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Abstract 

Background To validate a stratification method using an inverse of treatment decision rules that can classify non‑
small cell lung cancer (NSCLC) patients in real‑world treatment records.

Methods (1) To validate the index classifier against the TNM 7th edition, we analyzed electronic health records of 
NSCLC patients diagnosed from 2011 to 2015 in a tertiary referral hospital in Seoul, Korea. Predictive accuracy, stage‑
specific sensitivity, specificity, positive predictive value, negative predictive value, F1 score, and c‑statistic were meas‑
ured. (2) To apply the index classifier in an administrative database, we analyzed NSCLC patients in Korean National 
Health Insurance Database, 2002–2013. Differential survival rates among the classes were examined with the log‑rank 
test, and class‑specific survival rates were compared with the reference survival rates.

Results (1) In the validation study (N = 1375), the overall accuracy was 93.8% (95% CI: 92.5–95.0%). Stage‑specific 
c‑statistic was the highest for stage I (0.97, 95% CI: 0.96–0.98) and the lowest for stage III (0.82, 95% CI: 0.77–0.87). (2) 
In the application study (N = 71,593), the index classifier showed a tendency for differentiating survival probabilities 
among classes. Compared to the reference TNM survival rates, the index classification under‑estimated the survival 
probability for stages IA, IIIB, and IV, and over‑estimated it for stages IIA and IIB.

Conclusion The inverse of the treatment decision rules has a potential to supplement a routinely collected database 
with information encoded in the treatment decision rules to classify NSCLC patients. It requires further validation and 
replication in multiple clinical settings.
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Background
Lung cancer is one of the most common cancers and is 
the leading cause of cancer death worldwide [1, 2]. Strati-
fication of lung cancer phenotypes is an essential step 
for treatment decision making, and TNM classification 
has an important role for therapeutic and prognostic 
guidance [3, 4]. As TNM staging is based on numeric 
dimensions (i.e., tumor size and location) and multino-
mial dimensions (i.e., invasion of lymph nodes and major 
organs), the TNM classification method projects the 
original feature space into a few tens of categories [5–7].

Increasingly, routinely collected administrative health-
care databases provide new opportunities in conducting 
large-scale analysis of actual clinical practice data in real-
world settings [8–11]. However, the routinely collected 
databases tend to include only codified data elements 
with existing ontology, and they are prone to misclassifi-
cation and missing information [12]. Therefore, efficient 
method to identify decision bases are necessary for stud-
ying large scale databases.

Observed, or revealed, decision actions can be used 
to estimate the information that the decision-makers 
used [13, 14]. The current study validated a stratifica-
tion method for non-small lung cancer (NSCLC) patients 
based on an inverse of the treatment decision rules, 
which can be applied to codified data elements in admin-
istrative databases [11]. We validated the index classifier 
from two aspects. First, we examined the predictive per-
formance when the index classification was compared to 
the TNM stage in the electronic health records (EHRs). 
Second, we examined whether the index classification 
shows differential survival rates when applied to a popu-
lation-based administrative database.

Methods
The index classification: an inverse of the treatment 
decision function
The index classification is based on an inverse of the 
treatment decision rules given in the recommended 
treatment regimens in the National Comprehensive Can-
cer Network (NCCN) guidelines [4, 11]. The inverse of 
the stage-based treatment decision rules maps from the 
treatment regimens into patients’ status. (Additional 
file 1: Tables S1, S2 and Methods 1). We only considered 
a subdomain of treatment patterns that are invertible and 
had sufficient samples. Seven potential categories for the 
inverse of the treatment decision function are shown in 
Table  1. Note that the inverse of the stage-based treat-
ment decision function is pre-specified based on clinical 
knowledge, without any reference to the validation data.

Validation study for the index classification using 
electronic health records
We retrospectively validated the index classifier against 
the reference standard staging information in the EHRs 
of Asan Medical Center (AMC), a tertiary referral hos-
pital in Seoul, Korea. The study protocol using EHR data 
was approved by the AMC, and all methods were per-
formed in accordance with the relevant guidelines and 
regulations. We adopted the estimated sample size of 
108 for each category for testing the accuracy of a single 
modality to detect a pre-specified area under the receiver 
operating characteristic curve value of 0.8 against a null 
value of 0.7 with a 95% confidence level and 80% power 
[15]. We identified a consecutive series of patients who 
were newly diagnosed with NSCLC and staged between 
2011 and 2015, covered under the national health insur-
ance, and received cancer treatment in the hospital 
with their last visit more than 180 days from the end of 
observation. We included those aged between 20 and 75 

Table 1 Potential categories for the inverse function of the treatment decision

CTx, Chemotherapy, CCRT , concurrent chemoradiation therapy, RTx, Radiotherapy
† We only considered a subdomain of treatment patterns that are invertible and have sufficient samples, ignoring stage IIA in the class 2 and stage IIIA in the class 6. 
Also, note that Stage IA, IB, and IIA can have the same treatment pattern

Treatment  pattern† Corresponding TNM 
classification (7th 
edition)

1 Surgical resection IA, IB, IIA

2 Surgical resection Adjuvant CTx (IIA,) IIB

3 Surgical resection Adjuvant CTx Adjuvant RTx IIIA

4 Surgical resection Adjuvant RTx Adjuvant CTx

5 Neoadjuvant CTx Surgical resection

6 Concurrent chemoradiation therapy (IIIA,) IIIB

7 Chemotherapy IV
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without a preexisting non-pulmonary cancer or a car-
diopulmonary comorbidity, who may have been treated 
according to the treatment guidelines (Additional file  1: 
Methods 2) [16]. We excluded cases for which complete 
information for the index classification were not avail-
able: initially diagnosed at an external hospital, trans-
ferred to an external hospital, missing stage, erroneous 
stage identified during the manual chart review process, 
or received no treatment. In the sensitivity analysis, those 
with cardiopulmonary comorbidities were included in 
addition to the participants in the main analysis.

The reference stage, which was based on the TNM 
7th edition [5] during the study period, was assigned by 
manual chart review for all of the study participants by 
a clinician who was blinded to the modeling to minimize 
potential bias. The stage was then inferred by a researcher 
who was blinded to the reference standard staging infor-
mation, using the diagnosis codes, procedure codes, and 
medication codes.

Overall accuracy was calculated as the proportion of 
cases with correctly classified stages among the entire 
study population (Additional file  1: Methods 3). Stage-
specific sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), F1 score, and 
c-statistic were calculated by contrasting each stage with 
alternative stages [17–19]. The 95% confidence intervals 
for the performance metrics were estimated with 1000 
bootstrap resamples.

Stage‑specific survival analysis applying the index 
classification in a population‑based administrative 
database
We applied the index classifier to Korean National Health 
Insurance database, 2002–2013, retrospectively [20, 21]. 
We had access to treatment and survival information 
for the entire cohort of NSCLC patients and to the full 
claims records for a 2% random sample. We identified a 
consecutive series of all patients with the diagnosis code 
for lung cancer with at least one claim code for the treat-
ment of NSCLC between 2004 and 2013. Patients with 
claim codes for lung cancer between 2002 and 2003 were 
excluded for a washout period, as they may have been 
diagnosed with lung cancer before 2002. We considered 
overall survival using the linked records in the national 
death registry with any cause. Class-specific survival 
rates were compared to the reference survival rates in the 
TNM 7th edition [22].

The proportional hazard assumption was rejected 
from the independency test for Schoenfeld residuals 
against time (Additional file 1: Methods 4) [23]. The sur-
vival function was estimated with the non-parametric 
Kaplan–Meier method, and the log-rank test was used 
to test the null hypothesis of no difference in the survival 

between groups. Pairwise log-rank tests were performed 
to explore significantly different survival curves, and 
the significance level of 0.05 was adjusted with Bon-
ferroni methods. The 95% confidence intervals for the 
survival estimates were computed with the normal 
approximation. Analyses were performed using R statis-
tical software version 3.5.3 (R Foundation for Statistical 
Computing) and SAS version 9.4 (SAS Institute Inc., NC, 
USA).

We considered the validation study as the main study, 
and this report follows the STARD reporting guideline 
for diagnostic studies [24, 25].

Results
Validation study for the index classification using 
the electronic health records
The study population for the validation study consisted of 
1375 NSCLC patients with a mean age of 60.3 (sd = 9.3) 
and a male-to-female ratio of 1.86. The population selec-
tion diagram for the validation study is shown in Fig. 1. 
The stage distribution was 68.6%, 8.9%, 7.9%, and 14.5% 
for stage I, II, III, and IV, respectively.

In the validation study, the overall accuracy of the 
index classification was 93.8% (95% CI: 92.5–95.0%). 
Stage I showed the highest stage-specific sensitivity 
(0.99, 95% CI: 0.98–0.99), PPV (0.97, 95% CI: 0.97–0.98), 
F1 score (0.98, 95% CI: 0.98–0.99), and c-statistic (0.97, 
95% CI: 0.96–0.98), while specificity was highest for stage 
III (0.99, 95% CI: 0.99–0.99), and NPV was highest for 
stage IV (0.99, 95% CI: 0.98–0.99) (Table 2). On the other 
hand, stage-specific sensitivity (0.64, 95% CI: 0.55–0.74), 
F1 score (0.77, 95% CI: 0.70–0.84), and c-statistic (0.82, 
95% CI: 0.77–0.87) were lowest for stage III, and PPV was 
the lowest for stage II (0.74, 95% CI: 0.67–0.81). A con-
fusion matrix comparing the true stage and the inferred 
stage in the validation study is shown in Additional file 1: 
Table S3.

In the sensitivity analysis, 198 NSCLC patients with 
cardiopulmonary comorbidity were included in the 
analysis (N = 1573). The overall accuracy of the index 
classification was 93.5% (95% CI: 92.3–94.7%). Sensitiv-
ity, specificity, PPV, NPV, and c-statistic were all within 
the confidence limits of the main analysis. Results for the 
sensitivity analysis are shown in Additional file 1: Tables 
S4, S5.

Stage‑specific survival analysis applying the index 
classification in a population‑based administrative 
database
The study population for the application study con-
sisted of 71,593 NSCLC patients with a mean age of 64.3 
(sd = 10.2) and a male-to-female ratio of 72:28. Among a 
total of 166,203 patients who had a diagnosis code and 
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at least one procedure or medication code for the treat-
ment of NSCLC in the national health insurance data-
base, 71,593 patients were eligible for analysis. Of these 
patients, 32.9% (23,571/71,593) received chemotherapy 
alone, 29.9% (21,378/71,593) received chemotherapy and 
radiotherapy, and 24.5% (17,543/71,593) underwent sur-
gical resection alone.

When applying the index classifier for NSCLC patients, 
the independency test for Schoenfeld residuals against 
time rejected the proportional hazard assumption 
(p = 0.043). The global null hypothesis of no difference 

in the survival rate was rejected using the log-rank test 
(p < 0.001). Pairwise log-rank tests corrected with Bon-
ferroni methods rejected most null hypotheses, except 
those comparing class 2 vs. class 5, and class 3 vs. class 
4 (Additional file  1: Table  S6). Class-specific survival 
curves (A) and the inferred stage-specific (B) survival 
curves are shown in Fig.  2. The class 1 corresponds to 
multiple stages (i.e., IA, IB, IIA) and stage IIIA corre-
sponds to multiple classes (i.e., 3, 4, 5), so the compara-
bility is limited. Those who received surgery only (class 1) 
showed lower survival for the initial months, but higher 

Fig. 1 Population selection diagram of the validation study. To validate the index classifier against the TNM 7th edition, a retrospective study was 
conducted with electronic health records (EHRs) of NSCLC patients in a tertiary referral hospital in Seoul, Korea. We identified a consecutive series 
of all patients who were newly diagnosed with NSCLC and staged between 2011 and 2015, covered under the national health insurance, and 
received cancer treatment in the hospital with their last visit more than 180 days from the end of observation. We excluded cases initially diagnosed 
at an external hospital, transferred to an external hospital, missing stage information, erroneous stage identified during the manual chart review 
process, received no treatment, missing age information, age of less than 20 years or more than 75 years, preexisting non‑pulmonary cancer, or 
cardiopulmonary comorbidity (eMethods 2)

Table 2 Stage‑specific predictive performance metric of the index classifier against the reference standard (TNM stage) (N = 1375)

Metric (95% CI) I II III IV

Sensitivity 0.99 (0.98, 0.99) 0.82 (0.75, 0.89) 0.64 (0.55, 0.74) 0.92 (0.88, 0.95)

Specificity 0.94 (0.92, 0.96) 0.97 (0.96, 0.98) 0.99 (0.99, 0.99) 0.98 (0.97, 0.99)

Positive predictive value 0.97 (0.97, 0.98) 0.74 (0.67, 0.81) 0.96 (0.91, 0.99) 0.88 (0.84, 0.93)

Negative predictive value 0.98 (0.96, 0.99) 0.98 (0.97, 0.99) 0.97 (0.96, 0.98) 0.99 (0.98, 0.99)

F1 score 0.98 (0.98, 0.99) 0.78 (0.72, 0.83) 0.77 (0.70, 0.84) 0.90 (0.87, 0.93)

c‑statistic 0.97 (0.96, 0.98) 0.90 (0.86, 0.93) 0.82 (0.77, 0.87) 0.95 (0.93, 0.97)
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long-term survival compared with those who received 
combined modality (class 2, 3, 4, 5). Within stage IIIA, 
those with neoadjuvant chemotherapy and surgery (class 
5) showed long-term survival similar to that of stage IIB 
(class 2). When comparing the reference survival rates by 
the TNM classification, the class-specific survival rates 
based on the index algorithm under-estimated the sur-
vival probability for stage IIIB and IV, and over-estimated 
it for stage IIB (Table 3).

Discussion
We proposed a stratification method using an inverse of 
the treatment decision rules that can classify lung cancer 
patients with real-world treatment records that are com-
monly available in routinely collected administrative data-
bases. To validate the index classifier, we first evaluated the 
predictive performance of the index classifier against the 
reference standard staging information in an EHR data-
base of a tertiary referral hospital. In addition, we exam-
ined whether the index classification showed differential 
survival rates when applied to a nationally representative 
administrative database that covers the hospital in the 
validation study. To our knowledge, this is the first study 
to apply and validate a stratification method based on an 
inverse of the treatment decision rules using both EHRs 
and a nationwide administrative database.

The index classification method considered treatment 
pattern-based categories as the baseline stratifying variable, 
rather than as a response or outcome variable. Stratify-
ing phenotypes based on potential treatment options can 
be a practical way of defining patient categories. Modern 
classification of diseases started from Carl Linnaeus’s clas-
sification (1707–1778), which influenced the international 
classification of disease and cause of death (ICD) [26, 27], 
which is an ontology that defines formal semantic relation-
ships between concepts [27]. The TNM stage classification 
of cancer is a nomenclature describing the anatomic extent 
of cancer with limited predictive ability [28]. On the other 
hand, treatment decisions are made based on causal infer-
ence, or counterfactual prediction of an outcome given a 
treatment [29]. The classification of diseases has a major 
role in treatment decisions, but when its predictive abil-
ity is limited, additional qualitative clinical judgement is 
required [4, 28].

The index classification method used in the current 
study supplements the disease ontology information using 
both treatment information and treatment decision rules. 

The treatment decision rules provide the structural link-
ages between the disease information and the treatment 
information by the totality of the evidence in the literature. 
Utilization of treatment patterns enables the classification 
to be more interpretable and transparent to clinicians, 
and therefore, satisfies an essential need to deliver clinical 
impact with a data-driven system [30]. Treatment decision-
making could also be seen as the ultimate goal of diagnostic 
development, which is denoted by the term "theragnostics" 
in certain fields [31, 32].

A practical advantage of the classification using an 
inverse of the treatment decision rules is that it can be 
applied to most routinely collected healthcare databases 
that have codified information of diagnoses, procedures, 
and treatments. Therefore, the classification can be applied 
to data generated while delivering care for building a 
“learning system” [33–35]. When the treatment decision 
rules are used for the baseline stratifying variable to be 
examined against future health outcomes, the results may 
feedback to update the treatment decision rules, enabling 
a continuous learning system. The index classification miti-
gates some known challenges in analyzing observational 
routinely-collected health data [12, 36, 37] by utilizing 
data for major procedures, such as surgery, chemotherapy, 
and radiotherapy [38]. Modeling the inverse of the deci-
sion function is a way of estimating the decision bases (i.e., 
patients’ status, including stage and performance status) 
when the direct measurement is not available. This is in line 
with the estimation method of unmeasured decision bases 
using observed, or revealed, decision actions in economics 
[13] and statistics [14]. Treatment decisions can essentially 
encode such information, and therefore, it can be used as a 
proxy for such information [39], given a quantitative evalu-
ation regarding the degree of bias and error. Therefore, it 
is an important first step to evaluate the predictive perfor-
mance of the index classifier against the reference standard 
staging information in the EHRs.

Another advantage of the classification using an inverse 
of the treatment decision rules is that it may be consid-
ered as a phenotypical classification differentiating sur-
vival rates. In this sense, the treatment pattern for a patient 
can be considered as a decision function that maps from 
both the patient’s performance status and the cancer stage 
into the treatment. Then, the survival prognosis from the 
patient’s performance status and the cancer stage may be 
approximated by the classifier based on an inverse of the 
treatment decision rules. This approach may be useful 

(See figure on next page.)
Fig. 2 Class‑specific (A) and stage‑specific (B) survival curves with 95% confidence intervals and risk tables. A The index classification using an 
inverse of treatment decision function was applied to NSCLC cancer patients in Korean National Health Insurance database (N = 71,593), and 
class‑specific survival function was estimated with the non‑parametric Kaplan–Meier method. B The cancer stages (TNM 7th edition) were inferred 
from the index classification, and stage‑specific survival function was estimated with the non‑parametric Kaplan–Meier method. Stage I and IIA are 
aggregated in the survival curve because the index classification cannot distinguish them
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Fig. 2 (See legend on previous page.)
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when information on a patient’s performance status is not 
readily available.

In the validation study using the EHRs, the index clas-
sifier showed high specificity for all stages of NSCLC. 
However, the sensitivity was particularly low for stage III 
(Table  2). There is especially high uncertainty when the 
treatment involves radiotherapy, which can be used for 
different purposes: it can be used as adjuvant or neoadju-
vant therapy for surgical resection in early-stage disease, or 
it can be used as palliative treatment in combination with 
chemotherapy in advanced stage disease.

Differential class-specific survival rates have been used 
as a justification for the TNM classification of lung can-
cer [28, 40]. The methodological principles for devel-
opment and validation of newer edition of the TNM 
classification are to make an ordinal classification sys-
tem such that within-group variance is minimized while 
between-group variance is maximized, while not com-
promising the former edition. For lung cancer, the prog-
nosis for survival was chosen as the measure for the 
clustering of the stage groups, while having the discrimi-
natory power maintained across different factors, such as 
time, geographical location, diagnostic method, histol-
ogy, and patient characteristics. Therefore, we examined 
whether the index classification results in differential 
class-specific survival rates in the underlying population. 
When the index classifier was applied to the nationwide 
administrative database, the class-specific survival rates 
based on the index algorithm under-estimated the sur-
vival probability for TNM stage IIIB and IV and over-
estimated it for stage IIB. The discrepancies may rise 
from misclassifications of patients who received non-
standard treatments due to unique clinical situations. 
The initially low survival of those who underwent surgery 
only (class 1) can be a result of immediate postoperative 
complications [41]. Observation of stage IIIA patients 

with neoadjuvant chemotherapy and surgery (class 5) 
showing long-term survival similar to stage IIB patients 
(class 2) is hypothesis-generating: this may be related to 
non-significant differences between adjuvant and neoad-
juvant chemotherapy [42–44]. Additional studies need 
to confirm the long-term outcomes beyond five years 
among cancer survivors [45].

This study has several limitations. First, this study con-
sidered only a subdomain of treatment patterns that are 
invertible. When considering the decision functions with 
many-to-many relationships, inversion can be errone-
ous. The index classification showed some discrepancies 
compared to the TNM stage classification, and therefore, 
potential biases and errors should be addressed appro-
priately when it is used as a proxy variable. The present 
study was not meant to develop a precise prediction 
model, which needs to incorporate all important predic-
tive factors, such as histology [46], genotype [47], envi-
ronmental factors [48], and behavioral factors, such as 
smoking status [49]. Variations in healthcare practice 
need to be accounted for appropriately, and additional 
validation may be required before application to a new 
setting. Regional variations, such as the proportion of 
smokers [50, 51], genotype distribution [52, 53], and 
screening policy [54, 55], should also be considered when 
developing a precise prediction model. The utility of the 
index classification can be decreased in settings where 
treatment decision rules are less likely to be strictly fol-
lowed, such as in budget-constrained settings.

Despite these limitations, the stratification of NSCLC 
patients using an inverse of the treatment decision rules 
can supplement a routinely collected database with infor-
mation encoded in treatment decision rules to classify 
NSCLC patients by providing phenotypical classification 
that differentiates survival prognosis. Clinical prognostic 

Table 3 Two‑year and five‑year survival by TNM classification (reference) vs index classification (N = 71,593)

† Reference 2-year and 5-year survival probabilities are based on the IASLC Lung Cancer Staging Project (2016)

TNM classification (reference) Application of the index classification

TNM Stage 
(7th ed.)

2‑year  survival† 5‑year  survival† Classes in the 
proposed classification

N Predicted 2‑year 
survival (95% CI)

Predicted 5‑year 
survival (95% CI)

IA 0.93 0.82 1 17,543 0.87 (0.86, 0.87) 0.79 (0.78, 0.79)

IB 0.85 0.66

IIA 0.74 0.52

IIB 0.64 0.47 2 6633 0.79 (0.78, 0.80) 0.54 (0.53, 0.55)

IIIA 0.55 0.36 3 1021 0.69 (0.66, 0.72) 0.35 (0.32, 0.38)

4 999 0.64 (0.61, 0.67) 0.30 (0.27, 0.33)

5 448 0.70 (0.65, 0.74) 0.47 (0.42, 0.51)

IIIB 0.34 0.19 6 21,378 0.26 (0.25, 0.26) 0.07 (0.06, 0.07)

IV 0.17 0.06 7 23,571 0.15 (0.15, 0.16) 0.04 (0.04, 0.04)
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value of the index classification needs to be validated and 
replicated in multiple clinical settings.

Conclusion
We validated a stratification method of NSCLC patients 
using an inverse of the treatment decision rules in com-
parison to the TNM stage classification and demon-
strated that the index classification has a potential to 
differentiate survival probabilities when applied to a pop-
ulation-based administrative database. The inverse of the 
treatment decision rules has a potential to supplement a 
routinely collected database with information encoded 
in treatment decision rules to classify NSCLC patients. 
It requires further validation and replication in multiple 
clinical settings.
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