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Abstract 
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Particulate matter less than 2.5 micrometers (PM2.5) has been a pollutant of 

interest globally for more than decades, owing to its adverse health effects. For 

developing effective PM2.5 management strategies, it is crucial to identify their 

sources and quantify how much they contribute to ambient PM2.5 concentrations in 

time and space. Source apportionment is the key to identifying the characteristics of 

PM2.5. Receptor modeling is widely used to identify PM2.5 sources as a statistical 

method of source apportionment. The chemical constituents of PM2.5 were used as 

input data for receptor modeling. 

Therefore, this study aimed to investigate the characteristics of PM2.5 using 
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models of source apportionment and spatiotemporal analysis for effective 

management strategies. Two types of modeling were performed for the source 

apportionment study. The first is positive matrix factorization modeling, which 

identifies a specific source type and its contributions to PM2.5 from one site. The 

second is Bayesian spatial multivariate receptor modeling, which derives major 

sources and their contributions to PM2.5 from multiple monitoring sites. In addition, 

machine learning models were used to predict the concentrations of PM2.5, which are 

important data for receptor modeling. Machine learning models that can be used to 

increase data integrity and applicability to PM2.5 data were assessed. 

The sources of PM2.5 and their contributions in Siheung, South Korea, were 

identified using positive matrix factorization modeling. These 10 sources were 

secondary nitrate (24.3%), secondary sulfate (18.8%), traffic (18.8%), combustion 

for heating (12.6%), biomass burning (11.8%), coal combustion (3.6%), heavy oil 

industry (1.8%), smelting industry (4.0%), sea salt (2.7%), and soil (1.7%). Based 

on the derived sources, the carcinogenic and non-carcinogenic health risks due to 

PM2.5 inhalation were estimated. The contribution to PM2.5 mass concentration was 

low for coal combustion, heavy oil industry, and traffic sources but exceeded the 

benchmark carcinogenic health risk value (1E-06). Therefore, countermeasures on 

PM2.5 emission sources should be performed based on the PM2.5 mass concentration 

and health risks. 

The feature extraction capabilities of the four machine learning models to 

predict the chemical constituents of PM2.5 were assessed by comparing the prediction 

accuracy depending on input variables, target constituents for prediction, available 

period, missing ratios of input data, and study sites. The concentrations of PM2.5 

constituents were predicted at three sites (Seoul, Ulsan, and Baengnyeong) in South 
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Korea between 2016 and 2018, using four machine learning models: generative 

adversarial imputation network (GAIN), fully connected deep neural network 

(FCDNN), random forest (RF), and k-nearest neighbor (kNN). The prediction 

accuracy identified by the coefficient of determination (R2) between the prediction 

and observation was highest in GAIN, followed by FCDNN, RF, and kNN. As the 

missing ratios (20, 40, 60, and 80%) of the input data increased, the prediction 

accuracy decreased in the four models and was more noticeable in GAIN and kNN, 

which are unsupervised models. As the input data period increased, the two deep 

learning models, GAIN and DNN, had better applicability than the other models,  

RF and kNN. The study sites with more emission sources exhibited lower prediction 

accuracy, resulting in the highest R2 in the BR island and the lowest in Ulsan. Among 

the target constituent groups, ions and trace elements were predicted to have the 

highest and lowest R2, respectively. This study demonstrated that machine learning 

models can be extended for further air pollution studies depending on model features, 

required performance, and experimental conditions, such as data availability and 

time constraints. 

The spatial distributions of five PM2.5 sources in South Korea were estimated 

using Bayesian spatial multivariate receptor modeling. Secondary nitrate, secondary 

sulfate, motor vehicle emissions, industry, and sea salts were determined to be 

significant contributors to ambient PM2.5 concentrations in South Korea. The spatial 

surface of the daily average contribution for each source in South Korea was derived 

from measurement data from the eight monitoring sites. The source contributions 

predicted by the BSMRM were also validated using held-out data from a test site 

(such as Ansan, Daejeon, and Gwangju). These predicted source contributions can 

aid in developing effective PM2.5 control strategies in cities where no speciated PM2.5 
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monitoring stations are available. They can also be utilized as source-specific 

exposures in health effect studies, even in cities where no monitoring stations are 

available. 
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Chapter 1. Introduction 

1.1. Background 

The atmospheric environment, along with water quality, waste, and soil, is a 

major management target for the sustainable prosperity of humans (Arora, 2018; 

Sauvé et al., 2016). Research on managing the atmospheric environment began in 

the 1950s and has been actively conducted to expand the research area worldwide 

(Colvile et al., 2001; Jacobson, 2002; Ramanathan and Feng, 2009). To maintain a 

sustainable atmospheric environment, it is necessary to identify the situation and 

efficiently manage air pollution (Melamed et al., 2016). According to the World 

Health Organization (WHO), “Air pollution is the contamination of air due to the 

presence of substances in the atmosphere that are harmful to the health of humans 

and other living beings, or cause damage to the climate or materials” (World Health 

Organization, 2021).  

Air pollutants can be classified into natural and anthropogenic emissions 

(Jacobson, 1930; Sharma et al., 2018). (Jacobson, 1930; Sharma et al., 2018). 

Naturally occurring air pollutants, such as yellow dust, emissions from forest fires, 

and volcanic eruptions, are generated regardless of human activities (Jacobson, 

1930). (Jacobson, 1930). Anthropogenic emissions are generated by human activities, 

such as power plants and automobile exhaust gases (Popescu and Ionel, 2010). A 

major concern in atmospheric environment management is anthropogenic emissions, 

which have had an impact on human safety (Jacobson, 2012). The London smog 

incident is an example in which more than 10,000 people died (Hopke et al., 2020; 

Jacobson, 2002). Since then, efforts to control anthropogenic air pollutant emissions 
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have begun, such as investigating the sources of air pollution and enacting air 

pollution control laws (Hopke, 2016; Jacobson, 2002). 

Although there is a reduction in the overall air pollution problem compared with 

the past, the WHO estimates that 4.2 million people die prematurely every year due 

to outdoor air pollution (World Health Organization, 2021). Since air pollution may 

be recognized as a political problem, it may become a cause of conflict between 

countries. This problem arises because it is difficult to interpret the air pollution 

phenomenon (Seinfeld and Pandis, 2016). Once generated, air pollutants undergo 

various reactions and transport processes depending on weather conditions, and their 

complexity is high (Arya, 1998). For example, reactions to light, long-distance 

transport, dilution by wind, deposition, and precipitation are affected by many 

variables in the process (Arya, 1998). This makes the scientific interpretation of the 

air pollution problem difficult. Therefore, more air pollution studies are required 

(WHO, 2005). The scientific interpretation of air pollution is an important issue that 

humans must continue to challenge. 

Particulate matter less than 2.5 µm in diameter (PM2.5), one of the major air 

pollutants, is an aerosol composed of various chemical constituents from various 

emission sources. PM2.5 is classified as carcinogenic group 1 by the International 

Agency for Research on Cancer (IARC) (WHO, 2005; Widziewicz et al., 2016). This 

group is the same as that for arsenic and benzene. PM2.5, known to cause 

cardiovascular and respiratory diseases, is a crucial air pollutant managed by most 

countries globally (Choi et al., 2011). However, most countries do not meet the WHO 

recommendations. 
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Scientific approaches have been proposed by the United States Environmental 

Protection Agency (US EPA) to effectively identify and control PM2.5 (US EPA, 

1997). These can be categorized into four main groups. The first was to measure and 

analyze the detailed physicochemical characteristics of PM2.5. The second is 

estimating emissions from sources, such as power plants and vehicles. The third is 

to understand the spatial distribution of PM2.5 through spatial modeling. Finally, we 

aimed to understand the health effects on the human body. Accordingly, various 

studies have been conducted in each field.  

In this thesis, the scientific approaches presented by the US EPA were 

considered. By researching specific topics, we intended to derive the most scientific 

results from air pollution research. The following were attempted in this study (1) to 

derive monitoring data for a specific site in the Republic of Korea by sampling and 

analyzing PM2.5 and its chemical constituents. This is the only result that is no longer 

available in terms of time and place. (2) To estimate the source types and 

contributions of PM2.5 at a specific site based on the sampled data using receptor 

models. These results can be used to enhance the understanding of the characteristics 

of emissions from sources and spatiotemporal characteristics of PM2.5. (3) To predict 

the chemical constituents of PM2.5 using machine learning models. This is the 

application of the latest computer science technology to identify the characteristics 

of PM2.5 in air pollution. (4) To estimate the spatial distribution of PM2.5 sources 

using a multivariate receptor model. This is the first attempt at multivariate spatial 

distribution modeling in the Republic of Korea. This study draws the latest scientific 

results from air pollution research.   
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1.2. Objectives 

This thesis aimed to investigate the characteristics of PM2.5 for effective 

management strategies using models of source apportionment and spatiotemporal 

analysis. The specific objectives for achieving this goal are as follows: 

 

1) To characterize the sources of PM2.5 and the inhalation health risks from 

PM2.5-bound heavy metals in a medium-sized industrial city. 

2) To assess the applicability of feature extraction using machine learning 

models to predict the chemical constituents of PM2.5 to improve the 

reliability and availability of the data. 

3) To predict latent source-specific PM2.5, along with uncertainty estimates at 

unmonitored sites, using Bayesian multivariate receptor modeling for 

spatial prediction on a regional scale. 
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1.3. Dissertation structure 

 

This dissertation comprises six chapters (Fig. 1.1). Chapter 1 describes the 

background, objectives, and dissertation structure. Chapter 2 reviews previous 

research related to this study. In Chapter 3, the source apportionment of PM2.5 and 

their health risk by inhalation are demonstrated. Chapter 4 presents the prediction 

of PM2.5 chemical constituents using four machine learning models. The spatial 

distribution of PM2.5 sources in South Korea was estimated using Bayesian spatial 

multivariate receptor modeling, as described in Chapter 5. Chapter 6 provides a 

summary and the conclusions of the dissertation. 
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Fig. 1.1. Structure of the dissertation 
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Chapter 2. Literature review 

2.1. Source apportionment and receptor modeling of PM2.5 

Source apportionment of PM2.5 is key to identifying the characteristics of 

aerosols in the atmosphere (Hopke et al., 2020). As a major tool for source 

apportionment, receptor modeling based on chemical mass balance and principal 

component analysis, a statistical method, has been widely used to identify PM2.5 

sources (Choi et al., 2013; Samara et al., 2003; Yang et al., 2013). Hopke et al. (2020) 

reviewed the research cases of source apportionment for airborne particulate matter 

(PM2.5 and PM10) from 2014 to 2019 and reported a total of 414 publications 

conducted in 58 countries worldwide. The number of case studies was 564 and 243 

for PM2.5 and PM10, respectively. Fig. 2.1 shows source apportionment cases 

worldwide (Hopke et al., 2020). PM2.5 has been studied more recently than PM10. 

The main pollutant from anthropogenic sources is PM2.5 than PM10; PM2.5 have many 

more adverse health effects (Belis et al., 2013; Dai et al., 2015; Park et al., 2004).  

The number of identified sources of PM2.5 in the literature was primarily 

five to eight, despite the total range being one to nine (Hopke et al., 2020). However, 

the characteristics of each source can differ by region and period (E. H. Park et al., 

2020; Silva et al., 2020). For example, an industry source is a broad category that 

can include many relevant sources, such as power plants, incineration, and smelting 

facilities (Choi et al., 2022). The characteristics of the detailed source, such as the 

ratio of elements to key elements, differ by region, even though the name of the 

source is the same (Lv et al., 2021). There are still many limitations, although the 

names of sources are inferred through key elements and the various characteristics 
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of each source. It is necessary to accumulate study results that can better reflect the 

characteristics of the sources in various regions and times (Hopke, 2016). Table. 2.1 

shows the results of the classification of source types and their contributions 

worldwide by Hopke (2020). Such studies are continuously needed to infer the 

characteristics of a specific region.  

In Korea, research results are insufficient. According to Hopke et al. (2020), 

there are only five source apportionment studies on PM in South Korea. Since then, 

only a few studies have been published on this topic. Table 2.2 shows the research 

cases of source apportionment using the PMF model, including domestic and 

international journal papers. There are fewer than 10 studies. Due to these challenges, 

there are many difficulties in estimating the source of PM in Korea in detail. Through 

the accumulation of research results, a consensus can be created on the interpretation 

of air pollution phenomena. Therefore, it is necessary to gather data on source 

apportionment through various studies. 
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Fig. 2.1. Map showing the locations of the sampling sites for PM2.5 (blue points), PM10 (red points), and combined PM2.5/PM10 (purple 

points) reported in the identified apportionment publications. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of Hopke et al. (2020)) (Hopke et al., 2020) 
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Table 2.1. Tabulation of the fractional apportionments by global region or country (Hopke et al., 2020) 
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Table 2.2. Research on source apportionment using PMF model in Korea 

Location Period 
No. of  

source 
Contribution Reference 

Seoul, 

Daejeon, 

Gwangju, 

Ulsan 

2014-2018 9-10 
Secondary sulfate, secondary nitrate, mobile, biomass burning, incinerator, soil, 

industry, coal combustion, oil combustion, aged sea salt 

(Kim et al., 

2022) 

Seoul 2014−2015 9 

Secondary sulfate (20.1%), secondary nitrate (19.0%), vehicles (23.3%), oil 

combustion (9.07%), soil (8.20%), roadway (3.03%), coal combustion (4.20%), 

biomass burning (12.2%) 

(Park et al., 

2020) 

Seoul 2014  10 

Secondary sulfate (20.8%), secondary nitrate (24.3%), vehicles (15.7%), 

industry (4.2%), oil combustion (3.4%), soil (2.5%), road dust (1.8%), 

incinerator (6.8%), coal combustion (9.3%), wood/field burning (13.8%) 

(Hwang et al., 

2020) 

Daejeon 2014  9 

Secondary sulfate (20.7%), secondary nitrate (25.3%), vehicles (14.1%), 

industry (1.6%), oil combustion (4.4%), soil (8.1%), road dust (4.0%), coal 

combustion (13.4%), wood/field burning (8.4%) 

(Hwang et al., 

2020) 
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Busan 2013  8 
Secondary sulfate (31%), secondary nitrate (19%), diesel vehicle (6%), gasoline 

vehicle (12%), industry (3%), road dust (4%), ship (7%), soil (18%) 

(Jeong et al., 

2017) 

Seoul 2013−2014 10 

Secondary aerosol (31.2%), motor vehicle (19.2%), break and tire wear (3.5%), 

coal burning (17.3%), oil combustion (2.0%), waste incineration (9.8%), biomass 

burning (6.7%), industry (3.7%), sea salt (4.6%), road dust (1.9%) 

(Park et al., 

2019) 

Daebu 
2016.05 − 

2016.11 
9 

Secondary sulfate (29%), secondary nitrate (13%), mobile (22%), oil combustion 

(10%), soil (6%), coal combustion (9%), aged sea salt (8%), industrial activities 

(1%), non-ferrous smelter (2%) 

(Kim et al., 

2018) 

Gyeongsan 
2010.09 − 

2012.12 
8 

secondary sulfate (16.0%), secondary nitrate (20.6%), biomass burning (15.5%), 

industry (10.4%), soil (7.0%), gasoline (9.1%), incinerator (10.4%), diesel 

emission (11.0%) 

(Jeong and 

Hwang, 

2015) 
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The following is a detailed summary of the world's source apportionment 

research cases: Han et al. (2017) identified seven sources and their contributions to 

PM2.5 based on six-year data in Baton Rouge, Louisiana, United States, using PMF 

modeling. The sources identified were secondary sulfate, secondary nitrate, 

industrial emissions, traffic, crustal dust, road dust, and sea salt, with contributions 

of 38.4, 17.6, 18.7, 11.5, 6.1, 4.2, and 3.6%, respectively (Han et al., 2017). 

 

Fig. 2.2. Seasonal variation of source contributions to PM2.5 from 2009 to 2014 

in Baton Rouge, Louisiana, United States (Han et al., 2017) 

 

Dai et al. (2020) investigated the changes in source contributions of PM2.5 

after the COVID-19 lockdown. Dispersion-normalized PMF was used for the hourly 

PM2.5 chemical constituents data measured from January 1, 2020, to February 15, 

2020, at Nankai University in the Jinan district of Tianjin, China. Fig. 2.2 shows the 

time series contribution of PM2.5, from the study by Dai et al. (2020). Six sources 
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were identified. The differences between the PMF and dispersion-normalized PMF 

were analyzed. Additionally, the effects of COVID-19 were studied. 

 

 

Fig. 2.3. Time series of source contributions estimated using constrained PMF 

and dispersion-normalized PMF 

 

Park et al. (2020) investigated the long-term trends of source contributions 

of PM2.5 in Seoul, Republic of Korea. PMF modeling was conducted using data from 

2014 to 2015. The results were compared with the study that investigated the sources 

of PM2.5 from 2003 to 2007 (Heo et al., 2009). The results reveal that the contribution 

of mobile sources decreased from 2003 to 2015 (E. H. Park et al., 2020) 
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Fig. 2.4. Comparison of the source contributions to PM2.5 of Seoul, the Republic 

of Korea in Heo et al. (left, from 2003 to 2007) and Park et al. (right, from 2014 

to 2015) 

 

Positive matrix factorization (PMF) is a widely used model globally as a 

tool for source appointment of PM2.5. The PMF model was developed and distributed 

by the US EPA. Fig. 2.5 shows the execution image of the PMF modeling program.  
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Fig. 2.5. The execution image of the PMF modeling program 

 

Karagulian et al. (2015) reported 419 source apportionment studies 

conducted in 51 countries worldwide. Among the principal component analysis 

methods, positive matrix factorization (PMF), which limits factors to those with 

positive values, is one of the most actively used receptor models worldwide, 

including in the United States (Han et al., 2017; Paatero and Tapper, 1994; Polissar 

et al., 2001), South Korea (Kim et al., 2018; E. H. Park et al., 2020), China (Lv et 

al., 2021; Wu et al., 2018; Zhao et al., 2019; Zong et al., 2016), and Vietnam (Cohen 

et al., 2010). In addition, there were 539 reported PMF results by Hopke et al. (2020).  

The PMF model is the most utilized and studied model among existing receptor 

models (Belis et al., 2013; Hopke et al., 2020; Kumar et al., 2022; Pant and Harrison, 

2012). The basic calculation formulae and applications of the PMF model are 

discussed in Chapter 3. 
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Notably, PMF modeling has error review capabilities, such as bootstrapping 

(BS) and displacement (DISP), which lead to relatively accurate source 

apportionment and are useful for interpreting source profiles based on domain 

knowledge (Hopke, 2016; Paatero, 1997). Due to these advantages, the PMF model 

is used the most and is emphasized as an important application point (Hopke et al., 

2020). In addition, new approaches have been proposed to improve usability (Brown 

et al., 2015; Du et al., 2021; Wang et al., 2018). More recently, advanced methods, 

such as dispersion-normalized (DN) PMF have emerged (Dai et al., 2021, 2020). 

Matrix factorization with Bayesian methodology has also been used in receptor 

models (Park et al., 2021, 2018; Park and Oh, 2015). It is necessary to increase the 

number of research cases in Korea to apply these methods. 
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2.2. Toxicity and health risk of assessment PM2.5 

 

In particular, PM2.5 is harmful to human health; accordingly, PM2.5 is 

classified as carcinogenic group 1 by the International Agency for Research on 

Cancer (IARC) (WHO, 2005; Widziewicz et al., 2016). This group is the same as 

that of arsenic and benzene, as described in Chapter 1. PM2.5 enters the lungs during 

respiration, adversely affecting human health (WHO, 2005). Table 2.3 shows the 

penetrability according to the aerosol particle size (Manisalidis et al., 2020).  

 

Table 2.3. Penetrability according to particle size (Manisalidis et al., 2020) 

Particle size (µm) Penetration degree in the human respiratory system 

> 11 Passage into nostrils and upper respiratory tract 

7‒11 Passage into the nasal cavity 

4.7‒7 Passage into larynx 

3.3‒4.7 Passage into the trachea-bronchial area 

2.1‒3.3 Secondary bronchial area passage 

1.1‒2.1 Terminal bronchial area passage 

0.65‒1.1 Bronchioles penetrability 

0.43‒0.65 Alveolar penetrability 

 

Many epidemiological studies have revealed that PM2.5 causes respiratory 

diseases as well as cardiovascular diseases (Atkinson et al., 2014; Hamanaka and 

Mutlu, 2018; Hopke et al., 2020; Kim et al., 2015, 2022; Li et al., 2013; Manisalidis 

et al., 2020; Thangavel et al., 2022). Diseases caused by PM2.5 are found to be 

cardiopulmonary disease, cerebrovascular diseases, neurodegenerative diseases, 
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bronchitis, emphysema, irritation of the eye, asthma, and respiratory infections 

(Thangavel et al., 2022). However, the mechanisms by which PM2.5 affects the 

human body are still unclear (Thangavel et al., 2022). At the current level of 

understanding, it is hypothesized that PM inhaled into the lungs causes cellular 

inflammation, produces free radicals, or causes an imbalance in the nervous system 

(Manisalidis et al., 2020; Thangavel et al., 2022). 

Table 2.4 shows health complications caused by PM2.5 (Thangavel et al., 

2022). As shown in Table 2.4, PM2.5 affects health on short-term as well as long-term 

exposure. The four effects of PM2.5 toxicity (1) pulmonary diseases, (2) 

cardiovascular diseases, (3) cancers, and (4) neurodegenerative diseases are to be 

examined in detail. This primarily refers to the literature review of the health effects 

of PM2.5 exposure (Thangavel et al., 2022). In addition, the figures for each health 

effect were referred to because well represented in the same literature (Thangavel et 

al., 2022). 
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Table 2.4. Health complications caused by PM2.5 (Thangavel et al., 2022) 
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Figure 2.6 indicates the underlying mechanisms of chronic obstructive 

pulmonary disease and asthma from PM2.5 (Thangavel et al., 2022). The chemical 

constituents of PM2.5 and PM2.5-induced reactive oxygen species (ROS) pose a risk 

to the respiratory health (Thangavel et al., 2022; Wu et al., 2016). For example, 

increasing levels of PM increase sore throat, cough, sputum production, wheezing, 

and dyspnea (Wu et al., 2016). 

 

 

Fig. 2.6. An illustration of underlying mechanisms of PM2.5-induced chronic 

obstructive pulmonary disease and asthma (Thangavel et al., 2022) 
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Figure 2.7 shows the pathways by which PM promotes cardiovascular 

impairments (Thangavel et al., 2022). Oxidative stress is the primary response to PM 

exposure. A recent study suggested that PM2.5 causes both cardiac and vascular 

dysfunctions (Thangavel et al., 2022).  

 

 

Fig. 2.7. Biological pathways whereby PM particles promote cardiovascular 

impairments (Thangavel et al., 2022) 

 

A positive correlation between the risk of lung cancer and PM exposure has 

been previously reported (Hamra et al., 2014). In addition, the American Cancer 

Society’s prospective Cancer Prevention Study II found that PM2.5 was significantly 

positively associated with the death of kidney and bladder cancers from the 

monitoring data of 623,048 individuals for 22 years (1982‒2004) (Thangavel et al., 

2022; Turner et al., 2017). Figure 2.8 indicates the potential molecular pathways 

involved in lung cancer (Thangavel et al., 2022). 
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Fig. 2.8. Potential molecular pathways in air pollution-related lung cancer 

(Thangavel et al., 2022) 

 

It has also been suggested that PM affects the central nervous system and 

causes neurodegenerative diseases (Costa et al., 2017; Thangavel et al., 2022). PM 

from diesel exhaust causes electroencephalogram alterations and a general cortical 

stress response (Crüts et al., 2008). Fig 2.9 shows the effects of air pollution on the 

nervous system (Thangavel et al., 2022). 
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Fig. 2.9. Effects of air pollution on the nervous system and its possible role in 

neurodegenerative disorders (Thangavel et al., 2022) 

 

Research on the health effects of PM2.5 has revealed its toxicity. 

Epidemiological studies, including experiments and molecular analyses, have also 

been conducted (Thangavel et al., 2022). However, the toxicity value of PM for 

health risk assessment has not yet been determined. To assess possible health risks, 

researchers have performed a health risk assessment for each component based on 

the concentration of detailed chemical constituents in the PM (Briffa et al., 2020; 

Choi et al., 2022; Hu et al., 2012; Khillare and Sarkar, 2012; Kim et al., 2022; Lee 

et al., 2022; Sakunkoo et al., 2022; Yang et al., 2013; Zhao et al., 2021; Zheng et al., 

2019). Health risk assessment was conducted using the method described by the US 

EPA (US EPA, 2009). 

The human health risks caused by PM2.5-bound heavy metals were calculated 

using this method. The principal pathway considered is the inhalation of ambient air 

(Sakunkoo et al., 2022). The health risks posed by heavy metals are divided into non-

carcinogenic and carcinogenic (Fan et al., 2021). The International Agency for 
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Research on Cancer (IARC) classifies As, Ni, Cd, and Cr as Group 1 (carcinogenic 

to humans), Pb as Group 2A (probably carcinogenic to humans), and Group 2B 

(possibly carcinogenic to humans) (Zheng et al., 2019). The non-cancer risk was 

calculated using the hazard quotient (HQ) (Lee et al., 2022; Zhao et al., 2021; Zheng 

et al., 2019). The detailed calculation procedure is described in Section 3. 

Zheng et al. (2019) reported health risk assessment results using PM2.5 collected 

from 2014 to 2016 in Nanjing, China. The results showed that the carcinogenic risks 

were within the tolerance or acceptable level (1×10−6–1×10−4). The HQ values were 

less than 1, which implies that there was no significant risk of non-carcinogenic 

effects and was set by the US EPA. Fig. 2.10 showed the health risk assessment of 

Zheng et al. (2019). 
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Fig. 2.10. Non-cancer (a) and cancer risks (b) of selected trace elements and 

their total risk cumulative probabilities (c, d) in PM2.5, before and after the 

release of pollution control measures (BPCM: Jan.–Nov. 2014 and APCM: Nov. 

2015–Jul. 2016). Box and whisker plots are constructed by 25–75th and 5–95th 

percentiles, respectively. (Zheng et al., 2019) 

 

Zhao et al. (2021) performed a health risk assessment using PM2.5 from coal-

fired power plants in Fuxin, China. The non-carcinogenic risk values of As for 

children and adults were 45.7 and 4.90, respectively. The carcinogenic risk values of 

Cr for adults and children were the highest, with values of 3.66 × 10−5 and 2.06 × 

10−5, respectively. These results indicate the need for a response to the high health 

impact of PM2.5. 
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Khillare and Sarkar (2012) evaluated the health effects of Cr and Ni in PM in 

Delhi, India. The ILCR values were 1.51×10−4 and 1.5×10−5 for Cr(VI) and Ni, 

respectively. It can impact health risks from PM in Delhi, considering lifetime 

inhalation exposure. 

Sakunkoo et al. (2022) reported the human health risks of PM2.5-bound heavy 

metals from anthropogenic sources in Khon Kaen Province, Thailand, between 

December 2020 and February 2021. According to the results, adults were exposed to 

risks that were beyond the safe level, showing a high carcinogenic risk in urban areas 

(residential), industrial zones, and agricultural zones. 

As shown thus far, there are many cases where non-carcinogenic and 

carcinogenic risks are higher than the safety level in health risk assessment studies 

conducted in East Asia. However, these studies have a limitation such that it was 

possible to evaluate only the components whose toxicity values were provided by 

the US EPA. This means that the health impact may be underestimated compared 

with the actual health impact. Therefore, the health risk assessment of PM2.5 needs 

to be studied constantly. 
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2.3. Machine learning approaches in the prediction of PM2.5 

 

Machine learning models, which have recently been in the spotlight, can be 

used to interpret complex phenomena (Jordan and Mitchell, 2015). Accordingly, 

concepts introduced in computer science are used in the analysis of earth sciences 

(Kelp et al., 2020; Zhong et al., 2021). They have been successfully used in flow 

pattern analysis, weather analysis, and air quality prediction (Hadeed et al., 2020; 

Hu et al., 2017; Lyu et al., 2019; Yao and Ruzzo, 2006).  

Recently, attempts have been made to develop models to predict air 

pollution using machine learning (Chang et al., 2020; Kelp et al., 2020; Reichstein 

et al., 2019; Zhong et al., 2021). Machine learning models work by analyzing data, 

looking for specific patterns and rules, and making predictions when given a 

sufficient amount of data (Alpaydin, 2020). Previous studies have successfully 

predicted the concentrations of PM2.5, PM10, and gaseous air pollutants (such as 

sulfur dioxide [SO2], nitrogen dioxide [NO2], and ozone [O3]) using machine 

learning (Castelli et al., 2020; Chang et al., 2020; Zhong et al., 2021).  

Lyu et al. (2019) improved the accuracy of PM2.5 predictions in China using 

an ensemble of a deep neural network and a community multiscale air quality 

(CMAQ) model. The results indicated that the prediction of accuracy concentration 

of PM2.5 increased from 0.39 to 0.64 in R2, and the root mean squared error (RMSE) 

decreased from 33.7 to 24.8 μg/m3 (Lyu et al., 2019). Fig 2.11. shows the prediction 

accuracy results using (a) the CMAQ model only and (b) the fusion model. 
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Fig. 2.11. Scatter plots of (a) raw CMAQ simulations and (b) final fusion 

product, evaluated with independent China Meteorology Agency (CMA) 

observations in 2016. The green line reflects the linear regression of predictions 

against observations; the dashed red line represents the one-to-one line 

indicating perfect agreement (Lyu et al., 2019) 

 

Hu et al. (2017) estimated daily average PM2.5 concentrations in the United 

States with an accuracy of R2 = 0.80 using the Random Forest (RF) algorithm, a 

machine learning technique. Fig. 2.12 shows the prediction results and the 

differences between the predicted and observed PM2.5 concentrations of Hu et al. 

(2017). 
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Fig. 2.12. Annual mean predictions. (a) Annual mean PM2.5 predictions over the 

continental United States for 2011; (b) annual mean PM2.5 measurements at 

ground monitors; (c) difference between annual mean predictions and 

observations at ground monitors and difference interpolations over the 

continental United States (Hu et al., 2017) 

 

Table 2.5 presents recent studies to predict air pollution using machine 

learning models. Most of the studies predicted the concentrations of PM10, PM2.5, O3, 

NO2, CO, and SO2. However, most of them predicted the mass concentration of PM 

or the concentration of gaseous air pollutants. The use of machine learning in 

predicting PM2.5 constituents has not been reported, even though PM2.5 chemical 

constituents provide information about the origin and hazard of PM2.5 (Zheng et al., 

2019). 
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Table 2.5. Research on predicting air pollution using machine learning models 

Location Model used Prediction target Additional data used Prediction accuracy Reference 

USA RF 
PM2.5 

(Multiple sites) 

Aerosol optical depth, land use 

variables, meteorological data 
0.80 in R2 (Hu et al., 2017) 

USA 
Various models 

(8 models) 

Missing value of PM2.5 

(within 24 hours) 
PM2.5 0.32−0.65 in R2 (Hadeed et al., 2020) 

USA 

(California) 
SVR* 

Air quality index 

(category) 

SO2, O3, NO2, CO, PM2.5, wind 

speed, temperature, humidity 
94.1% accuracy (Castelli et al., 2020) 
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China 
DNN, RF  

(ensemble) 

PM2.5 

(Multiple sites) 
Numerically modeled data  0.39−0.64 in R2 (Lyu et al., 2019) 

Chile 
kNN, linear 

regression, etc. 

Missing value of PM2.5 

(Daily average) 

PM2.5, PM10, NOx, O3, CO, 

temperature, humidity, wind 

speed, rainfall 

0.37−0.91 in R2 
(Quinteros et al., 

2019) 

Taiwan 
RNN** 

(LSTM***) 

PM2.5, PM10  

(hourly future) 

SO2, O3, NO, NO2, NOx, CO, 

rainfall, data time, month, 

weekday, and hour 

30−40% error in  

8-hour prediction 
(Chang et al., 2020) 

* SVR: Support vector regression 

** RNN: Recurrent neural network 

***LSTM: Long short-term memory 
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The commonly used machine learning models include (1) fully connected 

deep neural networks, (2) Random Forest, (3) k-nearest neighbor, and (4) generative 

adversarial imputation networks.  

The fully connected deep neural network is specialized in feature extraction 

and is one of the most widely used neural network models for nonlinear regression 

(Hinton and Salakhutdinov, 2006; Hwangbo et al., 2021). The DNN model was 

trained by adjusting the weights and biases of the hidden layer neurons to correspond 

to the input and output data, respectively. For the models, avoiding overfitting and 

optimizing hyperparameters is crucial to develop a model with high prediction 

accuracy, with training as well as actual field data (Montavon et al., 2018). Fig. 2.13 

shows the structure of the deep neural network model. The hyperparameters of the 

model are indicated by blue boxes. The input and output data can be adjusted 

according to the convenience of the analyst. 
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Fig. 2.13. Structure of a deep neural networks model 

 

A generative adversarial imputation network is a missing-value processing 

model that competes with learning and improves accuracy using a generator and 

discriminator (Li et al., 2019; Nazábal et al., 2020; Yoon et al., 2018). Fig. 2.14 

shows the architecture and learning process of the Generative adversarial imputation 

network. This model was presented first by Yoon et al. (Yoon et al., 2018). A 

generative adversarial imputation network has the characteristic of being able to use 

data with missing values without modification (Ivanov et al., 2018) and has been 

recently used in various fields for processing missing values (Andrews and Gorell, 

2020; Popolizio et al., 2021; Viñas et al., 2020). This is based on the basic assumption 

that missing values in the data occur randomly (Yoon et al., 2018). 
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Fig. 2.14. Architecture and training process of the generative adversarial 

imputation network model 

 

 

The RandomForest algorithm, proposed by Breiman (2001), is an ensemble 

model widely employed for multi-dimensional classification and regression 

problems (Breiman, 2001). Various decision trees in RandomForest models are 

trained to enhance the model performance (Tella et al., 2021). Fig. 2.15 shows a brief 

description of the branch division of a tree and the calculation of the predicted value. 

RandomForest has shown outstanding prediction results in situations where the 

number of variables is larger than the number of monitored data (Biau and Scornet, 

2016). 

 



 

３９ 

 

 

Fig. 2.15. Schematic diagram of a tree, branch division, and predicted value 

calculation 

 

The k-nearest neighbor algorithm is a non-parametric model for 

classification and regression, wherein the prediction object is calculated as the 

average of the k values closest to the prediction point (Tella et al., 2021; Yao and 

Ruzzo, 2006). The Euclidean distance for the judgment of the nearest neighbor is 

used to calculate the distance in the k-nearest neighbor algorithm. Fig. 2.16 shows 

the calculation procedure for the unknown value.  
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Fig. 2.16. Schematic diagram of the calculation process of k-nearest neighboring 

algorithm 

 

Thus far, we have investigated commonly used machine learning models. 

However, as mentioned in Table 2.5, there are a few examples of such machine 

learning research applications. There are especially few applications in Korea. 

Therefore, there is a need to diversify studies on machine learning applications in air 

pollution. 
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2.4. Bayesian approach in source apportionment 

 

The Bayesian method has been of interest in source apportionment studies 

in recent decades (Hopke, 2016). Bayesian factor analysis has advantages that can 

overcome challenging problems in factor analysis, such as uncertainty estimation 

and rotational ambiguity (Park and Tauler, 2020). Domain knowledge can be 

incorporated into parameter estimations in Bayesian source apportionment models 

(Park and Tauler, 2020).  

Despite these strengths, there have been limited studies on source 

apportionment using the Bayesian method. Hopke (2016) pointed out that the 

conceptual framework and statistical computations of Bayesian source 

apportionment are complex, which makes it difficult to use the model. Bayesian 

source apportionment has not been widely applied (Park and Tauler, 2020). 

Continuous research is needed to increase usability and exploit its advantages for 

advancing source apportionment techniques. This chapter thoroughly investigates 

the literature using the Bayesian approach in source apportionment. Table 2.6 shows 

the applications of Bayesian factor analysis to source apportionment.  
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Table 2.6. Research using Bayesian approach in source apportionment 

Research summary Location Reference 

- Source apportionment of particle number size distribution using Bayesian Dirichlet 

process model 

- Identification of a sources in London Gatwick Airport 

UK (Baerenbold et al., 2022) 

- Presenting user-friendly software tools to implement Bayesian multivariate receptor 

modeling 

- Example analysis of PM2.5 dataset from El Paso, USA (4 sources identified) 

USA (Park et al., 2021) 

- Incorporating latent source profiles and meteorological conditions using Bayesian 

hierarchical source apportionment model 

- Identification of major sources in two study areas of northern Taiwan 

Taiwan (Tang et al., 2020) 

- Development of Bayesian spatial multivariate receptor model to enable predictions of 

source contributions at any unmonitored site 

- Identification of 5 sources from 9 monitoring sites in Harris County, Texas 

USA (Park et al., 2018) 

- present a source-specific health effects evaluation approach within a Bayesian 

framework that can handle both parameter uncertainty and model uncertainty in 

source apportionment under Poisson health outcome models 

USA (Park and Oh, 2018) 
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- Presenting a new flexible source apportionment approach, Bayesian quantile 

multivariate receptor modeling  

- Dealing with the non-normality of air pollution data and outliers 

USA (Park and Oh, 2016) 

- Extending the previous Bayesian multivariate receptor modeling to account for (1) 

nonnegativity constraints and (2) outliers by considering a heavy-tailed error 

distribution 

- Identification of 6 sources in Phoenix, Arizona 

USA (Park and Oh, 2015) 

- Development of a multipollutant approach that incorporates both sources of 

uncertainty into the assessment of source-specific health effects 

- Development of enhanced multivariate receptor models that can account for spatial 

correlations in the multipollutant data collected from multiple sites 

USA (Park et al., 2015) 

- Bayesian receptor modeling incorporating a priori information about the source 

emissions from national database 

- Application of the model in 2 locations in USA (Boston, Massachusetts and Phoenix, 

Arizona) 

USA (Hackstadt and Peng, 2014) 

- Evaluating the source-specific health effects associated with an unknown number of 

major sources of multiple air pollutants 

- Estimating source contributions along with their uncertainties and model uncertainty 

USA (Peak et al., 2014) 
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- Using Dirichlet distribution to extend the receptor model for time-varying source 

profiles 

- Evaluation of the extended model using the dataset of St. Louis, Illinois 

USA (Heaton et al., 2010) 

- Dirichlet based Bayesian receptor modeling to incorporate a prior information on 

source profiles  

- Comparison the simulation results of the Bayesian receptor modeling to PMF 

modeling 

USA (Lingwall et al., 2008) 

- Estimating the source spatial profiles using Bayesian approach 

- Identification of 2-3 sources of PM10 in Seoul using the data of 17 monitoring sites 
Korea (Park et al., 2004) 

- Proposing Bayesian approach that can handle the unknown number of pollution 

sources and identifiability conditions 

- Dealing with model uncertainties in receptor models by using Makov chain Monte 

Carlo (MCMC) schemes 

USA (Park et al., 2002) 

- Development of time-series extension of multivariate receptor models to account for 

temporal correlation in parameter estimation  

- Application of the model in Atlanta 

USA (Park et al., 2001) 
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Baerenbold et al. (2022) applied the Bayesian Dirichlet process model for 

source apportionment of the particle number size distribution measured near London 

Gatwick Airport, UK, in 2019. Nine sources were identified, and the results were 

compared with those of Tremper et al. (2022). The estimated particle-size 

distributions for each source are shown in Fig. 2.17. 

 

 

Fig. 2.17. Particle size distribution for the 9 sources identified by the model. 

Solid lines represent the sources which were also found using PMF in Tremper 

et al. (2022), while dashed lines are from Baerenbold et al. (2022) 

 

Park et al. (2021) presented user-friendly software tools to implement 

Bayesian receptor modeling for the convenience of the investigators. The tools were 

developed for use in MATLAB and R software. This is expected to solve the problem 

of the low accessibility of Bayesian source apportionment modeling, which has been 

mentioned previously (Hopke, 2016; Park and Tauler, 2020).  
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Tang et al. (2020) identified major sources in two study areas of northern 

Taiwan (Shimen and Taipei) using a Bayesian hierarchical model. The results of 

Bayesian receptor modeling were compared with the results of PMF modeling using 

simulated data to estimate the performance of the models. Fig. 2.18 shows a 

comparison of the source profiles obtained from the Bayesian model and the PMF 

model (Tang et al., 2020). The Bayesian model showed a better performance. Based 

on these results, Tang et al. (2020) proposed a multivariate source apportionment 

model using a Bayesian framework for latent source profiles to incorporate domain 

knowledge, such as emissions and meteorological data. This method can be used to 

avoid restrictive assumptions (Tang et al., 2020).  
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Fig. 2.18. Comparison of the estimated source profiles obtained from the 

proposed Bayesian and PMF models with the true values (Tang et al., 2020) 

 

Park et al. (2018) proposed a Bayesian spatial multivariate receptor model 

that can incorporate multisite multipollutant data and predict the source 

apportionment results at any unmonitored location. The model used 17 volatile 

organic compound data collected from nine monitoring sites in Harris County, Texas, 

United States, and predicted the source contributions of five major sources (Park et 

al., 2018). Fig. 2.19 shows the predicted surface of the source contribution from 
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Bayesian spatial multivariate receptor modeling. This is the first study to predict the 

surface map of the source contributions using Bayesian receptor modeling. The 

method and outcome of this research can considerably aid in developing effective 

pollution control strategies in cities with no multi-pollutant data. They are expected 

to be used in various applications. 

 

Fig. 2.19. Predicted source contribution surface for Harris County on December 

12, 2005 (Park et al., 2018) 
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Park and Oh (2015) proposed a robust Bayesian receptor model to estimate 

the uncertainty of source contributions and source profiles by extending previous 

Bayesian multivariate receptor modeling to account for (1) non-negativity 

constraints and (2) outliers by considering a heavy-tailed error distribution (Park and 

Oh, 2015). The proposed robust Bayesian receptor modeling was investigated using 

simulated data and monitored PM2.5 speciation data from Pheonix, Arizona, USA. 

Fig. 2.20 and Fig. 2.21 show the results of robust Bayesian receptor modeling of the 

simulated data and the monitored data, respectively (Park and Oh, 2015). In the 

simulation results, the modeling results tended to agree well when the data contained 

outliers (Fig. 2.20). In practical applications, six sources were identified with 

uncertainty estimates of 95% posterior intervals (Fig. 2. 21). This approach can 

provide uncertainty estimates for both source contributions and profiles, coping with 

unknown identifiability conditions. 
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Fig. 2.20. Time series plots of the true source contributions and estimated source 

contributions using (a) Method T and (b) Method G when the data contain 

outliers (Park and Oh, 2015) 
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Fig. 2.21. Time series plots of the estimated source contributions (in μg/m3) 

using Method G for 1027 days with their uncertainty estimates (95% posterior 

intervals) represented by dashed lines (Park and Oh, 2015) 

 

Hackstadt and Peng (2014) proposed a Bayesian source apportionment 

model that incorporates a priori information about source emissions from a national 

database. The proposed model was also applied to two locations in the USA (Boston, 

Massachusetts, and Phoenix, Arizona). The authors concluded that uncertainties in 
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the source contributions should not be ignored.  

Heaton et al. (2010) used Dirichlet distribution to extend the receptor model 

for time-varying source profiles. Fig. 2.22 shows the source profile of the zinc 

smelter source from the results of time-varying receptor modeling (model proposed 

by Heaton et al. (2010)) and time-constant receptor modeling (PMF model). The 

authors pointed out that time-varying source profiles were empirically and physically 

justifiable and could reduce the estimation error (Heaton et al., 2010). 

 

Fig. 2.22. Time plot of the six largest elements for the zinc smelter profile as 

identified by the Dirichlet process model (solid line). The dashed lines 

correspond to the time-constant PMF estimate. 

 

Park et al. (2004) estimated the major source regions of PM10 using the data 

from 17 monitoring sites in Seoul using the Bayesian spatial receptor modeling. 
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Sixteen candidate models were considered and two models were selected as the best 

model based on the value of the estimated marginal likelihood (Park et al., 2004). 

Fig. 2.23 shows the result of the Bayesian receptor modeling in winter in Seoul (Park 

et al., 2004).  

 

Fig. 2.23. Spatial profiles for (a) Source 1, (b) Source 2, and (c) Source 3 in 

Winter. The first letter of each site name corresponds to the actual location of 

the monitoring station, and ''-gu'' is omitted from the site name for the space 

(Park et al., 2004) 

 

Although the Bayesian approach to air pollution is an emerging field of research 

with many advantages, there are not many applications because of the difficulty for 

investigators to start (Hopke, 2016). Therefore, additional studies are required to 

understand Bayesian methods in receptor modeling and air pollution phenomena.  
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Chapter 3. Source apportionment of PM2.5 using  

PMF model and health risk assessment by inhalation
1

 

 

3.1. Introduction 

Fine particulate matter (PM2.5) in the atmosphere is classified as a Group 1 

carcinogen by the World Health Organization (WHO) owing to its carcinogenicity 

to humans (Anderson, 2009; WHO, 2005). In many countries, PM2.5 concentration 

is used as a major indicator of air quality, and significant efforts have been made to 

reduce PM2.5 pollution (Nazarenko et al., 2021; Riojas-Rodríguez et al., 2016). For 

a proper PM2.5 management, pollution sources should be accurately managed by 

determining the relationship between the source characteristics and atmospheric 

concentrations (Fang et al., 2020; Kim et al., 2019; Long et al., 2021). However, 

when PM2.5 is released into the atmosphere, it immediately goes through complex 

mechanisms such as advection, diffusion, reaction, and deposition; therefore, it is 

difficult to identify its source (Anderson, 2009; Riojas-Rodríguez et al., 2016). Thus, 

to effectively clarify the mechanisms and characteristics of PM2.5 pollution and 

improve air quality, scientific methods should be applied to identify and quantify 

PM2.5 sources (Belis et al., 2013; Hopke, 2016; Wang et al., 2012). In addition, as 

the impacts on human health vary according to PM2.5 source, management priorities 

should be defined based on the evaluation of health impacts and source 

 
1 A significant portion of this chapter was published in the following article: Lee, Y.S., Kim, 

Y.K., Choi, E., Jo, H., Hyun, H., Yi, S.-M., Kim, J.Y., 2022. Health risk assessment and source 

apportionment of PM2.5-bound toxic elements in the industrial city of Siheung, Korea. 

Environ. Sci. Pollut. Res. 1, 1–14. https://doi.org/10.1007/s11356-022-20462-0. 
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apportionment (Kim et al., 2015; Yang et al., 2013). 

The health risk assessment coupled with source apportionment can be used 

to develop more specific environmental health policies because the health risks due 

to exposure to PM2.5 may vary depending on the emission source. (Kim et al., 2019; 

Leogrande et al., 2019; Wang et al., 2020; Yang et al., 2013; Zhang et al., 2020). It 

is shown that oxidative potentials per PM mass differs greatly depending on the 

emission sources such as vehicle exhaust and secondary aerosols (Shiraiwa et al., 

2017). Accordingly, health risk assessments by sources were considered essential for 

comprehensive understanding behavior of particulate matter (PM) (Choi et al., 2022; 

Fan et al., 2021; Li et al., 2013). Also, although the importance of evaluation of 

ambient PM that takes into consideration size, chemical composition, and source of 

particles has been pointed out (Cassee et al., 2013), those factors have rarely been 

involved in the health or toxicity assessment (Fushimi et al., 2021; Hannigan et al., 

2005; Kim et al., 2020). Recent relevant studies investigate specific sources and 

chemical components of air pollution that affect human health and compared the 

assessment results to those of other regions, but these studies are still lacking (Fan 

et al., 2021). Furthermore, some studies show that health effects are still indicated in 

developed countries with low PM2.5 concentrations, it is still necessary to study on 

which pollutants and how they affect human health (Ma et al., 2022; Thurston et al., 

2021; Christidis et al., 2019). 

To date, far too little attention has been paid to conduct both source 

apportionment and health risk assessment simultaneously in middle-sized industrial 

cities that could exist in any country in the world, and rather, only some large cities 

are being studied (Fu et al., 2021; Hu et al., 2012; Yang et al., 2013). Air pollution is 
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generally more severe in industrial areas, owing to local industrial emissions (Fu et 

al., 2021; Shende and Qureshi, 2022). The negative impact to human health in these 

areas are expected to be greater than those to humans in areas with less pollution 

because of the presence of pollutants such as heavy metals, organic carbon (OC), or 

elemental carbon (EC) (Kumar et al., 2020; Samara et al., 2003). Therefore, the 

method source apportionment integrated with health risk assessment needs to be 

applied as a basis for the development of air pollution management policies, 

especially in industrial areas.  

The main purpose of this study was to identify the sources of PM2.5 and to 

evaluate the health risk of each source type in Siheung, which is a city with national 

industrial complexes located in the Republic of Korea. The specific aims of this study 

were to (1) identify and apportion PM2.5 sources with error estimation, (2) assess 

health risks of PM2.5 inhalation and the contribution of each source to these health 

risks from heavy metals in PM2.5, and (3) identify the characteristics of the sources 

that represent higher health risks and explore appropriate PM2.5 reduction measures 

based on a source-based health risk assessment. The target area of this study is a 

medium-sized industrial city, which is similar to many other industrial cities 

worldwide.  
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3.2. Materials and methods 

3.2.1 Study site, sampling, and analysis 

 

Siheung City is located at approximately 20 km southwest of Seoul, 

Republic of Korea, and it has a population of approximately 0.56 million (as of 2021). 

In the southwest of Siheung City, 10,000 factories are located in a national industrial 

complex, with an area of approximately 165 million m2 (Siheung City's official 

website, https://www.siheung.go.kr/english/, last access: 10 August 2021). The main 

industrial fields include textiles, chemicals, metal smelting, printing, and paper, 

Siheung City has high accessibility to Seoul owing to the highways and nearby ports; 

therefore, industrial activities are prominent in that area. It shares city-regional 

characteristics with medium-sized industrial cities in other major countries 

worldwide. Fig. 3.1 illustrates the location of Siheung City and its industrial 

complexes. The daily average PM2.5 concentrations in Siheung City were compared 

with those of other industrial cities in Korea, China, and Germany.  

 

https://www.siheung.go.kr/english/
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Fig. 3.1. Locations of this study site (Siheung city and sampling site) 

 

Fig. 3.2 shows the PM2.5 concentration levels of industrial cities in China 

and Germany (Beijing, Shanghai, Hamburg, Kassel), in Korea (Ulsan, Yeosu, 

Incheon, and Daebudo), and Seoul, the capital city of Korea. For the data, the air 

quality index value obtained from the Air Quality Historical Data Platform 

(https://aqicn.org/, last access: 10 August 2021) was converted into mass 

concentration. 

 

https://aqicn.org/
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Fig. 3.2. Average daily PM2.5 concentration comparisons between the sampling 

site and other sites 

 

To quantify the chemical composition of PM2.5 samples were collected 

every three or four times a week over 24 h from November 2019 to December 2020 

at the rooftop of Jeongwnag-dong National Air Quality Measuring Station 

(37.3472°N, 126.7399°E, shown as a red star in Fig. 3.1), which is approximately 10 

m above the ground level. A PM2.5 sampler (PMS-204, APM Engineering, South 

Korea) with three parallel channels was used to collect PM2.5 samples. Two channels 

were installed with Teflon filters (2 μm pore size and 47 mm diameter, Measurement 

Technology Laboratories, USA) and one channel with a quartz filter (47mm diameter, 

Pall Corporation, USA). Each sampler was operated for 24 h at a 16.67 L/min flow 

rate. The mass concentration, ionic component, OC, EC, and elemental components 

of PM2.5 were analyzed as follows. The mass concentration was calculated by 

measuring the weight of a 24 h dried Teflon filter (PT47P, MTL, US) before and after 

sample collection, and then dividing the obtained value by the collected air volume. 

The weight of the filters was measured after removing static electricity at a constant 
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temperature (21±1.5°C) and humidity (35±5%). Moreover, the weight of the blank 

filter was measured and used for correction. Ion component analysis was performed 

by ion chromatography (930 Compact IC Flex, Metrohm, Switzerland) using a 

Teflon filter (TF-10000, PALL, USA). In the analysis, each of the entire sampled 

filter was extracted for 120 min in a bath-type sonicator using 40 ml of distilled water, 

and then filtered using a 0.45 µm membrane. For OC and EC, a quartz fiber filter 

paper (7407, PALL, USA) cut to a diameter of 4 mm in the sampled portion was 

used, and the analysis was performed using the thermal optical transmittance (TOT) 

method in a carbon analyzer (laboratory OC-EC aerosol analyzer, Sunset Lab, USA), 

and the analysis conditions followed the NIOSH 5040 protocol. The trace elements 

were analyzed by energy dispersive X-ray fluorescence (ED-XRF) spectroscopy 

(ARL QUANT'X ED XRF Spectrometer, Thermo Fisher Scientific, USA) using 

Teflon filters (PT47P, MTL, US) without additional pretreatment. Namely, each of 

the entire sampled filter was used in the measurement. A total of 29 components were 

analyzed. Including the mass concentration analysis, 6 ionic species (NO3
-, SO4

2-, 

NH4
+, K+, Na+, and Cl-), carbons (OC and EC), and 21 species of elemental 

components (Na, Mg, Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Ba, Fe, Ni, Cu, Zn, As, Se, 

Br, and Pb) were quantified. 
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3.2.2 Positive matrix factorization (PMF) modeling and combined analysis with 

meteorological data 

 

The PMF model has been widely used as a method of factor analysis to 

derive air pollution sources from speciated sample data (Hopke, 2016; Paatero, 1997; 

Paatero and Tapper, 1994). The data matrix can be separated into factor contributions 

(G) and factor profiles (F) (United States Environmental Protection Agency (US EPA) 

2014). The equation for the PMF model is given by (Paatero and Tapper 1994). 

 

 X = G × F + E Eq. 3.1 

where X is a matrix of the sample dataset (e.g., n × j matrix, where n is the sampled 

date and j is the chemical species of the data), G is the source contribution matrix 

(e.g., n × q matrix, where q is the source contribution), F is the source profile matrix 

(e.g., q × j matrix), and E is a residual matrix (e.g., n × j matrix).  

In Eq. 3.1, all elements of matrices G and F are constrained to positive 

values. To derive the appropriate G and F matrices, the objective function Q in Eq. 

3.2 was minimized (Paatero, 1997). 

 

 Q =  ∑∑(
𝑒𝑖𝑗

𝜎𝑖𝑗
)

2𝑚

𝑗=1

𝑛

𝑖=1

 Eq. 3.2 

where n is the number of samples, m is the number of species, 𝑒𝑖𝑗 is the residual 

(e.g., element of matrix E), and 𝜎𝑖𝑗  is the data uncertainty (e.g., uncertainty of 

chemical species j at date i). 
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The US EPA PMF version 5.0.14 was used to estimate the source 

contribution and profile in the target area. The concentration data for the modeling 

included the pre-processed chemical composition analysis of 22 substances (NO3
-, 

SO4
2-, NH4

+, K+, Na+, Cl-, OC, EC, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, 

and Pb) and PM2.5 mass concentration. The pretreatment process considered the ratio 

of cations and anions in PM2.5, and data were excluded if concentrations were below 

the detection limit or when an outlier was detected. If there were duplicate 

measurements, one was selected for use. Data with an S/N ratio of 0.2 or less were 

also removed. This method is an established procedure reported in previous studies 

(Choi et al., 2013; Kim et al., 2018; E. H. Park et al., 2020). The data uncertainty 

was calculated using Eq. 3.3, according to the US EPA guidelines (US -EPA 2014). 

 

 

 

 

𝜎𝑖𝑗 = {

(5/6) × MDL

√(𝐶𝑜𝑛𝑐.× 0.1)2 + (0.5 × MDL)2
 

    (if Conc.≤ MDL)

    (if Conc.> MDL)
    Eq. 3.3 

where MDL is the method detection limit and Conc. is the concentration (μg/m3) of 

the species, (e.g., Xij). MDL values of the elemental components are listed in Table 

3.1. 

 

Table 3.1. Method detection limit (MDL) values of the elemental components 

(unit: ng m-3) 

Al Si Ca Ti V Cr Mn Fe Ni Cu Zn As Pb 

6.69 5.54 4.39 3.72 0.201 0.726 0.969 7.04 0.609 0.242 1.22 1.42 3.19 
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The data used for the modeling included 95 daily average values. The 

number of sources (e.g., q) in the model was selected by repeated modeling. 

Moreover, BS and DISP analyses in the US EPA PMF 5.0 were conducted to confirm 

the appropriate range of major chemical species by source. These functions are 

widely used to investigate errors and rotational ambiguity (Dai et al., 2020b). PMF 

results of 8 to 10 factors were considered for the best solution.  

 The CPF analysis was applied to investigate source directionality and the 

PSCF analysis was applied to locate possible source areas. The hybrid single-particle 

Lagrangian integrated trajectory (HYSPLIT 5) model and gridded meteorological 

data from the US National Oceanic and Atmospheric Administration were used to 

calculate air parcel backward trajectories.  

The conditional probability function (CPF) enable to analyze the changes 

in PM2.5 concentrations for each source according to wind direction and speed 

(Carslaw, 2015).. The CPF is defined as CPF = mθ/nθ, where mθ represents the 

samples above a certain concentration in the wind direction θ, and nθ is the total 

numbers of samples in the same wind direction. CPF values were visualized using 

hourly wind direction and speed data combined with PMF source contributions using 

the OpenAir package in R (version 4.0.3, Vienna, Austria). Meteorological data were 

obtained from the weather station located at the same position as the sampling site 

(37°20'48"N 126°44'24"E) and operated by the Korea Meteorological 

Administration (data are available at https://data.kma.go.kr/, last access: 10 August 

2021). The upper 25% of PMF source contributions was used as the threshold criteria.  

Subsequently, backward trajectory analysis was conducted using the Hybrid 

Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The 

https://data.kma.go.kr/
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transboundary airmass transport pathways from the sampling site were predicted. 

According to the sampling date, 24 h and 72 h of back trajectories were analyzed in 

1 h increments. The possible past routes were tracked using the Global Data 

Assimilation System (GDAS) 1-degree meteorological data. The HYSPLIT version 

5.0 and PySPLIT, which is a Python-compatible package (Warner, 2018), were used. 

The potential source contribution function (PSCF) was calculated based on the 

results of the backward trajectory analysis. The PSCF model indicates the 

conditional probability of air coming from an area (Ashbaugh et al., 1985) and is 

represented by Eq. 3.4. 

 
PSCF =  𝑚𝑖𝑗/𝑛𝑖𝑗 Eq. 3.4 

where 𝑚𝑖𝑗  is the total number of trajectory endpoints that exceed the threshold 

concentration in the i, jth grid cell; and 𝑛𝑖𝑗 is the total number of trajectory endpoints 

that pass the i, jth grid cell. In this study, the threshold concentration for 𝑚𝑖𝑗 was in 

the 70th percentile. 

The weighted PSCF (WPSCF) value can lead to more reliable results 

because the PSCF value can have high uncertainty in some cases (Polissar et al., 

2001). Therefore, the WPSCF was calculated using Eq. 3.5. In addition, visualization 

was performed using WPSCF(𝑛𝑖𝑗) at each grid and interpolated by Kriging. The 

results and discussion of the combined analysis with meteorological data is also 

provided.  
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3.2.3 Health risk assessment  

Using the species concentration for each source obtained through PMF 

modeling, the health risk was calculated following the guidelines established by the 

US EPA (2013, 2009). We evaluated only the substances with toxicity values, similar 

to previous studies on health risks of air pollution (Choi et al., 2011a; Fu et al., 2021; 

Hu et al., 2012; Yang et al., 2013; Zhao et al., 2021). Therefore, the health risk results 

of this study did not reflect the ion components, OC, EC, and PM2.5 itself. The health 

risk was assessed only for toxic elements in PM2.5. 

As inhalation is the predominant pathway for human exposure to PM2.5 

bound toxic elements, we considered only the inhalation pathway for carcinogenic 

(As, Cr, Ni, and Pb) and non-carcinogenic (As, Cr, Cu, Ni, Pb, V, and Mn) risk 

estimations. For Cr, because its hexavalent and trivalent forms generate different 

levels of health impacts, the ratio of hexavalent to trivalent was set to 3:7 by referring 

to the abundance ratio in the PM of other industrial cities (Torkmahalleh et al., 2013; 

Widziewicz et al., 2016). 

 The average daily dose of PM2.5 bound trace elements via inhalation 

(ADDinh) was calculated using Eq. 3.6 (US EPA, 2009). 

 

ADDinh (μg/m
3) =

C × ET × EF × ED

AT
 Eq. 3.6 

where C represents the mean concentration of a pollutant in the air (μg/m3) over the 

 

WPSCF(nij) =

{
 
 

 
 

1.0 × PSCF(nij)       (nij > 3navg)

 0.7 × PSCF(nij)     (3navg > nij > 1.5navg)

0.4 × PSCF(nij)     (1.5navg > nij > navg)

0.2 × PSCF(nij)       (navg > nij)

 Eq. 3.5 
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sampling period, and ET is the exposure time (h/d). EF is the frequency of exposure 

(365 d/y), ED is the exposure duration (y), and AT is the average time in h 

(ED × 365 ×24). 

The health risk assessment was based on adults residing in Korea. The exposure 

parameters used in the cancer and non-cancer risk assessments and their sources are 

listed in Table 3.2. 

 

Table 3.2. Exposure parameters and input variables used in health risk 

calculation 

Factor Definition Unit Value Source 

C 

The concentration of 

the metal in 

Ambient air 

µg/m3 
Median, 95 

percentile values 
This study 

ET Exposure Time hours/day 6 Fan et al., 2021 

EF Exposure Frequency day/year 350 This study 

ED Exposure Duration year 63.7 
Korean average 

(NIER, 2019) 

AT Average time hours 558,012  

 

 To estimate the carcinogenic risk by inhalation of PM2.5 bound trace 

elements, the incremental lifetime cancer risk (ILCR) was calculated following the 

risk assessment guidelines established by the US EPA (2009, 2013). The ILCRinh was 

calculated using Eq. 3.7 (US EPA, 2009). 

 
ILCRinh = ADDinh × IUR Eq. 3.7 

where IUR is the inhalation unit risk (m3/μg).  
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 According to the US EPA(1998, 2013), an ILCR lower than 1×10−6 is 

regarded as negligible, an ILCR above 1×10−4 is likely to be harmful to human beings, 

and an ILCR value between 1×10−6 and 1×10−4 indicates a tolerable risks, but 

needing risk reduction plans. The IUR values were based on credible values from 

the US EPA's Integrated Risk Information System (IRIS), and the Office of 

Environmental Health Hazard Assessment, (OEHHA) from the US EPA (2021), 

depending on the element. Table 3.3 shows the IUR values of each element, their 

sources, and the calculation results of health effects.  
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Table 3.3. Toxicological data and carcinogenic risk of PM2.5 in Siheung 

Chemical IUR (m3/μg) Critical effect* Source** 

ILCR 

Using median 

concentrations 

Using 95 

percentile 

concentrations 

As 4.3.E-03 

Lung irritation, decreased production of both red 

blood cells and white cells, deoxyribonucleic acid 

(DNA) damage 

IRIS 4.47E-06 1.17E-05 

Cr6+ 1.2.E-02 Liver and kidney disease, lung cancer IRIS 2.04E-06 4.17E-06 

Ni 2.4.E-04 Lung embolisms, lung and nasal cancer IRIS 7.07E-08 1.30E-07 

Pb 1.2.E-05 Renal impairment, encephalopathic signs OEHHA 6.92E-08 1.72E-07 

* Critical effects indicated the major carcinogenic effects on humans listed in the literature (Briffa et al., 2020) 

** The sources listed were the original reference of the value, and the values were downloaded from US-EPA (https://www.epa.gov/risk/regional-

screening-levels-rsls-generic-tables, last access: 10 August 2021

https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables
https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables
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The hazard quotient (HQ) and hazard index (HI) indicating the non-

carcinogenic risk from PM2.5 bound toxic elements were calculated using Eq. 3.8 and 

Eq. 3.9, respectively (US EPA, 2009). 

 

 HQ = ADDinh/(RfCi×1,000 μg/mg) 

HI = ∑ HQi 

Eq. 3.8  

Eq. 3.9  

 

where RfCi is the inhalation reference concentration (mg/m3) and i is the target 

element. 

 HI is a cumulative metric for HQs for individual toxic elements and 

exposure pathway. An HI value > 1 indicates the presence of non-carcinogenic risk, 

whereas values ≤ 1 indicate a negligible non-carcinogenic effect. The RfCi values 

were determined according to the OEHHA, IRIS, and additional references (Agency 

for Toxic Substances and Disease Registry, ATSDR; Michigan Department of 

Environmental Quality, MDEQ; California Environmental Protection Agency, 

CalEPA) from the US EPA (2021).  

 The health risks calculated in Siheung were compared to those in Seoul and 

Daebudo, of which measured data were obtained from the literature (Kim et al., 2018; 

Park et al., 2019). Median values and the same exposure parameters were used in the 

health risk estimation for the comparison using consistent manners. The period of 

available data was 2013- 2014 for Seoul, 2019- 2020 for Siheung, and 2016 for 

Daebudo. 
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3.3. Results and discussion 

3.3.1 PM2.5 mass concentration and chemical speciation  

 

The average mass concentration of PM2.5 over the sampling period 

(11/16/2019 to 10/02/2020) was 23.5 ± 13.9 μg/m3. A time series plot is shown in 

Fig. 3.3 to compare the PM2.5 concentration data obtained in this study and those 

provided from a national monitoring station (https://www.airkorea.or.kr/, last access: 

August 10, 2021).  

 

Fig. 3.3. PM2.5 mass concentration comparisons between the sampled filter and 

the nearest national monitoring station. (a): time-series plot, and (b) 1:1 plot 

 

Both time series presented a similar trend, which confirmed the validity of 

our data acquisition. High concentrations (over the Korean daily standard of 25 

μg/m3) were observed in 37 of the 95 samples, primarily in winter and spring (35 

cases from November to May). The detailed concentrations of PM2.5 and chemical 

species (29 species) are summarized in Table 3.4. 

  

https://www.airkorea.or.kr/
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Table 3.4. PM2.5 species concentrations in Siheung, Korea during the entire 

sampling period (11/16/2019 to 10/2/2020) 

Species 

Arithmetic 

mean 

(ng m-3) 

25th 

percentile 

(ng m-3) 

Median 

(ng m-3) 

75th 

percentile 

(ng m-3) 

Maximum 

(ng m-3) 

PM2.5 23,500 13,500 20,600 31,200 74,800 

NO3
- 5,160 993 2,590 7,740 27,200 

SO4
2- 3,580 1,800 3,260 4,380 14,100 

NH4
+ 2,910 1,330 2,710 4,100 12,100 

K+ 166 58.9 139 239 525 

Na+ 165 104 144 188 604 

Cl- 366 59.2 168 477 2,490 

OC 5,830 3,760 5,330 7,370 15,400 

EC 649 406 561 826 1,908 

Na 187 136 172 222 536 

Mg 41.0 27.5 34.8 49.7 159 

Al 84.1 44.7 72.0 113 265 

Si 222 107 185 296 665 

S 1,850 1,130 1,740 2,310 6,200 

Cl 505 113 248 772 2,560 

K 233 108 196 328 766 

Ca 51.4 28.2 43.3 66.6 233 

Ti 7.41 4.38 6.37 9.93 20.1 

V 0.396 0.196 0.319 0.531 1.41 

Cr 2.43 1.21 2.25 3.14 8.25 

Mn 16.4 10.5 16.2 21.4 44.5 

Ba 6.25 3.01 4.45 7.33 30.9 

Fe 188 124 171 239 458 

Ni 1.26 0.788 1.14 1.65 3.38 

Cu 7.13 1.98 4.77 10.3 45.0 

Zn 73.5 42.4 60.6 98.8 226 

As 4.74 1.90 3.34 6.61 27.3 

Se 1.63 0.881 1.56 2.22 3.82 

Br 13.6 5.99 9.78 14.9 168 

Pb 25.7 11.8 21.3 31.6 111 

 

The PM2.5 concentration levels in Siheung and other cities are shown in Fig. 

3.2. The average daily PM2.5 concentration in Siheung was similar to that in Seoul 

and higher than those in Yeosu and Ulsan, which are industrial cities in South Korea. 
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Seoul and Siheung are cities located in the northwest of South Korea and are known 

to be affected by long-range transport of PM2.5 from China (Bae et al., 2019; Kumar 

et al., 2021). The contribution of long-range transport from China to PM2.5 in Seoul 

was estimated ranged from 41% to 44% between 2012 and 2016 (Bae et al., 2019), 

approximately 20% in August, and approximately 60% in January and February 

(Kumar et al., 2021). In comparison to industrial cities of other countries, the average 

PM2.5 concentration in Siheung was higher than those in Hamburg and Kassel, in 

Germany, and lower than those in Beijing and Shanghai in China. This suggests that 

source apportionment coupled with health risk assessment in Siheung may be an 

example of a small and medium-sized industrial city with moderate PM2.5 pollution. 

As the measurement and analysis period of this study included the COVID-

19 lockdown or social distancing period in neighboring countries and Korea, we 

evaluated possible interferences. A previous study on air quality change in Seoul 

under COVID-19 social distancing reported that the monthly average PM2.5 

concentration (from 29 February to 29 March 2020) decreased by 10.4% in 2020, 

which was contrary to the average increase of 23.7% over the corresponding periods 

in the previous five years (Han et al., 2020). Je et al. (2021) also reported that the 

mean PM2.5 level in 2020 decreased by 16.98 μg/m3 nationwide in Korea compared 

to 2019, which represented a decrease of 45.45% (p < 0.001). However, significant 

reductions in PM2.5 were observed in Korea even before social distancing owing to 

the changes in transboundary PM2.5 concentration (Kim and Lee, 2018). In China, 

the average PM2.5 concentration during the lockdown period (January to February 

2020) was 18 μg/m3, which represented a reduction of 30–60% in most regions (Bai 

et al., 2021). 
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Although there may be a gap between present results and previous ones, 

comparison with previous data is essential to obtain detailed information on PM2.5 

pollution. A comparison of average concentrations of PM2.5 bound chemicals 

obtained in this study and those by Park et al. (2019) in Seoul indicated that Siheung 

had a higher concentration of Cr than Seoul. The average concentrations of As, Pb, 

Cr, Mn, Ni, Cu, Zn, and V, which are major toxic elements, were 4.74, 25.74, 2.43, 

16.37, 1.26, 7.13, 73.55, and 0.40 ng/m3 in Sheung, and 5.53, 38.11, 1.74, 16.93, 

2.11, 7.92, 100 and 4.30 ng/m3 in Seoul (Park et al., 2019) respectively. The 

concentrations of toxic elements except Cr were higher in Seoul than in Siheung. 

However, further research is required to determine the impacts of reduced 

concentrations attributed to the effects of the COVID-19. When comparing the 

concentrations of elements in Siheung and Seoul during the sampling period of this 

study, the mean concentrations of Pb, Cr, Mn, Ni, Cu, Zn, and V in Siheung were 

1.6, 3.0, 2.2, 4.0, 2.8, 2.2, and 1.4 times higher than those in Seoul (Korea Ministry 

of Environment and National Institute of Environmental Research, 2022), 

respectively. These results might indicate that Siheung has a high concentration of 

Cr and other elements because the concentrations were high even during the COVID-

19 lockdown period. This was suggested because these elements are considered 

chemical markers of combustion and traffic sources (Farahani et al., 2021), which 

were reduced during the lockdown period. In Beijing, the mean concentrations of 

PM2.5-bounded As, Pb, Cr, Mn, Ni, Zn, and V during the winter of 2018 were 4, 44, 

15, 34, 8, 110, and 7 ng/m3 (Fan et al., 2021), respectively, which are overall higher 

than those obtained in Siheung. The concentrations of the clean case presented in the 

literature showed similar results to those of Siheung. In Quebedo, Portugal (Silva et 
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al., 2020), the concentrations of As, Cr, and Zn were 0.44, 3.55, and 11.0 ng/m3, 

which were lower than those in Siheung, Korea. 

 

3.3.2 Source apportionment of PM2.5 by PMF modeling 

The source profile and the time series of PMF factor contribution are shown 

in Fig. 3.4 and Fig. 3.5, respectively.  
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* Percent of species: the percentage concentration of each chemical species contributing to each of the 

sources (i.e., the sum of the percent of species values for each element from all sources is 100) 

 

Fig. 3.4. Source profile results of PMF modeling with DISP errors (The black 

bar corresponds to the left axis, and the red dot corresponds to the right axis) 
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Fig. 3.5. Source contribution time-series plot of PM2.5 in Siheung, Republic of 

Korea 
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Total 10 sources of PM2.5 were identified, and all major species of the 

sources were within the DISP intervals (Fig. 3.4). The R2 between observed and 

predicted PM2.5 concentrations for the best solution was 0.92, indicating a reasonable 

modeling result. The 10 sources included secondary nitrate, secondary sulfate, traffic, 

combustion for heating, biomass burning, coal combustion, heavy oil industry, 

smelting industry, sea salts, and soil. The sources with the highest contributions were 

the secondary-generated particles (secondary nitrate and sulfate) (Fig. 3.5).  

Secondary nitrate had an average contribution of 24.3% to PM2.5 mass 

concentration. The concentration of secondary nitrate was relatively high in the 

winter when the temperature was low (Fig. 3.5). The main species of secondary 

nitrate are NH4
+ and NO3

-, which are formed in urban air primarily through gas-

particle partitioning (Shi et al., 2019). This occurs because nitrogen oxide and 

ammonia gas, which are gaseous precursors in spring and winter, easily react in the 

atmosphere producing particulate nitrate (Choi et al., 2013; E. H. Park et al., 2020). 

Secondary sulfate (18.8%) was identified by the high concentrations of SO4
2- and 

NH4
+ (E. H. Park et al., 2020). The contribution of secondary sulfate tended to 

increase primarily in the summer. This is considered to reflect the formation of 

sulfate in the atmosphere that becomes active when both temperature and humidity 

are high (Heo et al., 2009). 

Traffic was identified as a source using OC and EC as major indicator 

components, and it contributed to 18.8% of the PM2.5. The high component ratio of 

carbon species exhibited the characteristics of automobile pollutants. Fe is also 

considered as an indicator of traffic resuspension as it is emitted from the brake wear 

of gasoline and diesel-powered engines (Belis et al., 2013). 
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Combustion for heating as a pollution source was characterized by the high 

Cl-
 content (Tian et al., 2020), and it presented a high contribution from November 

2019 to March 2020. This period coincided with the heating periods in Korea and 

northern China. The combustion for heating contributed to 12.6% of the PM2.5. 

Biomass burning contributed to 11.8% of PM2.5, with K+ as its major 

component (Andreae, 1983). Its contribution was identified by the high load of OC 

and the medium load of EC (Liu et al., 2017; Moon et al., 2008). In addition, biomass 

burning exhibited seasonal characteristics with a high contribution in the winter (Shi 

et al., 2014), which is consistent with the increase in the use of wood fire for domestic 

heating (Choi et al., 2013).  

Coal combustion contributed to 3.6% of PM2.5, and As and Pb were 

considered its major indicator components. The contribution of coal combustion did 

not exhibit any distinct seasonal fluctuations, which was consistent with the 

characteristics of local sources. For example, Arsenic is known as a major marker of 

coal combustion pollution (Duan and Tan, 2013), and it is known to be largely 

emitted from fossil fuel burning. 

Industrial sources were divided into heavy oil- and smelting-related sources. 

The high ratio of V and Ni was considered a characteristic of heavy oil-based 

industrial sources (Jang et al., 2007). For industrial smelting sources, the major 

indicators were heavy metal components such as Cu, Cr, Mn, Pb, and Zn (Dai et al., 

2015). The industrial contributions did not show significant seasonal fluctuations. 

Sea salt sources were identified by high concentrations of Na, Mg, and K 

(E. H. Park et al., 2020). The source was referred to as a fresh seal salt because of 

the relatively high concentration of chlorine ions (Han et al., 2017). Its 
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concentrations exhibited seasonal characteristics, and the highest contributions were 

observed during the winter. Finally, soil sources were identified by the existence of 

representative crustal components such as Mg, Al, Si, Ca, and Ti (Liu et al., 2017; 

Thorpe and Harrison, 2008) and they contributed to 1.7% of PM2.5. 

Park et al. (2020) performed PMF modeling in Seoul in 2014–2015 and 

isolated 9 sources. The contributions of secondary sources and traffic sources in 

Seoul were 6.3 and 5.3 ug/m3 higher than those in Siheung, respectively. Unlike in 

the study of Seoul (E. H. Park et al., 2020), the industrial smelting source was 

extracted in this study probably due to non-ferrous smelter sources in the near 

national industrial complex. The existence of a smelting source was also observed in 

a PMF modeling study in Daebudo (Kim et al., 2018), near Siheung. In the literature, 

Cu, Zn, and Pb have been designated as major markers of industrial smelting sources 

(Kim et al., 2018). 

 

3.3.3 Carcinogenic and non-carcinogenic health risks 

The uncertainty of health risk estimates coupled with PMF modeling results 

was calculated. The difference between the health risks using the measured values 

and the health risks coupled with PMF model results was within 10% (data not 

shown). The calculated carcinogenic health risks by elements were shown in Table 

3.3.  

 

The obtained carcinogenic health risks indicated that both the median and 

95 percentile concentrations of As and Cr6+ exceeded the ILCR value of 1E-06, 

whereas the ILCR values of Ni and Pb did not exceed the reference value (Table 3.3). 
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These results suggest that air pollution management in Siheung should be based on 

pollution sources, focusing on As and Cr sources. This can also be confirmed in Table 

3.5, which presents the health risk assessment results by element and source.  
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Table 3.5. Estimated carcinogenic risk in Sihueng (median elemental 

concentrations used) 

Source 

Toxic element in PM2.5 
Sum of 

incremental 

cancer risk 

by source As Cr6+ Ni Pb 

Secondary nitrate 2.90E-07 - - 2.86E-09 
2.93E-07 

(4.4%) 

Secondary sulfate - - 1.14E-08 - 
1.14E-08 

(0.2%) 

Mobile 8.34E-07 2.30E-07 - 7.07E-09 
1.07E-06 

(16.0%) 

Combustion for 

heating 
- 1.32E-07 4.51E-09 7.17E-09 

1.44E-07 

(2.1%) 

Biomass burning 1.52E-07 2.12E-08 2.19E-09 - 
1.75E-07 

(2.6%) 

Coal combustion 3.24E-06 - - 4.02E-08 
3.28E-06 

(48.9%) 

Industry (oil) - 1.32E-06 4.93E-08 - 
1.37E-06 

(20.4%) 

Industry (smelting) - 3.02E-07 - 6.26E-09 
3.08E-07 

(4.6%) 

Sea salts - 5.11E-08 3.53E-09 4.61E-10 
5.51E-08 

(0.8%) 

Soil - - 2.60E-10 6.13E-09 
6.39E-09 

(0.1%) 

Sum of 

incremental cancer 

risk by element 

4.52E-06 

(67.2%) 

2.06E-06 

(30.7%) 

7.12E-08 

(1.1%) 

7.02E-08 

(1.0%) 

6.71E-06 

(100%) 

 

According to the estimated health risks from PM2.5 sources using the median 

concentrations, the sources with high health risk potentials were coal combustion, 

oil industries, and traffic, which accounted for 48.9%, 20.4%, and 16.0% of the total 

ILCR value, respectively (Table 3.5). The concentration of portioned As and Cr had 
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the greatest influence on the health risk values of each source. However, the absolute 

contributions of them to PM2.5 mass concentrations, were 3.6%, 1.8%, and 18.8%, 

respectively (Fig. 3.5). Fig. 3.6 shows annual average contributions of sources to 

PM2.5 mass concentrations and to cumulative cancer risk, and of elements to 

cumulative cancer risks.  

 

 

Fig. 3.6. Annual average contributions (a) of sources to PM2.5 mass 

concentrations, (b) of sources to cancer risks, and (c) of elements to cancer risks 

 

The contributions of sources to PM2.5 mass concentration and to health risks 

were very different. Therefore, the contribution of PM2.5 sources might not be 

representative of health risks, which supports the argument that to manage PM2.5 

with a focus on health risks, the concentration of toxic metal elements should be 
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considered rather than total mass concentration. (Farahani et al. 2021).  

The concentrations of As and Cr that must be reduced to achieve negligible 

health effects were calculated. The results indicate that to reduce the health risks of 

As to below 1E-06, the As concentration should be reduced to 1 ng/m3 or less, which 

represents a reduction of at least 75% compared to the current level. For Cr, the 

required concentration reduction was at least 50%. Therefore, there is a need for a 

significant reduction in coal combustion, which is the main source of As pollution, 

and in emissions from the oil industry, which are the main sources of Cr. In addition, 

as the seasonal differences in ILCR were not significant (data not shown), an overall 

reduction is necessary, instead of a specific-season reduction plan. 

Strengthening the control of pollutants emitted from industrial sources is an 

important environmental and public health issue. Therefore, the industrial emission 

sources of As and Cr in cities such as Siheung need to be managed, and efforts to 

reduce ambient concentrations need to be taken. Owing to the COVID-19 pandemic, 

industrial activity and traffic were likely restricted compared to usual rates during 

this study. This is supported by Dai et al. (2021), who reported that human activities, 

such as industry and transportation, declined during the epidemic outbreak and 

spread. Therefore, it is possible that the health risks assessed in this study were 

underestimated. Therefore, further studies beyond the pandemic period are needed 

for an accurate estimation of health risks. 

The calculated ILCR values for Siheung (2019–2020), Seoul (2013–2014), 

and Daebudo (2016) are shown in Table 3.6.  
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Table 3.6. Estimated carcinogenic and non-carcinogenic risks of PM2.5 in 

Siheung, Seoul, and Daebudo, Korea (median concentration of each element 

used) 

 

The results of Seoul were calculated from the data of Park et al. (2019), and 

the results of Daebudo were calculated from the data of Kim et al. (2018). The health 

risk from As in Siheung (4.52E-06) was lower than those in Seoul (1.35E-05) and 

Daebudo (3.02E-06). This result might have been obtained because the Siheung data 

reflected an underestimation of the decrease in human activity owing to the COVID-

19 pandemic. The health risk values in Nanjing (Hu et al., 2012) and Beijing (Fan et 

al., 2021) in China were 9.04E-06 and 1.67E-06, respectively, which were similar to 

the value Siheung. These results indicate that As presents a health risk even at low 

concentrations (ng/m3). This is consistent with previous studies suggesting that the 

presence of As in the atmosphere is a major public concern for human health 

(Widziewicz et al., 2016). Nevertheless, the health risk of Cr6+, Siheung, and Seoul 

also exceeded 1E-06, and Siheung presented the highest value (2.06E-06); therefore, 

Cr pollution in Siheung should be carefully managed. A similar observation of Cr-

Toxic 

elements 

in PM2.5 

Siheung, Korea 

(2019.11 – 2020. 10) 

Seoul, Korea* 

(2013 – 2014) 

Daebudo, Korea** 

(2016) 

ILCR HQ ILCR HQ ILCR HQ 

As 4.52E-06 7.01E-02 5.70E-06 8.84E-02 2.89E-06 4.47E-02 

Cr6+ 2.06E-06 3.42E-02 1.50E-06 2.50E-02 8.63E-08 1.44E-03 

Cr3+ - 3.99E-03 - 2.92E-03 - 1.68E-04 

Cu - 8.63E-04 - 9.49E-04 - 1.07E-03 

Ni 7.12E-08 2.12E-02 1.21E-07 3.61E-02 5.75E-09 1.71E-03 

Pb 7.02E-08 3.90E-02 1.10E-07 6.09E-02 4.43E-08 2.46E-02 

V - 8.74E-04 - 1.03E-02 - 2.73E-02 

Mn - 7.84E-02 - 8.12E-02 - 3.84E-02 

Sum 6.71E-06 2.49E-01 1.35E-05 5.85E-01 3.02E-06 1.39E-01 
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dominated carcinogenic risk from industrial and traffic sources has been reported in 

Delhi, India (Khillare and Sarkar, 2012). Hu et al. (2012) and Fan et al. (2021) 

reported that the carcinogenic risks of Cr for adults from PM2.5 in Nanjing and 

Beijing were 8.70E-05; and 2.2E-05, respectively, which are approximately 20.9 and 

5.3 times the value in Siheung. The industries were identified as Cr sources in this 

study (Fig. 3.4). Accordingly, Fan et al. (2021) identified the metal smelting industry 

as the main source of Cr. 

The non-carcinogenic health risks of all elements were less than 0.1 for both 

average and 95 percentile concentrations. Moreover, the HI value was 0.55, which 

did not exceed 1, thereby indicating a negligible toxic risk for all elements (Table 

3.7). The maximum HQ value was 0.18 for As when the 95 percentile concentration 

was used. The calculations using median concentrations indicated that the pollutants 

with high toxicity values were the oil industry, coal combustion, and traffic (Table 

3.8), which accounted for 37.4%, 30.5%, and 12.2% of the total HQ value, 

respectively. In contrast, according to the absolute contributions to PM2.5 

concentration, their contributions accounted for 1.8%, 3.6%, and 18.8%, respectively 

(Fig. 3.5). According to the HQ results, Seoul had a higher non-carcinogenic health 

risk (at 0.585, which did not exceed 1) than Siheung and Daebudo. This was 

consistent with the results of a similar study in China (Hu et al. 2012), in which the 

calculated HI was less than 1 for adults, so that the non-carcinogenic health risks 

were considered of relatively low importance. 
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Table 3.7. Toxicological data and non-carcinogenic risk in PM2.5 of Siheung 

Chemical RfCi (mg/m3) Critical effect* Source** 
HQ 

Using median 

concentrations 

Using 95 percentile 

concentrations 

As 1.5.E-05 Heart problems, brain damage OEHHA 6.9E-02 1.8.E-01 

Cr6+ 5.00E-06 
Allergic contact dermatitis and eczema, 

gingivitis 
IRIS 3.4E-02 7.0.E-02 

Cr3+ 1.0.E-04 DNA lesions (rarely toxic compared to 

hexavalent form) 
ATSDR,2012 4.0E-03 8.1.E-03 

Cu 2.0.E-03 Insomnia, anxiety, restlessness MDEQ, 2009*** 8.5E-04 2.4.E-03 

Ni 1.4E-05 Asthma, allergic reactions, heart disorders CalEPA 2.1E-02 3.9.E-02 

Pb 1.5.E-04 Hypertension, miscarriages, stillbirth IRIS 3.8E-02 9.6.E-02 

V 1.0.E-04 Throat pain, headaches, impairment to the 

nervous system 
ATSDR 8.7E-04 1.7.E-03 

Mn 5.00E-05 Hypotension, pneumonia, sperm damage IRIS 7.8E-02 1.5.E-01 

HI (Summation) 0.25 0.55 

* Critical effects indicated the major non-carcinogenic effects on humans listed in the literature (Briffa et al., 2020) 

** The sources listed were the original reference of the value, and the values were downloaded from US-EPA (https://www.epa.gov/risk/regional-screening-

levels-rsls-generic-tables, last access: 10 August 2021) 

*** The value from MDEQ was accessed in the chemical update worksheet of the State of Michigan website (https://www.michigan.gov/documents/deq/deq-

rrd-chem-CopperDatasheet_527899_7.pdf, last access: last access: 10 August 

 

https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables
https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables
https://www.michigan.gov/documents/deq/deq-rrd-chem-CopperDatasheet_527899_7.pdf
https://www.michigan.gov/documents/deq/deq-rrd-chem-CopperDatasheet_527899_7.pdf
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Table 3.8. Estimated non-carcinogenic risk in Siheung (median elemental concentrations used) 

Source 

Toxic element in PM2.5 
Sum of 

incremental 

cancer risk by 

source As Cr6+ Cr3+ Cu Ni Pb V Mn 

Secondary nitrate 4.50E-03 - - - - 1.59E-03 - - 6.1E-03 (2.5%) 

Secondary sulfate - - - 4.16E-05 3.39E-03 - 3.75E-04 1.08E-03 4.9E-03 (2.0%) 

Mobile 1.29E-02 3.84E-03 4.47E-04 9.91E-06 - 3.93E-03 1.44E-04 9.14E-03 3.0E-02 (12.2%) 

Combustion for heating - 2.20E-03 2.56E-04 - 1.34E-03 3.98E-03 1.14E-06 - 7.8E-03 (3.1%) 

Biomass burning 2.35E-03 3.54E-04 4.13E-05 - 6.51E-04 - - 2.35E-03 5.7E-03 (2.3%) 

Coal combustion 5.03E-02 - - 1.29E-05 - 2.23E-02 - 3.07E-03 7.6E-02 (30.5%) 

Industry (oil) - 2.19E-02 2.56E-03 1.35E-04 1.47E-02 - 2.96E-04 5.35E-02 9.3E-02 (37.4%) 

Industry (smelting) - 5.03E-03 5.87E-04 6.36E-04 - 3.48E-03 - 5.68E-03 1.5E-02 (6.2%) 

Sea salts - 8.52E-04 9.94E-05 6.70E-07 1.05E-03 2.56E-04 3.06E-05 1.40E-03 3.7E-03 (1.5%) 

Soil - - - 2.70E-05 7.74E-05 3.40E-03 2.73E-05 2.24E-03 5.8E-03 (2.3%) 

Sum of incremental 

cancer risk by element 

7.01E-02 

(28.2%) 

3.42E-02 

(13.8%) 

3.99E-03 

(1.6%) 

8.63E-04 

(0.4%) 

2.12E-02 

(8.5%) 

3.90E-02 

(15.7%) 

8.74E-04 

(0.4%) 

7.84E-02 

(31.6%) 
0.25 (100%) 
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3.3.4 Probable source areas or directions 

 

The probable emission locations were estimated for coal combustion, 

industries, and traffic sources, which presented a relatively high carcinogenic risk in 

the health risk assessment. The CPF results are shown in Fig. 3.7, and the PSCF 

results calculated through 24-h and 72-h back trajectory HYSPLIT analysis are 

shown in Fig. 3.8. 

 
* The center of each figure is the measurement site  

** The scale of the circle shows the wind speed (m/s) 

Fig. 3.7. The CPF results of (a) industry (oil), (b) industry (smelting), (c) traffic, 

and (d) coal combustion sources 
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Fig. 3.8. PSCF results of PM2.5 sources in Siheung, Republic of Korea,  

24-hour back trajectory of (a) Industry (oil); (b) Traffic; (c) Coal combustion,  

74-hour back trajectory of (d) Industry (oil); (e) Traffic; (f) Coal combustion 

 

The CPF results for industrial sources indicated that the contribution of oil 

industries increased when the southwest winds of less than 4 m/s, that of smelting 

industries increased with southeast winds of 6 m/s or more. The results of the back 

trajectory analysis showed that the contribution of industries was widely distributed 

in southwest areas, from the Shandong Peninsula of China to the Taiwan region. 

According to Kim et al. (2018), the CPF of non-ferrous smelter sources pointed to 

the southeast of Daebudo, which was consistent with CPF results for smelting 

industry sources in this study. There are 4,632 high-tech manufacturing companies 

such as metal processing and machinery located in the national industrial complex 

of Siheung (as of 2019, Korea Statistical geographic information service, 

https://sgis.kostat.go.kr/, last access: last access: 10 August 2021), and more than 

240,000 people are working in related industries. PM emitted from such industrial 

complexes was presumed to be industry (smelting) sources.  

https://sgis.kostat.go.kr/
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Coal combustion presented the highest contribution for northwest winds of 

approximately 2−6 m/s in the CPF plot (Fig. 3.7). In the 72-h back trajectory analysis 

(Fig. 3.8), PSCF was distributed along the Chinese coast from the west coast of 

Korea to the southwest of Korea. The results suggested that coal combustion sources 

presented high emissions from internal sources. Coal-fired power plants, 

petrochemical complexes, and Incheon ports are located around Siheung, so it was 

assumed that the influence of various sources was mixed. However, it was difficult 

to identify the specific locations, as there were various influencing factors in the 

vicinity. Long-term studies are required. 

The CPF of traffic source showed that the contribution increased with slow 

winds of 3 m/s or less (Fig. 3.7). Siheung City has much traffic because of its 

proximity to Seoul and Incheon ports and it is presumed that this trend was well-

reflected. The wind direction pattern also showed a result that was generally 

consistent with the arrangement of highways around the target area. The probability 

of the western sea of Korea was also high in the back-trajectory analysis (Fig. 3.8). 
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3.4. Summary 

Ten types of PM2.5 emission sources were derived using a PMF model in 

Siheung, South Korea. Based on the sources derived, the carcinogenic and non-

carcinogenic health risks due to PM2.5 inhalation were estimated. For coal 

combustion, heavy oil industry, and traffic sources, the contribution to PM2.5 mass 

concentration was low but exceeded the benchmark carcinogenic health risk value 

(1E-06). The carcinogenic risk from PM2.5 inhalation in Siheung was similar to or 

lower than that of Seoul, Republic of Korea and Nanjing, China, and Beijing, China. 

Therefore, countermeasures on the PM2.5 emission sources are better to be performed 

not only based on the PM2.5 mass concentration but also based on the health risks. In 

order to manage the effects of PM2.5 on human health in industrial cities, it is 

necessary to reduce the concentration of major toxic elements (especially As and Cr) 

and manage the emission sources. The methodology used in this study, which 

combines PMF modeling and health impact assessment, can be used to derive source 

types and calculate health impacts by source in other cities. 
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Chapter 4. Feature extraction and prediction of PM2.5 

chemical constituents using machine learning models 
 

4.1. Introduction 

There is growing interest in the measurement, management, and reduction 

of PM2.5 ever since there have been reports on adverse health effects of exposure to 

airborne PM2.5 (particulate matter with a diameter of ≤ 2.5 µm) (Hopke et al., 2020; 

Kim et al., 2015; Lee et al., 2022). In recent years, the hourly mass concentration of 

PM2.5 are measured in many countries, and these values are made available by the 

World Air Quality Index project (https://aqicn.org/data-platform/register/). In 

addition to determining the total mass concentration of PM2.5, monitoring stations to 

determine real-time PM2.5 chemical constituents with different characteristics in 

terms of origin, conversion, and health effects, are increasing globally (Park et al., 

2019; Wang et al., 2018). Accordingly, the quantification of PM2.5 chemical 

composition with high spatial and temporal resolutions is an area of active research 

(Hopke, 2016; Shi et al., 2019), and PM2.5 compositional data are gradually acquiring 

the characteristics of big data. As of 2021, 10 national monitoring stations in South 

Korea could measure the mass concentration of PM2.5 and its chemical constituents 

on an hourly basis in real-time. 

Complete and reliable data are not always available despite the high cost 

and time required to obtain PM2.5 chemical composition. Missing values are one of 

the most prevalent impediments to data interpretation, making the appropriate use of 

the data challenging (Khan and Hoque, 2020). For example, the data of PM2.5 

chemical constituents measured in Seoul, South Korea, had an average missing ratio 
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of 9.43% from 2018 to 2020 (Table 4.1). However, it has been challenging to impute 

missing values of the chemical constituents because of the complexity of the 

chemical composition of PM2.5. Researchers have responded by employing various 

fragmentary methods, such as excluding samples with any constituent missing 

values or replacing them with mean values (Kim et al., 2018; Park et al., 2019; Shi 

et al., 2021). These methods can reduce the data accuracy and the reliability of the 

modeling results, such as for source apportionment, relying on such input data.  

Prediction of PM2.5 components may be appropriate to attempt with 

nonlinear regression models because of their complexity(Baker and Foley, 2011). 

For nonlinear regression modeling of complex data, deep neural network (DNN) 

works excellently and has been widely used in many fields such as computer vision, 

behavior prediction, language process, and marketing to extract useful features from 

datasets(Jordan and Mitchell, 2015). However, little attention has been posed to 

predict PM2.5 components using DNN models because DNN has recently begun to 

attract attention in the field of atmospheric environment(Gil et al., 2021). 

Therefore, this study aimed to evaluate the applicability of the feature 

extraction using machine learning models to predict the chemical composition of 

PM2.5. Four ML models were employed in this study: generative adversarial 

imputation network (GAIN), fully connected deep neural network (FCDNN), RF, 

and k-nearest neighbor (kNN). The prediction accuracy of each model was compared 

to evaluate the applicability of the models according to the stepwise increase of input 

data and changes in targeted components for prediction. Additionally, the effect of 

missing ratios and the available period of input data on prediction accuracy by 

models were examined. The present study findings can help expand the scope of ML 



 

１２２ 

model-based interpretation of air pollution. 
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Table 4.1. Missing ratio and median values of PM2.5 chemical speciation data (2018-2020) 

Species 
Missing ratio* (%)  Median (ng m-3) 

BR Seoul Ulsan BR Seoul Ulsan 

PM2.5 5.26 1.88 2.45 14,000 19,000 13,000 

SO4
2- 18.43 9.18 12.14 2,840 2,300 2,660 

NO3
- 18.43 9.18 12.14 1,070 2,370 1,670 

Cl- 18.7 9.26 12.37 140 140 200 

Na+ 18.43 9.94 12.62 140 30 80 

NH4
+ 18.43 9.37 12.21 1,340 1,840 2,030 

K+ 18.43 11.44 24.25 70 50 40 

Mg2+ 18.43 9.42 12.66 10 10 10 

Ca2+ 18.48 9.8 13.39 30 30 20 

OC 21.95 10.14 11.65 1,510 2,855 2,140 

EC 21.95 10.23 11.67 358 730 420 

S 10.74 9.16 4.07 1,704 1,548 4,296 

K 10.76 9.22 4.07 80 80 80 

Ca 10.77 9.2 4.09 32 43 32 

Ti 10.78 9.17 4.07 6 6 6 

V 10.77 9.16 4.07 2 2 2 

Cr 10.75 9.17 4.07 1 1 1 

Mn 10.77 9.16 4.07 5 7 10 

Fe 10.75 9.17 4.07 86 148 140 

Ni 13.44 9.17 4.07 0.90 0.40 0.84 

Cu 16.46 9.27 4.07 4.76 5.17 4.94 

Zn 10.78 9.27 4.07 19.6 31.1 35.3 

As 10.97 9.16 4.07 2.14 2.23 1.86 

Se 13.43 9.16 4.07 0.6 0.6 0.6 

Br 10.75 9.17 4.07 3.43 4.42 5.53 

Pb 10.81 9.16 4.07 8.26 12.63 9.51 

Average 

(except PM2.5) 
14.58 9.43 7.85 - - - 

* Total n = 26,305 at respective site
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4.2. Materials and methods 

4.2.1. Study Sites and Data Collection 

The mass concentrations and chemical constituents of PM2.5 are measured at 

1-h intervals by the Air Quality Research Centers (Korea Ministry of Environment 

and National Institute of Environmental Research, 2021), which are operated by The 

Korean Ministry of Environment. The data used in this study were measured at 

Baengnyeong Island (BR, 37°57'52.9"N, 124°38'02.4"E), Seoul (Seoul, 

37°36'35.3"N, 126°56'05.3"E), and Youngnam (Ulsan, 35°34'52.0"N, 

129°19'27.0"E) from 2018 to 2020, and represent remote, metropolitan, and 

industrial areas, respectively (Fig. 4.1).  

Mass concentrations of PM2.5 were measured using BAM 1020 (Continuous 

Particulate Monitor by Met One Instruments, Inc., USA) employing the β-ray 

absorption method. Organic carbon (OC) and elemental carbon (EC) were measured 

by SOCEC (South Orange County Economic Coalition’s Sunset Laboratory Inc., 

USA) using the thermal-optical transmittance method. Ionic species (NO3
-, SO4

2−, 

Cl−, K+, and NH4
+) were measured using URG-9000D (Ambient Ion Monitor by 

Thermo Fisher Scientific Corp., USA) employing the ion chromatography analysis 

method. PM2.5 elemental species concentrations were measured using XactTM 620 

(Ambient Trace Elements Monitor by Cooper Environmental Services [CES], USA) 

(S. S. Park et al., 2014) via X-ray fluorescence spectrometry (XRF), a non-

destructive analysis method. The guideline for the installation and operation of the 

national air pollution monitoring network includes quality assurance/quality control 
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(QA/QC) for PM2.5 component analysis (Korea Ministry of Environment and 

National Institute of Environmental Research, 2022).  

 

Fig. 4.1. Study sites: (a) Baengnyeong (BR), (b) Seoul, and (C) Ulsan 

The chemical species (CS) of PM2.5 were used as part of the input data to 

predict missing values using four ML models (Table 4.2). Table 4.1 provides a list 

of the types, total number, missing ratio, and median of the chemical composition 

data used. Additionally, three groups of input data were used for feature extraction: 

time information (TI), air pollutants (AP), and meteorological data (MD) (Table 4.2). 

TI included the hour, month, and weekday of PM2.5 constituent data. The hourly 

concentrations of AP (i.e., PM2.5, PM10, SO2, CO, O3, and NO2) measured at the AP 

national monitoring station closest to each PM2.5 component monitoring station were 
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obtained from the AirKorea website. The national climate data center operated by 

Korea Meteorological Administration provided the MD measured at the automated 

synoptic observing system nearest to each PM2.5 chemical constituents monitoring 

station. All input data were min-max normalized for each characteristic data prior to 

model training, and each parameter was then subjected to inverse normalization after 

modeling.  

 

Table 4.2. Input variables 

Classification Variable 

Chemical species  

(CS) 

PM2.5,  

Ion species (SO4
2-, NO3

-, Cl-, Na+, NH4
+, K+, Mg2

+, Ca2
+),  

Carbons (OC, EC),  

Trace elements (S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, 

Br, Pb) 

Time information  

(TI) 
Weekdays, hours, months 

Air pollutants  

(AP) 
PM2.5, PM10, SO2, CO, O3, NO2 

Meteorological data  

(MD) 

Temperature, rainfall, wind speed, wind direction, relative 

humidity, vapor, dew point, pressure, sunshine, snowfall, 

cloudiness, visibility 
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4.2.2. Machine Learning Models and Hyperparameter Optimization 

Four ML models (GAIN, FCDNN, RF, and kNN), extensively used for 

regression analysis or missing value replacement, were applied to predict PM2.5 

chemical constituents. Two of the four ML models, GAIN and FCDNN, are further 

categorized into deep learning models, which use a complex structure of algorithms 

called multi-layered artificial neural networks. Additionally, GAIN and kNN are 

unsupervised learning models, whereas FCDNN and RF are supervised learning 

models requiring separate training and testing. All the models were implemented 

using Python 3.8 (Python Software Foundation, USA), while the input pipelines for 

the two deep learning models were built using Tensorflow 2.2 (Google Developers, 

USA). All codes used for the four ML models in this study are accessible (see Code 

Availability at the end of the manuscript). 

The GAIN ML model is a missing-value processing model based on a 

generative adversarial network, in which a generator and discriminator compete to 

learn and improve accuracy (Li et al., 2019; Nazábal et al., 2020; Yoon et al., 2018). 

The discriminator is trained to accurately distinguish between real and fake data in a 

generated dataset, while the generator, in turn, learns to make it difficult for the 

discriminator to distinguish real from fake data (Yoon et al., 2018). In this study, the 

GAIN model was constructed as a long-short term memory (LSTM) network suitable 

for time series data. The model was separately trained and predicted on each division, 

and the results were then concatenated after dividing the data into 10-day period 

datasets. The hyperparameter settings that achieved the highest accuracies were 

found by manual search. Table 4.3 provides a list of the hyperparameter search 

ranges and optimized values.  
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Table 4.3. Hyperparameter searching range and optimized values 

Model 

used 

Hyperparameter searching 

range 
Optimized Hyperparameter 

 

GAIN 

 

Number of hidden layers: 0 – 4 

Number of units in a layer: 500 – 

400 

Learning rate: 1E-04 – 1E-02 

Hint rate: 0.7 – 0.9 

Sequence: 120 – 720 

alpha: 10 – 100 

 

Number of hidden layers: 2 

Number of units in a layer: 52 – 

200 

Learning rate: 5E-04 

Hint rate: 0.8 

Sequence: 240 

alpha: 10 

 

FCDNN 

 

 

Activation function: ReLU, tanh,  

LeakyReLU 

(alpha=0.1)  

Number of hidden layers: 2 – 20 

Number of units in a layer: 32 – 

2,048 (increment: 32) 

Learning rate: 1E-06 – 1E-02 

Dropout rate: 0.10 – 0.20 

(increment: 0.01) 

 

 

Activation function: LeakyReLU 

(alpha=0.1) 

 

Number of hidden layers: 4 – 8 

Number of units in a layer: 1,300 – 

2,000 

 

Learning rate: 5E-05 – 1E-04 

Dropout rate: 0.10 – 0.15 

 

RF 

 

 

n_estimators: 1 – 2,000 

max_depth: 1 – 30 

min_samples_leaf: 1 – 30 

min_samples_split: 2 – 30 

 

 

n_estimators: 1,300 – 2,000 

max_depth: 13 – 30 

min_samples_leaf: 1 – 2 

min_samples_split: 2 – 4 
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kNN k: 2 – 20 k: 3 

The FCDNN is specialized in reducing dimensionality and performing 

feature extraction through hidden layers and is one of the most widely used neural 

network models in regression (Hinton and Salakhutdinov, 2006; Hwangbo et al., 

2021). FCDNN model is trained by adjusting the weights and biases of the hidden 

layer neurons to correspond to each input and output data. Overfitting avoidance and 

optimization of hyperparameters are important for FCDNN models to have high 

prediction accuracy not only with training data but also with actual application data 

(Montavon et al., 2018). In this study, the latest technique for auto-optimization of 

hyperparameters, Keras-tuner (Asim et al., 2021), was used, and the hyperparameters 

with the highest R2 were derived after more than 100 repetitions using both 

Hyperband and Bayesian search. The search and optimized ranges of 

hyperparameters are listed in Table 4.3. The number of training epochs was 200. 

RF is a widely employed ensemble model for multi-dimensional 

classification and regression problems (Breiman, 2001). Various decision trees in 

RF models are trained using input data for feature extraction, which helps enhance 

model performance (Tella et al., 2021). The hyperparameters of the RF model were 

automatically optimized using the Hyperopt module (Bergstra et al., 2015). In this 

study, RF modeling used RandomForestRegressor in the scikit-learn package 

(Pedregosa et al., 2011). 

kNN is a non-parametric model for classification and regression, wherein 

the prediction object is calculated as the average of k values closest to the prediction 

point (Tella et al., 2021; Yao and Ruzzo, 2006). Euclidean distance for the judgment 

of the nearest neighbor is used to achieve distance calculations in kNN. Through a 
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preliminary analysis adjusting k from 2 to 20, it was set at 3, which produced the 

highest prediction accuracy (Table 4.3). KNNImputer in the scikit-learn package was 

used for kNN modeling calculation. 
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4.2.3. Prediction Scenarios 

Two scenarios were applied to compare the prediction accuracy of PM2.5 

constituents by four ML models, as described in Table 4.4. In Scenario #1, stepwise 

increase in four groups of input data (ID) and seven combinations of the prediction 

target component (PC) were applied. The ID groups were categorized from ID#1 to 

ID#4, wherein the larger the number, the more input data were used for prediction, 

starting with more accessible variables. The three study sites in Scenario #1 used 

three years (2018–2020) of hourly data with a fixed missing ratio of 20%. 

In Scenario #2, four periods (1-month, 3-month, 12-month, and 36-month) 

with four missing ratios (20%, 40%, 60%, and 80%) were applied to the Seoul site 

to compare the prediction accuracies by four ML models according to the changes 

in the period and the missing ratio of ID. The missing ratios were determined by 

referring to the missing ratio of the actual data. In Scenario #2, the same four ML 

models as in Scenario #1 were applied; however, only ID#4 and PC#7 were used in 

Scenario #2 (Table 4.4). The number of iterations, n, was set to check the variations 

in prediction results. For Scenarios #1 and #2, a total of 2,400 model predictions 

were made. the difference in prediction accuracy between the ID periods identified 

one-way ANOVA with Tukey’s honestly significant difference (HSD) test. 
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Table 4.4. Scenarios used for the prediction of PM2.5 chemical composition 

Classification 

Scenario #1 Scenario #2 

No. of 

case 
Case 

No. of 

case 
Case 

Period 1 3 years (2016–2018) 4 

1 month (2018.12), 

3 months (2018.10–12), 

12 months (2018) 

36 months (2016–2018) 

Missing ratio 

(%) 
1 20 4 20, 40, 60, 80 

Input data 4 

ID#1: CS; ID#2: CS and 

TI; 

ID#3: CS, TI, and AP;  

ID#4: CS, TI, AP, and 

MD 

1 ID#4 

Location 3 
Baengnyeong (BR), 

Seoul, Ulsan 
1 Seoul 

Model 4 
GAIN, FCDNN, RF, 

kNN 
4 GAIN, FCDNN, RF, kNN 

Prediction 

components 
7 

PC#1: ions; PC#2: 

carbons;  

PC#3: trace elements;  

PC#4: ions and carbons;  

PC#5: ions and trace 

elements;  

PC#6: carbons and trace 

elements; 

PC#7: ions, carbons, and 

trace elements 

1 PC#7 

Iteration 6 - 6 - 

Total number 

of predictions 
2,016 384 
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4.2.4. Model Validation and Error Estimation 

Fixed seed numbers (322, 777, and 1,004) were intentionally used following the 

randomized sampling methods in Pandas to ensure the reproducibility of the 

modeling results. There was no data duplication for the training and test. Model 

training for FCDNN and RF was performed using 80% of the entire data. The 

remaining 20% of the isolated data were compared with the prediction results. 

Comparing the observed values (isolated test data) with the predicted values allowed 

for model validation and error estimation. The coefficient of determination (R2), root 

mean squared error (RMSE), and mean absolute error (MAE) were used for error 

estimation. These values are commonly used indices for verifying the accuracy of 

regression models. Their formulas and mathematical backgrounds can be found in 

the literature (Chicco et al., 2021). The main text presents the R2 value, the most 

insightful error estimation parameter of the three (Chicco et al., 2021), and compares 

it to the other indices to demonstrate the accuracy of the predictions made by the 

four ML models. 
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4.3. Results and discussion 

4.3.1. Hyperparameter Optimization 

Table 4.3 provides a list of the four ML models' optimized hyperparameters. 

The derived hyperparameters are expressed as ranges because there were variations 

in the hyperparameter results depending on prediction constituents and iterations. 

The number of hidden layers for deep learning models had optimal ranges with only 

a single-digit value. 4–8 hidden layers in FCDNN models and 2 hidden layers in 

GAIN were derived as optimized hyperparameters, as shown in Table 4.3. Similarly, 

a previous study predicted air quality response to emission changes using a 

convolutional neural network with three hidden layers (Xing et al., 2020). An 

ensemble model developed with CMAQ predictions using the FCDNN model 

applied four hidden layers (Lyu et al., 2019). It implies that single-digit hidden layers 

can lead to acceptable prediction accuracy in deep learning models when multi-AP 

data are used as ID. 

The optimized hyperparameters (e.g., the learning rate of 5E-05–1E-04; 

dropout rate of 0.10–0.15; the number of units of 1,300–2,000 for the FCDNN model) 

derived for the four ML models in this study (Table 4.3) can be used for starting 

points for designing an AP prediction model. These values, however, are not absolute 

standards, and for better prediction results, the hyperparameters must be 

independently optimized based on the prediction target and available data. 
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4.3.2. Prediction Results for Scenario #1 

Table 4.5 shows the prediction accuracies of PM2.5 constituents for all 

prediction cases of Scenario #1 at the Seoul site. The prediction results of BR and 

Ulsan sites were similar to those of Seoul, according to the stepwise increase of ID 

# and PC # (Table 4.6). Additionally, as shown in Tables S4 and S5, respectively, 

the trend of the RMSE and MAE results reflected that of R2. The following 

comparison of prediction outcomes uses only R2 values. 

4.3.2.1. Overall prediction accuracy by the four ML models 

The prediction accuracy of the four models for Scenario #1 varied from 

0.071 to 0.947 in R2 (Table 4.5). The highest R2 was found in the case of predicting 

ions (PC#1) with ID#3 by the GAIN model, and the lowest in the case of predicting 

all components in PM2.5 (PC#7) with ID#1 by the kNN model. Out of the seven PCs, 

the GAIN had the highest R2 in the six PCs, and FCDNN had the highest R2 in the 

one PC (PC#2) (marked by a superscript “a” in Table 4.5). The highest R2 values for 

the seven PCs were greater than 0.875, which indicated that PM2.5 chemical 

composition can be predicted with high accuracy using three-year CS, TI, air quality, 

and meteorological data with a 20% missing ratio. 

These predicted accuracies can be compared indirectly with other studies 

that predicted missing values of PM2.5 concentrations since there is no study on 

predicting missing values of PM2.5 chemical components (Hadeed et al., 2020; 

Quinteros et al., 2019). Quinteros et al. (2019) predicted the missing values of PM2.5 

concentrations at monitoring stations in Chile with an accuracy of 0.37–0.91 of R2. 

Hadeed et al. (2020) predicted missing values of short-term PM2.5 measurements 
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(<24 h) in households with an accuracy of 0.32–0.65 of R2 when the missing ratio 

was 20%. Additionally, the prediction accuracy in literature (Liu et al., 2019) that 

predicted trace elements in PM2.5 through Weather Research and Forecasting (WRF) 

and CMAQ models in China was 0.35–0.91 in R (not R2). If the highest prediction 

accuracy for each PC was selected in Table 4.5, R2 range from 0.875 to 0.947, 

indicating considerably higher prediction accuracy than that of other studies. 

The four ML models used in this study, as shown in Tables 3 and S6, 

appeared to be more accurate than an existing method for addressing missing values, 

which substitutes mean values for the missing values. The R2 value between 

observation and prediction is calculated to be zero when the missing values in the 

same test data set are replaced by the mean values of each PM2.5 component 

concentration (Table 4.9 and Fig. 4.2). Therefore, missing values can be more 

effectively compensated using the ML models by feature extraction from ID 

(Alpaydin, 2020). Additionally, expectation-maximization (EM) algorithm and 

multiple imputation (MI), which are utilized for completely random missing values 

in statistics, was used to compare the results of ML models (Fig. 4.7, Fig 4.8, and 

Fig. 4.9). 

 

  



 

１３７ 

Table 4.5. Prediction accuracy (R2) of PC#1 to PC#7 by four machine learning 

models for Seoul 

 
Coefficient of determination (R2) 

PC#1 PC#2 PC#3 PC#4 PC#5 PC#6 PC#7 

GAIN        

ID#1 0.938 0.921 0.867 0.934 0.880 0.869 0.880 

ID#2 0.939 0.921 0.866 0.935a  0.885 0.871 0.886 

ID#3 0.947a 0.928 0.882 0.943  0.896a 0.885a 0.897a 

ID#4 0.937 0.923 0.875a 0.934 0.895 0.880 0.895  

FCDNN        

ID#1 0.898 0.936 0.808 0.898 0.417 0.791 0.403 

ID#2 0.929 0.940 0.850 0.926 0.717 0.857 0.571 

ID#3 0.933 0.943 0.856 0.934 0.859 0.865 0.832 

ID#4 0.933 0.945a 0.860 0.933 0.869 0.867 0.861 

RF        

ID#1 0.788b 0.897 0.725 0.803b 0.426 0.739 0.407 

ID#2 0.822 0.902 0.765 0.830 0.644 0.763 0.549 

ID#3 0.831 0.912 0.769 0.832 0.736 0.777 0.733 

ID#4 0.839 0.912 0.782 0.834 0.773 0.789 0.785 

kNN        

ID#1 0.812 0.899 0.702b 0.820 0.258b 0.709b 0.071b 

ID#2 0.875 0.899 0.807 0.868 0.656 0.789 0.458 

ID#3 0.902 0.915 0.833 0.900 0.817 0.832 0.801 

ID#4 0.832 0.860b 0.746 0.831 0.748 0.747 0.744 

* The standard deviation of all predicted values was within 5% and omitted for brevity. 

** The number of datasets for train and test was 15,618 and 3,904 in ID#1 and ID#2; 14,602 

and 3,516 in ID#3; 13,976 and 3,494 in ID#4. 
a Values denote the largest R2 in the respective PC 
b Values denote the smallest R2 in the respective PC 
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Table 4.6. Prediction accuracy (R2) in BR, Seoul, and Ulsan by machine learning 

models 

 
BR* 

PC#1 PC#2 PC#3 PC#4 PC#5 PC#6 PC#7 

GAIN        

ID#1 0.904 0.940 0.896 0.907 0.893 0.899 0.886 

ID#2 0.902 0.937 0.898 0.911 0.890 0.899 0.894 

ID#3 0.919 0.948 0.914 0.925 0.915 0.918 0.912 

ID#4 0.895 0.938 0.903 0.904 0.898 0.905 0.900 

DNN        

ID#1 0.872 0.954 0.850 0.877 0.497 0.847 0.422 

ID#2 0.884 0.956 0.884 0.896 0.761 0.882 0.610 

ID#3 0.905 0.958 0.910 0.912 0.874 0.902 0.850 

ID#4 0.891 0.958 0.904 0.890 0.879 0.896 0.875 

RF        

ID#1 0.778 0.919 0.798 0.800 0.501 0.796 0.425 

ID#2 0.810 0.932 0.823 0.830 0.704 0.834 0.612 

ID#3 0.824 0.935 0.840 0.841 0.794 0.850 0.790 

ID#4 0.805 0.934 0.842 0.842 0.821 0.857 0.824 

kNN        

ID#1 0.805 0.922 0.786 0.818 0.405 0.747 0.143 

ID#2 0.827 0.930 0.826 0.838 0.654 0.818 0.514 

ID#3 0.875 0.932 0.863 0.883 0.824 0.863 0.805 

ID#4 0.800 0.901 0.794 0.816 0.774 0.800 0.773 

* The number of datasets for train and test of BR was 11,222 and 2,805 in 

ID#1 and ID#2; 10,547 and 2,636 in ID#3; 10,014 and 2,503 in ID#4. 
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Table 4.6. Prediction accuracy (R2) in BR, Seoul, and Ulsan by machine learning 

models (continued) 

 
Seoul** 

PC#1 PC#2 PC#3 PC#4 PC#5 PC#6 PC#7 

GAIN        

ID#1 0.938 0.921 0.867 0.934 0.880 0.869 0.880 

ID#2 0.939 0.921 0.866 0.935  0.885 0.871 0.886 

ID#3 0.947 0.928 0.882 0.943 0.896 0.885 0.897 

ID#4 0.937 0.923 0.875 0.934 0.895 0.880 0.895  

DNN        

ID#1 0.898 0.936 0.808 0.898 0.417 0.791 0.403 

ID#2 0.929 0.940 0.850 0.926 0.717 0.857 0.571 

ID#3 0.933 0.943 0.856 0.934 0.859 0.865 0.832 

ID#4 0.933 0.945 0.860 0.933 0.869 0.867 0.861 

RF        

ID#1 0.788 0.897 0.725 0.803 0.426 0.739 0.407 

ID#2 0.822 0.902 0.765 0.830 0.644 0.763 0.549 

ID#3 0.831 0.912 0.769 0.832 0.736 0.777 0.733 

ID#4 0.839 0.912 0.782 0.834 0.773 0.789 0.785 

kNN        

ID#1 0.812 0.899 0.702 0.820 0.258 0.709 0.071 

ID#2 0.875 0.899 0.807 0.868 0.656 0.789 0.458 

ID#3 0.902 0.915 0.833 0.900 0.817 0.832 0.801 

ID#4 0.832 0.860 0.746 0.831 0.748 0.747 0.744 

** The number of datasets for train and test of Seoul was 15,618 and 3,904 

in ID#1 and ID#2; 14,602 and 3,516 in ID#3; 13,976 and 3,494 in ID#4. 
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Table 4.6. Prediction accuracy (R2) in BR, Seoul, and Ulsan by machine learning 

models (continued) 

 
Ulsan*** 

PC#1 PC#2 PC#3 PC#4 PC#5 PC#6 PC#7 

GAIN        

ID#1 0.898 0.829 0.711 0.875 0.767 0.720 0.758 

ID#2 0.896 0.822 0.713 0.879 0.771 0.727 0.771 

ID#3 0.907 0.835 0.748 0.890 0.792 0.757 0.787 

ID#4 0.893 0.825 0.689 0.881 0.759 0.708 0.760 

DNN        

ID#1 0.852 0.856 0.623 0.834 0.312 0.625 0.284 

ID#2 0.867 0.870 0.702 0.867 0.569 0.736 0.441 

ID#3 0.891 0.864 0.754 0.890 0.758 0.763 0.750 

ID#4 0.897 0.866 0.750 0.890 0.779 0.762 0.775 

RF        

ID#1 0.753 0.803 0.597 0.762 0.320 0.596 0.290 

ID#2 0.780 0.809 0.631 0.781 0.546 0.640 0.467 

ID#3 0.793 0.817 0.691 0.773 0.651 0.687 0.663 

ID#4 0.821 0.823 0.674 0.808 0.667 0.671 0.668 

kNN        

ID#1 0.697 0.795 0.569 0.700 0.127 0.531 0.000 

ID#2 0.740 0.820 0.685 0.732 0.526 0.667 0.362 

ID#3 0.838 0.821 0.726 0.833 0.718 0.732 0.707 

ID#4 0.753 0.757 0.593 0.751 0.621 0.599 0.623 

*** The number of datasets for train and test of Ulsan was 14,065 and 3,516 in 

ID#1 and ID#2; 13,144 and 3,285 in ID#3; 12,328 and 3,082 in ID#4. 
**** The standard deviation of all predicted values was within 5% and omitted for 

brevity. 
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Table 4.7. Prediction accuracy (RMSE) in BR, Seoul, and Ulsan by machine 

learning model (unit: µg/m3) 

 
BR* 

PC#1 PC#2 PC#3 PC#4 PC#5 PC#6 PC#7 

GAIN        

ID#1 0.655 0.365 0.130 0.620 0.442 0.184 0.478 

ID#2 0.666 0.368 0.131 0.616 0.491 0.186 0.462 

ID#3 0.636 0.342 0.126 0.602 0.399 0.169 0.446 

ID#4 0.724 0.372 0.131 0.664 0.455 0.181 0.454 

DNN        

ID#1 0.675 0.302 0.099 0.656 0.834 0.175 0.978 

ID#2 0.638 0.292 0.099 0.643 0.569 0.158 0.720 

ID#3 0.548 0.287 0.091 0.503 0.400 0.155 0.442 

ID#4 0.546 0.293 0.089 0.575 0.418 0.150 0.426 

RF        

ID#1 0.869 0.409 0.118 0.792 0.850 0.200 0.969 

ID#2 0.804 0.379 0.118 0.721 0.634 0.185 0.728 

ID#3 0.734 0.377 0.116 0.678 0.541 0.183 0.551 

ID#4 0.755 0.375 0.121 0.679 0.483 0.181 0.485 

kNN        

ID#1 0.825 0.406 0.118 0.775 0.909 0.216 1.305 

ID#2 0.847 0.394 0.136 0.805 0.729 0.218 0.822 

ID#3 0.751 0.395 0.129 0.697 0.534 0.193 0.565 

ID#4 0.929 0.489 0.181 0.881 0.649 0.251 0.658 

* The number of datasets for train and test of BR was 11,222 and 2,805 in ID#1 a

nd ID#2; 10,547 and 2,636 in ID#3; 10,014 and 2,503 in ID#4. 
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Table 4.7. Prediction accuracy (RMSE) in BR, Seoul, and Ulsan by machine 

learning model (unit: µg/m3) (continued) 

 
Seoul** 

PC#1 PC#2 PC#3 PC#4 PC#5 PC#6 PC#7 

GAIN        

ID#1 0.502 0.408 0.090 0.486 0.334 0.170 0.352 

ID#2 0.504 0.409 0.090 0.490 0.326 0.170 0.343 

ID#3 0.476 0.393 0.087 0.459 0.320 0.162 0.323 

ID#4 0.525 0.403 0.094 0.503 0.326 0.169 0.341 

DNN        

ID#1 0.517 0.369 0.081 0.508 0.705 0.189 0.778 

ID#2 0.453 0.349 0.070 0.446 0.464 0.158 0.585 

ID#3 0.399 0.339 0.065 0.426 0.322 0.145 0.375 

ID#4 0.407 0.328 0.068 0.391 0.293 0.137 0.320 

RF        

ID#1 0.670 0.498 0.107 0.650 0.703 0.215 0.770 

ID#2 0.593 0.481 0.092 0.591 0.488 0.201 0.582 

ID#3 0.561 0.468 0.092 0.571 0.462 0.196 0.486 

ID#4 0.556 0.457 0.091 0.570 0.423 0.191 0.423 

kNN        

ID#1 0.682 0.491 0.105 0.657 0.779 0.226 0.898 

ID#2 0.636 0.484 0.105 0.624 0.558 0.220 0.662 

ID#3 0.578 0.446 0.103 0.559 0.418 0.193 0.442 

ID#4 0.815 0.587 0.152 0.796 0.554 0.259 0.577 

** The number of datasets for train and test of Seoul was 15,618 and 3,904 in ID#

1 and ID#2; 14,602 and 3,516 in ID#3; 13,976 and 3,494 in ID#4. 
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Table 4.7. Prediction accuracy (RMSE) in BR, Seoul, and Ulsan by machine 

learning model (unit: µg/m3) (continued) 

 
 Ulsan*** 

PC#1 PC#2 PC#3 PC#4 PC#5 PC#6 PC#7 

GAIN        

ID#1 0.506 0.497 0.322 0.527 0.431 0.355 0.456 

ID#2 0.516 0.508 0.315 0.519 0.419 0.349 0.430 

ID#3 0.458 0.512 0.288 0.484 0.383 0.324 0.405 

ID#4 0.534 0.490 0.320 0.532 0.424 0.347 0.434 

DNN        

ID#1 0.489 0.428 0.210 0.509 0.934 0.266 1.009 

ID#2 0.486 0.409 0.196 0.465 0.533 0.243 0.634 

ID#3 0.413 0.439 0.179 0.415 0.412 0.233 0.434 

ID#4 0.377 0.409 0.177 0.396 0.347 0.224 0.371 

RF        

ID#1 0.601 0.526 0.225 0.598 0.940 0.294 1.002 

ID#2 0.569 0.518 0.220 0.571 0.567 0.280 0.640 

ID#3 0.545 0.543 0.224 0.557 0.536 0.287 0.534 

ID#4 0.513 0.489 0.231 0.527 0.482 0.277 0.496 

kNN        

ID#1 0.661 0.538 0.239 0.664 1.060 0.311 1.329 

ID#2 0.592 0.531 0.270 0.594 0.596 0.320 0.700 

ID#3 0.556 0.550 0.284 0.557 0.478 0.329 0.503 

ID#4 0.731 0.612 0.380 0.717 0.582 0.421 0.590 

*** The number of datasets for train and test of Ulsan was 14,065 and 3,516 in ID#1 

and ID#2; 13,144 and 3,285 in ID#3; 12,328 and 3,082 in ID#4. 
***** The standard deviation of all predicted values was within 5% and omitted for brevity. 
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Table 4.8. Prediction accuracy (MAE) in BR, Seoul, and Ulsan by machine 

learning model (unit: µg/m3) 

MAE 
BR* 

PC#1 PC#2 PC#3 PC#4 PC#5 PC#6 PC#7 

GAIN        

ID#1 0.220 0.198 0.026 0.220 0.100 0.048 0.117 

ID#2 0.226 0.199 0.025 0.218 0.101 0.048 0.109 

ID#3 0.201 0.182 0.024 0.199 0.089 0.043 0.103 

ID#4 0.236 0.202 0.026 0.229 0.101 0.048 0.110 

DNN        

ID#1 0.222 0.170 0.024 0.232 0.226 0.049 0.281 

ID#2 0.217 0.166 0.022 0.239 0.151 0.046 0.213 

ID#3 0.195 0.164 0.020 0.184 0.107 0.045 0.128 

ID#4 0.186 0.168 0.019 0.205 0.100 0.042 0.113 

RF        

ID#1 0.286 0.228 0.025 0.282 0.230 0.055 0.279 

ID#2 0.258 0.208 0.024 0.254 0.160 0.049 0.209 

ID#3 0.249 0.206 0.024 0.247 0.134 0.049 0.150 

ID#4 0.255 0.204 0.025 0.240 0.121 0.048 0.133 

kNN        

ID#1 0.250 0.210 0.025 0.256 0.249 0.059 0.374 

ID#2 0.257 0.209 0.027 0.261 0.189 0.059 0.250 

ID#3 0.222 0.199 0.025 0.225 0.120 0.049 0.144 

ID#4 0.308 0.261 0.036 0.305 0.150 0.066 0.166 

* The number of datasets for train and test of BR was 11,222 and 2,805 in ID#1 a

nd ID#2; 10,547 and 2,636 in ID#3; 10,014 and 2,503 in ID#4. 
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Table 4.8. Prediction accuracy (MAE) in BR, Seoul, and Ulsan by machine 

learning model (unit: µg/m3) (continued) 

MAE 
Seoul** 

PC#1 PC#2 PC#3 PC#4 PC#5 PC#6 PC#7 

GAIN        

ID#1 0.182 0.247 0.019 0.196 0.080 0.047 0.096 

ID#2 0.183 0.247 0.019 0.197 0.079 0.047 0.094 

ID#3 0.169 0.231 0.018 0.180 0.075 0.044 0.088 

ID#4 0.184 0.239 0.020 0.196 0.078 0.046 0.093 

DNN        

ID#1 0.198 0.227 0.019 0.212 0.205 0.054 0.254 

ID#2 0.167 0.212 0.017 0.183 0.129 0.045 0.192 

ID#3 0.151 0.202 0.016 0.175 0.087 0.042 0.114 

ID#4 0.151 0.200 0.016 0.164 0.079 0.040 0.096 

RF        

ID#1 0.261 0.309 0.025 0.279 0.203 0.062 0.250 

ID#2 0.225 0.296 0.022 0.252 0.137 0.058 0.187 

ID#3 0.216 0.285 0.022 0.247 0.126 0.056 0.149 

ID#4 0.207 0.278 0.022 0.241 0.112 0.055 0.126 

kNN        

ID#1 0.241 0.285 0.023 0.260 0.224 0.063 0.300 

ID#2 0.223 0.284 0.023 0.250 0.153 0.063 0.219 

ID#3 0.199 0.257 0.021 0.215 0.104 0.053 0.128 

ID#4 0.285 0.344 0.031 0.304 0.133 0.071 0.157 

** The number of datasets for train and test of Seoul was 15,618 and 3,904 in ID#

1 and ID#2; 14,602 and 3,516 in ID#3; 13,976 and 3,494 in ID#4. 
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Table 4.8. Prediction accuracy (MAE) in BR, Seoul, and Ulsan by machine 

learning model (unit: µg/m3) (continued) 

MAE 
 Ulsan*** 

PC#1 PC#2 PC#3 PC#4 PC#5 PC#6 PC#7 

GAIN        

ID#1 0.197 0.273 0.059 0.217 0.114 0.086 0.133 

ID#2 0.199 0.275 0.058 0.216 0.111 0.084 0.125 

ID#3 0.174 0.257 0.051 0.195 0.099 0.077 0.115 

ID#4 0.202 0.269 0.058 0.218 0.111 0.083 0.124 

DNN        

ID#1 0.192 0.247 0.044 0.220 0.273 0.074 0.318 

ID#2 0.198 0.232 0.041 0.208 0.164 0.066 0.214 

ID#3 0.164 0.232 0.036 0.179 0.119 0.063 0.137 

ID#4 0.151 0.234 0.037 0.176 0.102 0.062 0.117 

RF        

ID#1 0.240 0.303 0.046 0.259 0.275 0.082 0.311 

ID#2 0.225 0.297 0.044 0.247 0.175 0.077 0.215 

ID#3 0.218 0.295 0.045 0.242 0.158 0.076 0.168 

ID#4 0.200 0.280 0.045 0.227 0.142 0.076 0.159 

kNN        

ID#1 0.248 0.300 0.049 0.271 0.308 0.087 0.415 

ID#2 0.231 0.288 0.054 0.256 0.181 0.086 0.236 

ID#3 0.204 0.274 0.052 0.222 0.128 0.079 0.148 

ID#4 0.280 0.339 0.075 0.296 0.160 0.108 0.178 

*** The number of datasets for train and test of Ulsan was 14,065 and 3,516 in ID#1 

and ID#2; 13,144 and 3,285 in ID#3; 12,328 and 3,082 in ID#4. 
***** The standard deviation of all predicted values was within 5% and omitted for brevity. 
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Fig. 4.2. Comparisons of observations and predictions of mean substitution in 

Seoul (ID#4, PC#7): (a) NO3
-; (b) Cl-; (c) Na+; (d) K+; (e) Mg2+; (f) Ca2+; (g) OC; 

(h) EC; (i) S; (j) K; (k) Ca; (l) Ti; (m) V; (n) Cr; (o) Mn; (p) Fe; (q) Ni; (r) Zn; 



 

１４８ 

(s) Se; (t) Br; (u) Pb 

 

Table 4.9. Prediction accuracy (R2, RMSE, and MAE) of mean substitution 

 
Seoul 

PC#1 PC#2 PC#3 PC#4 PC#5 PC#6 PC#7 

R2        

 ID#1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

 ID#4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

        

RMSE 

(µg/m3) 
       

 ID#1 2.926 1.587 0.528 2.712 1.778 0.737 1.763 

 ID#4 2.949 1.581 0.521 2.731 1.790 0.731 1.774 

        

MAE 

(µg/m3) 
       

 ID#1 1.235 1.053 0.116 1.199 0.505 0.226 0.549 

 ID#4 1.238 1.056 0.115 1.201 0.506 0.226 0.550 

        

  



 

１４９ 

4.3.2.2. Effect of input variables on prediction accuracy by models 

Table 4.5 shows the improvement or change in R2 by the stepwise increase 

of input variables. It indicates that the ML models can extract the features of the 

association between PM2.5 constituent concentrations and input variables such as TI, 

AP, and MD. Thus, the influence of time, air quality, or meteorological conditions 

on the complex mechanism to form atmospheric PM2.5 constituents can be explained 

by ML models. Notably, when only TI (time, day, month) was added in ID#1, 

resulting in ID#2, the R2 increased in most prediction cases. The exceptions were 

PC#2 and PC#3 by GAIN and PC#2 by kNN (Table 4.5). Even in the case of 

predicting all chemical constituents in PM2.5 (i.e., PC#7), the R2 was improved by 

adding only TI (e.g., R2 from 0.071 to 0.458 in kNN), implying that the patterns of 

PM2.5 constituent concentrations are affected by time (hour), weekday, and season 

(month) and learned by the ML models. Additionally, the prediction accuracy was 

improved in ID#3, where AP is folded into the models. R2 at ID#3 was higher than 

that at ID#1 or ID#2 in all PCs by the four ML models. In the case of PC#7, where 

all chemical components of PM2.5 are targets for prediction, the R2 by GAIN, 

FCDNN, RF, and KNN models increased from 0.880, 0.403, 0.407, and 0.071 using 

ID#1, respectively, to 0.897, 0.832, 0.733, and 0.801 using ID#3. The R2 at ID#3 

was higher than that at ID#1 or ID#2 in all PCs (Table 4.5) even though the number 

of data samples used as known (e.g., training data) in ID#3 (n=14,602) was smaller 

than that in ID#1 or ID#2 (n=15,618). It suggested that smaller numbers of sample 

data may be supported by more characteristic input variables associated with the 

prediction target.  
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Meanwhile, the R2 by GAIN and kNN models decreased in ID#4, where MD 

is added to the models (Tables 3; S3). However, it was found that the differences in 

the R2 by the kNN model between ID#4 and ID#3 were much larger than those by 

the GAIN model. More input variables resulting in lower R2 may be explained by 

the cumulative addition of input variables in this study. The difference in prediction 

accuracy by adding MD to CS as the second input variable was not examined and 

MD was added as the fourth input variable. Moreover, the influence of meteorology 

on air quality is reflected to some extent in the concentrations of CS (ID#1), TI 

(ID#2), and AP (ID#3) and thus, the effect of MD on the prediction accuracy cannot 

be compared with that of TI or AP, and needs to be studied more in future works. In 

contrast, the sharp decrease in the R2 by the kNN model by the addition of MD 

information may be because of the characteristics of kNN, which do not belong to 

the deep learning model. Since it uses the simplest ML method, adding too many 

features will make the prediction difficult. Thus, the kNN model appears to be 

affected by the so-called “curse of dimensionality (Poggio et al., 2017).” The 

application of deep learning models may be more appropriate for PM2.5 composition 

prediction when many input variables (i.e., chemical compositions in PM2.5, TI, 

gaseous AP, and MD) are used as in this study. As the number of input variables 

rises, deep learning models suitable for regression utilizing high-dimensional data 

perform better than simple ML models (Alpaydin, 2020; Gao et al., 2017). Compared 

to the two ML models (RF, kNN), the two deep learning models (GAIN, FCDNN) 

had higher R2 for all PCs with ID#4, which had the most input variables (Tables 3; 

S3). Owing to the high dimensionality of the supporting data, this study also implies 

that deep learning models have exceptional applicability to data on air pollution. 
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4.3.2.3. Comparisons of prediction accuracy by targeted components 

Prediction accuracy by respective species is presented using the GAIN 

model in Fig. 4.3 and Fig. 4.4. The R2 for ion species was higher than that for trace 

elements when all components were predicted (PC#7). Similar trends by GAIN were 

observed by all ML models. In the comparison between predicted and observed 

values for NH4
+ and SO4

2-, the slope was approximately 1.0, and the R2 values were 

0.97, which was higher than those of As (0.87) and Cu (0.78) (Fig. 4.3). High R2 was 

obtained for NO3
-, SO4

2-, and NH4
+ with R2 values of 0.97, and thus, the 

concentration of secondary aerosols may be effectively predicted from PM2.5 

concentration, TI, AP, and MD. It seems that the secondary aerosol reaction 

mechanism is learned by the deep learning model using the SO2, NO2, and O3 

concentrations and meteorological and time information even though secondary 

aerosols are engaged in extraordinarily complex reactions including diffusion in the 

atmosphere and chemical reactions depending on the weather and gaseous substance 

supply (Liu et al., 2022). Additionally, the high contribution of secondary aerosols 

to total PM2.5 mass concentrations (Kim et al., 2018; E. H. Park et al., 2020) may 

help estimate their concentrations effectively from the PM2.5 information. 

The prediction accuracy was low when trace elements were included in the 

prediction targets in all ML models while comparing the results for each PC (Table 

4.5). For example, when the trace elements were included in the prediction target 

(i.e., PC#3, PC#5, PC#6, and PC#7) with ID#4, the R2 of their prediction results 

ranked from bottom to the fourth out of seven PC results. This is presumed to be 

because the concentration of trace elements accounts for a very small proportion of 

the total PM2.5 concentration, and the characteristics supporting the prediction of the 
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concentration of trace elements were less included as input variables. Trace elements 

are more affected by emission sources than chemical reactions in the atmosphere 

(Choi et al., 2022); however, data related to emission sources were not folded into 

the models in this study.  
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Fig. 4.3. Comparisons of observations and predictions by GAIN model 

prediction in Seoul (ID#4, PC#7): (a) NO3
-, (b) SO4

2-, (c) NH4
+, (d) Cl-, (e) OC, 

and (f) EC, (g) Cr, (h) Cu, and (i) As (No. of points = 3,494) 
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Fig. 4.4. Comparisons of observations and predictions by GAIN model in Seoul 

(ID#4, PC#7): (a) Na+; (b) K+; (c) Mg2+; (d) Ca2+; (e) S; (f) K; (g) Ca; (h) Ti; (i) 

V; (j) Mn; (k) Fe; (l) Ni; (m) Zn; (n) Se; (o) Br; (p) Pb 
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4.3.2.4. Variability in prediction accuracy of PC#6 among three cites 

The variations in R2 were characterized in three study sites, BR, Seoul, and 

Ulsan (Table 4.6; Fig.3). Fig. 4.5 shows the prediction results according to the ID 

combination and four ML models for PC#6 at the three sites. The R2 decreased in 

the order of BR, Seoul, and Ulsan. The BR site with the highest R2 has fewer 

anthropogenic emission sources, and the Ulsan site with the lowest R2 has many 

anthropogenic sources. The emissions of PM2.5 from industrial activity in 2019 were 

77, 20,482, 1,197,173 kg in Baengnyeong, Seoul, and Ulsan, respectively (Air 

Pollutants Emission Inventory of Republic of Korea, 2019). The prediction accuracy 

was lower in cities with more PM2.5 emission from industrial activity. The 

westernmost island in Korea, BR, is regarded as a remote place with the least impact 

from Korea's emission sources. Two industrial complexes are known to have a direct 

impact on Ulsan, a significant industrial city (Choi et al., 2011b; Lee and Hieu, 2011). 

It is inferred that lower R2 in Ulsan in comparison to that in Seoul and BR for PC#6 

corresponds with lower prediction accuracy for the trace element group of PC#3 

(Table 4.6). The question of whether prediction accuracy for trace elements and/or 

in Ulsan may be increased by using additional input variables related to emission 

data from Ulsan industrial complexes remains to be explored in future investigation. 
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Fig. 4.5. Comparison of model accuracy by ID# (PC#6): (a) BR, (b) Seoul, and 

(c) Ulsan 
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4.3.3. Prediction Results for Scenario #2 

In Fig. 4.6 and Table 4.10, the prediction accuracy for each model for the 

Seoul location is displayed with variations in the ID period (from 1 to 36 months) 

and missing ratios (from 20% to 80%). First, the R2 was more than 0.8 by the two 

deep learning models at a missing ratio of 20% with data over 3 months, suggesting 

that a few months' data are sufficient to apply deep learning models in predicting the 

concentrations of PM2.5 components. Second, when the period of ID increased, the 

R2 of the deep learning models further increased. By contrast, RF and kNN did not 

show improvements in R2 as the period of the ID increased than those of GAIN and 

FCDNN (Fig. 4.6). One-way ANOVA with Tukey's honestly significant difference 

(HSD) test identified that the longer the period of ID, the more the significant 

differences in prediction results between the models (Table 4.11). This shows that 

even though a substantial amount of data is used in this study, the two deep learning 

models used can successfully extract the features of data, as shown in earlier research. 

(Ciaburro and Iannace, 2021). 
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Table 4.10. Prediction accuracy (R2) by model according to data input period and missing ratio (ID#4 and PC#7, Seoul) 

Missing 

ratio 

GAIN  DNN  RF  kNN 

1-

month 

3-

month 

12-

month 

36-

month 
 1-

month 

3-

month 

12-

month 

36-

month 
 

1-

month 

3-

month 

12-

month 

36-

month 
 

1-

month 

3-

month 

12-

month 

36-

month 

0.2 0.851 0.854 0.879 0.895  0.791 0.818 0.824 0.861  0.808 0.795 0.773 0.785  0.791 0.763 0.713 0.744 

0.4 0.783 0.813 0.829 0.844  0.744 0.764 0.789 0.822  0.767 0.768 0.749 0.759  0.703 0.722 0.666 0.678 

0.6 0.742 0.727 0.754 0.784  0.744 0.736 0.758 0.767  0.742 0.730 0.720 0.714  0.661 0.664 0.612 0.619 

0.8 0.596 0.626 0.631 0.686  0.643 0.660 0.675 0.699  0.652 0.659 0.659 0.641  0.551 0.530 0.493 0.514 

 

Table 4.11. One-way ANOVA with Tukey's honestly significant difference (HSD) test results among models according to data input period 

(ID#4, PC#7, Seoul, missing ratio 0.2) 

Model 

P-value 

Input data period 

1-month 3-month 12-month 36-month 

GAIN FCDNN <0.001* 0.041* 0.003* <0.001* 

GAIN RF 0.003* 0.002* <0.001* <0.001* 

GAIN kNN <0.001* <0.001* <0.001* <0.001* 

FCDNN RF 0.227 0.204 0.005* <0.001* 

FCDNN kNN 0.900 0.005* <0.001* <0.001* 

RF kNN 0.227 0.041* 0.002* <0.001* 
* Significantly different (significance level of 0.05) 
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Prediction accuracy decreased as the missing ratio increased in all models 

(Table 4.10). This was anticipated because the learnable data itself decreased. 

However, notably, the decrease in accuracy was larger for GAIN and kNN as the 

missing ratio increased, compared to the other two models (Fig. 4.6 and Table 4.10). 

Since GAIN and kNN are unsupervised learning models that have the ability to 

create predictions that are plausible, it may be more challenging for these models to 

estimate accurate values in situations when there are inadequate reference data. In 

contrast, FCDNN and RF, which are supervised learning models whose training and 

testing are distinguished within the given data, were relatively less sensitive to the 

increases in the missing ratio. When the missing ratio was 80%, the FCDNN model 

had a higher prediction accuracy than that of the GAIN model in all periods (Fig. 4.6 

and Table 4.10). 
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Fig. 4.6. Comparison of accuracy by model according to data input period and 

missing ratio (ID#4 and PC#7, Seoul): (a) 1-month, (b) 3-month, (c) 12-month, 

and (d) 36-month data usage 
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Fig. 4.7. Comparisons of observations and predictions by EM model prediction 

in Seoul (ID#4, PC#7): (a) NO3
-, (b) SO4

2-, (c) NH4
+, (d) Cl-, (e) OC, (f) EC, (g) 

Cr, (h) Cu, and (i) As (No. of points = 3,494) 
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Fig. 4.8. Comparisons of observations and predictions by EM model in Seoul 

(ID#4, PC#7): (a) Na+; (b) K+; (c) Mg2+; (d) Ca2+; (e) S; (f) K; (g) Ca; (h) Ti; (i) 

V; (j) Mn; (k) Fe; (l) Ni; (m) Zn; (n) Se; (o) Br; (p) Pb 
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Fig. 4.9. Comparisons of observations and predictions by MI model prediction 

in Seoul (ID#4, PC#7): (a) NO3
-, (b) SO4

2-, (c) NH4
+, (d) Cl-, (e) OC, (f) EC, (g) 

Cr, (h) Cu, and (i) As (No. of points = 3,494) 
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4.3.4. Features and Performance of Four ML Models 

The features and performance of the four ML models used in this study may 

be utilized for designing a predictive regression model in other studies. The 

prediction accuracy of the GAIN model was the highest (Table 4.5 and Fig. 4.5), 

indicating the best performance in predicting missing PM2.5 constituent values. The 

decrease was also the least in the GAIN model even though the R2 decreased when 

trace elements are predicted (e.g., PC#3, 5, and 6) in all models. These results may 

help to explain why the GAIN model has lately gained popularity and is being 

applied to a variety of domains for the processing of missing values. (Andrews and 

Gorell, 2020; Popolizio et al., 2021; Viñas et al., 2020). 

However, prediction accuracy is not the only criterion for selecting a model as other 

qualitative pros and cons of the model should be considered. RF and kNN have the 

advantages of easy handling and simple algorithms although GAIN and FCDNN 

have higher prediction accuracies than RF and kNN and maintained high prediction 

accuracy values with an increase in input variables (Table 4.6). 

The GAIN model undertakes unsupervised learning, with the main goal to 

make missing values appear similar to observed data by identifying hidden patterns 

in the data collected. Therefore, it may be difficult to interpret whether AP 

characteristics such as physicochemical reactions are learned by the model or not. 

Instead, it focuses on producing credible data. This is similar to kNN, which 

functions by finding the nearest points using the entire data. In contrast, because 

FCDNN and RF are supervised learning models, learning is separately completed 

from the training data sets, and the characteristics extracted from IDs can be used to 
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find the best weights and biases of the models. Therefore, examining the weights and 

biases learned by the FCDNN and RF models helps identify the most important 

characteristics for predicting each component of PM2.5. With repeated usage of the 

trained models and a deeper comprehension of atmospheric chemical and physical 

processes, this aspect of supervised learning models may potentially offer benefits. 

Interqurtile range of min-max normalized value of the data versus the prediction 

accuracy (R2) of each model was shown in Fig. 4.10 to investigate the relevance 

between the prediction accuracy of ML models and the variability of data used. 

Moderate positive correlation in RF, EM, and MI (0.5 < R <0.7). The higher the data 

variability, the higher the prediction accuracy of EM and MI model. It is suggested 

that the prediction accuracy is high due to the feature extraction performance of deep 

learning models, not the concentration variability of the chemical constituents of 

PM2.5 itself. 

 

Fig. 4.10. Prediction accuracy (R2) of each constituent by the variability of the 

data 
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4.4. Summary 

In this study, the feature extraction capabilities of the four ML models to predict 

the chemical composition of PM2.5 were assessed by comparing the prediction 

accuracy depending on input variables, target constituents for prediction, available 

period, missing ratios of input data, and study sites. The prediction accuracy 

identified by the coefficient of determination (R2) between prediction and 

observation was highest in GAIN, followed by FCDNN and RF or kNN. As missing 

ratios (20%, 40%, 60%, 80%) of input data increased, prediction accuracy decreased 

in the four models and was more noticeable in GAIN and kNN, which are 

unsupervised models. As the period of input data increased, the two deep learning 

models (i.e., GAIN and DNN) had better applicability than the others (i.e., RF and 

kNN). In the comparison of prediction accuracy by city, the prediction accuracy was 

lower in cities with more particulate matter emission from industrial activity, 

resulting in the highest R2 in BR island and lowest in Ulsan. Among the target 

constituent groups, the ions and trace elements were predicted with the highest and 

lowest R2, respectively. 

The high prediction accuracy of machine learning models means that features 

from data were extracted successfully with the suitable structure of the models 

(Alzubaidi et al., 2021). In terms of prediction accuracy, the ability to extract features 

from data, the ability to repeat tests following independent training, ease of use or 

convenience, and processing speed, each of the four models has strengths and 

weaknesses. This study can be used for reference in other studies to predict missing 

values of PM2.5 chemical composition by selecting an appropriate model. The 

accuracy of prediction of missing values presented in this study was generally high 
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and was of a practically applicable level. Machine learning is a timely application 

that is ideal for data on air pollution that is growing high-dimensional and has more 

precise spatial and temporal needs. This study demonstrates that machine learning 

models can be extended for further air pollution studies depending on model features, 

required performance, and experimental conditions such as data availability and time 

constraint. 

 

 

Data Availability 

The AP data (e.g., PM10, NO2, and CO) are available on the AirKorea website  

(https://www.airkorea.or.kr/web/last_amb_hour_data?pMENU_NO=123). 

 

The MD can be obtained from the automatic weather stations 

(https://data.kma.go.kr/data/grnd/selectAwsRltmList.do?pgmNo=56). 

 

Code Availability 

All the scripts used in the study for data processing and analysis are available in the 

form of .py or .ipynb files in the following GitHub repository: 

https://github.com/hadistar/hadistar, https://github.com/minjae960/GAIN_TF2 

  

https://www.airkorea.or.kr/web/last_amb_hour_data?pMENU_NO=123
https://data.kma.go.kr/data/grnd/selectAwsRltmList.do?pgmNo=56
https://github.com/hadistar/hadistar
https://github.com/minjae960/GAIN_TF2
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Chapter 5. Bayesian spatial multivariate receptor 

modeling for spatiotemporal analysis of PM2.5 sources  
 

5.1. Introduction 

Particulate matter less than 2.5 micrometers (PM2.5) is a major pollutant of 

interest for clean air, and the demand for its reduction continues to increase (Hopke 

et al., 2019). Identifying major emission sources and assessing their contributions to 

the total PM2.5 concentrations is crucial for developing more targeted enforcement 

strategies and effective management of PM2.5, which can also be reflected in 

environmental health policies. Human health risks due to emission sources in certain 

areas can also be evaluated based on the estimated source contributions (Hopke et 

al., 2020; Wang et al., 2021). Furthermore, it would be beneficial if the spatio-

temporal distribution of sources could be modeled simultaneously in that it can be 

used as an important reference for emission reduction measures or to identify high 

incidence areas. (Shi et al., 2021). Regardless of continuous attempts to derive 

scientific information about major PM2.5 sources and their contributions, there 

remain many challenges because of the limitations, such as the requirement for high-

resolution data, measurement uncertainty, and modeling and estimation uncertainty 

(Diao et al., 2019; Hopke, 2016; Hopke et al., 2020). 

For source apportionment of PM2.5, receptor models based on factor analysis, 

chemical mass balance (CMB), and principal component analysis (PCA) have been 

used over four decades (Hopke, 2016). Karagulian et al. (2015) summarized a total 

of 419 source apportionment studies conducted in 51 countries around the world and 

identified the 14 types of receptor models utilized from 1986 to 2012. Positive matrix 
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factorization (PMF), a type of factor analysis method, and CMB have been mostly 

used with 45% and 19% of usage, respectively (Karagulian et al., 2015). Especially, 

PMF, the most widely used method for source apportionment in recent decades, has 

its uncertainty evaluation capabilities for source compositions, such as bootstrap and 

displacement options, although not for source contributions, as well as producing 

source compositions and contribution estimates that are interpretable based on 

domain knowledge (Hopke, 2016; Paatero and Tapper, 1994; Polissar et al., 2001). 

More recently, advanced PMF methods such as dispersion normalized PMF and 

window PMF have also emerged to reduce the influence of meteorology on the 

source emission patterns (Dai et al., 2020a, 2020b; Hopke, 2021). Also, PMF 

modeling research using hourly data rather than daily data has increased the time 

resolution of source apportionment with the recent development of measurement 

techniques (Dai et al., 2020b; Park et al., 2019; Shi et al., 2019; Wang et al., 2018). 

In addition, ensemble approaches such as integrating multiple receptor models and 

chemical transport models (CTMs) have been employed to achieve better 

performance and improve the CTM forecast. (Hopke, 2016; Sokhi et al., 2021). 

However, the challenges such as the rotational ambiguity problem and the difficulty 

with incorporating spatial correlation in multi-site data into PMF estimates still exist 

(Hopke, 2021). Overall, the source apportionment methods capable of incorporating 

spatial correlations in multi-site data into estimation are very limited (Park et al., 

2018). 

More recently, there has been growing interest in Bayesian approaches in 

receptor modeling (Hopke, 2016). In fact, the Bayesian approaches are increasingly 

being used in all social science and engineering fields, including environmental 
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engineering, with the development of computational technology (M. H. Park et al., 

2020). Bayesian factor analysis methodology was previously introduced into 

receptor modeling as a way to resolve a rotational ambiguity problem as well as 

handling the unknown number of sources and providing uncertainty estimates of 

source profiles and contributions (E. S. Park et al., 2014; Park et al., 2021, 2018, 

2004, 2002; Park and Oh, 2018, 2015; Park and Tauler, 2020). In a Bayesian 

approach, each parameter is assumed to have its own probability distribution, called 

a prior distribution, of which variability reflects the uncertainty in prior information. 

With this important feature, any prior information about pollution sources from the 

domain knowledge, in addition to the data, can be incorporated into parameter 

estimation in a mathematically rigorous fashion in Bayesian source apportionment 

models (Park and Tauler, 2020), which is not possible in non-Bayesian source 

apportionment models.  

Bayesian spatial multivariate receptor modeling (BSMSM), proposed by 

Park et al. (2018), is a Bayesian source apportionment approach that can incorporate 

spatial correlations in multi-site multipollutant data into parameter estimation and 

enable spatial prediction of source contributions at unmonitored sites. Furthermore, 

it can simultaneously deal with model uncertainty resulting from an unknown 

number of sources or rotational ambiguity. Therefore, BSMRM has the advantage of 

being able to account for both the uncertainty in source apportionment and spatial 

correlations in the data in prediction. The first application of BSMRM was based on 

17 volatile organic compounds data collected from nine monitoring sites in Harris 

County, Texas, USA. The predicted source contributions for five major sources of 

the Harris County area were derived incorporating spatial correlations in the VOCs 
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data from multiple monitoring sites (Park et al., 2018).  

With the recent surge in interest in PM2.5 management in Korea, the number 

of nationally operated PM2.5 speciation monitoring sites has been increasing. 

Accordingly, the level of demand for scientific source apportionment is high in terms 

of data utilization, and several PMF modeling and analysis results using national 

measurement data have been reported recently (Hwang et al., 2020; Jeong et al., 

2017; Lee et al., 2019; Park et al., 2019). However, there have been no studies on 

spatial prediction of source-specific PM2.5 pollution using multi-site PM2.5 speciation 

data. A source apportionment study applying BSMRM to multi-site PM2.5 speciation 

data in Korea is a timely new attempt. Source apportionment results with spatial 

prediction at unmonitored sites (cities) using PM2.5 speciation data operated at the 

national level could be vital information for successful management of PM2.5. As 

mentioned earlier, prediction of source-specific PM2.5 pollution at any location can 

lead to developing an effective pollution control plan for a city with no PM2.5 

chemical speciation monitoring site.  

This study aims to predict source-specific PM2.5 pollution at unmonitored 

sites in regional scale by employing BSMRM, which models spatial correlation in 

multi-site PM2.5 chemical speciation data to make spatial predictions. BSMRM will 

also be evaluated by verifying the model results based on the held-out test data not 

used for model development and estimation. Prediction of unobserved source 

contributions from BSMRM at an unmonitored site (a test site) will be compared 

with the source contributions estimated by a single-site source apportionment 

method, BNFA (Park et al., 2021), based on data from the test site. Finally, maps of 

source-specific pollution surfaces over Korea, constructed based on predicted values 
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from BSMRM, will also be presented. 

  



 

１８０ 

5.2. Materials and methods 

5.2.1 Air pollution data 

 

The PM2.5 chemical speciation data measured for 1/1/2020-12/29/2020 

from 8 sites were used for the analysis. Fig. 5.1 shows the location of the monitoring 

stations from which the data were obtained. The concentrations of the chemical 

components of PM2.5 for 7 out of those 8 sites (Baengnyeong, Seoul, Ansan, Daejeon, 

Gwangju, Ulsan, and Jeju) were obtained from intensive PM2.5 monitoring stations 

operated by the Korean Ministry of Environment (NIER, 2016).  Mass 

concentrations of PM2.5 were measured by β-ray absorption method (BAM 1020, 

Met One Instruments, Inc., USA). The analysis methods for quantifying the chemical 

composition of PM2.5 are as follows: Ionic species were measured by ion 

chromatography (URG-9000D ambient ion monitor, URG Corp.). Organic carbon 

(OC) and elemental carbon (EC) were measured by thermal-optical transmittance 

method (OC-EC Analyzer, Sunset Laboratory Inc., USA). Elemental concentrations 

were measured using an ambient elemental monitor (XactTM 620, Cooper 

Environmental Services, USA) which is analyzed by X-ray fluorescence 

spectrometry (XRF). QA/QC for PM2.5 and its components data can be found in the 

guideline for installation and operation of national air pollution monitoring network 

(Korea Ministry of Environment and National Institute of Environmental Research, 

2021). 

The methods for collecting the data from the remaining one site (Siheung) 

are described in detail in Lee et al. (2022). Briefly, the mass concentrations of 

Siheung data were obtained by measuring the weight of a 24-hour dried Teflon filter 

http://www.dionex.com/en-us/products/ion-chromatography/ic-rfic-systems/lp-72590.html
http://www.dionex.com/en-us/products/ion-chromatography/ic-rfic-systems/lp-72590.html


 

１８１ 

(PT47P, MTL, US) before and after sample collection, and then dividing the obtained 

value by the collected air volume. The analysis methods for quantifying the chemical 

composition of PM2.5 are also described in detail in Lee et al. (2022).  

 

 

Fig. 5.1. Locations of PM2.5 chemical speciation monitoring sites in South Korea. 

 

Table 5.1 contains the summary statistics for 20 species used in this analysis 

and the total PM2.5 mass concentration based on data from all 8 monitoring sites.  
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Table 5.1. Summary statistics for PM2.5 and its chemical species 

Species No. Species Mean Median Std. Dev. Minimum Maximum 

 PM2.5 (µg/m3) 20.5 17.3 13.0 0.846 78.7 

 Ion (µg/m3)      

1 NO3
- 4.62 2.55 5.10 0.021 29.1 

2 SO4
2- 3.47 2.86 2.49 0.035 17.8 

3 Cl- 0.359 0.230 0.388 0.000 2.93 

4 Na+ 0.112 0.083 0.112 0.000 1.22 

5 NH4
+ 2.84 2.17 2.24 0.007 15.1 

6 K+ 0.110 0.071 0.120 0.000 0.912 

7 Mg2+ 0.022 0.015 0.025 0.000 0.237 

 Carbon (µg/m3)      

8 OC 3.17 2.69 2.26 0.000 14.4 

9 EC 0.652 0.569 0.452 0.000 2.94 

 Trace Element (ng/m3)      

10 Ca 50.6 40.0 37.5 0.702 283 

11 Ti 7.79 6.38 6.40 0.029 91.9 

12 V 0.426 0.218 0.621 0.000 6.87 

13 Cr 1.23 0.907 1.29 0.000 11.4 

14 Mn 10.6 8.39 9.31 0.000 79.5 

15 Fe 162 145 105 2.48 738 

16 Ni 0.978 0.754 0.853 0.000 5.13 

17 Cu 6.83 4.33 9.24 0.038 93.2 

18 Zn 43.14 35.3 33.6 0.615 226 

19 As 4.81 3.03 6.07 0.000 72.6 

20 Pb 15.5 11.2 14.7 0.000 111 
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5.2.2 Bayesian spatial multivariate receptor modeling (BSMRM) 

 

In this study, we performed source apportionment of PM2.5 for Korea based 

on speciated PM2.5 data collected from multiple monitoring sites by using Bayesian 

spatial multivariate receptor modeling (BSMRM) proposed by Park et al. (2018). 

The main motivation of BSMRM was to account for spatial correlation in the air 

pollution data collected from multiple monitoring sites in modeling and estimation 

and predict source contributions at unmonitored sites. For completeness, BSMRM 

models are briefly described here again. Let N be the number of monitoring sites and 

T be the number of time points. The basic model for the rth monitoring site at time t 

is 

 

𝑋𝑡
𝑟 = 𝐴𝑡

𝑟𝑷 + 𝐸𝑡
𝑟, 𝑡 = 1,⋯ , 𝑇, 𝑟 = 1,⋯ ,𝑁,   Eq. 5.1 

 

where P is a q × J source-composition matrix, 𝑋𝑡
𝑟 = (𝑋𝑡1

𝑟 , ⋯ , 𝑋𝑡𝐽
𝑟 ) is a vector of 

observed concentrations on J pollutants at monitoring site r at time t, 𝐴𝑡
𝑟 =

(𝐴𝑡1
𝑟 ,⋯ , 𝑋𝑡𝑞

𝑟 ) is a vector of contributions from q sources at monitoring site r at time 

t, and 𝐸𝑡
𝑟 = (𝐸𝑡1

𝑟 ,⋯ , 𝐸𝑡𝐽
𝑟 ) is a J-dimensional vector of errors associated with each 

observation at the rth monitoring site and time t. The elements of P are constrained 

to be nonnegative. Park et al. (2018) extended the model in Eq. 5.1 to incorporate 

spatial correlation in multi-site multipollutant data into multivariate receptor 

modeling by adapting the dynamic factor process convolution model of Calder (2007) 

based on the discrete process convolution approach, originally proposed by Higdon 

(1998), to modeling spatial data. The discrete process convolution approach 
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expresses the spatial process as a sum of the discrete underlying (latent) processes 

defined on L locations on a coarse grid {𝜔1, 𝜔2,⋯ , 𝜔𝐿}, covering the spatial domain, 

smoothed by the kernel . Park et al. (2018) relaxed the assumption of the known 

number of factors and known identifiability conditions of Calder (2007) and handled 

uncertainty in the unknown number of factors and identifiability conditions 

simultaneously with parameter estimation. They also incorporated physically 

meaningful non-negativity constraints (that were not enforced in Calder 2007) for 

the source composition profile matrix and the source contribution matrix into the 

estimation.  

BSMRM considers the following model for the multivariate air pollution 

data {𝑿(𝑠𝑟, 𝑡), 𝑡 = 1,⋯ , 𝑇}  collected from N spatial sites {𝑠1, 𝑠2,⋯ , 𝑠𝑁}  over T 

time points: 

 

𝑿(𝑠𝑟, 𝑡) = 𝑲(𝑠𝑟)𝑮𝒕𝑷+ 𝑬(𝑠𝑟 , 𝑡)   Eq 5.2 

 

where sr is the spatial location of the rth receptor (𝑟 = 1,⋯ ,𝑁), Gt represents q 

underlying processes located at L spatial locations {𝜔1, 𝜔2,⋯ , 𝜔𝐿} chosen from a 

coarse grid that covers a spatial domain, ( )~ 0, ,t LG N I , 𝑲(𝑠𝑟) = [𝜅(𝜔1 −

𝑠𝑟),⋯ , 𝜅(𝜔𝐿 − 𝑠𝑟)], 𝜅 is a smoothing kernel, and 𝑬(𝑠𝑟, 𝑡) is an iid, mean zero, 

Gaussian process on (𝑠𝑟 , 𝑡) with variance 𝛴𝐽 = 𝑑𝑖𝑎𝑔(𝜎1
2,⋯ , 𝜎𝐽

2).  

This spatially extended multivariate receptor model makes it possible to 

predict source contributions at any location as 𝑲(𝑠)𝑮𝒕 by plugging in the estimates 

for 𝑮𝒕 and the corresponding values for 𝑲(𝑠) where s is a new location.  
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Uncertainty in the number of major sources and identifiability conditions 

can be handled by considering marginal likelihood (model evidence given the data) 

for each model which can be viewed as a measure of model fit (the larger, the better). 

Estimation of model parameters and computation of marginal likelihoods can be 

performed by Markov chain Monte Carlo (MCMC) methods. The MATLAB codes 

for MCMC implementation of BSMRM are also freely available from the 

Supplementary Materials for Park et al. (2018). 

 

5.2.3 Application of BSMRM to Korea PM2.5 speciation data 

 

We applied BSMRM to the PM2.5 speciation data collected from seven monitoring 

sites (except for a test site denoted by a triangle) in Fig. 5.2 in Korea in 2020. The 

data for each of Daejeon City, Gwangju City, and Ansan City, are set aside as held-

out data (test data) to use for validation of BSMRM. These 3 sites were selected to 

test model validity in inner regions among the monitoring stations to avoid 

extrapolation. There were a total of 103 days when PM2.5 speciation measurements 

were made for most of the eight monitoring sites. The number of missing 

observations at any given site varies with species, ranging from 0 to 35 days. The 

missing observations were imputed by k-nearest neighbor imputation (Little and 

Rubin, 2014), namely, using the spatial average of pollutants from three nearest 

neighboring sites for each day.  

Based on the previous (single-site) studies for different cities in Korea 

(Choi et al., 2022, 2013; Heo et al., 2009; Hwang et al., 2020; Kim et al., 2018; Park 

et al., 2019; E. H. Park et al., 2020), secondary sulfate, secondary nitrate, traffic, coal 
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combustion (including heating), oil combustion, industrial sources, biomass burning, 

soil, and sea salt were presumed to be potential candidate sources affecting the region. 

This prior knowledge was utilized in prespecification of zeros in the source-

composition profile matrix to achieve model identifiability. Table 5.2 gives the major 

species for each of the candidate source types. Minor or absent species from each 

source type are candidates for preassigned zeros in source composition profiles. 

 

Table 5.2. Major Species for Candidate Sources Considered in the Analysis 

Source Major species 

Secondary nitrate NO3
- and NH4

+  

Secondary sulfate SO4
2- and NH4

+ 

Traffic OC, EC, and Cu, Fe 

Coal combustion As and Pb, Cl- (heating) 

Industry V, Cu, Cr, Mn, Fe, Ni, Pb and Zn 

Biomass burning K+, OC, and EC 

Soil Mg, Al, Si, Ca, Ti 

Sea salts Na, Mg, K 

 

We constructed a range of different models, resulting from each 

combination of varying number of sources and identifiability conditions 

(prespecification of zeros), to be compared for the Korea PM2.5 data. Based on 

previous studies on source identification and apportionment of PM2.5 for South 

Korea and the NUMFACT procedure (Henry et al., 1999; Park et al., 2000), we 

presumed that the number of major sources was between 5 and 8. For candidate 

positions of zeros in P under each q-source model, we used the information on the 
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major sources of Korea from previous single-site studies aforementioned. Note that 

we use information from previous single-site studies only to find out the plausible 

sets of identifiability conditions (absent or minor species for each source type) under 

each q-source model. Other than that, the candidate models do not depend on the 

results from those previous studies. We compared eight candidate models with 

different numbers of sources (q = 5, 6, 7, 8) and different identifiability conditions 

(prespecification of zeros in P) in Table 5.3. 

 

Table 5.3. Candidate Models for Korea PM2.5 Data 

Model # q 

Prespecification of zeros 

logmD(*1.0e+04) 
Source No. 

Species No. for 

preassigned zeros* 

1 5 1 

2 

3 

4 

5 

2, 3, 8, 15 

1, 3, 8, 15 

3, 5, 6, 15 

 4, 8, 9, 10 

3, 8, 9, 15 

 

-2.1007 

2 5 1 

2 

3 

4 

5 

2, 3, 8, 15 

1, 3, 8, 15 

3, 6, 10, 15 

4, 7, 8, 9 

6, 8, 9, 15 

 

-2.0952 

3 6 1 

2 

3 

4 

5 

6 

2, 3, 4, 8, 15 

1, 3, 4, 8, 15 

3, 5, 6, 10, 15 

4, 7, 8, 9, 10 

3, 6, 8, 9, 15 

1, 2, 3, 5, 8 

 

-2.0986 

4 6 1 

2 

3 

4 

5 

6 

2, 3, 4, 9, 15 

1, 3, 4, 10, 15 

3, 5, 6, 7, 15 

4, 5, 7, 9, 10 

3, 5, 6, 8, 15 

2, 3, 5, 8, 16 

  

-2.0974 
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5 7 1 

2 

3 

4 

5 

6 

7 

2, 3, 4, 8, 10, 15 

1, 3, 4, 8, 10, 15 

3, 4, 5, 6, 10, 15 

4, 5, 7, 8, 9, 10 

2, 3, 6, 8, 9, 15 

1, 2, 3, 5, 8, 9 

1, 2, 8, 9, 11, 15 

  

-2.1021 

6 7 1 

2 

3 

4 

5 

6 

7 

2, 3, 4, 9, 10, 15 

1, 3, 4, 8, 10, 15 

3, 4, 5, 7, 10, 15 

4, 5, 7, 8, 9, 10 

3, 5, 6, 8, 9, 15  

1, 2, 3, 5, 8, 16 

1, 2, 8, 9, 15, 20 

  

-2.1015 

7 8 1 

2 

3 

4 

5 

6 

7 

8 

2, 3, 4, 8, 10, 11, 15 

1, 3, 4, 8, 10, 15, 17 

3, 4, 5, 6, 10, 12, 15 

4, 5, 6, 7, 8, 9, 10 

1, 2, 3, 6, 8, 9, 15 

1, 2, 3, 5, 8, 10, 16 

1, 2, 6, 9, 11, 15, 20 

4, 5, 7, 15, 18, 19, 20 

  

-2.0973 

8 8 1 

2 

3 

4 

5 

6 

7 

8 

2, 3, 4, 9, 10, 11, 15 

1, 3, 4, 9, 10, 15, 17 

3, 4, 5, 7, 10, 12, 15 

4, 5, 6, 7, 8, 9, 10 

1, 3, 5, 6, 8, 9, 15  

1, 2, 3, 5, 8, 9, 16 

1, 2, 8, 9, 10, 15, 20 

4, 5, 7, 16, 18, 19, 20 

  

-2.1040 

* Numbers indicate Species Number in Table 5.1 (e.g., 1: NO3
-, 2: SO4

2-). 
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5.3. Results and discussion 

5.3.1 Bayesian spatial multivariate receptor modeling (BSMRM) results  

 

We fitted Bayesian spatial multivariate receptor models to the data 

consisting of 20 PM2.5 species (measured in µg/m3) given in Table 5.1 and estimated 

source-composition profiles and other model parameters along with marginal 

likelihood under each model. Note that Bayesian model comparison can be 

performed using the posterior model probability, which is proportional to the 

marginal likelihood under the indifference prior model probabilities. A model with 

a higher marginal likelihood (or posterior model probability) is thus preferred. 

Because concentrations of PM2.5 species differed by two or three orders of magnitude 

and convergence problems may occur when elemental concentrations are on widely 

different scales, each element was scaled by its sample standard deviation before 

running MCMC. After the run, however, the individual elements of the estimated 

source profiles were multiplied by the corresponding sample standard deviations to 

bring them back to the original scale so that the relative amounts of species in each 

profile are physically interpretable. The following hyperparameter values were used 

for generating MCMC samples: a0 = 0.01, b0j = 0.01 (j = 1, …,17), 𝑐0 = 0.5 × 1𝑝+, 

and 𝐶0 = 100 × 𝑰𝑝+.  Also, we set Ω = Iq as a way to get around a scale invariance 

problem for these data. We modeled the underlying process at 9 locations (L=9) 

chosen to cover the spatial domain of interest shown in Fig.5.2 with the distance 

between adjacent location used as the standard deviation (σκ) of the Gaussian kernel 

used in model fitting (σκ =1.7379). 
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Fig. 5.2. Separation of locations for validation and underlying locations: Test 

site of (a) Ansan, (b) Daejeon, and (c) Gwangju 

 

For model fitting, three different datasets (consisting of data from 7 

remaining monitoring sites after excluding a test site) were used as follows: Dataset 

1 excluding the Daejeon site, Dataset 2 excluding the Gwangju site, and Dataset 3 

excluding the Ansan site. For each model fitted based on each dataset, an 

approximate posterior mode is obtained from a preliminary MCMC run, and this is 

used for 𝜃𝑐 = (𝐺𝑐 , 𝑷𝑐 , 𝛴𝑐)  at which the marginal likelihood is calculated. An 

approximate posterior mode is obtained by evaluating the joint posterior density for 

10,000 iterations after the first 10,000 draws are discarded. A main MCMC run is 

then started from 𝜃𝑐 = (𝐺𝑐 , 𝑷𝑐 , 𝛴𝑐) , and the samples are collected for 10,000 



 

１９１ 

iterations, without additional burn-in. The estimated marginal likelihood (in logs) for 

each model is also provided in Table 5.3. Model# 2 with 5 sources is selected as the 

best model because the marginal likelihood for Model# 2 is the highest among the 

candidate models considered. 

Fig. 5.3 shows the estimated source composition profiles and contributions 

under Model 2 based on Dataset 1 (which excludes Ansan City of Fig. 5.2). Fig. 5. 3 

(a) shows barplots for elements of estimated source profiles (for common major 

sources for the entire region) along with uncertainty estimates represented by error 

bars (lower and upper limits of 95% posterior intervals). Note that local sources that 

are specific to any single city may not be characterized by this regional modeling. 

Fig. 5.3 (b) contains the time-series plots of the predicted source contributions along 

with their uncertainty estimates (95% posterior intervals), at a held-out test site 

(Ansan City). Major species in the estimated source composition profiles of Fig. 5.3 

(a) appear to be consistent with main elements of major PM2.5 sources for South 

Korea identified by previous studies, namely, Secondary Nitrate, Secondary Sulfate, 

Motor Vehicles, Industry, and Sea Salt. The estimated yearly mean source 

contributions across 7 monitoring sites indicate that Secondary Nitrate, Secondary 

Sulfate, and Motor Vehicles play a major role in PM2.5 emissions for the region, 

which agrees with previous studies based on the single-site data for each of the 

individual cities. Recall that the main purpose of this study is to predict major PM2.5 

source contributions at unmonitored locations (cities), and Bayesian spatial 

multivariate receptor modeling allows us to predict source contributions at any site 

(not just at monitoring sites). 
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Fig. 5.3. BSMRM model fitting results: (a) Bar plots for the elements of the estimated source profiles along with error bars (lower and 

upper limits of 95% posterior intervals); (b) Time series plots of source contributions with 95% posterior intervals in Ansan City, 

predicted by BSMRM 
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Fig. 5.4 and Fig. 5.5 show the estimated source composition profiles and 

predicted source contributions for Daejeon City based on Dataset 2 and Gwangju 

City based on Dataset 3, respectively. Note that the estimated source composition 

profiles are similar across three cities, while predicted source contributions are 

different across those cities as expected. 
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Fig. 5.4. BSMRM model fitting results: (a) Bar plots for the elements of the estimated source profiles along with error bars (lower and 

upper limits of 95% posterior intervals); (b) Time series plots of source contributions with 95% posterior intervals in Daejeon City, 

predicted by BSMRM 
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Fig. 5.5. BSMRM model fitting results: (a) Bar plots for the elements of the estimated source profiles along with error bars (lower and 

upper limits of 95% posterior intervals); (b) Time series plots of source contributions with 95% posterior intervals in Gwangju City, 

predicted by BSMRM 
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5.3.2 Model validation  

For validation of the prediction by BSMRM, we estimated source 

contributions at a test site (each of Ansan, Daejeon, and Gwangju sites) using 

Bayesian multivariate receptor modeling for the single-site data. We performed 

source apportionment at each site by BNFA (Park et al. 2021). Fig. 5.6, Fig. 5.7, and 

Fig. 5.8 contain the time-series plots of the source contributions along with their 

uncertainty estimates (95% posterior intervals) and bar plots of source compositions, 

respectively, estimated using BNFA based on PM2.5. speciation data obtained from 

each of the Ansan, Daejeon, and Gwangju sites, respectively. 
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Fig. 5.6 Estimated source composition profiles and predicted source contributions by BNFA for Ansan City 
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Fig. 5.7. Estimated source composition profiles and predicted source contributions by BNFA for Daejeon City 
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Fig. 5.8. Estimated source composition profiles and predicted source contributions by BNFA for Gwangju City 



 

２００ 

Figures from Fig. 5.9 to Fig. 5.11 show predicted source contributions by 

BSMRM overlaid with the predicted source contributions by BNFA at each test site. 

It can be observed from Fig. 5.3 to Fig. 5.8 that the overall patterns of the source 

contributions predicted by BSMRM and those estimated by BNFA are similar except 

peaks of the BNFA source contributions are more extreme, which seems to be a 

natural consequence of reflecting local conditions at the test site. It needs to be noted 

that, due to the sparsity of monitoring sites (only 7 monitoring sites are available for 

spatial prediction in this case), the predicted source contribution surface by BSMRM 

is supposed to be smoother than the true surface. As the number of monitoring sites 

increases, spatial prediction of local peaks will be improved. Other than prediction 

of those local peaks, the source contributions predicted by BSMRM appear to be 

consistent with the source contributions estimated by BNFA (which may be viewed 

as the surrogate for the true source contributions at each test site) and correlations 

(R) seem to be reasonable. Considering the very small number of monitoring sites, 

spatial prediction of source contributions at an unmonitored site by BSMRM is 

deemed to be satisfactory 
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Fig. 5.9. Predicted source contributions by BSMRM (Model #2, red lines) and 

BNFA (Model #7, black lines) for Ansan City 
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Fig. 5.10. Predicted source contributions by BSMRM (Model #2, red lines) and 

BNFA (Model #7, black lines) for Daejeon City 
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Fig. 5.11. Predicted source contributions by BSMRM (Model #2, red lines) and 

BNFA (Model #7, black lines) for Gwanju City 
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5.3.3 Spatial distribution of each source in South Korea  

To examine spatial trends of source contributions in South Korea, we 

constructed the predicted source contribution surface maps using data from all of 8 

monitoring sites. Fig. 5.12 and Fig. 5.13 shows the predicted source contribution 

surfaces for secondary nitrate and motor vehicle emissions for eight days in 2020, 

which show spatial and daily variations of contributions of secondary nitrate and 

motor vehicle emissions, respectively. 
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Fig. 5.12. Predicted source contribution surfaces of secondary nitrate for eight days 
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Fig. 5.13. Predicted source contribution surfaces of motor vehicle emission for eight days
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5.4. Summary 

 

In this paper, the source contributions for major sources of PM2.5 in a regional 

scale were predicted and validated using BSMRM for the first time. We assessed the 

impact of major sources to ambient PM2.5 concentrations in Korea and predicted 

source contribution surfaces using Bayesian spatial multivariate receptor modeling 

(BSMRM) based on multi-site PM2.5 speciation data. Secondary Nitrate, Secondary 

Sulfate, Motor vehicle emission, Industry, and Sea Salt were determined to be 

significant contributors to ambient PM2.5 concentrations in Korea. The source 

contributions predicted by BSMRM were also validated using the held-out data at a 

test site (using each of Ansan, Daejeon, and Gwangju, as a test site). Source 

contribution surface maps over the entire South Korea were also constructed. These 

predicted source contributions can greatly aid in developing effective PM2.5 control 

strategies in cities where no speciated PM2.5 monitoring stations are available. They 

can also be utilized as source-specific exposures in health effects studies even at the 

cities where no monitoring stations are available. 
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Chapter 6. Conclusions and future work 

6.1. Conclusions 

The sources and chemical constituents of PM2.5 pollution were thoroughly 

investigated. This study aimed to use source apportionment models and their 

spatiotemporal analysis for an effective PM2.5 management strategy. Detailed 

objectives and a summary of the results are described in each chapter. The 

conclusions of this thesis corresponding to each goal are as follows:  

(1) The sources of PM2.5 and their contributions in a medium-sized industrial 

city, Siheung, South Korea, were identified using positive matrix 

factorization modeling. Ten sources were secondary nitrate (24.3%), 

secondary sulfate (18.8%), traffic (18.8%), combustion for heating (12.6%), 

biomass burning (11.8%), coal combustion (3.6%), heavy oil industry 

(1.8%), smelting industry (4.0%), sea salt (2.7%), and soil (1.7%). Based 

on the source apportionment results, health risks by inhalation of PM2.5 

were assessed for each source using the concentration of toxic elements 

mentioned. The estimated cumulative carcinogenic health risks from coal 

combustion, heavy oil industry, and traffic sources exceeded the benchmark 

1E-06. Similarly, carcinogenic health risks from exposure to As and Cr 

exceeded 1E-05 and 1E-06, respectively, requiring a risk-reduction plan. 

The carcinogenic risk of PM2.5 in Siheung was similar to or lower than that 

of mega-cities in Northeast Asia. The non-carcinogenic risk was lower than 

the hazard index of 1, implying a low potential for adverse health effects. 

The probable locations of sources with relatively high carcinogenic risks 
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were tracked. It is noteworthy that the mass contribution and health risks of 

each source in PM2.5 were different. These results highlight the importance 

of PM2.5 management focusing on health risks. This type of research 

evaluating PM2.5 health risks from sources is rare in South Korea, and it is 

necessary to apply this method to other cities to evaluate their health risks 

from PM2.5. 

 

(2) The feature extraction capabilities of the four ML models to predict the 

chemical composition of PM2.5 were assessed by comparing the prediction 

accuracy depending on input variables, target constituents for prediction, 

available period, missing ratios of input data, and study sites. The 

concentrations of PM2.5, which are important and essential information for 

the identification of air pollution sources, were predicted at three sites 

(Seoul, Ulsan, and Baengnyeong) in South Korea between 2016 and 2018 

using four machine learning (ML) models: generative adversarial 

imputation network (GAIN), fully connected deep neural network 

(FCDNN), random forest (RF), and k-nearest neighbor (kNN). Three PM2.5 

constituent groups were targeted for prediction, including eight ions, two 

carbons, and 15 trace elements. The latest hyperparameter optimization 

techniques were used to learn air pollution characteristics from ambient 

PM2.5-related information, such as time, meteorology, and air pollutant 

concentrations. We compared the feature-extraction abilities of the four 

models. The prediction accuracy identified by the coefficient of 

determination (R2) between the prediction and observation was highest in 



 

２１６ 

GAIN, followed by FCDNN, RF, and kNN. Based on the availability of 

data on time, air pollutant concentrations, and meteorology, or all, 20% of 

the data of all PM2.5 constituent groups were predicted, with R2 = 0.897, 

0.861, 0.785, and 0.801 by the GAIN, FCDNN, RF, and kNN, respectively. 

As the missing ratios (20, 40, 60, and 80%) of the input data increased, the 

prediction accuracy decreased in the four models and was predominantly 

more noticeable in GAIN and kNN. As the available period of data 

increased, the prediction accuracy increased for the GAIN and FCDNN. 

Trace elements were predicted to have the lowest R2 among the target 

constituent groups in all the models. The study sites with more emission 

sources showed lower prediction accuracy, resulting in the highest R2 in 

Baengnyeong Island and the lowest in Ulsan. The missing values of PM2.5 

chemical constituents could be predicted successfully using machine 

learning models. 

 

(3) The source contributions for major sources of PM2.5 on a regional scale, 

including unmonitored sites, were predicted and validated using Bayesian 

spatial multivariate receptor modeling (BSMRM) as the first study. The 

spatial distributions of five PM2.5 sources in South Korea were estimated 

using BSMRM, which incorporates spatial correlation in data into 

modeling and estimation for spatial prediction of latent source contributions. 

Secondary nitrate, secondary sulfate, motor vehicle emissions, industry, and 

sea salt were identified as significant contributors to PM2.5 concentrations 

in South Korea. The distribution of the daily average contribution for each 



 

２１７ 

source in South Korea was derived from measurement data from the eight 

monitoring sites. The validity of the BSMRM results was also assessed 

based on the data from the test site (city), which were not used in model 

development and estimation as part of cross-validation. The results of the 

validation indicated that the use of the Bayesian spatial multivariate 

receptor model was appropriate, with high accuracy. In addition, the 

uncertainty of the source contributions was quantified, including 

unmonitored sites, which is not possible in other receptor models. The 

results of this study could be used to develop effective management 

strategies for PM2.5.  
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6.2. Future work 

Limitations or research needs for each chapter are suggested as future works.  

(1) In Chapter 3, the health risks are evaluated only for PM2.5 constituents 

toxicity data available (such as heavy metals). Therefore, the toxicity of 

some species, such as organic carbon and ionic constituents, was not 

considered. If the toxicity values of other constituents are reflected, the 

health effect of PM2.5 will be estimated to be larger. This indicates that the 

health effects of PM2.5 could be treated more seriously. Further studies that 

include other constituents are required. 

(2) In Chapter 4, the increased usability of the missing-value corrected data 

using the methodology of this study was not evaluated. Missing-value 

corrected data can help improve the reliability of receptor models for source 

apportionment, such as PMF and Bayesian multivariate receptor models. 

Further research is needed to investigate the reliability of missing-value 

corrected data using machine learning models in source apportionment 

research.  

(3) In Chapter 5, the predicted source contribution surface is assumed to be 

smoother than the true surface because of the sparsity of the monitoring 

sites (limitation of the data). As the number of available monitoring sites 

increases, the spatial prediction of local peaks improves. The number of 

sources that can be predicted also increased. Further research is required to 

increase the number of measurement sites and the period of data collection. 
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국문 초록(Abstract in Korean) 

 

직경 2.5 µm 이하의 입자상 물질인 초미세먼지는 대기중에 

존재하며, 건강에 미치는 악영향으로 인해 수십 년 동안 세계적으로 

관심의 대상이 되고 있는 대기오염물질이다. 초미세먼지를 효과적으로 

관리하기 위해서는 다양한 시간과 공간에 대해 초미세먼지의 오염원 

유형을 파악하고, 각 유형별 기여도를 정량화하는 것이 중요하다. 

따라서, 초미세먼지의 오염원 추정은 핵심 과제로 다뤄져 왔으며, 

통계학적 방법론을 적용해 오염원을 추정하는 수용모델이 많이 활용되고 

있다.  

본 연구에서는 초미세먼지의 세부 특성을 파악하기 위해 오염원 

추정과 추정된 오염원의 시공간 분석을 수행하였으며, 이를 통해 

효과적인 초미세먼지 관리 방안 마련에 중요한 정보를 제공하는 것을 

목적으로 하였다. 오염원 유형 추정 연구를 위해, 두 가지 모델링이 

수행되었다. 첫번째는 양행렬 인자 분석(Positive matrix factorization, 

PMF) 모델링으로, 이는 한 장소에서 초미세먼지의 오염원 유형을 

구체적으로 추정하기 위해 활용되었다. 두번째는 베이지안 다변량 수용 

모델링(Bayesian spatial multivariate receptor modelingm, 

BSMRM)으로, 이는 다수의 측정 지점으로부터 넓은 범위의 면적에 

대해 주요 오염원 유형을 추정하기 위해 활용되었다. 또한, 기계학습 

모델들을 활용하여 초미세먼지 오염원 유형 추정에 가장 중요한 자료로 
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활용되는 초미세먼지 화학성분 농도를 예측하였다. 기계학습 모델을 

초미세먼지 화학성분 자료에 대해 활용가능한지를 검토하였고, 이를 

통해 초미세먼지 화학성분 자료의 무결성을 향상시키고자 하였다. 

PMF 모델링을 통해, 대한민국 시흥시의 초미세먼지 오염원 

유형 10가지를 도출하였다. 이는 각각 2차 생성 질산염(24.3%), 2차 

생성 황산염(18.8%), 이동 오염원(18.8%), 난방연소(12.6%), 생물체 

연소(11.8%), 석탄 연소(3.6%), 중유 관련 산업 오염원(1.8%), 제련 

관련 산업 오염원(4.0%), 해염 입자(2.7%), 토양(1.7%)였다. 도출된 

오염원 유형별로, 초미세먼지 호흡에 따른 건강 영향을 평가하였다. 

석탄 연소, 중유 관련 산업 오염원, 이동 오염원의 초미세먼지 기여도는 

낮았지만, 이로 인한 발암 위해도는 10E-6 이상으로 나타났다. 따라서, 

초미세먼지의 질량농도 감축 중심의 대응만이 아닌, 오염원별 건강영향 

중심의 대응이 요구된다.  

기계학습 모델의 초미세먼지 화학성분 예측 능력을 평가하기 

위해 4가지 기계학습 모델에 대해 입력 자료 수준, 예측 대상 성분, 

입력 자료 기간, 입력 자료의 결측 비율, 자료 대상 지역을 변화하며 

예측 정확도를 비교 평가하였다. GAIN(Generative Adversarial 

Imputation Network), FCDNN(Fully Connected Deep Neural 

Network), Random forest(RF), kNN(k-nearest neighboring) 모델의 

4가지 기계학습 모델을 한국의 3개 지역(서울, 울산, 백령)의 

2016년부터 2018년까지의 초미세먼지 화학 성분 자료에 대해 적용하여 
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농도를 예측하였다. 예측값과 관측값 사이의 결정계수를 통해 정확도를 

비교한 결과, 예측 정확도는 GAIN이 가장 높았고, FCDNN, RF 또는 

kNN 순서로 나타났다. 입력 자료의 결측률이 20%에서 80%까지 

증가함에 따라 예측 정확도는 모든 모델에서 감소하였으나, 비지도 

기계학습 모델인 GAIN과 kNN에서 감소 폭이 더 크게 나타났다. 입력 

자료의 기간이 길어질수록, 딥러닝 모델인 GAIN과 FCDNN이 다른 두 

모델인 RF와 kNN보다 예측 정확도 증가 폭이 더 컸다. 예측 대상 

지역별로는, 자체 배출원이 많은 울산의 경우가 예측 정확도가 가장 

낮게 나타났고, 자체 배출원의 영향이 거의 없는 백령도의 경우 예측 

정확도가 가장 높게 나타났다. 대상 성분별로는 이온 성분이 예측 

정확도가 높게 나타났고, 미량원소 성분은 예측 정확도가 낮았다. 본 

연구는 기계학습 모델의 예측 정확도를 다양한 실험 조건에 따라 

평가하여 대기오염 분야에서의 기계학습 모델의 적용 가능성을 평가했다. 

베이지안 다변량 수용 모델링(BSMRM)을 통해서는 8개의 관측 

지점 자료를 통해 우리나라의 주요 초미세먼지 오염원 5가지를 

도출하고, 각각 오염원 유형별 기여도를 우리나라 전체에 대한 공간 

분포를 추정하였다. 5가지 오염원은 각각 2차 질산염, 2차 황산염, 

자동차 배출, 산업 오염원, 해염 입자였다. 각 오염원 유형별 일평균 

기여도 농도를 지도에 공간적으로 표현할 수 있었다. 또한, BSMRM을 

통해 예측한 오염원 유형별 기여도의 타당성 검토를 위해 테스트 

사이트(안산, 대전, 광주)의 자료는 각각 제외된 모델링을 수행하여 
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결과를 서로 비교하여 모델의 정확도를 확인하였다. 이처럼 공간적으로 

추정된 오염원 유형 기여도는 초미세먼지 화학성분을 측정하지 않는 

도시에서 초미세먼지 대응 방안을 수립하는데 큰 도움이 될 수 있다. 즉, 

8개의 측정 자료만으로 우리나라 전체에 대해 예측한 결과를 통해, 측정 

지점이 없는 모든 도시에 대해 추정이 가능하였으며, 이 결과는 건강 

영향 평가와 같은 추가 연구에도 활용될 수 있다. 

 

주요어 : 초미세먼지; 오염원 추정; 양행렬 인자분석; 기계학습 모델링; 

초미세먼지 화학성분; 베이지안 수용모델 
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