creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. Dissertation of Engineering

A Recursive Logit Model with Non-
Link-Additive Attributes in a
Multimodal Network

FE JEYF A v/t %S 83
AH 23 28 Mg

February 2023

Graduate School of Engineering

Seoul National University
Civil & Environmental Engineering

Sedong Moon



A Recursive Logit Model with Non-
Link-Additive Attributes in a
Multimodal Network

Dong-Kyu Kim

Submitting a Ph.D. Dissertation of Engineering
December 2022
Graduate School of Engineering

Seoul National University
Civil & Environmental Engineering

Sedong Moon

Confirming the Ph.D. Dissertation written by

Sedong Moon
January 2023
Chair (Seal)
Vice Chair (Seal)
Examiner (Seal)
Examiner (Seal)

Examiner (Seal)




Abstract

Travelers’ trip patterns are becoming more personalized and complex
with the emergence of new mobility services, such as ride-hailing, demand-
responsive transportation (DRT), and shared mobility. Also, with the
emergence of the mobility-as-a-service (MaaS) concept, which provides
various mobility services in an integrated manner to enable travelers to use
multiple modes sequentially, the importance of intermodal trips is being more
emphasized. For intermodal trips in multimodal networks, there are many
combinations of modes and paths. Moreover, mode and path choices are
strongly correlated with each other. Therefore, a model simultaneously
predicting mode and path choices is needed, not a model predicting path
choice after mode choice as in the conventional four-step travel demand
forecasting model. Recursive logit models can predict mode and path choices
at the same time by modeling mode and path choices as a sequence of link
choices in a transportation network. However, recursive logit models can
incorporate only link-additive attributes: the value of a path attribute must be
the same as the sum of link attributes of links belonging to the path. This
characteristic constrains the applicability of recursive logit models by
restricting variables that can be included.

Therefore, this study proposes a methodology to include non-link-

additive attributes to the recursive logit model to analyze and predict users’



intermodal path and mode choices on a multimodal network. To achieve this,
this study developed a link-additive approximation method that approximates
anon-link-additive path attribute into a corresponding link attribute that holds
the link-additivity. The link-additive approximation is performed by the
singular value decomposition and Moore-Penrose Pseudoinverse methods.
The methodology is applied to the actual multimodal network and intermodal
trip data in Seoul, Korea. The multimodal network consists of road, bus, and
rail networks. The intermodal trip data is mainly the National Household
Travel Survey data, supported by transit smartcard data for routing the transit
trip stages. This study used two non-link-additive attributes: transit fare and
transfer penalty. The link-additive approximation method was applied to these
attributes for all observed paths and by O-D pairs.

To compare RL models with respect to the inclusion of link-additive
approximated transit fare, this study specified four models: MO without fare,
M1 with the fare proportional to link length, M2 with the fare approximated
for all observed paths, and M3 with the fare approximated by O-D pairs. Also,
to compare RL models with respect to the inclusion of link-additive
approximated transfer penalty, this study specified model M4. The models
were estimated using 10% of the dataset (3,209 trips and 9,710 trip stages out
of 32,094 trips and 97,175 trip stages). Among the models, model M4, which
includes both transit fare and transfer penalty, shows the best goodness-of-fit

in terms of log-likelihood and AIC. The models were tested using the rest of
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the dataset (28,885 trips and 87,465 trip stages). The testing was performed
by comparing the predicted choice probabilities of alternatives connecting a
certain O-D pair to the actual choice probabilities. Because the actual
trajectories were unknown, the orders, modes, and transfer points of trip
stages were used instead. As a result, all of the RL models showed better
accuracies compared to benchmark models, MNL and PSL. Among them, the
model M4 showed the best accuracy. It was followed by M3, M2, and M1,
with MO showing the worst accuracy among RL models.

All of the results showed that the inclusion of link-additive approximated
transit fare and transfer penalty in the RL model improves both goodness-of-
fit and accuracy of the model. Especially, the link-additive approximation by
O-D pairs showed better goodness-of-fit and accuracy compared to the link-

additive approximation for all observed paths.
Keyword : Recursive logit model, multimodal network, intermodal trip, non-

link-additive attribute, link-additive approximation
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Chapter 1. Introduction

1.1. Study Background

Most transportation networks are multimodal: they consist of various
modes, such as private vehicles, buses, rails, taxis, and bicycles. In
multimodal transportation networks, intermodal trips are common, consisting
of two or more trip stages with distinct modes. It is essential to analyze
intermodal trips in multimodal networks in terms of performance evaluation,
planning, and operation. Especially, travelers’ trip patterns are becoming
more personalized and complex with the emergence of new mobility services,
such as ride-hailing, demand-responsive transportation (DRT), and shared
mobility (Spickermann et al., 2014; Meyer de Freitas et al., 2019). Also, with
the emergence of the mobility-as-a-service (MaaS) concept, which provides
various mobility services in an integrated manner to enable travelers to use
multiple modes sequentially and seamlessly, the importance of intermodal
trips is being more emphasized. Moreover, in policy, the overall efficiency of
the transportation system can be improved by guiding travelers to make
intermodal trips and be redistributed in near-saturated transportation networks
(van Nes & Bovy, 2004; Schade et al., 2011; Spickermann et al., 2014; Rode
& da Cruz, 2018; Meyer de Freitas et al., 2019).

To forecast travel demands, a conventional four-step travel demand



forecasting model consisting of trip generation, trip distribution, mode choice,
and trip assignment is commonly used in practice. However, many
combinations of modes and paths exist for intermodal trips. Moreover, mode
and path choices are strongly correlated with each other. Therefore, mode
choice and trip assignment (or path choice) cannot be divided when analyzing
and predicting intermodal trips (Arentze & Molin, 2013; van Eck et al., 2014;
Meyer de Freitas et al., 2019). Furthermore, intermodal trips accompany other
choice behaviors, such as choices of transit routes, boarding stations, and
alight stations, which cannot be classified into mode or path choices. (van Eck
et al., 2014).

Therefore, to predict travelers’ intermodal trip behaviors and the
resultant trip flow by modes and paths, a model simultaneously predicting
mode and path choices is needed, not a model predicting path choice after
mode choice as in the conventional four-step model. Previous studies have
developed several models to deal simultaneously with mode and path choices.
Iterative mode and path choice models are some of those models. However,
they require a long prediction time due to iteration between mode and path
choice models. Formulating intermodal mode and path choices into a single
discrete choice model, such as multimodal logit (MNL) or path-size logit
(PSL) models, can predict users’ behaviors within a relatively shorter time.
However, it requires path sampling to generate a choice set among the infinite

number of possible alternative paths. Machine learning models can predict



the results of mode and path choices directly and accurately. However,
analyzing user behavior from machine learning models is not easy.
Recursive logit (RL) models can predict mode and path choices at the
same time by modeling mode and path choices as a sequence of link choices
in a transportation network. RL models have successfully predicted path and
mode choices simultaneously in multimodal networks (Zimmermann et al.,
2018; Meyer de Freitas, 2018; Meyer de Freitas et al., 2019). However, RL
models can incorporate only link-additive attributes: the value of a path
attribute must be the same as the sum of link attributes of links belonging to
the path. For example, travel time and the number of transfers can be used in
RL models because they are link-additive. However, transit fares are not link-
additive under some fare structures and a transfer discount. In this case, transit
fares cannot be incorporated into RL models. This characteristic constrains
the applicability of RL models by restricting variables that can be included.
Therefore, a methodology to incorporate non-link-additive attributes in RL

models is needed.

1.2. Study Purpose

The purpose of this study can be divided into three-fold (Figure 1). First,

this study develops RL models with non-link-additive attributes. This study

considers two non-link-additive attributes: transit fare and transfer penalty.



Next, this study develops a methodology to incorporate non-link-additive
attributes into RL models, which is called “link-additive approximation” in
this study. This study develops a methodology to approximate non-link-
additive path attributes to their corresponding link-additive link attributes.
Also, this study compares the goodness-of-fit and accuracies of RL models
according to the incorporation of non-link-additive attributes using the
existing multimodal network and intermodal trip data.

This study analyzes the mode and path choice behaviors of single-
purpose intermodal trips in urban areas using the proposed RL model with
non-link-additive attributes. The multimodal network and intermodal trip data
of Seoul, Korea, are used. This study constructs a network of road, bus, and
rail (subways and metropolitan rails) and analyzes intermodal data resulting
from the National Household Travel Survey (NHTS) and transit smartcard

data.



Limitations of previous study regarding RL models

Only link-additive attributes can be used:
a restriction to variable selection

U

Purpose of this study

Develop RL models with non-link-additive attributes

Develop link-additive approximation methodology to incorporate
non-link-additive attributes into RL models

Compare goodness-of-fit and accuracy of RL models according to
the incorporation of non-link-additive attributes

O

Analyze mode and path choice behaviors of single-purpose
intermodal trips using the RL. model with non-link-additive
attributes

Figure 1. Purpose of this study



1.3. Terminologies

In this study, the terminologies “trip” and “trip stage” have distinct
meanings. As Axhausen (2007) defines, a trip stage, or simply a “stage,”
means a “continuous movement with one mode of transport, respectively one
vehicle.” Meanwhile, a trip means “a continuous sequence of stages between
two activities.” An activity can be defined as a purpose of a travel demand at
a certain location and time period. This concept of activity is primarily applied
to activity-based models, which suggests that travel demands are generated
by the need of people to participate in activities at different locations and
times (Ben-Akiva et al., 1996; Castiglione et al., 2014; Kim, 2021; Min, 2021;
Kim et al., 2022). Home-stay, working, schooling, shopping, and leisure are
common activities that generate trips between them. Each continuous travel
from home to workplace, workplace to shopping, or shop to home is an
example of a trip. Also, a trip can consist of either a single or multiple stages.
A transit trip from an origin to a destination involving multiple transfers is a
typical example of a trip consisting of multiple stages. Each riding of a vehicle,
from boarding to alighting, is a stage.

An intermodal trip consists of two or more stages with different modes,
for example, bus and rail. A multimodal network consists of multiple modes,
and intermodal trips can occur on the multimodal network.

In the literature dealing with path choice modeling (also called route



choice modeling), the word “path” and “route” are used interchangeably.
However, this study uses the word “path” to refer to a sequence of links
comprising a trip or trip stage because the word “route” can also refer to a
specific transit service. In this study, specific bus services are called “bus
routes,” whereas specific rail services are called “rail lines.”

The remainder of this thesis is structured as follows. Chapter 2 provides
the literature review regarding intermodal mode and path choice models and
recursive logit models. The methodology of this study is given in Chapter 3,
including the theoretical backgrounds of the recursive logit model and the
methodology of the proposed link-additive approximation of non-link-
additive attributes. Chapter 4 explains the application of this study’s
methodology on the existing multimodal network and intermodal trip data.
The results are provided in Chapter 5. Finally, Chapter 6 states this study’s

conclusion.



Chapter 2. Literature Review

2.1. Intermodal Mode and Path Choice Models

There have been various modeling approaches regarding intermodal
mode and path choices. Though it is more reasonable to integrate mode and
path choices when modeling intermodal trip behaviors, as some studies
mentioned (Arentze & Molin, 2013; van Eck et al., 2014; Meyer de Freitas et
al., 2019), some studies did separate mode and path choice models, while

others iterated or integrated them.

2.1.1. Separation of Mode and Path Choices

The conventional four-step trip demand forecasting model, widely used
in practice, 1s a typical example of the separation of mode and path choices.
When intermodal trip behaviors are modeled with separate mode and path
choices, trip assignment is performed after applying a mode choice model.
Prespecified mode chains (a sequence of two or mode modes) are considered
alternative modes in the mode choice model. Because those mode chains are
correlated, a multinomial logit model cannot be directly used. A nested logit
model can be used to model a choice among alternative modes or mode chains
(Ben-Akiva and Bierlaire, 1999). In the nested logit model, two nests

:l b
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corresponding to private cars and mode chains with transit are constructed.
After choosing between those two nests, a choice among mode chain
alternatives is performed. Private car trips are assigned using road traffic
assignment models, such as user equilibrium models, and intermodal trips
using mode chains are assigned using transit assignment models, such as
stochastic assignment.

The separation of mode choice and path choice cannot consider a strong
correlation between mode choice and trip assignment in intermodal trips.
From a behavioral point of view, mode and path choices are integrated into a
single-choice stage (van Eck et al., 2014). Furthermore, intermodal trips
accompany choice behaviors beyond mode and path choices, such as choices
of transit routes, boarding stations, and alight stations. The underlying
behavioral choice processes are reasonable to be integrated into a single
model describing the overall intermodal trip-making process because they are
challenging to be described in a mathematically tractable way (van Eck et al.,

2014).

2.1.2. Iterative Mode and Path Choice Models

As one of the methodologies to integrate mode and path choices in

intermodal trip behavior modeling, mode and path choice models can be

executed iteratively to consider a correlation between them (Abdulaal &



LeBlanc, 1979; Hou et al., 2020; Moon et al., 2021). Path choice is performed
under the given modal split by the mode choice model, and mode choice is
performed considering the resultant travel costs given by the path choice
model. Abdulaal & LeBlanc (1979) is an early study dealing with the
multimodal mode and path choices, although dealing only with auto and
transit. The study proposed three modal split-assignment models. The first
model only performs assignment by Wardrop’s equilibrium principle while
not considering a modal split. The second model performs a modal split by
the logit modal split function and assignment by the equilibrium principle.
The third model performs a modal split by the all-or-nothing function and
assignment by the equilibrium principle. The study proved that there is no
mathematical programming model for the multimodal equilibrium problems,
then proposed an iterative solution method for the second and third models.
Hou et al. (2020) used a combined modal split and traffic assignment model,
in which the nested logit model performs the modal split among automobile,
rail, and bus, and the equilibrium principle model performs the assignment.
The modal split and assignment were also performed iteratively, and the study
applied the model to optimize the locations of park-and-ride facilities. Moon
et al. (2021) used a multinomial logit model to perform a modal split among
private cars, conventional public transportation, and a new transit type called
zonal express which connects users’ aggregated origins and destinations

directly. The study then optimized the route of the zonal express under the
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assumption that zonal express users’ paths are the same as the route, using the
parallel cheapest insertion and tabu search methods. The modal split and
zonal express route optimization (equivalent to zonal express path choice
model) were performed iteratively.

Iterative mode and path choice models can consider the correlation
between mode choice and trip assignment as well as other underlying choice
behaviors. However, those models require a long computational time to repeat

mode and path choice processes.

2.1.3. Integration of Mode and Path Choices into a Single-Choice

Model

Several studies have simultaneously formulated the integrated mode and
path choice problem into a single discrete choice model, such as logit-based
models. Hoogendoorn-Lanser (2005) formulated nested logit and generalized
nested logit models of multimodal inter-urban trips. The study focused on
multimodal trips consisting of rail as a primary mode and urban public or
private transportation modes as access/egress modes. The study defined
choice sets consisting of boarding and alighting stations, train alternatives,
access/egress modes, and access/egress paths. The choice models are then
applied to the choice sets to determine the modes and paths of the overall trips.

Van Eck et al. (2014) proposed a paired combinatorial logit model of mode

11 Al =T



and path choices. The study also predefined choice sets, where each
alternative is defined as a combination of mode (or mode chain) and path. The
model is evaluated iteratively to reflect the resultant multimodal network load
to mode and path alternatives. Montini et al. (2017) used a path size logit
model as a combined mode and path choice model in a multimodal urban
transportation network. The study used GPS trajectory data to identify trip
paths for multimodal trips by one or more modes among private cars, public
transportation, bicycles, and walking. Anderson et al. (2017) applied a path
size logit model to estimate public transportation passengers’ mode and path
choice behaviors. The study incorporated revealed preference (RP) data
collected by a survey to identify multimodal trip paths by one or more modes
among metro, buses, regional trains, IC-trains, S-trains, and local trains.
Nielsen et al. (2021) also applied a path size logit model to analyze intermodal
public transportation mode and path choices, including specific transfer
attributes: walking time, waiting time, and the number of transfers.

Those logit-based models need predefined choice sets of multimodal
trips consisting of one or more modes and paths. Fiorenzo-Catalano (2007)
proposed a methodology to generate path choice sets in a multimodal network.
The study focused on interregional trips consisting of the main part (intercity
train, interregional bus, car, metro), access from home (car, local train, taxi,
metro, urban bus, urban tram, bicycle, walking), and egress to activity (taxi,

local train, metro, urban bus, urban tram, bicycle, walking).
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Those integrated choice models can predict users’ mode and path choices
quickly. However, there is a disadvantage in requiring choice set generation,
which can cause biases (Meyer de Freitas, 2018; Meyer de Freitas et al., 2019).
It is relatively easy to specify a mode choice set. However, a set of paths or
mode-path combinations is essentially an infinite set that must be sampled to
formulate a choice model. Biases can occur in a path sampling process, and a

criterion to sample path is often arbitrary.
2.1.4. Intermodal Trip Models Based on Machine Learning

Machine learning models can also be used for trip prediction for
unimodal and intermodal trips. Machine learning can predict the results of
mode and path choices directly and accurately. Baek & Sohn (2016) directly
predicted bus ridership (boarding and alighting of bus stops and ridership
between stops) using a deep neural network model based on activity-related
variables and variables related to bus routes. Yu et al. (2016) predicted bus
passenger trip flow between origin and destination by an artificial neural
network model based on land use, bus accessibility, and distance between the
zones. Toqué et al. (2017) conducted short- and long-term temporal
forecasting using machine learning models (random forests and long short-
term memory neural networks) to predict multimodal transportation

passenger flows (the number of boarding passengers at train stations, bus
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stops, and tram stops). Sifringer et al. (2018) proposed a hybrid model of
multinomial logit and dense neural network models to enhance conventional
discrete choice models. The study added the neural network result into the
utility function of the logit model. The study applied the model to a stated
preference survey on mode choices between cars, trains, and the Swissmetro
(a proposed inter-city express transit system project).

The major disadvantage of machine learning models is that they are
challenging to interpret. To overcome this limitation, interpretable or
explainable machine learning approaches, such as the Shapley additive
explanations (SHAP) method, are being proposed. Lee et al. (2021) predicted
users’ choice behaviors between express and all-stop metro trains using the
extreme gradient boosting (XGBoost) model. The study compared the effects
and importance of features that can affect the choice behaviors (total travel
times, in-vehicle times, waiting times, crowding, and the number of transfers)
using their SHAP values. However, it is still challenging to explain users’
specific behaviors using interpretable or explainable machine learning
methods. For example, those methods are difficult to estimate trade-offs
affecting user behaviors, such as the trade-off between travel time and the
number of transfers or the trade-off between time and cost. Also, the SHAP
value is affected by correlations between variables, which can result in wrong

interpretations.
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2.2. Recursive Logit Models

2.2.1. Recursive Logit Models with a Single Mode

RL model was first proposed by Fosgerau et al. (2013). The study
focused on a private car path choice by formulating the route choice as a
sequence of link choices. Link choices are formulated as a multimodal logit
model, and a recursive value function is proposed to formulate the overall
utility of a path. The study also proposed a concept of link size, which
corresponds to path size in path size logit models, to consider overlapping
paths sharing a single link. Mai et al. (2015) proposed a nested recursive logit
(NRL) model to compute the value function more efficiently. The study
concluded that NRL is better in terms of goodness of fit, based on log-
likelihood and test error of RL and NRL models. The study also focused on a
private car path choice. Zimmermann et al. (2017) applied the RL model to
bicycle path choice. Mai et al. (2021) developed a recursive logit model in a
stochastic time-dependent network to model car users’ routing policy choices.
The study also proposed an efficient algorithm to solve the model. Those
studies focused on the path choice of a single mode while not considering
mode choices. Although, unlike previous logit-based models, RL model does

not require path choice set generation and path sampling.
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2.2.2. Recursive Logit Models in a Multimodal Network

The first study to apply the RL model to a multimodal network and to
consider a mode choice is conducted by Zimmermann et al. (2018). The study
formulated public transportation users’ choices of combined modes and paths.
The study used in-vehicle time, waiting time, transfer dummy (1 if the link is
a transfer link; 0 otherwise), and link constant as link attributes. Tram and bus
dummies (1 if the link is a tram or bus link; 0 otherwise) multiplied by the in-
vehicle time were also included in link attributes. The study is the first to
integrate mode and path choices into a single RL model. Meyer de Freitas
(2018) and Meyer de Freitas et al. (2019) applied the RL model not only to
public transportation but also to a multimodal network consisting of public
transportation, private car, bicycle, and walking. The study formulated
travelers’ choices of combined modes and paths. The study used survey data
to identify travelers’ intermodal trip modes, and then the trips were routed
based on modes, origins, and destinations of each trip stage. The study used
link constant, transit transfer dummy (1 if the link is a transfer link between
transit lines), multimodal transfer dummy (1 if the link is a transfer link
between transit line and street network), bike dummy, car dummy, bus dummy,
tram dummy, heavy rail dummy, travel time, and headway dummies (H11 and
H16; H11 is 1 when the headway is between 11 and 16 minutes, H16 is 1

when the headway is longer than 16 minutes). Among them, bike dummy, car
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dummy, bus dummy, tram dummy, and heavy rail dummy were multiplied to
travel time to make those attributes link-additive. The study is the first to use
the RL model to simultaneously perform the mode and path choices in a
multimodal network. Nassir et al. (2019) proposed a combined model of a
recursive logit-based path choice model and a strategy-based transit route
choice model. The recursive logit model was used to model the path choice
on the network, including choices of boarding routes, alighting or transferring
stops, and transfer routes. The strategy-based transit route choice model is
similar to the previous optimal strategy model (Spiess & Florian, 1989).
However, the study proposed a stochastic measure of attractiveness to model
the choice of a transit route at a given stop. The study applied the combined
model to a network consisting of bus and rail services.

Previous studies dealing with recursive logit models could not consider
non-link-additive attributes, such as transit fares. In actual trip processes, the
fare or cost of the trip is an important factor in choice-making. Travelers often
choose paths with longer travel times or more transfers if their fares or costs
are cheaper than other alternatives, or they often choose more expensive paths
if they have shorter travel times or fewer transfers. Other non-link-additive
attributes, such as varying transfer penalty, also could not be considered in

previous RL models.
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2.3. Comparison of Recursive Logit Model and Other Models

Table 1 provides a summary of the literature review. Compared to the
RL model, other intermodal mode and path choice models have the following
limitations. First, the separate mode and path choice models cannot consider
a strong correlation between mode choice and trip assignment in intermodal
trips. Next, the iterative mode and path choice models can consider this strong
correlation, but they require a long time for estimation and prediction. This
can be a significant obstacle to practical applications, often requiring time-
efficient methodologies with short prediction times. The logit-based
simultaneous mode and path choice models can consider the correlation
between mode and path choices and have a relatively short prediction time.
However, the choice set of modes and paths must be prespecified by choice
set generation. The mode choice set is relatively easy to generate because the
number of possible alternatives is small: only individual modes and their
combinations are to be considered. However, this is not the case in path choice
set generation. Because there are practically an infinite number of alternative
paths, path sampling is needed to make a finite choice set. As mentioned by
previous studies, the choice generation and path sampling of alternative paths
can cause biases (Meyer de Freitas, 2018; Meyer de Freitas et al., 2019). Also,
rule-based methods, such as finding paths with the least transfers, or assuming

that users use the first vehicle arriving at a certain stop, are often used in path
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sampling. These rule-based methods are one of the factors causing biases in
path sampling: they can generate different choice sets when the rule is
changed. Also, some alternative paths with significant choice probabilities
can be omitted in the choice set if the path sampling is not carefully conducted.
Finally, machine learning models can predict the results of mode and path
choices directly and accurately within a shorter prediction time and without
any choice set generation. However, they are difficult to interpret, especially
in terms of users’ behaviors.

Compared to those models, RL models have the following advantages.
First, RL models can consider a strong correlation between mode and path
choices. Next, though RL models require a relatively long computational time
during estimation, once estimated, the prediction time of mode and path
choices using the RL model is short. Also, RL models do not require any
choice set generation of alternative paths, which can cause biases. With those
advantages, The RL model is promising to predict intermodal trip demands
on a multimodal network. Significantly, the model can simultaneously predict

the sequence of trip stages and their paths and modes.
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Chapter 3. Methodology

3.1. Recursive Logit Model

The recursive logit (RL) model was first proposed by Fosgerau et al.
(2013). As the study proposed, the path choice problem is expressed as a
sequence of link choice problems in multimodal logit models. Also, it is
assumed that link attributes are link-additive and deterministic.

The notation of the RL model used in this study follows the original
notations by Fosgerau et al. (2013), as shown in Figure 2. k is a link on
which a traveler is currently located. A(k) is a set of possible next links, or
actions, chosen sequentially after the current link k. The chosen next link is
denoted as a (a € A(k)). The destination node is denoted as D, and a
virtual link d is added after the node to formulate the recursive logit model
as a sequence of link choices.

On every link k, a traveler chooses the next link a that maximizes the
total utility, which is decomposed into two terms: instantaneous utility and
expected downstream utility. The instantaneous utility is a utility of choosing
the next link a conditional to the current link k. The expected downstream

utility is the expectation of utility of the downstream path from a to d.
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Expected downstream utility =12 (k)

........................................................................................................................................................................... '_

Figure 2. Notation of recursive logit model. Adapted from Fosgerau et

al. (2013)

The instantaneous utility of a traveler n choosing link a conditional

to current link k is expressed as Equation 1:

un(alk) = vn(alk) + peqn(a) (1

where v, (alk) is the deterministic term, &,(a) is a random error term that
is assumed identically and independently distributed (i.i.d.) extreme value
type 1 with zero mean, and u is the scale factor. The expected downstream
utility of a traveler n choosing link a conditional to current link k is

expressed as the Bellman equation (Bellman, 1957):

V() = E | max (va(alk) + V(@ + uen(@) | @

1 O i 1
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The probability of choosing a next link a conditionally to current link

k and destination link d is expressed as the multinomial logit model

(Equation 3):
bl exp (vn(alk)ij Vnd(a)) .
n a = I d /]
S areatio XD (vn(a Ik)#+ Vi (a ))

The solution of the value function V,¢(k) can be obtained by expressing

the value function as a logsum function (Equation 4), which is derived from

Equation 3:
Vi (k)
k) + V2
,ulnz 5(alk)exp <v”(a| )+ (a)> ey )
U
a€eA
0 k=d

where A is the set of links, and 6(alk) =1 if a € A(k) and O otherwise.

Equation 4 can be transformed into Equation 5:

1 O | ]
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ox (Vnd (k)>
PUw

)

d
- Z 5(alk)exp <vn(a|k)u+ t (a)) vk e A

1 k=d

acA

To express Equation 5 in a matrix form, let M (|4| x |4]), where 4 =
A U d, be the incidence matrix with instantaneous utilities. Then entries of M

can be expressed as Equation 6:

stalk vy (alk) Alk
My, = (al )exp< u > a € A(k) (6)

1 otherwise

Also, let z (|A|x1) and b (|A| X 1) be vectors with elements

defined as Equations 7 and 8:

v(k)
Ze=e K (7)

(0 k=#d
_{1 k=d ()

Then Equation 5 can be written in a matrix form as a system of linear

equations (Equation 9):
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z=Mz+b 9

The solution for z, or the solution for the value function V,¢(k), can be

obtained from Equation 10, which is derived from Equation 9:

b= (- M)z (10)

where I is an |/T | X |A | identity matrix. Equation 10 has a solution if (I —
M) is invertible.

The probability of choosing a path can be expressed using the Markov
property of the model. Let a path o be a sequence of links (ky, ..., k;) with
k;,1 € A(k;). Then the probability of choosing path ¢ is given by Equation

11:

-1 | | o a
P,?(O') — l_IeXp <Un(kl+1|kl) + Vn (kl+1) Vn (kJ)

i=0 K

I-1

Vit (ke n(kivalk;
09 )

i=0

o) ol

exp (_ @) S oren exp (@) (11)
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where v,(0) = Y3 v, (kip1lk;), and Q is the set of all possible paths,
which is an infinite and discrete set. Note that Equation 11 has a form of a

path-based multinomial logit model.

3.2. Link-Additive Approximation of Non-Link-Additive

Attributes

This study develops a methodology to approximate non-link-additive
path attributes to their corresponding link-additive link attributes to enable
those attributes to be incorporated into RL models. In this study, the
methodology is called “link-additive approximation.” Let o, (p =
1, 2, ..., P) beapath, where P is the number of observed paths. The path
attribute of path ¢,, which is non-link-additive, is denoted Ag,- Also, let
k,(l=1, 2, .., L) bealink, where L isthe number of links in the network.
The link attribute of link k;, which is link-additive and corresponds to the
path attribute, is denoted ay,. Also, let &4 be a binary variable that equals

one if k € o and zero otherwise. Then, the link-additive approximation of
the path attribute into its corresponding link-additive link attribute can be

expressed as Equation 12:
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L
Gy = Ty = ) So, VP E{L2,.,P) (12)
=1

where cf;p is the approximated path attribute corresponding to Ag,-

Equation 12 can be expressed as a matrix form. Let A,, A,, A, Ay be
matrices of path attributes, approximated path attributes, the relationship

between paths and links, and link attributes, as shown in Equations 13-16:

A, = Z] (13)

A, = ;i (14)
Sorks O

A= 50?,(1 5(,?,(2 ] (15)

A, = ZZ‘ (16)

Then Equation 12 can be expressed as a matrix form (Equation 17):

1 O | ]
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As = Ag = AAg (17)

Because A is not necessarily a square matrix and not necessarily
invertible even if it is a square matrix, the exact solution for Ag cannot be
usually obtained. Instead, the approximate solution for Ay, which is denoted
Ay such that Equation 18 can be obtained by the singular value
decomposition (Equation 19) and the Moore-Penrose Pseudoinverse method

(Moore, 1920; Bjerhammar, 1951; Penrose, 1955) (Equations 20-22).

argmin =~ — __argmin
A, N Aa—Asl="7

A = | AA, — Ag |l (18)
Equation 18 means that A} is a solution for A, which minimizes the

norm of the difference between Ay and AAy. To obtain A}, the singular

value decomposition of A is first obtained by Equation 19:
A =UzvT (19)
where U is an m X m orthogonal matrix, V is an n Xn orthogonal

matrix, and X is an m X n diagonal matrix when A is an m X n matrix.

Then, the Moore-Penrose Pseudoinverse of A 1is obtained by Equation 20:
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At =vztuT (20)

where A" is the Moore-Penrose Pseudoinverse of A, and £t isan nxXm

diagonal matrix, as shown in Equation 21, when X is an m X n diagonal

matrix, as shown in Equation 22:

L 5 ol
|51 |
2t =| I 21
1
o Lo
Sn
S1 0
Y= 0 s, (22)
0 0

Finally, A} is obtained by multiplying the Moore-Penrose

Pseudoinverse of A and A, as shown in Equation 23:

Aj, = ATA, (23)

In this study, Ay is called the link-additive approximation of Ay.
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3.3. Link-Additive Approximation by O-D Pairs

3.3.1. The Necessity of Link-Additive Approximation by O-D

Pairs

The link-additive approximation method explained in Section 3.2
conducts the approximation for all observed paths simultaneously. However,
the link-additive approximation results can be significantly different
according to the origins and destinations of those observed paths. For example,
on a network shown in Figure 3, there are three paths with different origin-

destination (O-D) pairs on each of Figure 3(a) and Figure 3(b).

e
““““““
«
.

(b)

Figure 3. Example of a network on which link-additive approximation
results differ by O-D pairs
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Values of the path attribute are the same both in Figure 3(a) and 3(b),
which are Az = [1000 1000 1000]". However, A} in Figure 3(a) is

calculated as Equations 24-26:

o R R
_ o o
omrR o
o O R
=)

] 24

[3/8  1/4 -1/8
| 1/8 -1/4 5/8 |
At =|-1/4 1/2 —1/4]| (25)
[ 5/8 —1/4 1/8
-1/8 1/4 3/8

3/8 1/4 -—-1/8 500

1/8 —1/4 5/8 [[1000 500
A =ATA, =|-1/4 1/2 -1/4 [1000] =( 0 (26)

5/8 —1/4 1/8 [l1000/ |500

-1/8 1/4 3/8 500

Meanwhile, A}, in Figure 3(b) is calculated as Equations 27-29:

] 27
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12 0 0
/2 0 0
At=]lo0 1 0 (28)
0 0 1/2
lo o 1/2]
1/2 0 O 500
[1/2 0 0 ] 10007 | 300 |
A,=A*Az=|0 1 O I[1000] 11000 (29)
| o o 1/2|l1000l |s500]
lo o 172l L 500 ]

Comparing Equations 26 and 29, the third entries of A}, are different: 0
in Figure 3(a) and 1000 in Figure 3(b).

This example shows the necessity of conducting the link-additive
approximation by O-D pairs. In this process, the observed paths should be
grouped by their origins and destinations. Then the link-additive

approximation should be conducted for each group.
3.3.2. Link-Additive Approximation by O-D Pairs

Let 8,, be a binary variable that equals one if the path o originates
from the origin o and zero otherwise. Also, let §,, be a binary variable that
equals one if the path o is destined to the destination d and zero otherwise.
Then, for observed paths that originate from o and are destined to d, the

link-additive approximation in Equation 17 is rewritten as Equation 30-32:
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[6061 6(10'1 acrl] [6001 6d01 601k1 6001 6d01 601 k,

60026d02 aO'Z 60026d0260'2k1 600’26(10'260_2’(2

800, 0f (40, 0frae,
6002 6d02 [aazl
0 ~IL o o L
6001 0 6d01 0 601k1 601k2
~ 5002 6d02 [602k1 602k2
0 0 : :

AAgA, ~ (A AgA)AY

where A,, Aq, and A‘l’{d are matrices defined as Equations 33-35:

8o, 0
AO = 800'2
0
8do, 0
Ad = 5d0'2
0
ap?
A(])(d = od

35

cee akl
od

od

akz

cee ak1
od
ak2

(30)

€2))

(32)

(33)

(34)
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Then the link-additive approximation of A%, defined as (A‘l’{d)*, is

calculated as Equation 36:

(A" =(A,AqA) T A,A4A, (36)

where (A,A4A)* is the Moore-Penrose Pseudoinverse of Ay AqA. When
the link-additive approximation is conducted by O-D pairs, Equation 36 is
evaluated for every group of observed paths with the same origins and

destinations.
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Chapter 4. Application

4.1. Overview of the Application

The methodology of this study is applied to a multimodal network and
intermodal trip data in Seoul, Korea. The multimodal network consists of road,
bus, and rail (subway and metropolitan railroad) networks. The intermodal
trip data consist of two data. The first data are the National Household Travel
Survey (NHTS) data which describe the information of individual trip stages
comprising a traveler’s trip: departure points, arrival points, modes, departure
times, arrival times, and the order of the trip stages. Since the NHTS data do
not include each traveler’s specific path, each trip stage of NHTS data must
be routed on a network to estimate the RL model. The second data, transit
smartcard data, are used for routing transit (bus and rail) trip stages.
Smartcard data describe transit users’ boarding station and time, alighting
station and time, mode type, route number (in case of bus trip stage), and fare
of each transit trip stage. While transit trip stages are routed based on
smartcard data, road trip stages are routed on a network by the shortest path.
The paths of trip stages are concatenated into each single-purpose trip.

This study incorporates two non-link-additive attributes: transit fare and
transfer penalty. The link-additive approximation was performed on the fares
of transit trip stages so that the approximated fare of each transit link could

<

—
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be obtained. The link-additive approximation of the transfer penalty is
performed by approximating the number of transfers and calculating
approximated transfer orders of links.

The application process can be divided into multimodal network
construction, preprocessing of intermodal trip data, link-additive

approximation, and multimodal RL model estimation, as shown in Figure 4.
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: Multimodal Network Construction
: / Road Network / / Bus Network / / Rail Network /
Multimodal Network

Preprocessing of Intermodal Trip Data

/ Smartcard Data / / National Household Travel Survey Data /
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and Times of Trip Stages
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v
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Figure 4. The overview of the application process
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4.2. Multimodal Network Construction

4.2.1. Description of Network Data

This study uses the National Standard Node-Link data provided by the
National Transport Information Center of Korea (National Transport
Information Center, 2016) as the road network. The network contains spatial
information of nodes and links of the road network and their corresponding
information: e.g., road name, road type, number of lanes, and maximum speed.
47,868 nodes and 127,326 directional links in Seoul and its vicinities were
used in this study.

For the bus network, the base information of bus routes and stops and
their spatial information were used. The travel time of each link between stops
was calculated based on wusers’ boarding and alighting stops and
corresponding times which are recorded in smartcard data. 14,588 bus stops
and 446,461 directional links of 628 bus routes in Seoul were used in this
study.

For the rail network, the base information of subway and metropolitan
rail lines and stations and their spatial information were used. The travel time
of each link between stations was calculated based on train log data, which
record each train's approach, arrival, and departure times by station. Train log

data are similar to train schedules, but the former are actual records of train
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approach, arrival, and departure times, while the latter are planned timetables
in which operational delays are not considered. 701 rail stations and 1,624

directional links of 20 rail lines in Seoul were used in this study.
4.2.2. Integration of Networks into the Multimodal Network

In the National Household Travel Survey data, each trip stage's departure
and arrival points are expressed in units of administrative neighborhoods
(“Dong” in Korean). Therefore, to complete a trip routing, connectors
connecting each neighborhood centroid and the nearest road nodes, bus stops,
and rail stations were constructed.

To consider transfers between bus routes, transfer links between adjacent
bus stops were constructed. This study uses the density-based spatial
clustering of applications with noise (DBSCAN) algorithm (Ester et al., 1996)
to identify and cluster adjacent bus stops to construct transfer links between
them. Let us assume that S; = (x;,y;) is the spatial coordinate of bus stop i.
With a given S;, its spatial neighborhood set N.(S;) defined by Equation 37

is classified as the same cluster with S; by the DBSCAN algorithm

Ne(S) = {(x5,5) € S|[|Geo v, (1, 3) || < €} (37

where S is the set of bus stops, ||4, B|| is the distance between points A
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and B, and ¢ is the predefined maximum distance (radius) between two
points for one to be considered as in the neighborhood of the other. In this
study, the radius was set as 100 meters: bus stops within 100 meters of each
other were considered transferable. If two or more bus routes share the same
bus stop, the bus stop was divided for each bus route to prevent a direct
connection between different bus routes. Then transfer links were constructed
between those divided stops.

To consider transfers between rail lines, transfer links between
transferable rail stations were constructed. If two or more rail lines share the
same rail station, the rail station was divided for each rail line to prevent a
direct connection between different rail lines. Then transfer links were
constructed between those divided stations.

Figures 5-14 show the multimodal network constructed in this study.
Figures 5 and 6 show the neighborhood centroids in Seoul, Figures 7 and 8
show the road network used in this study, Figures 9 and 10 show the bus
network used in this study, Figures 11 and 12 show the rail network used in
this study, and Figures 13 and 14 show the multimodal network consisting of

road, bus, and rail networks used in this study.
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Figure 12. Rail network in this study (enlarged)
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Figure 14. Multimodal network in this study (enlarged)
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4.3. Preprocessing of Intermodal Trip Data

4.3.1 NHTS Data Description

This study used NHTS data collected in 2016 (Korea Transport Database,
2016). Trips having both origins and destinations in Seoul were used. The
parameter estimation results of the RL model can differ according to trip
purposes. Among several trip purposes of the data, only trips to work were
used because the proportion of trips with this purpose is the largest. There are
several transportation modes in the NHTS data. This study uses walking,
private car, taxi, bicycle, and motorcycle as road modes; urban transit buses,
neighborhood buses, and metropolitan buses as bus modes; subway or
metropolitan railroad and light rail as rail modes. Because this study focuses
on urban commute trips, intercity buses, express buses, other buses, express
trains, intercity trains, small trucks, mid-sized trucks, large trucks, airplanes,
ships, and others were not used.

Among 32,094 trips and 97,175 trip stages satisfying those conditions,
10 percent of trips (3,209 trips and 9,710 trip stages) were used for model
estimation, and the rest were used to test the model. Table 2 describes the

information of each column in the NHTS data.
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Table 2. Description of the NHTS data (Korea Transport Institute,

2016)
Column Information

1 Household ID

2 Administration district ID

3 Region

4 Total members in the household

5 Total members in the household (=5 years old)

6 Administrative neighborhood code

7 Type of housing

8 iilt% ﬁggﬁl Mean monthly income

9 Ownership of cars
10-21 Car type and manufacture year
22-25 Number of motorcycles

26 Number of motorized or electric bicycles

27 Number of normal bicycles

28 Ownership and type of other vehicles

29 Number of other vehicles

30 Relationship to householder

31 Household member type

32 Year of birth

3 Household Sex

34 member Ownership of driver’s license

35 information Education

36 Administrative neighborhood code of the school
37-38 Occupation

39 Whether the member is a telecommuter
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40 Administrative neighborhood code of workplace
41 Number of working days per week
42 Full-time/part-time job
43 Whether the member serves transportation or
door-sales businesses
44-47 Year, month, date, and day of the trip
48 Whether the member made any trip
49 The reason why the member did not make any
trip
50 The order of the trip on the day
51-62 Trip purpose *
63-65 The departure time of the trip
66 v Type of origin of the trip
ri
67 informgti on | Administrative neighborhood code of origin of
the trip
68-70 Arrival time of the trip
71 Type of destination of the trip
7 Administrative neighborhood code of destination
of the trip
73 The order of the trip stage during the trip
74-94 Transportation mode **
95-97 The departure time of the trip stage
98 Type of origin of the trip stage
99 Trio st Administrative neighborhood code of origin of
TP stage the trip stage
~100- | information
102 Arrival time of the trip stage
103 Type of destination of the trip stage
104 Administrative neighborhood code of destination
of the trip stage
105 Occupancy during the trip stage (for private

vehicles or taxis)
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* Trip purposes are:
- To pick up or drop off others
- To return to the workplace after an outside work
- To return home
- To work
- To school
- To academy
- Trips related to work
- To shopping
- Leisure / Sightseeing
- To eat outside
- To visit friends or relatives
- Others (e.g., religious activities and personal affairs)

** Transportation modes are:
- Walking (except transfers)
- Private cars/private vans (driving self)
- Private cars/private vans (driven by another)
- Urban/rural transit buses
- Neighborhood buses
- Metropolitan buses
- Intercity buses
- Express buses
- Other buses (e.g., academy, charter, and tour buses)
- Subway or metropolitan railroad
- Light rail
- Express train
- Intercity train
- Taxi
- Small trucks (<2.5 tons)
- Mid-sized or large trucks (=2.5 tons)
- Bicycles
- Motorcycles
- Airplanes
- Ships
- Others
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4.3.2. Routing of Trip Stages

Since the NHTS data do not include each traveler’s specific path, each
trip stage of NHTS data must be routed on a network to estimate the RL model.
Road trip stages are routed on the road network by the shortest path. The
travel speed of each road link was considered to find the path with the shortest
time. For bus trip stages, smartcard data were used to route the trip stages.
The bus smartcard data contain each traveler’s used bus route, boarding and
alighting stops, and boarding and alighting times for every bus boarding and
alighting. Therefore, it is relatively easy to route bus trip stages on a bus
network. For rail trip stages, most rail smartcard data in Seoul do not contain
information regarding transfers between rail lines because users tag their
transit cards only at first boarding and last alighting stations, while no tag is
required during transfers between most rail lines. Therefore, this study uses
the method developed by Lee et al. (2019a, 2019b, 2021) to estimate rail users’
paths using the rail smartcard data and the train log data. Rail passengers’
boarding and alighting stations and times are matched to the approach, arrival,
and departure times of trains. Then the most likely combination of each
passenger’s boarded rail lines and trains among possible alternative
combinations is identified. The combination of rail lines and trains provides
the passenger’s traveled path on a rail network.

This study used smartcard data collected in 2017. It is assumed that trip
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patterns are the same in 2016 (the time scope of NHTS data) and 2017 (the
time scope of smartcard and train log data). Table 3 describes the information
of each column in the smartcard data. Each row in the smartcard data
represents a single trip stage traveled by bus or rail. To identify the overall
transit trip of each user, the rows were aggregated using virtual card ID and

the number of transfers.
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Table 3. Description of smartcard data

Column Information
1 Row ID
2 Virtual card ID
3 Region code
4 Card classification code
5-6 Vehicle ID
7 Vehicle registration code
8 Vehicle departure time from its depot
9 Vehicle arrival time to its depot
10 Mode ID
11-12 Route ID
13 Transit operator ID
14 Boarding date & time
15 Ticketing date & time
16-17 Boarding station ID
18 Alighting date & time
19-20 Alighting station ID
21 Transaction ID
22 Number of transfers
23 User classification ID
24 Number of users
25 Fare paid at boarding
26 Fare paid at alighting
27 Total travel distance
28 Total travel time

1 i)
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The resultant paths of trip stages are concatenated by trips to construct
the overall intermodal path of a trip. The intermodal path is then used for

estimating the RL model.

4.4. Incorporation of Non-Link-Additive Attributes

4.4.1. Transit Fare

This study regarded the transit fare as the first non-link-additive attribute
and conducted a link-additive approximation to derive approximated fares of
transit links. Transit fares are not link-additive if they are not linearly
proportional to travel distances, especially under flat or distance-based fare
systems. A flat fare system charges a fixed price regardless of the distance
traveled between boarding and alighting stations. Distance-based fare system
charges a fare based on traveled distance. Most distance-based fare systems
are divided into base fares and additional fares increasing by distance. Also,
the additional fares of most distance-based fare systems increase stepwise to
simplify the fare system. Figure 15 compares three transit fare structures:
link-additive, flat, and distance-based fares. Note that the link-additive fare is
linearly proportional to travel distance, which is a hypothetical fare system
and unlikely to exist in actual transit systems. Also, the distance-based fare

shown in Figure 15 consists of base fare and additional fare increasing in a
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stepped manner.
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Figure 15. Comparison of transit fare structures: (a) link-additive fare,
(b) flat fare, and (c) distance-based fare.



Also, some transit systems provide transfer discounts by reducing fares
of consecutive transit trip stages to encourage people to use transit. Under the
transfer discount, the fare of a transit trip is cheaper than the sum of individual
trip stages forming the overall trip. The existence of transfer discounts is
another reason why transit fares are not link-additive. The fare of a trip must
equal the sum of fares of its constituent trip stages under a link-additive fare
system.

In the transit systems of Seoul, both factors make their fares not link-
additive: flat/distance-based fare system and transfer discounts. In Seoul, the
bus fare system without transfers is flat regardless of traveled distance, and
the rail fare follows a distance-based system with a base fare. If there is any
transfer, the fare of the overall trip follows a distance-based system with a
transfer discount: the base fare of the trip is the highest base fare of constituent
trip stages, not the sum of their base fares. For example, when a traveler uses
a neighborhood bus (base fare at 900 won) and subway (base fare at 1,250
won) for 9 kilometers (no additional fare charged), the total fare is 1,250 won
(same as the subway’s base fare), not 2,150 won (the sum of base fares of the
neighborhood bus and the subway). Moreover, since it is impossible to know
rail passengers’ actual trip path, the rail fare is charged based on the shortest
distance between the first boarding and final alighting stations, regardless of
the actual path. This is also a factor making rail fares not link-additive. Table

4 shows the summary of the transit fare system in Seoul.
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Table 4. Transit fare system in Seoul (Seoul Metropolitan Government,
2022a; Seoul Metropolitan Government, 2022b)

Mode Fare Base fare* Additional
structure fare*
Trunk line &
most branch 1,200 won
line buses
Circular line &
some branch 1,100 won
line buses
Bus .
(without Metropolitan Flat 2,300 won -
buses
transfer)
Night buses 2,150 won
Neighborhood 900 won
buses
Without The hlghest.
. base fare of trip | 100 won
metropolitan
Bus buses stages per 5 km
(with Distance- (=10 km)
) based The highest
transfers) With :
) base fare of trip | 100 won
metropolitan ¢ Kk
buses stages per 5 km
(=30 km)
(sub %aﬂ ronolit Distance- | 1,250 won**
subway and metropolitan based (<10 km)
rail) : 10-50 km:
Without The hlghest. 100 won
: base fare of trip | per 5 km
metropolitan stages
Mitimodtt | P I Distance- | (<10km) | >50km:
rail) With based The highest 100 won
1t base fare of trip | per 8 km
metropolitan ¢
buses Sages
(=30 km)

* The fares are as of the temporal scope of this study (2016-2017)
** Some rail lines (Uijeongbu Light Rail, Yongin Everline, Shinbundang
Line, and Airport Railroad) have surcharges

1 O | ]
58 ."\."i ';'_' _.E Ly



4.4.2. Transfer Penalty

This study also regarded the transfer penalty as the second non-link-
additive attribute. A transfer penalty can be defined as the disutility of a
transfer, which is usually considered a fixed value (Nielsen et al., 2021). If
the transfer penalty per one transfer is fixed, the cumulative transfer penalty
is proportional to the number of transfers (Figure 16a). This is the case in
most previous studies. However, this study assumes that the transfer penalty
per one transfer can change according to how many a traveler has encountered
transfers so far, i.e., the order of the transfer. In this case, the cumulative
transfer penalty is not proportional to the number of transfers (Figure 16b).

This study considers the cumulative transfer penalty as nonlinear and
non-link-additive. Therefore, it is necessary to conduct the link-additive
approximation to the cumulative transfer penalty of a given path. However,
the exact value of the transfer penalty per one transfer is unknown and must
be estimated. Assuming the transfer penalty per one transfer as the constant,
which changes according to the transfer order only, the link-additive
approximation of cumulative transfer penalty can be calculated as Equations

38-39.
TP = Z Brr, j0rrj (38)
J
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TP = BrrB7ry (39)
J

where TP is the cumulative transfer penalty of a path, B, ; is the transfer
penalty of the j-th transfer, &r,; is a binary variable which equals one if the
path includes the j-th transfer and zero otherwise. TP is the link-additive
approximated transfer penalty and S/TT] is the link-additive approximation
of &ry;. As shown in Equations 38-39, to conduct the link-additive
approximation of cumulative transfer penalty, it is enough to conduct the

approximation of &z, ;.
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Figure 16. Fixed transfer penalty (a) and varying transfer penalty (b)
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4.5. Recursive Logit Model Specification

4.5.1. Models According to the Incorporation of Transit Fare

Four models are specified to compare RL models according to whether
link-additive approximated fare is included: MO, M1, M2, and M3. Model
MO does not include any fare. Model M1 includes fare proportional to link
length. Specifically, the base fare is applied to boarding links for buses,
whereas in-vehicle links are assumed free because buses have flat fare
structures. For rail links, the base fare of 1,250 won is applied to boarding
links, and the additional fare of 20 won/km is applied to in-vehicle links. In
both modes, alighting links are assumed free.

Models M2 and M3 include link-additive approximated fares. The link-
additive approximation was performed for all observed paths simultaneously
in Model M2, while it was performed by O-D pairs in Model M3. Equations
40-43 are specifications of RL models M0, M1, M2, and M3, respectively,
which are expressed as instantaneous utility functions in terms of link-

additive attributes.

MO: vn(alk) = ﬁConst + BTTTT + ﬁTr6Tr + Z Bi6i (40)

ieEM
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M1: vn(alk) = Bconst + BrrTT + Brr6rr + Z pid;

+ 6roadﬁFFroad + 6transitﬁFFlength

M2: 0(alk) = Boonse + BrrTT + frybpr + ) Bid
ieM (42)

+ 6road.3FFroad + 6transitﬂFFlmk

M3: 0 (all) = Bonst + BrrTT + Brydrr + ) Bid
iEM (43)

od
+ 6roadﬁFFroad + 6transitﬁFFlmk

where v,(alk) is the instantaneous utility of a link, Bcons: 1S a link
constant, and By, Brr. PBr, and fB; are coefficients. TT is the link travel
time, dr, is a binary variable which equals one if the link is a transfer link,
and zero otherwise. §; is a binary variable that equals one if the link is a link
of mode i, and zero otherwise. M 1is a set of possible modes consisting of
road modes (private car, taxi, bike, or motorcycle), bus, and rail in this study.
Fy0aq, Which is included only in M1-3, is the out-of-pocket cost of road
vehicles: the sum of fuel cost, parking fee, and toll. The fuel cost is assumed
to be 140.68 won per kilometer, and the parking fee is assumed to be 2,520
won (Korea Transport Institute, 2021). The toll was applied only for toll roads,

and their actual toll prices were applied. Fepngen, which is included in M1, is

1 O | ]
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the transit link fare which is assumed as proportional to link length. Fj,,x

and FP% , which are included in M2 and M3, are the link-additive

approximated fares of transit links or the out-of-pocket costs of road links.

For transit links, Fj,, in M2 is the result of link-additive approximation

performed for all observed paths at the same time; F2%  in M3 is the result

of link-additive approximation performed by O-D pairs.
4.5.2. Models According to the Incorporation of Transfer Penalty

To compare RL models according to whether link-additive approximated
transfer penalty is included, model M4 was also specified. Model M4 includes

the approximation of &7, ; (a binary variable that equals one if the path

includes the j-th transfer and zero otherwise), which is essentially the link-
additive approximated transfer penalty. The transfer penalty was
approximated by O-D pairs only. Also, the approximation was conducted only

for transfer links. Equation 44 is the specification of M4.

M4: vn(alk) = .8C0nst + .BTTTT + Z .BTr,j(S?g,]
J
(44)

+ Z ,Bidi + Sroad.BFFroad + (StransitﬁFFl(L)gk
iEM
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where 6#' ; 1s the link-additive approximation of &7, ; by O-D pairs.
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Chapter 5. Results

5.1. Link-Additive Approximation Result

5.1.1. Link-Additive Approximation for All Observed Paths

Figure 17 shows the out-of-pocket cost of road links. Though the out-of-
pocket cost is not the result of the link-additive approximation, it is shown
here for comparison. Figures 18 and 19 show the link-additive approximation
results of transit fares performed for all observed paths simultaneously. Figure
18 shows link-additive approximated bus fares, and Figure 19 shows link-

additive approximated rail fares.
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Figure 18. Link-additive approximation result of bus fares
(approximation performed for all observed paths)
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Figure 19. Link-additive approximation result of rail fares
(approximation performed for all observed paths)

5.1.2. Link-Additive Approximation by O-D Pairs

The link-additive approximated results performed by O-D pairs are
shown by some example O-D pairs in Figures 20-27. Figures 20-23 show
link-additive approximated bus fares, and Figures 24-27 show link-additive
approximated rail fares. Note that the link-additive approximation 1is
performed only for links included in any path connecting those O-D pairs.
Therefore, links shown in Figures 20-27 also show alternative paths between
the O-D pairs.

As shown in Figures 20-27, multiple paths can exist between those O-D

] i .
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pairs. Some paths have significant detours compared to the shortest paths. For
example, in Figure 20, one of the paths is stretched southeastward of the map
and retraces its path backward to reach its destination. Because transit trips
are routed based on the smartcard data of actual users, those paths with
unreasonably long detours are caused by users who are detoured in such a
manner. Most of those detours are actually two different trips connected
within a short time. The smartcard system in Seoul regards two consecutive
transit trip stages as a transfer if the time difference between first alighting
and second boarding is less than 30 minutes. In this case, two different transit
trips can be connected by a transfer and show a significant detour. In the actual
RL model estimation, those transit trips with significant detours have a

negligible effect because the proportion of those trips is very low.
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Figure 24. Link-additive approximated rail fare from Nokbeon-dong to
Yeoksam 1-dong
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Figure 25. Link-additive approximated rail fare from Daebang-dong to
Jamsil 3-dong
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Figure 26. Link-additive approximated rail fare from Yeoksam 1-dong
to Sogong-dong
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Figure 27. Link-additive approximated rail fare from Jamsil 4-dong to
Gonghang-dong
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5.1.3. Accuracy of Link-Additive Approximations

The approximated link fares are not actual fares charged to travelers
passing a link. Therefore, it must be verified whether the link-additive
approximation accurately reflects actual fares on individual links. To evaluate
the accuracies of two link-additive approximation methods proposed here,
path fares of transit trip stages are reconstructed based on approximated link
fares and compared to actual path fares. Table 5 shows the result of accuracies
of two link-additive approximation methods: link-additive approximation for
all observed paths and link-additive approximation by O-D pairs. There were
3,333 trip stages of which path fares were reconstructed and compared, and
their mean path fare was 1,508 won, which is the same for actual and
reconstructed ones.

This study used three indices to evaluate the accuracies: root-mean-
squared error (RMSE, Equation 45), mean absolute error (MAE, Equation 46),

and mean absolute percentage error (MAPE, Equation 47).

RMSE =\/ ?=1(yi_f(x"))2 (45)

n

?=1|yi _f(xl)l (46)

n

MAE =
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n
i=1

47
MAPE = *7)

X 100 (%)

where n is the number of data (the number of alternative intermodal paths),
y; is the actual dependent variable (the actual probability of choosing a

certain intermodal path), and f(x;) is the predicted dependent variable (the

predicted probability of choosing a certain intermodal path).

Table 5. Accuracies of link-additive approximation methods

Approximation for all Approximation by O-D
observed paths pairs
Number of
transit trip 3,333
stages
Actual mean
path fare 1,508 won
Reconstructed 1,508 won 1,508 won
mean path fare
RMSE 143.9 won 120.4 won
Error | MAE 96.2 won 53.9 won
MAPE 6.78% 4.23%

As shown in Table 5, the approximation by O-D pairs is more accurate

compared to the approximation for all observed paths. The error decreases by

44.0% in the approximation by O-D pairs compared to the approximation for

all observed paths in terms of MAE.
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5.2. RL Model Estimation Result

5.2.1. Parameter Estimation Results

The parameter estimation result of M0, M1, M2, and M3 is given in
Table 6. As shown in Table 6, the coefficients of link travel time, transfer
dummy, and link fare (or link cost) are negative. This is reasonable because
travelers prefer paths with shorter travel time, fewer transfers, and cheaper
costs. Also, a model with a higher log-likelihood value or lower AIC value
has a better goodness-of-fit. In terms of goodness-of-fit, M3 has the best
goodness-of-fit, followed by M2, M1, and MO.

It is shown that by including the transit fare, a non-link-additive attribute,
the goodness-of-fit of the RL model can be improved. Especially, model M3,
which has the link-additive approximated fare by O-D pairs, has better
goodness-of-fit than model M2, which has the fare approximated for all

observed paths.
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Table 6. Parameter estimation result of RL models (M0-M3)

Parameters / Variables MO MIl M2 M3

Bconst Constant -2.4352 -2.4703 -2.4791 | -2.3356
Brr Linﬁggst)ime 0.1438 | -02079 | -02239 | -02110
Brr Transfer dummy -4.7638 -4.7674 -4.7683 | -4.6974
Br Lin(kl g%rivc(’;;’“t . 0.1100 | -0.0996 | -0.0579
Bpus | Bus link dummy 1.0541 1.0411 1.0379 1.0212
Brair | Rail link dummy | 0.4130 0.4091 0.4081 0.3994

Broaa | Road link dummy 1.2972 1.2686 1.2614 1.2311
Log-likelihood -20.036 -18.120 | -17.641 | -13.957
AIC* 52.072 49.840 49282 | 41913

* AIC: Akaike information criterion;, AIC= —2 X(log-likelihood)+2 X

(number of variables).
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The parameter estimation result of M3 and M4 is given in Table 7. As
shown in Table 7, the goodness-of-fit of M4 is better than M3 in terms of log-
likelihood and AIC. Also, the absolute values of coefficients fr, 1, Brr, 2,
Prr, 3, Brr,4 Increases by the order of transfer, which means that the transfer
penalty increases by the number of transfers. In other words, a traveler regards

the transfer more uncomfortable if the number of transfer increases.
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Table 7. Parameter estimation result of RL models (M3 and M4)

Parameters / Variables M3 M4
Bconst Constant -2.3356 -2.3352
Brr Link travel time (minutes) -0.2110 -0.2112
Brr Transfer dummy -4.6974 -

Brr, 1 Ist transfer dummy - -3.0211
Brr, 2 2nd transfer dummy - -4.2434
Prr,3 3rd transfer dummy - -5.2595
Brr, 4 4th transfer dummy - -6.1155
Br Lin(kl g%riv‘(’go“ 10.0579 10.0579
Bous Bus link dummy 1.0212 1.0203
Brail Rail link dummy 0.3994 0.3996
Broad Road link dummy 1.2311 1.2319
Log-likelihood -13.958 -10.904

AIC* 41913 41.808

* AIC: Akaike information criterion;, AIC= —2 X(log-likelihood)+2 X
(number of variables).
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5.2.2. Discussion of Parameter Estimation Results

From the parameter estimation results, useful indices and policy
implications can be derived. Especially, the trade-off between trip-related
attributes, such as the value of time (trade-off between time and cost) and the
value of transfer (trade-off between time and transfer), can be easily derived
from the estimated parameters of the RL model. The value of time (VOT), in

terms of trip cost, can be derived as shown in Equation 48:

VOT (won/hour)

Brr(min~h) (48)

= Br((100 won) 1)

X 100 x 60

This study's value of transfer (VOTR) is defined as the equivalent travel

time per transfer. VOTR can be derived as shown in Equation 49:

VOTR(min/transfer)

_ Brr(transfer1) (49)

Brr(min~1)

The results of VOT and VOTR are shown in Table 8.
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Table 8. The results of values of time and transfer

Parameters / Variables MO M1 M2 M3 M4

Link travel

Brr | time (mimutes) | “0-1438 | 02079 | 02239 | -02110 | 02112
23,0211 (1%)
_ nd
Br, Transfer | 4 7638 | 47674 | 4.7683 | 4.6974 | 42434 2")

-5.2595 (31)
-6.1155 (41)

dummy

Link fare or

Br | cost (100 won) - -0.1100 | -0.0996 | -0.0579 | -0.0579

Value of time

VOT - 11,340 | 13,488 | 21,865 21,886
(won/hour)
st
Value of 213 13 ((21nd)
VOTR transfer 33.1 22.9 21.3 22.3 5 4' 9 (3“@
(min/transfer) 29.0 (4%)

The VOT and VOTR in previous studies are shown in Table 9. The
difference between the previous and this studies’ VOT and VOTR can be due
to the difference in model structures, variable selection, regions, and trip

purposes.
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Table 9. The values of time and transfer in previous and this studies

Value of Time (VOT)

Study Region vVOT Remark
Ministry of Land, 6,355-12,322 won/hour All
Infrastructure, and | Seoul, Korea (value in 2020) UIDOSES

Transport (2022) purp
. 11,340-21,886 won/hour Trips to
This Study Seoul, Korea (value in 2017) work
Value of Transfer (VOTR)
VOTR (equivalent in-
Study Region vehicle time per transfer, Remark
minutes)
Yoo (2015) Seoul, Korea 11.24 X (transfer time)
Garcia-Martinez et Madrid, 15.2 + 1.14 X (waiting
al. (2018) Spain time)+0.79 X (walking time)
Nielsen et al. Copenhagen, 7.92+0.15 X (waiting Commute
(2021) Denmark time)+0.69 X (walking time) trips
Jara-Diaz et al. Vitoria, 18.4
(2022) Spain '
. Trips to
This Study Seoul, Korea 14.3-33.1
work
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5.3. RL Model Test Result

5.3.1. Test of RL. Models

To prove that including transit fare to the RL model improves the model's
applicability, not only its goodness-of-fit, the test of RL models was also
conducted. To test the accuracy of RL models, this study used the rest of
NHTS data (28,885 trips and 87,465 trip stages) which were not used for
model estimation. Because intermodal paths constructed in this study are not
actual paths due to the lack of spatial trajectory information in the NHTS data,
the orders, modes, and transfer points of trip stages comprising a trip are used
for the prediction instead. The RL model is stochastic rather than
deterministic, which predicts the probability of using a certain path among
possible alternative paths. Therefore, this study compared the predicted and
actual probabilities of choosing alternative paths of intermodal trips
according to O-D pairs. The test set of trips was classified into 7,145 groups
according to origins and destinations, and 15,313 alternative intermodal paths
according to orders, modes, and transfer points. The prediction accuracy was
evaluated by three indices: root-mean-squared error (RMSE), mean absolute
error (MAE), and mean absolute percentage error (MAPE).

Figure 28 shows an example of alternative paths between a certain O-D

pair and compares their actual and predicted path choice probabilities. In
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Figure 28, there are three alternative paths. Path 1 consists of three stages:
Stage la by bus, Stage 1b by rail, and Stage 1c by bus. The transfer point
between Stage la and Stage 1b is Transfer Point 1A, and the transfer point
between Stage 1b and Stage 1c is Transfer Point 1B. Path 2 consists of a single
stage: Stage 2 by car. Path 3 consists of three stages: Stage 3a by bike, Stage
3b by rail, and Stage 3¢ by bus. The transfer point between Stage 3a and Stage
3b is Transfer Point 3A, and the transfer point between Stage 3b and Stage 3¢
is Transfer Point 3B. Each path can be characterized by a vector of the orders,
modes, and transfer points of constituent trip stages. In this manner, Path 1 is
characterized by a vector P1 = (0, Bus, 14, Rail, 1B, Bus, D). Also, Paths 2
and 3 are characterized by vectors P2 = (0,Car,D) and P3=
(0, Bike, 3A, Rail, 3B, Bus, D), respectively. If there were 10 trips between
O and D, in which 5 trips used Path 1, 3 trips used Path 2, and 2 trips used
Path 3, then their actual path choice probabilities are 0.500, 0.300, and 0.200,
respectively. As Figure 28 shows, if their predicted choice probabilities are
0.530, 0.307, and 0.163, respectively, then MAE, MAPE, and MAE are

calculated as 0.0278, 0.0245, and 8.944%, respectively.
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Stage 1b
Stage 1a  Transfer (Rail) Transfer

: ‘ Stage lc
(Bus) po;r(n; 1A @ point 1B (Bus)
Path1 ™ . S—_— S
. Path 2 = Stage 2 (Car) I -
Origin @ @ Destination
Stage 3a  Transfer Transfer Stag;c 3
(Bike)  point 3A  Stage 3b  point 3B (Bus)
(Rail)
.. . . Actual path choice Predicted path choice
Origin | Destination Alternative path probability probability
Path 1 P1 = (0, Bus, 14, Rail, 1B, Bus, D) 0.500 0.530
(0] D Path 2 P2 = (0,Car,D) 0.300 0.307
Path 3 P3 = (0,Bike, 34, Rail, 3B, Bus,D) 0.200 0.163

(0.500 — 0.530)2 + (0.300 — 0.307)2 + (0.200 — 0.163)2
RMSE = 2 =0.0278

[0.500 — 0.530] + [0.300 — 0.307| + |0.200 — 0.163]

MAE = 3 = 0.0245
|0.500 — 0.530 n 10.300 — 0.307 + [0.200 — 0.163
MAPE = | 0.500 | 0.3300 | 0.200 % 100 = 8.944%

Figure 28. Description of the RL model testing

5.3.2. Test Result of RL Models

Table 10 shows the test result of M0-M4. As shown in Table 10, M4 has

the least error in terms of RMSE, MAE, and MAPE, followed by M3, M2,

M1, and MO.
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Table 10. Test result of RL models

Accuracy index MO M1 M2 M3 M4
RMSE | Root-mean- | o100 1008952 | 0.07686 | 0.06941 | 0.06559
square error
MAE | Meanabsolute |\ ooc o 00520 | 006774 | 0.06117 | 0.05956
CITor
MAPE | Meanabsolute | o 00|10 vaor | 17039 | 15.47% | 15.06%

percentage error
Note: n=15,313

It is shown that by including the transit fare, a non-link-additive attribute,
the prediction accuracy of the RL model can be improved. Especially, model
M3, which has the link-additive approximated fare by O-D pairs, is more
accurate than model M2, which has the fare approximated for all observed

paths.

5.3.3. Comparison with Benchmark Models

To compare the accuracy of this study’s RL models to other models, two
widely used logit-based path choice models, the multinomial logit model
(MNL) and path-size logit model (PSL), were used as benchmark models.
Both models calculate the path choice probability as shown in Equation 50,
whereas the utility functions of MNL and PSL are shown in Equations 51 and

52, respectively.



P.. = 50
m Zlecn eVn e
MNL: Vni = ﬁCOTLSt + BTTTTL' + z ﬁTr,j(aTr,j)i + ﬁFFi (51)
J
PSL: Vi = Beonst + BrrTT; + Z rBTr,j(aTr,j)i + BrFi
j (52)

+ BpscPSC;

where P,; is the probability of traveler n to choose path i, C, is the
choice set of traveler n, and V,; is the deterministic term of the utility

function of traveler n to choose path i. Bconse is a constant, Brr, Brr, j,
PBr, and Ppgc are coefficients, TT; is the travel time of path i, (6Tr.j)i is

a binary variable that equals one if path i includes the j-th transfer and zero
otherwise, and F; is the cost of path i. PSC; (Equation 53) is the path-size

correction factor of path i.

L,
PSC; = — Z “In z 5., (53)
i

aer; leCy

where [; is the set of links included in path i, L, is the length of link a,

and &, is a binary variable that equals one if link a is included in another
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path [ and zero otherwise.

The variables used for the benchmark models are travel time, transfer
order, and trip cost, similar to this study’s RL model. The path choice set of
the benchmark models consists of actual paths in the smartcard data for transit
trip stages and the shortest path for road trip stages.

The test results of the benchmark models are shown in Table 11.
Though PSL showed a smaller error than MNL, both models showed higher

errors compared to this study’s RL models.

Table 11. The test result of benchmark models

Accuracy index MNL PSL
RMSE Root-mean-square error 0.45473 0.21507
MAE Mean absolute error 0.20761 0.14278

Mean absolute percentage
error

MAPE 55.4% 38.1%

Note: n=15,313
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Chapter 6. Conclusion

6.1. Conclusion

This study proposes a methodology to include non-link-additive
attributes to the RL model for predicting users’ intermodal path and mode
choices on a multimodal network. To achieve this, this study developed a link-
additive approximation method that approximates a non-link-additive path
attribute into a corresponding link attribute that holds the link-additivity. The
link-additive approximation is performed by the singular value
decomposition and Moore-Penrose Pseudoinverse methods. The
methodology is applied to the actual multimodal network and intermodal trip
data in Seoul. The multimodal network consists of road, bus, and rail
networks. The intermodal trip data is mainly the National Household Travel
Survey data, supported by transit smartcard data for routing the transit trip
stages. Transit fare and transfer penalty were used as non-link-additive
attributes in this study, and the link-additive approximation method was
applied to them, both for all observed paths and by O-D pairs.

To compare RL models with respect to the inclusion of link-additive
approximated transit fare, this study specified four models: MO without fare,
M1 with the fare proportional to link length, M2 with the fare approximated

for all observed paths, and M3 with the fare approximated by O-D pairs. Also,
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to compare RL models with respect to the inclusion of link-additive
approximated transfer penalty, this study specified model M4.

The models were estimated using 10% of the dataset (3,209 trips and
9,710 trip stages out of 32,094 trips and 97,175 trip stages). Among the
models, model M4, which includes both transit fare and transfer penalty,
shows the best goodness-of-fit in terms of log-likelihood and AIC. It was
followed by M3, M2, and M1, with MO showing the worst goodness-of-fit.
As a remarkable result, the transfer penalty per one transfer increased by the
number of transfers, indicating that a traveler regards a transfer more
uncomfortable with the increasing number of transfers. Also, the values of
time and transfers could be derived from the estimation results.

The models were tested using the rest of the dataset (28,885 trips and
87,465 trip stages). The testing was performed by comparing the predicted
choice probabilities of alternatives connecting a certain O-D pair to the actual
choice probabilities. Because the actual trajectories were unknown, the orders,
modes, and transfer points of trip stages were used instead. As a result, all of
the RL models showed better accuracies compared to benchmark models,
MNL and PSL. Among them, the model M4 showed the best accuracy. It was
followed by M3, M2, and M1, with M0 showing the worst accuracy among
RL models.

All of the results showed that the inclusion of link-additive approximated

transit fare and transfer penalty in the RL model improves both goodness-of-
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fit and accuracy of the model. Especially, the link-additive approximation by
O-D pairs showed better goodness-of-fit and accuracy compared to the link-

additive approximation for all observed paths.

6.2. Practical Implications

The RL model is promising to predict intermodal trip demands on a
multimodal network. Especially, the model can predict the sequence of trip
stages and their paths and modes simultaneously. However, several problems
have obstructed the application of the RL model in practice.

First, the model takes a long time to estimate, especially when the dataset
is large. However, this is not a significant problem because the estimation is
seldom needed in practice, considering that the estimated parameter values
for mode choice models are already given in guidelines or handbooks. For
example, in Korea, the Transportation Infrastructure Investment Evaluation
Manual provides the estimated parameter values for logit mode choice models
among private cars, buses, and rail (Ministry of Land, Infrastructure, and
Transport, 2017; Ministry of Land, Infrastructure, and Transport, 2022).

Next, the RL models could not incorporate non-link-additive variables,
especially transit fares. In actual trip-making, travelers regard the fare or cost
of a mode or path alternative as very important, as well as travel time or the

number of transfers. However, previous studies dealing with RL models did
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not consider fares of transit trip stages or out-of-pocket costs of road trip
stages. So far, this was one of the significant problems which disabled the
application of the RL model in practice. This study’s methodology would be
one of the solutions to this problem by enabling the fares or costs to be
incorporated into the RL model.

For the application of the RL model in practice, the collection of data
and information related to travelers’ intermodal trips should also be more
specific than now. The National Household Travel Survey data used in this
study do contain the orders, modes, departure, and arrival times/locations of
trip stages, but they do not contain specific trajectories of the trip stages.
Because of this problem, this study had to estimate and assume the trajectories
of trip stages, which are not guaranteed that the estimated trajectories are the
same as the actual ones. With the future adoption of the RL model to the
practice of travel demand prediction, it is recommended that the dataset
contain specific information regarding travelers’ spatial trajectories as well as
already being collected information of trip stages: orders, modes, departure
and arrival times/locations. Foreign studies conducted by Montini et al. (2017)
and Zimmermann et al. (2018), which collected GPS trajectories of travelers
and applied them to the path and mode choice models, could be examples.

Suppose the RL model replaces current deterministic models of travel
demand predictions in the practice, e.g., optimal strategy model (Spiess &

Florian, 1989) widely used in transit demand assignment. In that case, it is
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expected that transit users’ actual behaviors of path and mode choices can be
reflected much more realistic. Also, in the increasing number of intermodal
trip-making and the increasing need for modeling intermodal trip behaviors,
the RL model would be much more appropriate than the conventional path
and mode choice models to predict intermodal trip behaviors.

The estimation results of parameters can provide some important indices
in policy, such as VOT and VOTR derived in this study. Other indices can
also be derived using the estimated parameters. Those indices also can be

applied to other purposes, especially in policy, such as feasibility analysis.

6.3. Limitations of This Study and Future Research

In this study, two non-link-additive attributes, transit fare and transfer
penalty, were considered. Other non-link-additive attributes, such as waiting
time reliability, in-vehicle time reliability, or crowding, also should be
considered in future studies. Some aspects that can potentially affect travelers’
trip-making, such as safety, comfort, or path circuity (the total path length
divided by Euclidean distance between origin and destination), would also be
worth considering.

The estimation of the RL model needs a long computational time, which

can be an obstacle to its application in practice. A computationally efficient

methodology or algorithm to shorten its estimation time also should be
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proposed in the future. The estimation of the RL model in this study only used
3,209 trips, which is less than 0.1% of the total daily trips in Seoul. Because
RL models are computationally expensive, other studies dealing with the RL
model also used only hundreds or thousands of trips. With the development
of a computationally efficient algorithm to estimate the RL model, a larger
dataset should be used to estimate the model in the future.

Also, with the limited modes in the National Household Travel Survey
data, this study only considered some of the road modes (walking, private car,
taxi, bicycle, and motorcycle), bus modes (urban transit buses, neighborhood
buses, and metropolitan buses), and rail modes (subway, metropolitan railroad,
and light rail). With the emergence of new mobility services, such as ride-
hailing, demand-responsive transportation (DRT), and shared mobility, the
future NHTS survey or dataset regarding intermodal trips should also include
such modes.

In addition, as mentioned above, this study could not use the actual
trajectories of the intermodal trips. In the future, data collection and
information related to travelers’ intermodal trips, especially their trajectories,
should also be more specific than now. Using the dataset, intermodal trip
trajectories predicted by RL models also should be compared to actual

trajectories.
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