the cells to become large, flat, and pancake-like, and co-
treatment with PLGAnP and PCnP showed no significant difference.
However, PSPCnP and PSnP prevent cell morphological changes to the
typical LPS-induced M1 shape. Figure 6 suggests that cell shape is an

important cue for anti-inflammatory effects.

14



M1 Polarization

LPS + PLGAnP LPS + PCnP

Figure 6. Cellular morphological analysis. Cell shape changes are
observed under an optical microscope. LPS stimulation induced the M1
polarization, while co-treatment with PSPCnP and PSP could prevent the

cell morphological changes.
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3.4. Effects of nanoparticles on macrophage mRNA

expression of inflammation and polarization genes

To evaluate the anti-inflammatory effect of nanoparticles, mouse
bone-marrow-derived macrophages were treated with nanoparticles in the
presence of LPS. Then, the mRNA expression of inflammatory cytokines
(TNF-a, IL-1pB, IL-6, and IL-12p40), immunoglobulins (CD86), and enzyme
release (INOS) was assessed after 6 h of treatment by RT-qPCR. Figure 4A-
F shows that LPS (50 ng/mL) induced higher levels of these mRNAs, as
compared to expression in the untreated cells. The mRNA expression of
TNF-a and IL-6 was downregulated by nanoparticles, especially in the
PSPCnP group (Fig. 7A, C). Approximately 50% of IL-1B mRNA expression
was declined by nanoparticles. However, there was no statistically
significant difference among the experiment groups (Fig. 7B). PLGAnP and
PCnP did not affect the LPS-stimulated mRNA expression on the IL-12p40
marker, while PSPCnP and PSnP remarkably suppressed the expression (Fig.
7D). Although there was no statistically significant difference in mRNA
expression of CD86 and iINOS, PSPCnP showed a tendency to inhibit the
expression. (Fig. 7E, F). However, M2 marker genes including Arg-1, YM-1,
and CD206, did not showed statistically difference in RT-qPCR assay (Fig.
7G-1).
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Figure 7. Effects of nanoparticle on mRNA expression of inflammation
and polarization genes. (A-F) To assess the anti-inflammatory effect of
nanoparticles, macrophages were cotreated with nanoparticles and LPS
for 6 h. The mRNA expression of TNF-o, IL-1B, IL-6, IL-12p40, CD86, and
iINOS genes were analyzed by reverse transcription-quantitative
polymerase chain reaction (RT-qPCR). (G-lI) After macrophages were
exposed to nanoparticles without LPS for 12 h, the mRNA expression of
Arg-1, YM-1, and CD206 were evaluated. The data from four independent
experiments are presented as means + standard deviation (SD). Data bars
with distinct letters represent statistically significant differences among the
groups (p < 0.05), and data bars with the same letters represent no

significant differences (p > 0.05).
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Chapter 4. Discussion

Due to its biodegradability and biocompatibility, PLGA has widely
attracted attention as a biomaterial. PLGAnP has been used as a drug
delivery system for inflammation, vaccination, cancer, and other diseases
[34]. The mean size of nanoparticles is a substantial factor in biomaterials,
which affects various biosystems, such as cytotoxicity, macrophage
polarization, and mesenchymal stem cell osteogenesis [31, 35]. The mean
size of nanoparticles is controlled by 1) PVA concentration in the aqueous
phase, 2) surface lipid concentration in the aqueous phase, 3) PLGA
concentration in the organic phase, 4) volume ratio of the aqueous
solution, and 5) duration of ultrasonic dispersing treatment (sonication)
[36, 37]. The proper size of PLGANP ranged from 100 to 300 nm [38]. The
average size of nanoparticles was approximately 210 nm, which was not
significantly different among the groups (Fig. 3). The zeta potential also
plays a crucial role in cytotoxicity and cellular interactions [32]. Cytotoxicity
derived from the PLGANnP was present when the zeta potential ranged
from -13.2 to -19.3 mV [38]. In Figure 4, phospholipid grafting has
induced a surface charge difference, and the zeta potential of PSPCnP and
PSnP was in the proper range. Thus, we could estimate that phospholipids
had been attached to PLGANP, and they had no effect on the size of the
particles. The fact that PLGAnP had no cytotoxicity up to 1.5 mg/ml was
confirmed in Figure 5A, which support the findings of a previous study
[39]. PLGANP grafted on the surface could stunt the cell viability [40]. We
demonstrated that 200 pg/ml of nanoparticles had no cytotoxicity to

BMDM (Fig 5B).
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In the past, lipid-based surface-engineered PLGAnPs were focused on
development of drug and gene delivery platforms. Thus, lipids were mainly
used for characterizing nanocarriers [20, 41]. In other previous studies,
macrophage polarization was regulated by mimicking the interaction
between apoptotic cells and macrophages, induced with PS on the surface
of liposomes or titanium [13-15, 42]. Meanwhile, the present study
focused on PS as the lipid on the surface of lipid-PLGANPs and expected
that PS-PLGANPs had some similar effects to PS-liposomes in terms of
immunomodulatory effects and macrophage polarization.

As shown in Figure 7A-F, we observed anti-inflammatory effects of
the nanoparticles, which was compared with those of IL-4. The LPS-
induced gene expressions of IL-1B, IL-6, IL-12p40, and iNOS were
repressed by IL-4. However, the mRNA levels of TNF-a and CD86 were not
affected by IL-4. These incoherent effects of IL-4 can be described as its
pleiotropic properties. The pleiotropic properties wrought the distinctive
responsiveness of macrophages to IL-4, which was detected by the
characteristic morphological change (Fig 6). Indeed, the co-treatment with
LPS and IL-4 showed contrary results on TNF-a for 6 h in the present
study and for 12 h in a previous study [14It has been reported that pure
PLGANPs showed a tendency to downregulate the pro-inflammatory
cytokines on murine bone-marrow-derived macrophages, and a similar
inclination was observed in this study [43, 44]. Among the phospholipid-
engineered PLGANPs, PSPCnP showed the strongest anti-inflammatory
effect, which could be assessed by morphological changes and RT-qPCR
results (Figs 6 and 7A-F). The M2 macrophage markers, however, showed
statistically no significant difference among untreated and nanoparticle

groups (Fig 7G-l). Because the hypothesis is supposed that anti-
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inflammatory M2 macrophages end inflammation and promote tissue
regeneration, M2 polarization of macrophages is recommended for the
improvement of biocompatibility.

In this study, the lipid-grafted nanoparticles, especially PSPCnP,
inhibited the polarization of M1 phenotype in inflammatory environment,
whereas M2 polarization was not affected by nanoparticle treatment.
These results are considered to be caused by the insufficient number of
PS attached to PLGA during the particle generation process or the
insufficient number of particles interacted with cells. In the pharmaceutical
field, the research on inhibition of macrophage activation has been
conducted mainly in the treatment of inflammatory diseases [45].
Furthermore, numerous studies have generally used the single type of
phospholipid for lipid surface-engineered PLGANPs, synthesized using the
single-step method [22, 46, 47]. Meanwhile, the anti-inflammatory effect
of nanoparticles was optimized at 50% mol of PS in phospholipids. These
results correspond to those of the liposome experiments, reporting that
the suggested mol% of PS was 30%-50% [14, 48-51]. Based on these
results, we anticipate that the PS/PC-grafted PLGANPs are a promising
nanocarrier for inflammation. Although the in vivo effect of PS-
nanoparticles is still elusive, a reducing effect in inflammation is expected

on the basis of our in vitro results.
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Chapter 5. Conclusion

In this study, the therapeutic potential of phospholipid PS-engineered
PLGANnPs was evaluated. The surface grafting of PLGAnPs with PS
upregulated the anti-inflammatory activity of PLGAnP. The morphological
change and gene expression of TNF-a, IL-6, IL-12p40, CD86, and iNOS in
LPS-treated macrophages were more substantially suppressed by PSPCnP
than by PLGANP. Overall, the results of this study reveal that PS grafting,
particularly PS:PC = 50:50 mol%, indicates the therapeutic potential of
PLGANPs, attenuating inflammation and modulating the drug delivery

system.
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