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Abstract 

Ginsenosides are the most valuable and pharmacologically active triterpenoid saponins found in Panax ginseng. 
Although light quality affects ginsenoside content, little is known about the underlying genetic and regulatory 
mechanisms. Additionally, the correlation between the adaptability of ginseng to shade and ginsenoside biosynthesis 
remains poorly understood. In the present study, transcriptome analysis of ginseng seedlings using RNA sequenc‑
ing revealed that the expression of ginsenoside biosynthesis genes, including PgHMGR, PgFPS, PgSS, and PgUGT , was 
enhanced in shade conditions but downregulated by red light, indicating that far‑red light might play an essential 
role in ginsenoside production. Further, gene expression analysis in adventitious roots and 2‑year‑old plants using 
qRT‑PCR showed that the light quality‑mediated expression patterns of ginsenoside genes varied with tissue and age. 
However, unlike the transcriptome, there was no difference in the total ginsenoside content in seedlings among vari‑
ous light conditions. Nevertheless, the amount of major protopanaxadiol‑type ginsenosides increased under shade 
and red light conditions. Unlike seedlings and adventitious roots, there was a decrease in the expression of PgHMGR, 
PgFPS, PgSS, and PgDDS in 2‑year‑old plants, along with an increase in the ginsenoside content, under far‑red light. 
Taken together, our findings suggest that far‑red light is an important environmental factor for ginsenoside biosyn‑
thesis and diversification and provide information that can improve the quality of ginseng produced for medicinal 
purposes.
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Introduction
Plants depend on light for various processes during their 
growth and development, such as germination, photo-
morphogenesis, photosynthesis, and other metabolic 
processes [1, 2]. In addition to orchestrating the biosyn-
thesis of primary metabolites (PMs), light also affects the 
biosynthesis and accumulation of secondary metabo-
lites (SMs) [2, 3]. While PMs are crucial for growth and 
development, SMs play a vital role in plant fitness under 
diverse environmental conditions [2, 4, 5]. The biosyn-
thesis of SMs is greatly influenced by environmental 
factors that include several biotic and abiotic stresses as 
well as variations in light [6–9]. Transcriptomic analysis 
of plants, such as Arabidopsis and rice (Oryza sativa), 
has shown that light determines morphogenesis and 
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functional metabolite production through changes in 
gene expression patterns [10–12]. In addition, appropri-
ate quality and intensity of light are crucial for the accu-
mulation of secondary metabolites [2, 5, 13–17]. Specific 
wavelengths in the light spectrum are responsible for the 
induction of SM biosynthesis along with their composi-
tion and content [18]. In the visible light spectrum, blue 
light (BL; 400–500 nm) and red light (RL; 600–700 nm) 
affect the accumulation of SMs in medicinal plants [16].

Panax ginseng is a perennial herbaceous plant of the 
Araliaceae family widely used in traditional medicine. 
The pharmacological benefits of ginseng mainly depend 
on the triterpenoid saponins called ginsenosides [19–24], 
which are mainly produced in the leaves and stored in the 
roots [25–28]. They are classified into dammarane-type 
and oleanolic acid-type ginsenosides. Ginseng mainly 
consists of the dammarane-type ginsenosides [26, 28, 
29], which are further grouped into the protopanaxadiol 
(PPD) and protopanaxatriol (PPT) types based on the 
sugar moieties attached to their aglycone structure [29]. 
The biosynthesis of ginsenosides begins with isoprenoid 
metabolic pathways involving the cytosolic mevalonate 
(MVA) pathway and plastid 2-C-Methyl-d-erythritol 
4-phosphate (MEP) pathway [27, 30]. Both contribute 
to ginsenoside biosynthesis by synthesizing isopentenyl 
diphosphate (IPP) [27, 30, 31]. The backbone for ginse-
noside biosynthesis is produced through several conden-
sation and cyclization reactions involving the enzymes 
farnesyl pyrophosphate synthase (PgFPPS), squalene 
synthase (PgSS), and squalene epoxidase (PgSE). The first 
step in ginsenoside biosynthesis is catalyzed by dam-
marenediol synthase (PgDDS), which converts 2,3-oxi-
dosqualene into a dammarenediol backbone [32, 33]. This 
backbone is further converted into diverse ginsenosides 
present in ginseng through numerous cytochrome P450 
enzymes and UDP-glucuronosyltransferases (PgUGTs) 
[34–36].

Recent studies have shown that changes in light quality 
lead to differences in ginsenoside content [37–39]. How-
ever, studies on gene expression and ginsenoside biosyn-
thesis in ginseng, which is a shade-adapted plant, have 
not been actively conducted under far-red (FR) enriched 
shade conditions to date. Therefore, in the present study, 
we performed transcriptome and ginsenoside analy-
ses on ginseng seedlings exposed to various light con-
ditions, including white light  (WL), BL, RL, and shade 
(R:FR ratio = 0.2). We further analyzed the expression of 
genes involved in ginsenoside biosynthesis and ginseno-
side content in adventitious roots and 2-year-old plants 
using quantitative real-time PCR (qRT-PCR) and ultra-
performance liquid chromatography (UPLC), respec-
tively, to determine whether light quality-mediated 

ginsenoside production depends on the types of tissue or 
the age of the ginseng plant.

Materials and methods
Plant materials
The P. ginseng cultivar Yunpoong was used in all the 
experiments. Stratified seeds were obtained from the 
Department of Herbal Crop Research, National Institute 
of Horticultural and Herbal Science, Republic of Korea, 
and 2-year-old sprouts were obtained from Korea Gin-
seng Corporation. Adventitious roots derived from the 
Yunpoong cultivar were divided, transferred into three 
bioreactors for generating biological replicates, and col-
lected 4 weeks later for light quality studies.

Light treatment and growth conditions
The seeds and 2-year-old sprouts were cultivated in a 
growth room maintained at 23  °C for 1 month in long-
day (16-h light/ 8-h dark) conditions until fully expanded 
leaves were obtained. For light quality studies, plants 
were transferred to growth incubators with white light 
(50 µmol  m–2  s–1), blue light (30 µmol  m–2  s–1), red light 
(30 µmol  m–2   s–1), far-red light (FRL; 15 µmol  m–2   s–1), 
or shade (50 µmol  m–2   s–1, R:FR ratio = 0.2) conditions. 
Blue, red, and far-red light was generated using blue 
LEDs (450  nm), red LEDs (660  nm), and far-red LEDs 
(730  nm), respectively. Light intensity was measured 
using UPRtek spectral PAR meter (PG200N; UPRtek 
Corp., Taiwan).

Total RNA extraction, cDNA synthesis, and real‑time PCR
The light-treated plants and adventitious roots were har-
vested in the dark and immediately frozen in liquid nitro-
gen. For total RNA extraction, TRIzol – RNAeasy hybrid 
method was followed to avoid contamination with sugars 
and other secondary metabolites. Frozen ginseng mate-
rials were homogenized to a fine powder using a mor-
tar and pestle in the presence of liquid nitrogen, and an 
appropriate volume of TRI reagent (TR118, Molecular 
Research Center Inc., Cincinnati, OH, USA) was added 
according to the manufacturer’s instructions. After mix-
ing and centrifuging, the resulting aqueous phase was 
transferred to a new tube. Total RNA was precipitated 
with 70% ethanol and collected using the Qiagen RNAe-
asy Mini Kit (Qiagen Inc, Hilden, Germany). For cDNA 
synthesis, 1  µg of total RNA was used as a template in 
the reverse transcription reactions along with 5X Prime-
Script™ RT Master Mix (Takara Bio Inc., Shiga, Japan). 
Quantitative real-time PCR (qRT-PCR) was performed 
to analyze the expression of genes involved in ginseno-
side biosynthesis using the primers listed in Additional 
file  1: Table  S1. Cyclophilin (PgCYP) or glyceraldehyde 
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3-phosphate dehydrogenase (GAPDH) expression [40] 
was used as an internal control to normalize cDNA 
levels.

RNA‑Seq analysis
Library construction was performed by the National 
Instrumentation Center and Environmental Manage-
ment (NICEM), South Korea and sequencing was per-
formed by PHYZEN, South Korea. Paired-end reads with 
an average length of 101 base pairs (bp) were generated 
using the Illumina Hiseq2000 platform. Sequencing qual-
ity was examined using FastQC (v0.11.3) before further 
analysis. Poor-quality reads were removed and clean 
reads were combined and assembled using the Trin-
ity transcriptome assembler (version r20140717). Nine 
GB of clean data was generated on average per sample. 
The final assembly of the light-treated samples contained 
59,352 unigenes. Functional annotation revealed 56,968, 
50,293, 46,399, 38,819, and 24,905 unigenes with align-
ments to NR (non-redundant protein database), Protein 
domains (InterProScan), Gene Ontology (BLAST2GO), 
and KEGG (Kyoto encyclopedia of genes and genomes) 
databases, respectively. The selected unigenes were vali-
dated according to the P. ginseng draft genome from the 
Ginseng Genome Database [34]. Differences in the tran-
script levels of each gene under various light treatments 
were analyzed using DeSeq2. Differentially expressed 
genes were defined based on a 2-fold change difference 
(p < 0.05) in the transcription level of genes between 
plants treated with white light and plants treated with 
other light wavelengths, such as blue, red, and shade. A 
heat map was drawn based on FPKM values using the 
online program heat mapper [41].

Total ginsenoside extraction and HPLC analysis
Total ginsenoside content was analyzed in frozen and 
powdered ginseng samples for qualitative and quanti-
tative analyses. Each sample (0.1  mg) was ground and 
mixed with methanol (80%; 1:10 wt/vol) used as an 
extraction solvent. The mixture was sonicated in an ultra-
sonic bath at 25 kHz for 30 min at 25 °C (Branson ultra-
sonic cleaner, Emerson Electric, Brookfield, CT, USA) 
and centrifuged at 3000 rpm for 20 min. The supernatant 
was sonicated and centrifuged twice. The resultant super-
natant was filtered through a 0.2  μm syringe filter and 
analyzed using UPLC (Shimadzu LCMS-8050 system; 
Shimadzu Corp., Kyoto, Japan). The sample (1.0 µL) was 
separated using Cortecs UPLC T3 1.6 μm 2.1 × 150 mm 
column (Waters Corp., Milford, MA, USA), and the tem-
perature of the column was maintained at 35 °C. Distilled 
water containing 0.1% formic acid (A) and methanol/
acetonitrile (9/1, v/v, 0.1% formic acid, B) was used as 
the mobile phase with a gradient of 35% A to 95% B for 

20 min and a flow rate of 0.45 mL/min. To detect ginse-
nosides, negative ionization mode of ESI-mass spectrom-
etry (MS)/MS was used.

Results
Light quality dramatically alters the expression patterns 
of secondary metabolite biosynthetic genes
  To investigate the effect of shade and light quality on 
gene expression and ginsenoside production in ginseng, 
1-month-old ginseng seedlings were exposed to WL, BL, 
RL, or shade and further grown for five days. Transcrip-
tomic analysis revealed a striking number of differentially 
expressed genes (DEGs) between the light quality treat-
ments. BL had the highest number of upregulated DEGs, 
whereas RL had a significantly higher number of down-
regulated genes (Fig. 1A). Interestingly, GO term analy-
sis revealed a dramatic increase in the metabolic activity 
following BL treatment. Notably, the genes involved 
in alkaloid and cinnamic acid metabolic processes and 
sugar transporter activity were upregulated (Fig.  1B). 
KEGG enrichment analysis revealed that the phenylpro-
panoid and flavonoid biosynthesis pathway genes were 
enriched under BL. In contrast, genes involved in most 
SM pathways were significantly downregulated under 
RL (Fig.  1C). These genes encode hydroxymethylglu-
taryl-CoA reductase (HMGCR), farnesyl diphosphate 
farnesyltransferase and  components in terpenoid, ses-
quiterpenoid, and isoprenoid metabolisms  (Fig.  1C). 
Shade conditions (enriched FR) upregulated 89 DEGs, 
including genes involved in abiotic stress pathways, and 
downregulated 97 DEGs, mainly involved in photosys-
tem, photosynthesis, and plastid development (Fig. 1D). 
Because ginsenoside production is influenced by abiotic 
stresses, these results suggest that shade conditions may 
increase ginsenoside content by upregulating ginsenoside 
biosynthesis genes.

Shade conditions upregulate genes involved in isoprenoid 
metabolism
  Isoprenoids in plants are mainly produced by the MVA 
and MEP metabolic pathway end products (Fig.  2A), 
which serve as precursors for many secondary metabo-
lites present in plants [42, 43]. Light has a profound effect 
on the isoprenoid pathway, especially the MEP pathway. 
Light-induced changes in isoprenoid metabolic pathways 
were observed in our transcriptomic analysis (Fig. 1). This 
led us to analyze the changes in the expression of genes 
involved in the MVA and MEP pathways. RL treatment 
tended to reduce the expression levels of MVA and MEP 
pathway genes compared to BL and shade conditions 
(Fig.  2B and C). However, the expression of isoprenoid 
metabolism genes in the MVA and MEP pathways was 
not altered by RL treatment (Fig. 2B and C). Moreover, in 
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Fig. 1 Differentially expressed genes (DEGs) for GO Annotation categories. A Number of DEGs under light quality treatment (Log2(FoldChange) ≥ 1 
and padj < 0.05). The GO analysis of genes in B WL vs. BL C WL vs. RL and D WL vs. Shade treatments. X‑axis indicates the richness factor in log 10 
p‑value. Y‑axis represents various GO terms (refer to the color category)
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Fig. 2 Expression pattern of isoprenoid biosynthetic pathway genes in ginseng leaf tissues. A Mevalonic acid pathway (MVA) in the 
cytosol and methylerythritol 4‑phosphate (MEP) pathway in the chloroplast. B Heat map pattern of MVA pathway in white (WL), blue (BL), red (RL), 
and shade (S) light conditions. C Heat map pattern of MEP pathway genes under various light treatments. The shift from blue to red corresponds to 
the increasing FPKM value
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the MVA pathway, the upstream genes encoding acetyl-
CoA C-acetyltransferase (PgAACT), hydroxymethylglu-
taryl-CoA synthase (PgHMGS), and (PgHMGR) were 
reduced by RL treatment compared to BL and shade con-
ditions (Fig.  2B). Similarly, we observed that most MEP 
genes were downregulated under RL conditions. Nota-
bly, genes that encode 1-deoxy-D-xylulose-5-phosphate 
synthase (PgDXS) and 1-deoxy-d-xylulose-5-phosphate 
reductase (PgDXR) synthesizing MEP were down-
regulated by RL treatment (Fig.  2A  and C), resulting 
in reduced expression of all downstream genes includ-
ing isopentenyl-diphosphate Delta-isomerase (PgIDI), 
which its gene product produces a terpenoid precursor, 
isopentyl-diphosphate (IPP) (Fig. 2A and C). In contrast, 
we observed the upregulation of MVA and MEP pathway 
genes under BL and shade conditions (Fig.  2B and C). 
These results suggested that light quality is important for 
the regulation of isoprenoid metabolic processes in gin-
seng and may influence ginsenoside biosynthesis.

Far‑red light affects the expression of ginsenoside 
biosynthetic genes differently according to tissue and age
Ginsenosides, which are ginseng saponins, are derived 
from the IPP precursor produced by the MVA and MEP 
pathways and are reportedly synthesized in the leaves 
[44]. Next, we analyzed the expression profiles of ginse-
noside-synthesizing genes in the leaves and found charac-
teristic changes according to light quality. The transcript 
abundance of ginsenoside biosynthesis genes was the 
highest under shade conditions (Fig.  3A and B). In par-
ticular, PgFPPS (Pg_S8325.1, Pg_S0304.36), PgSS (Pg_
S0992.8, Pg_S1678.33, Pg_S2014.27, Pg_S1637.7), PgSE 
(Pg_S3064.5, Pg_S0129.28, Pg_S1693.31, Pg_S2606.7, 
Pg_S2606.8, Pg_S2840.6, Pg_S6308.10, Pg_S4651.2), and 
PgDDS (Pg_S3318.3) genes were highly induced under 
shade as well as BL conditions (Fig. 3A). All paralogs of 
these genes were upregulated under shade and BL con-
ditions compared to RL, except PgDDS. Among PgDDS 
paralogs, only Pg_S3318.3 was expressed in our study 
(Fig. 3A). These results suggest that ginsenoside biosyn-
thesis is dependent on light quality. Similar to the iso-
prenoid pathway, the expression of most ginsenoside 
genes was downregulated under RL conditions, except 
for one paralog, PgSQE (Pg_S4651.2). Moreover, proto-
panaxadiol synthase (PgPPDS, Pg_S4733.5, Pg_S3293.6) 
and one paralog of protopanaxatriol synthase (PgPPTS1, 
Pg_S1770.12) showed the highest expression under 
shaded conditions (Fig. 3A), indicating that dammarane-
type ginsenosides may accumulate under these condi-
tions. β-amyrin synthase (BAS) catalyzes the cyclization 
of 2,3-oxidosqualene to produce β-amyrin, which serves 
as a precursor for the production of oleanolic acid-type 
ginsenosides (mainly Ro) and plant sterols. Seven PgBAS 

genes among eight paralogs were expressed in our condi-
tions, and their expression was unaltered by light quality 
changes (Fig. 3A).

To date, more than 150 ginsenosides have been identi-
fied in Panax species, and this diversity is due to many 
UDP-glycosyltransferases (UGTs) that catalyze glyco-
sylation reactions in the final ginsenoside biosynthe-
sis [45]. We further analyzed whether the expression of 
UGT  genes was dependent on light quality. Among the 
12 PgUGTs in our analysis, eight genes were the most 
enriched under shade conditions (Fig.  3B). In contrast, 
the expression of Pg_S2390.5 belonging to the UGT74 
clade under shade conditions was lower than that under 
WL and RL conditions (Fig.  3B). Similar to the ginse-
noside biosynthesis genes, the expression of all PgUGT  
genes analyzed was decreased by RL treatment compared 
to WL conditions (Fig.  3B). These results suggest that 
light quality may affect the levels of specific ginsenosides.

The level of ginsenoside production varies with tissues 
and developmental ages [26–28]. To examine whether 
the effect of light quality on the expression of ginseno-
side biosynthesis genes was preserved in other tissues 
and developmental stages, ginseng adventitious roots 
and 2-year-old plants were grown under WL, BL, RL, and 
FRL conditions. We used monochromatic FRL instead of 
shade conditions in order to eliminate the effect of other 
wavelengths on gene expression. Quantitative real-time 
PCR analysis showed FRL-specific enrichment in the 
expression of PgHMGR and PgSS genes in adventitious 
roots (Fig.  3C). Conversely, RL-specific enrichment of 
PgHMGR, PgSS, and PgDDS was observed in the leaves 
of 2-year-old plants (Fig.  3D). These results indicate 
that light quality may have different effects on ginseno-
side production depending on the tissue and age of the 
ginseng.

Far‑red light influences the production and diversity 
of ginsenosides
Because our data showed that light quality plays an 
important role in the regulation of ginsenoside biosynthe-
sis gene expression, we analyzed the changes in ginseno-
side content under different light regimes. We quantified 
the total ginsenoside content and individual ginseno-
sides belonging to the PPD, PPT, or oleanane types in 
the leaves of seedlings, adventitious roots, and leaves 
of 2-year-old plants under the same conditions, which 
the  gene expression was analyzed. In seedlings, unlike 
the transcriptome analysis, the total ginsenoside content 
was similar among BL, RL, and shade conditions, despite 
a slight variation compared to WL (Fig.  4A). However, 
PPD-type ginsenosides, including Rb1, Rc, Rb2, and their 
malonyl forms such as malonyl-Rc (mRc), malonyl-Rb1 
(mRb1), and malonyl-Rb2 (mRb2), and oleanane-type 
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ginsenoside Ro were significantly increased under RL 
and shade conditions (Fig.  4A). In contrast, the PPT-
type ginsenosides Re and Rg1 were enriched following 
BL treatment. In adventitious roots, the total ginsenoside 
content under FRL conditions was lower than that under 
WL conditions (Fig. 4B), which was inconsistent with the 
enriched transcripts of the canonical ginsenoside genes 

PgHMGR and PgSS in FRL-treated adventitious roots 
(Fig. 3C). Moreover, the total ginsenoside content under 
BL and RL conditions was similar to that under WL con-
ditions (Fig. 4B). Unlike seedlings and adventitious roots, 
the total amount of ginsenosides in 2-year-old plants 
was the highest under FRL conditions among all condi-
tions (Fig. 4C), indicating that ginsenoside accumulation 

Fig. 3 Expression pattern of ginsenoside triterpenoid biosynthetic genes in ginseng leaf tissues under various light conditions. A Heat map 
showing the expression pattern of ginsenoside biosynthetic genes. B Expression pattern of candidate UGT genes involved in ginsenoside 
biosynthesis. Real‑time PCR quantification of canonical ginsenoside genes encoding 3‑hydroxyl‑3‑methylglutaryl‑CoA reductase (HMGR, Pg_S), 
farnesyl diphosphate synthase (FPS), squalene synthase (SS), and dammarenediol synthase (DDS) from C light‑quality treated ginseng adventitious 
roots (adv roots) and D 2‑year‑old plants. Values represent means ± SE with three biological replicates (n = 5). Values marked with stars differ from 
white light significantly according to the student’s t‑test: *p < 0.05; **p < 0.01, ***p < 0.001. The shift from blue to red in heat map corresponds to the 
increasing FPKM value. WL: white light; BL: blue light; RL: red light; FRL: far‑red light
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may differ from gene expression patterns (Fig. 3D). This 
asynchronous relationship between gene expression and 
ginsenoside production may be attributed to unknown 
feedback and/or compensatory circuits. Additionally, 
major ginsenosides in the PPD and PPT  types, includ-
ing Rb1, Rb2, Rc, Rd, Re, and Rg1, showed FRL-specific 
enrichment compared to BL and RL conditions (Fig. 4C). 
We also found that the ginsenoside content and composi-
tion varied among all plant tissues tested (Fig. 4). Taken 
together, our data suggest the existence of a complicated 
mechanism by which light quality influences ginsenoside 
production and diversification of ginsenoside content 

through the regulation of multiple sets of genes, likely 
allowing ginseng plants to optimize ginsenoside biosyn-
thesis under a wide range of environmental conditions.

Discussion
Plants absorb, transmit, and reflect the most photosyn-
thetically active wavelengths. The quality and inten-
sity of light absorbed by leaves play critical roles in the 
development, morphogenesis, and biosynthesis of differ-
ent compounds [6, 46]. Our DEG analysis showed that 
light treatment significantly affected the expression of 
genes involved in the primary and secondary metabolic 

Fig. 4 UPLC quantification of ginsenoside diversity from plants exposed to various wavelengths of light. A One‑month‑old ginseng seedlings, B 
adventitious roots, and C 2‑year‑old plant after light treatment. WL: white light; BL: blue light; RL: red light; S: shade; FRL: far‑red light
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pathways. The pairwise comparison between WL- and 
BL-treated plants showed the upregulation of secondary 
metabolic pathways, such as alkaloid metabolic pathways 
and phenylalanine catabolic processes (Fig.  1B–D). The 
increase in photosynthetic gene expression observed in 
the BL-treated plants could contribute to active meta-
bolic processes in ginseng. Ginseng possesses chlorophyll 
A/B binding proteins that are duplicated during evolu-
tion, leading to its high photosynthetic capacity [47]. We 
observed that genes involved in phenylpropanoid biosyn-
thetic pathways, such as Pg_S1239.2, Pg_S2256.14, and 
Pg_S3606.18, were upregulated in the BL-treated plants 
in particular. Among the enriched metabolic pathways, 
products of the cinnamic acid and phenylpropanoid bio-
synthesis pathways act as precursor pools for secondary 
metabolites.

Red light is known to contribute to the development 
of photosynthetic apparatus, thereby enhancing the 
accumulation of starch in plants [45, 49]. Ginsenoside 
biosynthesis is regulated during the early growth and 
developmental stages  of ginseng plants, which later 
leads to the accumulation of ginsenosides in the roots 
[44, 48–51]. Thus, we used young seedlings to under-
stand light  quality-mediated ginsenoside biosynthesis. 
Our results showed that upstream pathways, such as the 
MEP and MVA pathways, were significantly affected by 
light quality (Fig.  2). Notably, the transcripts of PgDXS, 
PgDXR, and PgGGPS in the MEP pathway and those 
of PgAACT , PgHMGS, PgHMGR, and PgPMK in the MVA 
pathway were significantly downregulated under RL con-
ditions (Fig. 2B and C). In contrast to the plants exposed 
to WL, BL, and shade conditions, plants exposed to RL 
displayed downregulation of genes related to the terpe-
noid and sterol biosynthesis pathways (Fig. 1C).

We found that shade conditions enhanced the expres-
sion of genes involved in ginsenoside biosynthesis in 
seedlings, similar to isoprenoid metabolite pathway 
genes (Fig. 3A). In particular, canonical genes involved 
in ginsenoside biosynthesis, such as PgDDS, PgPPDS, 
and PgPPTS, were prominently expressed. Surpris-
ingly, while the changes in the transcript levels of genes 
involved in ginsenoside metabolism were striking, the 
total ginsenoside content did not change significantly 
(Figs.  3A, B and 4A). However, the concentration of 
PPD-type ginsenosides was considerably higher under 
shade conditions than that of PPT-type ginsenosides 
(Fig.  4A); RL treatment also showed a similar trend. 
Unlike the seedlings, in 2-year-old plants exposed to 
FR light, the total ginsenoside content was increased 
(Fig.  4C) while the ginsenoside gene expression was 
downregulated (Fig.  3D). The difference in gene 

expression patterns in response to FR light between 
seedlings and 2-year-old plants could be explained due 
to the difference in the duration of light treatment (5 
d versus 2 wk). Alternately, it is possible that while the 
enzymes themselves may be activated by FR light, it 
might cause a feedback inhibitory effect on the expres-
sion of genes that encode key enzymes of ginsenoside 
biosynthesis. In addition, the post-translational modi-
fication or regulation by light quality, such as phospho-
rylation or stability changes, respectively, can account 
for discrepancies between gene expression and metabo-
lite profiles [52]. Furthermore, the comparative analysis 
of transcript levels, enzyme activities, and metabolites 
revealed that diel changes in transcript levels were 
rapid, whereas diel changes in activities and metabo-
lites were small or slow [53].

In conclusion, our transcriptome and ginsenoside 
analyses suggest that light quality is crucial not only for 
the production of ginsenosides but also for their diver-
sity, especially highlighting the importance of shade or 
FR light in the promotion of ginsenoside biosynthesis in 
ginseng leaves via gene regulation. Our findings provide 
clues for improving the medicinal quality of ginseng by 
increasing the pharmacologically valuable PPD-based 
ginsenoside content in ginseng plants by using shade or 
FR light during their growth.
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