

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

A Study on Deep Model Compression
by Refining Gradients and Explicit

Regularization

그라디언트개선및명시적정규화를통한
심층모델압축에관한연구

BY

JANGHO KIM

FEBRUARY 2022

Intelligent Systems
Department of Transdisciplinary Studies

Graduate School of Convergence Science and Technology
SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

A Study on Deep Model Compression
by Refining Gradients and Explicit

Regularization

그라디언트개선및명시적정규화를통한
심층모델압축에관한연구

BY

JANGHO KIM

FEBRUARY 2022

Intelligent Systems
Department of Transdisciplinary Studies

Graduate School of Convergence Science and Technology
SEOUL NATIONAL UNIVERSITY

A Study on Deep Model Compression
by Refining Gradients and Explicit

Regularization

그라디언트개선및명시적정규화를통한
심층모델압축에관한연구

지도교수곽노준

이논문을공학박사학위논문으로제출함

2022년 2월

서울대학교대학원

융합과학부지능형융합시스템전공

김장호

김장호의공학박사학위논문을인준함

2022년 2월

위 원 장: 이 교 구 (인)
부위원장: 곽 노 준 (인)
위 원: 전 동 석 (인)
위 원: 최 상 일 (인)
위 원: 김 은 우 (인)

Abstract

Deep neural network (DNN) has been developed rapidly and has shown

remarkable performance in many domains including computer vision, natural

language processing and speech processing. The demand for on-device DNN,

i.e., deploying DNN on the edge IoT device and smartphone in line with this

development of DNN has increased. However, with the growth of DNN, the

number of DNN parameters has risen drastically. This makes DNN models hard

to be deployed on resource-constraint edge devices. Another challenge is the

power consumption of DNN on the edge device because edge devices have a

limited battery for the power. To resolve the above issues model compression is

very important.

In this dissertation, we propose three novel methods in model compression

including knowledge distillation, quantization and pruning. First, we aim to train

the student model with additional information of the teacher network, named as

knowledge distillation. This framework makes it possible to make the most of

a given parameter, which is essential in situations where the device’s resources

are limited. Unlike previous knowledge distillation frameworks, we focus on

distilling the knowledge indirectly by extracting the factor from features because

the inherent differences between the teacher and the student, such as the network

structure, batch randomness, and initial conditions, can hinder the transfer of

appropriate knowledge.

Second, we propose the regularization method for quantization. The quan-

tized model has advantages in power consumption and memory which are essen-

tial to the resource-constraint edge device. We non-uniformly rescale the gradient

i

of the model in the training time to make a weight distribution quantization-

friendly. We use position-based scaled gradient (PSG) for rescaling the gradient.

Compared with the stochastic gradient descent (SGD), our position-based scaled

gradient descent (PSGD) mitigates the performance degradation after quantiza-

tion because it makes a quantization-friendly weight distribution of the model.

Third, to prune the unimportant overparameterized model dynamic pruning

methods have emerged, which try to find diverse sparsity patterns during train-

ing by utilizing Straight-Through-Estimator (STE) to approximate gradients of

pruned weights. STE can help the pruned weights revive in the process of finding

dynamic sparsity patterns. However, using these coarse gradients causes training

instability and performance degradation owing to the unreliable gradient signal

of the STE approximation. To tackle this issue, we propose refined gradients

to update the pruned weights by forming dual forwarding paths. We propose a

Dynamic Collective Intelligence Learning (DCIL) to avoid using coarse gradients

for pruning.

Lastly, we combine proposed methods as a unified model compression train-

ing framework. This method can train a drastically sparse and quantization-

friendly model.

keywords: Deep Model Compression, Knowledge Distillation, Quantization,

Pruning, Deep Learning

student number: 2017-39082

ii

Contents

Abstract i

Contents iii

List of Tables vii

List of Figures x

1 Introduction 1

1.1 Motivation . 1

1.2 Tasks . 4

1.3 Contributions and Outline . 7

2 Related work 11

2.1 Knowledge Distillation . 11

2.2 Quantization . 13

2.2.1 Sparse training . 14

2.3 Pruning . 15

3 Factor Transfer (FT) for Knowledge Distillation 17

3.1 Introduction . 17

iii

3.2 Proposed method . 19

3.2.1 Teacher Factor Extraction with Paraphraser 20

3.2.2 Factor Transfer with Translator 21

3.3 Experiments . 23

3.3.1 CIFAR-10 . 24

3.3.2 CIFAR-100 . 26

3.3.3 Ablation Study . 28

3.3.4 ImageNet . 29

3.3.5 Object Detection . 29

3.3.6 Discussion . 31

3.4 Conclusion . 31

4 Position based Scaled Gradients (PSG) for Quantization 33

4.1 Introduction . 33

4.2 Proposed method . 37

4.2.1 Optimization in warped space 38

4.2.2 Position-based scaled gradient 39

4.2.3 Target points . 43

4.2.4 PSGD for deep networks 44

4.2.5 Geometry of the Warped Space 45

4.3 Experiments . 50

4.3.1 Implementation details 51

4.3.2 Pruning . 53

4.3.3 Quantization . 56

4.3.4 Knowledge Distillation 58

4.3.5 Various architectures with PSGD 60

iv

4.3.6 Adam optimizer with PSG 60

4.4 Discussion . 61

4.4.1 Toy Example . 61

4.4.2 Weight Distributions 62

4.4.3 Quantization-aware training vs PSGD 64

4.4.4 Post-training with PSGD-trained model 65

4.5 Conclusion . 65

5 Dynamic Collective Intelligence Learning (DCIL) for Pruning 69

5.1 Introduction . 69

5.2 Proposed method . 73

5.2.1 Backgrounds . 73

5.2.2 Dynamic Collective Intelligence Learning 74

5.2.3 Convergence analysis 79

5.3 Experiments . 80

5.3.1 Experiment Setting . 81

5.3.2 Experiment Results . 84

5.3.3 Differences between Dense and pruned model 87

5.3.4 Analysis of the stability 87

5.3.5 Cost of training . 90

5.3.6 Fast convergence of DCIL 92

5.3.7 Tendency of warm-up 93

5.3.8 CIFAR10 . 94

5.3.9 ImageNet . 94

5.3.10 Analysis of training and inference overheads 95

5.4 Conclusion . 96

v

6 Deep Model Compression via KD, Quantization and Pruning (KQP)

97

6.1 Method . 97

6.2 Experiment . 98

6.3 Conclusion . 102

7 Conclusion 103

7.1 Summary . 103

7.2 Limitations and Future Directions 105

Abstract (In Korean) 118

감사의글 120

vi

List of Tables

1.1 The efficiency of INT8 operation compared to FP32 operation. . 2

3.1 Mean classification error (%) on CIFAR-10 dataset (5 runs). . . 25

3.2 Median classification error (%) on CIFAR-10 dataset (5 runs). . 25

3.3 Mean classification error (%) on CIFAR-100 dataset (5 runs). . . 27

3.4 Ablation studies of FT . 28

3.5 Top-1 and Top-5 classification error (%) on ImageNet dataset. . 29

3.6 Mean average precision on PASCAL VOC 2007 test dataset. . . 29

4.1 λs used in the sparse training experiment. 48

4.2 λs used in the quantization experiments. 48

4.3 Test accuracy of ResNet-32 across different sparsity ratios. . . . 49

4.4 Test accuracy of unstructured pruning for ResNet-20 on CIFAR

10 dataset. 50

4.5 Test accuracy of regularization methods that do not have post-

training process for ResNet-18 on the ImageNet and CIFAR

dataset. 54

4.6 Comparison with Post-training Quantization methods using ResNet-

18 on the ImageNet dataset. 54

vii

4.7 Extremely low bits accuracy of ResNet-18 on the ImageNet dataset. 55

4.8 The performance of ResNet-32 on CIFAR-100. 55

4.9 The performance of ResNet-18 on ImageNet, using ResNet-34

as a teacher network. 56

4.10 The performances of various architectures with PSGD. 56

4.11 ResNet-32 trained with Adam on the CIFAR-100 dataset. 57

4.12 8-, 6-, 4-, 3- and 2-bit weight quantization results of ResNet-32

learned by PSGD on the CIFAR-100 dataset. 63

5.1 Top-1 test accuracy of various SOTA pruning methods on CIFAR-

10 for unstructured weight pruning. 76

5.2 Top-1 test accuracy of our DCIL and DPF† on CIFAR-100 for

unstructured weight pruning. 77

5.3 Top-1 and Top-5 test accuracy of ResNet-18 and ResNet-50 on

ImageNet. 82

5.4 Top-1 test accuracy of our DCIL and other baseline methods on

CIFAR-10 for structured weight pruning. 83

5.5 Standard Deviation of the top-1 test accuracy over the last 10%

epochs. 86

5.6 Top-1 test accuracy of our DCIL and other baseline methods on

CIFAR-100 for structured weight pruning. 87

5.7 Top-1 test accuracy differences (‘Pruned - Dense’) of our DCIL

and other baseline methods on CIFAR-10 for unstructured pruning. 89

5.8 Top-1 test accuracy differences (‘Pruned - Dense’) of our DCIL

and other baseline methods on CIFAR-10 for structured pruning. 89

viii

5.9 Top-1 test accuracy on CIFAR10 dataset in unstructured pruning

of target sparsity 95%. 93

5.10 Top-1 test accuracy on CIFAR10 according to warm-up epoch. . 94

5.11 Top-1 test accuracy on ImageNet according to warm-up epoch. . 95

5.12 We report the numbers for ResNet32 model on CIFAR10 using

a single TITAN RTX GPU. 95

6.1 The accuracy of ResNet-32 with on the CIFAR-100. 101

ix

List of Figures

1.1 Outline design of dissertation. 3

1.2 Three tasks and their subcategories in model compression. . . . 4

1.3 Knowledge distillation. 4

1.4 Quantization. 5

1.5 Pruning. 6

1.6 Outline of the dissertation. 8

2.1 The structure of KD, AT and FT. 12

3.1 Overview of the factor transfer. 18

3.2 Factor transfer applied to Faster-RCNN framework 31

4.1 Results of ResNet-34 on CIFAR-100 with the SGD trained model

and the PSGD trained model. 34

4.2 The main idea of PSGD. 39

4.3 Scaling function f(x) for different step size ∆. 42

4.4 Toy example of warping a loss function L(x) = cos ((x− 3.07)2). 43

4.5 The weight distribution of SGD and PSGD models. 49

4.6 Weight distribution and histogram of eigenvalues for MNIST

dataset. 59

x

4.7 Visualizing the loss spaces of Fig. 4.6 using [57] 63

4.8 Weight distributions in the full-precision domain of four random

layers for sparse training, 2-bits, 3-bits, and 4-bits. 67

4.9 Timeline comparing different quantization training methods. . . 68

5.1 Test accuracy vs. epoch with ResNet-20 on CIFAR-10 by 95%

pruning. 70

5.2 The overall process of Proposed DCIL. 71

5.3 Comparison between DPF and DCIL of the forward and back-

ward paths. 75

5.4 Diagram of applying DCIL to two pruning types, unstructured

pruning and structured pruning. 78

5.5 Top-1 test accuracy of every iteration in an epoch. 88

5.6 Training stability, unstructured pruning with 90%, ResNet-18 on

Imagenet. 91

5.7 Top-1 test accuracy vs. epoch to show the training stability. . . . 91

5.8 Top-1 test accuracy on various warm-up epochs. 94

6.1 The overall process of KQP . 99

6.2 Weight distributions from the Blue:DCIL and Red:KQP with 6

and 8 target bit. 101

6.3 Weight distributions from the Blue:DCIL and Red:KQP with 3

and 4 target bit. 102

7.1 On-device deep learning . 104

7.2 The future direction of on-device deep learning 105

xi

Chapter 1

Introduction

“The supreme goal of all theory is to make the irreducible basic elements

as simple and as few as possible without having to surrender the

adequate representation of a single datum of experience”

– Albert Einstein, 1933

1.1 Motivation

In recent years, deep neural networks (DNN) have shown remarkable develop-

ments in many artificial intelligence-related applications such as computer vision,

signal processing, and natural language processing. For example, AlexNet [52]

shows remarkable results with DNN in the 2012 ImageNet Challenge using 60

million parameters and many new DNN architectures are proposed every year

for improving previous weaknesses in many ways , which generally need more

parameters. For this reason, the performance of DNN is increasing rapidly in

many tasks. These works rely on with millions or billions of parameters.

According to the rapid developments, the demands of deploying DNN on

1

INT8 Energy Saving Area Saving

Add 30× 116×

Multiply 18.5× 27×

Table 1.1: The efficiency of INT8 operation compared to FP32 operation.

resource-restricted devices such as IoT devices and smartphones also increase. A

vast amount of computational storage and cost makes them difficult to use in em-

bedded systems with limited resources. For example, the number of parameters

for the ResNet-50 [30] is 25.56M with 96MB memory for storage and AlexNet

needs 1.4GOPS to inference a single 224 × 224 image. Given the size of the

equipment we use, tremendous GPU computations are not generally available in

real-world applications.

Another challenge in deploying DNN on the edge device is the power con-

sumption. In general, resource-restricted devices have a limited battery, which is

rapidly drained with the high computational operation. This power consumption

issue is related to the bandwidth of operations. For instance, INT8 operations

consume 4× less operation bandwidth than FP32 operations. This reduced-

bandwidth operation with the quantization is faster and energy-efficient compared

to the floating-point operation, shown in Table 1.1 [13].

To address above issues, many researchers studied DNN structures to make

DNNs smaller and more efficient to be applicable for embedded systems. These

studies can be roughly classified into three tasks: 1) knowledge distillation is to

transfer a teacher model’s information to a student network1. 2) quantization

compresses the model by reducing the bandwidth used to represent the weight
1Knowledge distillation is often referred to as knowledge transfer (KT), to avoid meaning

specific algorithm KD [35] than the domain.

2

Figure 1.1: Outline design of dissertation. We propose model compression meth-

ods in three tasks including knowledge distillation, quantization and pruning.

Compared to conventional training, model compression methods compress the

model to make the model efficient in memory and the energy consumption.

parameters. 3) pruning is a way to reduce network complexity by pruning the

redundant and non-informative weights. More details of the three tasks are stated

in the next section.

However, KD methods do not compress the model size or reduce computa-

tional operations. They give efficiency in the model performance with the same

given parameters so other compression methods are needed for compressing the

model. Quantization reduces lots of computational costs but it is also relatively

inefficient compared to the pruning method in terms of saving memory efficiency.

Pruning only considers eliminating the model weights. For these reasons, we

have a study on deep model compression in three ways containing knowledge

distillation, quantization and pruning. Finally, we combine three methods in a

single framework.

Fig. 1.1 illustrates the outline design of this dissertation. In this dissertation,

firstly, we propose three efficient methods corresponding to each task includ-

3

Figure 1.2: Three tasks and their subcategories in model compression.

Figure 1.3: Knowledge distillation is the training framework using the informa-

tion of the teacher model

ing knowledge distillation, network quantization and pruning for deep model

compression to make the model efficient in terms of the storage and the band-

width. Then, we combine the proposed pruning and quantization methods with

knowledge distillation in the same training phase.

1.2 Tasks

In this section, we explain three model compression tasks and their subcategories.

Fig. 1.2 shows three tasks related to the model compression and their subcate-

gories. Note that subcategories can vary according to the many perspective so

they are not limited to introduced subcategories in this dissertation.

Knowledge distillation (KD) method is to transfer the information of the

teacher model to the student model (See Fig. 1.3), being also considered as a

regularization method because KD method regularizes the student model with

4

Figure 1.4: The quantization example where ResNet-32 trained on CIFAR-100 is

quantized at 4bit.

many ways in the training. teacher model may have the same structure as the

student model or may have a deeper structure than the student model.

KD is divided into two subcategories according to the type of information

transferred, Logit-based KD and feature-based KD. Logit-based KD focus on

transferring the output of the last fully connected layer formed as a probability.

In general, Logit-based KD uses Kullback–Leibler (KL) divergence to make the

distribution of the student model similar to that of the teacher model.

Feature-based KD utilizes the feature maps as the information for the knowl-

edge transfer. Feature maps contain spatial information compared to a naive

distribution generated from logits. Many distance metrics and pre-processing are

used for the feature-based KD.

Quantization method quantizes floating-point weights of the model onto

regular grids to reduce computational cost. The original weights are approximated

by a set of integers and a scaling factor [48]. This approximation has advantages

in using faster and more efficient integer operations in the deep learning inference,

at the expense of lower representing power.

However, as quantization loses information because of lower representing

power, the performance of the network degrades according to the representing

5

Figure 1.5: Unstructured pruning prunes parameters of the model in a weight-

level. However, structured pruning prunes the whole filter or channel containing

a set of parameters.

power. For example, Fig. 1.4 shows the naive symmetric quantization process.

Two histograms depict the weights of a ResNet-32 trained with CIFAR-100

dataset. After quantizing the weight into 4-bit, the bell-shaped dense distribution

becomes discrete values having 24 bins. Because of the discrepancy of distri-

butions between full-precision and low precision, performance degradation is

inevitable.

To resolve this problem, the regularization method and post quantization have

been studied. When the model is trained, the regularization method introduces

the explicit regularization term in the loss function or implicitly regularizes

the model at the gradient level, to make the model quantization-friendly. Post

quantization methods handle the pre-trained model to avoid drastic degradation.

These methods do not need the training phase because they only use the small

calibration dataset to rescale the weight and bias or eliminate outliers which bring

severe effects in the performance degradation. The regularization method and

the post quantization method start from the full-precision model or training the

6

full-precision model with the regularization term. On the contrary, Quantization-

aware training (QAT) only focuses on the performance of the low-precision

model. In the model training, QAT calculates the loss of an objective function

from quantized weights by using a straight-through estimator (STE) [4] because

the quantization process contains a non-differentiable part.

Pruning method prunes the unimportant weights or filters (channels) in the

model according to various criteria. It is divided into two subcategories accord-

ing to the unit used in the pruning. Fig. 1.5 shows two subcategories which are

unstructured pruning and structured pruning. Unstructured pruning prunes the

model at the weight-level unit. On the other hand, Structured pruning prunes

the model at the filter-level unit containing a set of weights. In general, unstruc-

tured pruning outperforms structured pruning with a large margin. However,

unstructured pruning is not a hardware-friendly method because it makes sparse

weight matrices requiring dedicated hardware and libraries for speed up and the

compression.

1.3 Contributions and Outline

For considering key challenges in the deploying DNN on the resource constraint

device and three tasks in the model compression domain, in this dissertation, we

propose three novel methods according to each task. Fig. 1.6 shows the outline

of this dissertation.

In Chapter 2, prior works related to three tasks of model compression and

their subcategories are reviewed.

In Chapter 3, we propose a novel knowledge transfer method which uses

convolutional operations to paraphrase teacher’s knowledge and to translate it

7

Figure 1.6: We propose three model compression methods. We introduce a

indirect feature-based distillation in Chapter 3 and propose the regularization

method for the quantization in Chaper 4. In Chapter 5, we propose a novel

dynamic pruning method handling structured and unstructured pruning. Finally,

we combine proposed methods in Chapter 6.

for the student where this method uses the feature map distillation categorized

in feature-based KD [44]. This is done by two convolutional modules, which

are called a paraphraser and a translator. The paraphraser is trained in an unsu-

pervised manner to extract the teacher factors which are defined as paraphrased

information of the teacher network. The translator located at the student network

extracts the student factors and helps to translate the teacher factors by mim-

icking them. We observed that our student network trained with the proposed

factor transfer method outperforms the ones trained with conventional knowledge

transfer methods.

In Chapter 4, we propose the position-based scaled gradient (PSG) that

scales the gradient depending on the position of a weight vector to make it

more compression-friendly and this method is categorized in the regularization

method of quantization [46]. First, we theoretically show that applying PSG to

8

the standard gradient descent (GD), which is called PSGD, is equivalent to the

GD in the warped weight space, a space made by warping the original weight

space via an appropriately designed invertible function. Second, we empirically

show that PSG acting as a regularizer to the weight vectors is favorable for model

compression domains such as quantization, pruning, and knowledge distillation.

PSG reduces the gap between the weight distributions of a full-precision model

and its compressed counterpart. This enables the versatile deployment of a

model either as an uncompressed mode or as a compressed mode depending

on the availability of resources. The experimental results on CIFAR-10/100

and ImageNet datasets show the effectiveness of the proposed PSG in model

compression even for extremely low bits.

In Chapter 5, we introduce refined gradients to update the pruned weights by

forming dual forwarding paths from two sets (pruned and unpruned) of weights.

We propose a novel Dynamic Collective Intelligence Learning (DCIL) which

makes use of the learning synergy between the collective intelligence of both

weight sets [45]. We verify the usefulness of the refined gradients by showing

enhancements in the training stability and the model performance on the CIFAR

and ImageNet datasets. DCIL outperforms various previously proposed pruning

schemes including other dynamic pruning methods with enhanced stability during

training.

In Chapter 6, to leverage the advantages of three tasks of model compression

including knowledge distillation, quantization and pruning, we combine proposed

PSGD and DCIL with logit-based KD and propose a unified training framework

named KQP.

In Chapter 7, we provide the summary and the future directions of this

research toward on-device deep learning.

9

To sum up, we refine the gradient of the model by scaling gradients according

to the position of weights for quantization and recalculating the approximated

gradients with dual forwarding paths for pruning. Also, we introduce explicit

regularization named as factor transfer for knowledge distillation.

10

Chapter 2

Related work

In this chapter, we provide related works for each proposed method according

to each task of three tasks in model compression. Firstly, we compare existing

knowledge distillation methods with proposed factor transfer in section 2.1. Then,

we introduce quantization methods and the sparse training and also compare

proposed PSGD method in section 2.2. Finally, in section 2.3, pruning methods

are described and we explain advantages of proposed DCIL.

2.1 Knowledge Distillation

‘knowledge transfer’ is a method of training a student network with a stronger

teacher network. Knowledge distillation (KD) [35] is the early work of knowledge

transfer for deep neural networks. The main idea of KD is to shift knowledge

from a teacher network to a student network by leaning the class distribution

via softened softmax. The student network can capture not only the information

provided by the true labels, but also the information from the teacher. Yim

et al. [84] defined the flow of solution procedure (FSP) matrix calculated by

11

(a) Knowledge Distillation (b) Attention Transfer (c) Proposed

Figure 2.1: The structure of (a) KD [35], (b) AT [86] and (c) the proposed

method FT. Unlike KD and AT, our method does not directly compare the

softened distribution (KD) or the attention map (AT) which is defined as the

sum of feature maps of the teacher and the student networks. Instead, we extract

factors from both the teacher and the student, whose difference is tried to be

minimized.

Gram matrix of feature maps from two layers in order to transfer knowledge.

In FitNet [72], they designed the student network to be thinner and deeper than

the teacher network, and provided hints from the teacher network for improving

performance of the student network by learning intermediate representations of

the teacher network. FitNet attempts to mimic the intermediate activation map

directly from the teacher network. However, it can be problematic since there are

significant capacity differences between the teacher and the student. Attention

transfer (AT) [86], in contrast to FitNet, trains a less deep student network such

that it mimics the attention maps of the teacher network which are summations of

the activation maps along the channel dimension. Therefore, an attention map for

a layer is of its the spatial dimensions. Figure 2.1 visually shows the difference

of KD [35], AT [86] and the proposed method, factor transfer (FT). Unlike other

methods, our method does not directly compare the teacher and student networks’

softend distribution, or attention maps.

12

As shown in Figure 3.1, our paraphraser is similar to the convolutional

autoencoder [62] in that it is trained in an unsupervised manner using the recon-

struction loss and convolution layers. Hinton et al.[36] proved that autoencoders

produce compact representations of images that contain enough information for

reconstructing the original images. In [53], a stacked autoencoder on the MNIST

dataset achieved great results with a greedy layer-wise approach. Many studies

show that autoencoder models can learn meaningful, abstract features and thus

achieve better classification results in high-dimensional data, such as images

[68, 74]. The architecture of our paraphraser is different from convolutional

autoencoders in that convolution layers do not downsample the spatial dimension

of an input since the paraphraser uses sufficiently downsampled feature maps of

a teacher network as the input.

2.2 Quantization

QAT methods have shown increasingly strong performance in the low-precision

domain even to 2,3 bit-width [19, 23, 5, 41]. Post-training quantization, on the

other hand, aims to quantize weights and activation without additional training

or using the training data. Majority of the works in recent literature starts from

a pre-trained network trained by standard training scheme [90, 66, 3]. Many

works on channel-wise quantization methods, which require storing quantiza-

tion parameters per channel, have shown notable improvement in performance

even at 4-bit [3, 11]. However, layer-wise quantization methods, which are more

hardware-friendly as they store quantization parameters per layer (as opposed

to per channel), still suffers at lower bit-widths [66, 48, 90]. [66] achieves near

full-precision accuracy at 8-bit by bias correction and range equalization of

13

channels, while [90] splits channels with outliers to reduce the clipping error.

However, both suffer from severe accuracy degradation under 6-bit. Our method

improves on but is not limited to the uniform layer-wise quantization. Concurrent

to ours, [67] and [65] propose to directly minimize the quantization error using a

calibration dataset to achieve higher performance at under 6-bit. We show using

PSGD pretrained model outperforms using SGD pretrained model in Section 4.4.

Meanwhile, another line of work in quantization has focused on quantization

robustness by regularizing the weight distribution from the initial training phase.

[58] focuses on minimizing the Lipshitz constant to regularize the gradients

for robustness against adversarial attacks. Similarly, [2] proposes a new regu-

larization term on the norm of the gradients for quantization robustness across

different bit widths. This enables ”on-the-fly” quantization to various bit widths.

Our method does not have an explicit regularization term but scales the gradients

to implicitly regularize the weights in the full-precision domain to make them

quantization-friendly. Additionally, we do not introduce significant training over-

head because gradient norm regularization is not necessary, while [2] necessitates

double-backpropagation which increases the training complexity. Some other

related works in quantization aims to quantize the gradient vectors for efficient

training [15], propose more representative encoding formats [78], or learn the

optimal mixed precision bit-width [80].

2.2.1 Sparse training

Another relevant line of research in model compression is pruning, in which

unimportant units such as weights, filters, or entire blocks are pruned [39, 56].

Recent works have focused on pruning methods that include the pruning process

in the training phase [71, 91, 61, 55]. Among them, substantial amount of works

14

utilize sparsity-inducing regularization. [61] proposes training with L0 norm

regularizer on individual weights to train a sparse network, using the expected L0

objective to relax the otherwise indifferentiable regularization term. Meanwhile,

other works focus on using saliency criterion. [55] utilizes gradients of masks as

a proxy for importance to prune networks at a single-shot. Similar to [55] and

[61], our method does not need a heuristic pruning schedule during training nor

additional fine-tuning after pruning. In our method, pruning is formulated as a

subclass of quantization because PSG can be used for sparse training by setting

the target value as zero instead of the quantized grid points.

2.3 Pruning

Earlier works in model pruning have focused on pruning unimportant parts of

a fully trained model. [54], and [29] have used second derivative information

to identify unimportant neurons. [28] have established a general paradigm of

iterative training-and-pruning to recover the degradation of accuracy due to

pruning. Since then, many methods have been proposed in both unstructured

pruning [71, 83] and structured pruning [34, 56]. [27] proposed a method to undo

the pruning of important units by “splicing” during the pruning process as an

alternative to greedy pruning. This avoids permanent pruning of important units

as units may revive in the splicing process.

Motivated by reducing the computational costs of iterative pruning methods,

some recent methods have focused on finding a sparse network while training.

Many methods dynamically prune and regrow pruned weights while training

instead of using a fixed mask as done in earlier work of [27]. Sparse Evolu-

tionary Training [63] uses simple heuristics to prune unimportant weights and

15

subsequently regrow weights. Dynamic Sparse Reparameterization [64] adjusts

sparsity patterns while training and automatically reallocates a sparsity level

across layers. Sparse Momentum [17] uses gradient momentum to determine

unimportant weights and layers and redistributes sparsity across layers using

the momentum. Dynamic Feedback with Pruning [59] generalizes the simple

scheme of [27] to prune while training and achieves state-of-the-art accuracy in

unstructured pruning. While effective, the training curve is often unstable due

to the coarse gradients, which makes model selection difficult for deployment.

We propose a dynamic pruning method with superior final accuracy and is partic-

ularly stable when training by improving upon DPF via refining the gradients

with two sub-networks.

16

Chapter 3

Factor Transfer (FT) for Knowledge Distillation

3.1 Introduction

In this work, we focus on the knowledge transfer. Previous studies such as

attention transfer (AT) [86] and knowledge distillation (KD) [35] have achieved

meaningful results in the field of knowledge transfer, where their loss function

can be collectively summarized as the difference between the attention maps or

softened distributions of the teacher and the student networks. These methods

directly transfer the teacher network’s softened distribution [35] or its attention

map [86] to the student network, inducing the student to mimic the teacher.

While these methods provide fairly good performance improvements, directly

transferring the teacher’s outputs overlooks the inherent differences between

the teacher network and the student network, such as the network structure, the

number of channels, and initial conditions. Therefore, we need to re-interpret

the output of the teacher network to resolve these differences. For example,

from the perspective of a teacher and a student, we came up with a question

that simply providing the teacher’s knowledge directly without any explanation

17

Figure 3.1: Overview of the factor transfer. In the teacher network, feature maps

are transformed to the ‘teacher factors’ by a paraphraser. The number of feature

maps of a teacher network (m) are resized to the number of feature maps of

teacher factors (m× k) by a paraphrase rate k. The feature maps of the student

network are also transformed to the ‘student factors’ with the same dimension

as that of the teacher factor using a translator. The factor transfer (FT) loss is

used to minimize the difference between the teacher and the student factors in

the training of the translator that generates student factors. Factors are drawn in

blue. Note that before the FT, the paraphraser is already trained unsupervisedly

by a reconstruction loss.

can be somewhat insufficient for teaching the student. In other words, when

teaching a child, the teacher should not use his/her own term because the child

cannot understand it. On the other hand, if the teacher translates his/her terms

into simpler ones, the child will much more easily understand.

In this respect, we sought ways for the teacher network to deliver more un-

derstandable information to the student network, so that the student comprehends

that information more easily. To address this problem, we propose a novel knowl-

edge transferring method that leads both the student and teacher networks to

18

make transportable features, which we call ‘factors’ in this work. Contrary to the

conventional methods, our method is not simply to compare the output values of

the network directly, but to train neural networks that can extract good factors and

to match these factors. The neural network that extracts factors from a teacher

network is called a paraphraser, while the one that extracts factors from a student

network is called a translator. We trained the paraphraser in an unsupervised

way, expecting it to extract knowledges different from what can be obtained with

supervised loss term. At the student side, we trained the student network with the

translator to assimilate the factors extracted from the paraphraser. The overview

of our proposed method is provided in Figure 3.1. With various experiments, we

succeeded in training the student network to perform better than the ones with

the same architecture trained by the conventional knowledge transfer methods.

Our contributions can be summarized as follows:

•We propose a usage of a paraphraser as a means of extracting meaningful

features (factors) in an unsupervised manner.

•We propose a convolutional translator in the student side that learns the

factors of the teacher network.

•We experimentally show that our approach effectively enhances the perfor-

mance of the student network.

3.2 Proposed method

It is said that if one fully understands a thing, he/she should be able to explain

it by himself/herself. Correspondingly, if the student network can be trained to

replicate the extracted information, this implies that the student network is well

informed of that knowledge. In this section, we define the output of paraphraser’s

19

middle layer, as ‘teacher factors’ of the teacher network, and for the student

network, we use the translator made up of several convolution layers to generate

‘student factors’ which are trained to replicate the ‘teacher factors’ as shown

in Figure 3.1. With these modules, our knowledge transfer process consists of

the following two main steps: 1) In the first step, the paraphraser is trained by a

reconstruction loss. Then, teacher factors are extracted from the teacher network

by a paraphraser. 2) In the second step, these teacher factors are transferred to

the student factors such that the student network learns from them.

3.2.1 Teacher Factor Extraction with Paraphraser

ResNet architectures [30] have stacked residual blocks and in [86] they call each

stack of residual blocks as a ‘group’. In this work, we will also denote each

stacked convolutional layers as a ‘group’. Yosinski et al.[85] verified lower layer

features are more general and higher layer features have a greater specificity.

Since the teacher network and the student network are focusing on the same

task, we extracted factors from the feature maps of the last group as clearly can

be seen in Figure 3.1 because the last layer of a trained network must contain

enough information for the task.

In order to extract the factor from the teacher network, we train the para-

phraser in an unsupervised way by assigning the reconstruction loss between the

input feature maps x and the output feature maps P (x) of the paraphraser. The

unsupervised training act on the factor to be more meaningful, extracting differ-

ent kind of knowledge from what can be obtained with supervised cross-entropy

loss function. This approach can also be found in EBGAN [89], which uses an

autoencoder as discriminator to give the generator different kind of knowledge

from binary output.

20

The paraphraser uses several convolution layers to produce the teacher factor

FT which is further processed by a number of transposed convolution layers

in the training phase. Most of the convolutional autoencoders are designed to

downsample the spatial dimension in order to increase the receptive field. On

the contrary, the paraphraser maintains the spatial dimension while adjusting the

number of factor channels because it uses the feature maps of the last group which

has a sufficiently reduced spatial dimension. If the teacher network produces m

feature maps, we resize the number of factor channels as m × k. We refer to

hyperparameter k as a paraphrase rate.

To extract the teacher factors, an adequately trained paraphraser is needed.

The reconstruction loss function used for training the paraphraser is quite simple

as

Lrec = ‖x− P (x)‖2, (3.1)

where the paraphraser network P (·) takes x as an input. After training the

paraphraser, it can extract the task specific features (teacher factors) as can be

seen in the supplementary material.

3.2.2 Factor Transfer with Translator

Once the teacher network has extracted the factors which are the paraphrased

teacher’s knowledge, the student network should be able to absorb and digest

them on its own way. In this work, we name this procedure as ‘Factor Transfer’.

As depicted in Figure 3.1, while training the student network, we inserted the

translator right after the last group of student convolutional layers.

The translator is trained jointly with the student network so that the student

network can learn the paraphrased information from the teacher network. Here,

21

the translator plays a role of a buffer that relieves the student network from the

burden of directly learning the output of the teacher network by rephrasing the

feature map of the student network.

The student network is trained with the translator using the sum of two loss

terms, i.e. the classification loss and the factor transfer loss:

Lstudent = Lcls + βLFT , (3.2)

Lcls = C(S(Ix), y), (3.3)

LFT = ‖ FT

‖FT ‖2
− FS

‖FS‖2
‖p. (3.4)

With (3.4), the student’s translator is trained to output the student factors

that mimic the teacher factors. Here, FT and FS denote the teacher and the

student factors, respectively. We set the dimension of FS to be the same as that

of FT . We also apply an l2 normalization on the factors as [86]. In this work, the

performances using l1 loss (p = 1) is reported, but the performance difference

between l1 (p = 1) and l2 (p = 2) losses is minor (See the supplementary

material), so we consistently used l1 loss for all experiments.

In addition to the factor transfer loss (3.4), the conventional classification

loss (3.3) is also used to train student network as in (3.2). Here, β is a weight

parameter and C(S(Ix), y) denotes the cross entropy between ground-truth label

y and the softmax output S(Ix) of the student network for an input image Ix, a

commonly used term for classification tasks.

The translator takes the output features of the student network, and with (3.2),

it sends the gradient back to the student networks, which lets the student network

absorb and digest the teacher’s knowledge in its own way. Note that unlike the

training of the teacher paraphraser, the student network and its translator are

22

trained simultaneously in an end-to-end manner.

3.3 Experiments

In this section, we evaluate the proposed FT method on several datasets. First,

we verify the effectiveness of FT through the experiments with CIFAR-10 [50]

and CIFAR-100 [51] datasets, both of which are the basic image classification

datasets, because many works that tried to solve the knowledge transfer problem

used CIFAR in their base experiments [72, 86]. Then, we evaluate our method on

ImageNet LSVRC 2015 [73] dataset. Finally, we applied our method to object

detection with PASCAL VOC 2007 [20] dataset.

To verify our method, we compare the proposed FT with several knowledge

transfer methods such as KD [35] and AT [86]. There are several important

hyperparameters that need to be consistent. For KD, we fix the temperature for

softened softmax to 4 as in [35], and for β of AT, we set it to 103 following [86].

In the whole experiments, AT used multiple group losses. Alike AT, β of FT is

set to 103 in ImageNet and PASCAL VOC 2007. However, we set it to 5× 102

in CIFAR-10 and CIFAR-100 because a large β hinders the convergence.

We conduct experiments for different k values from 0.5 to 4. To show the

effectiveness of the proposed paraphraser architecture, we also used two convo-

lutional autoencoders as paraphrasers because the autoencoder is well known for

extracting good features which contain compressed information for reconstruc-

tion. One is an undercomplete convolutional autoencoder (CAE), the other is an

overcomplete regularized autoencoder (RAE) which imposes l1 penalty on fac-

tors to learn the size of factors needed by itself [1]. Details of these autoencoders

and overall implementations of experiments are explained in the supplementary

23

material.

In some experiments, we also tested KD in combination with AT or FT

because KD transfers output knowledge while AT and FT delivers knowledge

from intermediate blocks and these two different methods can be combined into

one (KD+AT or KD+FT).

3.3.1 CIFAR-10

The CIFAR-10 dataset consists of 50K training images and 10K testing images

with 10 classes. We conducted several experiments on CIFAR-10 with various

network architectures, including ResNet [30], Wide ResNet (WRN) [87] and

VGG [75]. Then, we made four conditions to test various situations. First, we

used ResNet-20 and ResNet-56 which are used in CIFAR-10 experiments of

[30]. This condition is for the case where the teacher and the student networks

have same width (number of channels) and different depths (number of blocks).

Secondly, we experimented with different types of residual networks using

ResNet-20 and WRN-40-1. Thirdly, we intended to see the effect of the absence

of shortcut connections that exist in Resblock on knowledge transfer by using

VGG13 and WRN-46-4. Lastly, we used WRN-16-1 and WRN-16-2 to test the

applicability of knowledge transfer methods for the architectures with the same

depth but different widths.

In the first experiment, we wanted to show that our algorithm is applicable

to various networks. Result of FT and other knowledge transfer algorithms can

be found in Table 3.1. In the table, ‘Student’ column provides the performance

of student network trained from scratch. The ‘Teacher’ column provides the

performance of the pretrained teacher network. The numbers in the parentheses

are the sizes of network parameters in Millions. The performances of AT and KD

24

Student Teacher Student AT KD FT AT+KD FT+KD Teacher

ResNet-20 (0.27M) ResNet-56 (0.85M) 7.78 7.13 7.19 6.85 6.89 7.04 6.39

ResNet-20 (0.27M) WRN-40-1 (0.56M) 7.78 7.34 7.09 6.85 7.00 6.95 6.84

VGG-13 (9.4M) WRN-46-4 (10M) 5.99 5.54 5.71 4.84 5.30 4.65 4.44

WRN-16-1 (0.17M) WRN-16-2 (0.69M) 8.62 8.10 7.64 7.64 7.52 7.59 6.27

Student Teacher k = 0.5 k = 0.75 k = 1 k = 2 k = 4 CAE RAE

ResNet-20 (0.27M) ResNet-56 (0.85M) 6.85 6.92 6.89 6.87 7.08 7.07 7.24

ResNet-20 (0.27M) WRN-40-1 (0.56M) 7.16 7.05 7.04 6.85 7.05 7.26 7.33

VGG-13 (9.4M) WRN-46-4 (10M) 4.84 5.09 5.04 5.01 4.98 5.85 5.53

WRN-16-1 (0.17M) WRN-16-2 (0.69M) 7.64 7.83 7.74 7.87 7.95 8.48 8.00

Table 3.1: Mean classification error (%) on CIFAR-10 dataset (5 runs). All the

numbers are the results of our implementation. AT and KD are implemented

according to [86].

Student Teacher Student AT F-ActT KD AT+KD Teacher FT (k = 0.5) Teacher

WRN-16-1 (0.17M) WRN-40-1 (0.56M) 8.77 8.25 8.62 8.39 8.01 6.58 8.12 6.55

WRN-16-2 (0.69M) WRN-40-2 (2.2M) 6.31 5.85 6.24 6.08 5.71 5.23 5.51 5.09

Table 3.2: Median classification error (%) on CIFAR-10 dataset (5 runs). The

first 6 columns are from Table 1 of [86], while the last two columns are from our

implementation.

are better than those of ‘Student’ trained from scratch and the two show better or

worse performances than the other depending on the type of network used. For

FT, we chose the best performance among the different k values shown in the

bottom rows in the table. The proposed FT shows better performances than AT

and KD consistently, regardless of the type of network used.

In the cases of hybrid knowledge transfer methods such as AT+KD and

FT+KD, we could get interesting result that AT and KD make some sort of

synergy, because for all the cases, AT+KD performed better than standalone

25

AT or KD. It sometimes performed even better than FT, but FT model trained

together with KD loses its power in some cases.

As stated before in section 3.2.1, to check if having a paraphraser per group

in FT is beneficial, we trained a ResNet-20 as student network with paraphrasers

and translators combined in group1, group2 and group3, using the ResNet-56

as teacher network with k = 0.75. The classification error was 7.01%, which is

0.06% higher than that from the single FT loss for the last group. This indicates

that the combined FT loss does not improve the performance thus we have used

the single FT loss throughout the work. In terms of paraphrasing the information

of the teacher network, the paraphraser which maintains the spatial dimension

outperformed autoencoders based methods which use CAE or RAE.

As a second experiment, we compared FT with transferring FitNets-style

hints which use full activation maps as in [86]. Table 3.2 shows the results which

verifiy that using the paraphrased information is more beneficial than directly

using the full activation maps (full feature maps). In the table, FT gives better

accuracy improvement than full-activation transfer (F-ActT). Note that we trained

a teacher network from scratch for factor transfer (the last column) with the same

experimental environment of [86] because there is no pretrained model of the

teacher networks.

3.3.2 CIFAR-100

For further analysis, we wanted to apply our algorithm to more difficult tasks to

prove generality of the proposed FT by adopting CIFAR-100 dataset. CIFAR-100

dataset contains the same number of images as CIFAR-10 dataset, 50K (train)

and 10K (test), but has 100 classes, containing only 500 images per classes.

Since the training dataset is more complicated, we thought the number of blocks

26

Student Teacher Student AT KD FT AT+KD FT+KD Teacher

ResNet-56 (0.85M) ResNet-110 (1.73M) 28.04 27.28 27.96 25.62 28.01 26.93 26.91

ResNet-20 (0.27M) ResNet-110 (1.73M) 31.24 31.04 33.14 29.08 34.78 32.19 26.91

Student Teacher k = 0.5 k = 0.75 k = 1 k = 2 k = 4 CAE RAE

ResNet-56 (0.85M) ResNet-110 (1.73M) 25.62 25.78 25.85 25.63 25.87 26.41 26.29

ResNet-20 (0.27M) ResNet-110 (1.73M) 29.20 29.25 29.28 29.19 29.08 29.84 30.11

Table 3.3: Mean classification error (%) on CIFAR-100 dataset (5 runs). All the

numbers are from our implementation.

(depth) in the network has much more impact on the classification performance

because deeper and stronger networks will better learn the boundaries between

classes. Thus, the experiments on CIFAR-100 were designed to observe the

changes depending on the depths of networks. The teacher network was fixed

as ResNet-110, and the two networks ResNet-20 and ResNet-56, that have the

same width (number of channels) but different depth (number of blocks) with

the teacher, were used as student networks. As can be seen in Table 3.3, we got

an impressive result that the student network ResNet-56 trained with FT even

outperforms the teacher network. The student ResNet-20 did not work that well

but it also outperformed other knowledge transfer methods.

Additionally, in line with the experimental result in [86], we also got consis-

tent result that KD suffers from the gap of depths between the teacher and the

student, and the accuracy is even worse compared to the student network in the

case of training ResNet-20. For this dataset, the hybrid methods (AT+KD and

FT+KD) was worse than the standalone AT or FT. This also indicates that KD is

not suitable for a situation where the depth difference between the teacher and

the student networks is large.

27

Paraphraser Translator CIFAR-10 CIFAR-100 Number of layers in Paraphraser CIFAR-10 CIFAR-100

Yes No 6.18 27.61 1 Layer [0.07M] 6.09 27.07

No Yes 6.12 27.39 2 Layers [0.22M] 5.99 27.03

Yes Yes 5.71 26.91 3 Layers [0.26M] 5.71 26.91

Student (WRN-40-1[0.6M]) 7.02 28.81 Teacher (WRN-40-2[2.2M]) 4.96 24.10

Table 3.4: Left: Ablation study with and without the paraphraser (k = 0.5) and

the Translator. (Mean classification error (%) of 5 runs). Right: Effect of number

of layers in the paraphraser.

3.3.3 Ablation Study

In the introduction, we have described that the teacher network provides more

paraphrased information to the student network via factors, and described a need

for a translator to act as a buffer to better understand factors in the student network.

To further analyze the role of factor, we performed an ablation experiment on

the presence or absence of a paraphraser and a translator. The result is shown

in Table 3.4. The student network and the teacher network are selected with

different number of output channels. One can adjust the number of student and

teacher factors by adjusting the paraphrase rate k of the paraphraser. As described

above, since the role of the paraphraser (making FT with unsupervised training

loss) and the translator (trained jointly with student network to ease the learning

of Factor Transfer) are not the same, we can confirm that the synergy of two

modules maximizes the performance of the student network. Also, we report the

performance of different number of layers in the paraphraser. As the number of

layers increases, the performance also increases.

28

Method Network Top-1 Top-5

Student Resnet-18 29.91 10.68

KD Resnet-18 33.83 12.55

AT Resnet-18 29.36 10.23

FT (k = 0.5) Resnet-18 28.57 9.71

Teacher Resnet-34 26.73 8.57

Table 3.5: Top-1 and Top-5 classification error

(%) on ImageNet dataset. All the numbers are

from our implementation.

Method mAP

Student(VGG-16) 69.5

FT(VGG-16, k = 0.5) 70.3

Teacher(ResNet-101) 75.0

Table 3.6: Mean average pre-

cision on PASCAL VOC 2007

test dataset.

3.3.4 ImageNet

The ImageNet dataset is a image classification dataset which consists of 1.2M

training images and 50K validation images with 1,000 classes. We conducted

large scale experiments on the ImageNet LSVRC 2015 in order to show our

potential availability to transfer even more complex and detailed informations.

We chose ResNet-18 as a student network and ResNet-34 as a teacher network

same as in [86] and validated the performance based on top-1 and top-5 error

rates as shown in Table 3.5.

As can be seen in Table 3.5, FT consistently outperforms the other methods.

The KD, again, suffers from the depth difference problem, as already confirmed

in the result of other experiments. It shows just adding the FT loss helps to lower

about 1.34% of student network’s (ResNet-18) Top-1 error on ImageNet.

3.3.5 Object Detection

In this experiment, we wanted to verify the generality of FT, and decided to

apply it on detection task, other than classifications. We used Faster-RCNN

29

pipeline [70] with PASCAL VOC 2007 dataset [20] for object detection. We

used PASCAL VOC 2007 trainval as training data and PASCAL VOC 2007 test

as testing data. Instead of using our own ImageNet FT pretrained model as a

backbone network for detection, we tried to apply our method for transferring

knowledges about object detection. Here, we set a hypothesis that since the factors

are extracted in an unsupervised manner, the factors not only can connote the core

knowledge of classification, but also can convey other types of representations.

In the Faster-RCNN, the shared convolution layers contain knowledges of

both classification and localization, so we applied factor transfer to the last layer

of shared convolution layer. Figure 3.2 shows where we applied FT in the Faster-

RCNN framework. We set VGG-16 as a student network and ResNet-101 as a

teacher network. Both networks are fine-tuned at PASCAL VOC 2007 dataset

with ImageNet pretrained model. For FT, we used ImageNet pretrained VGG-16

model and fixed the layers before conv3 layer during training phase. Then, by

the factor transfer, the gradient caused by the LFT loss back-propagates to the

student network passing by the student translator.

As can be seen in Table 3.6, we could get performance enhancement of 0.8

in mAP (mean average precision) score by training Faster-RCNN with VGG-16.

As mentioned earlier, we have strong belief that the latter layer we apply the

factor transfer, the higher the performance enhances. However, by the limit of

VGG-type backbone network we have used, we tried but could not apply FT else

that the backbone network. Experiment on the capable case where the FT can be

applied to the latter layers like region proposal network (RPN) or other types of

detection network will be our future work.

30

Figure 3.2: Factor transfer applied to Faster-RCNN framework

3.3.6 Discussion

In this section, we compare FitNet [72] and FT. FitNet transfers information

of an intermediate layer while FT uses the last layer, and the purpose of the

regressor in FitNet is somewhat different from our translator. More specifically,

Romero et al. [72] argued that giving hints from deeper layer over-regularizes

the student network. On the contrary, we chose the deeper layer to provide more

specific information as mentioned in the work. Also, FitNet does not use the

paraphraser as well. Note that FitNet is actually a 2-stage algorithm in that they

initialize the student weights with hints and then train the student network using

Knowledge Distillation.

3.4 Conclusion

In this work, we propose the factor transfer which is a novel method for knowl-

edge transfer. Unlike previous methods, we introduce factors which contain

paraphrased information of the teacher network, extracted from the paraphraser.

31

There are mainly two reasons that the student can understand information from

the teacher network more easily by the factor transfer than other methods. One

reason is that the factors can relieve the inherent differences between the teacher

and student network. The other reason is that the translator of the student can

help the student network to understand teacher factors by mimicking the teacher

factors. A downside of the proposed method is that the factor transfer requires

the training of a paraphraser to extract factors and needs more parameters of the

paraphraser and the translator. However, the convergence of the training for the

paraphraser is very fast and additional parameters are not needed after training

the student network. In our experiments, we showed the effectiveness of the

factor transfer on various image classification datasets. Also, we verified that

factor transfer can be applied to other domains than classification. We think that

our method will help further researches in knowledge transfer.

32

Chapter 4

Position based Scaled Gradients (PSG) for Quanti-

zation

4.1 Introduction

Regularization strategies have been proposed to induce a prior to neural networks

[37, 79, 35, 44, 43, 12]. Inspired by such regularization methods which induce

a prior for a specific purpose, in this work we propose a novel regularization

method that non-uniformly scales gradient for model compression problems. The

scaled gradient, whose scale depends on the position of the weight, constrains the

weight to a set of compression-friendly grid points. We replace the conventional

gradient in the stochastic gradient descent (SGD) with the proposed position-

based scaled gradient (PSG) and call it as PSGD. We show that applying PSGD in

the original weight space is equivalent to optimizing the weights by the standard

SGD in a warped space, to which weights from the original space are warped by

an invertible function. The invertible warping function is designed such that the

weights of the original space are forced to merge to the desired target positions

by scaling the gradients.

33

(a) Classification and Quantization Error

(b) Weight Distribution of Full and 4-bit Precision

Figure 4.1: Results of ResNet-34 on CIFAR-100. (a) Mean-squared quantization

error (line) and classification error (bar) across different bits. Blue: SGD, Red:

PSGD. (b) Example of weight distribution (Conv2 1 layer [31]) trained with stan-

dard SGD and our PSGD. For PSGD, the distribution of the full precision weights

closely resembles the low precision distribution, yet maintains its accuracy.

We are not the first to scale the gradient elements. The scaled gradient method

which is also known as the variable metric method [14] multiplies a positive

definite matrix to the gradient vector to scale the gradient. It includes a wide

variety of methods such as the Newton method, Quasi-Newton methods and the

natural gradient method [16, 69, 6]. Generally, they rely on Hessian estimation

or Fisher information matrix for their scaling. However, our method is different

from them in that our scaling does not depend on the loss function but it depends

34

solely on the current position of the weight.

We apply the proposed PSG method to the model compression problems such

as quantization and pruning. In recent years, deploying a deep neural network

(DNN) on restricted edge devices such as smartphones and IoT devices has

become a very important issue. For these reasons, reducing bit-width of model

weights (quantization) and removing unimportant model weights (pruning) have

been studied and widely used for applications. Majority of the literature in

quantization, dubbed as Quantization Aware Training (QAT) methods, fine-tunes

a pre-trained model on the low precision domain without considering the full

precision domain using the entire training dataset. Moreover, this scenario is

restrictive in real-world applications because additional training is needed. In the

additional training phase, a full-size dataset and high computational resources

are required which prohibits easy and fast deployment of DNNs on edge devices

for customers in need.

To resolve this problem, many works have focused on post-training quan-

tization (PTQ) methods that do not require full-scale training [48, 66, 3, 90].

For example, [66] starts with a pre-trained model with only minor modification

on the weights by equalizing the scales across channels and correcting biases.

However, inherent discrepancy in the distribution of the pre-trained model and

that of the quantized model is too large for the aforementioned methods to offset

the fundamental difference in the distributions. As shown in Fig. 4.1, due to the

differences in the two distributions, the classification error and the quantization

error, denoted as the mean squared error increase as lower bit-width is used.

Accordingly, when it comes to layer-wise quantization, existing post-training

methods suffer significant accuracy degradation when it is quantized below 6-bit.

Meanwhile, another line of research in quantization has recently emerged

35

that approaches the task from the initial training phase [2]. Our method follows

this scheme of training from scratch like standard SGD, but we attain a competent

full-precision model that can also be effortlessly quantized to a low precision

model with no additional post-processing. In essence, our main goal is to train a

compression-friendly model that can be easily compressed when the resources

are limited, without the need of re-training, fine-tuning and even accessing the

data. To achieve this, we constrain the original weights to merge to a set of

quantized grid points (Fig. 4.1(b)) by scaling their gradients proportional to the

error between the original weight and its quantized version. For pruning, the

weights are regularized to merge to zero. More details will be described in Sec

4.2.

Our contributions can be summarized as follows:

• We propose a novel regularization method for model compression by

introducing the position-based scaled gradient (PSG) which can be considered as

a variant of the variable metric method.

•We prove theoretically that PSG descent (PSGD) is equivalent to apply-

ing the standard gradient descent in the warped weight space. This leads the

weight to converge to a well-performing local minimum in both compressed and

uncompressed weight spaces (see Fig. 4.1).

•We interpret the warped space of PSGD using the steepest descent method

with quadratic norm, which tries to make the space wide inversely proportional to

quantization error (Eq 4.26). This phenomenon is also experimentally observed

in Sec. 4.4.1.

• We verify the effectiveness of PSG on CIFAR and ImageNet datasets,

applying PSG in quantization, pruning, and knowledge distillation. We also show

that PSGD is very effective for extremely low bit quantization. Furthermore,

36

when PSGD-pretrained model is used along with a concurrent PTQ method, it

outperforms its SGD-pretrained counterpart.

This work is the expanded version of our previous research [46]. We addi-

tionally verify PSGD with the recent iterative pruning framework. Also, we show

that our PSGD as an implicit regularizer not modifying the objective function

[82] works well with knowledge distillation which is one of the explicit regu-

larizations. Finally, we interpret the geometry of the warped space from PSGD

using steepest descent method.

4.2 Proposed method

In this section, we describe the proposed position-based scaled gradient descent

(PSGD) method. In PSGD, a scaling function regularizes the original weight to

merge to one of the desired target points which performs well at both uncom-

pressed and compressed domains. This is equivalent to optimizing via SGD in

the warped weight space. With a specially designed invertible function that warps

the original weight space, the loss function in this warped space converges to

a different local minima that are more compression-friendly compared to the

solutions driven in the original weight space.

We first prove that optimizing in the original space with PSGD is equivalent

to optimizing in the warped space with gradient descent. Then, we demonstrate

how PSGD is used to constrain the weights to a set of desired target points.

Lastly, we provide explanation on how this method is able to yield comparable

performance with that of vanilla SGD in the original uncompressed domain,

despite its strong regularization effect.

37

4.2.1 Optimization in warped space

Theorem 1. Let F : X → Y, X ,Y ⊂ Rn, be an arbitrary invertible multivari-

ate function that warps the original weight space X into Y and consider the loss

function L : X → R and the equivalent loss function L′ = L ◦ F−1 : Y → R.

Then, the gradient descent (GD) method in the warped space Y is equivalent to

applying a scaled gradient descent in the original space X such that

GD(yyy,∇L′yyy) ≡ GD(xxx, (J Fxxx)−2∇Lxxx), (4.1)

where yyy = F(xxx) and ∇b
a and J b

a respectively denote the gradient and Jacobian

of the function b with respect to the variable a.

Proof. Consider the point xxxt ∈ X at time t and its warped version yyyt ∈ Y . To

find the local minimum of L′(yyy), the standard gradient descent method at time

step t in the warped space can be applied as follows:

yyyt+1 = yyyt − η∇L
′

yyy (yyyt). (4.2)

Here, ∇L′yyy (yyyt) = ∂L′
∂yyy |yyyt is the gradient and η is the learning rate. Applying the

inverse function F−1 to yyyt+1, we obtain the updated point xxxt+1:

xxxt+1 = F−1(yyyt+1) = F−1(yyyt − η∇L
′

yyy (yyyt))

= F−1(yyyt)− ηJ xxx
yyy (yyyt)∇L

′
yyy (yyyt)

(4.3)

where the last equality is from the first-order Taylor approximation around yyyt and

J xxx
yyy = J F−1

yyy = ∂xxx
∂yyy ∈ Rn×n is the Jacobian of xxx = F−1(yyy) with respect to yyy.

By the chain rule, ∇L′yyy = ∂xxx
∂yyy

∂L
∂xxx = J xxx

yyy ∇Lxxx . Because J xxx
yyy = (J yyy

xxx)−1 = (J Fxxx)−1,

we can rewrite Eq. 4.3 as

xxxt+1 = xxxt − η(J Fxxx (xxxt))
−2∇Lxxx (xxxt). (4.4)

38

Figure 4.2: The main idea of PSGD. Suppose the yellow points indicate the

quantization grid in a two-dimensional space. During training in the FP domain,

if the position of the weight vector is close to a quantization grid, the gradient

of that weight vector is scaled down proportionally to prevent it from escaping.

Conversely, if it is distant, the gradient is scaled up so as to accelerate its escape

from its original position.This idea is equivalent to multiplying a scaling factor

to the gradients based on the distance from the nearest grid point.

Now Eq. 4.2 and Eq. 4.4 are equivalent and Eq. 4.1 is proved. In other words,

the scaled gradient descent (PSGD) in the original space X , whose scaling is

determined by the matrix (J Fxxx)−2, is equivalent to gradient descent in the warped

space Y .

4.2.2 Position-based scaled gradient

In this part, we introduce one example of designing the invertible function F(xxx)

for scaling the gradients. This invertible function should cause the original weight

vector xxx to merge to a set of desired target points {x̄xx}. These kinds of desired

target weights can act as a prior in the optimization process to constrain the

39

original weights to merge at specific positions. The details of how to set the target

points will be deferred to the next subsection.

The gist of weight-dependent gradient scaling is simple. For a given weight

vector, if the specific weight element is far from the desired target point, a higher

scaling value is applied so as to escape this position faster. On the other hand, if

the distance is small, lower scaling value is applied to prevent the weight vector

from deviating from the position (See Fig. 4.2). From now on, we focus on the

design of the scaling function for the quantization problem. For pruning, the

procedure is analogous and we omit the detail.

Scaling function: We use the same warping function f for each coordinate

xi, i ∈ {1, · · · , n} independently, i.e. yyy = F(xxx) = [f(x1), f(x2), · · · f(xn)]T .

Thus the Jacobian matrix becomes diagonal (J Fxxx = diag(f ′(x1), · · · , f ′(xn))

and our method belongs to the diagonally scaled gradient method.

Consider the following warping function

f(x) = 2 sign(x− x̄)(
√
|x− x̄|+ ε−

√
ε) + c(x̄) (4.5)

where the target x̄ is determined as the closest grid point from x, sign(x) ∈

{±1, 0} is a sign function and c(x̄) is a constant dependent on the specific grid

point x̄ making the function continuous. We introduced c(x̄) for making f(x)

continuous. If we do not add a constant c(x̄), the f(x) has points of discontinuity

at every {(n+ 0.5)∆|n ∈ Z} as depicted in Fig. 4.3, where ∆ represents step

size and n∆ means n-th quantized value identical to x̄ corresponding to x. We

can calculate the left sided limit and right sided limit at n∆ + 0.5∆ using Eq. 4.5.

f(n∆ + 0.5∆−) = 2(
√

0.5∆ + ε−
√
ε) + c(n∆)

f(n∆ + 0.5∆+) = −2(
√

0.5∆ + ε−
√
ε) + c((n+ 1)∆)

40

Based on the condition that the left sided limit and the right sided limit should be

the same, we can get the following recurrence relation:

c((n+ 1)∆)− c(n∆) = 4 (
√

0.5∆ + ε−
√
ε).

Using the successive substitution for calculating c(x̄), it becomes

c(n∆)− c(0) = 4n (
√

0.5∆ + ε−
√
ε).

Setting c(0) = 0 and because n∆ = x̄, c(x̄) can be calculated as below:

c(x̄) =
4x̄

∆
(
√

0.5∆ + ε−
√
ε). (4.6)

ε is an arbitrarily small constant to avoid infinite gradient. Then, from Eq. 4.4,

the elementwise scaling function becomes s(x) = 1
[f ′(x)]2 and consequently

s(x) = |x− x̄(x)|+ ε. (4.7)

Using the elementwise scaling function Eq. 4.7, the elementwise weight update

rule for the PSG descent (PSGD) becomes

xi
t+1 = xi

t − ηs(xi)
∂L
∂xi

∣∣∣∣
xxxt

(4.8)

where, η is the learning rate.1 We further elaborate on the geometry of the warped

space using the concept of steepest descent in the p-norm in Section 4.2.5.

PSGD operates independent of the type of the loss function as it does not

modify the loss term, but rather non-uniformly scales the gradient elements.

Therefore, it can be applied to KD loss containing task loss L (e.g. cross-entropy)

and KL loss.Assuming that there are n classes, softmax posterior with tempera-

ture T can be calculated as follows:
1We set η = η0λs where η0 is the conventional learning rate and λs is a hyper-parameter that

can be set differently for various scaling functions depending on their range.

41

Figure 4.3: Scaling function f(x) for different step size ∆. The red graph depicts

f(x) without c(x̄) and the green graph depicts f(x) with c(x̄) (Eq. 4.6). Without

c(x̄), there are points of discontinuity at every {(n+0.5)∆|n ∈ Z}. After adding

c(x̄) to the scaling function f(x), it becomes a continuous function (green).

pk(z; T) =
ezk/T∑n
j e

zj/T
, (4.9)

where zk represents a k-th logit. The temperature value, T , is used to make soft

logits for knowledge distillation. We can compute the KL loss between student

and teacher network using following equation.

KL(zT ||zS ; T) =
n∑

i=1

pk(zT ; T) log(
pk(zT ; T)

pk(zS ; T)
). (4.10)

Where ZT and ZS are teacher logit and student logit,respectively. Then, we can

use PSGD with KD loss combining task loss and KL loss as below:

LKD = L+ T 2 ×KL(zT ||zS ; T) (4.11)

LKD refers to the KD loss. We multiply T 2 because the decrease rate of the

gradient scale is 1/T 2. Using KD loss, the update ruls for the PSGD with KD

becomes

42

Figure 4.4: Toy example of warping a loss function L(x) = cos ((x− 3.07)2).

Left denotes the original loss function. Right is drawn by warping the original

function by Eq. 4.5 with the target x̄ = 0.

xi
t+1 = xi

t − ηs(xi)
∂LKD

∂xi

∣∣∣∣
xxxt

(4.12)

4.2.3 Target points

Quantization: In this work, we use the uniform symmetric quantization method

[48] and the per-layer quantization scheme for hardware friendliness. Consider a

floating point range [minx,maxx] of model weights. The weight x is quantized

to an integer ranging [−2n−1 + 1,2n−1 − 1] for n-bit precision. Quantization-

dequantization for the weights of a network is defined with step-size (∆) and

clipping values. The overall quantization process is as follows:

xQ = Clip(
⌊ x

∆

⌉
,−2n−1 + 1, 2n−1 − 1),

∆ =
max(−minx,maxx)

2n−1 − 1

(4.13)

where b·e is the round to the closest integer operation and Clip(x, a, b) =
b if x > b

a if x < a

x elsewise.

43

We can get the quantized weights with the de-quantization process as x̄ =

xQ ×∆ and use this quantized weights for target positions of quantization.

Pruning: For magnitude-based pruning methods, weights near zero are removed.

Therefore, we choose zero as the target value (i.e. x̄ = 0).

4.2.4 PSGD for deep networks

Many literature focusing on the optimization of DNNs with stochastic gradient

descent (SGD) have reported that multiple experiments give consistently similar

performance although DNNs have many local minima (e.g. see Sec. 2 of [9]).

[10] analyzed the loss surface of DNNs and showed that large networks have

many local minima with similar performance on the test set and the lowest critical

values of the random loss function are located in a specific band lower-bounded

by the global minimum. From this respect, we explain informally how PSGD for

deep networks works. As illustrated in Fig. 4.4, we posit that there exist many

local minima (A,B) in the original weight space X with similar performance,

only some of which (A) are close to one of the target points (0) exhibiting

high performance also in the compressed domain. As in Fig. 4.4 left, assume

that the region of convergence for B is much wider than that of A, meaning

that there exists more chance to output solution B rather than A from random

initialization. By the warping function F specially designed as described above

(Eq. 4.5), the original space X is warped to Y such that the areas near target

points are expanded while those far from the targets are contracted. If we apply

gradient descent in this warped space, the loss function will have a better chance

of converging to A′. Correspondingly, PSGD in the original space will more

likely output A rather than B, which is favorable for compression. Note that F

transforms the original weight space to the warped space Y not to the compressed

44

domain.

4.2.5 Geometry of the Warped Space

In this section, we further illustrate the exact geometry of the warped space

when PSGD is applied to quantization. Recall from Eq. 4.4, Eq. 4.8, and Eq.

4.13 that the absolute magnitude of the quantization error is used to scale the

gradient elements. This corresponds to left-multiplying a diagonal matrix with

the elements determined by the magnitude of the quantization error. We use the

concept of p-norm steepest descent [7] to illustrate why this leads to a warped

space that induces the weight vectors to merge to the target points. First, we

explain some necessary preliminary details for completeness.

Steepest Descent Method: For a first-order optimization method, the steep-

est descent direction, v is determined by minimizing the the first-order Taylor

approximation of L(x+ v) around x.

L(x+ v) ≈ L(x) +∇L(x)T v (4.14)

Since v can be chosen to have arbitrarily large magnitude in a particular direction,

the magnitude is normalized as

vnsd = argmin{∇L(x)T v | ‖v‖p ≤ 1} (4.15)

Naturally, using different values of p will yield distinct steepest directions. Ad-

ditionally, other family of norms can also be used such as the quadratic norms,

which is defined for a positive-definite matrix A as

‖v‖A = (vtAvt)
1
2 = ‖A

1
2 v‖2 (4.16)

One can also consider the unormalized steepest descent, which scales the nor-

45

malized steepest descent by the dual norm.

vsd = ‖∇L(x)‖∗vnsd (4.17)

where ‖ · ‖∗ denotes the dual norm

‖z‖∗ = sup
x
{|ztx| | ‖x‖ ≤ 1} (4.18)

For the Euclidean norm (p = 2), vnsd corresponds to −∇L(x), which is denoted

as gradient descent. Now we present our theorem by interpreting PSGD as

steepest descent method in the quadratic norm.

Lemma 1. For a fixed iteration t, the unormalized steepest descent direction

in the quadratic norm ‖ · ‖A is equivalent to the PSG descent direction if the

symmetric, positive-definite matrix A is given by

A(t) = diag(
1

s(xti)
, · · · , 1

s(xtn)
) (4.19)

where s(x) is given by Eq. 4.7 and n is the dimension of the weight vectors.

Proof. First note that the normalized steepest descent in the Euclidean norm is

simply given by the negative direction of the gradient scaled by its norm.

− ∇L(x)

‖∇L(x)‖2
= argmin{∇L(x)T v | ‖v‖2 ≤ 1} (4.20)

The steepest descent in the quadratic norm can easily be formulated as above

with change of variables.

vnsd = argmin{∇L(x)T v | ‖v‖A ≤ 1}

= argmin{∇L(x)T v | ‖A
1
2 v‖2 ≤ 1}

= argmin{∇L(x)TA−
1
2h | ‖h‖2 ≤ 1}

(4.21)

46

where the last equality follows from the change-of-variable h = A
1
2 v. Then, the

descent direction is given by

hnsd = − A−
1
2∇L(x)

‖A−
1
2∇L(x)‖2

(4.22)

or equivalently,

vnsd = − A−1∇L(x)

‖A−
1
2∇L(x)‖2

(4.23)

To yield the unormalized descent direction, we compute the dual norm of ‖∇L‖A,

which is precisely supx{|∇L(x)Tx| | ‖x‖A ≤ 1} = ‖A−
1
2∇L(x)‖2. Thus the

unormalized descent direction is

vsd = −A−1∇L(x) (4.24)

, which written in element-wise for the ith element is equivalent to the PSGD

update rule given in Eq. 4.8.

visd = −s(xi)
∂L
∂xi

(4.25)

Theorem 2. Given weight spaces X ,Y ⊂ Rn , and a symmetric, positive-

definite matrix A ∈ Rn∗n, let X and Y be the weight spaces obtained by PSG

descent method and the gradient descent method respectively. Then, the linear

transformation from X to Y at iteration t is given by

Tt : X → Y = A(t)
1
2x (4.26)

Thus, for a weight vector xtj with small quantization error, the jth basis is

expanded inversely proportional to the error, rendering xt+1
j in the vicinity of

the target point for a given update.

47

Table 4.1: λs used in the sparse training experiment.

CIFAR-100 & ResNet-32
Sparsity (%)

20.0 50.0 70.0 80.0 90.0

λs 100 100 200 600 1200

Table 4.2: λs used in the quantization experiments.

ResNet-18
ImageNet CIFAR-10

8-bit 6-bit 4-bit 8-bit 6-bit 4-bit

λs 500 500 1000 10 10 10

Proof. For the simplicity of notation, t is omitted below as the proof applies to

any fixed t. Consider the loss function defined in Y .

L̃(y) = L(A−
1
2 y) = L(x) (4.27)

The gradient descent direction in y is given by

vy = −∇yL̃(y) = −∂L̃(y)

∂y

= −∂x
∂y

∂L(x)

∂x

= −A−
1
2∇xL

(4.28)

Applying the inverse transformation of Eq. 4.26 yields the gradient descent

direction in x, which is equivalent to the unormalized steepest descent direction

in the qudratic norm given by Eq. 4.24 in y ∈ Y .

vx = T −1(vy) = −A−1∇xL (4.29)

By Lemma 1, this is equivalent to the PSG descent.

48

Table 4.3: Test accuracy of ResNet-32 across different sparsity ratios (percentage

of zeros) on CIFAR-100 after magnitude-based pruning [28] without any fine-

tuning.

Method
Sparsity (%)

20.0 50.0 70.0 80.0 90.0

SGD 69.43 60.59 15.95 4.70 1.00

L0 Reg. [61] 67.56 64.49 49.73 23.95 2.85

SNIP [55] 69.68 68.73 66.76 65.67 60.14

PSGD (Ours) 69.63 69.25 68.62 67.27 64.33

Figure 4.5: The weight distribution of SGD and PSGD models.

49

Table 4.4: Test accuracy of unstructured pruning for ResNet-20 on CIFAR 10

dataset. All numbers except ours are from [59]

Methods
Sparsity (%)

SNIP [55] SM [17] DSR [64] DPF [59] PSGD (Ours)

88.50±0.13 89.76±0.40 87.88±0.04 90.88±0.07 90.47±0.03 90

84.91±0.25 83.03±0.74 – 88.01±0.30 88.68±0.01 95

4.3 Experiments

In this section, we experimentally show the effectiveness of PSGD. To verify

our PSGD method, we first conduct experiments for sparse training by setting

the target point as 0, then we further extend our method to quantization with

CIFAR [49] and ImageNet ILSVRC 2015 [73] dataset. We first demonstrate the

effectiveness in sparse training with magnitude-based pruning by comparing

with L0-regularization [61] and SNIP [55]. [61] penalizes the non-zero model

parameters and shares the scheme of regularizing the model while training. Like

ours, [55] is a single-shot pruning method, which does not require pruning

schedules nor additional fine-tuning. Then, we apply our PSGD with iterative

pruning methods which contain pruning phase and finetuning phase at training.

For quantization, we compare our method with (1) methods that employ

regularization at the initial training phase [2, 26, 58]. We choose gradient L1

norm regularization [2] method and Lipschitz regularization methods [58, 26]

from the original paper [2] as baselines, because they propose new regularization

techniques used at the training phase similar to us. Note that [26] adds an L2

penalty term on the gradient of weights instead of the L1 penalty like [2]. We also

compare with (2) existing state-of-the-art layer-wise post-training quantization

50

methods that start from pre-trained models [66, 90] to show the improvement in

lower bits (4-bit). Refer to Section 2.2 for the details on the compared methods.

To validate the effectiveness of our method, we also train our model for extremely

low bit (2,3-bit) weights.

For knowledge distillation, we conduct experiments to validate the compati-

bility of PSGD with knowledge distillation by applying it to the KD loss.

Lastly, we show the experimental results on various network architectures

and applying PSG to the Adam optimizer [47] to show the adaptability of PSGD.

4.3.1 Implementation details

methods

We used the Pytorch framework for all experiments. For the pruning experiment

of Table 4.3, we used ResNet-32 [31] on the CIFAR-100, following the training

hyperparameters of [88]. We used released official implementations of [61] and

re-implemented [55] for the Pytorch framework. In iterative pruning of Table

4.4, we followed the same setting of [59]. For quantization experiments of Table

4.5 and 4.6, we used ResNet-18 and followed [2] settings for CIFAR-10 and

ImageNet. For [90], released official implementations were used for experiment.

All other numbers are either from the original paper or re-implemented. For

fair comparison, all quantization experiments followed the layer-wise uniform

symmetric quantization [48] and when quantizing the activation, we clipped

the activation range using batch normalization parameters as described in [66],

same as [2]. PSGD is applied from the last 15 epochs for ImageNet experiments

and from the first learning rate decay epoch for CIFAR experiments. We use

additional 30 epochs for PSGD at extremely low bits experiments (Table 4.7).

51

Also, we tuned the hyper-parameter λs for each bit-widths and sparsity. Our

search criteria is ensuring that the performance of uncompressed model is not

degraded, similar to [2].

Datasets

We use CIFAR-10/100 and the ImageNet datasets for experiments. CIFAR-10

consists of 50,000 training images and 10,000 test images, consisting of 10

classes with 6000 images per class. CIFAR-100 consists of 100 classes with 600

images per class. The ImageNet dataset consists of 1.2 million images. We use

50,000 validation images for the test, which are not included in training samples.

We use the conventional data pre-processing steps.2 3

ImageNet / CIFAR-10 For ResNet-18, we started training with a L2 weight

decay of 10−4 and learning rate of 0.1, then decayed the learning rate with a

factor of 0.1 at every 30 epochs. Training was terminated at 90 epochs. We only

used the last 15 epochs for training the model with PSGD similar to [2]. This

means we applied the PSG method after 75 epochs with learning rate 0.001. For

extremely low-bits experiments, we did not use any weight decay after 75 epochs.

We tuned the hyper-parameters λs for target bit-widths. All numbers are results

of the last epoch. We used the official code of [90] for comparisons with 0.02 for

the Expand Ratio.4

CIFAR-100 For ResNet-32, the same weight decay and initial learning rate

were used as above and the learning rate was decayed at 82 and 123 epoch

following [88]. Training was terminated at 150 epoch. For VGG16 with batch-
2https://github.com/kuangliu/pytorch-cifar
3https://github.com/pytorch/examples/blob/master/imagenet/

main.py
4https://github.com/cornell-zhang/dnn-quant-ocs

52

https://github.com/kuangliu/pytorch-cifar
https://github.com/pytorch/examples/blob/master/imagenet/main.py
https://github.com/pytorch/examples/blob/master/imagenet/main.py
https://github.com/cornell-zhang/dnn-quant-ocs

norm normalization (VGG16-bn), we decayed the learning rate at 145 epoch

instead. We applied PSG after the first learning rate decay. The first convolu-

tional layer and the last linear layer are quantizedat 8-bit for the 2-bit and the

3-bit experiments. For sparse training, training was terminated at 200 epoch and

weight decay was not used at higher sparsity ratio, while all the other training

hyperparameters were the same. For [61], we used the official implementation

for the results.5

Hyper-parameter λs

We searched the appropriate λs with the criteria that the performance of the

uncompressed model is not degraded, similar to [2]. For hyper-parameter tuning,

we use two disjoint subsets of the training dataset for training and validation.

Then we used the found λs to retrain on the whole training dataset. Table 4.1 and

4.2 show the values of λs used in experiments. The λs tended to rise for lower

target bit-widths or for higher sparsity ratios. In CIFAR-10, we observe that same

λs value yields fair performance across all bit-widths.

4.3.2 Pruning

Single-shot pruning As a preliminary experiment, we first demonstrate that

PSG-based optimization is possible with a single target point set at zero. Then,

we apply magnitude-based pruning following [28] across different sparsity ratios.

As the purpose of the experiment is to verify that the weights are centered on zero,

weights are pruned once after training has completed and the model is evaluated

without fine-tuning for [61] and ours. Results for [55], which prunes the weights

by single-shot at initialization, are shown for comparison on single-shot pruning.
5https://github.com/AMLab-Amsterdam/L0_regularization

53

https://github.com/AMLab-Amsterdam/L0_regularization

Table 4.5: Test accuracy of regularization methods that do not have post-training

process for ResNet-18 on the ImageNet and CIFAR dataset. PSGD@W# indi-

cates the target number of bits for weights in PSGD is #. All numbers except

ours are from [2]. At #-bit, PSGD@W# performs the best in most cases.

Method
ImageNet CIFAR-10

FP W8A8 W6A6 W4A4 FP W8A4 W6A4 W4A4

SGD 69.70 69.20 63.80 0.30 93.54 85.51 85.35 83.98

DQ Regularization [58] 68.28 67.76 62.31 0.24 92.46 83.31 83.34 82.47

Gradient L2 [26] 68.34 68.02 64.52 0.19 93.31 84.50 84.99 83.82

Gradient L1 [2] 70.07 69.92 66.39 0.22 93.36 88.70 88.45 87.62

Gradient L1 (λ = 0.05) [2] 64.02 63.76 61.19 55.32 – – – –

PSGD@W8 (Ours) 70.22 70.13 66.02 0.60 93.67 93.10 93.03 90.65

PSGD@W6 (Ours) 70.07 69.83 69.51 0.29 93.54 92.76 92.88 90.55

PSGD@W4 (Ours) 68.18 67.63 62.73 63.45 93.63 93.04 93.12 91.03

Table 4.6: Comparison with Post-training Quantization methods using ResNet-18

on the ImageNet dataset. Results of DFQ are from [66].

Method W8A8 W6A6 W4A4

DFQ [66] 69.7 66.3 –

OCS + Best Clip [90] 69.37 66.76 44.3

PSGD (Ours) 70.13 69.51 63.45

Table 4.3 indicates that our method outperforms the two methods across

various high sparsity ratios. While all three methods are able to maintain accuracy

at low sparsity (∼10%), [61] has some accuracy degradation at 20% and suffers

severely at high sparsity. This is in line with the results shown in [21] that the

method was unable to produce sparse residual models without significant damage

to the model quality. Comparing with [55], our method is able to maintain higher

accuracy even at high sparsity, displaying the strength in single-shot pruning, in

54

Table 4.7: Extremely low bits accuracy of ResNet-18 on the ImageNet dataset.

The first convolutional layer and the last linear layer are quantized at 8-bit.

Activation is fixed to 8-bit.

Method (FP / W3A8) (FP / W2A8)

SGD 69.76 / 0.10 69.76 / 0.10

PSGD (Ours) 66.75 / 66.36 64.60 / 62.65

Table 4.8: The performance of ResNet-32 on CIFAR-100. Teacher network is

ResNet-56. In this experiment, we do not quantize the activation.

Method (FP / 4-bit) (FP / 3-bit) (FP / 2-bit)

PSGD 70.08 / 69.57 68.96 / 68.56 67.16 / 60.76

PSGD + KD 71.16 / 71.10 70.56 / 69.91 69.66 / 63.54

which no pruning schedules nor additional training are necessary. Fig. 4.5 shows

the distribution of weights in SGD- and PSGD-trained models.

Iterative pruning We also consider the iterative pruning case. Comparing

single shot pruning methods, iterative pruning gradually increases the sparsity

while training. This can help the recovery the performance via finetuning steps

included in iterative pruning training schedule. We choose the iterative pruning

schedule from [59]. Table 4.4 shows the performance of our method with SOTA

pruning methods. PSGD is also very effective in the iterative pruning schemes.

Even at 95% sparsity, PSGD outperforms the existing SOTA iterative pruning

method with a simple training schedule and without any pruning schemes. These

results verify that PSGD performs well with only scheduling comparable to the

competitive iterative pruning. This can be possible because PSGD only scaled

the gradient to regularize the weights to zero which is friendly to pruning.

55

Table 4.9: The performance of ResNet-18 on ImageNet, using ResNet-34 as a

teacher network.

Method (FP / W8A8) (FP / W6A6) (FP / W4A4)

PSGD 70.22 / 70.13 70.07 / 69.51 68.18 / 63.45

PSGD + KD 71.28 / 71.23 71.40 / 70.82 69.76 / 63.70

Table 4.10: The performances of various architectures with PSGD.

DataSet & Network Method (FP / W4A4) (FP / W3A8) (FP / W2A8)

CIFAR-100 & VGG16-bn
SGD 73.12 / 63.08 73.12 / 3.44 73.12 / 1.00

PSGD 73.21 / 70.92 71.85 / 68.28 69.36 / 53.25

DataSet & Network Method (FP / W8A8) (FP / W6A8) (FP / W4A8)

ImageNet & DeseNet-121
SGD 74.43 / 73.85 74.43 / 70.57 74.43 / 0.36

PSGD 75.16 / 75.03 75.12 / 74.84 72.60 / 72.26

4.3.3 Quantization

In the quantization domain, we first compare PSGD with regularization methods

at the on-the-fly bit-widths problem, meaning that a single model is evaluated

across various bit-widths. Then, we compare with existing state-of-the-art layer-

wise symmetric post-training methods to verify handling the problem of accuracy

drop at low bits due to the differences in weight distributions (See Fig. 4.1).

Regularization methods Table 4.5 shows the results of regularization meth-

ods on CIFAR-10 and ImageNet datasets, respectively. In the CIFAR-10 exper-

iments of Table 4.5, we fix the activation bit-width to 4-bit and then vary the

weight bit-widths from 8 to 4. For the ImageNet experiments of Table 4.5, we use

equal bit-widths for both weights and activations, following [2]. In CIFAR-10

56

Table 4.11: ResNet-32 trained with Adam on the CIFAR-100 dataset. Vanilla

Adam also suffers accuracy degradation on 4 bits, while applying PSG to Adam

recovers the accuracy by more than 5%. Weight-only quantization is shown by

W4A32.

Method FP W4A32 W4A4

Adam [47] 66.66 55.27 43.5

Adam with PSG 66.80 60.35 51.55

experiment, all methods seem to maintain the performance of the quantized

model until 4-bit quantization. Regardless of target bit-widths, PSGD outper-

forms all other regularization methods. On the other hand, ImageNet experiment

generally shows reasonable results until 6-bit but the accuracy drastically drops

at 4-bit. PSGD targeting 8-bit and 6-bit marginally improves on all bits, yet also

experiences drastic accuracy drop at 4-bit. In contrast, Gradient L1 (λ = 0.05)

and PSGD @ W4 maintain the performance of the quantized models even at 4-bit.

Comparing with the second best method Gradient L1 (λ = 0.05) [2], PSGD

outperforms it at all bit-widths. At full precision (FP), 8-, 6- and 4-bit, the gap

of performance between [2] and ours are about 4.2%, 3.9%, 1.5% and 8.1%,

respectively. From Table 4.5, while the quantization noise may slightly degrade

the accuracy in some cases, a general trend that using more bits leads to higher

accuracy is demonstrated. Compared to other regularization methods, PSGD

is able to maintain reasonable performance across all bits by constraining the

distribution of the full precision weight to resemble that of the quantized weight.

This quantization-friendliness is achieved by the appropriately designed scaling

function. In addition, unlike [2], PSGD does not need additional overhead of

57

computing double-backpropagation.

Post-training methods Table 4.6 shows that OCS, state-of-the-art post-training

method, has a drastic accuracy drop at 4-bit. For OCS, following the original

paper, we chose the best clipping method for both weights and activation. DFQ

also has a similar tendency of showing drastic accuracy drop under the 6-bit as

depicted in Fig. 1 of the original paper of DFQ [66]. This is due to the fundamen-

tal discrepancy between FP and quantized weight distributions as stated in Fig.

4.1. On the other hand, models trained with PSGD have similar full-precision

and quantized weight distributions and hence low quantization error due to the

scaling function. Our method outperforms OCS at 4-bit by around 19% without

any post-training and weight clipping to treat the outliers. Applying PTQ method

to our PSG pre-trained model is shown in Sec 4.4.

Extremely low bits quantization As shown in Fig. 4.1, SGD suffers drastic

accuracy drop at extremely low bits such as 3-bit and 2-bit. To confirm that PSGD

can handle extremely low bit, we conduct experiments with PSGD targeting 3-bit

and 2-bit except the first and last layers which are quantized at 8-bit. Table 4.7

shows the results of applying PSGD. Although the full precision accuracy does

drop due to the strong constraints, PSGD is able to maintain reasonable accuracy.

This demonstrates the potential of PSGD as a key solution to post-training

quantization at extremely low bits.

4.3.4 Knowledge Distillation

In this part, we show the adaptability of PSGD, which only manipulates the

magnitude of the gradients from the loss function. We apply PSGD with another

regularizer, Knowledge Distillation. We follow the update rule (Eq. 4.12) for

quantization, using a KD framework. We utilize a powerful teacher network to

58

(a) Weight distribution (1st layer)

(b) Histogram of eigenvalues

Figure 4.6: Weight distribution and histogram of eigenvalues for MNIST dataset.

The two-layered fully connected network consists of 50 and 20 hidden nodes.

Target bit of PSGD is 2. Note that both solutions yield relatively small negative

eigenvalues (λ > −1).

train a relatively small student network. We conduct two experiments on CIFAR-

100 and ImageNet. In CIFAR-100, we use ResNet-32 as a student and ResNet-54

as a teacher network. In ImageNet, we use ResNet-18 and ResNet-34 as a student

and teacher, respectively. Table 4.8 and 4.9 show similar tendency. Regardless of

bit-width, network, and dataset, Combining KD and PSGD (Eq. 4.12) outperform

using PSGD alone (Eq. 4.8). From this respect, we validate that PSGD can be

used alongside with other regularizer because of its adaptability.

59

4.3.5 Various architectures with PSGD

In this section, we show the results of applying PSGD to various architectures.

Table 4.10 shows the quantization results of VGG16 [75] with batch normaliza-

tion on the CIFAR-100 dataset and DenseNet-121 [38] on the ImageNet dataset,

respectively.

For DenseNet, we run additional 15 epochs from the pre-trained model to

reduce the training time.6 For fair comparisons in terms of the number of epochs,

we also trained for additional 15 epochs for SGD with the same last learning rate

(0.001). However, we only observed oscillation in the performance during the

additional epochs. Similar to the extremely low-bits experiments, we fixed the

activation bit-width to 8-bit.

For VGG16 on the CIFAR-100 dataset, similar tendency in performance

was observed with ResNet-32. The 4-bit targeted model was able to maintain

its full-precision accuracy, while the model targeting lower bit-widths had some

accuracy degradation.

4.3.6 Adam optimizer with PSG

To show the applicability of our PSG to other types of optimizers, we applied

our PSG to the Adam optimizer by using the same scaling function with ResNet-

32 on 4-bits with the CIFAR-100 dataset. Following the convention, the initial

learning rate of 10−3 was used and the first and the last layer of the model were

fixed to 8-bits. All the other training hyperparameters remained the same. Table

4.11 compares the quantization results of models trained with vanilla Adam and

applying PSG to Adam.
6https://download.pytorch.org/models/densenet121-a639ec97.pth

60

https://download.pytorch.org/models/densenet121-a639ec97.pth

4.4 Discussion

In this section, we first focus on the local minima found by PSG with a toy exam-

ple to gain a deeper understanding. In this toy example, we train with SGD and

PSGD on 2-bit on the MNIST dataset with a fully-connected network consisting

of two hidden layers (50, 20 neurons). We show the weight distributions of the

two models trained with SGD and PSGD at the first layer. Then, we calculate

the eigenvalues of the entire Hessian matrix to analyze the curvature of a local

loss surface. In the subsequent sections, we clarify the differences of the purpose

of PSGD and that of QAT and analyze why PSGD does not achieve near-FP

performance in LP. Also, we demonstrate the potential application of PSG by

applying it to a concurrent PTQ method.

4.4.1 Toy Example

Quantized and sparse model

SGD generally yields a bell-shaped distribution of weights which is not adapt-

able for low bit quantization [90]. On the other hand, PSGD always provides a

multi-modal distribution peaked at the quantized values. For this example, three

target points are used (2-bit) so the weights are merged into three modes as

depicted in Fig. 4.6a. A large proportion of the weights are near zero. Similarly,

we note that the sparsity of ResNet-18@W4 shown in Table 4.5 is 72.4% at LP.

This is because symmetric quantization also contains zero as the target point.

PSGD has nearly the same accuracy with FP (∼96%) at W2A32. However, the

accuracy of SGD at W2A32 is about 9%, although the FP accuracy is 97%. This

tendency is also shown in Fig. 4.1b, which demonstrates that PSGD reduces the

quantization error.

61

Curvature of PSGD solution

In Sec 4.2.4 and Fig. 4.4, we claimed that PSG finds a minimum with sharp

valleys that is more compression friendly, but has a less chance to be found. As

the curvature in the direction of the Hessian eigenvector is determined by the

corresponding eigenvalue [24], we compare the curvature of solutions yielded

by SGD and PSGD by assessing the magnitude of the eigenvalues, similar to

[8]. SGD provides minima with relatively wide valleys because it has many

near-zero eigenvalues and the similar tendency is observed in [8]. However, the

weights trained by PSGD have much more large positive eigenvalues, which

means the solution lies in a relatively sharp valley compared to SGD. Specifically,

the number of large eigenvalues (λ > 10−3) in PSGD is 9 times more than that

of SGD. From this toy example, we confirm that PSG helps to find the minima

which are more compression-friendly (Fig 4.6a) and lie in sharp valleys (Fig.

4.6b) hard to reach by vanilla SGD. we have also used official code7 of [57] to

qualitatively assess the curvature of Fig. 4.6, using the same experimental setting,

which is depicted in Fig. 4.7 and it shows a similar tendency. The solution of

PSGD is in the more sharp valley than it of SGD.

4.4.2 Weight Distributions

In Table 4.12, we show the classification accuracies and the corresponding mean

squared error (MSE) of PSGD depicted in Fig. 4.1. Also, the weight distributions

of the model at various layers are shown in Fig. 4.8. In this experiment, we

only quantize the weights, not the activations, to compare the performance

degradation as weight bit-width decreases. The mean squared errors (MSE) of
7https://github.com/tomgoldstein/loss-landscape

62

https://github.com/tomgoldstein/loss-landscape

Figure 4.7: Visualizing the loss spaces of Fig. 4.6 using [57]; Left: Loss space of

SGD solution; Right: Loss space of PSGD solution.

Table 4.12: 8-, 6-, 4-, 3- and 2-bit weight quantization results of ResNet-32

learned by PSGD on the CIFAR-100 dataset. This is also reported in Fig. 4.1.

For lower bit-widths, the mean and standard deviation over five runs are reported.

MSE between the learned weight and the target weight is reported. The numbers

in the parentheses are the MSEs of SGD.

Bit-width 8-bit 6-bit 4-bit 3-bit 2-bit

Full precision 70.14 70.59 70.08 68.96±0.34 67.16±0.40

Low precision 70.05 70.33 69.57 68.56±0.19 60.76±2.18

MSE (SGD MSE) 0.03 (0.03) 0.41 (0.58) 0.5 (11) 0.84 (48) 67 (157)

the weights across different bit-widths are also reported. The MSE is computed

by the squared mean of the differences in full-precision weights and the low-

precision weights across layers. As some variance in performance was observed

for lower bit-widths, we report the mean±standard deviation for the 2-bit and

the 3-bit experiments. As stated, PSGD successfully merges the weights to the

target points and obtains quite low MSE until 3-bit and the 2-bit MSE of PSGD

is more than 2 times smaller than that of conventional SGD.

In Fig. 4.8, we display the full-precision weight distributions of the PSGD

63

models and compare them against vanilla SGD-trained distributions. Four random

layers of each model are shown column-wise. The first row displays the model

trained with SGD and L2 weight decay. Below are distributions trained with

PSGD with target points for the sparse training case, 2-bit, 3-bit, and 4-bit

respectively. Note that all the histograms are plotted in the full-precision domain,

rather than the low-precision domain. For 2-bit, all three target bins (22 − 1)

are visible. For 3-bit, only five target bins are visible as the peripheral two bins

contain relatively low numbers of weight components.

4.4.3 Quantization-aware training vs PSGD

Conventional QAT methods [19, 23, 40] starts with a pre-trained model initially

trained with SGD and further update the weights by only considering the low

precision weights. In contrast, regularization methods such as our work and [2]

starts from scratch and update the full-precision weights analogous to SGD. In

our work, the sole purpose of PSGD is to find a set of full precision weights

that are quantization-friendly so that versatile deployment as low precision (LP)

is possible without further operation. Therefore, regularization methods start

from the initial training phase analogous to SGD, whereas QAT methods starts

with a pre-trained model after the initial training phase such as SGD and PSGD.

The timeline comparing different quantization training methods is depicted in

Fig. 4.9. The purpose of QAT methods is solely focused on LP weights. In

general, a coarse gradient is used to update the weights attained by forwarding

the LP weights, instead of the FP weights by using the straight-through-estimator

(STE) [48]. Additionally, the quantization scheme is modified to include trainable

parameters dependent on the low-precision weights and activations. Thus, QAT

cannot maintain the performance of full-precision as it only focuses on that of

64

low-precision such as 4 bit-width.

4.4.4 Post-training with PSGD-trained model

Our model attains similar full-precision performance with SGD and reasonable

performance at low-precision even with naive quantization. Thus, PSGD-trained

model can be potentially used as a pre-trained model for QAT or PTQ methods.

We performed additional experiments using the model trained with PSGD in

Table 4.6 by applying a concurrent PTQ work, LAPQ [67], using the official

code.8 This attains 66.5% accuracy for W4A4, which is more than 3.1% and

6.2% points higher than that of PSGD-only and LAPQ-only respectively. This

shows that PTQ methods can benefit from using our pretrained model.

4.5 Conclusion

In this work, we introduce the position-based scaled gradient (PSG) which scales

the gradient proportional to the distance between the current weight and the

corresponding target point. We prove the stochastic PSG descent (PSGD) is

equivalent to applying the SGD in the warped space. Based on the hypothesis

that DNN has many local minima with similar performance on the test set, PSGD

is able to find a compression-friendly minimum that is hard to reach by other

optimizers. PSGD can be a key solution to low bit post training quantization,

because PSGD reduces the quantization error bridging the discrepancy between

the distributions of the compressed and uncompressed weights. Because target

points act as a prior to constrain original weights to be merged at specific
8https://github.com/ynahshan/nn-quantization-pytorch/tree/

master/lapq

65

https://github.com/ynahshan/nn-quantization-pytorch/tree/master/lapq
https://github.com/ynahshan/nn-quantization-pytorch/tree/master/lapq

positions, PSGD also can be used for sparse training by simply changing the

target point as 0. In our experiments, we verify PSGD in the domain of pruning

and quantization by showing the effectiveness on various image classification

datasets such as CIFAR-10/100 and ImageNet. Also, we empirically show that

PSGD finds minima which are located in sharper valleys than SGD. We believe

that PSGD will help further researches in model quantization and pruning.

66

Figure 4.8: Weight distributions in the full-precision domain of four random

layers for sparse training, 2-bits, 3-bits, and 4-bits. The name of the layer and the

number of parameters in parenthesis are shown in the column. The y-axis and

x-axis of PSGD distributions are clipped appropriately for visualization purposes

and the number of bins is all set to 100 for both PSGD and SGD.

67

Figure 4.9: The regularization methods such as PSGD and [2] lie in the initial

training phase same as SGD. Generally, PTQ and QAT starts after an initial

training phase.

68

Chapter 5

Dynamic Collective Intelligence Learning (DCIL)

for Pruning

5.1 Introduction

Massive improvements in various computer vision tasks using deep neural net-

works have been made at a cost of increase in millions of model parameters.

While the task performances look promising, using such over-parameterized

neural networks in low-end devices is infeasible due to demanding memory

requirements and high latency. To resolve these issues, pruning unimportant units

– individual weights (unstructured pruning) and neurons (structured pruning) –

of neural networks has been well explored. Following its application to modern

neural networks [28], many works have shown success through various pruning

criteria in attaining a much sparse network that performs on par with or even

better than the original unpruned network [27, 83, 71].

While effective, the aforementioned methods require a finetuning phase after

the training phase and use a single fixed sparsity mask to obtain the pruned model.

To tackle these problems, some works have focused on pruning methods during

69

Figure 5.1: Test accuracy vs. epoch with ResNet-20 on CIFAR-10 by 95%

pruning. Blue: Dynamic pruning with feedback (DPF) [59], a state-of-the-art

dynamic pruning method, Red: Dynamic collective intelligence learning (DCIL;

Ours). DPF is unstable and shows a degradation in the performance because of

coarse gradients. On the other hand, DCIL utilizes refined gradients to tackle the

above issues. More details of DCIL and the stability analysis are stated in the

Method and Experiment sections, respectively.

training with dynamic sparsity patterns. Exploring diverse sparsity patterns is

very important as it has a good chance of outperforming algorithms using a

single sparsity pattern. These methods called dynamic pruning discover sparse

masks (M) that are applied to the parameters of the neural network during

training. Because fixing the masks discovered in the early training phase may

have a detrimental effect on the training process, the masks and hence the sparsity

pattern (W = M�W) are designed to dynamically change every few iterations

(F) by a certain criterion (e.g. L2 norm) on the real weights (W) as the training

progresses.

Trivially, the gradient with respect to the weight of a pruned unit is zero

70

Figure 5.2: The overall process of Proposed DCIL. The blue and green graph

refer to active and inactive weights, respectively. At all time, the S-net contains

the P-net by sharing the weights of the P-net except a linear classifier and batch

norm layers. Refined gradients make the inactive weights good candidates for

future inclusion to the active weights.

as the pruned weight does not contribute anything to the output of the neural

network nor the loss function (∂L∂w |m=0 = 0). However, to update the weights

of the pruned unit, several works [27, 59] in dynamic pruning have resorted to

using a form of coarse gradient, in which the derivative of the masked weight

with respect to the real weight is simply approximated to 1 (i.e ∂w
∂w=1). By doing

so, the gradient ∂L
∂w is approximated by ∂L

∂w . This empirical practice has been

applied in other literature such as quantization in the name of Straight-Through-

Estimator (STE) [4]. The mask M is updated every F iterations and some of the

inactive (pruned) weights trained with coarse gradients may be revived to active

(unpruned) weights. While using this form of coarse gradient is a convenient

practice to revive the inactive weights, it may update the weights to an unintended

direction harming the training stability and performance. This phenomenon is

depicted in Fig. 5.1 and 5.5.

In this work, we show that using coarse gradient to update the inactive weights

71

can be improved upon by forming a separate path for the inactive weights and

updating them separately using an auxiliary loss function. Fig. 5.2 shows the

overall process of the proposed method. We form two different networks in size,

called Super network (S-net) that has the entire set of real weights (W) and

Pruned network (P-net) that only utilizes the masked weights (W). We update

the inactive weights (Green graph in Fig. 5.2) using the refined gradients of the

S-net, whereas the same set of weights in the P-net is masked out to zero and not

updated in back-propagation. Updating the inactive weights with refined gradients

makes them qualified candidates of active weights for the ensuing training phase

that can be readily used without destabilizing the task performance. A similar

motivation, in which subsets of the neural network are stochastically selected

at training for a better performance, is realized in Dropout [76] to incorporate

the effect of model ensemble. In contrary, we update the inactive weights by

back-propagation via the forward path of the S-Net for future inclusion in the

set of active weights. Note that, the S-net is an unpruned model, whose weights

are shared with the P-net, meaning negligible additional memory is needed for

maintaining both the S-net and the P-net. In other words, the two networks are

subnetworks of the original network whose structure is identical to the S-net.

The S-net and P-net collaborate closely to find an efficient sparse network using

refined gradients. Based on the learning synergy from the collective intelligence

of both networks, we propose a novel sparse training framework named Dynamic

Collective Intelligence Learning (DCIL). This allows even the inactive weights

to obtain a much meaningful feedback than when using STE, which enhances

training stability and achieves higher final performance in dynamic pruning as

depicted in Fig. 5.1.

72

5.2 Proposed method

In this section, we first describe incremental and dynamic pruning. Using in-

cremental pruning, we gradually adjust the pruning sparsity ratio. We explain

dynamic pruning method used in [59] to introduce our intuition of refined gradi-

ent. Then, we explain our proposed DCIL.

5.2.1 Backgrounds

Incremental pruning One-shot pruning methods usually prune the network and

finetune the pruned model for additional epochs to improve the performance. On

the other hand, incremental pruning prunes the model each epoch by increasing

sparsity ratio based on the current epoch. It is widely used in common pruning

methods because it does not need an additional finetuning phase. In this work,

we adopt the gradual pruning scheduling proposed in [91] following the setting

of [59]:

Sc = St + (Si − St)(1−
c− c0
n

)3. (5.1)

We gradually increase the sparsity ratio from an initial sparsity ratio (Si at c0 = 0)

based on the current epoch c to the target sparsity ratio (St). Sc means the current

sparsity at c, where c ∈ {c0, ..., c0 + n} and n is the number of epochs for the

overall training.

Dynamic pruning We consider the binary mask M ∈ {0, 1}P for obtaining the

sparse weights by masking out the dense weights (W = M�W,W ∈ RP

where P is the number of parameters and � denotes the Hadamard product). A

pruned network consists of these sparse weights (W). Dynamic pruning updates

the binary mask M every F iterations based on a certain criterion such as the L2

norm and increases the sparsity with the incremental pruning scheme (5.1). The

73

update rule of DPF [59] can be written by the following equation for a given loss

function L.

wi ← wi − η
∂L
∂wi

∂wi

∂wi
, ∀i ∈ {1, . . . , P} (5.2)

where i is the index of weights and mask and wi = mi × wi. Sparse weights

consist of two mutually exclusive sets which are active (unpruned) ({wi|wi =

wi,mi = 1}) and inactive (pruned) ({wi|wi 6= wi, wi = mi = 0}). Many

dynamic pruning methods [27, 59] utilize the straight-through estimator [4, STE]

to flow the gradients to the inactive weights. Specifically, if the binary mask

prunes the weight (wi) as zero, the forward path is calculated by wi = 0 and

the backward path updates wi. Thus, the gradient ∂wi
∂wi

of inactive weights is

approximated as 1 using STE.

The instability in the test performance curve of DPF can be observed in

Fig. 5.1 and Fig. 5.5 as the masking pattern dynamically revives the ill-updated

inactive weights. In other words, the inactive weights updated with the STE-

approximated gradient are candidates for being active weights based on a certain

criterion. When ill-updated weights are selected, the pruned network is not

prepared to perform well so it needs some iterations to recover its degraded

accuracy. We tackle these issues by refining the gradients in the following section.

5.2.2 Dynamic Collective Intelligence Learning

In this work, we propose Dynamic Collective Intelligence Learning (DCIL)

which updates network by using the knowledge and refined gradients from two

sub-networks. In the case of inactive weights, the gradient ∂w
∂w should be approxi-

mated in order to update the inactive weights (pruned weights). To resolve this

problem, DCIL calculates the refined gradient using an auxiliary classifier rather

than relying on the approximated gradient (∂L∂w) by introducing dual forwarding

74

Figure 5.3: Comparison between DPF and DCIL of the forward and backward

paths.

paths corresponding to sub-networks. DCIL has two sub-networks, the Pruned

network (P-net) and the Super network (S-net). The P-net (Blue graph in Fig. 5.2)

consists of weights after pruning (W = M�W) and the S-net (Blue + Green

graph in Fig. 5.2) consists of the P-net and the complementary inactive weights

(W = (1−M)�W + M�W). Once pruning is done, the weight set of the

S-net is a proper superset of that of the P-net (S-net ⊃ P-net) because a set of

inactive weights is a complementary set of active weights building the P-net

(inactive weights = active weightsC). Note that the S-net contains the P-net and

the size of the S-net is equal to that of the unpruned network. The forms of both

the P-net and S-net vary every F iteration based on (5.1) as depicted in Fig. 5.2.

In contrary to the conventional dynamic pruning network, our DCIL does

not use STE to update the inactive weights. We introduce a separate auxiliary

classifier and batch norm layers for the S-net because the activation statistics are

distinct throughout the forward paths of the S-net and P-net. The S-net computes

the refined gradient of inactive weights with this auxiliary classifier. In this

stage, the inactive weights collaborate with the P-net (active weights) to forward

the output of the auxiliary classifier by sharing the weights of the P-net (See

75

Table 5.1: Top-1 test accuracy of various SOTA pruning methods on CIFAR-10

for unstructured weight pruning. The numbers of SM, DSR and DPF methods

are from [59]. The ? means that the model does not converge. † indicates our

numbers. DPF† is from using the official code and we report the last and best

accuracy of both DPF† and our DCIL. We also report accuracy of the Dense†

models which are not pruned at all. All experiments were conducted three times.

Methods

Model Dense†
SM

(DZ,)

DSR

(MW,)

DPF

(Lin,)

DPF† (Lin,) DCIL (Ours) Target
Pr. ratio

Last Best Last Best

ResNet-20 92.36± 0.10
89.76± 0.40 87.88± 0.04 90.88± 0.07 88.02± 0.12 90.87± 0.25 91.61± 0.20 91.93± 0.11 90%

83.03± 0.74 ? 88.01± 0.30 81.46± 2.26 87.84± 0.11 90.54± 0.19 90.80± 0.23 95%

ResNet-32 93.22± 0.07
91.54± 0.18 91.41± 0.23 92.42± 0.18 91.14± 0.12 92.39± 0.09 93.05± 0.15 93.23± 0.06 90%

88.68± 0.22 84.12± 0.32 90.94± 0.35 86.52± 1.38 90.91± 0.45 92.04± 0.24 92.27± 0.27 95%

ResNet-56 94.34± 0.19
92.73± 0.21 93.78± 0.20 93.95± 0.11 93.62± 0.14 93.97± 0.14 94.16± 0.08 94.29± 0.05 90%

90.96± 0.40 92.57± 0.09 92.74± 0.08 90.59± 0.38 92.81± 0.06 93.75± 0.14 93.98± 0.12 95%

WideResNet-28-2 94.73± 0.03

93.41± 0.22 93.88± 0.08 94.36± 0.24 94.08± 0.34 94.32± 0.22 94.69± 0.13 94.84± 0.28 90%

92.24± 0.14 92.74± 0.17 93.62± 0.05 93.13± 0.24 93.61± 0.08 94.01± 0.21 94.21± 0.04 95%

85.36± 0.80 ? 88.92± 0.29 85.82± 0.45 88.77± 0.23 91.19± 0.16 91.35± 0.24 99%

Fig. 5.2). The refined gradient helps the inactive weights to be prepared for the

future inclusion to the P-net because the auxiliary classifier computes the refined

gradient by forwarding with real weights (W) rather than masked weights (W).

In doing so, the inactive weights can be updated using the refined gradients with

actual values of inactive weights. When the binary mask M changes every F

iterations, inactive weights trained with refined gradients become better qualified

candidates of the P-Net, which have better performance and stability than the

inactive weights trained with approximated gradients with STE for active weights.

Let FW : X → Y and L : Y → R be the forwarding path with given

weights (W) and the loss function, respectively. Then, we can define the update

rule of DCIL as follows:

76

Table 5.2: Top-1 test accuracy of our DCIL and DPF† on CIFAR-100 for un-

structured weight pruning. † indicates our numbers. DPF† indicates our numbers

using the official code and all reported numbers are averaged over three times.

Model Dense†
DPF† DCIL (Ours) Target

Pr. ratioLast Best Last Best

ResNet-20 67.81± 0.54
53.7± 1.95 63.94± 0.02 67.12± 0.06 67.51± 0.10 90%

46.15± 0.16 58.17± 0.46 64.10± 0.53 64.68± 0.37 95%

ResNet-32 69.50± 0.20
61.12± 1.73 67.82± 0.26 69.96± 0.28 70.40± 0.36 90%

50.08± 6.10 63.22± 0.39 67.90± 0.14 68.53± 0.16 95%

ResNet-56 74.23± 0.13
67.99± 1.15 72.99± 0.92 74.59± 0.36 74.95± 0.24 90%

56.88± 0.85 69.83± 0.42 73.30± 0.34 73.63± 0.39 95%

WideResNet-28-2 74.81± 0.15

71.32± 0.59 73.45± 0.25 74.61± 0.02 74.97± 0.13 90%

68.56± 0.50 71.69± 0.36 73.70± 0.23 74.05± 0.13 95%

51.27± 0.33 60.02± 0.04 65.55± 0.18 66.00± 0.10 99%

W←W − η{M�∇WL+ (1−M)�∇WL}

∇WL ,
∂L ◦ FW(X)

∂w
, ∇WL ,

∂L ◦ FW(X)

∂w
.

(5.3)

In this setting, note that the composite functions L ◦ FW(X) and L ◦ FW(X)

correspond to the model with different classifiers of which the latter uses the

auxiliary classifier. Fig. 5.3 shows the forward and backward paths according to

each algorithm. DPF [59] updates W with the gradient of W by the approxi-

mation using STE (∇WL). On the other hand, DCIL updates W with gradients

of W and the refined gradients of inactive weights without an approximation

(M�∇WL+ (1−M)�∇WL). Generally, the cross entropy term Lce is used

for the loss function. However, we want separate paths to share more information

then collaborate better with each other. Since DCIL has two forward paths with

two classifiers, DCIL can expand the cross entropy loss to Knowledge distillation

(KD) loss [35, 44] by using each output as a soft target for each Kullback–Leibler

77

Figure 5.4: Diagram of applying DCIL to two pruning types, unstructured pruning

and structured pruning.

(KL) divergence term (KL(p||q; T)) with a temperature value T :

L ◦ FW(X) = Lce ◦ FW(X) + λT 2 · KL(FW(X)||FW(X); T)

L ◦ FW(X) = Lce ◦ FW(X) + λT 2 · KL(FW(X)||FW(X); T)

(5.4)

where λ is a hyper-parameter for balancing loss functions. We compare the

effect of the KL loss and the cross entropy loss in our ablation study.

DCIL can be applied regardless of the pruning type, i.e, it can be applied to

both unstructured or structured pruning. In the unstructured pruning case, inactive

and active weights coexist in a filter so the pruning is done in the weight-level

whereas DCIL of structured pruning operates in the filter-level (neuron) as shown

in Fig. 5.4. We set the mask frequency F as 16 and use the L2 magnitude for the

pruning criterion. Algorithm 1 shows the pseudocode of the proposed DCIL. At

every F iterations, binary mask M is updated based on Eq. 5.1 and the pruning

criterion. During the update of the dynamic mask, inactive weights which are

trained with refined gradients can be altered into active weights. In this process,

prepared candidates trained with refined gradients maintain the training stability.

78

5.2.3 Convergence analysis

Theorem 3. Suppose optimal solution w∗ that minimizes the convex loss f exists

and the approximated gradient g(w) used to update DCIL has limited power

(E‖g(w)‖2 ≤ G2) for all w, then the loss for the uncompressed model of DCIL

(S-net) is upper bounded by:

E{ 1

T

T∑
t=1

f(wt)} ≤ f(w∗)
R2

2ηT
+
ηG2

2
+
R

T

T∑
t=1

E‖∇ft − gt‖. (5.5)

where R2 = E‖w1 − w∗‖2 and ∇f is the exact gradient of S-net.

Proof. Let’s first consider wt is fixed. Then it becomes

E{‖wt+1 − w∗‖2|wt} = E{‖wt − ηgt − w∗‖2|wt}

= E{‖wt − w∗‖2 + η2‖gt‖2 − 2η(gt −∇ft +∇ft)T (wt − w∗)|wt}

≤ ‖wt − w∗‖2 + η2G2 + 2η(∇ft − gt)T (wt − w∗)− 2η(f(wt)− f(w∗))

(5.6)

where∇ft is the exact gradient at time t and the last term is from the convexity

of f . Taking expectation over wt,

E‖wt+1 − w∗‖2 ≤ E‖wt − w∗‖2 + η2G2 − 2η(E{f(wt)} − f(w∗))

+ 2ηE{‖∇ft − gt‖}E{‖wt − w∗‖}

≤ E‖w1 − w∗‖2 + tη2G2 − 2η

t∑
k=1

(E{f(wk)} − f(w∗))

+ 2η

t∑
k=1

E{‖∇fk − gk‖}E{‖wk − w∗‖}.

(5.7)

Reordering terms, it becomes

2η

t∑
k=1

(E{f(wk)} − f(w∗)) ≤ R2 + tη2G2 + 2η
t∑

k=1

E[εk]E‖wk − w∗‖

(5.8)

79

where εk = ‖∇fk − gk‖. By the convexity of f it becomes

E[
1

T

T∑
t=1

f(wt)]− f(w∗) ≤ R2

2ηT
+
ηG2

2
+
R

T

T∑
t=1

E[εt]. (5.9)

This analysis applies to uncompressed models of both DPF (DPF-U) and our

DCIL (S-net). Because the first two terms in the right side are identical for both

models, the key difference between the two models is the magnitude of εt. While

both DPF-U and S-net update their masked surviving weights with a different

stochastic gradient M � g than the true gradient M �∇f , the pruned weights

are updated differently, i.e, for DPF-U, M̄ � g 6= M̄ � ∇f , but S-net uses

exact gradient M̄ � g = M̄ �∇f . Therefore, for the same wt, εDPF
t ≥ εDCIL

t

and DPF-U is always inferior to S-net, thus DCIL shows a better convergence

behavior.

5.3 Experiments

We compare our DCIL with the state-of-the-art methods on commonly used

datasets. Our model significantly improves the performance and the stability in

both unstructured and structured pruning regardless of the architecture.

We also show the stability analysis and the effect of the KL divergence

through an ablation study. As a result of the ablation study, we demonstrate that

updating the inactive weights with refined gradients plays a key role in improving

performance and training stability than using KL divergence.

80

Algorithm 1 Dynamic Collective Intelligence Learning (DCIL)

Input: Mask update frequency F, Binary mask M ∈ {0, 1}P , S-Net W ∈ RP ,

P-Net W = M�W . P is the number of parameters and � denotes the

Hadamard product

1: [Train]

2: for Iter = 1 ,..., T do

3: if Iter % F == 0 then

4: compute binary mask M with Eq.(1) and the pruning criterion .

Update mask every F iterations

5: end if

6: W←W − η{M�∇WL+ (1−M)�∇WL} . Update weights

which are forwarded with S-Net and P-Net

7: end for

Output: S-Net, P-Net . P-Net is the efficient network trained from DCIL

8: [Test]

9: Inference with P-Net

5.3.1 Experiment Setting

Datasets

We conduct experiments on three image classification datasets CIFAR-10, CI-

FAR100 [49], and ImageNet [73].

Baselines

We compare our method against DPF [59], SM [17], DSR [64] and SFP [32].

Please refer to the section on Related Work for the details.

81

Table 5.3: Top-1 and Top-5 test accuracy of ResNet-18 and ResNet-50 on Ima-

geNet. DPF† indicates our numbers using the official code. We report the best

accuracy and the accuracy from the last epoch. Difference refers to difference

between pruned and dense accuracy (‘Last - Dense’). Best accuracy of Top-5 is

selected based on Top-1 best epoch.

Model Method
Top-1 accuracy Top-5 accuracy Target

Pr. ratioDense Last Best Difference Dense Last Best Difference

ResNet-18

DPF† (Lin,) 70.50 69.08 69.19 -1.31 89.54 88.93 88.88 -0.66 80%

DCIL (Ours) 70.50 69.57 69.62 -0.88 89.54 89.26 89.29 -0.25 80%

DPF† (Lin,) 70.50 67.37 67.66 -2.83 89.54 87.83 87.88 -1.66 90%

DCIL (Ours) 70.50 68.66 68.66 -1.84 89.54 88.57 88.57 -0.97 90%

DCIL w/o KL (Ours; λ = 0) 70.50 68.37 68.41 -2.09 89.54 88.32 88.26 -1.28 90%

ResNet-50

Incremental (ZG,) 75.95 – 74.25 -1.70 92.91 – 91.84 -1.07 80%

DSR (MW,) 74.90 – 73.30 -1.60 92.40 – 92.40 0 80%

SM (DZ,) 75.95 – 74.59 -1.36 92.91 – 92.37 -0.54 80%

DPF (Lin,) 75.95 – 75.48 -0.47 92.91 – 92.59 -0.32 80%

DPF† (Lin,) 76.06 75.59 75.61 -0.47 92.85 92.66 92.71 -0.19 80%

DCIL (Ours) 76.06 76.16 76.17 0.10 92.86 92.94 93.00 0.09 80%

Incremental (ZG,) 75.95 – 73.36 -2.59 92.91 – 91.27 -1.64 90%

DSR (MW,) 74.90 – 71.60 -3.30 92.40 – 90.50 -1.90 90%

SM (DZ,) 75.95 – 72.65 -3.30 92.91 – 91.26 -1.65 90%

DPF (Lin,) 75.95 – 74.55 -1.44 92.91 – 92.13 -0.78 90%

DPF† (Lin,) 76.06 74.39 74.48 -1.67 92.85 92.08 92.05 -0.77 90%

DCIL (Ours) 76.06 75.34 75.40 -0.72 92.85 92.58 92.63 -0.27 90%

DCIL w/o KL (Ours; λ = 0) 76.06 74.75 74.87 -1.31 92.85 92.31 92.24 -0.54 90%

Implementation Details

For a fair comparison, we followed the same experimental settings with DPF

[59] for all experiments. We set the mask update frequency (F) to 16 iterations

like DPF. We applied our pruning method and other pruning methods to ResNet

[31] and WideResNet [87]. Following DPF, we performed pruning across all

convolutional layers except for the batch normalization layers and the last fully

connected layer. We used SGD with the Nesterov momentum of 0.9. For CIFAR,

the ResNet models were trained for 300 epochs with the initial learning rate of

0.2 and the L2 weight decay parameter of 1e-4. We decayed the learning rate by

82

Table 5.4: Top-1 test accuracy of our DCIL and other baseline methods on

CIFAR-10 for structured weight pruning. † indicates our numbers. We ran DPF†

using the official code and official training schedule. Note that for a given pruning

ratio DCIL and DPF prune filters across layers, meanwhile SFP prunes filters

within the layer. Furthermore, we report the differences (‘Pruned - Dense’) in the

Appendix. When comparing the differences, DCIL outperform with the higher

gap in most cases. All reported numbers are averaged over three times.

Model Dense†
SFP

(H+,)

DPF

(Lin,)

DPF† DCIL (Ours) Target Pr.

ratioLast Best Last Best

ResNet-32 93.22± 0.07
92.07± 0.22 92.18± 0.16 91.61± 0.15 91.81± 0.19 93.02± 0.21 93.10± 0.21 30%

91.14± 0.45 91.50± 0.21 90.01± 0.40 90.28± 0.40 92.61± 0.07 92.76± 0.16 40%

WideResNet-28-2 94.73± 0.03
94.02± 0.24 94.52± 0.08 94.11± 0.17 94.30± 0.09 94.55± 0.04 94.61± 0.08 40%

86.00± 1.09 90.53± 0.17 88.99± 0.45 89.76± 0.64 92.10± 0.11 92.32± 0.15 80%

WideResNet-28-4 95.50± 0.07
95.15± 0.11 95.50± 0.05 95.36± 0.16 95.52± 0.14 95.46± 0.06 95.59± 0.06 40%

91.88± 0.59 93.79± 0.09 93.41± 0.07 93.51± 0.11 94.18± 0.04 94.38± 0.08 80%

WideResNet-28-8 95.93± 0.07
95.62± 0.04 96.06± 0.12 95.86± 0.17 96.03± 0.18 95.73± 0.07 95.91± 0.10 40%

94.22± 0.21 95.15± 0.03 94.97± 0.20 95.16± 0.12 95.43± 0.09 95.49± 0.05 80%

10 at 150 and 225 epochs. WideResNet models were trained for 200 epochs with

the initial learning rate of 0.1 which is decayed by 5 at 60, 120 and 160 epochs.

The weight decay parameter was set to 5e-4. We used 128 mini-batch size for

all experiments of CIFAR. In the ImageNet training, we trained models with 90

epochs and decayed the learning rate by 10 at 30, 60 and 80 epochs with the

initial learning rate of 0.1. We used 128 mini-batch size for ResNet-18 and 1,024

mini-batch size for ResNet-50 following [25]. We introduce the warm-up epoch,

an early period of learning without KL loss but only using cross-entropy (λ = 0),

because regularizing the model with KL loss using an untrained teacher model

may hinder convergence. We set the warm-up epoch to 70 and 10 for CIFAR

and ImageNet datasets, respectively. However, we confirmed that the scale of

warm-up epoch does not significantly affect the test accuracy as shown in the

83

Appendix. We set the λ = 1 and T = 2 for the KD loss. We used the Pytorch

framework for all experiments. All experiments on CIFAR and the experiments

of ResNet-18 on ImageNet were conducted with a GeForce GTX 1080 Ti GPU.

The experiments of ResNet-50 on ImageNet were conducted with four NVIDIA

RTX A6000 GPUs.

5.3.2 Experiment Results

In all experiments, we report the numbers with same target pruning ratio from

the original paper of DPF [59] and used the same L2 pruning criterion as DPF.

We also re-implemented DPF referred as DPF† to compare training stability. We

report the test accuracy of the last and the best epoch of DPF and DCIL. Our

last epoch accuracy is made bold if our number is higher than those of all the

methods.

Unstructured

Table 5.1 shows the top-1 test accuracy of various SOTA pruning methods on

the CIFAR-10 dataset. Along with the accuracy reported in the original papers

of each method, we report the performance of DPF we re-implemented. DCIL

significantly outperforms all other methods for all models, datasets, and a variety

of pruning sparsities. In particular, the test accuracy in the last epoch of DCIL

is 1-3% higher than the best accuracy of re-implemented DPF which is nearly

the same as the performance of the original paper. DCIL has a far superior

performance on the CIFAR-100 dataset as shown Table 5.2. The last accuracy

of DCIL outperforms the last accuracy of DPF by 3-18%, the best accuracy of

DPF by 1-6%, and sometimes the performance of the dense model due to the

regularization effect. In addition, the training instability of DPF is severe in the

84

CIFAR datasets on unstructured pruning, resulting in a very large difference

between the last and the best accuracies as shown in Table 5.1 and Table 5.2. On

the other hand, our DCIL has a stable training curve, demonstrated by the small

margin between the last accuracy and the best accuracy. And as a result, in the

absence of an additional fine-tuning phase or validation sets, DCIL has a good

chance to work as good as the optimal pruned model even on datasets where

training can be relatively unstable.

Also, we conducted ImageNet experiments to verify the effectiveness of

DCIL in large-scale datasets as shown in Table 5.3. DCIL outperforms other

pruning methods with a large margin in test accuracy. In ResNet-18 with 90%

pruning, the performance gap between DPF and DCIL is around 1.3%. The

tendency of stability during training is similar to that of CIFAR, which is depicted

in Appendix. We also report the results of ablation studies with respect to the KL

divergence term. ‘DCIL w/o KL’ in Table 5.3 means a model trained with DCIL

by only cross-entropy. KL helps improve the performance by a range of 0.3-0.6%.

However, DCIL without KL also surpasses DPF by about 0.4-1%, which shows

the effectiveness of the refined gradients. A similar tendency is observed in the

following stability analysis section.

Structured

To show a broad applicability of our algorithm, we applied DCIL at the filter

level. Unlike unstructured pruning, filter pruning or structured pruning could

take full advantage of the BLAS library and accelerate model inference.

Table 5.4 shows a comparison of different methods on CIFAR-10 for ResNet

and WideResNet variants. Both DPF and SFP dynamically allocate sparsity

pattern, updating the filter with a coarse gradient (∂L∂w). DCIL outperforms all the

85

Table 5.5: Standard Deviation of the top-1 test accuracy over the last 10% epochs.

To compare the training stability of our DCIL and DPF on CIFAR-10, we report

the standard deviation of the top-1 test accuracy over the last 10% epochs (i.e.

30 epochs for ResNet and 20 epochs for WideResNet), which is expected to

be stable with training for several epochs after the last learning rate decay. The

results are averaged over three runs.

Model
CIFAR-10 Target

Pr.ratio
Dense DPF DCIL (Ours)

ResNet-20 0.070± 0.012
1.179± 0.310 0.072± 0.013 90%

3.839± 1.455 0.114± 0.007 95%

ResNet-32 0.061± 0.013
0.344± 0.036 0.080± 0.005 90%

1.947± 0.362 0.097± 0.011 95%

ResNet-56 0.060± 0.009
0.179± 0.055 0.063± 0.007 90%

0.990± 0.078 0.082± 0.009 95%

WideResNet-28-2 0.061± 0.004

0.120± 0.033 0.093± 0.011 90%

0.286± 0.067 0.086± 0.015 95%

2.790± 0.723 0.096± 0.007 99%

baselines in most settings except for WideResNet-28-8 (40% sparsity), where

DCIL is comparable to the official results of DPF. DCIL’s superior performance

for structured pruning can be seen in terms of architecture search as structured

pruning is considered as performing implicit architecture search [60]. DCIL

searches for better subnetwork candidates obtained through the refined gradients,

whereas existing methods using coarse gradients could be updated in a direction

that is harmful to the performance and reach a suboptimal solution.

We also report the full results on CIFAR-100 with other structured pruning

methods [32, 18, 33]. Briefly, when compared with the existing methods for

86

ResNet-56 (40% and 50% sparsity), DCIL shows higher accuracies in all settings.

This result validates the effectiveness of our DCIL’s refined gradient for structured

pruning. The details of structured pruning is same as above settings. Table 5.6

shows the numbers of structured pruning experiments on CIFAR-100.

Table 5.6: Top-1 test accuracy of our DCIL and other baseline methods on

CIFAR-100 for structured weight pruning. The same training scheme was used

as on CIFAR-10. To compare the stability of pruning methods we reported the

accuracy of the last epoch and the best accuracy of DCIL.

Model
DCIL (Ours) SFP MIL FPGM Target Pr.

ratioDense Last Best Diff. Dense Diff. Dense Diff. Dense Diff.

ResNet-56 74.23± 0.13
73.49± 0.16 73.80± 0.23 −0.74

71.4
−

71.33
−2.96

71.41
− 40%

73.17± 0.04 73.59± 0.15 −1.06 −2.61 − −1.75 50%

5.3.3 Differences between Dense and pruned model

In this section, we provide the performance differences between the dense model

and the pruned model (‘Pruned - Dense’) to compare the degree of the perfor-

mance degradation. Table 5.7 and Table 5.8 show the performance degradation

according to the experiments in the main experiment.

5.3.4 Analysis of the stability

Table 5.5 summarizes the standard deviation of top-1 test accuracy of ours and

DPF over the last 30 and 20 epochs, which is the last 10% epochs for ResNet

and WideResNet, respectively. Despite the low learning rate since it is after

the last decaying epoch, DPF has a large variance in top-1 test accuracy, while

our method has a much smaller variance. We conjecture that this is due to the

differences in the gradients used to update the inactive weights, i.e, our method

87

(a) 120th epoch

(b) 200th epoch

Figure 5.5: Top-1 test accuracy of every iteration in an epoch. To show the

effectiveness of changes in active weights caused by changes in pruning masks,

we evaluated ResNet-20 pruned with 95% sparisty using Red: DCIL, Green:

DCIL without KL loss, and Blue: DPF on CIFAR10 every iteration at (a) 120th

epoch and (b) 200th epoch. The accuracy of all methods shows a repetitive

pattern with a pruning frequency (F) of 16.

updates inactive weights using refined gradients calculated on S-net, whereas

DPF approximately estimate gradients that can lead to a degradation of the

pruned model.

88

Table 5.7: Top-1 test accuracy differences (‘Pruned - Dense’) of our DCIL and

other baseline methods on CIFAR-10 for unstructured pruning. ? means that the

model does not converge. † indicates our numbers while the unmarked others are

calculated directly from the DPF paper. We ran DPF† using the official code and

official training schedule and all reported numbers are averaged over three times.

Model Dense SM DSR DPF Dense†
DPF† DCIL (Ours)

Target Pr.
Last Best Last Best

ResNet-20 92.48± 0.20
−2.72 −4.60 −1.6

92.36± 0.10
−4.34 −1.49 −0.75 −0.43 90%

−9.45 ? −4.47 −10.9 −4.52 −1.82 −1.56 95%

ResNet-32 93.83± 0.12
−2.29 −2.42 −1.41

93.22± 0.07
−2.08 −0.83 −0.17 0.01 90%

−5.15 −9.71 −2.89 −6.7 −2.31 −1.18 −0.95 95%

ResNet-56 94.51± 0.20
−1.78 −0.73 −0.56

94.34± 0.19
−0.72 −0.37 −0.18 0.05 90%

−3.55 −1.94 −1.77 −3.75 −1.53 −0.59 −0.36 95%

WideResNet-28-2 95.01± 0.04

−1.6 −1.13 −0.65

94.73± 0.03

−0.65 −0.41 −0.04 0.11 90%

−2.77 −2.27 −1.39 −1.6 −1.12 −0.72 −0.54 95%

−9.65 ? −6.09 −8.91 −5.96 −3.54 −3.38 99%

Table 5.8: Top-1 test accuracy differences (‘Pruned - Dense’) of our DCIL and

other baseline methods on CIFAR-10 for structured pruning. The settings and

symbols are the same as in Table 5.7

Model Dense SFP DPF Dense†
DPF† DCIL (Ours)

Target Pr.
Last Best Last Best

ResNet-32 93.52± 0.13
−1.34 −1.45

93.22± 0.07
−1.61 −1.40 −0.19 −0.12 30%

−2.38 −2.02 −3.20 −2.93 −0.61 −0.4 40%

WideResNet-28-2 95.01± 0.04
−0.99 −0.49

94.73± 0.03
−0.63 −0.43 −0.19 −0.13 40%

−9.01 −4.48 −0.91 −0.74 −0.52 −0.43 80%

WideResNet-28-4 95.69± 0.10
−0.54 −0.19

95.50± 0.07
−0.14 0.01 −0.04 0.09 40%

−3.81 −1.9 −2.09 −1.99 −1.32 −1.13 80%

WideResNet-28-8 96.06± 0.06
−0.44 0.00

95.93± 0.07
−0.06 0.10 −0.20 −0.01 40%

−1.84 −0.91 −0.96 −0.77 −0.50 −0.44 80%

In order to demonstrate the effect of using refined gradient to dynamically

allocate sparsity masks on performance directly, we evaluated the pruned model

89

using DCIL, DCIL without KL, and DPF at every iteration as in Fig 5.5. Fig 5.5

shows the top-1 test accuracy of all iterations throughout one epoch (e.g. 120,

200) during training. In the 120th epoch before the first learning rate decaying,

all the methods have a cyclic pattern every 16 iterations due to the pruning

frequency of 16. However, there is a clear difference in the scale of performance

degradation between DCIL-based methods and DPF. In DPF, the test accuracy

decreases drastically by 10-20% after the pruning mask changes and restores

performance before the next pruning mask iteration, whereas DCIL has a stable

pattern with much less performance reduction of around 2-5%. Performance

reduction of DCIL without KL is around 3-7% which is greater than that of DCIL

with KL, but the gap is also much smaller than DPF. In the 200th epoch, the

difference becomes more pronounced as training progresses using the refined

gradient. Although DPF still suffers significant performance degradation each

time the pruning mask changes, our DCIL exhibits a much more stable pattern

similar to the dense models, because refined gradients make inactive weights as

prepared candidates for active weights. The results of structured pruning shows a

similar tendency with that of unstructured pruning. We provide the overall Top-1

test accuracy vs epoch in Fig. 5.6 and Fig. 5.7.

5.3.5 Cost of training

One limitation of DCIL in the current implementation is that the model requires

two forward and backward paths through the P-Net and the S-Net, taking around

1.5x wall-clock time for training than DPF. Nonetheless, with an efficient im-

plementation, the cost of backward paths can be significantly reduced, because

essentially the same number of weights (inactive + active) requires update like

DPF. Some relevant methods [81, 77] utilizing sparse gradients have been pro-

90

Figure 5.6: Training stability, unstructured pruning with 90%, ResNet-18 on

Imagenet.

(a) Unstructured pruning (b) Structured pruning

Figure 5.7: Top-1 test accuracy vs. epoch to show the training stability. ResNet-

20 with 95% pruning on CIFAR-10 dataset, using unstructured and structured

pruning.

posed to reduce computation in the backward phase. Note that the backward

path accounts for the majority of the computation requiring around 2-3x more

time than the forward path for residual networks [22]. Most importantly, a better

performing model with the same number of parameters can be obtained for

inference with our method.

91

Interestingly, even in the current setting, our method achieves on par or

superior performance than the SOTA method with equal computation cost due to

the faster convergence and training stability. For instance, in CIFAR-10 ResNet-

20 for target sparsity 95%, DPF achieves 90.34% with additional finetuning

epochs to improve performance (300+60 epochs), whereas ours achieves 90.93%

at 240 epoch, two thirds of the 360 epochs of DPF.

5.3.6 Fast convergence of DCIL

In the Cost of training subsection, we noted that the limitation of DCIL is that the

model takes around 1.5x wall-clock time for training than DPF. To address this

limitation, we suggested that training could be stopped earlier due to the training

stability, citing that the accuracy of DCIL at the 240th epoch is higher than

that of DPF which is fine-tuned for 60 epochs additionally. Moreover, we can

finish the training much earlier by adjusting the target epoch, the epoch at which

the sparsity of the model reaches the target sparsity. We additionally conducted

experiments by adjusting the target epochs smaller than 225 used in the main

experiment, and the learning rate decaying epochs were also adjusted so that the

second learning rate decaying epochs are the same as the target epochs. Table 5.9

compares the accuracy and training time between DCIL with reduced training

time and DPF which is fine-tuned. For DCIL, we reduced the target epoch to

100, 125, 150, 175, 200 and trained only 25 epochs additional after that target

epoch. Since DCIL is much more stable in training, it has higher performance

with only 0.6-0.7 times the training time compared to DPF.

92

Table 5.9: Top-1 test accuracy on CIFAR10 dataset in unstructured pruning

of target sparsity 95%. For DCIL, we reduced the training time by adjusting

the target epoch and training only 25 additional epochs after the target epoch.

For DPF, fine-tuning for 60 epochs is required to improve performance. We

compare the accuracy and training time of DCIL with reduced training time

to both original DPF and fine-tuned DPF in ResNet-20 and ResNet-32. Time

column refers to the ratio compared to the DPF training and fine-tuning time. All

numbers of DPF are from the original paper of DPF [59].

Method Total Epoch Target Epoch
Top-1 Test Acc.

Time
ResNet-20 ResNet-32

DCIL

125 100 89.63 92.07 ×0.52

150 125 90.04 92.56 ×0.63

175 150 90.50 92.93 ×0.73

200 175 90.62 93.15 ×0.83

225 200 90.49 93.03 ×0.94

250 225 91.06 93.23 ×1.04

DPF
300 225 88.01 90.94 ×0.83

360 (300 + 60) 225 90.34 92.18 ×1.0

5.3.7 Tendency of warm-up

We introduced the warm-up epoch, an early period of learning without KL loss

but only using the cross-entropy loss, and confirmed that the performance is

stable across various warm-up epochs. The length of the warm-up epoch does not

significantly affect performance and we did not search the hyper-parameter of

warm-up in this work. Also, the KL loss help enhance the performance somewhat.

93

(a) ResNet-20 with 95% pruning on CIFAR-

10

(b) ResNet-18 with 90% pruning on Ima-

geNet

Figure 5.8: Top-1 test accuracy on various warm-up epochs.

5.3.8 CIFAR10

Table 5.10 shows the top-1 test accuracy for unstructured pruning of 95% sparsity

according to the warm-up epoch in ResNet-20 and ResNet-32 and Fig. 5.8(a)

compares the top-1 test accuracy across different warm-up epochs. The perfor-

mance gap due to the different warm-up epoch is not significant, and the value of

70 which is used in the main experiment for warm-up epoch may be tuned.

Table 5.10: Top-1 test accuracy on CIFAR10 according to warm-up epoch. We

report the last accuracy for each warm-up epoch value. All reported numbers are

averaged over three times.

Model
Target

Pr.ratio
w = 0 w = 30 w = 70 w = 120 w = 200

w = 300

(w/o KL)

ResNet-20 95% 90.43± 0.31 90.46± 0.14 90.54± 0.19 90.81± 0.22 90.14± 0.22 90.07± 0.31

ResNet-32 95% 91.85± 0.38 92.02± 0.06 92.04± 0.24 92.01± 0.25 91.92± 0.10 91.41± 0.22

5.3.9 ImageNet

We also applied different warm-up epochs (10, 70 and DCIL w/o KL) on the

ImageNet dataset to confirm the effect of warm-up epoch. Table 5.11 and Fig.

94

5.8(b) shows the numbers and curves of ResNet-18 on the ImageNet dataset.

Table 5.11: Top-1 test accuracy on ImageNet according to warm-up epoch. We

report the last accuracy for each warm-up epoch value.

Model
Target

Pr.ratio
w = 10 w = 70

w = 90

(w/o KL)

ResNet-18 90% 68.66 68.55 68.37

5.3.10 Analysis of training and inference overheads

We analyze overhead in Table 5.12. During training, our model needs only 0.67%

more parameters than DPF by adding BatchNorm and the last FC layer. Despite

the two forward-backward, the overall training time and memory usage actually

take about 1.5x due to other process factors such as computing the mask in

Pruned net. Note that, there is no additional cost of inference compared to DPF.

Furthermore, ‘Fast convergence of DCIL’ shows that DCIL outperforms DPF

with the same training time.

Table 5.12: We report the numbers for ResNet32 model on CIFAR10 using a

single TITAN RTX GPU.

During Training During Inference

Model Pr.ratio Param. # Memory Time / Epoch Param. # MAC

Dense - 0.467M 1056MiB 7.85s 0.467M 70.06M

DPF 90% 0.467M 1177MiB 9.10s 0.047M 11.66M

unstructured 95% 0.467M 1177MiB 9.10s 0.023M 6.35M

Ours 90% 0.470M 1511MiB 14.16s 0.047M 11.49M

unstructured 95% 0.470M 1511MiB 14.16s 0.023M 6.26M

95

5.4 Conclusion

To get the best out of model efficiency, dynamic pruning methods have been

studied, which find an efficient sparse network with dynamic sparse patterns. To

make diverse sparse patterns, reviving inactive weights with coarse gradients

using STE has been used. This causes instability during training and performance

degradation due to the gradient approximation. In this work, we propose a novel

Dynamic Collective Intelligence Learning (DCIL) which finds a sparse model by

training inactive weights with refined gradients rather than using approximated

coarse gradients. This can help make inactive weights be superior candidates for

future active weights. DCIL outperforms other pruning methods with enhanced

stability for various architectures on CIFAR and ImageNet.

96

Chapter 6

Deep Model Compression via KD, Quantization and

Pruning (KQP)

We introduced novel methods in three tasks through previous chapters, including

knowledge distillation, quantization, and pruning. Knowledge distillation can

improve the performance of a student network with a simple regularization

by using the information from the teacher network. Quantization and pruning

give power and memory efficiency to the model. In this chapter, we propose a

unified model compression framework via KD, quantization and pruning (KQP)

to leverage these advantages from three tasks.

6.1 Method

We design KQP algorithm by combining the proposed DCIL and PSGD. Con-

cerning the distilling the knowledge, we use logit-based knowledge distillation

than the proposed feature-based knowledge distillation because distilling the

information of feature maps can be harmful if the types of representing the

precision of the teacher and the student network are different e.g., full-precision

97

teacher and low-precision student networks [40].

In this unified KQP framework, we utilize the PSGD optimization at the

P-net training and SGD optimization at S-net training. When applying the PSGD,

we prune the network first and then calculate the quantization range and the step

size. This can help to make the distribution of the active weights quantization-

friendly. To exploit the PSGD optimization with P-net, the scaling function s(w̄)

calculates the l1 distance between the active weights (w̄) and the quantized active

weights (ŵ).

s(w̄) = |w̄ − ŵ(w̄)|+ ε. (6.1)

In the S-net training, we use naive SGD optimization because inactive weights

have no reason to be quantized. Based on these rules, we can write the update

rule of the unified framework, called KQP.

W←W − η{S(W)�M�∇WL+ (1−M)�∇WL}

∇WL ,
∂L ◦ FW(X)

∂w
, ∇WL ,

∂L ◦ FW(X)

∂w
.

(6.2)

where S(W) = [s(w̄1), s(w̄2), · · · s(w̄n)]T ,W ∈ Rn.

The overall process of the unified KQP framework is depicted in Fig. 6.1.

6.2 Experiment

We conducted the KQP experiment with various bit-with and both 90% and 95%

pruning ratios on CIFAR-100 dataset with ResNet-32. We followed the same

training setting of DCIL [45]. We compared our KQP method with the DCIL

as a baseline. We trained the KQP model with each target whose bit-rates are

3,4,6 and 8 bit. We did not quantize the last linear layer and activation layer in

this experiment. Table 6.1 shows accuracies of ResNet-32 on CIFAR-100 dataset

98

Figure 6.1: The overall process of KQP. The distribution of active weights needs

to be quantization-friendly. To this end, In the P-net training, we utilize PSGD

optimization.

according to full-precision and low-precision using the symmetric quantization

used in the previous PSGD method. In the relatively higher bit-width such as 6

and 8 bit, DCIL outperforms the KQP because PSGD acts as a regularization

to make model distribution quantization-friendly. In a higher bit-width, because

of the powerful representing precision of the bit-with, PSGD is harmful to train

a P-Net. On the other hand, in the case of the low bit-width including 3 and 4

bit, PSGD is very effective with respect to preventing performance degradation

from the quantization. This is because the lack of the representing power of the

low bit-width brings performance degradation from the discrepancy between

the distribution of full-precision and that of low-precision. PSGD can relax

this discrepancy compared to naive SGD optimization even at the 90% and 95%

pruning ratios. From this experiment, KQP shows the effectiveness at the low-bits

such as 3 and 4 bit even at 90% and 95% pruning. In low-bit experiments, KQP

99

maintains the accuracy of full-precision compared to the vanilla SGD trained

model (69.50± 0.20) in a 90% pruning ratio.

Fig. 6.2 and Fig. 6.3 show weight distributions from the model trained with

DCIL and the model trained with KQP at the conv1 and conv1 of layer3 in

the ResNet architecture. In the figure, @xbit represents the target bit-width of

the KQP method. In the case of relatively higher precision (6,8 bit), weight

distributions between the KQP and DCIL are not significantly different because

of the representing power of bit-width. However, the regularization effect of

PSGD adversely affects the performance. On the contrary, In the case of the low

precision (3, 4 bit), the two distributions from DCIL and KQP show remarkably

different because generally SGD trained model has a unimodal bell-shaped

distribution but PSGD trained model has a multimodal distribution according to

the number of the bin of quantization [46].

Unlike the original SGD method where pruning is not applied, DCIL-SGD

normally has a multimodal distribution having three peaks. This phenomenon

comes from magnitude-based pruning of DCIL. DCIL prunes the weights located

in a certain pruning range satisfying the target pruning ratio. In the Fig. 6.2 and

Fig. 6.3, There are three peaks colored with the blue according to each figure.

A relative significant distribution, inactive weights, near the zero value are in

the certain pruning range, which will be pruned with a mask M. The other two

insignificant distributions which are active weights, are located in the out of

the pruning range. KQP controls these active weights with PSGD for making a

compression-friendly distribution. In every figure, active weights are clustered

according to their target bit.

100

Table 6.1: The accuracy of ResNet-32 with on the CIFAR-100. SGD & DCIL

refers pure DCIL method where quantization is not considered. PSGD & DCIL,

KQP, is the unified training framework considering quantization and pruning.

Method Pruning ratio (FP / 3bit) (FP / 4bit) (FP / 6bit) (FP / 8bit)

SGD & DCIL
90% 70.01 / 25.76 70.41 / 62.11 70.51 / 70.04 70.40 / 70.41

95% 67.90 / 24.76 67.68 / 58.27 67.76 / 67.47 68.07 / 67.88

(PSGD & DCIL

= KQP)

90% 70.18 / 58.22 69.50 / 68.08 69.38 / 68.98 68.61 / 68.43

95% 67.23 / 55.09 67.30 / 65.25 65.78 / 65.99 64.51 / 64.54

(a) Conv1 @6bit (b) Conv1-layer3 @6bit

(c) Conv1 @8bit (d) Conv1-layer3 @8bit

Figure 6.2: Weight distributions from the Blue:DCIL and Red:KQP with 6 and 8

target bit.

101

(a) Conv1 @3bit (b) Conv1-layer3 @3bit

(c) Conv1 @4bit (d) Conv1-layer3 @4bit

Figure 6.3: Weight distributions from the Blue:DCIL and Red:KQP with 3 and 4

target bit.

6.3 Conclusion

In this chapter, we propose a unified model compression framework named as

KQP. KQP appropriately utilizes each advantage from KD, Quatization and

pruning. Although PSGD acts as a strong regularizer which has a bad effect in

the high precision, PSGD is effective even with 90% and 95% pruning in the low

precision.

102

Chapter 7

Conclusion

Toward on-device deep learning, the model compression has been studied in

three ways: knowledge distillation, quantization, and pruning. In this dissertation,

we propose three novel model compression methods. Here, we summarize the

proposed three methods and discuss the limitation of our works and the future

directions of our work for on-device deep learning.

7.1 Summary

In chapter 3, we consider indirect knowledge distillation for enhancing the

performance of the student model without any inherent differences between the

teacher and the student model. We introduce two convolutional modules, the

paraphraser and the translator. The paraphraser is attached at the last layer of the

teacher model and extracts factors from the teacher’s feature maps. Similarly, the

translator is attached at the last layer of the student model and tries to absorb the

teacher factor by minimizing a l1 distance between the teacher factor and student

factor. By doing so, the student model can be trained with the factor information

103

Figure 7.1: Toward on-device deep learning, the adaptation as well as model

compression is a very important issue in the real application.

from the teacher model by distilling the knowledge of feature maps indirectly.

In chapter 4, we show the fundamental discrepancy in weight distribution

between the full-precision model and the quantized low-precision model. This

brings inevitable performance degradation when the model is quantized. To

tackle this problem, we propose a regularization method to make model weights

quantization-friendly. We introduce the scaling function that rescale the gradient

based on the l1 distance between original weights and quantized weights. This

scaling function can help to escape the position of the weight not appropriate for

the quantization.

In chapter 5, we tackle the radical problem of the general dynamic pruning

method which finds the sparse pattern with approximated gradients. This coarse

gradient can bring the unintended direction of the gradient, causing training

instability and performance degradation. We propose dual forwarding paths

training framework to calculate the refined gradients which are very stable in the

training and good effect in enhancing the performance compared to the coarse

gradient.

104

Figure 7.2: Model compression methods can be applied at the global model

training. The global model should adapt the personal data at the expense of

minimum costs.

In chapter 6, we consider a unified model compression framework combining

logit-based knowledge distillation, PSGD and DCIL, called KQP. KQP is very

effective with a high pruning ratio and low-bit quantization.

7.2 Limitations and Future Directions

In this dissertation, we propose indirect and implicit regularizations by rescaling

and refining the gradient. Obviously, These methods are very effective in the

model compression tasks. However, although the regularization method can

maintain reasonable accuracy in the full precision model, the regularization

method has a lower performance compared to quantization-aware training. With

respect to extremely low bit quantization and the performance of the low precision

model, the regularization method should consider enhancing the performance of

the low precision model for the real application in further research.

Proposed model compression methods are well designed in terms of com-

pressing the model size and reducing the power consumption. To achieve the

main goal, deploying the deep learning on the edge device also considers the task

105

or data adaptation problem depicted in Fig. 7.1. In the real-world application, the

pretrained model needs to adapt incoming datasets or a new task.

For example, Fig. 7.2 shows the real application scenario about on-device

deep learning. First, the global model is learned on the server, where it can be

compressed using the model compression technique considering the operation at

the resource-constraint device. Then, the pretrained global model should adapt

the new task and personal data generated from each user called personalization

[42].

We believe the model compression methods and the adaptation process

should be studied simultaneously and meta-learning could be a good solution to

give a model flexibility.

106

Bibliography

[1] G. Alain and Y. Bengio. What regularized auto-encoders learn from the

data-generating distribution. The Journal of Machine Learning Research,

15(1):3563–3593, 2014.

[2] M. Alizadeh, A. Behboodi, M. van Baalen, C. Louizos, T. Blankevoort,

and M. Welling. Gradient `1 regularization for quantization robustness. In

International Conference on Learning Representations, 2020.

[3] R. Banner, Y. Nahshan, and D. Soudry. Post training 4-bit quantization

of convolutional networks for rapid-deployment. In Advances in Neural

Information Processing Systems, pages 7948–7956, 2019.

[4] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradi-

ents through stochastic neurons for conditional computation. arXiv preprint

arXiv:1308.3432, 2013.

[5] Y. Bhalgat, J. Lee, M. Nagel, T. Blankevoort, and N. Kwak. Lsq+: Improv-

ing low-bit quantization through learnable offsets and better initialization.

In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops, pages 696–697, 2020.

[6] L. Bottou. Large-scale machine learning with stochastic gradient descent.

In Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

107

[7] S. Boyd, S. P. Boyd, and L. Vandenberghe. Convex optimization. Cambridge

university press, 2004.

[8] P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C. Borgs,

J. Chayes, L. Sagun, and R. Zecchina. Entropy-sgd: Biasing gradient

descent into wide valleys. Journal of Statistical Mechanics: Theory and

Experiment, 2019(12):124018, 2019.

[9] P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C. Borgs,

J. T. Chayes, L. Sagun, and R. Zecchina. Entropy-sgd: Biasing gradi-

ent descent into wide valleys. In International Conference on Learning

Representations, 2017.

[10] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun. The

loss surfaces of multilayer networks. In Artificial intelligence and statistics,

pages 192–204, 2015.

[11] Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev. Low-bit quantization

of neural networks for efficient inference. 2019 IEEE/CVF International

Conference on Computer Vision Workshop (ICCVW), Oct 2019.

[12] I. Chung, S. Park, J. Kim, and N. Kwak. Feature-map-level online ad-

versarial knowledge distillation. In International Conference on Machine

Learning, pages 2006–2015. PMLR, 2020.

[13] W. Dally. High-performance hardware for machine learning. NIPS Tutorial,

2, 2015.

[14] W. C. Davidon. Variable metric method for minimization. SIAM Journal

on Optimization, 1(1):1–17, 1991.

108

[15] C. De Sa, M. Leszczynski, J. Zhang, A. Marzoev, C. R. Aberger, K. Oluko-

tun, and C. Ré. High-accuracy low-precision training. arXiv preprint

arXiv:1803.03383, 2018.

[16] J. E. Dennis, Jr and J. J. Moré. Quasi-newton methods, motivation and

theory. SIAM review, 19(1):46–89, 1977.

[17] T. Dettmers and L. Zettlemoyer. Sparse networks from scratch: Faster

training without losing performance. arXiv preprint arXiv:1907.04840,

2019.

[18] X. Dong, J. Huang, Y. Yang, and S. Yan. More is less: A more compli-

cated network with less inference complexity. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[19] S. K. Esser, J. L. McKinstry, D. Bablani, R. Appuswamy, and D. S. Modha.

Learned step size quantization. arXiv preprint arXiv:1902.08153, 2019.

[20] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes

Challenge 2007 (VOC2007) Results. http://www.pascal-

network.org/challenges/VOC/voc2007/workshop/index.html.

[21] T. Gale, E. Elsen, and S. Hooker. The state of sparsity in deep neural

networks. ArXiv, abs/1902.09574, 2019.

[22] N. Goli and T. M. Aamodt. Resprop: Reuse sparsified backpropagation. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 1548–1558, 2020.

[23] R. Gong, X. Liu, S. Jiang, T. Li, P. Hu, J. Lin, F. Yu, and J. Yan. Differen-

tiable soft quantization: Bridging full-precision and low-bit neural networks.

109

In Proceedings of the IEEE International Conference on Computer Vision,

pages 4852–4861, 2019.

[24] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,

2016. http://www.deeplearningbook.org.

[25] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola,

A. Tulloch, Y. Jia, and K. He. Accurate, large minibatch sgd: Training

imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[26] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville.

Improved training of wasserstein gans. In Advances in neural information

processing systems, pages 5767–5777, 2017.

[27] Y. Guo, A. Yao, and Y. Chen. Dynamic network surgery for efficient dnns.

Advances in Neural Information Processing Systems, 29:1379–1387, 2016.

[28] S. Han, J. Pool, J. Tran, and W. J. Dally. Learning both weights and

connections for efficient neural networks. Advances in Neural Information

Processing Systems, 2015.

[29] B. Hassibi and D. G. Stork. Second order derivatives for network pruning:

Optimal brain surgeon. Morgan Kaufmann, 1993.

[30] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[31] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

110

http://www.deeplearningbook.org

[32] Y. He, G. Kang, X. Dong, Y. Fu, and Y. Yang. Soft filter pruning for accel-

erating deep convolutional neural networks. International Joint Conference

on Artificial Intelligence (IJCAI), 2018.

[33] Y. He, P. Liu, Z. Wang, Z. Hu, and Y. Yang. Filter pruning via geometric

median for deep convolutional neural networks acceleration. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2019.

[34] Y. He, X. Zhang, and J. Sun. Channel pruning for accelerating very deep

neural networks. In Proceedings of the IEEE international conference on

computer vision, pages 1389–1397, 2017.

[35] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531, 2015.

[36] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data

with neural networks. Science, 313(5786):504–507, 2006.

[37] A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for

nonorthogonal problems. Technometrics, 12(1):55–67, 1970.

[38] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely

connected convolutional networks. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 4700–4708, 2017.

[39] Z. Huang and N. Wang. Data-driven sparse structure selection for deep

neural networks. In Proceedings of the European conference on computer

vision (ECCV), pages 304–320, 2018.

[40] J. Kim, Y. Bhalgat, J. Lee, C. Patel, and N. Kwak. Qkd: Quantization-aware

knowledge distillation. arXiv preprint arXiv:1911.12491, 2019.

111

[41] J. Kim, S. Chang, and N. Kwak. Pqk: Model compression via pruning,

quantization, and knowledge distillation. arXiv preprint arXiv:2106.14681,

2021.

[42] J. Kim, S. Chang, S. Yun, and N. Kwak. Prototype-based personalized prun-

ing. In ICASSP 2021-2021 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 3925–3929. IEEE, 2021.

[43] J. Kim, M. Hyun, I. Chung, and N. Kwak. Feature fusion for online mutual

knowledge distillation. In 2020 25th International Conference on Pattern

Recognition (ICPR), pages 4619–4625. IEEE, 2021.

[44] J. Kim, S. Park, and N. Kwak. Paraphrasing complex network: Network

compression via factor transfer. In Advances in Neural Information Pro-

cessing Systems, volume 31, 2018.

[45] J. Kim, J. Yoo, Y. Song, K. Yoo, and N. Kwak. Dynamic collective intel-

ligence learning: Finding efficient sparse model via refined gradients for

pruned weights. arXiv preprint arXiv:2109.04660, 2021.

[46] J. Kim, K. Yoo, and N. Kwak. Position-based scaled gradient for model

quantization and pruning. In Advances in Neural Information Processing

Systems, volume 33, pages 20415–20426. Curran Associates, Inc., 2020.

[47] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[48] R. Krishnamoorthi. Quantizing deep convolutional networks for efficient

inference: A whitepaper, 2018.

[49] A. Krizhevsky and G. Hinton. Learning multiple layers of features from

tiny images. 2009.

112

[50] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (canadian institute for

advanced research).

[51] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-100 (canadian institute for

advanced research).

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification

with deep convolutional neural networks. Advances in neural information

processing systems, 25:1097–1105, 2012.

[53] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An

empirical evaluation of deep architectures on problems with many factors of

variation. In Proceedings of the 24th international conference on Machine

learning, pages 473–480. ACM, 2007.

[54] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In Advances

in neural information processing systems, pages 598–605, 1990.

[55] N. Lee, T. Ajanthan, and P. Torr. SNIP: SINGLE-SHOT NETWORK

PRUNING BASED ON CONNECTION SENSITIVITY. In International

Conference on Learning Representations, 2019.

[56] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf. Pruning filters for

efficient convnets. International Conference on Learning Representations,

2017.

[57] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss

landscape of neural nets. In Advances in Neural Information Processing

Systems, pages 6389–6399, 2018.

[58] J. Lin, C. Gan, and S. Han. Defensive quantization: When efficiency meets

robustness. In International Conference on Learning Representations,

2019.

113

[59] T. Lin, S. U. Stich, L. Barba, D. Dmitriev, and M. Jaggi. Dynamic model

pruning with feedback. International Conference on Learning Representa-

tions, 2020.

[60] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethinking the value of

network pruning. InternationalConference on Learning Representations,

2019.

[61] C. Louizos, M. Welling, and D. P. Kingma. Learning sparse neural net-

works through l0 regularization. In International Conference on Learning

Representations, 2018.

[62] J. Masci, U. Meier, D. Cireşan, and J. Schmidhuber. Stacked convolu-

tional auto-encoders for hierarchical feature extraction. In International

Conference on Artificial Neural Networks, pages 52–59. Springer, 2011.

[63] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu, and A. Li-

otta. Scalable training of artificial neural networks with adaptive sparse

connectivity inspired by network science. Nature communications, 9(1):1–

12, 2018.

[64] H. Mostafa and X. Wang. Parameter efficient training of deep convolutional

neural networks by dynamic sparse reparameterization. In International

Conference on Machine Learning, pages 4646–4655, 2019.

[65] M. Nagel, R. A. Amjad, M. van Baalen, C. Louizos, and T. Blankevoort. Up

or down? adaptive rounding for post-training quantization. arXiv preprint

arXiv:2004.10568, 2020.

[66] M. Nagel, M. v. Baalen, T. Blankevoort, and M. Welling. Data-free quanti-

zation through weight equalization and bias correction. In Proceedings of

114

the IEEE International Conference on Computer Vision, pages 1325–1334,

2019.

[67] Y. Nahshan, B. Chmiel, C. Baskin, E. Zheltonozhskii, R. Banner, A. M.

Bronstein, and A. Mendelson. Loss aware post-training quantization. arXiv

preprint arXiv:1911.07190, 2019.

[68] W. W. Ng, G. Zeng, J. Zhang, D. S. Yeung, and W. Pedrycz. Dual autoen-

coders features for imbalance classification problem. Pattern Recognition,

60:875–889, 2016.

[69] J. Nocedal and S. Wright. Numerical optimization. Springer Science &

Business Media, 2006.

[70] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time

object detection with region proposal networks. In Advances in neural

information processing systems, pages 91–99, 2015.

[71] A. Renda, J. Frankle, and M. Carbin. Comparing rewinding and fine-

tuning in neural network pruning. InternationalConference on Learning

Representations, 2020.

[72] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio.

Fitnets: Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

[73] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Ima-

geNet Large Scale Visual Recognition Challenge. International Journal of

Computer Vision (IJCV), 115(3):211–252, 2015.

[74] H.-C. Shin, M. R. Orton, D. J. Collins, S. J. Doran, and M. O. Leach.

Stacked autoencoders for unsupervised feature learning and multiple organ

115

detection in a pilot study using 4d patient data. IEEE transactions on

pattern analysis and machine intelligence, 35(8):1930–1943, 2013.

[75] K. Simonyan and A. Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[76] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.

Dropout: A simple way to prevent neural networks from overfitting. Journal

of Machine Learning Research, 15(56):1929–1958, 2014.

[77] X. Sun, X. Ren, S. Ma, and H. Wang. meprop: Sparsified back propagation

for accelerated deep learning with reduced overfitting. In International

Conference on Machine Learning, pages 3299–3308. PMLR, 2017.

[78] T. Tambe, E.-Y. Yang, Z. Wan, Y. Deng, V. J. Reddi, A. Rush, D. Brooks,

and G.-Y. Wei. Adaptivfloat: A floating-point based data type for resilient

deep learning inference. arXiv preprint arXiv:1909.13271, 2019.

[79] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of

the Royal Statistical Society: Series B (Methodological), 58(1):267–288,

1996.

[80] M. van Baalen, C. Louizos, M. Nagel, R. A. Amjad, Y. Wang,

T. Blankevoort, and M. Welling. Bayesian bits: Unifying quantization

and pruning. arXiv preprint arXiv:2005.07093, 2020.

[81] B. Wei, X. Sun, X. Ren, and J. Xu. Minimal effort back propagation for

convolutional neural networks. arXiv preprint arXiv:1709.05804, 2017.

[82] C. Wei, S. Kakade, and T. Ma. The implicit and explicit regularization

effects of dropout. In International Conference on Machine Learning,

pages 10181–10192. PMLR, 2020.

116

[83] X. Xiao and Z. Wang. Autoprune: Automatic network pruning by regular-

izing auxiliary parameters. Advances in Neural Information Processing

Systems 32 (NeurIPS 2019), 32, 2019.

[84] J. Yim, D. Joo, J. Bae, and J. Kim. A gift from knowledge distillation: Fast

optimization, network minimization and transfer learning. In The IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[85] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are

features in deep neural networks? In Advances in neural information

processing systems, pages 3320–3328, 2014.

[86] S. Zagoruyko and N. Komodakis. Paying more attention to attention:

Improving the performance of convolutional neural networks via attention

transfer. arXiv preprint arXiv:1612.03928, 2016.

[87] S. Zagoruyko and N. Komodakis. Wide residual networks. arXiv preprint

arXiv:1605.07146, 2016.

[88] D. Zhang, J. Yang, D. Ye, and G. Hua. Lq-nets: Learned quantization for

highly accurate and compact deep neural networks. In Proceedings of the

European conference on computer vision (ECCV), pages 365–382, 2018.

[89] J. Zhao, M. Mathieu, and Y. LeCun. Energy-based generative adversarial

network. arXiv preprint arXiv:1609.03126, 2016.

[90] R. Zhao, Y. Hu, J. Dotzel, C. De Sa, and Z. Zhang. Improving Neural

Network Quantization without Retraining using Outlier Channel Splitting.

International Conference on Machine Learning (ICML), pages 7543–7552,

June 2019.

[91] M. Zhu and S. Gupta. To prune, or not to prune: exploring the efficacy of

pruning for model compression. arXiv preprint arXiv:1710.01878, 2017.

117

초록

Deep Neural Network (DNN)은빠르게발전하여컴퓨터비전,자연어처리

및음성처리를포함한많은영역에서놀라운성능을보여왔다.이러한 DNN

의 발전에 따라 edge IoT 장치와 스마트폰에 DNN을 구동하는 온디바이스

DNN에 대한 수요가 증가하고 있다. 그러나 DNN의 성장과 함께 DNN 매개

변수의 수가 급격히 증가했다. 이로 인해 DNN 모델을 리소스 제약이 있는

에지장치에구동하기가어렵다.또다른문제는에지장치에서 DNN의전력

소비량이다왜냐하면에지장치의전력용배터리가제한되어있기때문이다.

위의문제를해결하기위해서는모델압축이매우중요하다.

이 논문에서 우리는 지식 증류, 양자화 및 가지치기를 포함한 모델 압축

의세가지새로운방법을제안한다.먼저,지식증류라고불리는방법으로써,

교사네트워크의추가정보를사용하여학생모델을학습시키는것을목표로

한다.이프레임워크를사용하면주어진매개변수를최대한활용할수있으며

이는장치의리소스가제한된상황에서중요하다.기존지식증류프레임워크

와달리네트워크구조,배치무작위성및초기조건과같은교사와학생간의

고유한 차이가 적절한 지식을 전달하는 데 방해가 될 수 있으므로 피쳐에서

요소를추출하여지식을간접적으로증류하는데중점을둔다.

둘째,양자화를위한정규화방법을제안한다.양자화된모델은자원이제

한된에지장치에중요한전력소모와메모리에이점이있다.파라미터분포를

118

양자화친화적으로만들기위해훈련시간에모델의기울기를불균일하게재

조정한다.우리는그라디언트의크기를재조정하기위해 position-based scaled

gradient (PSG)를사용한다. Stochastic gradient descent (SGD)와비교하여,우

리의 position-based scaled gradient descent (PSGD)는모델의양자화친화적인

가중치분포를만들기때문에양자화후성능저하를완화한다.

셋째,중요하지않은과잉매개변수화모델을제거하기위해,가지치기된

가중치의대략적인기울기에 Straight-Through-Estimator (STE)를활용하여훈

련중에다양한희소성패턴을찾으려고하는동적가지치기방법이등장했다.

STE는 동적 희소성 패턴을 찾는 과정에서 제거된 파라미터가 되살아나도록

도울 수 있다. 그러나 이러한 거친 기울기 (coarse gradient)를 사용하면 STE

근사의 신뢰할 수 없는 기울기 방향으로 인해 훈련이 불안정해지고 성능이

저하된다. 이 문제를 해결하기 위해 우리는 이중 전달 경로를 형성하여 제

거된 파라미터 (pruned weights)를 업데이트하기 위해 정제된 그라디언트를

제안한다.가지치기에거친기울기를사용하지않기위해 Dynamic Collective

Intelligence Learning (DCIL)을제안한다.

마지막으로 제안된 방법들을 이용하여 통합 모델 압축 훈련 프레임워크

로서 결합한다. 이 방법은 극도로 희소하고 양자화 친화적인 모델을 훈련할

수있다.

주요어:심층모델압축,지식증류,양자화,가지치기,딥러닝

학번: 2017-39082

119

감사의글

학위를 무사히 마칠 수 있도록 도와주신 많은 분들께 감사인사를 올립니

다. 먼저, 존경하는 곽노준 지도교수님과 학위 논문의 심사를 맡아주신 교수

님들께 감사드립니다. 훌륭한 MIPAL 선후배님들, 친구들 그리고 사랑하는

가족들에게감사합니다.언제나응원해준아내,사랑합니다.

中石沒鏃.항상배우는자세로초심을지키며정진하는삶을살겠습니다.

120

	Abstract
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Tasks
	1.3 Contributions and Outline

	2 Related work
	2.1 Knowledge Distillation
	2.2 Quantization
	2.2.1 Sparse training

	2.3 Pruning

	3 Factor Transfer (FT) for Knowledge Distillation
	3.1 Introduction
	3.2 Proposed method
	3.2.1 Teacher Factor Extraction with Paraphraser
	3.2.2 Factor Transfer with Translator

	3.3 Experiments
	3.3.1 CIFAR-10
	3.3.2 CIFAR-100
	3.3.3 Ablation Study
	3.3.4 ImageNet
	3.3.5 Object Detection
	3.3.6 Discussion

	3.4 Conclusion

	4 Position based Scaled Gradients (PSG) for Quantization
	4.1 Introduction
	4.2 Proposed method
	4.2.1 Optimization in warped space
	4.2.2 Position-based scaled gradient
	4.2.3 Target points
	4.2.4 PSGD for deep networks
	4.2.5 Geometry of the Warped Space

	4.3 Experiments
	4.3.1 Implementation details
	4.3.2 Pruning
	4.3.3 Quantization
	4.3.4 Knowledge Distillation
	4.3.5 Various architectures with PSGD
	4.3.6 Adam optimizer with PSG

	4.4 Discussion
	4.4.1 Toy Example
	4.4.2 Weight Distributions
	4.4.3 Quantization-aware training vs PSGD
	4.4.4 Post-training with PSGD-trained model

	4.5 Conclusion

	5 Dynamic Collective Intelligence Learning (DCIL) for Pruning
	5.1 Introduction
	5.2 Proposed method
	5.2.1 Backgrounds
	5.2.2 Dynamic Collective Intelligence Learning
	5.2.3 Convergence analysis

	5.3 Experiments
	5.3.1 Experiment Setting
	5.3.2 Experiment Results
	5.3.3 Differences between Dense and pruned model
	5.3.4 Analysis of the stability
	5.3.5 Cost of training
	5.3.6 Fast convergence of DCIL
	5.3.7 Tendency of warm-up
	5.3.8 CIFAR10
	5.3.9 ImageNet
	5.3.10 Analysis of training and inference overheads

	5.4 Conclusion

	6 Deep Model Compression via KD, Quantization and Pruning (KQP)
	6.1 Method
	6.2 Experiment
	6.3 Conclusion

	7 Conclusion
	7.1 Summary
	7.2 Limitations and Future Directions

	Abstract (In Korean)
	감사의 글

<startpage>16
Abstract i
Contents iii
List of Tables vii
List of Figures x
1 Introduction 1
 1.1 Motivation 1
 1.2 Tasks 4
 1.3 Contributions and Outline 7
2 Related work 11
 2.1 Knowledge Distillation 11
 2.2 Quantization 13
 2.2.1 Sparse training 14
 2.3 Pruning 15
3 Factor Transfer (FT) for Knowledge Distillation 17
 3.1 Introduction 17
 3.2 Proposed method 19
 3.2.1 Teacher Factor Extraction with Paraphraser 20
 3.2.2 Factor Transfer with Translator 21
 3.3 Experiments 23
 3.3.1 CIFAR-10 24
 3.3.2 CIFAR-100 26
 3.3.3 Ablation Study 28
 3.3.4 ImageNet 29
 3.3.5 Object Detection 29
 3.3.6 Discussion 31
 3.4 Conclusion 31
4 Position based Scaled Gradients (PSG) for Quantization 33
 4.1 Introduction 33
 4.2 Proposed method 37
 4.2.1 Optimization in warped space 38
 4.2.2 Position-based scaled gradient 39
 4.2.3 Target points 43
 4.2.4 PSGD for deep networks 44
 4.2.5 Geometry of the Warped Space 45
 4.3 Experiments 50
 4.3.1 Implementation details 51
 4.3.2 Pruning 53
 4.3.3 Quantization 56
 4.3.4 Knowledge Distillation 58
 4.3.5 Various architectures with PSGD 60
 4.3.6 Adam optimizer with PSG 60
 4.4 Discussion 61
 4.4.1 Toy Example 61
 4.4.2 Weight Distributions 62
 4.4.3 Quantization-aware training vs PSGD 64
 4.4.4 Post-training with PSGD-trained model 65
 4.5 Conclusion 65
5 Dynamic Collective Intelligence Learning (DCIL) for Pruning 69
 5.1 Introduction 69
 5.2 Proposed method 73
 5.2.1 Backgrounds 73
 5.2.2 Dynamic Collective Intelligence Learning 74
 5.2.3 Convergence analysis 79
 5.3 Experiments 80
 5.3.1 Experiment Setting 81
 5.3.2 Experiment Results 84
 5.3.3 Differences between Dense and pruned model 87
 5.3.4 Analysis of the stability 87
 5.3.5 Cost of training 90
 5.3.6 Fast convergence of DCIL 92
 5.3.7 Tendency of warm-up 93
 5.3.8 CIFAR10 94
 5.3.9 ImageNet 94
 5.3.10 Analysis of training and inference overheads 95
 5.4 Conclusion 96
6 Deep Model Compression via KD, Quantization and Pruning (KQP) 97
 6.1 Method 97
 6.2 Experiment 98
 6.3 Conclusion 102
7 Conclusion 103
 7.1 Summary 103
 7.2 Limitations and Future Directions 105
Abstract (In Korean) 118
감사의 글 120
</body>

