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Abstract 

Purpose: Quantitative thyroid single-photon emission computed tomography/com-
puted tomography (SPECT/CT) requires computed tomography (CT)-based attenua-
tion correction and manual thyroid segmentation on CT for %thyroid uptake measure-
ments. Here, we aimed to develop a deep-learning-based CT-free quantitative thyroid 
SPECT that can generate an attenuation map (μ-map) and automatically segment the 
thyroid.

Methods: Quantitative thyroid SPECT/CT data (n = 650) were retrospectively analyzed. 
Typical 3D U-Nets were used for the μ-map generation and automatic thyroid segmen-
tation. Primary emission and scattering SPECTs were inputted to generate a μ-map, 
and the original μ-map from CT was labeled (268 and 30 for training and validation, 
respectively). The generated μ-map and primary emission SPECT were inputted for the 
automatic thyroid segmentation, and the manual thyroid segmentation was labeled 
(280 and 36 for training and validation, respectively). Other thyroid SPECT/CT (n = 36) 
and salivary SPECT/CT (n = 29) were employed for verification.

Results: The synthetic μ-map demonstrated a strong correlation (R2 = 0.972) and 
minimum error (mean square error = 0.936 ×  10−4, %normalized mean absolute 
error = 0.999%) of attenuation coefficients when compared to the ground truth 
(n = 30). Compared to manual segmentation, the automatic thyroid segmentation was 
excellent with a Dice similarity coefficient of 0.767, minimal thyroid volume difference 
of − 0.72 mL, and a short 95% Hausdorff distance of 9.416 mm (n = 36). Additionally, 
%thyroid uptake by synthetic μ-map and automatic thyroid segmentation (CT-free 
SPECT) was similar to that by the original μ-map and manual thyroid segmentation 
(SPECT/CT) (3.772 ± 5.735% vs. 3.682 ± 5.516%, p = 0.1090) (n = 36). Furthermore, the 
synthetic μ-map generation and automatic thyroid segmentation were successfully 
performed in the salivary SPECT/CT using the deep-learning algorithms trained by 
thyroid SPECT/CT (n = 29).

Conclusion: CT-free quantitative SPECT for automatic evaluation of %thyroid uptake 
can be realized by deep-learning.
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Key points 

Question 1: Can CT-free attenuation correction be realized for SPECT?
Pertinent findings: The first deep-learning algorithm produced μ-map similar to 
CT-derived μ-map.
Implications for patient care: Quantitative SPECT can be performed without CT. 
Therefore, patients can be protected from redundant radiation exposure of CT.
Question 2: Can the thyroid be segmented without high-resolution images like 
CT?
Pertinent findings: The second deep-learning algorithm successfully generated 
the thyroid segmentation map using low-resolution images such as the generated 
μ-map and SPECT.
Implications for patient care: The thyroid segmentation process was dramatically 
reduced from 40–60 min to < 1 min, facilitating rapid patient care.
Question 3: Can quantitative SPECT/CT be possible without CT?
Pertinent findings: The two deep-learning algorithms deprived the quantitative 
thyroid SPECT/CT of CT.
Implications for patient care: Repetitive CT acquisitions may be excluded in mul-
tiple SPECT/CT-based nuclear imaging studies, such as dosimetry.

Keyword: Quantification; Single-photon emission computed tomography; Deep-
learning; Attenuation correction; Segmentation

Introduction
Attenuation correction (AC) is important for accurate quantitation of radioactivity dur-
ing single-photon emission computed tomography (SPECT). Attenuation map (μ-map) 
from x-ray computed tomography (CT) is now technically mature for the purpose of AC. 
However, application of CT-based AC (CTAC) is yet to be a clinical routine in SPECT 
because of lack of proper clinical indication, concern about extra-radiation exposure, 
and necessity for hybrid SPECT/CT scanner [1]. Recent development of deep-learning 
may change the concept of CTAC because CT acquisition may be omitted through 
either μ-map generation from SPECT (indirect approach) [2–5] or creation of attenu-
ation-corrected SPECT (direct approach) [6, 7]. Deep-learning was also useful in organ 
segmentation [8–10].

The rapid progress of deep-learning enables new clinical applications such as CT-
free quantitative SPECT as an alternative to quantitative SPECT/CT. The quantitative 
SPECT/CT is an emerging nuclear medicine technique that employs the AC, scatter cor-
rection (SC), and resolution recovery (RR) and provides truly quantitative imaging vox-
els in units of radioactivity (i.e., kilo Becquerel or micro Curie) [11]. Organ segmentation 
is also critical in quantitative SPECT/CT because organ-level radioactivity is an impor-
tant parameter of disease activity (i.e., %thyroid uptake) [8, 10].

Technetium-99m (Tc-99m) is one of the most widely used radionuclides. Currently, 
quantitative SPECT/CT, which employs Tc-99m, is being actively studied in various 
conditions, including bone/articular [12–17], parathyroid [18], kidney [8, 19], and sali-
vary gland diseases [10, 20]. Tc-99m pertechnetate uptake in the thyroid gland has been 
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accurately measured using the same principle of quantitative SPECT/CT [21]. Graves’ 
disease [22], chronic thyroiditis [23], and autonomous functional thyroid nodules [24] 
were evaluated using quantitative thyroid SPECT/CT. However, several limitations exist 
in clinical application of thyroid SPECT/CT since the thyroid is one of the most sensitive 
organs to ionizing radiation. Therefore nuclear imaging technique of Tc-99m thyroid 
uptake measurement can find a broader clinical use if CT is removed according to the 
ALARA (as low as reasonably achievable) principle without compromising quantitative 
ability of thyroid SPECT/CT.

CT has twofold application in quantitative thyroid SPECT/CT as follows: attenuation 
map (μ-map), crucial for attenuation correction of 140 keV photons to accurately quan-
tify Tc-99m thyroid uptake, and thyroid segmentation, which is necessary for automated 
thyroid uptake evaluation. Here, we developed convolutional neural networks (CNNs) 
that can remove CT from thyroid SPECT/CT. Specifically, this study aimed to develop 
a deep-learning-based CT-free quantitative SPECT for %thyroid uptake measurement.

Materials and methods
Dataset

In this study, two datasets of thyroid SPECT/CT cases were used. The first SPECT/CT 
dataset (n = 298) was obtained between February 2016 and April 2020, and SPECT and 
CT covered the same axial field of view (FOV) of 38 cm from the mid-skull to upper 
mediastinum with the thyroid in centre. The second SPECT/CT dataset (n = 352) was 
obtained between June 2020 and December 2021, and CT did not cover the full but par-
tial axial FOV (approximately 1/2–2/3) of SPECT to reduce redundant radiation expo-
sure. The demographic characteristics of the two datasets were comparable (Table  1). 
The clinical diagnosis, which was cause of thyroid SPECT/CT referral, was determined 
by a nuclear medicine physician (DGO) in consideration of thyroid function tests and 
medical records.

The first dataset was used for generation of synthetic μ-map (268 and 30 for train-
ing and validation, respectively), whereas the second dataset was employed for auto-
matic thyroid segmentation (280 and 36 for training and 36 validation, respectively). 
The remaining 36 cases in the second dataset were used for an internal verification test 
to validate both synthetic μ-map generation and automatic thyroid segmentation. In 

Table 1 Demographics of thyroid SPECT/CT cases

a Standard deviation
b Single nodular goiter
c Multi-nodular goiter

With full CT (n = 298) With partial 
CT (n = 352)

P value

Age [years] (mean ±  stda) 47.6 ± 15.8 47.6 ± 15.6 0.8169 (using unpaired t test)

Sex (male:female) 91:207 99:253 0.5009 (using the Chi-square test)

Clinical diagnosis

Graves’ disease/hyperthyroidism 174 198 0.9062 (using the Chi-square test)

Painless/subacute thyroiditis 96 123

SNGb/MNGc 15 17

Others 13 14
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addition to thyroid SPECT/CT, 29 salivary gland SPECT/CT cases were enrolled from 
the same hospital. The acquisition protocols for thyroid SPECT/CT and salivary SPECT/
CT were similar, except for fasting state (no diet restriction vs. fasting for at least 2 h), 
Tc-99m pertechnetate activity (185 MBq vs. 555 MBq), and organ at the central FOV 
(thyroid vs. salivary glands) (Additional file 1). Salivary SPECT/CT cases were used as 
external verification tests for deep-learning algorithms trained by thyroid SPECT/CT.

The details of the 650 thyroid SPECT/CT cases within individual datasets based on the 
training and validation groups are shown in Additional file 1: Tables S1 and S2. In addi-
tion, details of 29 salivary SPECT/CT cases are presented in Additional file 1: Table S3.

Study scheme

The overall scheme of study is shown in Fig.  1. Two deep-learning algorithms were 
applied to μ-map generation and automatic thyroid segmentation. The SPECT input of 
the first deep-learning algorithm for μ-map generation was either only primary emis-
sion SPECT (p) or a combined primary emission and scattering SPECTs (ps). The label 
was original μ-map created with helical CT of SPECT/CT. The generated μ-map was 
used for attenuation correction (AC) of primary emission SPECT (curved blue arrow). 
In addition to AC, scatter correction (SC) and resolution recovery (RR) were applied, 
which resulted in quantitative ACSCRR SPECT (Q.VolumetrixMI, GE). The second 
deep-learning algorithm was trained for automatic thyroid segmentation using syn-
thetic μ-map input with SPECT support (curved red arrow). The SPECT support was 
investigated for p, ps, and CT-free quantitative ACSCRR SPECT. The label for automatic 
thyroid segmentation was the thyroid segmentation map drawn on CT by two human 
experts (JHK and JHY). Finally, the CT-free quantitative ACSCRR SPECT and automati-
cally segmented thyroid map were combined to calculate the %thyroid uptake (straight 
blue and red arrows).

Attenuation correction 
for ACSCRR 

%Thyroid uptake

3D Deep
Learning

Registration
Cropping

3D Deep
Learning

Automatic segmentation

Fig. 1 Study scheme
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Pre‑processing for deep‑learning

The thyroid SPECT/CT acquisition protocol and quantification process have already 
been published in previous studies [21–24] and are described in Additional file 1.

SPECT reconstruction processes were conducted using vendor-provided quantita-
tive software (Q.VolumetrixMI, GE) and the ordered-subsets expectation–maximiza-
tion (OSEM) iteration algorithm (4 iterations and 10 subsets). The matrix and voxel sizes 
were 128 × 128 × 128 and 2.95 × 2.95 × 2.95  mm3, respectively, for the SPECT images. 
The primary emission and scattering SPECTs were not corrected for attenuation or scat-
tering but rather for collimator-detector response (i.e., resolution recovery, RR), result-
ing in NCRR SPECT. In addition, a post-reconstruction Butterworth low-pass filter 
(order of 10 and cutoff frequency of 0.48 cycles/cm) was used for scattering SPECT to 
reduce statistical noise.

For a μ-map generation, primary emission and scattering SPECT images were normal-
ized by the maximum of two SPECTs’ summed images. The voxel value was set to 0 in 
negative value voxels to reduce possible noisy random error during SPECT reconstruc-
tion. For automatic thyroid segmentation, synthetic μ-map and SPECT support were 
cropped from 128 × 128 × 128 to 64 × 64 × 64 to save training time and resources and 
were subsequently normalized by maximum value to the input range of 0–1. The man-
ual thyroid segmentation map’s initial matrix and voxel sizes were 256 × 256 × slice and 
1.47 × 1.47 × 1.47  mm3, respectively, which were down-sampled to 128 × 128 × 128 and 
2.95 × 2.95 × 2.95  mm3 and subsequently cropped to 64 × 64 × 64 for consistency with 
the synthetic μ-map and SPECT support.

Network architecture and loss function for μ‑map generation

We used a standard 3D U-Net with 64 initial neurons and 4 skip connections. The 3D 
U-Net learns end-to-end for μ-map generation between SPECTs (primary emission 
and scattering) and original μ-map. During the contraction path, 3 × 3 × 3 convolution 
blocks were applied, followed by 2 × 2 × 2 strided max-pooling. Individual 3 × 3 × 3 con-
volution blocks comprised two times 3 × 3 × 3 convolutions, instance normalization, and 
rectified linear unit activation. During the extraction path, 3 × 3 × 3 convolution blocks 
were followed by 2 × 2 × 2 up-convolution. Notably, the last 3 × 3 × 3 convolution block 
led to 1 × 1 × 1 convolution without an activation function (Additional file 1: Fig. S1).

The loss function for μ-map generation was defined as follows:

where Y is the target (i.e., original CT-based μ-map) and G(X) are synthetic μ-maps gen-
erated from SPECT input X. Lerror is either L1 loss (i.e., sum of the absolute differences 
between the target and generated) or L2 loss (i.e., sum of the squared differences between 
the target and generated). LGDL is gradient difference loss (GDL) term for sharpening the 
generated μ-maps (Additional file 1).

Network architecture and loss function for automatic thyroid segmentation

A similar 3D U-Net was used for automatic thyroid segmentation. The 3D U-Net used 
batch normalization rather than instance normalization and had an additional softmax 

L(G(X),Y ) = Lerror(G(X),Y )+ LGDL(G(X),Y )
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activation following the last 1 × 1 × 1 convolution (Additional file 1: Fig. S2). The right 
and left thyroid lobes were individually segmented; thus, the loss function for automatic 
thyroid segmentation was a categorical cross-entropy (CCE) loss. The CCE loss was 
defined as follows:

where yi is 0 or 1 as the ground truth, ŷi is the probability of prediction, and n is the 
number of classes in the segmentation model. Here, the network generated three inde-
pendent binary segmentation masks (background, left thyroid lobe, and right thyroid 
lobe; n = 3).

We implemented our networks using TensorFlow [25] and Keras framework [26].

Training hyperparameters

Both μ-map generation and automatic thyroid segmentation used similar training hyper-
parameters. The batch size was 8. Furthermore, an adaptive moment estimation opti-
mizer was used. As the learning rate scheduler, the initial learning and exponential decay 
rates were 0.001 and 0.99, respectively. We also applied data augmentation through flips. 
For μ-map generation, the SPECT input images were flipped along the x, y, and z axes; 
while, for automatic thyroid segmentation, the input images (synthetic μ-map and pri-
mary emission SPECT) were flipped along the x and z axes. The intended total number 
of epochs was 100, and early stopping was applied. The training time was approximately 
15 min/epoch and 5 min/epoch for μ-map generation and automatic thyroid segmenta-
tion, respectively, with an AMD Ryzen7 5800X CPU and an NVIDIA RTX 3090 GPU.

Evaluation of outcomes

The attenuation coefficient has units of  cm−1, and the correlations of attenuation coef-
ficients between the synthetic μ-map and original μ-map were evaluated as R2, mean 
square error (MSE), and %normalized mean absolute error (%NMAE) (Additional file 1). 
The manual and automatic thyroid segmentation agreement was analyzed using the Dice 
similarity coefficient (DSC) (Additional file 1). In addition, the thyroid volume difference 
(automatic thyroid volume–manual thyroid volume) was calculated, and the 95% Haus-
dorff distance was used to indicate surface contour difference (Additional file 1). Finally, 
the %thyroid uptake of Tc-99m pertechnetate, the ultimate parameter of quantitative 
SPECT, was compared between CT-free thyroid SPECT (attenuation correction by syn-
thetic μ-map and automatic thyroid segmentation) and conventional thyroid SPECT/CT 
(attenuation correction by original μ-map and manual thyroid segmentation).

Internal and external verification tests

We recruited 36 thyroid SPECT/CT cases with partial CT that were not applied in the 
μ-map generation or automatic thyroid segmentation for the internal verification test 
(Additional file  1: Table  S2). Using the first deep-learning algorithm, the ps SPECTs 
generated μ-map. Subsequently, the generated μ-map and p SPECT produced thyroid 
segmentation map using the second deep-learning algorithm. Additionally, quantitative 

CCE = −
1

n

n

i=1

[yilog yi + 1− yi log(1− yi)]
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ACSCRR SPECT images were reconstructed using synthetic μ-map-based AC, SC, and 
RR. Then, the %thyroid uptake was calculated by applying the automatic thyroid seg-
mentation map to quantitative ACSCRR SPECT. All processes were performed without 
CT assistance (i.e., CT-free SPECT) (Fig. 4). On the other hand, with CT assistance, the 
conventional quantitative ASCSRR SPECT was reconstructed using original μ-map-
based AC, SC, and RR (SPECT/CT). Then, the thyroid was segmented by a human 
expert (JHK) on CT, and the ground truth %thyroid uptake was obtained.

External verification tests were performed on the salivary gland SPECT/CT (n = 29) 
using the same radiotracer (Tc-99m pertechnetate) as in the thyroid SPECT/CT. Here, 
patients fasted for at least 2 h, the injected radioactivity was three times that of thyroid 
SPECT/CT, and the salivary glands, instead of the thyroid, were located at the centre of 
the FOV. Otherwise, the acquisition protocol for the salivary SPECT/CT was the same 
as that for the thyroid SPECT/CT (Additional file 1). Primary emission and scattering 
salivary SPECTs were reconstructed using the same reconstruction algorithms as that of 
the thyroid SPECT (Q.VolumetrixMI, GE) and were used as inputs to generate μ-maps 
(Additional file 1: Fig. S1). Then, the generated μ-maps were used with the primary emis-
sion salivary SPECT as input for automatic thyroid segmentation (Additional file 1: Fig. 
S2). Next, a human expert (JHK) manually segmented the thyroid from the CT of the 
salivary gland SPECT/CT. Quantitative ACSCRR SPECT images were reconstructed for 
CT-free SPECT and SPECT/CT.

Statistical analysis

Parametric analyses (paired t, unpaired t, and analysis-of-variance tests) were performed 
for continuous variables when Shapiro–Wilk test did not reject normal distribution fea-
tures. Non-parametric Wilcoxon rank-sum test was performed when paired t test was 
not appropriate owing to rejection of normal distribution assumption. Furthermore, cat-
egorical variables were compared using the Chi-square test. Statistical significance was 
set at p < 0.05. All analyses were performed using statistical software (MedCalc, version 
20.110).

Results
μ‑map generation

Among 298 thyroid SPECT/CT cases with full CT coverage, 268 and 30 were used for 
training and validation, respectively. There were no age, sex, or clinical diagnosis differ-
ences between the training and validation groups (Additional file 1: Table S1). We tested 
different loss functions (L1 + LGDL vs. L2 + LGDL) and SPECT inputs (p vs. ps). Conse-
quently, the 3D U-Net produced almost identical μ-maps as the original. Furthermore, 
applying the L1 + LGDL loss function and primary emission and scattering SPECTs (ps 
SPECTs) input yielded the highest R2 and lowest MSE/%NMAE (Table 2), although the 
predicted μ-maps by different combinations of losses (L1 + ps, L2 + p, L2 + ps, L2 + p) 
did not demonstrate significant visualization results (Additional file 1: Figs. S3 and S4). 
Therefore, the 3D U-Net trained with the L1 + LGDL loss function and ps SPECT inputs 
was subsequently used to generate the μ-map. Figure  2 shows the strong correlation 
between the ground truth (original μ-map) and the synthetic μ-map in one of the 30 
validation cases.
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Automatic thyroid segmentation

Automatic thyroid segmentation was performed on 316 (280 and 36 for network training 
and validation, respectively) of the 352 thyroid SPECT/CT cases with partial CT cover-
age. No differences in age, sex, or clinical diagnosis between the training and validation 
groups were observed, which was similar to that during the μ-map generation (Addi-
tional file 1: Table S2). We examined the synthetic μ-map input with SPECT support, 
which comprised p, ps, and CT-free quantitative ACSCRR SPECT.

The results showed that synthetic μ-map input with p was sufficient for the automatic 
thyroid segmentation with a large DSC of 0.767, the least absolute thyroid volume dif-
ference of − 0.720 mL, and the shortest 95% Hausdorff distance of 9.416 mm (Table 3). 
Both ps SPECTs and ACSCRR SPECT were inferior to p, particularly for the thyroid 
volume difference and 95% Hausdorff distance (Table 3). Both the hyperthyroidism and 
thyroiditis cases readily exhibited successful thyroid segmentation (Fig. 3). Notably, the 
surface of the segmentation map became smooth through deep-learning. Furthermore, 
human experts spent approximately 40–60 min per case on manual thyroid segmenta-
tion, whereas automatic thyroid segmentation took less than a minute (Fig. 4).

Internal verification

As shown in Fig.  2, the generated μ-maps were almost identical to those of the 
ground-truth, and the automatic thyroid segmentation was strongly correlated with 
the manual thyroid segmentation (Fig. 3, Table 4). Furthermore, the thyroid-specific 
ACSCRR SPECT counts were strongly correlated with each other (Table 4), and no 
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Fig. 2 The generation of attenuation map (μ-map) by deep-learning. a The ground truth (original μ-map 
from CT) and synthetic μ-map. b Correlation plot and c Histogram of attenuation coefficients
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significant difference was observed in the %thyroid uptake between CT-free SPECT 
and SPECT/CT (3.772 ± 5.735% vs. 3.682 ± 5.516%, p = 0.1090). Moreover, the % thy-
roid uptakes by both SPECTs were also strongly correlated, rarely biased, and easily 
differentiated thyroid diseases (Fig. 5).

Planar(a)

(b)

Transaxial CoronalManual Automatic

: True Positive

: False Negative

: False Positive

Fig. 3 The automatic thyroid segmentation by deep-learning. a Patient with Graves’ disease (F/32) with 
high uptake of Tc-99m pertechnetate. b Patient with subacute thyroiditis (F/25) with faint uptake of Tc-99m 
pertechnetate

Planar

Primary SPECT

Scattering SPECT

Synthetic μ-map Automatic Segmentation

Fig. 4 CT-free quantitative thyroid SPECT in a patient with thyroiditis (F/57). A planar scan shows a faint 
thyroid uptake. Primary emission SPECT and scattering SPECT were used for μ-map generation. Subsequently, 
the synthetic μ-map and primary emission SPECT were used for automatic thyroid segmentation. Yellow 
and red indicate true and false positives of the automatic thyroid segmentation, respectively, compared 
with manual segmentation. The %thyroid uptake by CT-free SPECT was 0.11%, whereas that by conventional 
SPECT/CT was 0.08%, consistent with the clinical condition of thyroiditis and faint uptake in the planar scan. 
The reported normal reference range was 0.78 ± 0.5%
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External verification

CT-free SPECT was successful in most salivary SPECT/CT cases through deep-learn-
ing which was trained using the thyroid SPECT/CT (Table 5 and Additional file 1: Fig. 
S5). The generated μ-map was identical to that shown in Fig. 2, but automatic thyroid 
segmentation yielded a larger thyroid volume (26.252 ± 12.023  mL) than manual thy-
roid segmentation (18.772 ± 8.407 mL) (p < 0.0001). Accordingly, the %thyroid uptake on 
CT-free SPECT (0.939 ± 1.266%) was greater than that on SPECT/CT (0.851 ± 1.223%) 
(p = 0.0035). However, the strong correlation of %thyroid uptake between CT-free 
SPECT and SPECT/CT was still observed, and in various salivary diseases, the %thyroid 
uptakes by both SPECTs were highly comparable with only mild deviation (Fig. 6). One 
patient had concomitant Graves’ disease with high %thyroid uptake (4.862% and 4.662% 
on CT-free SPECT and SPECT/CT, respectively) (Additional file  1: Fig. S6), and the 
other 28 were euthyroid patients (0.828 ± 1.055% and 0.726 ± 1.024% by CT-free SPECT 
and SPECT/CT, respectively) (p = 0.0002). CT-free SPECT and SPECT/CT were similar 
in differentiating between hyperthyroidism and euthyroidism, considering the reported 
normal range of %thyroid uptake (0.78 ± 0.5%) [21].

Table 4 The internal verification of CT-free SPECT versus SPECT/CT (n = 36)

a Standard deviation
b Standard error
c Dice similarity coefficient
d Volume difference
e Hausdorff distance
f Mean square error
g Normalized mean absolute error

Metric Thyroid segmentation Thyroid‑specific SPECT counts

DSCc VDd (mL) 95%  HDe (mm) R2 MSEf (×  10−4) %NMAEg

Mean 0.756 1.371 12.063 0.963 0.061 0.002

STDa 0.072 8.732 6.445 0.026 0.115 0.001

SERb 0.012 1.455 1.074 0.004 0.019 0.000
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Fig. 5 %thyroid uptake between CT-free SPECT and SPECT/CT as an internal verification test (n = 36 thyroid 
SPECT/CT). a The correlation is excellent with r = 0.9980, R2 = 0.9959, and p < 0.0001. b The Bland–Altman 
plot shows no significant systemic deviation with bias =  − 0.09% point. c The %thyroid uptake readily 
differentiates the thyroid diseases. Data are mean ± standard deviation. The other two cases are drug-induced 
thyroiditis and lingual thyroid. The error bars for painless/subacute thyroiditis and the others are not obvious 
because of the limited size compared with the respective symbols. The normal reference range was reported 
as 0.78 ± 0.5% [21]. SNG, single nodular goiter and NMG, multi-nodular goiter
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Discussion
Radioactive iodine uptake (RAIU) has been used for decades in conventional nuclear 
medicine practice to quantitatively evaluate thyroid function [27]. Technetium thyroid 
uptake (TcTU) has been widely investigated as a surrogate for RAIU because it is facile, 
fast, and inexpensive with lower radiation exposure to patients than the RAIU [28–31]. 
In contemporary nuclear medicine practice, quantitative thyroid SPECT/CT, which 
employs AC, SC, and RR, has emerged as the most sophisticated method for measuring 
%thyroid uptake [21]. Therefore, the %thyroid uptake and the standardized uptake value 
(SUV) could be examined for functioning thyroid diseases in the quantitative SPECT/
CT era [22–24].

However, CT acquisition remains a significant barrier to the widespread clinical appli-
cation of quantitative thyroid SPECT/CT because of CT-induced radiation exposure. 
Additionally, the time-consuming manual thyroid segmentation on CT canvas is chal-
lenging. In the literature, there are deep-learning-based CT-free AC studies for myocar-
dial perfusion SPECT [2, 5], brain perfusion SPECT [6, 7, 32] and dopamine-transporter 
brain SPECT [3]. Undoubtedly, AC using CT is essential for quantitative thyroid SPECT/
CT, but thyroid-dedicated deep-learning study has not been investigated. Therefore, this 
study attempted to address the CT-related issues associated with quantitative thyroid 
SPECT/CT.

We discovered that the deep-learning-derived μ-maps are almost identical to those 
derived from CT. The L1 + LGDL loss function was superior to L2 + LGDL loss function 
in terms of network training, which is in line with recent report favouring L1 loss over 
L2 loss regarding CT image reconstruction [33]. Notably, deep-learning enabled the ps 
SPECTs to generate μ-map, as reported in a myocardial perfusion SPECT/CT study 
[2]. The previous study demonstrated the accuracy of deep-learning-based AC in the 
myocardial perfusion SPECT, while we verified the accuracy in the quantitative thyroid 
SPECT. A similar concept was initially examined using positron emission tomography/
computed tomography (PET/CT). Generating μ-map using deep-learning has been 
reported in fluorodeoxyglucose (FDG) brain PET/CT [34], fluoropropyl carbomethoxy 
iodophenyl tropane (FP-CIT) brain PET/CT [35], and FDG whole-body PET/CT [36, 
37], resulting in CT-free PET. Notably, only primary emission coincidence data were 
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Fig. 6 %thyroid uptake between CT-free SPECT and SPECT/CT as an external verification test (n = 29 salivary 
SPECT/CT). a The correlation is excellent with r = 0.9959, R2 = 0.9918, and p < 0.0001. b The Bland–Altman 
plot shows mild deviation (greater %thyroid uptake by CT-free SPECT) with bias = 0.106% point. c %thyroid 
uptakes between CT-free SPECT and SPECT/CT were similar in various salivary diseases. The normal reference 
range of %thyroid uptake was reported as 0.78 ± 0.5% [21]
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used to generate μ-map rather than scattering coincidence data in those PET studies 
[34–37]. In PET, the scattering coincidence data cannot be properly estimated without 
μ-map. Therefore, using scattering information to predict the μ-map is challenging in 
principle. However, scattering information is relatively easy to obtain in SPECT by sim-
ply setting up an additional energy window. Therefore, CT-free SPECT by deep-learning 
has technical advantages over CT-free PET.

Deep-learning-based organ segmentation on CT has been actively investigated for sin-
gle [8, 10] or multiple organs [38, 39]. Thyroid segmentation has been a major concern 
by radio-oncologists seeking to save the thyroid from external radiation therapy for head 
and neck cancer. CT with or without iodine contrast was generally used as the input for 
network training [40–42]. It is of note that this study employed synthesized μ-map rather 
than CT as the input for thyroid segmentation. Low-resolution images, such as μ-map, 
can be used as input for deep-learning-based automatic organ segmentation. The μ-map 
alone was clearly insufficient, and SPECT support was required to improve the segmen-
tation results (Table 3), providing insight into the deep-learning-based organ segmenta-
tion mechanism. We believe that the μ-map provides a contour of the head and neck for 
determining the approximate location of the thyroid, while the SPECT signal confirms 
its presence. Although Tc-99m pertechnetate uptake was low and faint in patients with 
thyroiditis, it was sufficient evidence of thyroid existence (Figs. 3, 4).

The use of the salivary gland SPECT/CT as external verification test is a character-
istic advantage of thyroid SPECT/CT with some theoretical pitfalls. Same radiophar-
maceutical (i.e., Tc-99m pertechnetate), same interval from injection to imaging (i.e., 
20 min), same time of image acquisition (i.e., 1 min), same SPECT reconstruction, same 
CT acquisition conditions, and almost equivalent imaging field-of-view (i.e., head and 
neck area) were the common features between the two SPECT/CTs. The radioactivity 
for the salivary gland SPECT/CT (555 MBq) was three times that for thyroid SPECT/CT 
(185 MBq) and this may explain the volume difference of segmented thyroid (Table 5). 
However, the ultimate quantitative parameter of %thyroid uptake from the CT-free 
salivary gland SPECT was comparable to that from the CT-free salivary gland SPECT 
(Fig. 6).

High-resolution images, such as synthetic CT (or pseudo-CT), can be generated as 
intermediates for thyroid segmentation instead of the μ-map [43, 44]. Then, another 
μ-map generation process is necessary for the AC. In contrast, fully attenuation-cor-
rected SPECT can be obtained without intermediate μ-map generation, such as direct 
conversion from non-attenuation-corrected PET to attenuation-corrected PET [45]. In 
this case, another method for automatic thyroid segmentation is required. In this regard, 
we expect that using a μ-map as a bridge between two deep-learning networks (one for 
AC and the other for automatic organ segmentation) would minimize the overall effort 
required to evaluate %thyroid uptake.

Conclusion
Sequential application of two deep-learning algorithms (the former for synthetic μ-map 
generation from SPECT images and the latter for automatic thyroid segmentation from 
the generated μ-map with primary emission SPECT support) can realize CT-free quanti-
tative SPECT for %thyroid uptake.
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