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Analysis of protein binding characteristics 
among Arabidopsis BBX protein family
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Abstract 

Plants have evolved various mechanisms of adjusting their diurnal and seasonal growth and development in 
response to variations in day length and light quality. This plasticity is facilitated by intricate regulatory networks that 
comprise transcription factors, whose expression is modulated by the activity of photoreceptors. In Arabidopsis, 
B-box (BBX) transcription factors, which contain one or two Zn-ligating B-box motifs in their N-termini, serve as key 
mediators of light signaling for photomorphogenesis, shade avoidance, and photoperiodic flowering. While multiple 
BBX proteins may function as a single regulatory unit, the binding networks that form among members of the BBX 
family have not been extensively investigated. Here, we have demonstrated that the homodimerization of two B-box 
motifs containing CONSTANS protein (BBX1), which regulates light signaling and is the most extensively characterized 
among all BBX proteins, requires at least three B-box motifs. Therefore, the number of B-box motifs may significantly 
influence heterodimerization among BBX family members. An interactome analysis of all 32 known B-box family 
members revealed that the binding affinity between group III and V proteins with only one B-box motif is relatively 
weaker than that observed among other group members. In fact, the group V proteins BBX26 and BBX27 rarely inter-
act with other BBX members. Taken together, the results of this study emphasize the importance of the B-box motif in 
network formation among BBX proteins and provide insights into investigating the various signaling pathways medi-
ated by these networks.

Keywords  B-box protein, CONSTANS, Florigen, FLOWERING LOCUS T, Flowering time, Heterodimer, Homodimer, 
Transcription factor

Introduction
Plants constantly monitor light information to synchronize 
their physiology with the variations in their environment 
[1, 2]. Changes in day length and light quality determine 
developmental processes such as flowering time [1, 2]. In 
Arabidopsis, the B-box (BBX) transcription factor (TF) 
CONSTANS (CO/BBX1) conveys light information for 
the induction of FLOWERING LOCUS T (FT) gene that 
encodes a major component of florigen [3–5]. The day 
length-dependent regulation of FT expression by CO pro-
tein is a crucial aspect of seasonal flowering [1, 2]. The blue 
light photoreceptor FKF1 modulates the expression pattern 
of CO gene, whose transcripts highly accumulate under 
light in long-day conditions (LDs) but remain very low dur-
ing the day in short-day conditions (SDs) [6]. This enables 
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Arabidopsis plants to induce FT highly in LDs and conse-
quently promote flowering in these conditions [7].

B-box and CCT [CO, CONSTANS-LIKE (COL), and 
TIMING OF CAB EXPRESSION  1 (TOC1)] are highly 
conserved domains in CO. Both serve as binding sites for 
protein–protein interactions [8, 9]. The activity and stabil-
ity of CO protein for FT induction are modulated by its 
interacting partners [2, 7, 10–13]. The coiled motif-con-
taining proteins SUPPRESSOR OF PHYA1 (SPA1) and 
CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) 
interact with CO probably through the C-terminal CCT 
domain and degrade it during the night [14, 15]. The CCT 
domain of CO binds to the FT promoter along with nuclear 
factor (NF) proteins [16–18]. In addition, the stability of 
CO during the daytime is controlled by photoreceptors that 
interact with it. However, the domain responsible for the 
formation of this complex has not yet been identified. The 
red light photoreceptor phytochrome B (phyB) coupled 
with HIGH EXPRESSION OF OSMOTICALLY RESPON-
SIVE GENE 1 (HOS1) and the blue light photoreceptor 
ZEITLUPE (ZTL) degrade CO, whereas the ZTL homolog 
FKF1 stabilizes it [2, 19–22]. The N-terminal B-box domain 
of CO binds to other classes of TFs such as octopine syn-
thase (ocs)-element-binding factor 4 (OBF4) and ASYM-
METRIC LEAVES 1 (AS1) [23, 24]. Additionally, the two 
B-box motifs in the domain are required for homodimeri-
zation as well as heterodimerization with other B-box pro-
teins. BBX19, BBX28, BBX30, and BBX31 contain only one 
or two B-box motifs and lack the CCT domain. They form 
protein complexes with CO, which prevents FT induction 
under LDs at 22 ℃ [12, 25, 26]. The splicing variant of CO 
lacking the CCT domain interacts with full-size CO and 
promotes its degradation [10].

Like CO, BBX proteins form heterodimeric complexes 
with other BBX members, likely via B-box motifs [13]. Sev-
eral BBX proteins share the same interacting partner and 
have similar functions, indicating that functional redun-
dancy exists among BBX proteins [9, 13]. BBX proteins 
participate in various signaling pathways regulating pho-
tomorphogenesis, shade avoidance, and flowering. Never-
theless, the functions of many BBX proteins are unknown 
[13]. Hence, it is necessary to identify the binding networks 
among BBX proteins in order to predict and clarify the 
roles of BBX family members. Here we performed an inter-
actome analysis on all BBX proteins and established that 
the proteins form homodimer or heterodimer complexes, 
with a preference for those containing more B-box motifs.

Materials and methods
Subcellular localization and bimolecular fluorescence 
complementation (BiFC) assays
Full-length CO, CO 1–132 variant, BBX30, and 
BBX31 cDNAs were subcloned into the BiFC vectors 

pDEST-VYNE(R)GW and pDEST-VYCE(R)GW [27] and 
the constructs 35S:N-YFP-CO 1–132, 35S:N-YFP-
BBX30, 35S:N-YFP-BBX31, 35S:C-YFP-CO, and 35S:C-
YFP-CO 1–132 were generated. CO, the CO 1–132 
variant, BBX31, and BBX31 were expressed under the 
control of the CaMV 35S promoter. For subcellular 
localization, nucleotide sequences encoding the full-
length CO, Coβ truncated at the C-terminal, BBX28, 
and BBX31 were cloned into pMDC43 vector to create 
a GFP C-terminus fusion [28]. Arabidopsis mesophyll 
protoplast transfection was conducted and a tobacco 
transient expression system was utilized to analyze sub-
cellular localization and protein–protein interactions 
by BiFC. The procedures used for protoplast isolation 
were previously described [29]. Tobacco plants grown 
for 3 weeks  under long-day conditions (LDs) were used 
for the infiltration. The plasmids were transformed into 
Arabidopsis mesophyll protoplasts and tobacco leaves 
via polyethylene glycol (PEG)-mediated transformation 
and Agrobacterium-mediated infiltration, respectively, as 
previously described [30, 31]. Green fluorescent protein 
(GFP) and yellow fluorescent protein (YFP) were viewed 
and imaged under a fluorescence microscope (AX70; 
Olympus Corp., Tokyo, Japan).

Yeast two‑hybrid and β‑galactosidase assays
For the yeast two-hybrid assays, cDNA encoding full-
length CO, the CO deletion derivatives CO 1–254, CO 
1–132, CO 133–373, CO 1–105, CO 1–82, CO 1–62, and 
CO 63–105, and the N-termini of the co mutant alleles 
co-2 1–132, co-3 1–132, co-4 1–132, and co-6 1–132 were 
amplified by polymerase chain reaction (PCR) and sub-
cloned into pDEST22 or pDEST32 vectors to generate 
the GAL4 activation domain (AD) and the GAL4 DNA-
binding domain (BD) fusion constructs, respectively. 
The N-terminal region of the BBX protein containing 
the complete B-box domain was used to elucidate the 
binding networks among BBX proteins while avoiding 
false positive selection resulting from self-transactiva-
tion. The bait (BD fusion) and prey (AD fusion) plas-
mids were co-transformed into pJ69-4A via the standard 
lithium acetate method. The procedures used for the 
yeast two-hybrid assays (including heat shock-mediated 
transformation and transformant selection) and the 
β-galactosidase assays were previously described [24]. 
After transformation, yeast cells were grown on various 
types of SD agar  media including those (1) lacking leu-
cine (Leu) and tryptophan (Trp), (2) lacking Leu, Trp, 
and histidine (His) in the presence of 0.1 mM, 0.5 mM, 
1  mM, or 5  mM 3-amino-1,2,4-triazole (3-AT), or (3) 
lacking Leu, Trp, His, and adenine (Ade). Protein–pro-
tein interactions were confirmed through β-galactosidase 
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activity and quantified with o-nitrophenyl-β-D-
galactopyranoside (ONPG).

In vitro pull‑down assays
The procedures used to construct protein expression vec-
tors, determine protein expression in bacteria, and exe-
cute the GST pull-down assays were previously described 
[24]. The cDNAs of full-length CO and the co mutant 
alleles were introduced into pDEST15 and pDEST17 vec-
tors to generate expression cassettes for GST and His 
fusion proteins, respectively. The nucleotide sequences 
encoding the CO 1–132 and CO 1–62 proteins were sub-
cloned into pDEST15 vector. GST and  GST-fused pro-
teins were expressed in E. coli and were purified. GST 
and GST-fused proteins were then incubated at 4 °C for 
2  h with whole crude extract containing the His-fusion 
proteins expressed in E. coli. The proteins pulled down 
with the GST-fusion proteins were detected by western 
blotting against anti-6XHis antibody.

Results and discussion
B‑box motifs are important for CO homodimerization
CO can form a complex with its splicing variant COβ 
lacking the CCT domain [10]. Hence, we hypothesized 
that the binding motif for CO homodimerization resides 
in the B-box domain. To test this idea, truncated ver-
sions of CO, namely, CO 1–132 and CO 133–373, which 
contain two B-box motifs and the remainder of the CO 
including the CCT domain, respectively, were used for 
protein–protein interaction analysis in yeast (Fig. 1A). As 
expected, the β-galactosidase assays revealed that the CO 
1–132 variant interacted with the same variant but not 
with the CO 133–373 variant, supporting our hypothesis 
that CO forms a homodimer through the B-box domain 
(Fig. 1B). Therefore, we ruled out the CCT domain as a 
candidate for homodimerization. We then investigated 
whether both B-box motifs participate in CO homodi-
merization. To this end, we constructed deletion deriva-
tives of the B-box domain encoding proteins containing 
two B-box motifs (CO 1–105) or only a single B-box 
motif (CO 1–82, CO 1–62, and CO 63–105) (Fig.  1C). 
We observed no dimerization between single B-box con-
taining proteins (Fig. 1D), suggesting that a single B-box 

motif may not be sufficient for binding to a protein with 
a single B-box motif. To investigate the number of B-box 
motifs required for CO homodimerization, we further 
analyzed complex formation between one and two B-box 
containing CO derivatives. Interestingly, we found that 
the one B-box motif variants, CO 1–82, CO 1–62, and 
CO 63–105, were able to bind to the CO 1–132 protein 
with two B-box motifs, although the binding affinity 
between the one and two B-box variants was relatively 
weaker than that between the two B-box variants (Fig. 1E, 
F). These results suggest that CO homodimerization and 
CO heterodimerization with other BBX proteins may 
require at least three B-box motifs between the two pro-
teins. To validate the interactions detected in yeast, we 
conducted in  vitro pull-down assays using glutathione 
S-transferase (GST)-fused CO 1–373, CO 1–132, CO 
1–62, and 6XHistidine-tagged CO 1–373 (6XHis-CO 
1–373) proteins. The results showed that more 6XHis-
CO 1–373 proteins were precipitated in the presence of 
GST-CO, GST-CO 1–132, and GST-CO 1–64 proteins 
than in the presence of GST alone (Fig. 1G), thereby con-
firming the results obtained from the yeast two-hybrid 
assays. We also verified B-box motif-mediated homodi-
merization in  vivo through bimolecular fluorescence 
complementation (BiFC) assays (Fig. 1H). The CO 1–132 
protein fused with the N- or C-terminus fragments of 
enhanced yellow fluorescent protein (eYFP) was  co-
expressed in Arabidopsis mesophyll protoplasts. The 
reconstituted eYFP signal was detected in the nucleus, 
resembling homodimerization between full-length CO 
proteins [10].

The importance of B‑box‑mediated dimerization 
in flowering time regulation
Four co mutant alleles that cause single amino acid sub-
stitutions in the B-box domain have relatively low binding 
affinity for AS1 and are attributed to delayed flowering 
phenotypes [8, 24]. These observations suggest that CO 
dimerization through the B-box domain is important to 
its role in flowering time regulation. Therefore, we inves-
tigated whether B-box mutations also affect CO homodi-
merization by performing yeast two-hybrid assays 
coupled with the β-galactosidase activity measurement. 

Fig. 1  CO forms homodimers via B-box motifs. A, C. Schematic representations of truncated CO proteins. B, D, F. Yeast two-hybrid assays mapping 
minimum binding motifs required for CO homodimerization. Various combinations of indicated truncated CO proteins were expressed in yeast. 
LacZ (β-galactosidase) activity was quantified and represented interaction strength. Similar means were obtained for all three independent assays. 
E. Yeast cells were grown on SD agar media (1) lacking Trp (T), Leu (L), and His (H) in the presence of 5 mM 3-AT (denoted as SD -TLH + 5 mM 3AT) or 
(2) lacking T, L, H, and Ade (A) (denoted as SD -TLAH). G. GST pull-down assays confirming interactions in yeast. GST-fused full-length CO (CO 1–373) 
and truncated CO proteins were pulled down along with 6XHis-fused CO 1–373. Proteins were visualized by western blotting against anti-GST 
and anti-6XHis antibodies. H In vivo CO 1–132 variant homodimerization to validate interactions observed in vitro and in yeast. The YFP N-terminal 
fragment (N-YFP) and the YFP C-terminal fragment (C-YFP) were fused with CO 1–132 variant. N-YFP and C-YFP fusion constructs constitutively 
expressing N-YFP-CO 1–132 and C-YFP-CO 1–132 were transfected into Arabidopsis mesophyll protoplasts. DAPI (4′,6-diamidino-2-phenylindole) 
was used for nuclear staining

(See figure on next page.)
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The N-terminus region (amino acids 1–132) of the 
B-box mutants was used to minimize the intrinsic tran-
scriptional activation potential in yeast (Fig.  2A). Our 
results showed weakened binding affinities between 

the co-4 1–132 (A71T) and co-6 1–132 (A37V) variants 
(Fig. 2B). Moreover, homodimerization of the co-2 1–132 
(R59H) and co-3 1–132 (H91Y) variants was abolished 
(Fig. 2B). Notably, the co-4 1–132 proteins exhibited the 
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highest binding affinity among all the variants (Fig. 2B). 
To validate the observed changes in homodimerization 
associated with CO mutant forms, we performed GST 
pull-down assays using full-length versions. The co-2 
(R59H), co-3 (H91Y), and co-6 (A37V) mutants did not 
homodimerize, while weaker homodimerization was 
observed for the co-4 (A71T) mutant compared to the 
wild-type version of CO (Fig. 2C). This trend is consist-
ent with the results presented in Fig. 2B. Considering the 
phenotypes of the co mutant alleles, these findings sug-
gest that homodimerization may play a crucial role for 
CO function in flowering and for its complex formation 
with other classes of TF proteins.

Interactome analysis of BBX proteins
Our data proposed the possibility that the number of 
B-box motifs may be critical to the interactions among 
BBX family members (Fig. 1). To test this possibility, we 
analyzed the binding networks of all 32 BBX proteins in 
yeast. Because 24 BBX proteins showed intrinsic tran-
scriptional activation potential in yeast, we used trun-
cated versions of the proteins that contained the complete 
B-box domain. To differentiate the binding strength, 

we classified it into three levels based on the degree of 
growth observed in the selective medium. Strong interac-
tions were characterized by growth on SD agar medium 
lacking leucine (Leu), tryptophan (Trp), and histidine 
(His) in the presence of 10  mM 3-amino-1,2,4-triazole 
(3-AT) or on SD agar medium lacking Leu, Trp, His, and 
adenine (Ade). Moderate interactions were characterized 
by growth on SD agar medium lacking Leu, Trp, and His 
in the presence of 1–5 mM 3-AT. Weak interactions were 
characterized by growth on SD agar medium lacking Leu, 
Trp, and His in the presence of 0.1–0.5 mM 3-AT. Based 
on these criteria, we finally identified 111 strong, 164 
moderate, and 44 weak interactions among 1024 protein 
pairs (Fig.  3A, B). Additionally, 17 BBX proteins exhib-
ited strong binding affinities in their homodimerization 
(Fig.  3A, B). Unexpectedly, some group III and V pro-
teins containing a single B-box motif were able to form 
homodimers (Fig. 3A, B). The group III proteins had the 
lowest rate of interaction with other group members 
(Fig. 3B). Conversely, the group V proteins demonstrated 
the highest and most robust frequency of interaction 
with other group members, particularly with those pos-
sessing two B-box motifs (Fig.  3B). BBX26 and BBX27 
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in the group V rarely formed heterodimeric complexes 
with proteins in other groups (Fig. 3B). Furthermore, the 
group IV proteins with two B-box motifs displayed the 
highest rate of homodimerization and formed the most 
heterodimer complexes with other members within their 
group (Fig. 3B). These findings suggest that having more 
B-box motifs may increase the likelihood of binding 

between BBX proteins. In addition to BBX19, BBX28, 
BBX29, BBX30, and BBX31, which are known to form 
in  vivo protein complexes  with CO, BBX9, BBX10, and 
BBX18 were identified as potential candidates for CO 
interaction proteins (Fig. 3B).

BBX family proteins containing one or two B-box 
motifs are considered as a group of the key transcrip-
tion factors that are regulated by light and transduce light 
signaling in plant growth and development [13]. Multiple 
BBX proteins participate in a common signaling path-
way through cooperative and antagonistic interactions, 
serving as a regulatory unit [9, 13]. To investigate sign-
aling networks involving BBX proteins, we analyzed the 
protein-binding properties of CO, which was the first 
identified BBX protein, as a proxy for understanding the 
formation of homodimeric and heterodimeric complexes 
mediated by B-box motifs. The biological significance of 
CO homodimerization remains unclear, while its het-
erodimerization with other known B-box proteins has 
been shown to negatively influence CO function under 
LDs at 22  °C [12, 25, 26]. Our study on the interaction 
between CO and co mutant forms, which contain single 
amino acid substitutions in the B-box domain, suggests 
that homodimerization through B-box motifs may be 
essential for the role of CO in flowering time regulation 
(Fig. 2) [8]. One possible explanation for this is that a CO 
homodimer can directly bind to CO-responsive elements 
(COREs) on the FT promoter through its CCT domain. 
However, CO recruitment to the promoter largely relies 
on complex formation with DNA-binding transcrip-
tion factors [2, 16–18, 24, 32, 33]. This possibility is sup-
ported by observations that heterodimerization of CO 
with BBX proteins, which possess only one B-box motif 
and lack the CCT domain, inhibits the function of CO 
in FT activation [12, 25, 26]. These findings suggest that 
a heterodimer composed of CO and a BBX protein car-
rying the CCT domain is capable of binding to the FT 
promoter, while a heterodimer formed by CO and a BBX 
protein lacking the CCT domain might be unable to bind 
to the promoter. Given that CCT domains in other BBX 
proteins can activate the expression of a gene that con-
tains COREs in its promoter [17], interactions among 
CCT-containing proteins could facilitate their binding to 
target loci. Our interactome analysis identified 93 com-
binations of homodimerization and heterodimerization 
among group I, II, and III proteins possessing the CCT 
domain, with 22 strong, 45 medium, and 26 weak inter-
actions (Fig. 3B).

Our BiFC assay showed that interactions between 
CO 1–132 variants lacking the CCT domain occurred 
in the nucleus (Fig.  1H). In addition, homodimeriza-
tion of COβ, a CO splicing variant, and interactions 
of CO with COβ, BBX28, BBX29, BBX30, and BBX31, 
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Fig. 3  Protein–protein interactions among 32 B-box proteins. A. 
Analysis of 1024 protein–protein interactions was performed using a 
96-well format system. BD and AD fusion constructs were individually 
transformed into yeast. To determine and distinguish interaction 
strengths, yeast cells were spotted and grown on SD agar media (1) 
lacking T, L, and H in the presence of 0.1–0.5 mM 3-AT, (2) lacking 
T, L, and H in the presence of 1–5 mM 3-AT, (3) lacking T, L, and H 
in the presence of 10 mM 3AT, or (4) lacking T, L, A, and H. Positive 
pPC97-Fos/pPC86-Jun and pDBLeu/pEXP-AD502 combinations were 
used as positive and negative interaction controls. B. BBX family 
dimerization map. Strong, moderate, and weak interactions are 
indicated by black, dark gray, and light gray, respectively
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all of which lack the CCT domain, also occurred in the 
nucleus [10, 12, 25, 26, 34]. Since the nuclear localiza-
tion signal (NLS) is present in the CCT domain [8], it 
remains unclear how CO-interacting BBX proteins 
are transported to the nucleus. One possible sce-
nario is that CO binds to BBX proteins in the cyto-
sol and enters the nucleus with them. Our subcellular 

localization experiments using GFP-tagged proteins 
in protoplasts showed that COβ and BBX31 were pre-
sent both inside and outside the nucleus, while GFP 
signal for BBX28 was detected only in the nucleus, as 
previously reported (Fig.  4A) [12]. In addition, BBX30 
and BBX31 were located in the cytosol and nucleus in 
tobacco epidermal cells of leaves (Fig.  4B). However, 

A

B

C Bright field YFP Merged Zoom

C-YFP-CO
N-YFP-BBX30

C-YFP-CO
N-YFP-BBX31

Bars = 50µm

Bars = 50µm

Bright field GFP Merged

CO COβ BBX28 BBX31
GFP FITC

Bright fieldChlorophyll

GFP FITC

Bright fieldChlorophyll

GFP FITC

Bright fieldChlorophyll

GFP FITC

Bright fieldChlorophyll

Fig. 4  Subcellular localization of BBX proteins. A. GFP fusion proteins were constitutively expressed in Arabidopsis mesophyll protoplasts. B. 
Schematic representation of the GST-fused BBX protein expression cassettes (left panel). GFP signals in tobacco leaf epidermal cells. Scale 
bars = 50 μm. C. In planta interactions between CO and (1) BBX30 and (2) BBX31. The N-YFP fragment was fused with CO while the C-YFP fragment 
was fused with BBX30 and BBX3. The C-YFP-CO/N-YFP-BBX30 and C-YFP-CO/N-YFP-BBX31 combinations were co-expressed in tobacco leaves. The 
YFP signals indicate that CO interacts with BBX30 and BBX31 in the nucleus. Zoom images show nuclear speckle formation. Scale bars = 50 μm
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their interactions with CO only occurred in the nucleus 
(Fig.  4C) [26], indicating that these BBX proteins are 
translocated into the nucleus independently of CO. 
This suggests that a BBX protein with one B-box motif 
is part of a large complex that includes multiple BBX 
proteins and another family of transcription factors 
with NLSs. Several observations support this possibil-
ity; for example, multiple BBX proteins are in the same 
signaling pathway and share a binding partner belong-
ing to another family of transcription factors [9, 13]. 
Furthermore, group V BBX proteins with one B-box 
motif strongly and more frequently form heterodimer 
complexes with group I, III, and IV proteins with two 
B-box motifs (Fig. 3B).

In conclusion, our findings provide insight into novel 
signaling networks in which BBX proteins play important 
roles in light-mediated regulation of plant growth and 
development.
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