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Abstract 

Background: Protein annotation is a major goal in molecular biology, yet experimen-
tally determined knowledge is typically limited to a few model organisms. In non-
model species, the sequence-based prediction of gene orthology can be used to infer 
protein identity; however, this approach loses predictive power at longer evolutionary 
distances. Here we propose a workflow for protein annotation using structural similar-
ity, exploiting the fact that similar protein structures often reflect homology and are 
more conserved than protein sequences.

Results: We propose a workflow of openly available tools for the functional annota-
tion of proteins via structural similarity (MorF: MorphologFinder) and use it to annotate 
the complete proteome of a sponge. Sponges are highly relevant for inferring the early 
history of animals, yet their proteomes remain sparsely annotated. MorF accurately 
predicts the functions of proteins with known homology in >90% cases and annotates 
an additional 50% of the proteome beyond standard sequence-based methods. We 
uncover new functions for sponge cell types, including extensive FGF, TGF, and Ephrin 
signaling in sponge epithelia, and redox metabolism and control in myopeptidocytes. 
Notably, we also annotate genes specific to the enigmatic sponge mesocytes, propos-
ing they function to digest cell walls.

Conclusions: Our work demonstrates that structural similarity is a powerful approach 
that complements and extends sequence similarity searches to identify homolo-
gous proteins over long evolutionary distances. We anticipate this will be a powerful 
approach that boosts discovery in numerous -omics datasets, especially for non-model 
organisms.
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Background
Knowledge of protein function is crucial for interpreting many types of high-through-
put molecular datasets. Since protein functional studies are limited to a few model 
species, amino acid sequence similarity has been used to predict the function of 
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protein homologs [1, 2]. However, homology detection over longer evolutionary dis-
tances remains challenging owing to the decay of protein sequence similarity that abol-
ishes evidence of historical continuity. This presents a severe bottleneck for inferring 
protein function across a wide expanse of the tree of life, particularly in distant organ-
isms where many proteins fall in the “twilight zone”, only sharing a sequence identity 
between 10− 20% with proteins in characterized models [3, 4].

A way to venture more deeply into the twilight zone is to use structural similarity for 
homology detection, as structure is more conserved in evolution [5]. Until recently, this 
was not feasible since predicting protein structures from amino acid sequence required 
the prior existence of a homologous template structure [6]. This has changed with the 
advent of AlphaFold [7], a deep learning AI system that can predict de novo protein 
structures with atomic resolution, together with novel approaches for identifying similar 
structures in large databases [8]. Protein structures can now be predicted by AlphaFold 
for entire proteomes and then aligned to structures from model systems with character-
ized functions.

Sponges (Porifera) are animals that diverged early in the Metazoan tree relative to well 
annotated model organisms such as human and mouse. In this work, we predicted struc-
tures for the sparsely annotated proteome of the freshwater sponge Spongilla lacustris 
and aligned them against available structural databases to identify structurally similar 
proteins which we termed “morphologs” (from Greek morphé “form” and lógos “ratio”). 
We show that morphologs reflect homologous proteins in the vast majority of cases and 
often overlap in function even when homology is no longer detectable. We use mor-
phologs to predict functions for unannotated sponge proteins by transferring functional 
annotations from model species. This complements sequence-based homology detec-
tion and subsequent function prediction. This expands the functional annotation cov-
erage of the Spongilla proteome by 50% . Revisiting recent single-cell RNA-sequencing 
data [9], the novel annotations suggest additional aspects of sponge cell biology, such as 
extended cell signaling in pinacocytes, redox metabolism and control in myopeptido-
cytes, and polysaccharide digestion as a key function of the previously uncharacterized 
mesocytes.

Results
A protein structure‑based workflow enriches functional annotation for Spongilla lacustris

We created a structure-based workflow for functional annotation transfer, which we 
refer to as MorF (MorphologFinder). Instead of using amino acid sequence similarity to 
assign homology and predict function, we predict protein structures, align them against 
structural databases, and transfer the functional annotation of the best hits, such as their 
preferred name and description, to the queries (for an overview, see Additional file  1: 
Fig. S1; details in the “Materials and methods” section). As a test case, we chose to anno-
tate proteins in the freshwater demosponge Spongilla lacustris, an early-branching ani-
mal. With only about 20 cell types, organized into four cell families, Spongilla is a key 
model for understanding the origins of specialized animal cells [9].

We used the ColabFold [10] pipeline to predict three-dimensional structures for all 
41,943 predicted Spongilla proteins, including isoforms (all structures and metadata 
deposited to ModelArchive [11], see the “Materials and methods” section). Eleven (11) 
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proteins were too long ( >2, 900 amino acids) to be predicted by the available hardware 
and were left unresolved. Confidence of predicted protein structures was assessed by 
calculating average pLDDT (predicted local distance difference) values. Average pLDDT 
values for Spongilla predicted protein structures were 4–6 percentage points lower than 
those of well-characterized animal models (Fig. 1A, [12]), likely reflecting the underrep-
resentation of sponges in the protein structure databases.

Next, we used the predicted protein structures as queries to search with Foldseek [8] 
against AlphaFoldDB [13], SwissProt [14], and PDB [15]. In general, bit scores for the 
best Foldseek hits were positively correlated with mean pLDDT. Neither parameter cor-
relates with predicted physico-chemical properties of the proteins such as hydrophobic-
ity, isoelectric points, or their instability index (Additional file 1: Section B, Additional 
file  1: Fig. S2-S4) [16]. After removing lower-quality matches, we retrieved functional 
annotations for the best morphologs using EggNOG-mapper (emapper) [17], a state-of-
the-art orthology database [18], and then assigned these annotations to the protein in 
Spongilla. This produced annotations for slightly more than 60% of the proteome (25,232 
proteins), representing an increase of approximately 50% compared to when Spongilla 
protein sequences were directly searched with emapper. Whereas the usage of emapper 
is not compulsory for MorF, it provided functional descriptors like EC numbers or GO 
terms for orthologous groups, facilitating later programmatic comparisons to sequence 
based methods. However, for downstream biological analysis, gene names and descrip-
tions remain the most succinct, human-readable proxies for protein function. We there-
fore decided to use the preferred name and description of the best morpholog for each 
Spongilla protein assigned by emapper.

Fig. 1 Structural prediction and alignment of the Spongilla proteome. A Distribution of average pLDDT 
for predicted proteomes from common model species in comparison to Spongilla lacustris. B Proportion of 
EggNOG or MorF protein annotations in S. lacustris and other eukaryotes. Highlighted organisms appear in A. 
C Overlap between EggNOG and MorF annotations. Ortholog: proteins identified as belonging to the same 
orthologous group in the most recent common ancestor in the EggNOG database. Protein fam.: proteins 
identified as belonging to the same eukaryote orthologous group in the EggNOG database, indicating 
annotations represent homologs in the same gene family. 50% PFAM: half of the sequence-based PFAM 
domains are shared. No agreement: MorF and EggNOG annotations identify non-homologous proteins. 
Subcategories with “same name” denote the fractions where EggNOG and MorF returned the same preferred 
name for a protein. D Annotated proportions of different categories of S. lacustris proteins
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We also compared our results to annotations from the recently published Spongilla 
cell type atlas, which used BLASTp to supplement emapper annotations [9]. We refer 
to these as “legacy annotations”. Compared to this combined sequence-based approach, 
MorF annotates more proteins proteome-wide ( ∼60% to ∼40% ). More importantly, 
MorF markedly improved the proportion of annotated cell type and cell family-specific 
markers ( ∼70% ) compared with sequence-based approaches ( ∼56% ; Fig. 1D, Additional 
file 1: Fig. S5), even considering sequence profiles (Additional file 1: Fig. S6 and S7).

MorF annotations agree with sequence‑based annotation transfer

Experimental evidence for the function of a protein is only available for a vanishingly 
small number of known protein sequences. For the rest, annotations are propagated, 
mostly using sufficient sequence similarity as a proxy for homology [19]. In particular, 
orthology has often been used to transfer functional annotation wholesale [1], even 
though it is known that divergence of function within orthologs is possible [20]. In the 
absence of robust high-throughput alternatives, sequence-based homology detection 
remains the standard for (transitive) functional annotation. To assess MorF annotations, 
we compare them to those produced via EggNOG v5.0 and EggNOG-mapper, represent-
ing the state-of-the-art in homology detection [17, 18].

We first examined how often the top non-trivial morpholog of a protein and the query 
protein itself belonged to the same family, using available predicted structures of model 
organisms. We aligned AlphaFoldDB against itself and kept for each query the top mor-
pholog outside the species taxonomic unit. For Metazoa, we excluded all species belong-
ing to the same phylum. Viridiplantae were divided into monocots and eudicots whereas 
fungi and trypanosome species were grouped by class. This ensured that MorF would 
not be identifying quasi identical proteins from closely related species (e.g., Mus muscu-
lus and Rattus norvegicus), simulating a realistic use case where MorF would be used to 
annotate a non-model organism without well-studied close relatives (Additional file 1: 
Table S3). We assessed performance by comparing the eukaryotic orthologous group of 
the top morpholog to that of the query protein, as defined by the EggNOG v5.0 data-
base. MorF identifies 75–90% of all available homologs, indicating that it is largely able 
to reproduce sequence-based homology inference across large evolutionary distances.

We proceeded to repeat this analysis with the predicted Spongilla structures. A total 
of 16,589 proteins were annotated by both MorF and emapper. For 90.6% of these pro-
teins, the MorF annotation was homologous to the EggNOG assignment (Fig. 1C), being 
either orthologs ( 56.7% in the same metazoan orthologous group) or in the same gene 
family ( 33.9% in the same orthologous group at the root level). Proteins that share the 
same gene family but are not annotated as orthologs either represent paralogs or have 
been misclassified, a problem for orthology inference that is prone to occur with large 
evolutionary distances [21]. In the remaining 9.4% of cases, approximately half shared a 
majority of their PFAM domains [22]. We explore the overlap between MorF and Egg-
NOG in more detail in Additional file 1: Section G. Repeating this analysis with sequence 
profiles produced very similar results (Additional file 1: Section D).
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Morphologs share function over long evolutionary distances

As a next step, we sought to explore whether MorF can be used for functional annotation 
in cases where the evolutionary distance is too large for sequence-based approaches. To 
test this, we performed Foldseek searches for the predicted S. cerevisiae and A. thali-
ana proteomes against Homo sapiens  and identified morphologs that lacked evidence 
of homology based on sequence. However, it is important to note that these cases could 
either represent homologs or protein structures that evolved convergently.

Nevertheless, for the remaining candidates, we tested their functional similarity by 
examining the overlap of their Enzyme Commission (EC) number where available. The 
EC number is a four-digit numerical description of enzyme function, with each num-
ber representing a progressively finer classification of the enzyme. Agreement on the 
first digit indicates two proteins are in the same broad enzyme class (oxireductases, 
hydrolases, ligases, etc.), while complete agreement means that they catalyze the same 
reaction.

For yeast, 109/145 ( 75% ) enzymes agreed with their human morphologs on three 
of four EC positions and 53/145 ( 36.5% ) agreed on all four. Similarly, for Arabidopsis, 
357/532 eligible enzymes agreed to the third EC position ( 67% ) and 176/532 ( 33% ) had 
identical EC numbers. These results indicate MorF can accurately predict function even 
in cases where protein homology is unclear due to large evolutionary distances. Further-
more, this is consistent with other work in the field that has demonstrated that structure 
similarity uncovers homologs between Homo sapiens and different Saccharomyces spe-
cies [23] using a similar methodology. We eagerly expect more insights on this topic in 
the coming months and years.

We next assessed the consistency of the functional annotation for top morphologs in 
Spongilla. For each protein, we queried the EC number of all morphologs in the 90th 
percentile of the Foldseek score range. This serves as an indirect way of validating that 
significant structural similarity correlates with functional conservation. In the 7072 cases 
that we could evaluate, the top morphologs were close to identical to the EC number of 
the best morpholog (average agreement 3.7 positions; see Additional file 1: Section H).

We also examined consistency between MorF and sequence-based annotations for 
Spongilla by comparing GO term overlap, semantic similarity and depth [24], drawing 
on the annotation comparisons of the CAFA challenge [25]. Almost all ( 99.9% ) proteins 
annotated by both strategies have at least some overlap in GO terms with 60.6% being 
identical and 39.3% partially overlapping to various degrees (Additional file 1: Fig. S8A). 
GO term semantic similarities between proteins with overlapping (but non-identical) 
GO annotations additionally reach an average score of 80− 90% in the molecular func-
tion ontology (Additional file 1: Fig. S8B).

MorF expands annotation of signaling pathways in sponge pinacocytes

A principal goal of functional annotations is to help identify cellular and molecular pro-
cesses in large-scale genomic datasets. As a next step, we used MorF to revisit a recent 
single-cell RNA-sequencing dataset [9] which allowed us to confirm as well as expand 
the understanding of cell type functions in sponges. Musser et al. showed that sponge 
pinacocyte express members of the FGF, TGF/BMP, and Ephrin developmental signaling 
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pathways [26, 27]. Pinacocytes are contractile epithelial cells that line the sponge canal 
system, playing important roles in morphogenesis, barrier formation, and sponge whole-
body contractions [28, 29]. Using MorF, we identify morphologs of additional members 
of these pathways expressed in pinacocytes, extending our understanding of their func-
tion in sponges.

In the FGF pathway, previous sequence-based annotations identified Fgf receptors 
and the FGF regulators Frs and Grb2, which are expressed in different pinacocyte cell 
types (Figure 2A). Extending this, MorF identified morphologs for GAB1 and GAB2 
(GBR2-associated-binding protein 1/2) as well as PTPN11/SHP2, which are neces-
sary for signal transmission into the cell [30, 31]. Notably, MorF also detected a mor-
pholog of the FGF ligand in Spongilla, which was not found using sequence-based 
approaches. Structural superposition of the protein with its best Foldseek hit (UniP-
rotID: P48804, Gallus gallus FGF4) revealed an extensive alignment of large parts of 

Fig. 2 Signaling pathways in Spongilla pinacocytes. A Dotplot of pinacocyte signaling and effector genes. 
Cell types of the pinacocyte family are encased by a red square. Genes on blue background were annotated 
by Musser et al. with sequence-based methods (“legacy annotation”). Genes on yellow background are 
annotated by MorF. Showing mean expression of log-transformed, normalized counts. B Superposition of 
Spongilla FGF (blue, 61–230 aa) and Gallus gallus FGF4 (UniProtID: P48804) (yellow, 54–194 aa) (RMSD = 
0.89 over 543 atoms). C Superposition of Spongilla ephrin (blue, 1–153 aa) and C. elegans efn-3 (UniProtID: 
Q19475) (yellow, 29–179 aa) (RMSD = 1.59 over 580 atoms). In both cases, the structural similarity is apparent 
despite their low sequence identity of 11.8% and 22% respectively. Superpositions were created using 
the super command in PyMOL (v2.3.5). Cell type abbreviations: incPin, incurrent pinacocytes; apnPn, 
apendopinacocytes; lph, lophocytes; basPin, basopinacocytes; scp, sclerophorocytes; met, metabolocytes; 
chb, choanoblasts; cho, choanocytes; apo, apopylar cells; myp, myopeptidocytes; amb, amoebocytes; grl, 
granulocytes; nrd, neuroid cells; mes, mesocytes; arc, archaeocytes; scl, sclerocytes
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the protein, with a RMSD of 0.89 over 543 atoms despite a sequence identity of only 
11.8% (Fig. 2B). Newly annotated players in the FGF pathway also exhibited enrich-
ment in pinacocytes, consistent with its previously known cellular role.

Musser et al. also described multiple genes involved in TGF-β signaling in the pina-
cocyte family, including Tgfbr1, Acvr, Smad, and Smurf [32, 33]. MorF extends the 
list of known actors in pinacocyte TGF signaling, adding morphologs of important 
ligands such as INHBE, CHRDL1, or KCP.

Lastly, Ephrin and the ephrin receptor (Eph) are membrane-anchored signaling mol-
ecules that mediate communication between adjacent cells [34, 35]. Whereas multiple 
ephrin receptors were detected via sequence similarity, ephrin itself was only found in 
the Spongilla proteome using highly sensitive HMM profile searches [36, 37]. MorF 
annotates a Spongilla gene with differential expression in various pinacocytes as a mor-
pholog of Caenorhabditis elegans Efn-3 (UniProtID: Q19475). Although these proteins 
share only 22% sequence identity, the superimposed structures achieve an RMSD of 1.59 
over 580 atoms (Fig.  2C). A separate Hmmer search [38] using the ephrin Pfam pro-
file (PF00812) picked up the same gene, supporting MorF to be at least as sensitive as 
curated HMM profile searches (also see Additional file 1: Section D).

FGF, TGF-beta, and Ephrin interestingly exhibit converging downstream signaling 
pathways, including PI3K/Akt, ERK/MAPK1, JNK, or RhoA/ROCK, responsible for cell 
growth, differentiation, migration, and cytoskeletal organization [34, 39, 40]. Together, 
MorF and sequence-based methods identified morphologs of principal proteins involved 
in the downstream pathways. The genes encoding these proteins are broadly expressed 
across most Spongilla cell types, consistent with their diverse functional roles. This 
example highlights the power of MorF to vastly extend annotations and further elabo-
rate cell type-specific functions.

Redox metabolism and control in myopeptidocytes

The mesohyl of sponges is a collagenous, dynamic tissue forming large parts of the body 
between pinacocytes and the feeding choanocyte chambers [41]. Musser et  al. identi-
fied five novel mesenchymal cell types [9] in Spongilla. Among them, myopeptidocytes 
are an abundant uncharacterized cell type, forming long projections that contact other 
cells. Sequence-based annotations suggested myopeptidocytes function to generate and 
degrade hydrogen peroxide by expressing dual oxidase (Duox1), its maturation factor 
(DuoxA), and Catalase (Cat) [42]. Myopeptidocytes also express transporters of copper 
ions as well as Ferric-chelate reductase (FRRS1 and FRRS1L), which recycle  Fe3+ to its 
reduced state, and suggest iron-based generation of  H2O2. In their reduced state, metal 
ions react with  H2O2 (Fenton reaction) [43] leading to the generation of hydroxyl radi-
cals in cells. The existence of these prominent reactive oxygen species (ROS) (Fig. 3) is 
further supported by expression of Cyba [44]. However, further roles of ROS metabolism 
and function are unclear.

MorF predicted the functions of key additional members of ROS generation, metab-
olism, and response that are expressed in myopeptidocytes (Fig.  3, Additional file  1: 
Table S4). Morphologs of disulfide oxidoreductase (DsbB) as well as Flavin carrier pro-
tein (FLC), both playing a role in oxidative protein folding, have been detected by MorF 
[45, 46]. NmrA-like proteins act as redox sensors in the cell [47]. Consistent with a 



Page 8 of 21Ruperti et al. Genome Biology          (2023) 24:113 

possible redox regulation role, myopeptidocytes express morphologs of a range of addi-
tional ROS responsive proteins: Sulfiredoxin 1 (SRXN1) promotes resistance against 
oxidative stress damage [48], whereas AP endonuclease 1 (APEX1) protects against 
ROS-induced DNA damage [49, 50]. We also identified a glutathione S-transferase 
member (HPGDS) which together with previously annotated methionine sulfoxide 
reductase (msrA) is an important enzyme involved in the repair of proteins damaged 
by oxidative stress [51, 52]. Finally, myopeptidocytes express morphologs of the LDL-
receptor LRP2 and its binding partner apolipoprotein M (ApoM) [53], suggesting a role 
in lipid metabolism and consistent with the observation myopeptidocytes exhibit round 
inclusions that may represent lipid droplets. Interestingly, lipid metabolism and redox 
control is tightly coupled in peroxisomes which are responsible for beta-oxidation of 
long-chain fatty acid [54]. Structure-based annotation of myopeptidocyte marker genes 
enabled us to substantially hypothesize about the role of this unexplored cell type in 
sponges.

Polysaccharide hydrolysis in enigmatic mesocytes

Mesocytes are newly discovered medium-sized sponge cells whose name refers to their 
location in the mesenchymal mesohyl [9]. The single-cell RNA-seq data produced a 
series of marker genes specifically expressed in the mesocyte cell clusters; however, the 
lack of annotation for many of these genes made it difficult to hypothesize functions for 
these cell types.

New and refined annotations provided by MorF include proteins such as expansin 
(yoaJ), glucan endo-1,3-beta-glucosidase (BG3), and spore cortex-lytic enzyme (sleB), 
all hydrolases that specifically degrade cell walls, cellulase, chitin, other polysaccha-
rides [55-58], and proteins (Table  1, Additional file  1: Table  S5, Additional file  1: Fig. 
S9). “Refinement” here indicates that MorF provided names or descriptions for proteins 
previously annotated more sparsely, e.g., by a single predicted domain. It is thus tempt-
ing to speculate that mesocytes represent cells specialized to digest polysaccharides that 
are otherwise difficult to hydrolyse. For instance, the mesohyl has been shown to con-
tain chitin which likely helps provide structural support to the sponge body [59]. The 

Fig. 3 ROS metabolism and redox-control in myopeptidocytes. Myopeptidocytes differentially express 
multiple genes involved in redox control and ROS defense. Genes in black have been annotated using 
sequence based methods. Blue proteins have protein family level sequence-based annotation with updated 
functions inferred by MorF. Genes in red have been functionally annotated using MorF
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presence of chitinase in mesocytes suggests a possible role as structural remodelers of 
the sponge endoskeleton.

The sponge mesohyl also contains digestive and phagocytic cells [60] that process food 
particles captured by pinacocytes and choanocytes. These food particles often include 
bacteria and algae, which are protected by polysaccharide and glycoprotein cell walls 
[61] that require specialized enzymes to break down. While those enzymes are notably 
absent from the metazoan digestive repertoire [55], sponges are at least demonstrably 
able to digest algae [60].

The absence of these mesocyte-specific hydrolytic enzymes from the digestive toolkit 
of animals suggests four possibilities for their appearance in the Spongilla single-
cell data: that they are an artifact (contamination), that they are an evolutionary nov-
elty within Porifera, that they were lost in all other animal lineages, or that they were 
acquired via horizontal gene transfer (HGT).

To explore these different possibilities, we used the marker gene sequences to find 
putative homologs in the RefSeq non-redundant (nr) [62] and metagenomic databases. 
Strikingly, the best hits were mostly of bacterial origin, exhibiting 40− 70% shared 
sequence identity with sponge proteins; however, most lacked annotation (Additional 
file 1: Table 1). Notably, we identified putative homologs for each gene in other sponges, 
suggesting the presence of these sequences in the Spongilla protome is unlikely to have 
occurred due to contamination (Fig.  4B). Consistent with this, we found codon usage 
and GC content for these genes did not deviate from the Spongilla background (Fig. 4A). 
Lastly, we located all candidate genes on different long contigs (avg. length ∼420kb) of 
an in-house draft assembly of the Spongilla genome. The specific co-expression of func-
tionally similar proteins in mesocytes is in contrast to a random contamination.

The prospect of HGT is tantalizing. Proteins with enzymatic functions like the ones in 
the Spongilla candidates (polysaccharide hydrolases and metallopeptidases) have been 
proposed to be horizontally transferred in Amphimedon queenslandica, a marine dem-
osponge;  Salpingoeca  rosetta, a choanoflagellate; and Mnemiopsis  leidyi, a ctenophore 
[63-65]. Additionally, Spongilla genes c97022_g1 and c103983_g1, a putative amino-
hydrolase and metallopeptidase respectively, are not only broadly distributed within 
sponges, but can also be found in the proteomes of choanoflagellates S. rosetta and Mon-
osiga  brevicollis (Additional file  1: Section L). Furthermore, the S. rosetta targets with 

Table 1 Hydrolytic enzymes of Spongilla mesocyte marker genes

Annotation Annotation origin Function Putative gene origin

Aminohydrolase legacy EggNOG hydrolase acting on aminogroups Bacteria

GMHA legacy EggNOG xanthan biosynthesis Bacteria

Metallopeptidase M20 legacy EggNOG metallopeptidase Bacteria

T5orf172 legacy EggNOG hydrolase activity unknown

yoaJ refined by MorF cell wall degradation Metazoa

sleB refined by MorF hydrolase activity, cell wall organiza-
tion

Bacteria

BG3 new MorF annotation cellulase activity Bacteria

cellulase A family member new MorF annotation cellulase activity Bacteria

Endochitinase new MorF annotation endochitinase Eukaryota

Chitinase class I new MorF annotation endochitinase Eukaryota
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highest similarity to the Spongilla sequences had already been identified as horizontally 
transferred genes [64]. This would tentatively place this HGT event at least before the 
split of choanoflagellates and animals (more than ∼500mya). Similarly, the phylogenetic 
distribution of c102757_g1, c95037_g1, and c102838_g2 (yoaJ-sleB-Chitinase class I) 
would indicate that this group of genes was acquired with the colonization of freshwater 
environments ( ∼15− 300mya).

Although our analyses suggest these genes may have originated via HGT [66], it is 
important to consider alternative explanations. One possibility is that these genes are 
the results of widespread bacterial contamination in sponges genomes and proteomes. 
Other possibilities include the repeated loss of these genes in other animal lineages, or 
the convergent evolution of similarity with bacterial proteins. Additional confirmation of 
their presence in sponge genomes, or evidence of RNA transcripts in sponge cell nuclei, 
would help validate the hypothesis they arose via HGT. Regardless of the source of the 
genes, MorF annotations provided a novel hypothesis for the elusive function of sponge 
mesocytes, helping uncover new aspects of sponge biology.

Identifying novel well‑folded proteins in Spongilla lacustris

Using the MorF workflow with a stringent bit score cut-off and augmenting it with 
sequence-based annotations, we annotated a total of 26,633 out of 41,943 predicted pro-
teins. The remaining 15,312 proteins may represent incomplete fragments, untranslated 
sequences, or sponge lineage-specific genes. Notably, we found 3875 unannotated pro-
teins with a pLDDT score greater than 70, indicating well-folded structures. Although 
many of these had poor Foldseek alignments falling below our accepted bit score thresh-
old, 316 had no Foldseek hit whatsoever. Manual inspection revealed that the over-
whelming majority of these are predicted to be long helices, except for 35 non-helical 
structures. To ensure these had not somehow eluded sequence similarity searches, we 
used NCBI BLASTp to identify potential homologs in the NR database, even very 
remote ones (Additional file 1: Table S2). Seven of the sequences find no matches at any 

Fig. 4 Horizontal gene transfer of mesocyte marker genes. A Distribution of GC-content and codon 
usage of mesocyte marker genes of non-metazoan origin (colored dots) compared to the entire Spongilla 
transcriptome (blue background). B Heatmap showing scores of best search hit of Spongilla mesocyte marker 
genes in various sponge species. The green dot denotes the last common freshwater sponge ancestor
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theshold nor get significant PFAM domain hits. Notably, several of them are broadly 
expressed in Spongilla cell types, presenting prime candidates for truly novel structures.

Recent changes in the amount of available structures are almost certainly going to 
affect these numbers. The latest AlphaFoldDB version contains predicted structures 
for more than 214 million proteins [67], and with the continuous deposition of more 
sequences and their predicted structures our view of protein structure space will be ever 
closer to complete.

Discussion
We predicted the protein structures of the entire proteome of the freshwater sponge 
Spongilla lacustris and aligned them against model organism proteomes, PDB, and 
SwissProt. This approach increased the annotation of the proteome from 40% to 60% , 
an approximately 50% increase. We found that in more than 90% of cases, sequence-
based and structure-based annotations identified homologous proteins, a finding sup-
ported by recent work with well-annotated model species [23]. Additionally, these 
proteins overlap largely in their corresponding GO terms and show high semantic 
similarity.

The fact that morphologs are overwhelmingly homologs shows that structural and 
functional similarity between proteins mostly results from common descent. How-
ever, similar structures may, and do, also emerge convergently. MorF and sequence-
based annotations disagree in ∼5% of cases, representing either technical artifacts 
(Additional file  1: Section G), homology we simply cannot infer, or examples of 
convergent evolution. In the future, it will be interesting to explore experimentally 
whether structural similarity or homology is a better predictor of protein function 
[68].

To demonstrate the usefulness of MorF for functional annotation, we revisited the cell 
type marker genes previously identified from Spongilla scRNA-seq data [9]. In the epi-
thelial pinacocyte family, we significantly improved annotation by detecting morphologs 
of key players in FGF, TGF-β , and Ephrin signaling. We were able to infer complex 
modes of redox regulation as a possible function of the myopeptidocytes. Finally, we 
detected polysaccharide and protein hydrolyzing enzymes potentially used for digesting 
cell walls in the so far enigmatic mesocytes, which may have originated from bacteria via 
HGT. If proven to be true, this example reveals cell types whose functional role is largely 
defined by genes acquired via HGT. A comparable example has been found in nema-
todes, which expanded their diet after the HGT of cellulase from a non-animal eukary-
ote [69]. These events are remarkable because they suggest HGT may help give rise to 
new cell type-specific functions [70]. Moreover, the large evolutionary distance between 
animals and bacteria has very likely hindered the identification of these events, and we 
anticipate MorF will uncover additional examples in other species. Recent evidence 
from nematodes showed an expansion of dietary possibilities after HGT of a eukary-
otic cellulase gene. By re-evaluating cell type marker genes from the Spongilla cell type 
atlas, it became obvious that structure-based annotations not only expand the molecu-
lar context of known cell type functions but also allow substantiated hypotheses about 
previously unexplored cell types. These hypotheses can serve as a next step for further 
investigation and discoveries.
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Well-folded Spongilla proteins without any annotation constitute intriguing candi-
dates for novel protein folds and functions specific to sponges. Many of these proteins 
are predicted to be long alpha helices. This could either be an artifact of spuriously 
translated proteins (as described in [71]) or present sponge-specific proteins for struc-
tural integrity of the sponge body, similar to the “constant force spring” character of 
naturally occurring single α-helices [72]. However, unannotated proteins with globular 
structures, expressed in the scRNA-seq data, are most probably functional and offer a 
great resource to study the evolutionary emergence of protein folds.

Conclusions
The lack of reliable functional annotation has so far been a major bottleneck in the anal-
ysis of -omics datasets from non-model species, in particular those separated from tra-
ditional models by large phylogenetic distances. Here, we demonstrate that by exploiting 
the evolutionary conservation of protein structure it is possible to dramatically improve 
protein functional annotations in non-model species. We show that proteins with signif-
icantly similar structures (morphologs) are often homologs. Using GO-terms as well as 
EC numbers as measures for functional similarity, we illustrate that in many cases mor-
phologs are functionally similar across large evolutionary distances and can therefore be 
used for functional transfer. Although protein structural predictions for an entire pro-
teome might be outside the technical capabilities of many labs, the workflow described 
here can be used to query individual highly informative candidate genes from proteom-
ics or single-cell -omics experiments. During the peer review process of this manuscript, 
protein structures for the entire UniProt database were predicted and updated version of 
Foldseek (v4) as well as the EggNOG database (v6.0) have been released. It is reasonable 
to expect that in the future protein sequences deposited in public databases will auto-
matically receive predicted structures, paving the way for unique insights into biological 
functions across the tree of life.

Materials and methods
In the manuscript, “annotation” of a protein refers to the existence of an emapper-based 
preferred gene name or description. In all boxplots, the box extends from the lower to 
upper quartile values of the data, with a line at the median. The whiskers represent the 
5− 95% percentiles.

Sequence‑based annotation of the Spongilla lacustris proteome

Juvenile freshwater sponges (Spongilla lacustris), grown from gemmules, were used 
for bulk RNA isolation and sequencing. De novo transcriptome assembly with Trinity, 
returned 62,180 putative isoforms, covering 95.2% of Metazoan BUSCOs [73]. To iden-
tify putative proteins, Transdecoder [74] (version 3.0.1) was used with a minimum open 
reading frame length of 70 amino acids, resulting in 41,945 putative proteins. The long-
est putative protein per gene ID was kept. The resulting predicted proteome was anno-
tated by EggNOG mapper [17, 18] (v2.1.7, default settings) via the website.
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Legacy annotation

Musser et al. [9] used the putative proteins to create a phylome by constructing gene/
protein trees for each protein [75]. The phylome information was used to refine the 
assignment of transcripts to genes. In some cases, 3′  and 5′ fragments of a gene were 
assigned to two different transcripts. These fragments were merged into the same 
merged gene name using the gene tree information. Functional annotations were supple-
mented by EggNOG mapper (v1) and blastp searches against human RefSeq (default 
parameters). This annotation was used in the original Spongilla scRNA sequencing pub-
lication and is present in the single-cell data. We refer to this as “legacy annotation”. In 
this manuscript, the legacy annotation was used for the single-cell data analysis, but not 
for the comparison between the MorF workflow and the sequence-based annotation 
transfer.

Structure‑based annotation of the Spongilla lacustris proteome

MorF and constituent tools

We designed a simple workflow that goes from sequence to predicted structure to func-
tional annotation (symbolically, MorphologFinder, or MorF), and used it to annotate 
the Spongilla lacustris predicted proteome. We used ColabFold to predict structures 
and subsequently aligned the predicted structures against all currently available (solved 
and predicted) protein structures using Foldseek. Finally, we used structural similarity 
to transfer annotations from the morphologs to their corresponding Spongilla protein 
queries. In the following we show an overview of the tools in use and a more detailed 
description of the MorF workflow.

MMseqs2 (version 92deb92fb46583b4c68932111303d12dfa121364) [76] is a software 
suite for sequence-sequence and sequence-profile search and clustering. It is orders of 
magnitude faster than BLAST at the same sensitivity and is widely adopted [17].

AlphaFold2 [7] is a neural network-based model that predicts protein three-dimen-
sional structures from sequence, regularly achieving atomic accuracy even in cases 
where no similar structure is known. AlphaFold is widely considered to have revolution-
ized the field of structural bioinformatics, greatly outperforming the state of the art in 
the most recent iteration of the CASP challenge [77].

AlphaFold quantifies prediction confidence by pLDDT, the predicted local distance 
difference test on the Cα atoms. Regions with pLDDT > 90 are modeled to high accu-
racy; regions with 70 < pLDDT < 90 should have a generally good backbone prediction; 
regions with 50 < pLDDT < 70 are low confidence and should be treated with caution; 
regions with pLDDT < 50 should not be interpreted and probably are disordered.

ColabFold [10] is a pipeline that combines fast homology searches via MMseqs2 [76] 
with AlphaFold2 [7] to predict protein structures 40 to 60 times faster than the original 
AlphaFold2. We installed colabfold locally from the localcolabfold repository 
[78], version 1.4.0

Foldseek [8] enables fast and sensitive comparison of large structure databases. Fold-
seek’s key innovation lies in the appropriate translation of structure states to a small 
alphabet, thus gaining access to all the heuristics of sequence search algorithms. We 
used version 3-915ef7d.
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Structural databases

We used the AlphaFold database v1 [13], containing over 360,000 predicted structures 
from 21 model-organism proteomes, as provided by Foldseek v3-915ef7d.

From Foldseek v3-915ef7d, we also used the Swiss-Prot [6] and PDB [15] databases.

The MorF workflow

A visual representation of the MorF workflow can be found in Supplement Fig. S1. To 
predict structures, we adapted the ColabFold pipeline as outlined in [79].

Multiple sequence alignment generation: We downloaded reference sequence data-
bases (UniRef30, ColabFold DB) and calculated indices locally ([80, 81], adapted from 
ColabFold setup_databases.sh). We were interested in homology detection at the 
limit of the twilight zone, so UniRef30, a 30% sequence identity clustered database based 
on UniRef100 [82], was the adequate choice. We calculated MSAs for each Spongilla 
predicted protein ([83], adapted from [84]) using MMseqs2 [76].

Structure prediction: We predicted structures for all Spongilla predicted proteins using 
ColabFold [10] as a wrapper around AlphaFold2.

We split the MSAs in 32 batches and submitted each one to the EMBL cluster system 
(managed by slurm [85]); we used default arguments but added –stop-at-score 
85 [86]. The calculations were done on NVIDIA A100 GPUs, on computers running 
CentOS Linux 7. We used GCC [87] version 10.2.0 and CUDA version 11.1.1-GCC-
10.2.0 [88]. We processed the resulting PDB-formatted model files with Biopython’s PDB 
module [89].

Structure search and annotation transfer: Structural search was conducted using Fold-
seek which allows fast comparison of large structural databases. We downloaded PDB, 
SwissProt, and AlphaFold DB. For each Spongilla protein, we kept the best-scoring 
AlphaFold2 model, and used them to construct a Foldseek database. These models were 
then used to search against the three structural databases (see [90]). For each search, we 
kept the Foldseek hit with the highest corrected bit score in each database and aggre-
gated the three result tables (AlphaFoldDB, PDB, SwissProt) into one. We imposed 
a bit score cutoff of e5 on Foldseek hits based on their bimodal distribution [91] and 
personal communication with the Foldseek authors. Annotations of the best hits (= 
morphologs) were gathered from either UniProt via its API [92] or through EggNOG 
mapper (v2.1.7, default settings) [17] by using the sequences of the morphologs (pulled 
by UPIMAPI [93]). To facilitate downstream analysis, we extracted summary tables from 
each resource type. This procedure can be found in the corresponding notebook [94]. 
A total of 1401 proteins received sequence annotation but their Foldseek best hits were 
below the bit score cutoff.

Instructions for MorF searches of single proteins using openly available web servers

MorF searches for whole proteomes require large computational resources. However, 
searches can be carried out for a small number of proteins of interest (e.g., top differen-
tially expressed genes in RNAseq or proteomics experiments) using openly available web 
tools:
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• Prediction of protein structure using ColabFold [10]: The structures of proteins of 
interest can be predicted using the ColabFold Google Colaboratory notebook [95]. 
Detailed instructions are described in the notebook. For a quick default run, users 
paste a protein sequence into “query_sequence” and hit “Runtime” - “Run all”. The 
results can be downloaded as a zip archive which includes the pdb models of differ-
ent structure model quality ranks.

• Structure similarity search using Foldseek [8]: The best ranking model (“...rank_1_
model_X.pdb”) can be queried using the Foldseek webserver [96]. Users can upload 
the pdb file of the model and select databases to use for the search. In default mode, 
all available databases will be searched. The Foldseek output is structured blast-like 
and sorted according to best scoring morphologs within the selected databases.

• (Optional) Additional annotation using EggNOG [17]: In order to retrieve additional 
functional as well as phylogenetic information about the best scoring morpholog, the 
EggNOG database can be searched [97]. Both protein sequence and UniProt ID can 
be used to retrieve information about orthologous groups as well as GO-terms, EC 
numbers, etc.

GO term semantic similarity and depth calculation

For an in-depth comparison of sequence and structure-based annotations, we calculated 
the semantic similarity and depth of GO terms between annotation pairs [24]. Calcula-
tion of semantic similarities was done with the stand-alone version of GOGO [98] in 
default mode using the Average-Best-Match (ABM) method for calculating gene func-
tional similarity [99, 100]. GO term semantic similarity was compared between all GO 
terms from annotation pairs with partially overlapping GO terms. Calculation of GO 
term depths was done with the GOATOOLS Python library [101]. GO term depths were 
compared using the overlapping GO term assignments between sequence- and struc-
ture-based annotations with partially overlapping GO terms [24].

Differential gene expression in single‑cell transcriptomics data

We obtained the processed Seurat file from [9, 102] and downloaded the lists of differen-
tially expressed genes of clusters, cell types, and cell type clades from the supplemental 
material of the same publication (Suppl. Data S1 to S3; file science.abj2949_data_s1.xlsx; 
tabs “Diff. exp. 42 clusters”, “Diff. Exp. cell types”, “Cell type clade genes (OU tests)”. The 
single-cell data operates on the level of genes, so we transformed the sequence-derived 
and MorF annotations by merging isoform entries and keeping the entry with the best 
bit score.

We used the legacy annotation included in the file (phylome, emapper, and BLASTp-
based), the sequence-derived annotation, and the MorF output to propose names for 
Spongilla proteins. We prioritized sequence-derived annotations (legacy annotation, 
EggNOG preferred name, EggNOG description) and fell back to MorF (MorF preferred 
name, MorF description) when there were none. We produced dotplots for the top 
200 differentially expressed genes in each cell type and manually inspected them. We 
focused on terminally differentiated (named) cell types; owing to the presence of contin-
uously differentiating stem cells, the single-cell data contains many clusters of maturing 
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or differentiating cells whose expression patterns do not distinguish them from their 
mature counterparts. Code and detailed explanations are available in the corresponding 
notebook [103].

Protein structure visualization and superposition

In order to visualize predicted structures from the Spongilla proteome, we used PyMOL 
Version 2.3.5 [104]. Superposition with their respective best Foldseek hit was carried out 
using the super command. super creates sequence-independent superpositions and 
is more reliable for protein pairs with low sequence similarity.

Detection of ephrin orthologs in Spongilla using HMMER

To validate the ephrin ortholog detected by MorF in Spongilla, we recapitulated a 
previous effort to detect ephrins in different species using extensive HMMER protein 
profile search [37]. For this, we performed a HMMER search (v3.3.2) using the ephrin 
Pfam profile (PF00812) against the Spongilla proteome using default settings.

Detecting HGT in Spongilla

To detect HGT, we followed the proposal by Degnan [66] and sought to get multiple 
indications for HGT. In particular: phylogenetic evidence that the candidate gene is 
more closely related to foreign than to animal genes; genome data showing the candi-
date gene assembles into a contiguous stretch of DNA with neighboring genes unam-
biguously of animal origin (this requires, of course, the availability of a sequenced and 
assembled animal genome; the more complete the assembly, the more confident the 
HGT identification); and gene sequence revealing metazoan-like compositional traits, 
including presence of introns, GC content, and codon usage. Where possible, gene 
expression data showing active transcription of candidate genes in animal cell nuclei 
can enormously strengthen a case, and also addresses the issue of whether or not the 
HGT-acquired gene is active in its new genomic context.

All putative HGT proteins were used as an input for default blastp searches against 
non-redundant protein (nr) as well as metagenome databases (env_nr). Addition-
ally, default EggNOG 5.0 sequence searches were run. We used SpongeBase [105] to 
obtain transcriptomes and genomes for 13 sponge species and obtained a 14th one 
directly from its repository [106]. We built sequence databases with MMseqs2 ver-
sion 12-113e3 and searched against them (mmseqs easy-search) with the protein 
sequences of all isoforms of the HGT candidates. The resulting alignments were fil-
tered to keep the best-scoring alignment per species per gene.

The table of best hits per genome was visualized in Python, and a sponge phylogeny 
was added manually based on [107] (also A. Riesgo, personal communication).
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