
 

 

저 시-비 리- 경 지 2.0 한민  

는 아래  조건  르는 경 에 한하여 게 

l  저 물  복제, 포, 전송, 전시, 공연  송할 수 습니다.  

다 과 같  조건  라야 합니다: 

l 하는,  저 물  나 포  경 ,  저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.  

l 저 터  허가를 면 러한 조건들  적 되지 않습니다.  

저 에 른  리는  내 에 하여 향  지 않습니다. 

것  허락규약(Legal Code)  해하  쉽게 약한 것 니다.  

Disclaimer  

  

  

저 시. 하는 원저 를 시하여야 합니다. 

비 리. 하는  저 물  리 목적  할 수 없습니다. 

경 지. 하는  저 물  개 , 형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


   

공학박사 학위논문 

 

Generalized Driving Risk Assessment 

in Highway Using Risk Field Approach  

리스크 필드 접근법을 활용한 고속도로의 

일반화된 주행위험 평가기법 개발 

 

 

 

 2023년 2월 

 

 

서울대학교 대학원 

공과대학 건설환경공학부 

주 양 준 

 

  



   

Generalized Driving Risk Assessment 

in Highway Using Risk Field Approach 

 

지도 교수  김 동 규 

 

 

이 논문을 공학박사 학위논문으로 제출함 

2023년   2월 

 

서울대학교 대학원 

공과대학 건설환경공학부 

주 양 준 

 

주양준의 공학박사 학위논문을 인준함 

2023년   2월 

 

위 원 장       이   청   원       (인) 

부위원장       김   동   규       (인) 

위    원       고   승   영       (인) 

위    원       박   신   형       (인) 

위    원       박   준   영       (인)



   

Generalized Driving Risk Assessment 

in Highway Using Risk Field Approach 

 

Advisor: Dong-Kyu Kim 

 

 

Submitting a Ph.D. Dissertation of Engineering 

February 2023 

 

Graduate School of Engineering 

Seoul National University 

Civil & Environmental Engineering 

Yang-Jun Joo 

 

Confirming the Ph.D. Dissertation written by  

Yang-Jun Joo 

February 2023 

 

Chair            Chungwon Lee       (Seal) 

Vice Chair        Dong-Kyu Kim       (Seal) 

Examiner         Seung-Young Kho    (Seal) 

Examiner         Shin Hyoung Park    (Seal) 

Examiner         Juneyoung Park      (Seal)



 i 

Abstract 

 
This study provides a generalized method, which visually 

captures multiple conflicts in various scenarios, for assessing the driving 

risk encountered by on-road vehicles for driver support and automation 

systems. To this end, this study employs risk field theory. The risk field 

approach defines any obstacle to a vehicle as a finite scalar field using 

the predictive position of the obstacle. This study proposes a modified 

risk field called the conflict field that captures the driver’s subjective risk 

perception to quantify the level of conflict. The proposed conflict field 

provides a visually intuitive basis to assess the extent of the conflict and 

proactively quantifies the risk of the situation in real-time 

 This study compares the proposed method with existing conflict 

measures for three driving situations (i.e., car-following, yielding, and 

lane changing) using highway naturalistic driving data. As a result, the 

proposed method imposes a higher risk for multiple risky interactions 

than for a single risky interaction and is generally consistent with post-

encroachment time (PET). Lastly, a sensitivity analysis investigates the 

parameters assumption and the predictive position’s bias and variance. 

The major innovative aspect of this study is to simultaneously assess the 

various types of multiple conflicts with adjacent vehicles and provide 

their potential conflict locations. Therefore, the proposed driving risk 

assessment method can provide robust and stable safety criteria for the 
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autonomous vehicle system in a generalized way. 

 

Keywords: Risk field, Generalized driving risk assessment, Traffic 

conflict, Real time risk assessment 
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Chapter 1. Introduction 
 

1.1. Background 

While there have been substantial improvements in autonomous 

vehicle (AV) technology in recent years, the safe operation of 

autonomous vehicles (AVs) remains a concern. Passengers will likely be 

hesitant to use AVs unless AV technology can demonstrate a high safety 

level enough to overcome users’ psychological barriers and fears (Shariff 

et al., 2021). These barriers and fears include a possible AV algorithm 

malfunction in an emergency and an unknown consequence due to the 

inevitable interactions with pedestrians and motorcycles. In addition, 

aggressiveness in the driving behavior of human drivers in non-AV 

vehicles when interacting with AVs can cause potentially risky situations 

(Lee et al., 2021). These concerns have raised attention to assessing the 

risk associated with AV operations in a mixed traffic environment, where 

AV and non-AV are mixed. Unfortunately, ensuring that AV maneuvers 

are safe in mixed and resultantly complex traffic conditions where there 

could be countlessly different driving situations is arguably very 

challenging. It is mainly due to significant differences in adjacent human 

drivers’ reaction time, aggressiveness, and many other unobserved 

heterogeneities (Arun et al., 2021b; Ba et al., 2016; Mannering and Bhat, 

2014; Taeihagh and Lim, 2019).  
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AVs constantly adjust their driving maneuvers as they recognize 

surrounding vehicles and other moving objects as obstacles to avoid 

(Chen et al., 2021; Katrakazas et al., 2015; Machado-León et al., 2016). 

The technology in an AV continuously updates the risk associated with 

the possible trajectory of the AV by continuously estimating the 

trajectories of adjacent obstacles (AVs, non-AV vehicles, pedestrians, 

street furniture, etc.) (G. Li et al., 2021). Previous studies have tried to 

quantify the risk associated with these obstacles by using traffic conflict 

indicators (Arun et al., 2021a). Traffic conflicts occur far more frequently 

than actual crashes. For that, it is easier to estimate the risk associated 

with conflicts than to evaluate crash risk in real-time. Typical conflict 

indicators and their predefined threshold differentiate traffic situations 

into two possibilities: conflict and non-conflict situations (Arun et al., 

2021a; Zheng and Sayed, 2019).  

Driving situations vary widely according to numerous factors, 

including intersection geometry (four-leg intersection, roundabout, etc.), 

conflict type (angle, rear-end, etc.), and road user types (vehicle, 

pedestrian, motorcycles, etc.) (Arun et al., 2021b, 2021a; Wang et al., 

2021a). Previous studies have noted the importance of the choice of 

appropriate conflict indicators and their associated thresholds to ensure 

that the choice made is appropriate for the driving situation and roadway 

environment (Shi et al., 2018; Wang et al., 2018; Zheng and Sayed, 2019). 

For example, the time-to-collision (TTC) and modified time-to-collision 
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(MTTC) are known to be the two most popular conflict indicators for 

rear-end collision, whereas the post-encroachment time (PET), the lane 

change risk index (LCRI) are more appropriate measure to estimate the 

conflicts during the lane changing situation (Chen et al., 2021; Park et al., 

2018; Zheng and Sayed, 2019).  

The situation-dependent conflict indicators fragment the risk 

assessment model, using different conflict indicators depending on the 

specified driving situations. The fragmented model splits a vehicle’s 

moving trajectories (or itineraries) into small pieces called fragments and 

applies the most suitable conflict indicators that could be different for 

each fragment (Scholtes et al., 2021). However, switching between 

conflict indicators according to the possibly widely different driving 

situations in numerous fragments is hard to provide a continuous risk 

assessment as the approach cannot guarantee seamless transitions 

between different driving situations (Kolekar et al., 2020). The conflict 

indicators and associated thresholds must be matched to continuously 

changing driving situations for the fragmented model to function 

correctly. Yet, it is impossible, a priori, to identify all possible driving 

situations, match the driving situations to the most appropriate conflict 

indicators, and determine the optimal thresholds for each conflict 

indicator according to the vast number of different driving situations 

(Arun et al., 2023, 2022; Mannering and Bhat, 2014). 

Although some recent studies try to apply multiple conflict 
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indicators to estimate the risk for more than one driving situation, further 

research is still needed to mitigate the challenges associated with 

applying situation-dependent conflict indicators in risk assessment (Arun 

et al., 2022; Shi et al., 2018). Especially for AVs, the current fragmented 

model cannot provide a seamless risk assessment of the AV’s anticipated 

short-term trajectory for motion planning, which designs the AV’s 

anticipated short-term driving behaviors (moving trajectory) over time (G. 

Li et al., 2021). It is partly because the AV’s anticipated short-term 

trajectories on public roadways can be too many at a level that engineers 

cannot easily match proper conflict indicators to all possible driving 

situations (Wang et al., 2019). In addition, the conflict indicators mainly 

assess the rear-end crash risk for one pair. Therefore, if multiple vehicles 

interact simultaneously, it is necessary to distinguish which vehicle is 

primarily in conflict clearly. 

In physics, a field (e.g., gravitational, electric, or magnetic field) 

is represented as the distribution of a physical space. Field theory is an 

area of study that investigates the rules of motion for moving objects and 

the objects’ interactions within a predefined study field. Some recent 

studies have proposed using field theory to develop a risk field based 

assessment for potential traffic crashes (Kolekar et al., 2020; Lee and 

Kum, 2019; G. Li et al., 2021a; Mullakkal-Babu et al., 2020). The risk 

field-based assessment assumes that every vehicle and road user 

generates a series of risk fields on their anticipated short-term trajectories 
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while traveling on a roadway (Kolekar et al., 2020; Tan et al., 2021). The 

risk field defines any obstacle to a vehicle as a finite but continuously 

varying scalar field in each moment that should be avoided (Mullakkal-

Babu et al., 2020). According to this risk field based approach, AVs (and 

indeed any vehicle) can continuously estimate a level of risk and 

determine their short-term driving maneuvers (e.g., 

acceleration/deceleration and steering) as appears appropriate according 

to the estimated level of risk (Kolekar et al., 2020; Lee and Kum, 2019; 

G. Li et al., 2021; Mullakkal-Babu et al., 2020).  

A risk field-based assessment has been applied to evaluate the 

risk associated with car-following driving behaviors by investigating 

interactions between two moving objects (e.g., vehicles and pedestrians) 

and interactions between moving objects and static objects (e.g., road 

boundary and traffic signals) (Tan et al., 2021). Arun et al. (2023) provide 

the most recent field theory-based assessment application by estimating 

possible traffic conflicts between vehicles at signalized intersections. 

They reported that their risk field-based approach produced more 

accurate results in predicting crash frequencies as well as crash severities 

than existing conflict indicators. Arun et al. also stated clearly in the study 

that this approach can greatly enhance the real-time risk assessment 

involved with AVs. Our study, therefore, can be regarded as an extension 

of Arun et al.’s (2023) research in the sense that we also applied the field 

theory to estimate the risk of AVs under diverse traffic situations (car-
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following, lane-changing maneuvers, etc.) and tried to evaluate the safe 

operation of AVs on future roadways real-time basis(Arun et al., 2023). 

 

1.2. Study goals and objectives 

The main goal of this study is to propose a generalized method 

of assessing the driving risk involved with AVs and non-AVs operation 

real-time basis. Notice that this approach imitates the human driver’s risk 

perception procedure and proposes a conflict field, which is defined as 

the overlap in risk fields generated by different vehicles (AVs and non-

AVs). The conflict field is designed to capture the perceived risks caused 

by all possible interactions between adjacent vehicles driving in close 

proximity. We use field theory to quantify and visualize the holistic risk 

of various driving situations. The specific objectives of this study are to:  

1) Formulate a generalized risk assessment method that can be 

applied to various driving situations that can include multiple 

interactions between AVs and non-AVs;  

2) Visualize the AVs’ perceived risk in a 3-dimensional risk field 

and provides a quantitative estimate of the total risk for 

adjacent traffic users (non-AVs);  

3) Develop an approximation method for accelerating 

computation to be used in real-world traffic situations real-

time basis  
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4) Compare the proposed approach with two widely used 

existing conflict indicators (TTC, MTTC, and PET) under 

three distinct traffic situations (car-following, yielding, and 

lane-changing situations).  

The rest of this paper is organized as follows. Section 2 provides 

the case study site (i.e., US-101 highway), data preprocessing procedure, 

and the analysis scenarios. Chapter 3 briefly introduced a deep-learning 

prediction model to design the risk field and provide three steps to 

reproduce our proposed method. First, it introduces a noble concept of 

the conflict field. Second, it provides a risk field design procedure with 

the predictive trajectory distribution. Third, it provides an approximation 

method to integrate the values in the conflict field in real time. Chapter 4 

exhibits overall scenarios, compares the proposed method and conflict 

measures (i.e., TTC and PET) and discusses this study’s key findings. At 

the last part of Chapter 4, this study performs sensitivity analysis on the 

parameter and the prediction model performance. Finally, Chapter 5 

concludes the study and discusses future work.  
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Chapter 2. Literature Review 
 

2.1. Surrogate safety of measures (SSM) 

2.4.1. Strength of SSM 

Since the late 1960s, Surrogate safety measures (SSM) have been 

used to analyze road safety. Due to the benefits of using SSM, it serves 

as the basis for proactive countermeasure preparation. SSM is an 

indicator that evaluates driving safety through proxy indicators that can 

express safety instead of analyzing past crash history to evaluate the 

driving safety of vehicles. SSM provides insight into crash analysis by 

identifying the cause of the collision, accompanied by the risk profile, 

compared to safety assessments using only the data of observed accidents.  

Traditionally, road safety analysis analyzes crash data to predict 

collision probability. However, this approach has numerous drawbacks: 

1) Crash data analysis is reactive. It is practically difficult to 

attain the aim of zero traffic fatalities and serious injury collisions since 

safety evaluation depends on collisions occurring to evaluate the level of 

safety.  

2) Due to the crash’s rarity, at least five to ten years of crash data 

are typically required for the number of crash to be statistically significant. 

During this time, intersection configurations and road user patterns may 

substantially change. 
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3) Crashes and injuries are underreported in many localities, 

rendering crashes data incomplete and occasionally unreliable. 

Due to these factors, numerous road safety studies have turned to 

SSM. The SSM techniques aim to shorten the data collection cycle by 

identifying specific surrogate indicators highly correlated to the risk of 

collisions, which occur much more frequently than collisions. Unlike 

crash studies, which require many years of data, surrogate safety studies 

require only 30 to 60 hours of trajectories from nearly any camera or 

LiDAR, making it a time- and cost-efficient method(Arun et al., 2022; 

Essa and Sayed, 2019; Fu and Sayed, 2022). 

The hierarchy of road user interactions ranges from undisturbed 

passengers (no interaction or proximity whatsoever) to fatal crashes. 

SSMs enable the indirect observation of crashes by examining 

interactions that are considered crash precursors. By examining 

interactions in serious, modest conflicts, and undisturbed interaction, one 

may collect data that allows us to estimate the likelihood of severe crashes. 

In previous studies, SSM has been estimated to have a close relationship 

with crashes (Arun et al., 2021b, 2021a). In particular, traffic conflict 

techniques have commonly been used to define traffic conflicts in events 

where SSM crosses predefined thresholds. 
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2.4.2. Types of SSM 

Since SSMs are aimed at quantitatively describing dangerous 

situations, conflicts can be evaluated from various perspectives, such as 

temporal, spatial, and kinematic proximity. Among the SSMs, temporal 

proximity measures were the most widely applied. Time-to-collision 

(TTC) and Post-encroachment time (PET) were the most widely used 

temporal proximity measure. Equation 1 and 2 shows TTC and PET, 

respectively. 

 

𝑇𝑇𝐶𝑖 =  
Δ𝑑(𝑡)

∆v(t)
∀∆v(t) > 0      (1) 

 

Where, 

∆d(t) ∶  relative distance   

∆v(t) ∶  relative speed  

 

 

PET =  𝑇𝑏 − 𝑇𝑎           (2) 

 

Where, 

𝑇𝑏 : Time of ego vehicle′s conflict point  

𝑇𝑎 : Time of preceding vehicle′s conflict point  
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Temporal crash proximity measures capture the intensity of 

conflicts in terms of time immediately before a crash, regardless of the 

application context(Arun et al., 2021a). TTC and PET express the 

temporal proximity to crash as a time. TTC represents the time it takes to 

reach the collision point when the two observed road users maintain their 

current speed and direction. On the other hand, PET corresponds to the 

time difference when one road user enters this point after exiting the 

expected collision point. Both TTC and PET can be used for all 

interactions, but most previous studies have used TTC to indicate the risk 

of rear-end crashes. When the predicted trajectories of road users intersect, 

PET has been used most frequently. As a variant on TTC, Modified-TTC 

(MTTC), which assumes that the current acceleration is maintained up to 

the point of collision, is proposed to complement the constant velocity 

assumption of TTC(Essa and Sayed, 2019). Equation 3 shows MTTC. 

 

𝑀𝑇𝑇𝐶(𝑡) =
−Δ𝑣(𝑡)±√Δ𝑣(𝑡)2+2𝑑(𝑡)∙Δ𝑎(𝑡)

Δ𝑎(𝑡)
∀

1

2
𝛥𝑎(𝑡)𝑡2 + 𝛥𝑣𝑡 > 𝑑(𝑡)(3) 

 

Where,  

∆𝑣(𝑡) ∶  relative speed 

∆𝑎(𝑡) ∶  relative acceleration   

∆𝑑(𝑡) ∶  relative distance   
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Although MTTC was reported to have a higher correlation with 

accidents than TTC in a study by Essa et al., 2019, additional verification 

is needed for other study sites (Essa and Sayed, 2019). Other indicators 

modifying TTC include time-integrated time-to-collision (TIT), which 

indicates the degree to which TTC falls below a specific threshold 

(Rahman et al., 2019). However, few studies used it to capture temporal 

proximity. Equation 4 shows TIT. 

 

∫ [𝑇𝑇𝐶∗ − 𝑇𝑇𝐶(𝑡)]𝑑𝑡, ∀0 ≤ 𝑇𝑇𝐶(𝑡) ≤ 𝑇𝑇𝐶∗𝑇

0
   (4) 

 

Where, 

𝑇𝑇𝐶(𝑡): TTC at time t 

𝑇𝑇𝐶∗: Traffic conflict threshold 

 

In addition, SSMs such as spatial proximity, kinematic indicators, 

and their mixing and combinations are also applied to the crash analysis 

depending on the application context (e.g., road geometry, study site). 

However, although various SSMs have been used, a verification study on 

the appropriateness of SSMs is needed for all different types of traffic 

conditions. Few studies have been undertaken on the relationship 

between SSM and incidence, and the context of SSM application has been 

largely neglected. SSM development applicable to various traffic 
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situations, including vulnerable road users such as pedestrians and 

motorcycles, is a viable solution for safety research by replacing existing 

SSMs requiring verification for numerous traffic scenarios. 

Spatial proximity measures capture proximity to crash in terms 

of space. For example, Stopping sight distance (SSD) measures the 

required distance to stop a vehicle when decelerating after the driver’s 

reaction time (typically 1.5 ~ 2.5 sec). Equation 5 shows SSD. 

 

𝑆𝑆𝐷(𝑡) =  
𝑣(𝑡)2

254×(𝑓+𝑔)
+ 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 × 𝑣(𝑡)  × 0.278 (5) 

 

Where, 

𝑣(𝑡): speed of vehicle [km/h] 

𝑓: friction coefficient 

𝑔: grade with decimal 

 

The spatial proximity measures have been used to measure 

conflicts with relatively low frequency. The main reason is that the spatial 

proximity measurement method is suitable only for measuring long-

distance conflicts. For example, it is unsuitable for urban traffic situations, 

such as intersections requiring relatively short distances, because it is 

valid only for conflicts encountered at high speeds over long distances, 

such as highways (Park et al., 2018). 
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SSMs can be mixed to represent to illustrate the complex conflict 

process. For example, the aggregated crash propensity metric (ACPM) 

evaluates the driving safety of the current situation by comprehensively 

utilizing four indicators: TTC, reaction time, required deceleration rate, 

and maximum available deceleration. It assumes various factors, such as 

occupancy of nearby lanes, and the possibility of changing direction and 

speed, jointly affect the current driving situation’s risk(Wang and 

Stamatiadis, 2014). However, since the researcher’s subjectivity plays a 

significant role in creating the formula for mixed indicators, further 

research is still needed to quantify the strength of the generally used 

avoidance maneuver. Accordingly, there is a limit to using verified 

indicators in measuring crash risk. 

The simultaneous use of various SSMs can be expressed as a 

combination of indicators. The difference from mixed indicators that use 

multiple indicators simultaneously is that they are not expressed as a 

single value. For example, an event in which a TTC or deceleration rate 

falls below a specific threshold can be defined as a conflict. The method 

of measuring conflict through various indicators describes only a fraction 

of the individual SSMs conflict, so all kinds of conflicts can be measured 

by using multiple indicators comprehensively. Of the 386 studies 

conducted between 2010 and 2019, 27% used one or more SSMs. Of the 

studies using one or more SSMs, 43% used TTC and PET (Arun et al., 

2021b). In the case of the predictive performance of an accident, it was 
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reported that the predictive performance was better when predicting using 

two indicators than when TTC and PET were used alone (Arun et al., 

2022; Essa and Sayed, 2019). 

Unlike the presented SSM, the crash severity SSMs aim to 

measure the crash’s severity when it occurs. It is generally accepted to 

assume that the expected crash severity is proportional to the amount of 

impact generated at the time of the collision. The motion caused by the 

crash is inelastic; thereby, the two vehicles move simultaneously after the 

crash. The popular crash severity SSM is the deceleration rate to avoid 

collision (DRAC) given by Equation 6 and 7 

 

𝐷𝑅𝐴𝐶 =
(𝑣2−𝑣1)2

2𝑑12
 ∀ v2 − v1 > 0     (6) 

𝐷𝑒𝑙𝑡𝑎 − 𝑉 =
𝑚2

𝑚1+𝑚2
√𝑣1

2 + 𝑣2
2 − 2𝑣1𝑣2𝑐𝑜𝑠𝜃12   (7) 

Where, 

𝑣1, 𝑣2  : speed of vehicle 1 and 2 

𝑑12 ∶distance between vehicle 1 and 2 

𝑚1, 𝑚2  : mass of vehicle 1 and 2 

𝜃12 ∶ steering angle between vehicle 1 and 2  

 

 The Severe Crash Metric (SCM) is calculated using the 

exponential of the Delta-V, and the aggregated severe crash metric 

(ASCM) is the average of the probabilities of crashes given severity type.   
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ASCM are estimated conditionally on time-to-collision (TTC), 

maximum available deceleration rate (MADR), and driver’s reaction time 

(RT). Equation 8 and 9 shows Severe Crash Metric (SCM) and ASCM. 

 

If RT < TTC ; or  

If RT > TTC and DRAC >  MADR;  then 

Severe Crash Metric (SCM) = (
Δv1

𝛼
)

𝛽

+ (
Δv2

𝛼
)

𝛽

− (
Δv1

𝛼
)

𝛽

(
Δv2

𝛼
)

𝛽

 (8) 

ASCM = ∑ SCM 
𝑖,𝑗 ,       (9) 

 

Where, 

i, j: index of conflicting pairs of vehicles. 

𝛼: Constant parameter 

 

Laureshyn et al., proposed Extended Delta-V considering 

deceleration after crash (Laureshyn et al., 2017). Equation 10 and 11 

shows modified v for extended Delta-V. 

 

𝑣1 = {
𝑣01 − 𝑎1𝑡, 𝑖𝑓(𝑣𝑜1 − 𝑎1𝑡) ≥ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (10) 

𝑣2 = {
𝑣02 − 𝑎2𝑡, 𝑖𝑓(𝑣𝑜2 − 𝑎2𝑡) ≥ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (11) 

 

Where, 

𝑣01, 𝑣02: the initial speeds (m/s) of the ego and conflicting vehicle at the 

start of the conflict,  
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𝑡 : the duration of conflict (sec).  

𝑎1, 𝑎2 ∶ deceleration rate during conflict 

 

Then Delta-V is calculated as the formula given above. Ma et al 

proposed another severity SSM considering its crash angle(𝜃) with the 

delta kinetic energe (∆𝐾𝐸), as show in Equation 12 (Ma et al., 2018). 

 

∆𝐾𝐸 =
1

4
(𝑣1

2 + 𝑣2
2) −

1

2
𝑣1𝑣2𝑐𝑜𝑠𝜃12    (12) 

 

Where, 

𝑣1
 , 𝑣2

 : speed of vehicle 1 and 2 

𝜃12: steering angle between vehicle 1 and 2 

 

Comprehensive safety often consider both the severity of the 

accident and the frequency of the accident. In order to express the 

indicators representing this at once, it is common to define and use the 

indicators representing accident severity and accident frequency in the 

form of multiplication. As an example, the event failure index captures 

overall driving risk, proposed by Park et al. (2018). Equation 13 shows 

the event failure index. 

 

Event failure index = REL × RSL    (13) 
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Where, 

Risk exposure level (REL): the ratio of exposure to a dangerous situation 

Risk severity level (RSL): the expected accident severity of the situation. 

 

The SSM sets a specific threshold and defines a conflict and non-

conflict state. Therefore, depending on threshold’s choice, the pattern of 

conflict and the relationship between accidents appear differently—

failure to properly select the threshold results in the wrong safety 

countermeasures. A study by Essa et al. (2015) showed that the linear 

relationship was significantly changed by the threshold of SSM in the 

conflict measured through simulation (Essa and Sayed, 2015). Therefore, 

the choice of SSM threshold should consider the context of the conflict, 

as the choice of SSM.  
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2.2. Field theory-based risk assessment 

2.2.1. Potential field indicator 

Field theory originated from physics, which defines the 

distribution of physical forces between particles as fields and explains the 

relationship through the physical field. When simulating the movements 

of road users, human safety motivations and safety-relevant behaviors 

must be taken into account in addition to the normal dynamics of road 

users. As a result, previous research has aimed to simulate the inherent 

importance of safety in driving decisions, particularly in robotic route 

guidance and path planning.  

The risk field, which had no clearly defined bounds, indicated 

the range of potential routes that a vehicle may take at any one time, 

assuming that no other objects were in the way. The risk field postulate 

the concept of "valence" or an object’s appeal, and stated that the safe 

travel area has a positive valence that directs the vehicle (ref). As a result, 

acceleration was the action taken to reach the desired velocity, and 

steering was the drivers’ series of responses to objects of negative valence 

that helped them keep the vehicle heading towards the middle of the field 

of safe travel. The ego vehicle took evasive action within a minimal 

stopping zone if the field of safe travel of one vehicle. 

By introducing an artificial potential field function to direct robot 

motions in a physical environment, previous studies operationalized this 
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theory in the field of robotics. The artificial potential formulated a 

repulsive component that governs collision avoidance and an attracting 

component that directs the robot’s movement in the desired direction. The 

repulsive force was defined as the negative gradient of the potential field 

containing the obstacles and the movement destination located at the 

global energy minimum. These two components together represent the 

overall potential at any one time, which acts as a virtual force on the robot 

and vehicle. 

The field theory-based risk assessment approach assumes that 

just as two particles have the force to repel each other, the vehicle also 

has the force to repel each other. Figure 1 shows the relationship between 

particles and the vehicle safety assessment based on field theory. 

 

 

Figure 1. Conceptual diagram of safety evaluation based on field theory 
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The force acting between two typical particles is expressed as 

Yukawa potential. Yukawa potential is shown in Equation 14. 

 

𝑉(𝑟) =  −𝑔2 𝑒
−𝑚𝑟

𝑐
ℎ

𝑟
      (14) 

 

Where, 

𝑉(𝑟) : magnitude of the potential generated around the particle,  

m: the particle’s mass. 

r: the distance from the particle. 

 

Yukawa potential’s potential decreases as the distance r from the 

particle increases, and so does the force’s magnitude. It is a risk field-

based safety assessment technique that defines the forces between 

vehicles by applying the field theory concept found in physics. 

The formulation of intensity generated by vehicles is an actively 

studied area. Since the literature has employed a variety of functional 

forms, including Gaussian and Yukawa potential, choosing a functional 

form for the risk potential is a crucial decision. The particles of Yukawa 

potential do not consider the shape of the field generated by the particles’ 

motion; thus, it is not easy to apply them in the same manner to the 

vehicle. In addition, unlike particles, the vehicle has different volumes 

and masses, and the driving characteristics vary depending on the driver, 
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so there is a lack of generalized indicators. This chapter reviews the 

potential functions expressed in previous studies for applying the risk 

field (or safety potential field), and the implications are derived 

accordingly.  

A field with the potential to push out surrounding objects created 

by the vehicle (by threatening them) is called a risk field. Li et al. (2020) 

defined the risk field’s intensity with the vehicle’s dynamic state, 

including equivalent mass, speed, acceleration, and steering angle. The 

mathematical expression of equivalent mass is shown as Equation 15. 

 

𝑀𝑖 =  𝑚𝑖 ∙ (1.566 ∙ 10−14 ∙ 𝑣6.687 + 0.3345)   (15) 

 

Where, 

𝑀𝑖 : the equivalent mass of object vehicle i  

𝑚𝑖 : its actual vehicle mass. 

 

The equivalent mass increases as velocity increases; therefore, the 

safety risk of the object vehicle at high speed is significantly greater than 

that of the vehicle at low speed.  

During the driving process, an object vehicle’s sphere of 

influence is limited; it will only affect a small number of neighboring 

vehicles. With increasing distance, the influence will diminish 

significantly. The interaction between two cars is analogous to the 
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interaction between two particles, as represented by the Yukawa potential. 

Li et al. (2020) constructed a vehicle potential field function in response 

to this and the preceding influence factor study, as shown in Equation 16. 

 

 𝐸𝑣 = 𝑀𝑖 ∙ 𝜆 ∙
𝑒−𝛽1𝑐𝑜𝑠𝜃

(√[(𝑥−𝑥0
𝜏

𝑒𝑎𝑣]
2

+[(𝑦−𝑦0)𝜏]2)

𝜁 ∙
𝑘′

|𝑘′|
   (16) 

 

where, 

𝜆, 𝛽1 : determined coefficients,  

𝜃: the angle formed by any point around the object vehicle 

𝑀𝑖: Equivalent mass center of the object vehicle 

a: the acceleration of the object vehicle’s current motion state 

k’: pseudo-distance 

 

The pseudo-distance represents the generalized distance 

considering vehicle’s moving direction and the corresponding risk 

perceiving. The pseudo-distance is shown by Equation 17. 

 

𝑘′ = √[(𝑥 − 𝑥0
𝜏

𝑒𝑎𝑣]
2

+ [(𝑦 − 𝑦0)𝜏]2    (17) 

 

Where, 

𝜙 : the clockwise vehicle steering angle 
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𝜏: Critical threshold of the safe distance 

𝑎: Constant parameter 

 

Equation 10 assumes that a vehicle should maintain a safe distance 

behind an object vehicle in its lane, although it is permitted to be close to 

a side obstacle or the road’s boundary. They also assumed that driving 

risk should be similar when the vehicle is 30 m behind the ego vehicle 

and 2.0 m at the ego vehicle’s side. 

In Equation 9, the equivalent mass corresponds to a charge in 

the Yukawa potential and decreases exponentially with the distance away 

from the vehicle’s location (𝑥0 , 𝑦0 ). There is no unit for the force 

transmitted from the potential to the surrounding vehicle; accordingly, 

only relative comparison is possible. The magnitude of the force from the 

potential generated by the risk field is defined by Equation 18. 

 

𝐹𝑣
𝐴𝐵 =  −𝑚𝐵 ∙ 𝑒𝛽2∙𝑣𝐵∙𝑐𝑜𝑠𝜙 ∙ |𝐸𝑣

𝐴|    (18) 

 

Where 

𝐹𝑣
𝐴𝐵 : to the force of vehicle A from vehicle B, 

𝑚𝐵: the mass of vehicle B 

𝑣𝐵: the speed of vehicle B 

𝜙 is the steering angle of vehicle B 
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 𝐸𝑣
𝐴 : the size of the risk field generated from vehicle A. 

 

If the magnitude of the force is integrated with the distance, the 

safety potential field energy (SPFE) can finally be obtained with 

Equation 19. 

 

𝑆𝑃𝐹𝐸 = − ∫ 𝐹𝐴𝐵𝑑𝑟
𝑟𝐴𝐵

∞
= −𝑚𝐵𝑒𝛽2∙𝑣𝑏∙𝑐𝑜𝑠𝜙 ∙ ∫ |𝐸𝑣

𝐴|𝑑𝑟
𝑟𝐴𝐵

∞
 (19) 

 

By linearly adding SPFE to multiple vehicles and road geometry 

as follows, the Potential Field Indicator (PFI) that quantifies the risk felt 

by the driver can be calculated. PFI is weighted sum of SPFE, as shown 

in Equation 20. 

 

𝑃𝐹𝐼𝑗 = w𝐿 ∙ SPFE𝐿
𝑗

+ w𝐵 ∙ SPFE𝐵
𝑗

+ w𝑉 ∙ SPFE𝑉
𝑗
  (20) 

 

Where, 

w𝐿 , w𝐵 , w𝑉  : weight of the SPFE of lane, boundary and vehicle, 

respectively 

 

SPFE of lane and boundary was formulated the samely as Equation 

11, based on the pseudo-distance k’ from lane marker and road boundary. Li 

et al.(2020) did not provide calibrated parameters for constructing SPFE. The 
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safety potential field parameters of vehicles with varying degrees of 

autonomy should vary. For model calibration, a substantial amount of real 

trajectory data of vehicles at each level is still necessary. 

 

2.2.2. Risk force 

Arun et al. (2023) proposed risk force quantifying the driver’s 

perceived risk using Coulomb’s law, similar to Li et al. (2020) quantified the 

risk based on Yukawa potential. Coulomb’s law is shown in Equation 21. 

 

𝐸 =
1

4𝜋𝜖

𝑞1

𝑟2 �̂�        (21) 

 

Where, 

E: Potential energy 

𝜖: Permittivity of medium 

𝑞1: charge of particle 1 

𝑟, �̂�: the size of vector r and unit vector or r, respectively 

 

Coulomb’s law describes that a elctro charged particle generates 

electromagnetic fields equidistantly according to the amount of charge, 

the permittivity constant (𝜖), and the distance between particles (𝑟). Risk 

force risk severity with the Delta-V and vehicle’s mass along with speed 

and steering angle. Equation 22 shows risk force defined by Arun et al., 
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(2023) (Arun et al., 2023) 

 

𝐹𝑢𝑙𝑡,21 = |𝐹𝑠𝑒𝑣,21 ∙ 𝐹𝑐𝑜𝑙𝑙,21| ∝ (𝑚∆𝑣)
𝑣𝑟,12 cos(𝜃12−𝐾𝛼1)

𝜖𝑅
∙

𝑄1𝑄2

𝑑12+∆𝑑
 (22) 

 

Where, 

𝐹𝑠𝑒𝑣,21 : the risk force of severity. 

𝐹𝑐𝑜𝑙𝑙,21 : the risk force of collision between vehicle 1, 2,  

𝐹𝑢𝑙𝑡,21 : The ultimate risk force 

 

𝐹𝑢𝑙𝑡 allows for the modeling of the entire traffic interaction and 

provides estimates of the likelihood of a crash and the severity of the 

crash. The risk potential (𝑄1) of the driver-vehicle combination consider 

response time and maximum available deceleration rate. Equation 23 

formulate risk potential. 

 

𝑄1 = (𝑒
𝜉

𝛽𝑟1𝑇𝑟,1
𝛽𝑣1𝑏𝑚𝑎𝑥,1)     (23) 

 

Where, 

𝑇𝑟,1: the response time of driver 1 

𝑏𝑚𝑎𝑥,1 : the maximum available deceleration rate. 

𝜉, 𝛽𝑟1,𝛽𝑣1 : the constant vehicle characteristic constant.  
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The risk potential is higher for road users with longer response time, 

while higher 𝑏𝑚𝑎𝑥,1 lowe the risk potential. Therefore, the risk potential 

variable incorporates vehicle-related heterogeneity. 

The risk field parameters was fitted based on the crash data on the 

study site. Arun et al.(2023) estimated proposed parameterse by solving for 

the roots of for each crash cases with Equation 24. A simulated 

obtimization technique can be applied to fit parameters but was not 

addressed further in this paper. 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑(1 − 𝐹𝑐𝑜𝑙𝑙,21)
2
     (24) 

 

The optimal parameter values were those that produced the 

predictive power to the crash estimation. However, in Arun et al.(2023)’s 

study, the parameter was hard to converge using crash history; its 

coefficient of variance was larger than 10. Therefore, measuring parameters 

through driving simulators or drivers’ biometric data, which can obtain 

more data, may compensate for these limitations. 

As a result of reviewing previous studies, the size of the risk field 

of the vehicle is determined by the following factors. 

1) Vehicle speed: The severity of the crash increases in 

proportion to the vehicle speed, and the size and shape of the risk field 

are determined by the speed and direction of the surrounding vehicle. 
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2) Distance: The closer the distance between the two vehicles, 

the larger the size of the risk field. Pseudo distance is also used in 

consideration of the direction of progress. 

3) Vehicle mass: The larger the vehicle mass, the greater the impact 

and the higher the crash severity 

4) Types of conflict pair: The size of the risk field varies depending 

on the type of stationary object (e.g., lane, road boundary) and the moving 

object (e.g., vehicle, pedestrian, motorcycle). 
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Chapter 3. Method 
 

3.1. Risk field concept 

The risk field forces a vehicle of interest called ego vehicle to 

follow specific rules to evade collision with the risk field. Each driving 

situation is assumed to produce a scalar value (i.e., risk) with every point 

in a two-dimensional physical space called a risk field (Tan et al., 2021). 

Equation 25 represents the risk field mapping a scalar value 

corresponding to all elements X (i.e., x, y coordinates of moving objects) 

in domain A. 

 

𝑭 ∶ 𝐴 ⊂ 𝑹2 → 𝑹       (25) 

 

Figure 2(a) shows a series of possible risk fields illustrated in 

four different oval-shaped 3D distributions for the vehicle moving on the 

left-side traveling lane (black vehicle). The area size of a risk field is 

smaller, with a high peak in the near future position of the vehicle in its 

anticipated trajectory. On the other hand, the area size of a risk field 

becomes larger with a flatter peak in relatively farther position of the 

vehicle in its anticipated trajectory. The small area with a high peak in 

distribution represents the high probability of a vehicle’s anticipated 
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position in a future trajectory compared to the large area with a flatter 

peak or vice versa. As a result, we can say that the volumes (i.e., 

probability) of the 3D distribution of a moving vehicle’s four risk fields 

in this figure are the same, although the distribution height in each risk 

field decays along with the vehicle’s predicted trajectory horizon.  

 

Figure 2. The schematic of the risk fields and their components: (a) risk 

field of other vehicles, (b) risk field of ego vehicle, and (c) conflict field  

 

In the figure, the ego vehicle’s (blue vehicle) estimated risk field 

will be produced as the same as the other (black) vehicle. Intuitively, the 

conflict level would be proportional to the extent of overlap between two 

risk fields in this particular illustration with two moving vehicles 

(Kolekar et al., 2020). This study formulated a field that represents the 

extent of conflict as a product of the risk field of other vehicles f(X) 

(Figure 2 (a)) and the ego vehicle’s risk field g(X) (Figure 2 (b)). We 

defined this overlapped risk field between moving objects as the “conflict 

field” as shown in Figure 2 (c). 
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Figure 2(c) implies that the estimated conflict field will have a 

zero value if the two risk fields created by the two vehicles do not overlap 

each other at all, but the value will get greater if the overlapped risk fields 

from the two vehicles are getting larger and larger. As a result, the risk 

sum of the conflict field (RSCF), which represents the magnitude of the 

risk created by the two vehicles, can be obtained depending on the 

volume of 3D distribution of the two conflict fields. The RSCF can 

therefore be treated as a safety measure to estimate the perceived risk of 

ego vehicle each moment. Equation 26 displays the mathematical 

formulation of the risk sum of the conflict field, which requires double 

integration for the two-dimensional risk field at a time t. In the RESULT 

section, we will demonstrate the implications of RSCF values under three 

different driving scenarios. 

 

𝑅𝑆𝐶𝐹𝑡 =  ∬ 𝑓𝑡(𝑥, 𝑦)𝑔𝑡(𝑥, 𝑦)𝑑𝑥𝑑𝑦
 

𝑔𝑡(𝑥,𝑦)
      (26) 

 

Where, 

𝑅𝑆𝐶𝐹𝑡 ∶ Risk sum of the conflict field at time t. 

𝑓𝑡(𝑥, 𝑦) : the risk field of other adjacent vehicles at time t.  

𝑔𝑡(𝑥, 𝑦) : the ego vehicle’s risk field at time t.  

 

Although this study deals with conflicts with only moving 

vehicles, field theory can easily be extended to estimate the conflict field 
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created by various types of obstacles. It includes moving obstacles (e.g., 

interactions between vehicles and pedestrians) or different types of static 

obstacles (e.g., interactions between vehicles and road centerlines or 

traffic control devices such as traffic signals) (Tan et al., 2021). 

 

3.2. Risk field design 

Driver perceived a sense of risk objects in their predicted 

trajectory. The predicted trajectory given historical trajectory is the 

primary concern in the autonomous vehicle accordingly. Proposed risk 

field put highly intensity where its predictied probability is high. 

Trajectory is a continuous history of the vehicle position, but this study 

employed 0.1 sec of interval for simplication. 0.1 sec is widely used 

temporal interval in most trajectory studies.  

We assumed that trajectory is a 2-dimentional history of the 

object, ignoring its heigh as it’s relationship between risk perceivence 

was not previously defined. Therefore, integral of predicted distribution 

of x, y coordinate given historical trajectory P(𝑥𝑡
 , 𝑦𝑡

 |𝑋) is 1.0, as shown 

in Equation 27.  

 

∬ P(𝑥𝑡
 , 𝑦𝑡

 |𝑋) 𝑑𝑥𝑑𝑦 = 1     (27) 

Where, 

P(𝑥𝑡
 , 𝑦𝑡

 |𝑋) ∶ probability density of given X at time t. 
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𝑥𝑡
 , 𝑦𝑡

  : x, y coordinate after t sec. 

X : historical records of x, y coordinate 

 

This study made the two basic premises in designing the risk 

field of moving obstacles: (a) ego vehicle recognizes the object in the 

space to be occupied by other obstacles as a potentially risky space; (b) 

drivers tend to discount risks in the future. Therefore, an obstacle’s 

predicted distribution of a more distant future poses less risk to the driver, 

and the risk field needs to discount the future risk. Lee and Kum (2019) 

introduced the concept of the advanced time-to-occupancy (ATTO) 

function to discount future risk. Figure 3 shows how the ATTO function 

determines the risk field’s strength by weighting the predicted 

distribution. We assumed that the ATTO exponentially reduced the risk 

of future occupied space.  

 

 

Figure 3. Risk field design with predicted distribution and advanced 

time-to-occupancy (ATTO)  
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Equation 28 shows that the proposed ATTO function is to be 

halved every certain specific period 𝑡1/2. 

 

𝐴𝑇𝑇𝑂(𝑡) = (
1

2
)

𝑡

𝑡1/2 ,         (28) 

 

Where, 

𝑡1/2: the half-life of the risk field 

 

The half-life was based on the exponential decrease of risk field 

intensity over distance in Yukawa potential, reflecting an exponential 

decrease in the degree of feeling danger over time. The half-life 

represents the driver’s insensitivity to danger. The longer the half-life, the 

more driver feel the risk of the future. 

This study introduced an artificial occupancy (AO) that drivers 

thought occupied in deciding their maneuvers. Figure 4 shows the 

artificial occupancy of an object i (𝐴𝑂𝑖), consisting of three components: 

bounding box, safety margin, and standstill distance.  
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Figure 4. Component of artificial occupancy 

 

First, the safety margin is a buffer for the bounding box, which 

is the vehicle’s occupied space. Drivers erroneously recognize the size of 

their vehicle and prefer a buffer in their maneuvers, perceiving their 

vehicle as occupied more than the bounding box. The safety margin 

would then reduce the effect of measurement errors in onboard sensors 

and capture conflicts that may occur on the side or in the back of a vehicle. 

Therefore, increasing the safety margin can lead to a more conservative 

risk assessment result. We also introduced standstill distance in front of a 

vehicle to the artificial occupancy like other car-following models (e.g., 

the intelligent driver model). 
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Figure 5. Schematic of notations in occupancy distribution 

 

Figure 5 shows transforming prediction points, a prediction 

model’s output, into a 2-dimensional artificial occupancy for estimating 

the predictive occupancy distribution 𝑝𝑂𝑐𝑐(𝑥, 𝑦). Equations 29 and 30 

define the predictive occupancy of object i for time t 𝑝𝑖,𝑡
𝑂𝑐𝑐(𝑥, 𝑦) with the 

predictive probability of the points 𝑝𝑖,𝑡
𝑝𝑜𝑖𝑛𝑡

. 

 

𝑝𝑖,𝑡
𝑂𝑐𝑐(𝑥, 𝑦) = 𝑝𝑖,𝑡

𝑝𝑜𝑖𝑛𝑡(𝑥 + 𝑎, 𝑦 + 𝑏)    (29) 

𝑎, 𝑏~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝑤𝑖𝑑𝑡ℎ𝐴𝑂 , 𝑙𝑒𝑛𝑔𝑡ℎ𝐴𝑂)    (30) 

 

Where, 

𝑝𝑖,𝑡
𝑝𝑜𝑖𝑛𝑡

: predicted probability of x, y coordinate of object i at time t 

𝑝𝑖,𝑡
𝑂𝑐𝑐(𝑥, 𝑦): predicted occupancy distribution of x, y coordinate of object 

i at time t 

 

𝑝𝑡
𝑖(𝑥, 𝑦) is point distribution provided by the prediction model. 
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All areas occupied by the object are assumed to have the same value as 

the prediction points. Figure 6 shows the schematic of the transformation 

procedure. 

 

 

Figure 6. Schematic of point probavility density (a) and risk field intnsity 

(b) 

 

The driving risks of vehicles are different under different 

velocities. Previous studies utilized the concept of equivalent mass to take 

this property in the risk field (Li et al., 2022; Wang et al., 2016). The mass 

of a vehicle in motion can be defined as a kind of equivalent mass that is 

proportional to the vehicle’s current velocity and reflects the degree of 

driving risk at a given speed. The mathematical expression of equivalent 

mass suggested by (Wang et al., 2016) is used. Equation 31 shows the 

equivalent mass of the vehicle.  

 

𝑓𝑖(𝑥, 𝑦) ∝ 𝑀𝑖 = 𝑚𝑖(1.566 ∙ 10−14𝑣𝑖
6.687 + 0.3345)  (31) 
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Where, 

𝑚𝑖: mass of vehicle 𝑖 

𝑣𝑖: speed (km/h) of vehicle 𝑖  

 

We assumed that the mass of the vehicle (𝑚) is proportional to 

its bounding box’s width and length, regardless of the type of vehicle. 

Finally, the risk field 𝑓𝑡(𝑥, 𝑦)  is formulated as the product of the 

𝐴𝑇𝑇𝑂(𝑡)  and 𝑝𝑖,𝑡
𝑂𝑐𝑐(𝑥, 𝑦)  integrating over time t until prediction 

horizon 𝜏, as Equation 32 and 33. The risk field’s value has no unit; thus, 

only a relative comparison is possible. Figure 6 (b) shows exemplary risk 

and conflict fields. 

 

𝑓𝑖(𝑥, 𝑦) = 𝑀𝑖 ∙
1

𝜑𝑖
∫ 𝑝𝑖

𝑂𝑐𝑐(𝑥, 𝑦, 𝑡) ∙ 𝐴𝑇𝑇𝑂(𝑡)𝑑𝑡
𝜏

𝑡=1
  

=  
𝑚𝑖(1.566∙10−14𝑣6.687+0.3345)

𝜑𝑖
∫ 𝑝𝑖

𝑂𝑐𝑐(𝑥, 𝑦, 𝑡) ∙ 𝐴𝑇𝑇𝑂(𝑡)𝑑𝑡
𝜏

𝑡=1
 (32) 

1

𝜑𝑖
∫ 𝑝𝑖

𝑂𝑐𝑐(𝑥, 𝑦, 𝑡) ∙ 𝐴𝑇𝑇𝑂(𝑡)𝑑𝑡
𝜏

𝑡=1
 = 𝜆𝑖    (33) 

 

Where, 

𝜑𝑖: the normalizing constant 

𝜏: look-ahead-time 

 

𝜑𝑖 made the risk field satisfy the volume under the 𝑓𝑖(𝑥, 𝑦) equal 
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to 𝜆𝑖for the object i, as shown in Equation 34. 

 

𝜆𝑖 =
1

𝜑𝑖
∬ ∑ 𝑝𝑖

𝑂𝑐𝑐(𝑥, 𝑦, 𝑡) ∙ 𝐴𝑇𝑇𝑂(𝑡)𝜏/∆𝑡
𝑡=0 𝑑𝑥𝑑𝑦   (34) 

 

Where, 

𝜆𝑖: risk field intensity parameter 

 

The 𝜆𝑖 differentiates the strength of the risk field depending on 

the type of object i. Note that the crash risk derived Equation 34 captures 

overall crash risk that can be extended to other types of conflict pairs.  

Assuming that each vehicle generates the same amount of risk 

field (i.e. they have the same intensity parameter 𝜆𝑖), the 𝜑𝑖 make the 

sum of the ATTO to be constant to 𝜆𝑖  regardless of the 𝑡ℎ𝑙 . One can 

extend the proposed approach for conflict with other types of road users 

(e.g., cyclists, pedestrians) simultaneously by adjusting 𝜆𝑖. For example, 

one can adjust the level of 𝜆𝑖  for pedestrians 10 times higher than a 

vehicle, pedestrians generate a 10 times stronger risk field than a vehicle, 

thereby providing more threat to the drivers 
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Figure 7. Side view of the risk field 

 

Figure 7 shows a side view of the risk field with its height (i.e., 

risk field intensity). The height of the risk field can be determined by 

vehicle mass and types of conflict pairs. In this study, it was assumed that 

all vehicles emit the same risk with 𝜆 = 1.0. 
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3.3. RSCF and Approximation 

Integrating a value obtained by multiplying the risk field 

𝑓𝑡(𝑥, 𝑦) by the driver’s risk field 𝑔𝑡(𝑥, 𝑦) for the inside of the area of 

the 𝑔𝑡(𝑥, 𝑦)  can obtain the RSCF. However, computing the exact 

solution of the double integral is time-consuming and challenging to 

provide risk assessment in real-time. Therefore, we approximated the 

double integral using the sampling function of the prediction model. 

Equation 35 shows an approximation method using a finite number of 

summations.  

 

𝑅𝑆𝐶𝐹 =  

∬ 𝑓𝑡(𝑥, 𝑦)𝑔𝑡(𝑥, 𝑦)𝑑𝑥𝑑𝑦
 

𝑔𝑡(𝑥,𝑦)
≈ ∑ ∑ 𝑓𝑡(𝑥𝑖, 𝑦𝑗)𝑔𝑡(𝑥𝑖 , 𝑦𝑗)∆𝑥∆y 

𝑖=1
 
𝑗=1   

≈ ∑ ∑ 𝐹𝑡(𝑥𝑖 , 𝑦𝑗)𝐺𝑡(𝑥𝑖 , 𝑥𝑗) 
𝑖=1

 
𝑗=1   

 

Where, 

𝐹𝑡(𝑥𝑖, 𝑦𝑗): sample density on the grid of i and j, from 𝑓𝑡(𝑥, 𝑦) at time t 

𝐺𝑡(𝑥𝑖, 𝑥𝑗): sample density on the grid of i and j, from 𝑔𝑡(𝑥, 𝑦) at time t 

 

Figure 8 shows the double integral approximation procedure and 

risk field 𝐹(𝑥𝑖, 𝑦𝑗) and driver’s risk field 𝐺(𝑥𝑖 , 𝑥𝑗) with grid size.  

 

(35) 
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Figure 8. RSCF Approximation procedure 

 

Sampling predictive distribution is a primary factor for 

convergence speed, which varies depending on the shape of the predictive 

distribution and the sampling technique. This study adopts the Monte 

Carlo Markov chain (MCMC) based sampling method to sample points 

from predictive distribution. Figure 8. Shows 3D representation of risk 

field and resultant RSCF. 

 

 

Figure 9. Diagram and implementation of RSCF approximation 

procedure  
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3.4. Prediction model 

A prediction model is necessary to obtain the future occupancy 

of the obstacle for constructing the risk field. Recent advances in deep 

neural network technology have successfully predicted trajectories using 

a probabilistic approach even in a highly uncertain situation (Bahari et al., 

2021; Cui et al., 2019; Deo and TrivediC, 2018; Fu et al., 2021). This 

study also employs long short-term memory (LSTM) based encoder-

decoder networks, effectively capturing vehicle trajectories’ 

spatiotemporal dependencies in the driving scenarios.  

The trajectory prediction model performance and risk assessment 

performance must be closely related (Joo et al., 2021). Recently, the 

performance of the trajectory prediction model has risen sharply by the 

availability of high-quality trajectory data and the development of a deep 

neural network (DNN) framework (Goli et al., 2018; Ma et al., 2019). 

The DNN generally outperformed conventional trajectory prediction 

models, including kernel regression, Gaussian process, and auto-

regressive integrated moving average (Lefèvre et al., 2014). Among the 

various DNN framework, the long-short-term-memory (LSTM) and 

transformer networks have been extensively applied to predict the 

vehicle’s location and speed until more recently (Altche and de La 

Fortelle, 2018; Lv et al., 2021). For example, the LSTM network 
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predicted the location and speed of the future 1.0 s in the NGSIM US-

101 dataset with an average root mean square of 0.11 m and 0.71 m/s 

(Altche and de La Fortelle, 2018). A modified LSTM framework 

predicted the adjacent vehicle’s lateral and longitudinal location of six 

vehicles after 0.5 sec in the NGSIM US-101 dataset with an RMSE of 

0.49 m (Fu et al., 2021). Previous studies have shown that the short-term 

prediction error is even close to the average absolute measurement error 

in the NGSIM dataset at about 0.5 m in a 1.0 s prediction horizon 

(Coifman and Li, 2017a).  

 

2.4.1. Inputs and Outputs 

Equation 36 shows the input ( 𝑿 ) and output ( 𝐘)  for the 

prediction model used in this study. The 𝑇ℎ and 𝜏 indicate observation 

time for training and prediction horizon, respectively. The prediction 

model adopted a 0.1-second interval and 𝑇ℎ  time-lags of vehicles’ 

location (i.e., x and y coordinates) in the adjacent vehicle for the input. 

At the prediction time 𝑡 , the model predicts the vehicles’ location at 

every timestep until the prediction horizon. Equation 37 shows the input 

dimension, which is 𝑇ℎ× 2 × 𝑁𝑣𝑒ℎ (𝑇ℎ timesteps × x, y coordinate × 

number of vehicles). Equation 38 shows the output and its dimension, 

which is 𝜏 × 2 × 𝑁𝑣𝑒ℎ (𝜏 timesteps × x and y coordinates × number of 

vehicles. As will be covered in Section 3.2.1, we simultaneously 
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predicted seven vehicles, including the ego vehicle and six adjacent 

vehicles. Finally, we transformed the locations of the surrounding 

vehicles to the difference from the ego vehicle to train the network 

effectively. 

 

𝑿 = 𝑋𝑡−𝑇ℎ
, 𝑋𝑡−𝑇ℎ+1, … , 𝑋𝑡, 𝒀 = 𝑌𝑡+𝑗 for 𝑗 = 1, 2, 3, … , 𝜏 (36) 

𝑋𝑡𝑖

 = [𝑥𝑡−𝑝
𝑘 , 𝑦𝑡−𝑝

𝑘 ] for  

𝑘 ∈ [1, 2, 3, … , 𝑁𝑣𝑒ℎ], 𝑝 ∈ [0, 1,2,3, … , 𝑇ℎ]  (37) 

𝑌𝑡𝑖+𝑗

 = [𝑥𝑡+𝑞
𝑘 , 𝑦𝑡+𝑞

𝑘 ] for 

𝑘 ∈ [1, 2, 3, … , 𝑁𝑣𝑒ℎ], 𝑞 ∈ [1, 2, 3, … , 𝜏]  (38) 

 

where, 

𝑇ℎ: Observation period (sec) 

𝜏: look-ahead-time (or prediction horizon) 

 

2.4.2. Neural network architecture 

Among the variants of LSTMs, the multi-layer Encoder-Decoder 

LSTM network (EDLN) was empirically found to be effective in 

extracting the trajectory features in complex scenes and popular for 

predicting the trajectory (Ettinger et al., 2021; Fu et al., 2021; Saleh et al., 

2018). Figure 10 shows a flow diagram of EDLN composed of four parts: 

the encoder, decoder, and mixture density network. The multi-layer 
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LSTM, stacks of LSTMs with the same structure and weights, constitute 

the encoder and the decoder layer. The historical trajectory data is 

primarily transformed into a bridge vector by the encoder LSTM. The 

bridge vector stores the behavioral feature of vehicles in the reference as 

the input dimension is reduced through the encoder LSTM. The EDLN 

outputs a vector of vehicles’ x and y coordinates in the reference frame 

through the encoded feature of the bridge vector.  

 

 

Figure 10. Flow diagram for the EDLN model  

 

After a series of grid searches to select the number of layers and 

neurons, we adopted 512 neurons and two layers of LSTM and 6 

Gaussian mixtures in a mixed density layer to predict the distribution of 

the x and y coordinates of vehicles. In addition, we fine-tuned the learning 

rate of the Adam optimizer (Kingma and Ba, 2015) with an initial 

learning rate of 0.001. We diminished the learning rate by half when there 

was no improvement in the validation loss for five epochs. To prevent 
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overfitting, we stopped the training when there was no improvement in 

the validation loss for ten epochs and then saved the best-trained model. 

The proposed EDLN method was implemented in the Keras python deep 

learning library. 

 

2.4.3. Mixture density layer 

A prediction model capable of handling the uncertainty in the 

driving maneuver is a primary interest in recent studies (Bahari et al., 

2021; Choi et al., 2021; Deo and Trivedi, 2018). The main reason is that 

it can simulate scenarios through predictive distribution. It also reflects 

the multimodality of future maneuvers of a vehicle and the degree of 

uncertainty (Cui et al., 2019). To this end, we designed a fully connected 

layer and assigned it to the mixture density layer to predict the 

distribution of x and y coordinates rather than exact values. We suppose 

that the x and y coordinates are correlated, and each follows the gaussian 

mixture distribution, which was often adopted in the literature (Bahari et 

al., 2021; Fu et al., 2021). Equation 13 shows the predictive distribution 

of x and y coordinates at time 𝑡  given the previous trajectories, 

calculated by the Gaussian mixture distribution. Equation 14 shows the 

Gaussian distribution used in the Gaussian mixture distribution. 

Equation 39-41 shows a normalization process for the Gaussian 

distribution.  
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P(𝑥𝑡
 , 𝑦𝑡

 |𝑋) = ∑ 𝑤𝑡−1
𝑛𝑁

𝑛=1 𝑁(𝑥𝑡
 , 𝑦𝑡

 |𝝁𝒕−𝟏
𝒏 , 𝝈𝐭−𝟏

𝒏 , 𝜌𝑡−1
𝑛 )  (39) 

𝑁(𝑥 
 , 𝑦  

 |𝝁 
 , 𝝈 

 , 𝜌 
 ) =

1

2𝜋𝜎𝑥𝜎𝑦√1−𝜌2
exp (−

𝑍

2(1−𝜌2)
)   (40) 

𝑍 =
(𝑥−𝜇𝑥)2

𝜎𝑥
2 +

(𝑦−𝜇𝑦)
2

𝜎𝑦
2 −

2𝜌(𝑥−𝜇𝑥)(𝑦−𝜇𝑦)

𝜎𝑥𝜎𝑦
    (41) 

 

Where, 

𝝁, 𝝈 : mean and standard deviation of x and y 

𝑤 
𝑛: the weight of mixture n 

ρ: the correlation coefficient of the x and y.  

 

Equation 42 shows the Gaussian mixture weight 𝑤𝑡𝑖

𝑛 estimated 

via the logit function. 

 

𝑤𝑡𝑖

𝑛 =
exp(�̂�𝑡𝑖

𝑛 )

∑ exp(�̂�𝑡𝑖
𝑛′

)𝑁
𝑛′=1

      (42) 

 

We adopt the loss function based on the negative log-likelihood 

loss to train the deep learning network. Equation 43 shows the loss 

function (L) for the 𝐾  vehicles and the 𝑁  number of the Gaussian 

mixture. 

 

𝐿 = ∑ ∑ [− log (∑ 𝑤𝑡
(𝑘),𝑛𝑁(𝑿𝑡+1

(𝑘)
|𝝁𝑡

(𝑘),𝑛, 𝝈𝑡
(𝑘),𝑛, 𝜌𝑡

(𝑘),𝑛))𝑁
𝑛=1 ]]

𝑇𝑓

𝑡=1
𝐾
𝑗=1  (43) 
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. 
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Chapter 4. Data 
 

4.1. Data Acquisition and Preprocessing 

Raw NGISM data has irregular noise and unusual trajectories, 

including occurrences of abrupt jumps (G. Li et al., 2021b). We filtered 

out the unrealistic location and acceleration data based on speed 

measurement data, as it is generally more accurate than location and 

acceleration measurements (Coifman and Li, 2017; T. Li et al., 2021). To 

filter out the acceleration measurement data, we applied a threshold of 

(−5 m/s2 to +4 m/s 2) to the instantaneous acceleration values derived 

from the speed data and following the procedure and thresholds of the 

previous study (T. Li et al., 2021). The acceleration value derived from 

speed was utilized rather than a direct acceleration measurement to detect 

unrealistic samples. We removed those anomaly points’ location, speed, 

and acceleration measurements and replaced them using linear 

interpolation with adjacent values. 

We filtered out unrealistic location measurement data with speed 

data. First, we applied a threshold of ( ±5 m/s), which also followed the 

threshold of the previous study (T. Li et al., 2021), to find abnormal 

location data. If the difference between the derived and the measured 

speed was outside the range, the points were removed and interpolated 

using linear interpolation. Next, we applied a 0.5 s moving average 

window to the speed, location, and acceleration data to filter random 
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noise, considering its robust performance (T. Li et al., 2021). Figure 11 

depicts the results of the above preprocessing for denoising speed and 

acceleration measurements. 

 

 

Figure 11. An example of the denoising result of the (a) speed and (b) 

acceleration measurements 

 

4.2. Test scenario choice 

This study employs a top view of the ego vehicle to apply the proposed 

method. Figure 12 shows the top view fixed on the blue ego vehicle. The 

following vehicle (fol) and the preceding vehicle (pre) are labeled based on 

the y coordinate, and the superscript means the lane. The red line represents 

the historical trajectory, and the blue line is the trajectory predicted by the 

model. Assignment in Figure 7 can convert coordinates from the global 

coordinate system to match the viewpoint of the onboard sensors, including 

the camera, LiDAR, and radar vehicle (Fu et al., 2021).  
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Figure 12. Schematic diagram of the test test scenario assginment.  

 

First, we randomly sampled a vehicle as an ego vehicle. We matched 

the ego vehicle with other vehicles to form a reference frame. For a case study, 

this study used 107,034 driving scenarios, which observed 7.0 sec of the 

reference frame in units of 0.1 sec to avoid a redundant sample. The case 

studies used 20.8 hours of trajectory data and split the dataset as 80:20 for 

training and test set. 

The safety-related decision-making of AV will arise when it interacts 

with other human vehicles. Therefore, this study only included highly 

interactive situations. The TTC, a popular conventional conflict measure on 

the highway, captures interactions during the observation (Arun et al., 2021b). 

Equation 44 represents the TTC of the ego vehicle calculated using the 

location and speed of the preceding vehicle.  
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𝑇𝑇𝐶𝑒𝑔𝑜(𝑡) = {

𝑆𝑒𝑔𝑜
𝑝𝑟𝑒0

(𝑡)

𝑉𝑒𝑔𝑜(𝑡) −𝑉𝑝𝑟𝑒0(𝑡)
, 𝑉𝑒𝑔𝑜(𝑡) > 𝑉𝑝𝑟𝑒0(𝑡)

∞, 𝑉𝑒𝑔𝑜(𝑡) ≤ 𝑉𝑝𝑟𝑒0(𝑡)

   (44) 

 

Where, 

𝑆𝑒𝑔𝑜
𝑝𝑟𝑒0

: the spacing between the ego and the preceding vehicle 

𝑉𝑒𝑔𝑜, 𝑉𝑝𝑟𝑒0: the velocities in the traffic direction of the ego and the preceding 

vehicle.  

 

In the implementation, the inverse of TTC (1/TTC), a simple but 

powerful technique to handle the infinity TTC value as the speed difference 

gets closer to zero, was utilized (Hu et al., 2018; Wang et al., 2021b). We used 

the average of inverse TTC for 1.0 s before the prediction point (𝑡0) of the 

subject vehicle to measure the interaction. Specifically, suppose the mean of 

the subject vehicle’s 1/TTC during previous 1.0 s is less than 10.0 s. In that 

case, the interaction between the subject and the preceding vehicle is assumed 

to occur and included in the sample, as shown in Equation 45. 

 

𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = {
1, N/ ∑ (

1

𝑇𝑇𝐶𝑒𝑔𝑜(𝑡)
)

𝑡0
𝑡0−1.0 s < 10.0 𝑠

0, N/ ∑ (
1

𝑇𝑇𝐶𝑒𝑔𝑜(𝑡)
)

𝑡0
𝑡0−1.0 s ≥ 10.0 𝑠

   (45) 
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Figure 13 shows three driving scenarios (i.e., car-following, yielding, 

and lane-changing) for validating the applicability of the generalized risk 

assessment of the proposed method. While the car following scenario mainly 

has a longitudinal direction of conflict, yielding and lane-changing scenarios 

have an additional lateral direction of conflict. We consider the maneuver as 

a yielding scenario if the lane number of the preceding vehicle changed and 

as a lane change scenario if the lane number of the ego vehicle changed. 

 

 

Figure 13. The test scenarios for (a) car-following, (b) yielding, (c) lane-

changing 
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Table 1 summarises the assumption of the parameters in this study. 

The observation period (𝑇ℎ) to feed the EDLN network was set as 1.0 s to 

capture the driver’s car-following and lane-change intention. We confirm that 

more observations for training did not significantly improve the prediction 

model’s performance. Also, the prediction horizon (𝜏) was set as 6.0 s as any 

further prediction horizon had little effect on the proposed risk assessment 

method. In addition, we used 1.0 of risk field intensity (𝜆) regardless of the 

vehicle type. We set 0.2 m for a safety margin (𝛿𝑠𝑚 ), 2.0 m for standstill 

distance (𝛿𝑠𝑑), and 0.5 s for the half-life of the risk field (𝑡ℎ𝑙) to design the 

shape of the risk field. For the RSCF approximation, we used the 

approximation grid size of 10 cm × 10 cm, similar to the typical location 

measurement error in the trajectory dataset (Punzo et al., 2011). Lastly, we 

utilized 2,000 samples for the approximation, considering computation 

capacity for the real time application. 
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Table 1. The Prediction model and risk field parameter list. 

Model Notation Parameter description Value 

Prediction 

model 

𝑇ℎ Observation period 1.0 sec 

𝜏 Prediction horizon 6.0 sec 

Risk field 

𝜆 Risk field intensity 1.0 [-] 

𝛿𝑠𝑚 Safety margin 0.2 [m] 

𝛿𝑠𝑑 Standstill distance 2.0 [m] 

𝑡ℎ𝑙 Risk field’s half-life 0.5 [sec] 

m Vehicle mass per unit area 
100 

[kg/m2] 

RSCF 

Approximation 

∆𝑥 × ∆𝑦 Approximation grid size 
10 × 10 

[cm2] 

𝑁𝑠𝑖𝑚 
Number of MCMC simulation 

samples 
2,000 
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Chapter 5. Results 
 

5.1. Overview of test scenarios 

5.1.1. RSCF visualization 

Figure 9 depicts the risk field, driver’s risk field, and conflict field 

generated by the predictive distribution of vehicles in the reference frame for 

test scenarios. The conflict field (i.e., the red area in Figure 14) had a high 

value where the DRF and the cost field overlap, which intuitively shows that 

the conflict field occurs at the point where the conflict may occur. In addition, 

unlike the previous measure that predicts a single point for a conflict point, 

the conflict field exhibit a distribution of risk depending on the x, y coordinate. 

These features enabled it to capture various conflicts (e.g., longitudinal, 

lateral, sideswipe conflict) in a unified way. For example, Figure 14 (b) 

portrays a sideswipe conflict with the preceding vehicle, which cannot be 

observed in the risk assessment method assuming the vehicle as a point. 

Figure 14 (c) shows the transition from car-following to lane change. It 

reveals field-based approach has the advantage of taking into account both 

the lateral and the longitudinal conflicts between all adjacent vehicles in a 

unified manner. 
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Figure 14. Risk fields for (a) car-following, (b) yielding, and (c) lane-

changing scenarios 

 

Note that the RSCF continuously captures overall risk of the current 

driving scenario every 0.1 sec. It can provide risk profile for crash analysis. 

Additionally, it represents areas where vehicles should avoid. The vehicle 

may be driven in a direction that does not overlap with the conflict field or by 

decelerating to reduce the strength of the RSCF shown in the conflict field. 
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5.1.2. Convergence test of the RSCF approximation 

For the proposed method to be available for the risk assessment of AV, 

it must satisfy the computational time for real time application (e.g., 0.1 sec). 

Driving risk assessment is a memory-consuming and computationally 

intensive routine that occurs parallel to other CAV operations. It includes 

obstacle tracking, data fusion, module control, and V2X communication. 

In this case study, a sample (i.e., MCMC draws) contains 7 vehicles’ 

6.0 sec of prediction by 0.1-sec interval. We confirmed that the MCMC 

sampling method obtains RSCF results in about 0.1 seconds (i.e., the temporal 

resolution of the NGSIM data) for about 2,000 samples. In this experiment, 

we use the AMD Ryzen 5 3600x and GeForce RTX 2070s. Computation 

power and its resultant error will be depending on various conditions, but its 

main factor is the number of samples. Therefore, we used 2,000 samples to 

construct a risk field and calculate the RSCF regardless of the scenarios.  

 
Figure 15. Numerical approximation error according to the number of 

simulations 
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As shown in Figure 15, 2,000 simulation points resulted in a mean 

error of less than 0.020, and its 95 percentile was 0.031. The in-depth study 

of this error was not covered in this study, but should be dealt with in future 

research. Considering the mean of RSCF is about 0.4, which will be shown 

in the chapter 4.2, its error will not significantly affect the reliability of 

approximation. Since proposed method continuously assessed RSCF in 0.1 

sec, errorneous will be adjusted shortly. Also, The RSCF value was not a 

volatile indicator like TTC, and drivers desired a certain level of RSCF. The 

number of samples produced within the required computation time would 

increase through optimization or increasing computing power.  

 

5.2. Comparison with SSMs 

5.2.1. Risk profile comparison 

The risk profile represents the continuous risk estimation trajectory of 

the current driving circumstance. The risk profile is essential in AV’s motion 

planning algorithms, as it is the criteria for adjusting AV’s current motion. 

Both the proposed method and the conflict indicators can assess the risk of 

the driving circumstance. Therefore, this section demonstrates the proposed 

method’s strength by comparing the exemplary scenario’s risk profile. Figure 

14 shows the 4-second risk profile of the scenarios transitioning to the 

dangerous situation by lane change. 
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Figure 16. A risk profile of the proposed method, MTTC, and DRAC 

Figure 16 primarily represents the risk of lane-changing and pile-up 

crashes, and there are transitions between the lane-changing and the car-

following scenario. In addition, four vehicles simultaneously interact with the 

ego vehicle during this transition. A sudden interaction, abrupt deceleration, 

or a crash between the ego and the preceding vehicle can result in another 



 ６３ 

crash. Figure 16 (a) shows risk fields and corresponding conflict of ego 

vehicle during 4 seconds, and Figure 16 (b) shows the resultant RSCF profile 

of the ego vehicle. The RSCF results from the conflict field continuously 

estimated the driver’s holistic perceived risk. The RSCF reflects the ego 

vehicle’s lateral position as the RSCF has a lower value before the lane 

change since its previous lane’s preceding vehicle (i.e., pre1) is further away. 

Most conflicts occurred with the following vehicles (i.e., fol1). Then, the 

RSCF increases as the ego vehicle change lane, caused mainly by the pre0 

and fol0 vehicle. 

Figures 16 (c) and (d) show conventional conflict indicators (i.e., 

1/MTTC and DRAC). Note that we used the inverse of the MTTC to make 

higher values represent dangerous situations. Figure 16 (d) shows that the 

target lane is not dangerous, as DRAC and MTTC denotes that the presented 

situation is not critical considering their typical thresholds (Arun et al., 

2021b). Note that MTTC and DRAC assess the ego vehicle’s risk regardless 

of the lateral position of the ego vehicle. They are calculated in the same way 

as if the paths of the vehicle overlap entirely, even if the paths of the vehicle 

overlap only slightly. This approach overestimates the risk because it is more 

likely to be avoided if the vehicle's paths overlap only slightly. In addition, 

the MTTC and DRAC cannot represent a holistic risk when multiple vehicles 

simultaneously interact since they are essentially derived from an equation 

for the relationship between two vehicles.  

The conflict indicator needs an additional model for the driving risk 
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of multiple conflicts. For example, the LCRI deploys stopping sight distance 

of 4 lane change participants to assess the risk of lane-changing (Park et al., 

2018). The presented example indicates that erroneous risk assessment results 

can be obtained if there is a transition between scenarios or if multiple 

vehicles interact with conventional conflict indicators. 

 

5.2.2. Scenarios comparison 

Figure 17 shows the average RSCF of the reference frame according 

to the scenario. The strength of the proposed methodology is that the RSCF 

can provide the risk of multiple interactions. In addition, we can decompose 

the RSCF by individual risks with other vehicles. For example, in the car-

following scenario, conflicts with preceding vehicles (i.e., pre0) and rear 

vehicles (i.e., fol0) are dominant. In contrast, most conflicts occur with rear 

vehicles in yielding scenarios. In the lane-change scenario, there are 

significantly high-risk estimates in the other (i.e., pre1, fol1, pre2, fol2). Figure 

11 depicts that conflicts usually occur more with the following vehicle than 

the preceding vehicle, indicating that ego vehicles are relatively insensitive to 

conflicts with the following vehicle. 
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Figure 17. Average RSCF of the adjacent vehicle. 

 

 

The conflict field continuously provides a probably risky place that 

drivers may evade and allows AV to carry out safety-adaptive strategies. For 

example, the conflict field can provide an adaptive sampling strategy for 

resource-constrained AV sensors. The adaptive sampling strategy devotes 

extensive computational resources to sensors likely to have informative 

samples (Nguyen et al., 2016). From the standpoint of vehicle safety, the most 

informative sample is a dangerous vehicle’s maneuver. The quantified risk 

for each vehicle provides a criterion for increasing the sampling rate or 

devoting additional processing resources to high-risk vehicle monitoring. It 

is possible to reduce measurement errors and critical incident identification 

delays with the adaptive sampling strategy. For instance, preceding and 

following vehicles occupy most of the risk in the car-following scenario 

presented in Table 2. AV can allocate resources from sensors that detect other 
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vehicles to sensors that monitor preceding and following vehicles. 

 

5.2.3. Joint distribution with SSM 

The RSCF and traffic conflict indicators correlate since individual 

traffic conflict indicators partially show a complete safety picture (Arun et al., 

2023). The proposed measure captures the holistic driving risk of the ego 

vehicle during the traffic conflict indicator capturing only one pair at once. 

Therefore, only the interactions that occur in the current vehicle of the ego 

vehicle can be compared since the traffic conflict indicator can only be 

defined if there is a conflict point. Figure 18 shows the joint distribution of 

RSCF and the MTTC and DRAC between the preceding vehicle in the current 

lane (i.e., pre0). Note that we use the inverse of MTTC to make higher values 

represent higher risk. 

Figure 18 shows that the TTC, MTTC, and DRAC are not 

significantly correlated with RSCF. The main reason for the insignificance is 

that the RSCF considers the speed and the future position of the vehicles, not 

the deviation from the speed in its definition, as TTC, MTTC and DRAC do. 

Also, if there are no differences between acceleration and speed, the MTTC 

equals 0 independent of the current speed and space between vehicles. In 

contrast, PET has a distinct positive correlation to the RSCF. The Spearman 

rank-order correlation coefficient for the RSCF and the PET was 0.837 (p-

value < 0.001) in typical car-following scenarios. Therefore, the proposed 

measure is more relevant to PET rather than other traffic conflict indicators. 
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Figure 18. Joint distribution of RSCF and traffic conflict indicators. 

 

 

One of the major challenges AV faces nowadays is driving in urban 

environments, where AVs conflict with vehicles and other vulnerable road 

users, such as passengers, bicyclists, and motorcycles. Conflict indicators 

were also valuable for setting criteria for pedestrian crash prevention (Rasouli 

and Tsotsos, 2020). However, there are limitations to quantifying the 

perceived dangers of pedestrians and passengers in AV. Since pedestrians are 

free to change directions and have higher uncertainty in their behavior, it may 

not be appropriate to use conflict indicators that assume constant speed and 

direction. In particular, a conflict indicator value that forces pedestrians to 

feel dangerous will differ from that of the driver. For example, the driver feels 

dangerous about 3 seconds of TTC, while pedestrians may feel dangerous 
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even at higher TTC. The proposed method evaluates the risk based on its 

stochastic future position and therefore has the scalability to conflict with 

other objects in that risk field intensity 𝜆𝑖  weighted the risk differently 

depending on its property.  

 

 

5.3. Risk homeostasis 

5.3.1. Risk profile 

The risk homeostasis theory assumes drivers take evasive actions 

when the risk they perceive crosses a specific risk level (Ba et al., 2016; Dixit 

et al., 2019). Therefore, they assumed that drivers maintain a certain level of 

risk, like body temperature (Wilde’, 1982). This study observed that most 

drivers maintained a certain level of RSCF and thus employed risk 

homeostasis theory to interpret RSCF value. In other words, drivers prefer a 

specific volume of the conflict field. Figure 12 shows some examples of the 

RSCF profiles. It shows that the ego vehicle’s driver maintains his RSCF at 

the desired level and then adjusts the maneuver when the RSCF deviates from 

its desired level. We defined the desired level of RSCF as the desired RSCF 

(DRSCF). The mode of the RSCF value during the observation period 

estimates this study’s DRSCF. 

The driver’s DRSCF is generally stationary during the observation, 

independent of the location (i.e., lane number, on-off ramp) and adjacent 

vehicle type (e.g., general vehicle, truck). If the level of subjective risk 
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perceived exceeds or falls below the driver’s desired level, the driver takes 

steps to eliminate this disparity.  

Figure 19 shows several risk homeostasis patterns of RSCF that 

fluctuate around the DRSCF. Figure 19 (a) shows the most prevailing 

situation in which the value of RSCF is maintained around the DRSCF value. 

Figures 19 (b) and (c) show patterns that deviate from the previous DRSCF 

values due to misperceptions in drivers’ perceived risks or changes in DRSCF 

values. Figure 19 (d) shows delayed feedback and overreaction for them 

(Wilde’, 1982). Although these patterns are not clearly distinguished, drivers 

generally drive along with their DRSCF. One possible explanation for the 

phenomenon is that the DRSCF indicates the driver’s aggressiveness. 

Depending on the driver’s DRSCF value and current RSCF value, drivers can 

feel dangerous or comfortable.  

 

 
Figure 19. RSCF profiles and the desired RSCF of exemplary scenarios. 
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5.3.2. Desired and acceptable RSCF 

This chapter proposes two methods for standardization of RSCF. The 

first is to use the desired RSCF, which drivers prefer to maintain, and the 

second is to use an acceptable RSCF. In the observations in the previous 

chapter, drivers preferred maintaining a specific RSCF value (i.e., desired 

RSCF). Likewise, the RSCF value that drivers may bear may also indicate the 

driver’s perceived risk. The RSCF values of the proposed methodology are 

only relatively comparable and require standardization. The most intuitive 

standardization method is the proportion of drivers who prefer or can 

withstand the RSCF. 

Figure 20. shows the cumulative distribution function of the desired 

RSCF and minimum and maximum RSCF during observation. In the risk 

homeostasis theory, drivers may find it dangerous and adjust their maneuvers 

if RSCF exceeds the driver’s desired RSCF. For example, about 95% of the 

drivers will feel dangerous when the RSCF exceeds 0.75 and adjust their 

maneuvers (e.g., slow down or lane change). That will also apply to the 

customers on AVs. 
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Figure 20. The cumulative distribution function of the RSCF. 

 

Unlike Desired RSCF, maximum RSCF refers to a risk that the driver 

can afford. The driver will only move below the maximum RSCF value, and 

if a driver is reached near this value, the driver will not drive above this value. 

The maximum RSCF is also related to the insurance premium for the AV, as 

an AV with a higher maximum RSCF will drive aggressively and have a high 

rate of crashes. 

Figure 21 shows an maximum RSCF value according to the scenario. 

The most conservative operation was performed in the car-following and 

yielding situations because the maximum RSCF was low. On the other hand, 

in the Lane changing situation, the maximum RSCF of drivers was relatively 

high. It indicates that drivers risk more than driving in the same lane in a lane 

change situation. Therefore, the lane-changing scenario is the most 

uncomfortable maneuver for drivers. The proposed methodology is for AVs, 
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but the passenger eventually boards the vehicle. Therefore, setting an 

appropriate risk limit according to empirical risk acceptance level is essential.  

 

 

Figure 21. CDF of acceptable RSCF by traffic scenarios 

The AVs will have any value for the RSCF like a human driver. If the 

RSCF value of AV is high and volatile, it probably often exceeds the 

maximum RSCF for the passengers. AV passengers will not use the AV again 

if it drives beyond their affordable risk level. Therefore, the level of RSCF an 

AV should have is critical for passengers to adopt AV. Some consumers will 

want fast AVs, even if they are dangerous, and others will want slow but safe 

AVs. One possible option is to allow the driver to select the level of risk (i.e., 

Desired RSCF) within an allowed range. The DRSCF will also be related to 

the insurance premium for the AV, as an AV with a higher DRSCF will drive 

aggressively and have a high rate of crashes. 
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The association between the RSCF and the actual crash needs further 

study. The most reasonable way is to assess the prediction capability of the 

crash (Arun et al., 2023; Zheng and Sayed, 2019). Previous studies adopted 

extreme value modeling to determine the relationship between the number of 

crashes and conflict indicators (Arun et al., 2023; Zheng et al., 2019). In the 

same way, extreme value modeling can be used to define a conflict threshold 

of the RSCF. However, in the case of AV, it is not easy to collect crash data 

because crashes do not frequently occur like ordinary drivers. It is challenging 

to verify the association if sufficient crashes are not collected due to the 

spatiotemporal instability in accident analysis, as denoted by previous studies 

(Lord and Mannering, 2010; Mannering, 2018). A possible alternative to 

validate the proposed method is to relate the driver’s subjective perceived risk 

using a driving simulator (Kolekar et al., 2021, 2020). 
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5.3. Sensitivity Analysis  

5.3.1. Risk field parameters 

We designed the risk field based on several assumptions about the 

parameters (See Table 1), and the most dominant parameter was the half-life 

parameter ( 𝑡ℎ𝑙 ). 𝑡ℎ𝑙  represents a half-life of the weights for future 

predictions. Note that the 𝑡ℎ𝑙 determine the weight of the future risk. The 

risk field parameter λ  and 𝑡ℎ𝑙  in the conflict field formulation allow for 

additional extensions for application by considering the heterogeneities 

regarding the road users and the study site’s geography. 

  Figure 22 shows the effect of 𝑡ℎ𝑙  by half and twice the assumed 

value (i.e., 𝑡ℎ𝑙 = 0.5 sec) in a typical car following scenario. The higher 𝑡ℎ𝑙 

gives higher weight to future occupancy, assuming a conservative driver. On 

the other hand, low 𝑡ℎ𝑙  made the current trajectory more critical, which 

corresponds to the myopic and aggressive driver. High 𝑡ℎ𝑙 values (≥1.0 sec) 

require a longer prediction horizon, but this study does not recommend it 

because most situations will be perceived as dangerous. 
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Figure 22. Effect of the half-life of risk field (𝒕𝟏/𝟐) parameter 

 

 

Theoretically, the best way to find a parameter that describes conflict 

is by using the maximum likelihood method to predict the perceived risk in 

the study site. Perceived risk can be obtained by electroencephalogram, which 

captures brain waves. However, measuring the degree of risk, a person feels 

when putting them in a dangerous situation is impossible. Instead, this study 

find 𝒕𝟏/𝟐, which is highly associated with PET. A high correlation with PET 

is probably not an optimal value. However, if a variable is estimated through 

a small number of crashes, the variance of the parameter becomes very large 

(Arun et al., 2023). Assuming that PET represents a part of the conflict, 

finding 𝑡1/2 with a high correlation coefficient with PET allows us to find 

the range of realistic 𝑡1/2 . Figure 23 shows the Spearman rank order 



 ７６ 

correlation between RSCF and the traffic conflict indicators depending on the 

𝑡1/2. The higher correlation between the conflict indicator may represent a 

higher relevance to the actual crashes since each conflict indicator captures a 

partial crash image. In the tested scenario, the MTTC and 1/TTC are not 

significantly relevant to the RSCF (i.e., R2 < 0.1) regardless of the 𝑡1/2. PET 

and DRAC have similar values, and both are the most relevant at the same 

value at 𝑡1/2 = 0.5 sec. Therefore, we recommend 0.5 sec as an appropriate 

value for 𝑡1/2. 

 

 

Figure 23 Spearman R with TTC and PET by 𝒕𝟏/𝟐  

 

Although not covered in this study, selecting a threshold representing 

conflict is essential in predicting crashes. The previous study used estimation 

performance for the past crash’s occurrence and threshold (Arun et al., 2023; 

Essa and Sayed, 2019). Such kind of approach is called the peak over 
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threshold (POT) technique (Zheng and Sayed, 2019). The POT technique uses 

observations exceeding a predefined threshold as extremes and provides a 

class of models to enable extrapolation from frequent to infrequent events.  
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5.3.2. Prediction performance 

Another factor contributing risk field is the prediction performance. 

The performance of the prediction model decreased as the prediction horizon 

increased. It was estimated that the mean absolute error (MAE) and mean 

sigma 𝐸(𝜎) of predictive distribution in the direction of progress (i.e., the y 

coordinate) were approximately 15 times greater than those in the lateral 

direction (i.e., the x coordinate), as shown in Figure 24. The MAE and mean 

sigma 𝐸(𝜎) were calculated using Equations 46-48. 

 

𝜇 
𝑝𝑟𝑒𝑑 =  

1

𝑛𝑠𝑖𝑚
∑ 𝑦𝑗

𝑠𝑎𝑚𝑝𝑙𝑒𝑠𝑛𝑠𝑖𝑚
𝑗      (46) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖

𝑡𝑟𝑢𝑒 − 𝜇𝑖
𝑝𝑟𝑒𝑑|𝑛

𝑖=1      (47) 

𝐸(𝜎) =
1

𝑛
∑ |𝑦𝑖

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 − 𝜇𝑖
𝑝𝑟𝑒𝑑|𝑛

𝑖=1     (48) 

 

Where,  

𝑛𝑠𝑖𝑚: Number of MCMC simulations 

𝑦𝑗
𝑠𝑎𝑚𝑝𝑙𝑒𝑠

: Sample from predicted trajectory distribution 

𝑦𝑖
𝑡𝑟𝑢𝑒: True trajectory points 

𝜇𝑖
𝑝𝑟𝑒𝑑

: Mean predicted value 
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This study predicts the positions and timesteps of multiple vehicles 

simultaneously, so performance might not be at the state-of-the-art level of 

the typical single-vehicle prediction models. In addition, we analyzed the 

situation where the ego vehicle interacted with the surrounding vehicle, and 

the resulting uncertainty was significant. Therefore, the prediction model’s 

performance was, at best moderate because that model deals with situations 

that are more difficult to predict because we excluded the normal driving 

situation.  

 

 
Figure 24. Mean absolute error (a, c) and sigma (b, d) of x, y coordinates 

in predictive distribution according to the vehicles in the reference frame 

 

 

Nevertheless, this study investigated the impact of a more accurate 

predictive distribution model. First, we verified the proposed method using 

the actual trajectory with a synthetic predictive model. We used bias (b) and 
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variance (v) parameters to make artificial prediction models that performed 

better than the presented EDLN. The bias (b) weighted the actual data to the 

sample mean from the EDLN model, and the variance (v) of the prediction 

model was multiplied by the residual when creating an artificial model, as 

shown in Equation 49. Therefore, if bias and variance are both 1.0, they 

correspond to the EDLN model, and if bias and variance are both 0, then they 

are the same as the actual trajectory. 

 

�̂�𝑠𝑦𝑛
𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑏 × 𝜇 

𝑠𝑎𝑚𝑝𝑙𝑒 + (1 − 𝑏) × 𝑦 
𝑡𝑟𝑢𝑒 +  𝑣(𝑦 

𝑠𝑎𝑚𝑝𝑙𝑒 − 𝜇 
𝑝𝑟𝑒𝑑)  (49) 

 

Bias and variance affect the shape of the risk field and the resultant 

RSCF. Figure 25 shows the effect of bias and variance on the risk field design 

and the RSCF  in the exemplary scenario with a synthetic predictive model. 

In this scenario, the predictive model has a more significant bias and a 

variance in RSCF compared to the average scenario. The more significant 

variance in the ego vehicle caused the DRF to distribute sparsely, as shown 

in Figures 25 (a) and (b). Therefore, when bias increases, the mean absolute 

error (MAE) and the false alarm increase, while a blurry risk estimate is 

inevitable when the variance increases. In other words, low bias and variance 

in the prediction model make the risk assessment model distinguish between 

hazardous and non-critical situations (Joo et al., 2021).  
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Figure 25. Effect of bias and variance of the prediction model on the risk 

field and RSCF  
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Chapter 6. Conclusions and Future Research 

 

6.1. Conclusion 

This study proposed a method for assessing the crash risk when using 

autonomous vehicles (AVs). The assessment is based on the concept of field 

theory, which is a way of modeling the interactions between the adjacent 

vehicle of AV. In this approach, artificial fields are used to calculate the crash 

risk, taking into account the interactions between the different fields with the 

conflict field. The conflict field provides a quantified risk estimate (i.e., RSCF) 

that can be used as criteria for the AV passenger’s comfort. In addition, we 

introduce a mathematical framework for approximating proposed measures 

for real-time application. We demonstrate our work in risky highway 

scenarios and compare the conventional conflict-based measures. 

The advantage of this method is that it represents the appearance of 

the dangerous area to the passenger of the AV, independent of the conflict type 

and the traffic scenario. Additionally, the use of field theory allows for a more 

flexible and adaptable approach, as various types of road users or transitions 

between scenarios can be easily incorporated into the assessment. 

As a result, this study makes several contributions to the risk 

assessments of AVs. First, this study provides a generalized risk assessment 

method for seamlessly evaluating an AV’s driving risk without scenario 

identification (e.g., car-following and lane-changing). Second, the conflict 
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field intuitively visualizes its potential conflict points with intensity in a 3-

dimensional risk field, imitating the driver’s subjective risk perception 

procedure. Lastly, the conflict field jointly estimates conflict with all adjacent 

vehicles and imposes higher risk estimates on multiple conflicts.  

It should be noted that this is an academic method and might not be 

implemented in real-world scenarios yet. Further research and development 

would be required for its application in practical autonomous driving systems. 

We relied on assumptions and parameters to operationalize the framework, 

and these parameters can be optimized using crash data or the perceived risk 

observed by the electroencephalography (EEG) or driving simulator. In 

addition, this study only proposed a risk field formulation and verified it in 

the homogeneous highway. Several other traffic scenarios, such as 

interactions with bicycles and pedestrians, may be further validated. Further 

investigation of interactions between static objects such as road boundaries 

and traffic signals would also provide implications for driving risks in mixed 

traffic conditions. 

Using data from connected and automated vehicles (CAV) to create 

the risk field model is an attractive future research opportunity since CAVs 

can provide an accurate driver and vehicle information absent from this study 

(e.g., blinker). The visualized risk field can be utilized in the human-machine 

interface (HMI) in AV to overcome consumers’ psychological barriers and 

fears. 
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6.2. Future research 

In light of the aforementioned, there are opportunities for further 

development. For instance, the scope of the current work was limited to the 

development of a risk field formulation and subsequent conflict-force models 

for highway interactions. However, various other traffic scenarios, such as 

pedestrian-vehicle interactions, may require alternative characteristics for 

defining the conflict. Due to an insufficient sample size for relevant crash data, 

the study was unable to quantify the effects of altering variables such as 

speeding, even for rear-end collisions. Consequently, these parameters should 

be explored to improve the precision and accuracy of crash-risk modeling. 

Future studies should also investigate the vehicle features pertinent to other 

evasive maneuvers, such as swerving and acceleration. In addition, the traffic 

flow parameter might further increase the accuracy of road user movement 

modeling utilizing the safety field approach. Using data from connected and 

autonomous vehicles (CAV) to create the risk field model is an attractive 

future research possibility since CAVs can provide the missing accurate driver 

and vehicle information from the existing specification. By merging CAV 

data with data from IoT-enabled roadside cameras and LIDAR units, a fully 

described risk field model could revolutionize the analysis of real-time road 

safety for both connected cars and unequipped road users such as pedestrians 

and cyclists. 
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국문초록 

 

 

본 연구는 운전자 지원 및 자율주행 시스템에서 차량이 직

면하는 주행상황의 위험을 평가하기 위해 고속도로에서 발생할 수 

있는 시나리오에서 여러 차량과의 충돌을 시각적으로 포착하는 일

반화된 방법을 제공한다. 이를 위해, 본 연구는 장이론 기반의 접

근법을 활용한다. 리스크 필드 접근법은 장애물의 예측 위치를 사

용하여 장애물이 발산하는 위험감을 나타내는 장을 스칼라 필드

(리스크 필드)로 정의한다. 물체들에서 발생되는 리스크 필드의 중

첩에 의해 발생하는 상충의 강도을 정량화하기 위해 운전자의 주

관적 위험 인식을 포착하는 상충 필드라는 수정된 위험 필드를 제

안한다. 제안된 상충 필드는 충돌의 정도를 평가할 수 있는 시각

적으로 직관적인 근거를 제공하고 실시간으로 주행상황의 위험을 

선제적으로 정량화할 수 있다. 

제안된 방법론을 검증하기 위해 고속도로 주행 데이터를 

사용하여 세 가지 주행 상황(즉, 차량 추종, 양보 및 차선 변경)에 

대한 기존 안전성 평가방법론과 비교했다. 결과적으로 제안된 방

법은 단일 위험 상호 작용보다 여러 위험 상호 작용에 더 높은 위



 ９４ 

험을 가지는 것으로 평가하며 일반적으로 PET와 일관된 결과를 

도출한다. 마지막으로, 민감도 분석을 통해 주요 모수의 가정과 예

측 모형에서 발생한 편향과 분산에의 영향을 평가하였다. 본 연구

의 주된 학술적인 기여는 인접 차량과의 다양한 유형의 다중 충돌 

상황을 동시에 평가하고 잠재적 충돌 위치를 제공하는 것이다. 또

한 제안된 운전 위험 평가 방법은 통합되고 일반화된 방식으로 자

율주행차 시스템에 효과적이고 안정적인 안전 기준을 제공함으로

서 자율주행 산업에 있어서 기여할 수 있을 것으로 기대된다. 

 

 

주요어: 리스크 필드, 일반화된 위험성 평가, 대리안전지표, 교통 상

충, 실시간 안전성 평가 

학번: 2018-27038 
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