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ABSTRACT 

 

Towards Predictive Bridge Maintenance:  

Element Condition, Damage Size, and  

Repair Cost Estimation 

 

Taeyeon Chang 

 

Department of Civil and Environmental Engineering 

The Graduate School of Seoul National University 

 

To maintain bridges in an appropriate condition, bridge managers in 

many countries periodically inspect the condition and damage on bridge 

elements and establish a proper maintenance plan (e.g., repair or 

rehabilitation) and annual repair works with a limited budget. In this process, 

it is essential to detect the repair-required damage size on each element as the 

construction cost calculation method is defined as the product of the quantity 

and unit cost. Bridge maintenance practices, however, have difficulty in 

identifying repair-required damage size on bridge elements at a future time 

when maintenance is to be performed and estimating repair costs based on the 

expected damage size. This is because condition and damage on bridge 
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elements have a divergent phase over time since bridges have different 

characteristics, such as age, identification, and inspection history. Therefore, 

it is necessary to provide managers with three types of predictive information 

at a future time: where to undertake repair; how much repair-required damage 

there will be; and what the repair cost will be. It enables predictive bridge 

maintenance to maintain proper bridge condition by responding to future 

maintenance demands in advance. To do this, researchers have conducted 

data-driven studies using the bridge management system (BMS) data to 

estimate the future condition of bridge elements, identify the occurrence and 

severity of damage on each element, and analyze the future bridge repair costs 

at once. Despite the existing efforts, there are difficulties in anticipating the 

repair-required damage size and estimating the exact repair cost based on it; 

that is, it is still challenging to concretely determine the three types of 

predictive information. 

 

Therefore, the primary objective of this research presented in this 

dissertation is to provide bridge managers with predictive maintenance 

information based on element condition, damage size, and repair cost 

estimation. To accomplish this objective, first, an optimized model is 

developed to estimate the element condition based on the outstanding 

algorithm and the influential variables using bridge information, 

environmental information, and inspection records. Second, to estimate the 

repair-required damage size on bridge elements, this study develops and 

compares the regression and classification models using bridge information, 

environmental information, and inspection records, including damage details. 

Last, this study proposed the estimation method of repair costs for the 

expected damage according to damage size and unit cost by repair method 

using bridge information, environmental information, inspection records, and 

repair records.   

 

To validate the proposed methodology, the author implemented the 

experiment to conduct performance verification and demonstrate the 

superiority in providing predictive maintenance information by comparing 

with existing approaches. The results showed that the proposed methodology 
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could provide three types of information about predictive maintenance and 

estimate bridge repair costs more specifically and accurately in line with the 

construction cost calculation method. The predictive information can be used 

as a basis for bridge managers to prepare details and costs for repair works 

and establish a reasonable repair plan, including repair methods, priorities, 

and budgets. 

 

In conclusion, this dissertation proposed the research methodology to 

enable predictive bridge maintenance based on element condition, damage 

size, and repair cost estimation. In particular, this research determined three 

specific types of information about predictive bridge maintenance based on 

the practical calculation method of repair costs. The author also scrutinized 

BMS data and determined data-driven approaches (e.g., an optimal algorithm 

and combination of variables) that fit the data to derive three specific types of 

information. To the best of the author’s knowledge, this is a pioneering 

attempt to estimate specific damage size on bridge elements and identify 

future repair costs based on the estimated damage size and unit cost by repair 

method for predictive maintenance in the bridge management field. The 

developed methodology can assist in maintaining proper bridge condition by 

responding to future elements’ damage and repair costs in advance. In 

addition, bridge managers can obtain a reasonable range for damage size and 

repair costs that may occur on elements in the future. It can help restrict 

unnecessary repair activities or exorbitantly high repair costs in bridge 

maintenance practices. Eventually, this research contributes to reducing 

bridge life-cycle costs and making society safer by preventing bridge safety 

accidents. 

 

 

Keyword: Urban infrastructure management; Predictive maintenance; 

Bridge management system (BMS); Condition estimation; Bridge damage 

size; Bridge repair cost; Unit cost by repair method; Data-driven approaches 

 

 

Student Number: 2017-27720 
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Chapter 1. Introduction 

 

1.1. Research Background 

Ensuring urban infrastructures are in reasonable condition is 

fundamental for public safety and the economy. In the case of bridges, 

damage and maintenance delays worldwide have caused catastrophic safety 

accidents, such as the Mississippi River Bridge collapse in 2007, which 

caused over 100 casualties (National Transportation Safety Board 2008). 

Bridge deterioration due to damage is also prone to progress more rapidly 

over time (Alsharqawi et al. 2018). For this reason, it is vital to maintain 

bridges in an appropriate condition through timely maintenance (Bu et al. 

2015; Ellingwood 2010). To do this, bridge maintenance practices in many 

countries, including the United States and South Korea, take reactive 

maintenance strategies. Bridge managers inspect the condition and damage 

on bridge elements periodically and establish a proper maintenance plan (e.g., 

repair or rehabilitation) and annual repair works with a limited budget. Here, 

inspection and maintenance records are accumulated along with bridge 

information (e.g., age, location, structure type) in the bridge management 

system (BMS) database. Using BMS data can support managers in making 
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systematic maintenance decisions based on bridge information, inspection 

records, and maintenance history (Chang and Chi 2019; Morcous et al. 2002). 

In particular, to plan repair works performed annually, it is essential to 

detect the repair-required damage size on each element as the construction 

cost calculation method is essentially defined as the product of the quantity 

and unit cost (Gordian 2022; Ministry of Land, Infrastructure and Transport 

[MOLIT] 2022a). Managers in the United States explore appropriate repair 

methods in response to the type and size of the inspected damage through an 

in-depth field inspection and annually allocate repair costs considering the 

unit cost of each repair method (American Association of State Highway and 

Transportation Officials [AASHTO] 2021; Federal Highway Administration 

[FHWA] 2018). South Korean practice also plans repair works and estimates 

repair costs in the same way by changing the collection method of the 

inspection records in the BMS database. In other words, the type, size, and 

expected repair method of the inspected damage and unit cost by the repair 

method on each element are collected instead of an emphasis on the location 

and severity of the damage (MOLIT 2019).  

However, these practices have difficulty in identifying repair-required 

damage size on bridge elements at a future time when maintenance is to be 

performed and estimating repair costs based on the expected damage size. 
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This is because condition and damage on bridge elements have a divergent 

phase over time since bridges have different characteristics, such as age, 

identification, and inspection history (e.g., the latest inspection record). Take, 

for instance, the case where a bridge manager does not consider deck repair 

for two bridges (i.e., a bridge inspected three years ago and a bridge inspected 

one year ago) in the following year because the two decks had no damage 

according to the latest inspection record. In the following year, however, one 

of the bridges (i.e., the bridge inspected three years ago) suffered severe 

damage despite its latest inspection record. In this case, the manager would 

not have planned timely repair for the deck. Therefore, it is necessary to 

provide managers with three types of predictive information at a future time 

when the maintenance is to be performed: 1) where to undertake repair; 2) 

how much repair-required damage there will be; and 3) what the repair cost 

will be. It enables predictive bridge maintenance which is a decision-making 

strategy for maintenance plans and actions considering the forecasted future 

condition to maintain proper bridge condition by responding to future 

maintenance demands in advance (Hadjidemetriou et al. 2021). 

To provide managers with information about predictive maintenance, 

researchers have conducted data-driven studies using BMS data. First, many 

researchers have developed models to estimate the future condition or 
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deterioration of bridge elements over time, such as condition rating 7 of the 

deck after three years (Bektas et al. 2013; Bolukbasi et al. 2004; Kim and 

Yoon 2010; Liu and Zhang 2020; Morcous 2005; Shan et al. 2016). In practice, 

BMS tried to estimate future repair costs by applying the average repair cost 

by element condition to the estimation result of the developed model. 

Although these practical efforts can provide repair-required elements and 

approximate repair costs by element, they have a limitation in accurately 

estimating repair costs based on the repair-required damage size. Second, at 

the damage level, BMS data-driven studies have been conducted to estimate 

the type, location, and severity of damage on each element, for example, two 

crackings in condition grade ‘C’ on the center of the deck (Chang and Chi 

2019; Lim 2019; Lim and Chi 2021). Nevertheless, it is difficult to provide 

information on repair costs based only on the occurrence and severity of 

damage because the size and applied repair method are different for each 

instance of damage. Last, attempts have been made to estimate maintenance 

costs, including repair costs, based on bridge condition changes or 

environmental effects (Ghahari et al. 2019; Ghodoosi et al. 2017; Shi et al. 

2019). However, it was difficult for these attempts to provide concrete 

information about which element to undertake repair on and how much repair-
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required damage there would be. Table 1.1 summarizes the predictive 

information that the three existing approaches can provide. 

 

Table 1.1 Summary of information provided by existing approaches 

Category of predictive 

information 

Existing approach 

Element 

condition 

estimation 

Damage 

identification 

Repair cost 

estimation 

Where to undertake repair * *  

How much repair-required 

damage there will be 

   

What the repair cost will be **  * 

Note: (*) indicates the approach provides the information; and (**) indicates the 

approach provides approximate information based on the average repair costs by 

element condition in practice. 
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1.2. Problem Statement 

For predictive bridge maintenance, it is necessary to detect how much 

damage will need to be repaired on each bridge element at a future time 

according to the construction cost calculation method, which is defined as the 

product of the quantity and unit cost. Repair cost can then be estimated based 

on the expected damage size and unit cost by repair method. To provide bridge 

managers with information about predictive maintenance, many researchers 

have attempted to estimate the future condition or deterioration of bridge 

elements (e.g., condition rating 7 of the deck after three years), to identify the 

occurrence, location, and severity of bridge damage (e.g., two crackings in 

condition grade ‘C’ on the center of the deck), and to estimate the future 

bridge repair costs at once by using BMS data. Despite promising results in 

the existing studies, they share difficulties in anticipating the repair-required 

damage size and estimating the exact repair cost based on it. That is, it is still 

challenging to concretely determine for predictive bridge maintenance: 1) 

where to undertake repair; 2) how much repair-required damage there will be; 

and 3) what the repair cost will be. 
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1.3. Research Objectives and Scope 

This dissertation aims to provide bridge managers with predictive 

maintenance information based on element condition, damage size, and repair 

cost estimation. Three specific objectives were established to address the 

three challenges presented above. The overall research framework is 

illustrated in Figure 1.1. 

 

Objective 1: To estimate the bridge elements’ condition based on 

outstanding algorithm selection and influential variables identification by 

using bridge information, environmental information, and inspection records 

to provide information on where to undertake repair. 

 

Objective 2: To estimate the repair-required damage size on bridge 

elements through a comparison of the regression model and the classification 

model by using bridge information, environmental information, and 

inspection records to provide information on how much repair-required 

damage there will be. 

 

Objective 3: To estimate bridge repair costs for the expected damage 

according to damage size and unit cost by repair method by using bridge 
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information, environmental information, inspection records, and repair 

records to provide information on what the repair cost will be.  

 

 

Figure 1.1 Research Framework 

 

This dissertation focused on concrete-girder bridges with pre-stressed 

concrete (PSC) girders or reinforced concrete (RC) girders as the main 

superstructure types because concrete-girder bridges made up the largest 

proportion (47.4%) among the bridges managed by the Korean Bridge 

Management System (KOBMS) in 2021, compared to other main structure 

types, such as ramen bridges (24.4%) and steel bridges (21.0%). Among the 



9 

 

major bridge elements, the author also focused on the deck, which directly 

supports the load on the bridge and is also known as a structural element that 

shows the fastest deterioration (Huang 2010; Lim and Chi 2019; Morcous et 

al. 2002). Because of this, the deck plays the most crucial role in bridge safety 

and serviceability. Deck repair costs in the KOBMS accounted for the highest 

proportion (55.0%) of repair costs for structural elements of concrete-girder 

bridges from November 2012 to December 2021. 
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1.4. Dissertation Outline 

This dissertation consists of seven chapters. The details of each chapter 

are presented below. 

 

Chapter 1. Introduction: This chapter introduces the research 

background, problem statement, research challenges, objectives, framework, 

and scope. 

 

Chapter 2. Literature Review: This chapter provides information 

about bridge maintenance practice and BMS. Existing approaches and 

practical efforts using BMS data are also reviewed for predictive bridge 

maintenance related to the research challenges.  

 

Chapter 3. Bridge Element Condition Estimation: This chapter 

presents a research process to develop an optimized model to estimate bridge 

elements’ condition using BMS data. A deck condition estimation model is 

developed, and the results of this chapter are discussed in terms of outstanding 

algorithm selection, influential variable identification, model evaluation, and 

model validation.  
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Chapter 4. Bridge Damage Size Estimation: This chapter presents a 

research process to estimate repair-required damage size on bridge elements 

using BMS data. The regression and classification models are developed and 

compared in terms of strength, weakness, and performance. The final 

estimation model is then selected based on the model performance. 

 

Chapter 5. Bridge Repair Cost Estimation: This chapter presents a 

research process to estimate bridge repair cost according to damage size and 

unit cost by repair method using BMS data. The author conducts data 

exploration and develops a damage portion estimation model by each damage 

type to estimate damage size by repair method. The unit cost is also identified 

based on the influential variable’s similarity by repair method.  

 

Chapter 6. Experimental Results and Discussions: In this chapter, 

experiments are implemented to conduct performance verification and 

validate the superiority of the proposed methodology for predictive bridge 

maintenance by comparison with existing approaches. The practical 

applications and contributions of this study are discussed through the 

experimental results and discussions.  
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Chapter 7. Conclusions: This chapter summarizes and discusses the 

objectives, achievements, findings, and contributions of this research. 

Recommendations for future research are also provided. 
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Chapter 2. Literature Review 

 

This chapter introduces bridge maintenance practices in which research 

challenges are identified. Also, an overview of a bridge management system 

(BMS) is described, including specific information on BMS data with 

examples for South Korea and the United States. This chapter then reviews 

existing studies for predictive bridge maintenance using BMS data related to 

the research challenges and provides the limitation of the previous studies. 

 

2.1. Bridge Maintenance Practice 

Bridge maintenance to preserve bridges in the appropriate condition is 

performed according to inspection, plan, and action. Bridge maintenance 

practices in many countries, including the United States and South Korea, 

commonly take reactive maintenance strategies. The maintenance process 

includes inspecting repair-required condition and damage on bridge elements 

and establishing a proper repair plan (e.g., repair size, method, cost, and time) 

within a limited budget based on the inspected information (Bu et al. 2015; 

Chang and Chi 2019; Ellingwood 2010; Morcous et al. 2002). Specifically, 

the details and costs of repair works are established in line with the 

construction cost calculation method. The method is essentially defined as the 
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product of quantity and unit cost (Gordian 2022; MOLIT 2022a), as 

represented in Equation 2.1. 

 

𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 = (𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦) × (𝑈𝑛𝑖𝑡 𝑐𝑜𝑠𝑡) × (𝑈𝑛𝑖𝑡)   (2.1) 

 

It is thus essential to detect the repair-required damage size on each 

element and unit repair cost to plan and estimate repair works performed. In 

this aspect, the bridge maintenance practices 1) inspect and diagnose the 

condition and damage on each element (e.g., deck, girder, abutment/pier) 

through an periodic in-depth field inspection, 2) explore proper repair 

methods in response to the type and size of the inspected damage, and 3) 

annually allocate repair costs considering the unit cost of each repair method. 

Specific practices in South Korea and the United States are as follows. 

In South Korea, bridge managers conduct an in-depth inspection 

periodically for each bridge every two to six years depending on the condition 

grades of bridges, according to the Special Act on the Safety Control and 

Maintenance of Establishments by Ministry of Land, Infrastructure, and 

Transport (MOLIT). Certified inspectors survey repair-required damage size, 

investigate the expected repair methods for each damage, and synthetically 

diagnose the condition grade of the element. Every year, Korean managers 
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also identify repair-required elements’ condition (e.g., decks with condition 

grade ‘C’ or ‘D’) and repair-required damage size (e.g., 2.1𝑚2 cracking in a 

deck) by examining the latest inspection history from the KOBMS database 

(MOLIT 2021). Managers then estimate the repair cost for each repair-

required element by applying the repair-required damage size to the unit cost 

for each expected repair method (Korea Institute of Civil Engineering and 

Building Technology [KICT] 2022b). To estimate the repair cost, the KOBMS 

recently changed its inspection record collection method to record the type, 

size, expected repair method, and unit cost by repair method instead of the 

location or severity of damage. Figure 2.1 describes the concept and example 

of bridge repair cost estimation in Korean practice. 
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Figure 2.1 Concept of bridge repair cost calculation in practice 

 

Practice in the United States is similar to that in South Korea. An in-

depth inspection is periodically performed within two years, according to the 

National Bridge Inspection Standards by Federal Highway Administration 

(FHWA). At the element level, the condition states are assessed based on the 

type, size, and severity of damage (i.e., defect) (AASHTO 2010). The 

appropriate repair methods (i.e., activities) are then taken in response to the 

type and severity of the inspected damage. Repair costs are estimated, 

considering which repair method will be performed and the unit cost of the 

repair method (AASHTO 2021; FHWA 2018). 
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However, these practices have difficulty in identifying repair-required 

damage size on bridge elements at a future time when maintenance is to be 

performed and estimating repair costs based on the expected damage size. 

Since bridges have different characteristics, such as age, identification, and 

inspection history (e.g., the latest inspection record), the latest inspection 

record, which is the basis for bridge maintenance process in practice, may not 

be consistent with the elements’ condition and damage at a future point in 

time. For this reason, it is still problematic to identify repair-required damage 

size on bridge elements at a future time and estimate the repair costs based on 

the expected damage. Thus, it is necessary to provide managers with three 

types of predictive information at a future time when the maintenance is to be 

performed: 1) where to undertake repair; 2) how much repair-required 

damage there will be; and 3) what the repair cost will be. It enables predictive 

bridge maintenance which is a decision-making strategy for maintenance 

plans and actions considering the forecasted future condition to maintain 

proper bridge condition by responding to future maintenance demands in 

advance (Hadjidemetriou et al. 2021)..  
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2.2. Bridge Management System (BMS) 

A bridge management system (BMS) is a systematic and computerized 

approach to managing a network of bridges (Scherer and Glagola 1994; Zhao 

and Tonias 2013). Many countries, including South Korea and the United 

States, have established BMS to make strategic and cost-efficient 

maintenance plans within a given budget (Gralund and Puckett 1996; 

Morcous 2005). For that purpose, the BMSs generally 1) accumulate bridge 

information, periodic inspection records, and maintenance records into a 

database, 2) analyze and predict the deterioration and degradation of the 

bridge condition, and 3) optimize bridge maintenance decisions (Chang and 

Chi 2019; MOLIT 2019; Morcous et al. 2002). 

Using the data accumulated in the BMS databases supports bridge 

managers in making systematic maintenance decisions. The data accumulated 

in the BMS database generally contain basic inventory information, 

inspection information, and intervention information based on the report 

investigating 35 BMSs (Mizaei et al. 2014). Basic inventory information 

includes general information on a bridge (e.g., location and management 

agency) and structural information (e.g., material and structural type for each 

bridge element). Inspection information is collected from periodic inspection 

records at the level of entire bridge, main component, element, and damage 
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(e.g., inspection date, inspection type, and inspection results for each level). 

Intervention information is collected from maintenance and preservation 

records. They include repair period, methods, and cost information. 

In South Korea, since 1995, the Korean Bridge Management System 

(KOBMS), which is operated by the Korea Institute of Civil Engineering and 

Building Technology (KICT), was developed to accumulate data concerning 

bridge information (i.e., general and structural information) and bridge 

inspection records and to establish maintenance strategies using the data. As 

of 2021, the KOBMS had managed and updated data of more than 9,000 

bridges located in the Provinces of South Korea (except Seoul) that were built 

from 1962 to 2021. The data contain basic inventory information, including 

general information (e.g., bridge class, location, and length) and structural 

information (e.g., element structure type and material for each span or 

support). The inspection records of the KOBMS include information 

collected from bridge element-level in-depth inspections that have been 

performed periodically since 1994. The inspection information mainly 

consists of the inspection date, bridge elements’ condition, type and size of 

repair-required damage, and the expected repair methods for each damage, as 

illustrated in Figure 2.1. Particularly, the bridge condition at the element level 

is graded into five categories ranging from ‘A’ (best condition) to ‘E’ (worst 
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condition), comprehensively reflecting the inspection results in terms of 

visual damage, structural integrity, and safety of the bridge. Among the five 

grades, ‘C,’ ‘D,’ and ‘E’ indicate damaged condition that has to be repaired. 

In addition, repair records of the KOBMS include information collected from 

bridge repair constructions that have been performed after 2012. The repair 

information (as known as intervention information) contains repair 

construction start/end date, method, size, and cost.  

In the United States, the National Bridge Inventory (NBI), which is a 

representative BMS database, has accumulated data of more than 600,000 

bridges with 116 items of information collected in accordance with the 

National Bridge Inspection Standards by FHWA (Bolukbasi et al. 2004; 

Jootoo and Lattanzi 2017). According to the Recording and Coding Guide for 

the Structure Inventory and Appraisal of the Nation’s Bridges by FHWA 

(1995), the accumulated data include basic inventory information, inspection 

information, and intervention information. Basic inventory information 

contains general information (e.g., bridge length and the number of spans) 

and structural information (e.g., design load and structure type). Inspection 

information includes inspection date, condition ratings at the major 

component level (e.g., deck, superstructure, and substructure), and proposed 

type of maintenance work. The condition ratings of major components are 
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assigned on the 10 scales ranging from 0 (worst condition) to 9 (best 

condition), as provided in NBI Item No. 58-62. In addition, condition and 

damage (i.e., defect) at the element level are inspected and collected as 

inspection information by AASHTO (1997). Intervention information also 

contains date and cost related to repair, improvement, and reconstruction that 

were taken in response to the type and severity of the inspected damage 

(AASHTO 2021; FHWA 2018).  

 



22 

 

2.3. Existing Studies for Predictive Bridge Maintenance 

Predictive bridge maintenance is a decision-making strategy for 

maintenance plans and actions considering the forecasted bridge condition 

(Hadjidemetriou et al. 2021). As a large amount of data in a BMS database 

have been accumulated and updated, many researchers have conducted data-

driven studies using BMS data to support predictive bridge maintenance for 

managers. A data-driven approach makes knowledge or decisions based on 

data instead of intuition. These studies can be categorized into three groups: 

element condition estimation, damage identification, and maintenance cost 

estimation. The detailed reviews and limitations of the three groups are as 

follows. 

 

2.3.1. Element Condition Estimation 

The researchers have tried to estimate the future condition of bridge 

elements by utilizing diverse algorithms and identifying influential factors 

that affect the bridge element’s condition. The algorithms applied in existing 

studies can be grouped into deterministic, stochastic, and artificial 

intelligence (AI) algorithms (Morcous et al. 2002). First, deterministic 

algorithms, represented by regression methods, have been commonly applied 

to predict the deterioration rate of elements over time by defining the 
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relationships between the bridge condition and selected variables, including 

the bridge age (Bolukbasi et al. 2004). Kim and Yoon (2010) conducted a 

regression analysis to derive the deterioration rate of bridge deck, in which 

the condition rating of the deck ranged from 0 (poor) to 9 (good), and to 

explore critical variables influencing bridge decks’ deterioration in cold 

regions using the NBI database. Shan et al. (2016) also applied logistic 

regression to estimate the probability of deterioration of bridge superstructure 

based on bridge information (i.e., age, design load, and structure length) using 

the 2013 NBI database. Second, stochastic algorithms are represented by 

Markovian chains, which are used in the Pontis BMS in the United States. 

Previous studies estimated the probability of future condition transitions 

based on the current condition at the levels of the major structures (e.g., deck, 

superstructure, and substructure) (Agrawal et al. 2021; Cesare et al. 1993; 

Morcous 2006; Scherer and Glagola 1994). 

Last, many studies have recently used AI algorithms, which include 

tree-based algorithms and neural network algorithms. By utilizing the 

decision tree, which is one of the common tree-based algorithms, for instance, 

elements’ condition can be estimated according to the classification rules 

generated from input variables such as general and structural bridge 

information and inspection history (Bektas et al. 2013). Morcous (2005) 



24 

 

developed a decision tree model for estimating the future condition of 

concrete bridge decks based on the data from Quebec, Canada. Various types 

of neural network algorithms have also been widely investigated. Huang 

(2010) developed an artificial neural network (ANN)-based model to estimate 

future deck condition states, which were divided into five labels from 

acceptable to very severe, in the Wisconsin BMS database; a deep neural 

network (DNN) with multiple hidden layers was adopted to the NBI data for 

Missouri bridges for predicting the deterioration of deck, superstructure, and 

substructure (Ali et al. 2020). Liu and Zhang (2020) utilized a convolution 

neural network (CNN) to classify the condition grades of major components 

for the immediate next inspection by using the historical data (from 1992 to 

2017) for Maryland and Delaware highway bridges sourced from the NBI 

database. 

Meanwhile, the BMS tried to estimate future repair costs by applying 

the average repair cost by element condition to the result of the element 

condition estimation model. In South Korean practice, the average repair cost 

for each condition grade of element is determined based on historical 

inspection and repair records from the KOBMS database. For instance, Table 

2.1 shows the average and median of repair costs by deck condition grades as 

of June 2021, which is extracted from KICT (2021). Bridge managers 
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estimate the repair cost for each element by using the average repair cost 

according to the expected condition grade. 

 

Table 2.1 Example of repair costs by deck condition grades  

Condition grade  

of deck 
Repair cost as of June 2021 (1,000won/m2) 

Average Median 

A 3.18 0.20 

B 5.87 0.74 

C 14.45 3.95 

D 59.94 35.04 

E 68.33 49.46 

 

2.3.2. Damage Identification 

Previous studies have estimated bridge condition at the damage level 

by utilizing the algorithms. Zhao and Chen (2002) estimated the occurrence 

of cracking and spalling on superstructures and substructures to support a 

BMS to diagnose the deterioration of concrete bridges. They utilized a 

probabilistic neural network based on Singapore bridge data. Chang and Chi 

(2019) developed the estimation model on the occurrence of representative 

damage types to five elements (i.e., deck, girder, cross beam expansion joint, 

and pavement) by using logistic regression based on the KOBMS data. The 

damage types included dirt deposition of an expansion joint, crazing crack of 

a deck, and steel deformation of a girder.  
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Lim and Chi (2019) also tried to apply the extreme gradient boost 

(XGBoost), which is a representative tree-based boosting algorithm, to the 

KOBMS data to estimate the occurrence of damage on decks. Lim (2019) 

further developed the AI-based model and system to provide bridge 

inspectors with the expected type, location, grade, and severity of the damage 

at the individual bridge and region level. The DNN-based model was also 

developed to predict the number of damage by condition grade for seven types 

of damage on the deck (e.g., two crackings in condition grade ‘C’ on deck) 

by using the environmental information (Lim and Chi 2021). 

 

2.3.3. Maintenance Cost Estimation 

The researchers have analyzed bridge data with a focus on bridge 

maintenance costs, including repair costs and rehabilitation costs. Previous 

studies have conventionally attempted to suggest bridge maintenance 

optimization and the expected costs by analyzing the effects of maintenance 

activities on the condition of bridge structures in the perspective of the life-

cycle (construction, inspection, maintenance, and failure) of deteriorated 

structures (Frangopol and Kong 2000; Ghodoosi et al. 2017; Kong and 

Frangopol 2003; Liu and Frangopol 2005). For instance, Ghodoosi et al. 

(2017) tried to provide the most cost-effective optimal maintenance scenario 
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in the long term by predicting the deterioration of the superstructure over time 

and analyzing the effect of each maintenance activity based on the asset 

inventory along with the maintenance actions list in Canada.  

Some researchers have also conducted studies to estimate the 

maintenance costs by considering various factors, including changes in the 

bridge condition. Gong and Frangopol (2020) calculated the optimal solution 

of the utility function to derive the optimal bridge maintenance cost according 

to factors such as maintenance criteria, external traffic loads, and structural 

resistance of bridge elements by calculating the optimal solution of the utility 

function. Ghahari et al. (2019) identified factors influencing bridge repair cost 

(e.g., traffic loading, annual temperature, and condition ratings of 

superstructure and substructure) and estimated expected annual repair cost. 

They used annual repair cost expenditure data sourced from the FHWA’s 

Office of Highway Policy Information and bridge inspection data from the 

NBI database. Bridge routine maintenance cost was also predicted based on 

multiple linear regression. The repair cost prediction model utilized traffic 

factors, bridge age, regional factors, and bridge scale factors (e.g., the length, 

width, and area of bridge) as independent variables (Shi et al. 2019). 
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2.3.4. Limitations of Existing Studies  

The previous research showed the potential benefits of data-driven 

approaches using BMS data for estimating the future condition of bridge 

elements, damage occurrence and severity on elements, and maintenance 

costs. Nevertheless, existing studies had limitations in providing managers 

with three types of predictive information about a future time when 

maintenance will be performed: where to undertake repair (i.e., which 

element to undertake repair on); how much repair-required damage there will 

be; and what the repair cost will be. 

First, many studies have shown promising results in estimating the 

future condition of bridge elements by utilizing diverse algorithms and 

identifying influential factors that affect the bridge element’s condition. 

Furthermore, the practical efforts can provide repair-required elements and 

approximate repair costs by element. However, they are limited in being able 

to accurately estimate repair costs based on the repair-required damage size. 

At the damage level, second, previous researchers conducted data-driven 

studies to estimate the occurrence and severity of the damage; but they could 

not offer information on repair costs because the size and applied repair 

method are different for each instance of damage. Last, the previous studies 

tried to estimate the maintenance costs, including repair costs, based on the 
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bridge condition changes and environmental effects. However, it was difficult 

to derive concrete information about which element to undertake repair on 

and how much repair-required damage there would be. 

Consequently, although it is necessary to detect how much damage will 

need to be repaired on each element at a future time according to the 

construction cost calculation method, the existing studies have limitations in 

anticipating the repair-required damage size and estimating the exact repair 

cost based on it for predictive bridge maintenance; that is, it is still 

challenging to determine 1) where to undertake repair, 2) how much repair-

required damage there will be, and 3) what the repair cost will be, at a future 

point in time. To address these research challenges, this research provides 

bridge managers with predictive maintenance information based on element 

condition, damage size, and repair cost estimation using BMS data. 
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Chapter 3. Bridge Element Condition Estimation 

 

This chapter provides a research process for bridge element condition 

estimation. As described in Section 2.3.1 “Element Condition Estimation,” 

considerable attempts have shown potential benefits for developing condition 

estimation models for bridge elements based on the BMS data. However, 

existing studies had a limitation that the developed models only focused on 

the BMS data used in each research. It makes it difficult to deal with the BMS 

data that continuously become heterogeneous and complex by period or 

country. For this reason, it is still problematic to construct a robust and 

generally applicable condition estimation model for bridge elements 

regardless of the characteristics of the BMS data. 

To address the problem, the author proposes a research process to 

develop an optimized and universal model to estimate bridge elements’ 

condition using data-driven approaches. The target of the estimation model 

was set as the condition grades of the bridge elements (e.g., condition grade 

‘C’ of deck) expected in the next inspection. Figure 3.1 illustrates the 

proposed research process. First, the KOBMS data for analysis was prepared 

through data collection and preprocessing. Second, diverse types of data-

driven algorithms were explored and trained using training data by tuning 
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hyperparameters. The outstanding algorithm was then selected based on the 

results of comparing the performance of the explored algorithms using the 

testing data. Third, the author identified the combination of influential 

variables that maximize the performance of the previously selected algorithm 

by utilizing the recursive feature elimination (RFE) based on permutation 

importance. Last, an optimized model was developed by combining the two 

results (i.e., the results of the outstanding algorithm selection and the 

influential feature identification). 

 

 

Figure 3.1 Research process of bridge element condition estimation 
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3.1. Data Preparation 

3.1.1. Data Collection 

The BMS data for this chapter were collected from the KOBMS 

database. The collected data include bridge information (i.e., general and 

structural information) and inspection records for the bridges in South Korea. 

The general information contains a total of 17 variables (e.g., bridge class, 

bridge length, and main superstructure type) by bridge. The structural 

information contains 14 variables regarding the deck and superstructure (e.g., 

deck thickness, deck rebar strength, material, deck pavement type for each 

bridge span) and 15 variables regarding the substructure (e.g., abutment/pier 

type, abutment/pier strength, and the number of bearing for each bridge span).  

The inspection records were accumulated through 11,230 in-depth 

inspections of 4,688 bridges from 2009 to 2021. According to this dissertation 

scope, the author extracted the inspection records of decks on 4,085 in-depth 

inspections of 2,064 concrete-girder bridges. The inspection records include 

inspection year, bridge age, condition grades (𝐶𝐺𝑡) of deck, and inspection 

history for each span (or support) of bridge. The condition grades at the 

element level are categorized into five grades, i.e., ‘A’ (excellent), ‘B’, ‘C’, 

‘D’, and ‘E’ (poor) (MOLIT 2021). Among the five grades, ‘C,’ ‘D,’ and ‘E’ 

indicate damaged condition that has to be repaired. The inspection history 
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contains past condition grades by elements and time intervals between past 

and current inspections. Since in-depth inspections in South Korea are usually 

performed every two to six years, past condition grades and time intervals for 

two past inspections were collected taking into consideration the period in 

which the inspection records have been accumulated in KOBMS (i.e., from 

2009 to 2021). In other words, the inspection history collected for this 

research included the first past condition grade (𝐶𝐺𝑡−1) of deck, the first past 

inspection interval ( 𝐼𝑡−1 ) (defined as the difference between the current 

inspection year, 𝑡 and the first past inspection year, 𝑡 − 1), the second past 

condition grade (𝐶𝐺𝑡−2) of deck, and the second past inspection interval (𝐼𝑡−2) 

(defined as the difference between the first, 𝑡 − 1  and the second past 

inspection year, 𝑡 − 2). 

In addition, environmental information was collected from other 

databases. Many previous studies identified the influence of environmental 

information, such as traffic volume and weather factors, on the bridge 

element’s condition by utilizing data-driven approaches. For example, Kim 

and Yoon (2010) explored environmental information (e.g., traffic volume, 

precipitation, and temperature) influencing bridge decks’ deterioration in cold 

regions by using a regression. Huang et al. (2010) explored significant 

deterioration factors for RC bridge decks by damage types using a Rough set 
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theory; for instance, the major factors influencing rebar corrosion were 

identified as peak monthly rainfall and traffic volume. Several types of 

environmental information, such as temperature, rainfall, and humidity, were 

also considered to develop a DNN-based damage prediction model for bridge 

decks (Lim and Chi 2021).  

In this research, traffic and weather information were obtained from the 

Traffic Monitoring System in Korea (MOLIT 2022b) and the Korea 

Meteorological Administration (KMA) (KMA National Climate Data Center 

2022) to collect environmental information around the bridges entered into 

the KOBMS. Specifically, the author calculated the average values of the 

previous three years for each inspection year to obtain environmental 

information that affected the bridge condition for inspection intervals. The 

average values were calculated for two types of traffic information—average 

daily traffic (ADT) and average daily truck traffic (ADTT)—and 11 types of 

weather information (e.g., annual heatwave days, annual average temperature, 

and annual precipitation) at the measurement point closest to the bridge 

location. In particular, since this environmental information changes over 

time, environmental information based on past inspections was also collected. 

For example, environmental information included ADT from the past two 
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inspections (i.e., 𝐴𝐷𝑇𝑡−1 and 𝐴𝐷𝑇𝑡−2) along with ADT based on the current 

inspection, 𝐴𝐷𝑇𝑡. 

 

3.1.2. Data Preprocessing 

The collected data were preprocessed based on data cleaning, 

integration, reduction, and transformation to raise the completeness of the 

data to improve a model’s performance (Han et al. 2011). First, data cleaning 

is a step for the treatment of noisy data and missing values. For instance, the 

author eliminated the inspection records with noisy values other than the five 

condition grades (e.g., ‘X’ and ‘Q’), and the condition grade ‘D’ and ‘E’ were 

replaced with the grade ‘Under C’ since the condition grade ‘E’ for decks 

accounted for 0.14% in the extracted inspection records. The missing values 

of less than 20% in the numeric variables were replaced with the median 

values of the variables. Particularly, in the case of variables related to the 

inspection history, if the past inspection was not recorded, the values of the 

past condition grades were represented as ‘F,’ and the values of the past 

inspection intervals were represented as zero. Also, since bridge inspections 

should be carried out within six years according to the inspection guidelines 

(MOLIT 2021), the values of the past inspection intervals over six years were 

substituted with the number six. Next, the data within multiple data tables 
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were integrated to make one dataset so that the data could be input into the 

model.  

In integrated data, data reduction was then performed to remove 

variables that do not affect analysis results. The removed variables can 

include the variables with duplicate meanings and those with a high 

proportion of missing values. For example, ‘construction year’ and 

‘inspection year,’ which were variables that had duplicate meanings with 

‘bridge age,’ were removed because ‘bridge age’ is defined as the difference 

between the inspection year and the construction year. The numerical 

variables with more than 20% missing values, such as ‘deck rebar diameter’ 

and ‘girder strength,’ were also removed. In the case of a categorical variable, 

such as ‘region,’ the data with missing values were deleted. 

In addition, since the variable redundancy increases the dimension of 

the input variable and may confuse the analysis results, it is necessary to 

remove one of the duplicated variables (Huang et al. 2012). In order to 

examine possible variable redundancies across the integrated data, the author 

calculated the Pearson correlation coefficient between numeric variables and 

the Cramer’s V coefficient between categorical variables (Han et al. 2011; Wu 

et al. 2014). The threshold that indicates the existence of variable redundancy 

was defined as 0.6 according to previous research (Reddy et al. 2013). The 
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condition grade with four categories from ‘A’ to ‘under C’ were converted 

into four numbers (i.e., 0.1, 0.2, 0.4, and 0.7) in the correlation analysis with 

numerical variables (MOLIT 2021). Among two redundant variables with a 

high coefficient, one variable with a lower correlation with the target variable 

was then removed.  

Based on the results of the Pearson’s correlation coefficient analysis of 

the combinations of numerical variables, 12 combinations of variables with 

correlation coefficients over 0.6 were investigated; e.g., ‘total width – road 

width (0.97)’ and ‘total width – number of lanes (up/down) (0.92).’ The 

variables, including ‘road width’ and ‘total number of lanes (up/down),’ were 

then removed. In particular, as a result of the analysis of environmental 

information, the correlation coefficients between the value based on the 

current inspection and the value of the past inspection for each variable were 

all confirmed to be over 0.6; e.g., ‘𝐴𝐷𝑇𝑡  – 𝐴𝐷𝑇𝑡−1  (0.99)’ and ‘𝐴𝐷𝑇𝑡  – 

𝐴𝐷𝑇𝑡−2  (0.98).’ The variables based on the past inspections, including 

𝐴𝐷𝑇𝑡−1 and 𝐴𝐷𝑇𝑡−2, were thus removed. On the other hand, based on the 

results of the Cramer’s V coefficient calculation between categorical 

variables, the combinations of variables with correlation coefficients over 0.6 

were ‘region – competent authority (1.00),’ ‘management agency – competent 

authority (1.00),’ and ‘main superstructure type – deck material (0.61).’ 
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‘Competent authority’ and ‘deck material’ were then removed because they 

had a close to zero correlation coefficient with ‘condition grade (𝐶𝐺𝑡) of deck.’ 

Last, the data were transformed into appropriate forms for analysis. 

Numerical variables were normalized based on z-score normalization, and 

categorical variables were converted to numbers where necessary. 

As a result of the preprocessing steps, the final dataset for developing 

the deck condition estimation model consisted of a tabular format with 31 

explanatory variables (21 numerical variables and 10 categorical variables) 

and one target variable (i.e., condition grade of deck) and 17,567 of data. 

Table 3.1 lists the 32 variables included in the final dataset and explains the 

actual values and the value type by each variable, and Table 3.2 shows the 

sample of the final dataset for developing the deck condition estimation 

model. Also, the target variable (i.e., the condition grade of a deck) in the final 

dataset was distributed as ‘A’ (22.2%), ‘B’ (53.1%), ‘C’ (21.6%), and ‘Under 

C’ (3.0%) (Figure 3.2). 
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Table 3.1 Variables of the final dataset for deck condition estimation 

Concept Variable Actual values (or range) Value 

type 

General 

information (12) 

Region 4 metropolitan cities and 8 provinces C 

Facility class 3 class C 

Management agency 13 main agencies (e.g., Seoul, Busan, and Wonju) C 

Bridge length 10–1,194.7 (m) N 

Total width 4.9–56 (m) N 

Pavement area 19.3–13,756.3 (m2) N 

Height 1.2–182.6 (m) N 

Water depth 0–69 (m) N 

Maximum span length 8–160 (m) N 

Main superstructure type PSC I-shaped, PSC Box, PSC Slab, PSC Hole, 

RC Slab, RC Hole, RC T-shaped, and RC Box 

C 

Main substructure type 18 types (e.g., T-shaped pier, rahmen pier, and 

wall pier) 

C 

Design live load DB–13.5 (24.3 ton), DB–18 (32.4 ton) and DB–

24 (43.2 ton) 

C 

Structural 

information for 

deck (7) 

Deck waterproofing type Asphalt, sheet, mortar, film, none, and etc. C 

Deck thickness 10–290 (cm) N 

Deck strength 210–4,000 (kg/cm2) N 

Deck rebar strength  30–6,400 (kgf/cm2) N 

Deck rebar spacing 1–250 (cm) N 

Deck pavement type Asphalt, concrete, LMC, none, and etc. C 

Deck pavement thickness 2–10 (cm) N 
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Environmental 

information  

based on the 

current inspection 

(7)  

Average daily traffic (ADT) 152.8–50,666 (vehicles/day) N 

Annual freeze-thaw frequency 0–22.3 N 

Annual heatwave days 0–41 (days) N 

Annual average temperature 7.2–15.3 (℃) N 

Annual precipitation 760.4–2,082.8 (mm) N 

Winter snowfall 0–47.3 (cm) N 

Annual average relative humidity 55.1–82.1 (%) N 

Inspection records 

(6) 

Bridge age 2–47 (years) N 

Condition grade of deck (𝐶𝐺𝑡)* A, B, C, and Under C C 

First past condition grade of deck 

(𝐶𝐺𝑡−1) 

A, B, C, Under C, and F C 

First past inspection interval (𝐼𝑡−1) 0–6 (years) N 

Second past condition grade of deck 

(𝐶𝐺𝑡−2) 

A, B, C, Under C, and F C 

Second past inspection interval (𝐼𝑡−2) 0–6 (years) N 

Note: PSC = pre-stressed concrete; RC = reinforced concrete; LMC = latex modified concrete; (*) = the target variable; C = 

categorical variable; and N = numerical variable. 
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Table 3.2 Sample of the final dataset for deck condition estimation 

Bridge 

No. 

Span 

No. 

Genenral 

information (12) 

Structural 

information (7) 

Environmental 

information (7) 

Inspection records (6) 

Region Bridge 

length 

Deck 

pave-

ment 

type 

Deck 

thick

-ness 

ADT Annual 

freeze-

thaw 

freqency 

Bridge 

age 
𝐶𝐺𝑡 
(*) 

𝐶𝐺𝑡−1 𝐼𝑡−1 𝐶𝐺𝑡−2 𝐼𝑡−2 

002560 1 Seoul 26.8 Asphalt 25 13,870 12.3 27 C C 2 F 0 

002560 2 Seoul 26.8 Asphalt 25 13,870 12.3 27 B B 2 F 0 

029882 1 Jeolla-

nam-do 

120.3 Asphalt 25 4,222 2.0 11 B B 2 A 4 

Note: ADT = average daily traffic; 𝐶𝐺𝑡(*) = condition grade of deck (target variable); 𝐶𝐺𝑡−1= the first past condition grade 

of deck; 𝐼𝑡−1= the first past inspection interval; 𝐶𝐺𝑡−2= the second past condition grade of deck; and 𝐼𝑡−2= the second past 

inspection interval. 
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Figure 3.2 Data distribution for the deck condition grades 
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3.2. Outstanding Algorithm Selection 

Since the condition grade of deck, which is the target variable for this 

research, is divided into four classes, it was necessary to implement a multi-

class classification that could predict multiple classes at the same time. 

However, owing to the severity of the data imbalance between the classes in 

the final dataset, as represented in Figure 3.2, it is difficult to train the 

minority class (i.e., condition grade ‘Under C’ accounting for 3% of the total 

data) and achieve a good performance for classifying four classes at once in 

a multi-class classification. Thus, as shown in Figure 3.3, the author tried to 

conduct several independent binary classifications to estimate the final 

condition grade of the deck: ‘Sub-model (1),’ which classified the entire 

preprocessed data into two classes (i.e., a less-damaged group including 

condition grade ‘A’ and ‘B’ and a repair-required group from condition grade 

‘C’ to ‘E’); ‘Sub-model (2),’ which classified the data belonging to the less-

damaged group into condition grade ‘A’ and ‘B’; and ‘Sub-model (3),’ which 

classified the data belonging to the repair-required group into condition grade 

‘C’ and ‘Under C.’ According to the research process in Figure 3.1, the author 

implemented the detailed steps to develop and evaluated each sub-model. 
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Figure 3.3 Model design for deck condition estimation 

 

3.2.1. Proposed Method: Comparison of Classification Algorithms 

Classification Algorithms Exploration 

Previous studies have generally utilized six algorithms—logistic 

regression, k-nearest neighbors (KNN), decision tree, XGBoost, DNN, and 

CNN—to classify and estimate infrastructure condition states. To select an 

outstanding algorithm, the author applied and compared these algorithms by 

using the scikit-learn 0.24.2, the xgboost 1.5 Python libraries, and Tensorflow 

version 2.0 by Google. 
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(1) Logistic Regression 

Logistic regression is a statistically appropriate algorithm to explain 

binary outcomes with multiple independent features (Shmueli et al. 2010). 

Some studies have conducted logistic regression analysis to estimate the 

occurrence of condition states transition, damage, or deficiencies on bridge 

elements using bridge information (e.g., length of maximum span, bridge 

width, and age) (Chang and Chi 2019; Chang et al. 2019; Shan et al. 2016). 

The occurrence probability (𝑝) of an event, which is a specific condition grade 

in this research, can be determined by the standard logistic regression 

represented in Equation 3.1:  

 

  𝑙𝑜𝑔 (
𝑝

1−𝑝
) =  𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑖𝑥𝑖 + ⋯ + 𝛽𝑛𝑥𝑛    (3.1) 

 

where 𝑥𝑖 = the value of 𝑖-th (𝑖 = 1, … , 𝑛) explanatory variable; and 𝛽𝑖 = the 

estimate of 𝑖-th explanatory variable. The left side of the equation (i.e., logit) 

has a value from -∞ to ∞. 

 

(2) K-Nearest Neighbors (KNN) 

When given unknown data, the KNN classifier searches the outcome of 

the unknown data based on the information of the k-neighbors closest to the 
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unknown data in the training data (Shmueli et al. 2010). It is widely 

recognized as a basic classification algorithm only by setting k, which is the 

number of neighbors, and the distance metric between the data. This method 

has been utilized for infrastructure management, such as bridge condition 

index estimation and potential dam hazard level predictions (Assaad and El-

Adaway 2020; Martinez et al. 2020). This research calculated the distance 

between the data using the Euclidean distance, which is the most prominent 

distance metric. 

 

(3) Decision Tree 

A decision tree classifier classifies the data according to the decision 

rule, like the hierarchical tree structure. The decision tree starts with the first 

classification criterion, called the root node, branches to the internal nodes 

according to the outcome of the criterion, and finally ends at the leaf nodes 

containing the final label of the target variable (Shmueli et al. 2010). The 

classification criterion in each node is composed of the combinations between 

the characteristics of the explanatory variables. Given the decision tree 

method has shown high predictive power in classification and can confirm 

the decision rules for prediction, previous studies have used it to estimate 

bridge deck conditions and examine the influence of the explanatory variables 
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in the classification process. This research utilized the classification and 

regression tree (CART) algorithm, which is the most widely used decision 

tree algorithm. In this algorithm, the impurity of a node is calculated using 

the Gini coefficient, and one node branches to two other nodes to reduce the 

impurity (Breiman et al. 1984; Lim et al. 2017). 

 

(4) Extreme Gradient Boosting (XGBoost) 

Boosting is an ensemble method to generate a classifier with high 

performance (i.e., strong classifier) by combining several decision tree 

classifiers with low performance (i.e., weak classifiers) while adjusting the 

weights of the weak classifiers considering the misclassification of the 

classifiers (Shmueli et al. 2010). Gradient boosting generates a strong 

classifier by tuning parameters of the weak classifiers to reduce the gradient 

of loss function (Friedman 2001). XGBoost is based on the gradient boosting 

combined with the CARTs (Chen and Guestrin 2016). It has recently gained 

a lot of popularity with data analysts and machine runners because of its high 

accuracy and speed by decreasing the risk of overfitting and increasing 

resource efficiency. Considering these advantages, XGBoost has also been 

utilized in the field of infrastructure management to predict the condition 
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status of water pipes and to estimate the occurrence of bridge damage 

(Darmatasia and Arymurthy 2016; Lim and Chi 2019). 

 

(5) Deep Neural Network (DNN) 

A deep neural network (DNN) refers to a neural network with two or 

more hidden layers between the input and output layers. In order to classify 

or predict a target using data with high complexity, the optimal weight and 

bias can be identified by sophisticatedly processing the input signal through 

deep hidden layers. Recently, previous research using BMS data has applied 

a DNN to predict the condition ratings of bridge elements or the damage 

severity of bridge decks using several explanatory variables (Ali et al. 2020; 

Lim and Chi 2021). When considering the risk of overfitting due to the 

algorithm complexity for the structured BMS data, this research limited the 

number of hidden layers to three and applied batch normalization that reduces 

the weight range through normalization using the mean and variance of each 

batch. The author also added a dropout layer that lowered the model 

complexity by omitting a part of the network (Buduma and Lacascio 2017). 
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(6) Convolution Neural Network (CNN) 

A convolution neural network (CNN) indicates a DNN that includes 

convolution layers between the input and output layers. CNNs have shown 

superior performance in classification problems for unstructured data with a 

complex data structure, such as images and texts, because they can extract the 

features of the input data and identify patterns to classify or predict a target 

through the convolution processes. In the case of classifying structured data 

such as BMS data, a CNN basically includes a (1 × 1) convolution layer and 

a pooling layer that resizes the convolution layer to maintain the network’s 

simplicity. Liu and Zhang (2020) confirmed good performance of a CNN 

model in classifying the condition ratings of bridges’ major elements for the 

immediate next inspection. Referring to this, this research constructed a CNN 

by adding three convolution layers, a maxpooling layer that extracts the 

maximum value within a specified range, and a dropout layer to reduce the 

risk of overfitting (Goodfellow et al. 2016).  

 

Data Sampling 

The preprocessed data were split into training data and testing data. As 

the target variable in this study (i.e., the condition grades of elements) had a 

very high proportion of the normal condition state (e.g., the condition grade 
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‘B’ in KOBMS), a data imbalance problem occurred in that the distribution 

of training data was biased into some classes (i.e., majority classes). To solve 

this problem, data sampling techniques including over-sampling and under-

sampling were used to prevent the degradation of algorithm performance 

because only the data in the majority classes are trained (He and Ma 2013).  

It is known that over-sampling, which increases the number of data by 

duplicating the data belonging to classes with a small number of data (i.e., 

minority classes), is suitable for training a dataset that is not large in size. 

Among the over-sampling techniques available, the synthetic minority over-

sampling technique (SMOTE) is generally utilized to avoid overfitting caused 

by simple duplication. SMOTE is a technique used to generate new similar 

data by extracting a subset of data in the minority classes (Chawla et al. 2002). 

In this research, borderline-SMOTE was conducted to generate data using the 

subset located at the boundary between the majority and minority classes 

where misclassification can frequently occur (Han et al. 2005). In addition, 

when the data imbalance is not resolved even after over-sampling, a random 

under-sampling technique can also be implemented to randomly reduce the 

amount of data in the majority classes (Chawla et al. 2002). These data 

sampling steps were conducted using the scikit-learn 0.24.2 and imbalanced-

learn 0.8.1 Python libraries. 
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Algorithm Evaluation and Selection 

To find the combination of parameters with the best performance by the 

explored algorithms, the hyperparameters were determined based on a grid 

search by using 5-fold cross-validation among several potential combinations 

specified by the authors. The author tuned the hyperparameters of the six 

algorithms using the training data according to the types of hyperparameters 

and the grid search values described in Table 3.3. The performance for the 

cross-validation was measured with an average accuracy index, which is the 

most popular criterion in classification. Accuracy is defined as the number of 

correctly predicted data among the total number of testing data. Each 

algorithm was then trained with the determined optimal hyperparameters.  
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Table 3.3 Hyperparameters for algorithms 

Algorithm Hyperparameter Description Values for 

grid search 

Logistic 

Regression 

 

Penalty The type of regularization L1, L2 

C The inverse of 

regularization strength 

1e-7–1e-0 

(interval: 1e-1) 

KNN k The number of neighbors 1–20  

(interval: 1) 

Decision 

Tree 

Max_depth The maximum number of 

branches from root node to 

leaf node 

4–10  

(interval: 2) 

XGBoost Max_depth The maximum of number 

of branches from root node 

to leaf node 

4–10  

(interval: 2) 

Min_child_weight The minimum sum of 

weights of all data required 

in a child 

1, 5, 10 

Subsample The ratio of data for 

sampling to construct each 

tree 

0.6, 0.8, 1.0 

Colsample_bytree The ratio of columns 

(variables) for sampling to 

construct each tree 

0.6, 0.8, 1.0 

Gamma Minimum loss reduction 

required to do a split 

0, 0.1, 0.3 

Learning rate The amount to change 

weights 

0.05–0.1 

(interval: 0.01) 

DNN, 

CNN 

 

Optimizer The algorithm for updating 

the parameter weights to 

minimize the loss function 

Adam, 

RMSprop 

Epoch The number of iterations 

for training 

50, 100, 150 

Batch size The number of training 

data for each iteration  

32, 64, 128 

Learning rate The amount to change 

weights 

0.001, 0.01, 0.1 

Note: Adam = adaptive moment estimation; and RMSprop = root-mean-square prop. 
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The trained algorithms were evaluated based on the accuracy achieved 

in testing. However, it may have been difficult for the value of accuracy to 

sufficiently reflect the predictive power of the algorithms since the testing 

data were imbalanced. For this reason, the author also measured the weighted 

average F1 score, which indicates an index to consider precision, recall, and 

support values for each class of target variable. For the 𝑖 -th (𝑖 = 1, … , 𝑁 ) 

class of the target variable, 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 refers to the ratio of correct results 

from the predicted 𝑖-th class; 𝑅𝑒𝑐𝑎𝑙𝑙𝑖 refers to the ratio of those predicted 

as the 𝑖-th class over those in the actual 𝑖-th class; 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑖 refers to the 

number of data belonging to the 𝑖-th class in the test dataset. The F1 score is 

then defined as the harmonic average of precision and recall, and the weighted 

average F1 score can be calculated as an average of the F1 scores for each 

class considering the support of each class as a weight, as represented in 

Equation 3.2. 

 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
1

𝑁
∑ 𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑖 ×

2

(
1

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖
)+(

1

𝑅𝑒𝑐𝑎𝑙𝑙𝑖
)

𝑁
𝑖=1  (3.2) 

 

The algorithm with the highest performance based on the weighted average 

F1 score was finally selected as the outstanding algorithm. 
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3.2.2. Results of the Optimal Algorithm Selection 

The preprocessed data for each sub-model were first split into training 

data (80%) and testing data (20%) in accordance with the data distribution by 

classes of the target variable. Next, in consideration of the severity of the data 

imbalance between the two classes in the training data, the data in the 

minority class (e.g., repair-required group in sub-model (1)) were generated 

using borderline-SMOTE. Random under-sampling was then implemented so 

that the data size in the majority class (e.g., the less-damaged group in sub-

model (1)) was 1.25 times the data size in the minority class for each sub-

model.  

The six algorithms were tuned according to the grid search, while 5-

fold cross-validation was conducted to find the optimal hyperparameter 

combination with the highest average accuracy. For instance, for the sub-

model (1), the optimal combinations were determined with six neighbors for 

KNN; eight maximum depth, 1.0 minimum child weight, 0.6 subsample, 0.6 

colsample by tree, 0.0 gamma, and 0.05 learning rate for XGBoost; and Adam 

optimizer, 64 batch size, 150 epochs, and 0.001 learning rate for DNN.  

The algorithms trained with the optimal hyperparameters were then 

evaluated using the testing data for the three sub-models; the accuracy and 

weighted average F1 score for each algorithm is shown in Figure 3.4. As a 
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result of comparing the weighted average F1 scores for the algorithms, 

XGBoost was selected as the outstanding algorithm in all sub-models. 

 

 

Figure 3.4 Results of the algorithm performance comparison 
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3.3. Influential Variables Identification 

3.3.1. Proposed Method: Recursive Feature Elimination Based on 

Permutation Importance 

Recursive Feature Elimination (RFE)  

To improve model performance and practical usability, it is necessary 

to identify the critical explanatory variables that affect the target variable. 

Many studies have used feature selection techniques, commonly including 

filter, wrapper, and embedded methods (Hsu and Hsieh 2010). The filter 

method is useful for reducing variable redundancies by examining the 

intrinsic characteristics of variables through correlation measures or 

information measures when the original data have a large number of 

explanatory variables (Huan and Yu 2005). In this study, the filter method was 

specifically applied to remove redundant variables by calculating the 

correlation coefficient between explanatory variables in the data 

preprocessing step. The variables selected through the filter method, however, 

may not be optimal for the selected outstanding algorithm to estimate the 

condition grades of bridge elements.  

The embedded method is a technique that uses a tool embedded into a 

specific algorithm (e.g., tree-based algorithms) to evaluate the importance of 

variables. Although it has the advantage of easily extracting influential 
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variables from an algorithm that has already been trained, it is difficult to 

utilize for algorithms that do not have such embedded tools. On the other hand, 

the wrapper method is a technique used to select the subset (i.e., combination) 

of explanatory variables with the best model performance by continuously 

generating the variable subsets and testing the algorithm trained with each 

subset. To prevent the inefficiency of having to test all variable subsets, most 

research has added significant variables, called forward selection, or removed 

insignificant variables after setting the reference subset, called backward 

selection. The author utilized the RFE method, which is an intuitive wrapper 

method and a popular backward-selection method (Chen and Jeong 2007). In 

the RFE, the least significant variables are continuously eliminated to 

determine the optimal subset of explanatory variables when the model has the 

best performance, regardless of the types of algorithms utilized. 

In this research, the RFE was carried out by following the specified 

steps, as illustrated in Figure 3.5. The author first trained and tested the initial 

model utilizing the selected outstanding algorithm with all explanatory 

variables and calculated the importance of each variable. Next, the variable 

with the least importance was eliminated from the resampled training data. 

Then, the model without the least important variable was trained and tested, 

the importance of variables was evaluated, and the variable with the least 
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importance was again eliminated. This series of steps were iterated until every 

variable was eliminated. As a result of comparing the model performance 

based on the weighted average F1 score in model testing, the explanatory 

variables in the model with the highest performance score could be 

determined as the influential variables. 

 

 

Figure 3.5 Detailed steps of RFE 
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Permutation Importance 

In the RFE steps mentioned above, the importance of variables was 

evaluated based on the value of permutation variable importance. Permutation 

importance is defined as the decrease in model performance when one 

explanatory variable is disconnected from the target variable, and its 

advantages can be described as applicability to any algorithm and fast 

computing speed (Fisher et al. 2019). In this study, the permutation 

importance of the 𝑗 -th explanatory variable, 𝑥𝑗 , 𝑃𝐼𝑗 , was calculated 

according to Equation 3.3:  

 

𝑃𝐼𝑗 = 𝐹(𝑋) − 𝐹(𝑋𝑗
𝑝𝑒𝑟𝑚)             (3.3) 

 

where 𝐹(𝑋) = the weighted average F1 score of the original model trained 

with 𝑋, which indicates a set of explanatory variables; and 𝐹(𝑋𝑗
𝑝𝑒𝑟𝑚

) = the 

weighted average F1 score of the model trained with 𝑋𝑗
𝑝𝑒𝑟𝑚

, which indicates 

a set of explanatory variables in which only 𝑥𝑗  is randomly shuffled. The 

large value of 𝑃𝐼𝑗 means that the model depends on 𝑥𝑗, which has a role as 

an influential model variable. The computation of permutation importance 

was implemented using the ELI5 0.11 Python library. 
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3.3.2. Results of the Influential Variables Identification 

To identify influential variables for each sub-model, the series of steps 

in the RFE were iterated 31 times for the sub-models until all explanatory 

variables were eliminated. Figure 3.6 visualizes the change in model 

performance (i.e., weighted average F1 score) as the 31 iterations were 

conducted. As a result of the model performance comparison, sub-model (1) 

represented the highest performance in iterations 1, 3, and 7; sub-model (2) 

represented the highest performance in iteration 5; and sub-model (3) 

represented the highest performance in iteration 20. In the case of sub-model 

(1), the models showed the highest performance (0.870) in three iterations, 

but the authors determined that the model in iteration 7 had better 

performance because it was trained with fewer variables in consideration of 

the computer resource and training efficiency. Therefore, the influential 

variables for the sub-models were identified as follows in order of importance: 

 Sub-model (1): 25 variables – Bridge age, ADT, First past condition 

grade of deck, Bridge length, Annual Freeze-thaw frequency, Deck 

rebar spacing, Height, Annual precipitation, Total width, Pavement 

area, Annual average relative humidity, Deck pavement thickness, 

Annual average temperature, Water depth, Second past condition 

grade of deck, Maximum span length, Main substructure type, 
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Annual heatwave days, Deck thickness, Winter snowfall, Deck 

Pavement type, First past inspection interval, Region, Deck 

waterproofing type, Deck rebar strength. 

 Sub-model (2): 27 variables – First past condition grade of deck, 

Bridge age, First past inspection interval, ADT, Annual heatwave 

days, Pavement area, Total width, Height, Bridge length, Annual 

average relative humidity, Annual average temperature, Second past 

inspection interval, Annual Freeze-thaw frequency, Deck thickness, 

Region, Annual precipitation, Water depth, Deck rebar spacing, 

Winter snowfall, Maximum span length, Main substructure type, 

Deck pavement thickness, Deck waterproofing type, Management 

agency, Second past condition grade of deck, Deck Pavement type, 

Deck strength.  

 Sub-model (3): 12 variables – ADT, Bridge age, First past condition 

grade of deck, Deck rebar spacing, Bridge length, Annual 

precipitation, Total width, Annual average temperature, Maximum 

span length, Winter snowfall, Annual Freeze-thaw frequency, 

Management agency. 
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Figure 3.6 Model performance for iterations in the RFE 
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3.4. Results and Discussions 

3.4.1. The Optimized Model Evaluation 

An optimized model was finally developed using three sub-models 

based on the XGBoost selected as an outstanding algorithm and the identified 

influential variables. As a result of the model training, the optimal XGBoost 

hyperparameters were determined: six maximum depth, 1.0 minimum child 

weight, 0.8 subsample, 0.6 colsample by tree, 0.0 gamma, and 0.07 learning 

rate for sub-model (1); eight maximum depth, 1.0 minimum child weight, 0.8 

subsample, 1.0 colsample by tree, 0.0 gamma, and 0.07 learning rate for sub-

model (2); and 10 maximum depth, 1.0 minimum child weight, 0.8 subsample, 

0.6 colsample by tree, 0.0 gamma, and 0.05 learning rate for sub-model (3). 

The performance of the optimized model by sub-model was then evaluated in 

testing and Table 3.4 shows the evaluation results. The optimized model 

showed reliable performance on average (avg. accuracy of 0.873, avg. 

weighted average F1 score of 0.876, and avg. AUC of 0.840). 

 

Table 3.4 Evaluation result of the optimized model 

Sub-model Accuracy Weighted average F1 score AUC 

Sub-model (1) 0.868 0.870 0.832 

Sub-model (2) 0.833 0.836 0.820 

Sub-model (3) 0.917 0.921 0.868 

Average 0.873 0.876 0.840 
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3.4.2. Findings and Discussions 

The results above were discussed in terms of outstanding algorithm 

selection, influential variables identification, model evaluation, model 

performance verification by region, and model expandability validation. 

 

Outstanding Algorithm Selection 

According to the results of comparing the algorithm performance based 

on the weighted average F1 score to select an outstanding algorithm, logistic 

regression (one of the statistical approaches) had the lowest performance (avg. 

of 0.793), and XGBoost, CNN, and DNN, which can adjust the weights of 

variables in training had high performance (XGBoost: avg. of 0.872, CNN: 

avg. of 0.857, DNN: avg. of 0.848). Here, XGBoost showed better 

performance than deep learning algorithms such as CNN and DNN. This 

result was in line with previous studies that have found that tree-based 

ensemble algorithms (e.g., XGBoost) have been evaluated to outperform the 

deep learning algorithms for tabular data (structured data) despite the rapid 

development of deep learning (Arik and Pfister 2021; Bansal 2018). XGBoost 

generates trees while adjusting the weights of misclassified samples in the 

boosting process to classify the data of minority classes well; as such, these 

findings demonstrate its strength in this study with the data imbalance 
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problem. On the other hand, since deep learning algorithms require a large 

number of parameters and complex networks, they could be 

overparameterized and experience difficulty with appropriate inductive bias 

to find optimal solutions using structured data with a few data and explanatory 

variables (Arik and Pfister 2021; Shavitt and Segal 2018). 

 

Influential Variables Identification 

As a result of identifying the influential variables, common variables 

influencing the deck condition in the three sub-models included ‘bridge age,’ 

‘first past condition grade of deck,’ ‘ADT,’ ‘annual freeze-thaw frequency,’ 

‘bridge length,’ and ‘total width.’ Specifically, inspection history, represented 

by bridge age and past condition grade of deck, were found to be the critical 

factors in estimating the deck condition grades in the next inspection, as many 

previous studies have shown. Also, ADT refers to the dominant external load 

of the deck, and length and width of bridge refer to the load of the bridge itself, 

so it could be confirmed that the internal and external bridge loads have a 

decisive effect on the deck, which is a main structural element of the bridge. 

As one of the environmental effects, repeated freezing and thawing of 

concrete structures (e.g., deck) is known to cause spatial cracking, spalling, 

and corrosion of exposed rebar, rapidly deteriorating structural durability.   
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For more detailed information, the author utilized Shapley additive 

explanation (SHAP) method proposed by Lundberg and Lee (2017). 

XGBoost results can be interpreted by SHAP to explain how each explanatory 

variable affects the model’s estimation. SHAP originates from game theory 

and is an additive feature attribution method in which a model’s output is 

defined as a linear addition of input variables. Thus, the explanation model, 

𝑔, is defined as Equation 3.4: 

 

𝑔(𝑧′) = 𝜙0 + ∑ 𝜙𝑖𝑧′𝑖
𝑀
𝑖=1                  (3.4) 

 

where 𝑧′ = the vector of simplified input variables that are observed (𝑧′ =

0) or unknown (𝑧′ = 1); 𝑀 = the number of input variables; and 𝜙𝑖 = the 

attribution value for 𝑖 -th variable. The output of a conditioned tree on a 

variable subset, 𝑆 , is represented as Equation 3.5, and SHAP values are 

calculated by averaging all possible conditional expectations as Equation 3.6: 

 

𝑓𝑥(𝑆) = [𝐸(𝑓(𝑥)|𝑥𝑠]                   (3.5) 

 

𝜙𝑖 = ∑
|𝑆|!(𝑀−|𝑆|−1)!

𝑀!
[𝑓𝑥(𝑆⋃{𝑖}) − 𝑓𝑥(𝑆)]𝑆⊆𝑁∖{𝑖}          (3.6) 

 



67 

 

where |𝑆|  are the non-zero entries in 𝑧  and 𝑁  is the set of all input 

variables.   

Figure 3.7 illustrates SHAP summary plots for the three optimized sub-

models. A SHAP summary plot demonstrates the distribution of the SHAP 

values and represents the corresponding influence trends for each influential 

variable. In the figure, the 𝑥 -axis indicates the SHAP value, for which a 

positive value means a positive influence on the model’s estimation and a 

negative value means the opposite influence. The 𝑦-axis also indicates up to 

20 influential variables of each sub-model, ordered by the sum of the absolute 

values of the SHAP values. The dot indicates each sample (i.e., testing data), 

and the color of the dot indicates the value of the specific variable. The blue 

color means a small value, and the red means a large value (Feng et al. 2021). 

As a result of the interpretation of Figure 3.7, the influential variables 

and influence trends were examined further by sub-models. For sub-model 

(1), the young bridge age, high past condition grade of deck, and thick deck 

pavement thickness influenced estimations into the less-damaged group for 

the deck condition (Figure 3.7 (a)). For sub-model (2), the long inspection 

interval affected the estimation of condition grade ‘B’ for the deck condition. 

Specifically, it is known that as bridges age, their decks have difficulty in 

maintaining the condition grade ‘A’ as the best condition, regardless of the 
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internal and external factors influencing the deck condition. So, a longer 

inspection interval can lead to a faster progression from ‘A’ to ‘B’ as the 

inspections are repeated. Also, with long annual heatwave days and deep 

water depth, the deck condition was estimated to be condition grade ‘B’ 

(Figure 3.7 (b)). For sub-model (3), the small value of ‘deck rebar spacing’ 

and the young bridge age affected the estimation of condition grade ‘C’ for 

the deck condition. Structurally, the deck rebar indicates a deck’s reinforcing 

steel bar, which is used to withstand tensile strength, and large spacing 

between the deck rebars could lead to serious damage that requires 

maintenance, such as severe cracking or corrosion of exposed rebar. The deck 

condition was also estimated to be condition grade ‘Under C’ with lots of 

ADT, short bridge length, and narrow total width (Figure 3.7 (c)). 
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Figure 3.7 SHAP summary plot: (a) sub-model (1); (b) sub-model (2); and (c) sub-model (3) 
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Model Evaluation 

As a result of developing an optimized deck condition estimation model 

using the outstanding algorithm and the influential variables, the optimized 

model had good performance with an average weighted average F1 score of 

0.876 and an average AUC of 0.840. Nevertheless, the predictive performance 

of condition grades ‘A’ and ‘B’ in sub-model (2) was relatively low. In visual 

inspection practices in South Korea, it is known that there is not much 

difference between condition grades ‘A’ and ‘B,’ and the condition grades are 

mainly determined by the inspector’s subjectivity. Since the sub-model 

trained the data reflecting these practices, condition grades ‘A’ and ‘B’ could 

easily be confused—even in the estimation result of sub-model (2). On the 

other hand, sub-model (3) had very high predictive power because the input 

data for the model had a clear difference in the values of the influential 

variables (e.g., ‘ADT,’ ‘bridge age,’ and ‘first past condition grade’) to 

classify condition grade ‘C’ and ‘Under C.’ 

 

Model Performance Verification by Region 

The model performance for estimating bridge elements’ condition can 

be affected by the region since it is known that the bridge management level 

and environmental conditions vary depending on the region where the bridge 
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is located. In order to verify the proposed model’s performance by region, the 

author developed deck condition estimation models for representative regions 

from the prepared KOBMS data and compared the models’ performance. 

The regional distribution of 4,779 concrete-girder bridges entered into 

the KOBMS database is shown in Figure 3.8. Gyeonggi-do accounts for the 

largest proportion (17%), and Gyeongsangnam-do and metropolitan cities, 

including Busan, Daegu, and Incheon, account for the lowest proportion (7% 

and 3%, respectively). Referring to this, the author selected three regions: 

Gyeonggi-do, which has the most concrete-girder bridges and is known to be 

relatively well-managed because it is located in the capital area; Gangwon-

do, which has the second most concrete-girder bridges with different 

environmental conditions from the capital area; and Jeollanam-do, which has 

a relatively large number of concrete bridges despite having lower traffic 

volume compared to other regions. 
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Figure 3.8 Regional distribution of concrete-girder bridges 

 

To develop the deck condition estimation models for the three regions 

(i.e., the Gyeonggi model, the Gangwon model, and the Jeon-nam model), 

this research extracted 2,737 data for the Gyeonggi model, 2,550 data for the 

Gangwon model, and 2,078 data for the Jeon-nam model from the prepared 

17,567 of data. The extracted data were split into training data (80%) and 

testing data (20%) by three sub-models, and the training data were resampled 

considering the data imbalance. XGBoost was then trained with optimal 

hyperparameters according to the grid search by using the resampled training 
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data by sub-models. The performance of the trained models was evaluated 

using testing data for each region.  

As a result, Figure 3.9 shows the average performance of the sub-

models for the Gyeonggi model, the Gangwon model, and the Jeon-nam 

model using the three regional testing data. In all three testing data, models 

trained with data from the same region showed the best performance, and 

models trained with data from other regions showed a weighted average F1 

score drop of 0.1 or more. Thus, it was confirmed that the region has a critical 

effect on estimating the deck condition and that the estimation model 

developed using the BMS dataset from a specific region dataset represents 

outstanding performance in estimating the elements’ condition of the bridges 

located in the region. 
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Figure 3.9 Model performance using the regional testing data 

 

Meanwhile, except for a few regions, the number of prepared data 

necessary for regional models is insufficient, so there is a limit to constructing 

an optimized model for each region. Table 3.5 provides the evaluation results 

based on the weighted average F1 score for the optimized model developed 

without classifying the regions (i.e., the current model) and the three regional 

models using the testing data in the region. It was found that there was no 

significant difference in performance between the model without classifying 

the regions and the three regional models from the result of Pearson’s chi-

squared test at the 0.05 significance level (𝑝 > 0.960) (Couallier et al. 2013). 
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Therefore, the model without classifying the regions was verified to be 

acceptable until sufficient data were collected and analyzed by region. 

 

Table 3.5 Result of model performance verification by region 

Sub-model Current 

model(*) 

Gyeonggi 

model 

Gangwon 

model 

Jeon-nam 

model 

Sub-model (1) 0.870 0.862 0.866 0.880 

Sub-model (2) 0.836 0.885 0.844 0.843 

Sub-model (3) 0.921 0.941 0.960 0.932 

Average 0.876 0.896 0.890 0.885 

Note: (*) means the optimized model developed without classifying the regions; and 

the numbers in the table indicate the model performance based on the weighted 

average F1 score. 

 

Model Expandability Validation 

To validate the expandability of the proposed method for estimating 

bridge element condition, the author applied the method to BMS data from 

other countries. The data were collected from the NBI database in the United 

States, which is known to be the most representative BMS data. General and 

structural information (e.g., highway agency district, structure length, and 

deck structure type), inspection information including bridge age and 

condition ratings of bridge components, and traffic information on highway 

bridges entered into the NBI are annually recorded for each of the 116 items 

in the NBI database. Specifically, the condition ratings are assigned on a scale 

of 0 (worst condition) to 9 (best condition) (FHWA 1995). The research team 
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also collected the inspection history containing past condition ratings of 

bridge components and time intervals for two past inspections. In addition, 

weather information by bridge and year was collected in connection with the 

NBI data. The information has 12 variables such as average humidity, 

temperature, and wind speed (FHWA 2022). 

Among the collected data, a dataset of 1,034 highway bridges in 

California with concrete or PSC as the main span material from 1995 to 2021 

was selected for analysis. As a result of the preprocessing steps, the final 

dataset for developing the deck condition estimation model using the NBI 

data consisted of 25 explanatory variables (15 numerical and 10 categorical 

variables), one target variable (i.e., condition rating of deck), and 20,425 of 

data. Meanwhile, since condition ratings 0, 1, 2, 3, 4, and 9 accounted for only 

5.3% of the selected data, the condition ratings of deck were divided into four 

classes: fail (condition ratings 0–5; 3,426 of data), satisfactory (condition 

rating 6; 3,827 of data), good (condition rating 7; 11,917 of data), and very 

good (condition ratings 8–9; 1,255 of data). Thus, a multi-class classification 

was implemented to estimate the condition rating of deck. 

In the data sampling part, the preprocessed data were split into training 

data (80%) and testing data (20%), and the training data were resampled 

considering the data imbalance among the four classes. The research team 
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then confirmed that XGBoost, which showed excellent performance on 

structured data such as the KOBMS data, is appropriate as an outstanding 

algorithm on other BMS data. As a result of performance evaluation of the 

algorithm trained with optimal hyperparameters according to the grid search, 

XGBoost represented satisfactory performance with a weighted average F1 

score of 0.876. Next, to identify influential variables for estimating the 

condition rating of deck, the series of steps in the RFE were iterated 25 times 

until all explanatory variables were eliminated. As a result of the model 

performance comparison, iteration 16 showed the highest performance and 

the 16 influential variables were identified as follows: first past condition 

rating of deck, time of wetness, prevailing wind direction, ADTT, total 

precipitation, bridge age, maximum temperature, wearing surface type, 

second past condition rating of deck, deck width, length of maximum span, 

number of freeze-thaw cycles, structure length, skew angle, second past 

inspection interval, and main span design. 

An optimized model was finally developed based on XGBoost and the 

16 influential variables. According to the model training, the optimal 

hyperparameters were determined to be 10 maximum depth, 1.0 minimum 

child weight, 0.6 subsample, 0.6 colsample by tree, and 0.05 learning rate. As 

a result of the model evaluation in testing, the model showed a weighted 
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average F1 score of 0.880. It was confirmed that the NBI data were smoothly 

applied to the model development process and that the optimized model 

showed promising performance. Therefore, these results demonstrated that 

the proposed method based on an optimal combination of appropriate 

algorithms and influential variables for the BMS data given for analysis is 

expandable regardless of the BMS characteristics. 
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3.5. Summary 

For the first objective of this dissertation, which is to estimate bridge 

elements’ condition, this chapter provided a research process to develop an 

optimized model using data-driven approaches. To accomplish this objective, 

first, the author prepared general and structural information and inspection 

records from the KOBMS and environmental information around the bridges 

from external databases. Using the preprocessed dataset, the author selected 

the outstanding algorithm based on the results of comparing the performance 

of diverse algorithms and identified influential variables affecting the 

condition of specific elements among the collected information. An optimized 

estimation model was then developed by utilizing the selected algorithm and 

the influential variables. As a result of the deck condition estimation on 

concrete-girder bridges managed by the KOBMS, XGBoost was selected as 

the optimal algorithm, and ‘bridge age,’ ‘first past condition grade of deck,’ 

‘ADT,’ ‘annual freeze-thaw frequency,’ ‘bridge length,’ and ‘total width’ were 

explored as representative influential variables. Finally, the optimized model 

showed good performance with an average weighted average F1 score of 

0.876 and an average AUC of 0.840. In the model verification and validation, 

as a result of the model performance verification by region, the proposed 

model without classifying the regions was acceptable until sufficient data 
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were collected by region. Also, the proposed method based on an optimal 

combination of appropriate algorithms and influential variables for the BMS 

data given for analysis is expandable regardless of the BMS characteristics.  
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Chapter 4. Bridge Damage Size Estimation 

 

This chapter covers the second objective of this dissertation to estimate 

repair-required damage size on bridge elements. As described in Section 2.3.4 

“Limitations of Existing Studies,” previous studies showed promising results 

in estimating the occurrence and severity of the damage at the damage level; 

but they had difficulties in providing information on damage size. The author 

addressed the problem with regression and classification models to estimate 

repair-required damage size on bridge elements based on BMS data. Figure 

4.1 illustrates the proposed research process. The targets of the models were 

set as the damage types and size on the bridge element (e.g., 2.1𝑚2 cracking 

on a deck) expected in the next inspection. First, BMS data, including 

inspection records for damage size, was collected and preprocessed. Data 

exploration was also conducted to understand the characteristics of the target 

variable (i.e., damage size by type of deck damage). Second, considering the 

characteristics, regression and classification models were developed using 

XGBoost and DNN, as representative AI-based data-driven algorithms. Last, 

after model evaluation, the author compared the models in terms of strength, 

weakness, and performance; the final estimation model was then selected. 
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Figure 4.1 Research process of bridge damage size estimation 
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4.1. Data Preparation 

4.1.1. Data Collection and Preprocessing 

The BMS data for this chapter were also collected from the KOBMS 

database. The collected data include bridge information (i.e., general and 

structural information), inspection records, and environmental information 

for the bridges in South Korea. As described in Section 3.1.1 “Data 

Collection,” the general information contains 16 variables regarding the deck 

(except for ‘main substructure type’). The total size of the element for each 

element was added to the general information to consider the element size 

that may be damaged. The structural information contains nine variables 

regarding the deck. Since structural information was accumulated for each 

span/support, representative values (median values for numeric variables and 

mode values for categorical variables) were extracted for each bridge. The 

environmental information collected from external databases includes two 

types of traffic information and 11 types of weather information at the 

measurement point closest to the bridge location. 

Among the accumulated inspection records in the KOBMS, the author 

extracted the damage details inspected on deck through 3,716 in-depth 

inspections of 1,798 concrete-girder bridges from 2011 to 2021. The 

inspected damage details include damage type, size, and history along with 
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‘inspection year,’ ‘bridge age,’ and diagnosed ‘condition grade of deck.’ 

There are eight types of deck damage: cracking, leakage and efflorescence, 

map cracking, spalling, scaling, segregation, corrosion of exposed rebar, and 

breakage. The detailed description of each damage type lists in Table 4.1. 

Figure 4.2 also shows the shape of each damage type (FHWA 2012; Korea 

Authority of Land & Infrastructure Safety [KALIS] 2019). The damage size 

by each damage type was recorded with units to two decimal places. In 

particular, since cracking was recorded as 𝑚  and 𝑚2  according to the 

inspector, the author collected data of line-craking (𝑚) and area-cracking (𝑚2) 

separately. In addition, the author also collected damage history that contains 

past damage size by damage type and time intervals between past and current 

inspections. The damage history specifically includes the first past damage 

size (𝐷𝑆𝑡−1 ) by damage type, the first past inspection interval (𝐼𝑡−1 ), the 

second past damage size (𝐷𝑆𝑡−2 ) by damage type, and the second past 

inspection interval (𝐼𝑡−2).  
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Table 4.1 The detailed description of deck damage 

Type of deck 

damage 

Description 

Cracking A linear fracture in concrete 

Leakage Water leaking from cracks or crevices in concrete 

Efflorescence White compounds on the surface where calcium 

hydroxide on concrete is dissolved in water and 

combined with carbon dioxide in the air 

Map Cracking Inter-connected cracks (network-shaped cracks) 

between girders 

Spalling Falling off the surface of the concrete in a circular 

shape along cracks 

Scaling Gradual loss of mortar on the concrete surface 

Segregation Exposed aggregates in the form of honeycombs on the 

concrete surface 

Corrosion of 

Exposed Rebar 

A large amount of exposed rebar causing a chemical 

reaction in the air to deteriorate 

Breakage A developed spalling in losing the original shape 

 

 

 

Figure 4.2 The shape of deck damage 
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The collected data were preprocessed based on data cleaning, 

integration, reduction, and transformation. In the data cleaning step, the 

author eliminated the inspection records with too large a damage size that are 

considered a recording error of the inspector. The missing values of less than 

20% in the numeric variables for bridge information were replaced with the 

median values of the variables. In the case of variables related to the damage 

history, if the past inspection was not recorded, the values of the past damage 

size and the past inspection intervals were represented as zero. The values of 

the past inspection intervals over six years were substituted with the number 

six. Next, the data within multiple data tables were integrated to make one 

dataset so that the data could be input into the model. 

In the data reduction step, the author removed the variables with 

duplicate meanings (i.e., ‘construction year,’ ‘competent authority,’ and 

‘inspection year’), those with a high proportion of missing values (i.e., 

‘pavement area’ and ‘deck rebar diameter’), and one of the variables with 

redundancies. The author examined possible variable redundancies across the 

integrated data in the same method described in Section 3.1.2 “Data 

preprocessing.” For nine types of damage, one variable with a lower 

correlation with the target variable (i.e., damage size) was then removed. 

Based on the results of the Pearson’s correlation coefficient analysis of the 
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combinations of numerical variables, 12 combinations of variables with 

correlation coefficients over 0.6 were investigated; e.g., ‘total size of deck – 

bridge length (0.84),’ ‘annual precipitation – summer precipitation (0.79),’ 

and ‘total width – number of spans (0.72).’ When the target variable was area-

cracking size, the variables, including ‘bridge length,’ ‘summer precipitation,’ 

and ‘total width,’ were then removed. On the other hand, as a result of the 

Cramer’s V coefficient calculation between categorical variables, the 

combinations of variables with correlation coefficients over 0.6 were 

‘management agency – competent authority (1.00),’ and ‘competent authority’ 

was then removed. Last, the data were transformed into appropriate forms for 

analysis. 

As a result of the preprocessing steps, the final dataset for each damage 

type consists of a tabular format with several explanatory variables and one 

target variable (i.e., damage size). Table 4.2 shows variables and the number 

of data included in each final dataset by nine types of deck damage. The total 

damage size for each final dataset is distributed as described in Figure 4.3.
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Table 4.2 Variables of the final dataset by type of deck damage 

Concept Variable LC AC LE MC SP SC SG CE BR 

General 

information 

(14) 

Facility class * * * * * * * * * 

Region * * * * * * * * * 

Management agency * * * * * * * * * 

Bridge length          

Total width          

Road width        * * 

Height * * * * * * * * * 

Water depth * * * * * * * * * 

Total number of lanes (up/down) * * * * * * *   

Number of spans * *   * * *  * 

Maximum span length * * * * * * * * * 

Total size of deck   * *    *  

Main superstructure type * * * * * * * * * 

Design live load * * * * * * * * * 

Structural 

informaion 

of deck 

(8) 

Deck material * * * * * * * * * 

Deck waterproofing type * * * * * * * * * 

Deck thickness * * * * * * * * * 

Deck strength * * * * * * * * * 

Deck rebar strength  * * * * * * * * * 

Deck rebar spacing  * * * * * * * * * 

Deck pavement type * * * * * * * * * 

Deck pavement thickness * * * * * * * * * 

Average daily traffic (ADT) * * * *   *   

Average daily truck traffic (ADTT)     * *  * * 
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Environ-

mental 

information 

(13) 

Annual freeze-thaw frequency  *        

Annual heatwave days * * * * *  *   

Annual average temperature    * *   *  

Summer average temperature      *   * 

Winter average temperature *  *   * *  * 

Annual precipitation  * *  * *  *  

Summer precipitation *   *   *  * 

Winter precipitation * * * * * * * * * 

Annual average relative humidity *         

Summer average relative humidity  * * * * * * * * 

Winter average relative humidity  * * * * * * * * 

Inspection 

records –  

damage 

details 

(7) 

Bridge age * * * * * * * * * 

Condition grade of deck (𝐶𝐺𝑡) * * * * * * * * * 

Damage size (𝐷𝑆𝑡)* * * * * * * * * * 

First past damage size (𝐷𝑆𝑡−1) * * * * * * * * * 

First past inspection interval (𝐼𝑡−1) * * * * * * * * * 

Second past damage size (𝐷𝑆𝑡−2) * * * * * * * * * 

Second past inspection interval 

(𝐼𝑡−2) 

* * * * * * * * * 

# of explanatory variables 33 34 33 33 33 34 34 32 33 

# of data 3,713 3,707 3,710 3,701 3,709 3,712 3,711 3,712 3,707 

Note: (**) = the target variable; C = categorical variable; N = numerical variable; LC = Line-Cracking (𝑚); AC = Area-

Cracking (𝑚2); LE = Leakage and Efflorescence (𝑚2); MC = Map Cracking (𝑚2); SP = Spalling (𝑚2); SC = Scaling (𝑚2); 

SG = Segregation (𝑚2); CE = Corrosion of Exposed Rebar (𝑚2); BR = Breakage (𝑚2); and (*) = selected as explanatory 

variable. 
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Figure 4.3 Total damage size by type of deck damage 

 

4.1.2. Data Exploration 

To construct a model for estimating the damage size, the data 

distribution according to the target variable, i.e., the damage size, was 

explored. Table 4.3 lists the damage size distribution by nine types of deck 

damage. All types of deck damage had a median value of zero and a very large 

standard deviation. The author also explored the scatter plots according to the 

damage size. As shown in the example of the scatter plot for the damage size 

of area-cracking in Figure 4.4, data with zero damage size were dominant 

(86%) of the total number of data, and the number of data with an enormous 

damage size was very rare. For nine types of deck damage, more than 80% of 
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the data belonged to the ‘Damage=N’ group with zero damage size, as 

visualized in Figure 4.5. As a result of data distribution exploration according 

to the damage size, the author found it difficult to directly implement 

regression analysis to estimate the exact damage size. Thus, classifying 

whether the damage size belonged to the ‘Damage=N’ group with zero 

damage size or the ‘Damage=Y’ group with non-zero damage size was 

required first. 

 

Table 4.3 Damage size distribution by type of deck damage 

Damage type # of 

data 

Mean SD Min Median Max 

Line-Cracking (𝑚) 3,713 6.73 43.25 0.00 0.00 925.80 

Area-Cracking (𝑚2) 3,707 11.92 72.86 0.00 0.00 1,109.47 

Leakage and 

Efflorescence (𝑚2) 

3,710 20.90 106.80 0.00 0.00 1,585.81 

Map Cracking (𝑚2) 3,701 18.18 103.95 0.00 0.00 1,278.00 

Spalling (𝑚2) 3,709 0.30 2.42 0.00 0.00 52.96 

Scaling (𝑚2) 3,712 1.57 14.29 0.00 0.00 301.38 

Segregation (𝑚2) 3,711 0.87 8.88 0.00 0.00 215.00 

Corrosion of 

Exposed Rebar (𝑚2) 

3,712 0.87 4.86 0.00 0.00 113.80 

Breakage (𝑚2) 3,707 0.31 2.38 0.00 0.00 50.76 

Note: SD = standard deviation. 
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Figure 4.4 Scatter plot for the damage size of area-cracking 

 

 

Figure 4.5 Data distribution (‘Damage=N’ group and ‘Damage=Y’ group) 

by type of deck damage 
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Next, a more detailed data exploration was conducted on data belonging 

to the ‘Damage=Y’ group with non-zero damage size. Table 4.4 lists the 

damage size distribution for the ‘Damage=Y’ group by nine types of deck 

damage. Taking area-cracking as an example, Figure 4.6 shows a general 

histogram for the damage size of area-cracking belonging to the ‘Damage=Y’ 

group. It could be seen that in 525 data with non-zero damage size, the 

number of data was very small as the damage size increased. In general, an 

enormous value in the data distribution can be defined as a value exceeding 

the third quartile (Q3, upper quartile) (Shmueli et al. 2010). Namely, among 

data belonging to the ‘Damage=Y’ group, data with enoumous values could 

be said to belong to the ‘Over Q3=Y’ group. However, since data belonging 

to the ‘Over Q3=Y’ group had a large deviation, the author found it difficult 

to estimate the exact damage size by utilizing regression. Therefore, after 

filtering out ‘Over Q3=Y’ group, the author needed to estimate the exact 

damage size with the data of the ‘Over Q3=N’ group with damage size of the 

third quartile or less. 
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Table 4.4 Damage size distribution of the ‘Damage=Y’ group by type of deck 

damage 

Damage type # of 

data 

Mean Min Q1 Q2 Q3 Max 

Line-Cracking (𝑚) 508 49.17 0.03 2.60 9.96 41.94 925.80 

Area-Cracking (𝑚2) 525 84.17 0.01 2.70 15.15 71.50 1,109.47 

Leakage and 

Efflorescence (𝑚2) 

671 115.56 0.02 2.70 19.80 113.56 1,585.81 

Map Cracking (𝑚2) 415 162.15 0.06 6.72 37.92 182.50 1,278.00 

Spalling (𝑚2) 269 4.20 0.02 0.41 1.20 4.29 52.96 

Scaling (𝑚2) 306 19.10 0.01 0.75 3.00 12.00 301.38 

Segregation (𝑚2) 338 9.56 0.01 0.40 1.20 5.57 215.00 

Corrosion of 

Exposed Rebar (𝑚2) 

760 4.23 0.01 0.36 1.11 3.52 113.80 

Breakage (𝑚2) 407 2.80 0.01 0.19 0.66 2.19 50.76 

Note: Q1=the first quartile (25%, lower quartile); Q2=the second quartile (50%, 

median); and Q3=the third quartile (75%, upper quartile). 

 

 

Figure 4.6 General histogram for the damage size of area-cracking 

belonging to the ‘Damage=Y’ group 
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In addition, since the deviation became larger at larger damage sizes, 

the data needed to be normalized on a log scale. Figure 4.7 shows a log-scaled 

histogram for the damage size of area-cracking belonging to the ‘Damage=Y’ 

group. The author could confirm that the log-scaled data was properly binned 

to four ranges (e.g., 0 < size ≤ 1 , 1 < size ≤ 10 , 10 < size ≤ 100 , and 

size > 100), which have similar frequencies. Therefore, after classifying the 

log-scaled ranges, it was required to estimate the damage size for each range 

based on the median value. 

 

 

Figure 4.7 Log-scaled histogram for the damage size of area-cracking 

belonging to the ‘Damage=Y’ group 
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In summary, it was difficult to directly conduct regression analysis to 

estimate the exact damage size, so it was required to estimate the damage 

occurrence first, which means classifying whether the damage size belongs to 

the ‘Damage=N’ group with zero damage size or the ‘Damage=Y’ group with 

non-zero damage size. In the case of the ‘Damage=Y’ group, research 

methods for estimating the damage size could be considered by examining 

general and log-scaled histograms. First, as a result of examining the general 

histogram, after filtering out the ‘Over Q3=Y’ group, the author needed to 

estimate the exact damage size of the data of the ‘Over Q3=N’ group with 

damage size of the third quartile or less. Second, as a result of examining the 

log-scaled histogram, it was required to classify the log-scaled ranges and 

then estimate the damage size for each range based on a median value. 
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4.2. Proposed Method: Regression and Classification Models 

4.2.1. Model Design 

According to the results of data exploration, two models (i.e., regression 

model and classification model) were designed to estimate damage size for 

each type of deck damage, as shown in Figure 4.8. In the regression model 

(Figure 4.8 (a)), the damage occurrence is first estimated by ‘Binary 

classification (1)’, which means estimating whether the damage size belongs 

to the ‘Damage=N’ group or the ‘Damage=Y’ group. After classifying 

whether the data has an enoumous value, which belongs to the ‘Over Q3=Y’ 

group, by ‘Binary classification (2),’ the exact damage size is then estimated 

by ‘Regression.’ If classified as the ‘Over Q3=Y’ group, the damage size is 

estimated based on the median value of the ‘Over Q3=Y’ group. In the 

classification model (Figure 4.8 (b)), the damage occurrence is first estimated 

by ‘Binary classification (1),’ the same as the regression model. The four log-

scaled ranges are then classified, and the damage size for each range is 

estimated based on a median value.  
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Figure 4.8 Model design for damage size estimation: (a) regression model; and (b) classification model
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4.2.2. Regression and Classification Algorithms 

To develop the designed two models, the author utilized XGBoost and 

DNN algorithms, which are known for their superior performance for 

regression and classification of a tabular dataset. The promising performance 

of the two algorithms on BMS data was also discussed in Section 3.4.2 

‘Findings and Discussions.’ The models using these algorithms were 

developed by using the scikit-learn 0.24.2 and the xgboost 1.5 Python 

libraries, and Tensorflow version 2.0 by Google. 

 

Extreme gradient boosting (XGBoost) 

XGBoost, which was proposed by Chen and Guestrin (2016), is based 

on gradient boosting combined with the classification and regression trees 

(CARTs). Gradient boosting generates a strong classifier by tuning 

parameters of the weak classifiers to reduce the gradient of loss function 

(Friedman 2001). Figure 4.9 illustrates gradient-boosted tree architecture for 

regression and classification. In the general gradient-boosted tree, the output 

on 𝑖-th leaf, ŷ𝑖, can be expressed as Equation 4.1: 

 

ŷ𝑖 = ∑ 𝑓𝑘(𝑥𝑖 , 𝜃𝑘)𝐾
𝑘=1 , 𝑓𝑘 ∈ 𝐹               (4.1) 
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where 𝐾  = number of trees for boosting; 𝑓𝑘  = output of the 𝑘 -th tree in 

regression tree or scoring function to estimate the output of the 𝑘-th tree in 

classification tree; 𝜃𝑘 = structure of 𝑘-th tree trained from a training set (i.e., 

all parameters such as split and leaf nodes in Figure 4.9); and ŷ𝑖 = predicted 

value of target in regression tree or averaged or voted value by a collection 𝐹 

of 𝐾 trees in classification tree (Lim and Chi 2019; Wang et al. 2020; Zhang 

et al. 2018).  

 

 

Figure 4.9 Gradient-boosted tree architecture for regression and 

classification 
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Although gradient boosting shows high performance, it has a high risk 

of overfitting. To avoid overfitting, Chen and Guestrin (2016) combined a 

regularization term with the training loss function in the general gradient-

boosted tree. The regularized objective is defined as Equation 4.2, and the 

regularization term on 𝑘-th tree, 𝛺(𝑓𝑘), is defined as Equation 4.3: 

 

𝐿(𝜃) = ∑ 𝑙(𝑦𝑖, ŷ𝑖)𝑛
𝑖=1 + ∑ 𝛺(𝑓𝑘)𝑇

𝑘=1              (4.2) 

 

𝛺(𝑓) =  𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2𝑇
𝑗=1                  (4.3) 

 

where 𝑛  = number of considered samples; 𝑙()  = commonly training loss 

function (e.g., square loss in regression tree and logistic loss in classification 

tree); 𝛾 = complexity parameter of each leaf; 𝑇 = number of leaves; 𝜆 = 

parameter to scale the penalty; and 𝑤 = vector of scores on leaves. When the 

output of the 𝑖 -th instance at the 𝑡 -th iteration is defined as ŷ𝑖
(𝑡)

 , the 

regularized objective can be given as in Equation 4.4. 

 

𝐿(𝑡) = ∑ 𝑙(𝑦𝑖, ŷ𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)𝑛
𝑖=1 ) + ∑ 𝛺(𝑓𝑘)𝑇

𝑘=1         (4.4) 
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The second-order approximation can be used to optimize the objective in 

XGBoost as in Equation 4.5 and the constant terms to obtain the simplified 

objective as in Equation 4.6: 

 

𝐿(𝑡) ≈ ∑ [𝑔𝑖𝑤𝑞(𝑥𝑖) +
1

2

𝑛
𝑖=1 (ℎ𝑖𝑤𝑞(𝑥𝑖)

2 )] + 𝛾𝑇 +
1

2
𝜆 ∑ 𝑤𝑗

2𝑇
𝑗=1      (4.5) 

 

𝐿(𝑡) = ∑ [(∑ 𝑔𝑖𝑖𝜖𝐼𝑗
) 𝑤𝑗 +

1

2

𝑇
𝑗=1 (∑ ℎ𝑖𝑖𝜖𝐼𝑗

+ 𝜆)𝑤𝑗
2] + 𝛾𝑇      (4.6) 

 

where 𝑔𝑖 = 𝜕ŷ(𝑡−1)𝑙(𝑦𝑖 , ŷ𝑖
(𝑡−1)

) ; ℎ𝑖 = 𝜕
ŷ(𝑡−1)
2 𝑙(𝑦𝑖, ŷ𝑖

(𝑡−1)
) ; and 𝐼𝑗 =

{𝑖|𝑞(𝑥𝑖) = 𝑗} as the instance set of leaf 𝑗.  

Therefore, for a fixed structure, 𝑞(𝑥), the optimal weight, 𝑤𝑗
∗, of leaf 

𝑗  can be calculated by Equation 4.7, and the optimal value, 𝐿∗ , can be 

calculated by Equation 4.8: 

 

𝑤𝑗
∗ = −

𝐺𝑗

𝐻𝑗+𝜆
                      (4.7) 

 

𝐿∗ = −
1

2
∑

𝐺𝑗
2

𝐻𝑗+𝜆

𝑇
𝑗=1 + 𝛾𝑇                 (4.8) 
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where 𝐺𝑗 = ∑ 𝑔𝑖𝑖𝜖𝐼𝑗
; and 𝐻𝑗 = ∑ ℎ𝑖𝑖𝜖𝐼𝑗

. When a tree splits a leaf into two leaf 

nodes, let assume that 𝐼𝐿 and 𝐼𝑅 are the instance sets of left and right nodes 

after the split (𝐼 = 𝐼𝐿 ∪ 𝐼𝑅). The score of gain is then given as Equation 4.9.  

 

𝐺𝑎𝑖𝑛 =
1

2
[

𝐺𝐿
2

𝐻𝐿+𝜆
+

𝐺𝐿
2

𝐻𝑅+𝜆
=

(𝐺𝐿+𝐺𝑅)2

𝐻𝐿+𝐻𝑅+𝜆
] − 𝛾          (4.9) 

 

The score is usually used for evaluating the split candidates (Chen and 

Guestrin; Lim and Chi 2019; XGBoost developers 2021). 

 

Deep Neural Network (DNN) 

A deep neural network (DNN) refers to a neural network with two or 

more hidden layers between the input layer and output layer. Figure 4.10 

illustrates basic DNN architecture for regression and classification. A DNN 

consists of an input layer, several hidden layers, and an output layer. In order 

to predict the actual value or class of target using data with high complexity 

(e.g., a large number of explanatory variables on tabular data), the input 

signals go through the hidden layers to identify the optimal weight and bias. 
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Figure 4.10 Basic DNN architecture for regression and classification 

 

Specifically, given a training set (𝑥(𝑖) , 𝑦(𝑖) ), where 𝑥(𝑖)  is a given 

explanatory feature vector and 𝑦(𝑖) is the actual value or class of target, the 

output of 𝑗-th hidden layer, ℎ𝑗(𝑥(𝑖)), is defined as Equation 4.10 and 4.11: 

 

ℎ𝑗(𝑥(𝑖)) = 𝑓(𝑤(𝑗,𝑗−1)ℎ𝑗−1(𝑥(𝑖)) + 𝑏𝑗) (𝑗 = 2, … , 𝑁)      (4.10) 

 

ℎ1(𝑥(𝑖)) = 𝑓(𝑤(1,0)𝑥(𝑖) + 𝑏1) (𝑗 = 1)            (4.11) 
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where 𝑓  = activation function (e.g., relu, sigmoid); 𝑤(𝑗,𝑗−1)  = weight 

metrices between 𝑗 -th hidden layer and (𝑗 − 1 )-th hidden layer; 𝑏𝑗  = bias 

vectors of 𝑗-th hidden layer; and 𝑁 = number of hidden layers (𝑗 = 1, … , 𝑁).   

Next, for a DNN regression, the output layer has no activation (i.e., 

𝑓(𝑥) = 𝑥), so the output corresponds to the output of the last hidden layer, 

ℎ𝑁(𝑥(𝑖)). For a DNN classification, on the other hand, the output layer utilizes 

a softmax function for activation. Softmax function outputs the probability of 

a given explanatory feature vector, 𝑃 , to belong to a specific class 𝑐 , as 

Equation 4.12: 

 

𝑃 (𝑐|ℎ(𝑥(𝑖))) =
𝑒𝑥𝑝 (𝑤𝑙

𝑐ℎ𝑙(𝑥(𝑖))+𝑏𝑙
𝑐)

∑ 𝑒𝑥𝑝 (𝑤𝑙
𝑘ℎ𝑙(𝑥(𝑖))+𝑏𝑙

𝑘)𝐶
𝑘=1

           (4.12) 

 

where ℎ𝑙(𝑥(𝑖)) = the last hidden layer activation for 𝑥(𝑖); 𝐶 = total number 

of classes; and (𝑤𝑙
𝑐 , 𝑏𝑙

𝑐) = weights matrix and bias vector, which connect the 

output node for class 𝑐 with the last hidden layer. Then, the class with the 

highest probability can be selected as the predicted class.  

In regression and classification, the parameters, i.e., weight and bias, 

are adjusted iteratively to minimize the error between the predicted value (or 

class) and the actual value (or class) by considering a loss function. The loss 
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function can be considered as a mean absolute error (MAE) loss or a mean 

square error (MSE) loss for regression and a categorical cross-entropy for 

multi-class classification. The parameters are modified step by step via 

backpropagation (Bishop 2006; Lozano-Diez et al. 2017). In addition, to 

overcome the risk of overfitting due to the algorithm complexity for the BMS 

data, the author added dropout layers between the hidden layers to lower the 

model complexity by omitting a part of the network. Batch normalization was 

also applied to reduce the weight range through normalization using the mean 

and variance of each batch (Buduma and Lacascio 2017; Lim and Chi 2021). 

 

4.2.3. Model Development 

The regression and classification models with XGBoost and DNN were 

developed to estimate damage size by nine types of deck damage. Table 4.5 

lists each median value of ‘Over Q3=Y’ group by type of deck damage in the 

regression models. For the classification models, the damage size by each 

type of deck damage was categorized into four log-scaled ranges. Table 4.6 

represents the log-scaled ranges and median values of the ranges by type of 

deck damage. 
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Table 4.5 The median value of ‘Over Q3=Y’ group by type of deck damage  

Damage type Damage size Median 

Line-Cracking (𝑚) 41.94–925.80 108.00 

Area-Cracking (𝑚2) 71.50–1109.47 172.78 

Leakage and Efflorescence (𝑚2) 113.56–1585.81 287.77 

Map Cracking (𝑚2) 182.50–1278.00 408.18 

Spalling (𝑚2) 4.29–52.96 8.55 

Scaling (𝑚2) 12.00–301.38 43.02 

Segregation (𝑚2) 5.57–215.00 13.96 

Corrosion of Exposed Rebar (𝑚2) 3.52–113.80 7.18 

Breakage (𝑚2) 2.19–50.76 5.34 

 

Table 4.6 Log-scaled ranges of damage size by type of deck damage 

Damage type Range (damage size, median) 

Range 1 Range 2 Range 3 Range 4 

Line-Cracking 

(𝑚) 

(0, 1], 0.75 (1, 10], 3.27 (10, 100], 

28.03 

(100, ), 187.70 

Area-Cracking 

(𝑚2) 

(0, 1], 0.43 (1, 10], 3.45 (10, 100], 

28.20 

(100, ), 232.00 

Leakage and 

Efflorescence 

(𝑚2) 

(0, 1], 0.37 (1, 10], 3.81 (10, 100], 

31.44 

(100, ), 253.03 

Map Cracking 

(𝑚2) 

(0, 1], 0.77 (1, 10], 4.00 (10, 100], 

35.46 

(100, ), 300.00 

Spalling (𝑚2) (0, 0.1], 0.05 (0.1, 1], 0.50 (1, 10], 2.93 (10, ), 17.68 

Scaling (𝑚2) (0, 0.1], 0.08 (0.1, 1], 0.49 (1, 10], 3.24 (10, ), 37.89 

Segregation 

(𝑚2) 

(0, 0.1], 0.06 (0.1, 1], 0.49 (1, 10], 3.00 (10, ), 24.00 

Corrosion of 

Exposed Rebar 

(𝑚2) 

(0, 0.1], 0.05 (0.1, 1], 0.48 (1, 10], 2.55 (10, ), 18.90 

Breakage (𝑚2) (0, 0.1], 0.06 (0.1, 1], 0.32 (1, 10], 2.65 (10, ), 18.66 
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The preprocessed data for each type of deck damage were divided into 

training data (80%) and testing data (20%) in accordance with the damage 

size distribution. To find the combination of parameters with the best 

performance for XGBoost and DNN, the hyperparameters were determined 

based on a grid search by using 5-fold cross-validation according to the grid 

search values described in Table 3.3. In DNN, the number of hidden layers 

(3–5), dropout rate (0.1–0.5, interval 0.1), and activation function (relu, 

sigmoid) were added for a grid search. The performance for the cross-

validation was measured with a mean absolute error (MAE) index for 

regression and an average accuracy index for classification. MAE is defined 

as the mean of the absolute value of the difference between the actual value 

and the predicted value. Accuracy is also defined as the number of correctly 

predicted data among the total number of testing data. Each model was then 

trained with the determined optimal hyperparameters. 

To evaluate and compare the performance of the trained models, the 

author utilized MAE, defined as Equation 4.13: 

 

𝑀𝐴𝐸 (𝑚𝑒𝑎𝑛 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟) =
1

𝑁
∑ |𝑦𝑖 − ŷ𝑖|

𝑁
𝑖=1      (4.13) 
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where 𝑁  = number of testing data; 𝑦𝑖  = actual damage size; and ŷ𝑖  = 

predicted damage size. MAE is the most popular and intuitive indicator for 

prediction accuracy because it is more robust to outliers than other indicators, 

such as MSE (mean square error) and RMSE (root mean square error). A 

small MAE indicates a high performance of the model because there is less 

error between the actual value and the predicted value. 

Although MAE is useful for comparing the model performance for the 

same type of damage, it is difficult to compare the performance between 

different types of damage because the damage size by type of damage has 

diverse distribution, as described in Table 4.3. For this reason, the author 

utilized the error reduction rate to evaluate how well the models predicted the 

damage size compared to the standard deviation (SD) and baseline for each 

damage type and compare the predictive performance between damage types. 

The error reduction rate of the model to the SD is defined in Equation 4.14. 

  

𝐸𝑟𝑟𝑜𝑟 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑆𝐷 =
(𝑀𝐴𝐸)−(𝑆𝐷)

(𝑆𝐷)
 (%)   (4.14)             

 

The baseline predicts the target as a mean value of the target in the training 

data (Shmueli et al. 2010). That is, the baseline error can be defined as in 
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Equation 4.15, and the error reduction rate of the model to the baseline can 

be defined as in Equation 4.16: 

 

𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑒𝑟𝑟𝑜𝑟 =
1

𝑁
∑ |𝑦𝑖 − 𝑦𝑚𝑒𝑎𝑛|𝑁

𝑖=1            (4.15) 

 

𝐸𝑟𝑟𝑜𝑟 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  

=
(𝑀𝐴𝐸)−(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑒𝑟𝑟𝑜𝑟)

(𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑒𝑟𝑟𝑜𝑟)
 (%)             (4.16) 

 

where 𝑦𝑚𝑒𝑎𝑛 is a mean value of the damage size in the training data. A model 

with a large error reduction rate has superior predictive performance 

compared to the SD and baseline. 
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4.3. Results and Discussions 

4.3.1. Model Evaluation 

Model performance by type of deck damage was evaluated based on the 

MAE and the error reduction rate to the SD and baseline. As a result of the 

MAE comparison between the four models, the regression model with 

XGBoost showed the best performance in the eight types of damage, except 

for scaling (Table 4.7). Table 4.8 and Table 4.9 also list the results of the error 

reduction rate calculation to the SD and baseline, respectively. As a result of 

the error reduction rate comparison, on average, the regression model with 

XGBoost showed the highest performance (error reduction rate: 84.3% to the 

SD, 38.4% to the baseline), and the classification model with DNN showed 

the lowest performance (error reduction rate: 81.8% to the SD, 28.4% to the 

baseline). When comparing the error reduction rate to the SD of the regression 

model with XGBoost between the damage types, the author identified that 

segregation and breakage had the highest reduction rate (92.7%) and leakage 

and efflorescence had the lowest reduction rate (76.8%). Based on the error 

reduction rate results to the baseline, segregation had the highest reduction 

rate (53.7%), and line-cracking had the lowest reduction rate (32.4%). Finally, 

the regression model with XGBoost was selected to estimate the damage size. 
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Table 4.7 Model performance by type of deck damage (MAE) 

Damage type Regression model Classification model 

XGBoost DNN XGBoost DNN 

Line-Cracking (𝑚) 8.84 9.86 9.81 9.14 

Area-Cracking (𝑚2) 13.19 16.27 15.54 17.34 

Leakage and 

Efflorescence (𝑚2) 
24.81 25.59 28.33 27.07 

Map Cracking (𝑚2) 19.36 25.80 23.54 22.85 

Spalling (𝑚2) 0.41 0.50 0.47 0.51 

Scaling (𝑚2) 1.71 1.61 1.73 1.84 

Segregation (𝑚2) 0.65 0.83 0.76 1.05 

Corrosion of 

Exposed Rebar (𝑚2) 
0.84 0.85 0.97 0.88 

Breakage (𝑚2) 0.35 0.45 0.38 0.36 

 

Table 4.8 Model performance by type of deck damage (error reduction rate to 

the SD)  

Damage type SD Regression model Classification model 

XGBoost DNN XGBoost DNN 

Line-Cracking (𝑚) 43.25 79.6% 77.2% 77.3% 78.9% 

Area-Cracking (𝑚2) 72.86 81.9% 77.7% 78.7% 76.2% 

Leakage and 

Efflorescence (𝑚2) 
106.80 76.8% 76.0% 73.5% 74.7% 

Map Cracking (𝑚2) 103.95 81.4% 75.2% 77.4% 78.0% 

Spalling (𝑚2) 2.42 82.9% 79.3% 80.7% 79.1% 

Scaling (𝑚2) 14.29 88.0% 88.7% 87.9% 87.1% 

Segregation (𝑚2) 8.88 92.7% 90.7% 91.4% 88.2% 

Corrosion of 

Exposed Rebar (𝑚2) 
4.86 82.7% 82.5% 80.0% 82.0% 

Breakage (𝑚2) 4.82 92.7% 90.6% 92.2% 92.5% 

Average  84.3% 82.0% 82.1% 81.8% 

Note: SD = standard deviation. 
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Table 4.9 Model performance by type of deck damage (error reduction rate to 

the baseline)  

Damage type Baseline Regression model Classification model 

XGBoost DNN XGBoost DNN 

Line-Cracking (m) 13.07 32.4% 24.6% 25.0% 30.1% 

Area-Cracking (m2) 21.85 39.7% 25.5% 28.9% 20.6% 

Leakage and 

Efflorescence (m2) 

37.85 34.4% 32.4% 25.1% 28.5% 

Map Cracking (m2) 32.58 40.6% 20.8% 27.7% 29.9% 

Spalling (m2) 0.63 34.3% 20.6% 26.0% 19.8% 

Scaling (m2) 2.68 36.3% 40.0% 35.6% 31.4% 

Segregation (m2) 1.40 53.7% 40.8% 45.6% 25.0% 

Corrosion of 

Exposed Rebar (m2) 

1.39 39.5% 38.7% 30.0% 37.0% 

Breakage (m2) 0.54 35.0% 16.5% 30.6% 33.2% 

Average  38.4% 28.9% 30.5% 28.4% 

 

Additionally, Table 4.10 represents the testing results of the regression 

model with XGBoost, which showed the best performance. In the first row of 

area-cracking and corrosion of exposed rebar, the damage size was estimated 

to be zero, the same as the actual value. In the third row of each damage, the 

model estimated close to the actual size (a difference of 0.19𝑚2 for area-

cracking and a difference of 0.04𝑚2 for corrosion of exposed rebar). In the 

fourth row of are-cracking, the model classified the damage size as belonging 

to the ‘Over Q3=Y’ group and estimated the damage size to be the median 

value of 172.78𝑚2, which was underestimated by 8.37𝑚2 from the actual 

value. As shown in the fourth row of corrosion of exposed rebar, the damage 
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size was classified into the ‘Over Q3=Y’ group and estimated to be the median 

value of 7.18𝑚2, which was estimated by 1.02𝑚2 over the actual size. 

 

Table 4.10 Example of damage size estimation result using the regression 

model with XGBoost 

Damage 

type 

Bridge 

No. 

Inspection 

year 

Condition 

grade 

Estimated 

(m2) 

Actual 

(m2) 

Difference 

(m2) 

Area-

Cracking 

 

026234 2020 B 0.00 0.00 0.00 

000763 2017 C 0.00 1.50 -1.50 

025717 2018 C 8.78 8.97 -0.19 

031399 2019 C 172.78 181.15 -8.37 

Corrosion 

of 

Exposed 

Rebar 

032784 2014 B 0.00 0.00 0.00 

000148 2019 C 0.58 0.00 0.58 

000039 2018 C 0.89 0.85 0.04 

115740 2018 C 7.18 6.16 1.02 

 

4.3.2. Model Comparison 

Although the regression model showed the best performance for all 

types of damage, the regression model and classification models for 

estimating the damage size could be compared for the model training process 

and estimation results, as summarized in Table 4.11.  
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Table 4.11 Summary of model comparison results 

Category Regression model Classification model 

Model complexity High Low 

Robustness to outliers Low High 

Model performance High Low 

Information about small damage Large Small 

Information about large damage Small Large 

 

First, in the model training process, the regression model showed higher 

model complexity than the classification model. As described in Figure 4.8, 

the classification model trained one multi-class classifier after training a 

binary classifier that estimates damage occurrence. On the other hand, the 

regression model trained the first binary classifier that estimates damage 

occurrence, the second binary classifier that estimates enormous damage, and 

the regressor that estimates the exact damage size. The high complexity of the 

regression model resulted in the low efficiency of model training.  

Second, in the training process, the classification model can be more 

robust to outliers, which are data with an enormous damage size, than the 

regression model. Because the classification model classifies fixed ranges of 

damage, the outliers containing training data are difficult to influence model 

training significantly. On the other hand, in the regression model, the third 

quartile, Q3, and the median value of the ‘Over Q3 = Y’ group are changed 

by the outliers, so the model training process is less robust to the outliers.   
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Third, in terms of the estimation results of the models, the performance 

of the regression model was superior to that of the classification model, as 

described in Section 4.3.1 “Model Evaluation.” Last, the regression model 

can provide managers with more detailed information about small damage 

with a size of the third quartile, Q3, or less. It is because the regression model 

estimates the exact value for damage size below Q3 (e.g., 8.78𝑚2 for the 

area-cracking on a deck) using the regressor. The classification model, 

however, is difficult to provide specific information about the damage size 

because it utilizes the median value of each range to estimate the damage size. 

Meanwhile, for large damage with a size greater than third quartile, Q3, the 

classification model can provide more information to the manager than the 

regression model. For example, in breakage, the regression model estimates 

the damage size as greater than 2.19𝑚2 to be 5.34𝑚2, while the classification 

model estimates the damage size to be 2.65𝑚2  for less than 10𝑚2  and 

18.66𝑚2  for more than 10𝑚2 , providing specific information about the 

damage size. 
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4.4. Summary 

For the second objective of this dissertation, which is to estimate repair-

required damage size on bridge elements, this chapter proposed regression 

and classification models using BMS data. To accomplish this objective, 

BMS data, including damage details for concrete-girder bridges’ decks, was 

collected and preprocessed. Data exploration was then implemented to 

examine the characteristics of the damage size by nine types of deck damage 

drawing scatter plots and histograms. Based on the results of data exploration, 

regression and classification models were designed and developed utilizing 

XGBoost and DNN. As a result of model evaluation based on MAE, the 

regression model with XGBoost showed the best performance on average for 

nine types of damage (84.3% error reduction rate to the standard deviation 

and 38.4% to the baseline). In addition, a model comparison was conducted 

in terms of the model training process and estimation results. Although the 

regression model had superior performance, the classification model had 

lower model complexity and higher robustness to outliers than the regression 

model. 
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Chapter 5. Bridge Repair Cost Estimation 

 

This chapter covers the third objective of this dissertation to estimate 

bridge repair costs for repair-required damage. As described in Section 2.3.4 

“Limitations of Existing Studies,” previous studies tried to estimate the repair 

costs based on the bridge condition changes and environmental effects; but 

they had difficulties in deriving accurate repair costs considering repair-

required damage size according to the construction cost calculation method. 

To address the problem, the author proposed a research process to estimate 

bridge repair cost according to damage size and unit cost by repair method 

using BMS data, as described in Figure 5.1. First, the author estimated the 

damage size and portion by repair method utilizing data exploration on 

inspection records and damage portion classification by repair method. 

Second, unit cost information was collected from repair records, and the 

appropriate unit cost for each repair method was identified based on the 

similarity between data for the selected influential variables. The total repair 

cost was then calculated by multiplying the estimated damage size and unit 

cost by each repair method. 
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Figure 5.1 Research process of bridge repair cost estimation 
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5.1. Damage Size Estimation by Repair Method 

5.1.1. Data Collection and Preprocessing 

The BMS data for this section were collected from the KOBMS 

database in the same way as described in Section 4.1.1 “Data Collection and 

Preprocessing.” The collected data include general information with 17 

variables, structural information with nine variables regarding the deck, and 

environmental information with 13 variables. The author extracted the 

inspection records inspected on deck through 3,716 in-depth inspections of 

1,798 concrete-girder bridges from 2011 to 2021. The extracted records 

contain damage details, including the damage size for nine types of deck 

damage and the expected repair method for each damage, along with the 

inspection year, bridge age, and diagnosed condition grade of deck.  

The expected repair methods for concrete deck damage include three 

major methods: grouting, surface repair, and section repair. The repair-

required damage size for the three major methods accounted for more than 

99% of the total damage size in the collected inspection records. The detailed 

description of each repair method on deck lists in Table 5.1 (MOLIT 2019).  
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Table 5.1 The detailed description of the major repair methods on deck   

Repair method Description 

Grouting It means a method of integrating concrete by injecting epoxy-

based resin and cement-based materials into crackings. It 

prevents deterioration and corrosion by increasing the water-

tightness of concrete. 

Surface Repair It means a method of improving waterproofness and durability 

by constructing a coating film on tiny damage. It can 

strengthen the surface in a simple way. However, it is difficult 

to deal with internal damage and advanced cracking. 

Section Repair It means a method of partially removing concrete damage and 

constructing materials (e.g., mortar). It is mainly used for 

repairing chemical corrosion, spalling, scaling, corrosion of 

exposed rebar, and breakage. Depending on the degree of 

damage and construction conditions, it is difficult to select 

materials and specific construction methods. 

 

However, for one damage type inspected on the same bridge deck, 

several types of repair methods can be expected by the inspector. In this case, 

the author added a damage portion for each repair method, which is the ratio 

of the damage size for each repair method to the total damage size, along with 

the damage size for each repair method. Table 5.2 shows an example of the 

inspection records extracted for estimating damage size by repair method.
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Table 5.2 Example of inspection records for damage size estimation by repair method 

Bridge 

No. 

Bridge 

age 

Condition 

grade of 

deck 

(𝐶𝐺𝑡) 

Damage 

type 

Damage 

size 

(𝐷𝑆𝑡) 

Grouting Surface repair Section repair 

Damage 

size 

Damage 

portion 

Damage 

size 

Damage 

portion 

Damage 

size 

Damage 

portion 

000001 33 C Line-

Cracking 

(m) 

51.00 35.40 0.7 15.60 0.3 - - 

000039 25 C Line-

Cracking 

(m) 

9.23 9.23 1.0 - - - - 

000039 25 C Scaling 

(𝑚2) 

0.94 - - - - 0.94 1.0 

000148 28 C Line-

Cracking 

(m) 

0.60 - - 0.60 1.0 - - 

000095 33 C Segrega-

tion (𝑚2) 

0.75 - - - - 0.75 1.0 

032818 27 C Breakage 

(𝑚2) 

2.42 - - - - 2.42 1.0 

Note: damage portion means the ratio of the damage size for each repair method to the total damage size. 
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The collected data were then preprocessed based on data cleaning, 

integration, reduction, and transformation. In the data cleaning step, the 

author eliminated the inspection records with zero size of damage because it 

means that the damage size for all repair methods is zero. The damage size 

data expected by non-major repair methods (e.g., deck waterproofing repair) 

were also deleted to consider only the three major repair methods; the total 

damage portion for the three main repair methods became 1.0. The missing 

values of less than 20% in the numeric variables for bridge information were 

replaced with the median values of the variables. Next, the data within 

multiple data tables were integrated to make one dataset so that the data could 

be input for analysis. In the data reduction step, the author removed the 

variables with duplicate meanings (i.e., construction year, competent 

authority, and inspection year) and those with a high proportion of missing 

values (i.e., pavement area and deck rebar diameter).  

As a result of the preprocessing steps, the preprocessed datasets were 

constructed in tabular format for nine types of deck damage. The dataset for 

each type of deck damage contains 14 variables for general information, eight 

variables for structural information, and 13 variables for environmental 

information, as represented in Table 4.2. For inspection records, the dataset 

also includes nine variables, i.e., bridge age, condition grade of deck, damage 
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size, and damage size and portion by major repair methods (target variables), 

as represented in Table 5.2. 

 

5.1.2. Proposed Method: Data Exploration and Damage Portion 

Estimation 

This section explains the research method to estimate damage size for 

the three repair methods using the preprocessed dataset for nine types of deck 

damage. The author implemented data exploration to identify the data 

distribution according to the damage size and portion for the repair methods. 

When several repair methods were expected at the same time, a damage 

portion estimation model was developed to estimate the final damage size for 

each repair method. 

 

Data Exploration 

The data distribution according to the damage size for each repair 

method was explored using the preprocessed datasets for each type of deck 

damage. Table 5.3 describes the number of data, total damage size, and 

damage size by the major repair methods. Specifically, in spalling, scaling, 

corrosion of exposed rebar, and breakage, the expected repair method was 

only section repair. That is, the damage size for these four types of deck 
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damage was expected to be the damage size for section repair. For the 

remaining damage types, two main repair methods were expected at the same 

time. Among them, in area-cracking, leakage and efflorescence, and map 

cracking, surface repair accounted for more than 98% of the inspected 

damage size. Thus, the damage size for these three types of deck damage 

could be estimated as the damage size for surface repair. On the other hand, 

in line-cracking and segregation, none of the damage methods accounted for 

the overwhelming majority of the inspected damage size. Grouting and 

surface repair could be expected in line-cracking, and surface repair and 

section repair could be expected in segregation. 
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Table 5.3 Damage size distribution by repair method for nine types of deck 

damage 

Damage type # of 

data 

Total 

damage 

size 

Damage size by main repair method 

Repair method Damage size (ratio) 

Line-Cracking (𝑚) 508 24,980.50 Grouting 10,739.99 (43%) 

Surface Repair 14,056.92 (56%) 

Area-Cracking 

(𝑚2) 

525 44,191.62 Surface Repair 43,358.33 (98%) 

Section Repair 533.11 (1%) 

Leakage and 

Efflorescence (𝑚2) 

671 77,542.16 Surface Repair 75,931.46 (98%) 

Section Repair 1,610.70 (2%) 

Map Cracking (𝑚2) 415 67,290.57 Surface Repair 65,805.17 (98%) 

Section Repair 1,485.40 (2%) 

Spalling (𝑚2) 269 3,019.12 Section Repair 3,019.12 (100%) 

Scaling (𝑚2) 306 9,473.75 Section Repair 9,473.75 (100%) 

Segregation (𝑚2) 338 3,231.85 Surface Repair 1,552.00 (48%) 

Section Repair 1,679.85 (52%) 

Corrosion of 

Exposed Rebar 

(𝑚2) 

760 6,333.84 Section Repair 6,333.84 (100%) 

Breakage (𝑚2) 407 3,353.54 Section Repair 3,353.54 (100%) 

Note: ratio = ratio of the damage size for repair method to the total damage size. 

 

Next, the data distribution according to the damage portion for each 

repair method was explored for line-cracking and segregation where two 

repair methods could be expected. As shown in Figure 5.2 (a), in line-cracking, 

the damage portion for grouting and surface repair was distributed from zero 

to one. The data on line-cracking could be categorized into three classes; 

grouting class (‘grouting portion = 1.0’ and ‘surface repair portion = 0.0’), 

surface repair class (‘grouting portion = 0.0’ and ‘surface repair portion = 
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1.0’), and mixed class (‘grouting portion ≠ 0.0’ and ‘surface repair portion 

≠ 0.0’). In segregation, as shown in Figure 5.2 (b), the damage portion for 

surface repair and section repair was mainly distributed as zero or one. The 

data on segregation could be categorized into two classes; surface repair class 

(‘surface repair portion = 1.0’ and ‘section repair portion = 0.0’) and section 

repair class (‘surface repair portion = 0.0’ and ‘section repair portion = 1.0’). 

Table 5.4 shows the data distribution by damage portion class for line-

cracking and segregation.   

 

 

Figure 5.2. Damage portion distribution by repair method: (a) line-cracking; 

and (b) segregation 
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Table 5.4 Data distribution by damage portion class for line-cracking and 

segregation 

Damage type Total number 

of data 

Damage portion class # of data (ratio) 

Line-Cracking 

(𝑚) 

508 Grouting class 280 (55%) 

Mixed class 79 (16%) 

Surface repair class 149 (29%) 

Segregation 

(𝑚2) 

330 Surface repair class 32 (10%) 

Section repair class 298 (90%) 

Note: ratio = ratio of the number of data for damage portion class to the total 

number of data. 

 

Damage Portion Estimation Model Development 

In line-cracking and segregation, a model was developed to estimate 

damage portion for each repair method. According to the results of data 

exploration (Figure 5.2), the data on line-cracking and segregation could be 

categorized into two or three classes based on the damage portion for two 

repair methods. Thus, the damage portion estimation models were designed 

as described in Figure 5.3. Multi-class classification for line-cracking 

estimates the damage portion class (i.e., grouting class, mixed class, or 

surface repair class) (Figure 5.3 (a)), and binary-class classification for 

segregation estimates the damage portion classes (i.e., surface repair class or 

section repair class) (Figure 5.3 (b)). As discussed in Chapter 3 “Bridge 

Element Condition Estimation” and Chapter 4 “Bridge Damage Size 
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Estimation,” the author also utilized XGBoost algorithm, which showed the 

best performance in classification for tabular data, such as BMS data. 

 

 

Figure 5.3 Model design for damage portion estimation: (a) line-cracking; 

and (b) segregation 
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To develop each classification model, the preprocessed datasets for 

line-cracking and segregation were prepared as represented in section 5.1.1 

“Data Collection and Preprocessing.” Additionally, the author examined 

possible variable redundancies across the preprocessed data and removed one 

variable with a lower correlation with the target variable (i.e., damage portion) 

in the same way as described in Section 3.1.2 “Data preprocessing.” As a 

result of the redundant variable removal, the final data for line-cracking 

consisted of a total of 508 rows with 29 explanatory variables and one target 

variable (i.e., damage portion class), and the final data for segregation 

consisted of a total of 330 rows with 28 explanatory variables and a target 

variable (i.e., damage portion class), as listed in Table 5.5.    
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Table 5.5 Variables of the final dataset for damage portion estimation (line-

cracking and segregation) 

Damage 

type 

Concept Variable 

Line-

Cracking 

(𝑚) 

General 

information 

(10) 

Facility class, Region, Management agency, Total 

width, Height, Water depth, Maximum span length, 

Total size of deck, Main superstructure type, Design 

live load 

Structural 

information 

for deck (7) 

Deck waterproofing type, Deck thickness, Deck 

strength, Deck rebar strength, Deck rebar spacing, 

Deck pavement type, Deck pavement thickness 

Environ-

mental 

information 

(8) 

ADTT, Annual freeze-thaw frequency, Annual 

heatwave days, Summer average temperature, 

Summer precipitation, Winter precipitation, Summer 

average relative humidity, Winter average relative 

humidity 

Inspection 

records (4) 
Bridge age, Condition grade of deck (𝐶𝐺𝑡), Damage 

size (𝐷𝑆𝑡), Damage portion class* 

Segregation 

(𝑚2) 

General 

information 

(10) 

Facility class, Region, Management agency, Total 

width, Height, Water depth, Maximum span length, 

Total size of deck, Main superstructure type, Design 

live load 

Structural 

information 

for deck (7) 

Deck waterproofing type, Deck thickness, Deck 

strength, Deck rebar strength, Deck rebar spacing, 

Deck pavement type, Deck pavement thickness 

Environ-

mental 

information 

(7) 

ADTT, Annual freeze-thaw frequency, Annual 

heatwave days, Annual average temperature, Winter 

precipitation, Summer average relative humidity, 

Winter average relative humidity 

Inspection 

records (4) 
Bridge age, Condition grade of deck (𝐶𝐺𝑡), Damage 

size (𝐷𝑆𝑡), Damage portion class* 

Note: (*) = the target variable; and ADTT = average daily truck traffic. 
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The final data for line-cracking and segregation were then divided into 

training data (80%) and testing data (20%) in accordance with the data 

distribution by classes of the target variable. Next, in consideration of the 

severity of the data imbalance between the two or three classes in the training 

data, the data in the minority class were generated using borderline-SMOTE 

as described in Section 3.2.1 “Proposed Method: Comparison of 

Classification Algorithms.” To find the combination of parameters with the 

best performance for XGBoost in the classification model, the 

hyperparameters were then determined based on a grid search by using 5-fold 

cross-validation according to the grid search values described in Table 3.3. 

The performance for the cross-validation was measured with an average 

accuracy index for classification. Finally, the trained models with optimal 

hyperparameters were evaluated based on the weighted average F1 score 

achieved in testing. A detailed explanation of the classification model 

development using XGBoost is described in Section 3.2.1. The model was 

also developed by using the scikit-learn 0.24.2 and the xgboost 1.5 Python 

libraries. 
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5.1.3. Results and Discussions 

As a result of the classification model evaluation, the model for line-

cracking showed a weighted average F1 score of 0.802, and the model for 

segregation showed a weighted average F1 score of 0.938. Specifically, for 

line-cracking, it was difficult to show outstanding performance due to the 

small number of data despite the multi-class classification problem of 

estimating the one actual class of the three classes. For segregation, on the 

other hand, the difference in characteristics between the two classes was 

remarkable despite significant data imbalance between classes. For example, 

if the damage size of segregation was 100𝑚2 or more, the surface repair was 

expected to repair the damage. 

When line-cracking damage was estimated as a mixed class by the 

multi-class classification model, various combinations of grouting portion 

and surface repair portion could be distributed, as illustrated in Figure 5.2 (a). 

Thus, the author calculated the mean absolute error (MAE) of the model when 

considering the nine combinations of damage portion, which means the 

grouting portion from 0.1 to 0.9 (interval 0.1) and the surface repair portion 

from 0.9 to 0.1 (interval 0.1). According to the calculation results, the optimal 

damage portion with the least MAE among the nine combinations was 

determined as the representative damage portion in the mixed class. The MAE 
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in the damage portion estimation model is defined as the mean of the absolute 

value of the difference between the actual damage size for grouting and the 

predicted damage size for grouting. As a result, the model with the grouting 

portion of 0.4 and the surface repair portion of 0.6 in the mixed class had the 

least MAE, 0.161 (𝑚), as shown in Figure 5.4. The optimal damage portion 

in the mixed class was then determined to be 0.4 for the grouting portion and 

0.6 for the surface repair portion. It can be practically acceptable because the 

MAE, 0.161 (𝑚 ), for grouting means an average error of 14,000 won per 

bridge when converted into repair costs. 

 

 

Figure 5.4 Result of the optimal combination of damage portion in mixed 

class for line-cracking 
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Consequently, Table 5.6 represents an example of the testing results of 

the damage size estimation for line-cracking and segregation. In the first row 

of line-cracking, the damage portion class was estimated to be mixed class by 

the damage portion estimation model, and the damage portions of grouting 

and surface repair were estimated to be 0.4 and 0.6, respectively. When the 

damage size (51.00𝑚) was multiplied by the estimated damage portion, the 

damage size for grouting and surface repair was estimated to be 20.40𝑚 and 

30.60𝑚 , respectively. In the second row of segregation, for instance, the 

damage portion class was estimated to be section repair class by the damage 

portion estimation model, and the damage size of 0.60𝑚2 was estimated as 

the damage size for section repair.
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Table 5.6 Example of damage size estimation result by repair method 

Damage 

type 

Bridge No. Inspection 

year 

Condition 

grade 

Damage 

size 

Estimated damage size (damage portion) 

Grouting Surface Repair Section Repair 

Line- 

Cracking 

(𝑚) 

000001 2019 C 51.00 20.40 (0.4) 30.60 (0.6) - 

000039 2018 C 9.23 9.23 (1.0) - - 

000148 2019 C 0.60 - 0.60 (1.0) - 

Segregation 

(𝑚2) 

000005 2014 D 30.14 - 30.14 (1.0) - 

033130 2020 C 0.60 - - 0.60 (1.0) 

000179 2017 C 180.00 - 180.00 (1.0) - 
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5.2. Unit Cost Analysis by Repair Method 

Bridge maintenance practices have used unit cost by repair method 

estimated based on the market inflation rate and the standard construction cost 

in each country (Gordian 2022; MOLIT 2022a). For example, in South Korea, 

management agencies that perform repair construction have provided 

guidelines that introduce unit costs for bridge repair and reinforcement 

activities to estimate the repair cost and allocate the repair construction 

budget in each agency. However, since the unit cost differed depending on the 

repaired damage size, environmental effects on repair construction, and 

bridge specifications, the practices had a limitation in estimating accurate unit 

cost by repair method. In this section, therefore, the author aimed to identify 

the appropriate unit cost for each repair method by using the actual repair 

records collected from BMS. 

 

5.2.1. Data Collection and Preprocessing 

The BMS data for this section cover repair records collected from the 

KOBMS database to analyze unit cost by repair method. The repair records 

were accumulated through 2,970 repair constructions of 4,186 bridges in 

South Korea from 2012 to 2021. According to this dissertation scope, the 

author extracted the repair records of decks on 525 repair constructions of 701 
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concrete-girder bridges. The repair records include ‘repair construction 

start/end date,’ ‘bridge age,’ ‘repair method for deck,’ ‘repaired damage size,’ 

and ‘construction cost’ for each span of bridge. The unit cost by each repair 

method was calculated by dividing the construction cost by the repaired 

damage size. In addition, the author used the construction cost index to 

convert the unit cost by construction year into present value. The construction 

cost index is defined as an index that measures the price fluctuations of direct 

construction costs (including material cost, labor cost, and expense) for each 

month as of December 2014, which is announced by the KICT (KICT 2022a). 

Thus, ‘unit cost by repair method’ was derived by applying the ‘construction 

cost conversion index’ calculated as of December 2021, based on the 

construction cost index. Table 5.7 shows an example of the repair records 

extracted for analyzing unit cost by repair method. 
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Table 5.7 Example of repair records for unit cost analysis by repair method 

Bridge 

No. 

Span 

No. 

Repair  

construction  

end date  

(month/year) 

Bridge 

age 

Repair method Repaired 

damage 

size 

Construction 

cost 

(1,000won) 

CCCI Unit cost 

(1,000won) 

025657 1 12/2012 19 Section Repair (𝑚2) 0.50(𝑚2) 253 0.696 727.0(/𝑚2) 

028681 5 12/2018 6 Surface Repair (𝑚2) 26.87(𝑚2) 1,244 0.821 56.4(/𝑚2) 

010044 1 12/2017 26 Grouting (𝑚) 1.00(𝑚) 97 0.784 123.7(/𝑚) 

002618 4 11/2021 29 Surface Repair (𝑚2) 50.10(𝑚2) 4,588 0.996 91.9(/𝑚2) 

033679 1 06/2013 10 Section Repair (𝑚) 1.00(𝑚) 107 0.699 153.1(/𝑚) 

Note: CCCI = construction cost conversion index as of December 2021.
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The collected data also include bridge information, structural 

information regarding the deck, and environmental information with two 

types of traffic information affecting the unit cost, in the same way as 

described in Section 3.1.1 “Data Collection.” Among the data, the author 

extracted data for the 701 concrete-girder bridges with repair construction 

details in the repair records.  

The extracted data were then preprocessed based on data cleaning, 

integration, and reduction. In the data cleaning step, the unit cost data by non-

major repair methods (e.g., deck waterproofing repair) were deleted to 

consider only the three main repair methods. The author eliminated the repair 

records with too large construction costs that are considered recording errors 

of bridge managers. The repair records with fewer than two years of bridge 

age were also eliminated because they were considered repair records for 

defects during construction, not repair records for damages caused by use in 

the management stage. The missing values of less than 20% in the numeric 

variables for bridge information were replaced with the median values of the 

variables. Next, the data within multiple data tables were integrated to make 

one dataset so that the data could be input for analysis. In the data reduction 

step, the author removed the variables with duplicate meanings in the same 

way as described in Section 3.1.2 “Data Preprocessing.” For example, ‘repair 
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construction start/end date’ and ‘construction year,’ which were variables that 

had duplicate meanings with ‘bridge age,’ were removed because ‘bridge age’ 

is defined as the difference between ‘repair construction end year’ and 

‘construction year.’ ‘Construction cost’ and ‘construction cost conversion 

index,’ which were variables that had duplicated meanings with ‘unit cost,’ 

were also removed. The numerical variables with more than 20% missing 

values, such as ‘pavement area’ and ‘deck rebar diameter,’ were removed. 

As a result of the preprocessing steps, the preprocessed dataset for 

analyzing unit cost by repair method consisted of a tabular format with the 

repair records; i.e., repair method, repaired damage size, and unit cost (target 

variable), bridge information, and traffic information. The dataset was also 

composed of a total of 4,328 data on 491 repair constructions of 661 concrete-

girder bridges and a total repair construction cost of 24,059,237 thousand won. 

Table 5.8 lists the repair cost and the number of data by repair method. 
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Table 5.8 Repair cost distribution by repair method of deck 

Repair method Repair cost (1,000won) (ratio) # of data 

Grouting (𝑚) 483,112 (2.0%) 415 

Surface Repair (𝑚2) 17,672,418 (73.5%) 2,179 

Surface Repair (𝑚) 31,857 (0.1%) 22 

Section Repair (𝑚2) 5,871,850 (24.4%) 1,712 

Total 24,059,237 (100%) 4,328 

Note: ratio = ratio of the repair cost for the repair method to the total repair cost.    

 

In addition, the distribution of unit cost by each repair method was 

explored, as represented in Table 5.9. In all repair methods, the mean value 

was larger than the median value, and the data were widely distributed toward 

the larger value, as the histogram shown in Figure 5.5. Through the data 

distribution, the author confirmed that there was a limit to applying the 

representative unit cost (e.g., mean and median value) by repair method to all 

repair construction. 
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Table 5.9 Unit cost distribution by repair method 

Repair 

method 

# of  

data 

Mean SD Min Q1 Q2 Q3 Max 

Grouting 

(𝑚) 

415 108.3 52.2 42.6 75.8 85.5 130.3 307.8 

Surface 

Repair 

(𝑚2) 

2,179 143.8 54.3 7.0 112.7 136.8 158.9 837.2 

Surface 

Repair (𝑚) 

22 86.0 57.6 34.3 35.5 35.8 153.1 154.5 

Section 

Repair 

(𝑚2) 

1,712 606.5 374.1 9.6 411.8 530.9 702.2 3,866.4 

Note: SD = standard deviation; Q1=the first quartile (25%, lower quartile); Q2=the 

second quartile (50%, median); and Q3=the third quartile (75%, upper quartile). 

 

 

Figure 5.5 Unit cost distribution (histogram) by repair method 
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5.2.2. Proposed Method: Unit Cost Identification Based on the 

Influential Variable’s Similarity 

This section explains the research method to identify unit cost by the 

three repair methods using the preprocessed dataset. First, the author selected 

influential variables affecting the unit cost among several explanatory 

variables. Then, the expected unit cost by repair method was identified based 

on the unit cost in the case of having the same or similar values for the selected 

influential variables. The specific method is represented below. 

 

Influential Variable Selection  

To select influential variables that affect the unit cost for repair 

construction, an expert interview was conducted to apply empirical and 

substantive domain knowledge. The interviewees consisted of four industry 

practitioners in the areas of bridge operation and maintenance, KOBMS, and 

big-data analytics with more than 10 years of working experience. In the 

interview, the interviewees scrutinized the variables collected from KOBMS 

and considered repair construction specifications, environmental information 

on repair construction, and bridge information that could affect the bridge 

repair cost among these variables. They also suggested that the influential 

variable selection process needs to consider distinct characteristics of bridge 
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maintenance practice in South Korea and the type or range of variables 

covered by the KOBMS.  

 

Influential Variable’s Similarity Calculation 

The similarity between the input data and other data included in the 

dataset was calculated differently according to the types of the selected 

influential variables. Similarity for each categorical variable was defined as 

one if the category was the same and zero otherwise. For numerical variables, 

after the variables were scaled by min-max normalization, similarity for the 

scaled numerical variables was defined as the Euclidean distance (Han et al. 

2010; Lattin et al. 2003). Taken together, the similarity between the input data, 

𝑋𝑖𝑛 , and other data, 𝑋 , for the selected influential variables is given as 

Equation 5.1 and 5.2:  

 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑋𝑖𝑛,𝑋) = 𝐶1 × … × 𝐶𝑘 × {1 − √
1

𝑙
∑ (𝑥𝑛,𝑗

𝑖𝑛 − 𝑥𝑛,𝑗)
2𝑙

𝑗=1 }   (5.1) 

 

𝐶𝑖 = 1 (𝑖𝑓 𝑥𝑐,𝑖
𝑖𝑛 = 𝑥𝑐,𝑖) 𝑜𝑟 0 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)          (5.2) 
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where 𝑋𝑖𝑛 = (𝑥𝑐,1
𝑖𝑛 , … , 𝑥𝑐,𝑘

𝑖𝑛 , 𝑥𝑛,1
𝑖𝑛 , … , 𝑥𝑛,𝑙

𝑖𝑛 ) ; 𝑋 = (𝑥𝑐,1, … , 𝑥𝑐,𝑘, 𝑥𝑛,1, … , 𝑥𝑛,𝑙) ; 

𝑥𝑐,𝑖 = 𝑖-th categorical variable (𝑖 = 1, … , 𝑘); 𝑥𝑛,𝑗 = 𝑗-th scaled numerical 

variable (𝑗 = 1, … , 𝑙); and 𝐶𝑖 = similarity for 𝑖-th categorical variable (𝑖 =

1, … , 𝑘). The high similarity means that the values of the selected variables 

between the two data are very similar. 

Based on the calculated similarity for the influential variables, the unit 

cost of input data was estimated as the average unit cost of the 𝑁 data with 

the highest similarity. The author performed a sensitivity analysis to find the 

optimal number of similar data by repair method. When all data in the dataset 

were set as input data, a mean absolute error (MAE) between the actual unit 

cost and the estimated unit cost was calculated. 𝑁 with the lowest MAE was 

derived as the optimal value. 

 

5.2.3. Results and Discussions 

As a result of the expert interview for influential variables selection, 

first, ‘damage size’ and ‘management agency’ was selected regarding repair 

construction specifications. It was experientially known that the unit cost is 

lower as the repaired damage size is larger. ‘Management agency’ could also 

influence the repair construction cost since the management agencies have 
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different characteristics, such as the number of managed bridges, region, and 

repair construction experience.  

Second, environmental information on repair construction includes 

several factors, such as traffic information, weather information, and 

construction market conditions. The traffic information (i.e., ‘ADT’) was only 

selected because weather information is difficult to predict in bridge 

maintenance practice, and construction market conditions are not covered by 

the KOBMS. According to the interviewee in the area of bridge operation and 

maintenance, in practice, bridges with high traffic volume tended to have a 

high repair construction cost due to traffic control and construction delays.  

Last, among various types of bridge information in the KOBMS, the 

interviewees selected ‘bridge age,’ ‘bridge length,’ ‘height,’ and ‘main 

superstructure type’ as conventional bridge information used in bridge 

maintenance practice. In particular, the deck material is major information in 

the deck repair works, but it was excluded from this research since all 

concrete-girder bridges have RC or PSC decks. Consequently, the author 

selected five numerical variables and two categorical variables: ‘damage size,’ 

‘ADT,’ ‘bridge age,’ ‘bridge length,’ and ‘height’ for numerical variables and 

‘management agency’ and ‘main superstructure type’ for categorical variables. 
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The relationship between these seven influential variables and the unit 

cost by repair method was confirmed using the preprocessed dataset. Figure 

5.6 illustrates the unit cost distribution for surface repair according to the 

influential variables. The negative correlation between ‘damage size’ and the 

unit cost and the positive correlation between ‘ADT’ and the unit cost was in 

line with the expert interview’s result, as shown in Figure 5.6 (a) and (b). 

‘Bridge age’ and ‘bridge length’ represented a weak negative correlation with 

the unit cost (Figure 5.6 (c) and (d)), and ‘height’ showed a weak positive 

correlation with the unit cost (Figure 5.6 (e)). While examining the 

distribution of the unit cost by each category of the two categorical variables, 

the unit cost was low on average in Gyeonggi and Daejeon and high on 

average in Gangwon (Figure 5.6 (f)). Among the main superstructure types, 

PSCB had a high unit cost on average (Figure 5.6 (g)). 

 



149 

 

 

Figure 5.6 Unit cost distribution for surface repair according to seven influential variables: (a) damage size; (b) 

ADT; (c) bridge age; (d) bridge length; (e) height; (f) management agency; and (g) main superstructure type
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The author then conducted the sensitivity analysis (𝑁 = 1, … , 9) for 

three repair methods (i.e., grouting, surface repair, and section repair) using 

the seven influential variables and unit cost extracted from the preprocessed 

dataset. As a result, Table 5.10 represents the MAE according to 𝑁 by the 

three repair methods. The optimal 𝑁  was derived as three for grouting, 

surface repair, and section repair.  

 

Table 5.10 MAE by repair method according to the number of similar data  

N MAE by repair method (1,000won) 

Grouting (𝑚) Surface Repair (𝑚2) Section Repair (𝑚2) 

1 19.6 21.2 179.9 

2 15.7 17.7 173.6 

3 15.5* 16.6* 171.0* 

4 16.4 18.9 180.9 

5 16.6 19.7 186.2 

6 17.3 20.7 185.3 

7 18.6 21.5 192.7 

8 20.6 23.7 201.4 

9 22.2 24.3 205.1 

Note: N = # of similar data; and (*) = the MAE in the optimal N (the lowest MAE).  

 

To verify the research method for unit cost identification, the author 

calculated the error reduction rate to the standard deviation (SD). The MAE 

based on the research method was also compared with the MAE based on the 

baseline when the median value was expected as the estimated unit cost. Table 

5.11 provides the verification results of unit cost identification. The error 
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reduction rate to the SD was the largest in grouting and the smallest in section 

repair and showed an average of 64.7%. When compared to the baseline, the 

error reduction rate represented an average of 42.5%. Here, surface repair (𝑚) 

was excluded from the analysis due to the very small number of data, and the 

unit cost for surface repair (𝑚) was estimated by the mean value. 

 

 

Table 5.11 Verification results of unit cost identification 

Repair 

Method 

MAE* SD MAE based on 

the baseline 

ERR to the 

SD 

ERR to the 

baseline 

Grouting (𝑚) 15.5 52.2 33.6 70.3% 53.8% 

Surface 

Repair (𝑚2) 

16.6 54.3 35.4 69.5% 53.2% 

Section 

Repair (𝑚2) 

171.0 374.1 215 54.3% 20.5% 

Average    64.7% 42.5% 

Note: (*) = the MAE based on the research method; SD = standard deviation; and 

ERR = error reduction rate (%). 
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5.3. Calculation of Total Repair Cost 

Finally, the repair cost by repair method was calculated by multiplying 

the damage size and unit cost estimated in Section 5.1 “Damage Size 

Estimation by Repair Method” and Section 5.2 “Unit Cost Analysis by Repair 

Method.” The total repair cost at the individual bridge level (i.e., project level) 

was then estimated as the sum of the estimated repair costs for repair methods. 

Table 5.12 shows an example of a total deck repair cost estimation. For each 

bridge, the damage portion and size by repair method for nine types of deck 

damage were estimated, and the unit cost was identified based on the 

similarity between data for the selected influential variables. The total cost 

was estimated by adding up the repair cost by repair method. 
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Table 5.12 Example of total deck repair cost estimation 

Bridge 

No. 
𝑌𝑅𝑡+1 𝐶𝐺𝑡+1 Damage 

type 

Damage 

size 

Repair cost by repair method Total cost 
(1,000won)* Method Portion Size Unit cost 

(/1,000won) 
Cost 

(1,000won) 

025717 2023 C LC (m) 17.08 Grouting 0.4 6.83 81.5 556.6 10,344.5 

Surface Repair 0.6 10.25 86.0 881.5 

AC (𝑚2) 8.78 Surface Repair 1.0 8.78 102.0 895.6 

LE (𝑚2) 12.01 Surface Repair 1.0 12.01 102.0 1,225.0 

MC (𝑚2) 0.00 Surface Repair - - - - 

SP (𝑚2) 7.03 Section Repair 1.0 7.03 578.5 4,066.9 

SC (𝑚2) 0.00 Section Repair - - - - 

SG (𝑚2) 0.00 Surface Repair - - - - 

Section Repair - - - - 

CE (𝑚2) 4.70 Section Repair 1.0 4.70 578.5 2,719.0 

BR (𝑚2) 0.00 Section Repair - - - - 

Note: (𝑡 + 1) = future time to be repaired; 𝑌𝑅𝑡+1= year at (𝑡 + 1); 𝐶𝐺𝑡+1= condition grade of deck at (𝑡 + 1); LC = Line-

Cracking (𝑚); AC = Area-Cracking (𝑚2); LE = Leakage and Efflorescence (𝑚2); MC = Map Cracking (𝑚2); SP = Spalling 

(𝑚2); SC = Scaling (𝑚2); SG = Segregation (𝑚2); CE = Corrosion of Exposed Rebar (𝑚2); BR = Breakage (𝑚2); and (*) = 

cost as of December 2021.
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5.4. Summary 

For the third objective of this dissertation, which is to estimate bridge 

repair cost, this chapter provided a research process to calculate the repair 

cost according to the estimated damage size and unit cost by repair method 

using BMS data. To accomplish this objective, first, the author explored data 

distribution according to the damage size and portion by repair method for 

nine types of deck damage. Using line-cracking and segregation data that 

could be categorized into several classes based on the damage portion for two 

repair methods, classification models with XGBoost were then developed to 

estimate the damage portion by repair method. As a result of model evaluation, 

the model for line-cracking showed a weighted average F1 score of 0.802, 

and the model for segregation showed a weighted average F1 score of 0.938. 

Second, influential variables affecting the unit cost by repair method were 

selected by conducting an expert interview. The unit cost by repair method 

was then identified based on the similarity between data for the selected seven 

variables: ‘damage size,’ ‘ADT,’ ‘bridge age,’ ‘bridge length,’ ‘height,’ 

‘management agency,’ and ‘main superstructure type.’ The proposed research 

method showed an average error reduction rate of 64.7% compared to the 

standard deviation. Last, the total repair cost was calculated by multiplying 

the estimated damage size and unit cost by each repair method. 
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Chapter 6. Experimental Results and Discussions  

 

This chapter provides experimental processes, results, and discussions 

to verify and validate this study. The experiment aimed to conduct 

performance verification and validate the superiority in providing predictive 

maintenance information by comparison with existing approaches. The 

existing approaches include a practical method based on the estimated 

condition grade of deck and a repair cost estimation model on deck. The 

comparison focused on the types of predictive information and repair cost 

estimation performance. For the experiment, input data were collected for 100 

concrete-girder bridges widely distributed across Gyeonggi-do, Gangwon-do, 

Jeolla-do, and Gyeongsang-do. As illustrated in Figure 6.1, the data contain 

bridge information and inspection records with the latest inspection record for 

the deck in 2018 (𝑡) extracted from the KOBMS database and environmental 

information acquired from external databases. The author also collected 

inspection and repair records in 2020 (𝑡 + 1) for the 100 bridges as the ground 

truths from the KOBMS database. The results and discussions of the 

experiment using the input data and ground truths are explained in the 

following sections. 
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Figure 6.1 Description of input data for the experiment 

  



157 

 

6.1. Results of Performance Verification 

To verify the performance of the proposed methodology, the author 

derived the condition grade, damage size, and repair cost on each bridge deck 

expected in the next inspection (𝑡 + 1 = 2020) by putting the input data into 

the developed models, as shown in Figure 6.2. As a result, the condition 

grades and damage size were successfully estimated with a weighted average 

F1 score of 0.845 and an error reduction rate to the SD of 85.0%, respectively. 

The unit cost by each repair method for estimating deck repair cost was 

estimated with an error reduction rate to the SD of 64.2%. Finally, the repair 

cost based on the expected damage size and unit cost by repair method was 

estimated with an MAE of 6,996.3 thousand won compared to the ground 

truths (i.e., actual repair cost for each bridge’s deck). The estimation 

performance is about 20% of the average deck repair cost per concrete-girder 

bridge (35,104.8 thousand won) entered into the KOBMS and is similar to the 

section repair cost of 11𝑚2 deck based on the average unit cost of section 

repair (606.5 thousand won). 
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Figure 6.2 The estimation process based on the proposed methodology 

 

Table 6.1 shows the estimated results and ground truths for condition 

grade, damage size, and repair cost on deck in detail through three cases. In 

the case of ‘Case #1: Bridge No. 027148,’ the deck was estimated to be 

condition grade ‘C’ with damage such as map cracking and spalling. The 

damage size and unit cost for surface repair and section repair were estimated, 

respectively, and the final repair cost was then estimated at 1,787.1 thousand 

won. In the actual records (i.e., ground truths), although the deck was 
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inspected as condition grade ‘B’ with no repair-required damage in 2020, a 

5.0𝑚2 section repair work was performed with 1,655.4 thousand won, which 

had a very slight difference from the estimated one (131.7 thousand won). 

Meanwhile, in the case of ‘Case #2: Bridge No. 025132,’ the unit cost for 

each repair method was well estimated, but there was a considerable 

difference between the estimated and actual repair cost (about 60 million won) 

because the area-cracking size was underestimated. In the case of ‘Case #3: 

Bridge No. 031058,’ although the condition grade and damage size had a 

satisfactory estimation, the actual repair construction for the deck was not 

performed, resulting in a difference of more than 50 million won between the 

estimated and actual repair cost.
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Table 6.1 Estimated result and ground truth for condition grade, damage size, and repair cost of deck  

Case #1: Bridge No. 027148 

Category CG Damage size (Damage size) × (Unit cost) Repair 

cost 
(1,000won) 

LC AC LE MC SP SC SG CE BR Grouting Surface 

repair 

Section 

repair 

Estimated 

result 

C - - - 3.83 0.36 0.94 - 0.61 - - (3.83) 

×(228.0) 

(1.91) 

×(409.5) 

1,787.1 

Ground 

truth 

B - - - - - - - - - - - (5.00) 

×(357.4) 

1,655.4 

Case #2: Bridge No. 025132 

Category CG Damage size (Damage size) × (Unit cost) Repair 

cost 
(1,000won) 

LC AC LE MC SP SC SG CE BR Grouting Surface 

repair 

Section 

repair 

Estimated 

result 

D - 172.

78 

- - 8.55 - - 0.55 0.58 - (172.78)

×(115.2) 

(9.68) 

×(576.5) 

25,484.8 

Ground 

truth 

D - 606.

45 

- - 4.42 - - 3.65 0.98 - (766.00)

×(110.9) 

(1.00) 

×(506.5) 

85,479.4 

Case #3: Bridge No. 031058 

Category CG Damage size (Damage size) × (Unit cost) Repair 

cost 
(1,000won) 

LC AC LE MC SP SC SG CE BR Grouting Surface 

repair 

Section 

repair 

Estimated 

result 

C 11. 

55 

6.42 - 408.

18 

- - - 0.70 - (11.55) 

×(147.4) 

(414.60) 

×(124.0) 

(0.70) 

×(586.2) 

53,523.2 

Ground 

truth 

C 39. 

60 

0.45 - 344.

64 

- - - 0.84 - - - - 0.0 

Note: CG = condition grade of deck in 2020; LC = Line-Cracking (𝑚); AC = Area-Cracking (𝑚2); LE = Leakage and Efflorescence (𝑚2); 

MC = Map Cracking (𝑚2); SP = Spalling (𝑚2); SC = Scaling (𝑚2); SG = Segregation (𝑚2); CE = Corrosion of Exposed Rebar (𝑚2); BR 

= Breakage (𝑚2); and repair methods include grouting (𝑚), surface repair (𝑚), surface repair (𝑚2), and section repair (𝑚2).
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In addition, to demonstrate the expandability of the proposed 

methodology, the author conducted a case study to estimate predictive 

information about consecutive future points in time. Based on the current 

point in the input data (𝑡 = 2018), the condition grades, damage size, and 

repair costs on decks were estimated for the next six years until 2024. The 

past inspection history, which changes over time, was input into the expected 

condition grade and damage size at the last time. Figure 6.3 shows an example 

of estimation results for ‘Bridge No 027147.’ The condition grade was 

estimated to decline to grade ‘C’ after one year (Figure 6.3 (a)). As 

represented in Figure 6.3 (b), the author could confirm the damage pattern 

over time. Map cracking, scaling, and corrosion of exposed rebar were 

expected to be inspected after one year, and area-cracking and breakage were 

expected to be inspected after three years. After four years, it was expected 

that a large area of leakage and efflorescence would be inspected. Meanwhile, 

after five years, it was estimated that the damage size of corrosion of exposed 

rebar would increase rapidly instead of decreasing the size of leakage and 

efflorescence. A sharp increase in repair cost was estimated with an increase 

in damage size after four years (Figure 6.3 (a)). 
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Figure 6.3 Example of the estimation results for consecutive future points: 

(a) condition grade and repair cost; and (b) damage size 
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6.2. Superiority Validation for Predictive Bridge Maintenance 

6.2.1. Experimental Results of Existing Approaches 

The proposed methodology was compared with two existing 

approaches: a practical method based on deck condition estimation and a 

repair cost estimation model on deck. Each approach was developed using the 

KOBMS data and evaluated using the input data for the experiment. 

 

Practical method 

In the practical method, the future repair cost on each bridge element 

was calculated, as represented in Equation 6.1: 

 

𝑅𝑒𝑝𝑎𝑖𝑟 𝑐𝑜𝑠𝑡 = (𝑈𝑛𝑖𝑡 𝑟𝑒𝑝𝑎𝑖𝑟 𝑐𝑜𝑠𝑡) × (𝐸𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒) ÷ (𝐶𝐶𝐶𝐼) (6.1) 

 

where unit repair cost indicates an average unit repair cost according to the 

estimated condition grade on each element; and CCCI refers to the 

construction cost conversion index based on repair construction time. For the 

experiment, the future condition grade on deck was estimated by the element 

condition estimation model developed by the Seoul National University 

research team using the KOBMS data, and the unit repair cost was input based 

on the average values provided in Table 2.1. The calculated cost was then 
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converted into a repair cost as of December 2021 using the construction cost 

conversion index. As a result of the evaluation using the input data, the deck 

repair cost was estimated with an MAE of 26,603.1 thousand won compared 

to the ground truths. 

 

Repair cost estimation model on bridge element 

This dissertation developed a repair cost estimation model on deck 

using the KOBMS data collected in Section 5.2.1 “Data Collection and 

Preprocessing.” In the preprocessing process, the collected data were 

composed of a total of 837 data by summing up the deck repair costs at the 

bridge level. In order to consider the deck condition before repair, the author 

linked the condition grade of deck before each repair work to the collected 

data from the inspection records. In the data reduction step, the author 

removed the variables with duplicate meanings in the same way as described 

in Section 3.1.2 “Data Preprocessing.” As a result, the preprocessed dataset 

for estimating the future deck repair cost consisted of a tabular format with 

22 explanatory variables (13 numerical variables and nine categorical 

variables) and one target variable (i.e., deck repair cost). Table 6.2 lists the 

variables used in the model development.  
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Table 6.2 Variables of the final dataset for deck repair cost estimation 

Concept Variable 

General  

information (9) 

Facility class*, Management agency*, Deck Size, Total 

width, Height, Water depth, Main superstructure type*, Main 

substructure type*, Design live load* 

Structural  

information (8) 

Deck waterproofing type*, Deck thickness, Deck strength, 

Deck rebar diameter, Deck rebar spacing, Deck pavement 

thickness, Deck material*, Deck pavement type* 

Environmental 

information (1) 

Average daily traffic (ADT) 

Inspection records 

(2) 

Condition grade of deck before repair work*, Interval 

between inspection and repair 

Repair records (2) Bridge age, Deck repair cost** 

Note: (*) = categorical variable; and (**) = target variable. 

 

In the model development process, the author utilized XGBoost, which 

showed excellent performance for regression in Section 4.3.1 “Model 

Evaluation.” XGBoost was tuned using the preprocessed data according to 

the grid search, as provided by Table 3.3. At the same time, five-fold cross-

validation was conducted to find the optimal hyperparameter combination 

with the highest average accuracy. The model was then trained with the 

optimal hyperparameters: eight maximum depth, 5.0 minimum child weight, 

0.8 subsample, 0.6 colsample by tree, 0.0 gamma, and 0.5 learning rate. As a 

result of the model evaluation using the input data, the repair cost was 

estimated with an MAE of 11,925.5 thousand won compared to the ground 

truths.  
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6.2.2. Comparison Results and Discussions 

Table 6.3 shows the comparison results between the proposed 

methodology and existing approaches focusing on the types of predictive 

information and repair cost estimation performance for predictive 

maintenance. In terms of the types of predictive information, the proposed 

methodology provides the future condition grade, damage size, unit cost by 

repair method, and repair cost on deck at a future point. On the other hand, 

since the practical method utilizes the deck condition estimation model that 

has already been developed by the Seoul National University research team, 

the future deck condition can be provided, and the deck repair cost is 

estimated based on the estimated deck condition. A repair cost estimation 

model has limitations in estimating the deck condition and damage because it 

directly estimates the deck repair cost. In terms of the repair cost estimation 

performance, the proposed methodology showed the highest performance 

(MAE: 6,996.3), and the practical method showed the lowest performance 

(MAE: 26,603.1). Figure 6.4 illustrates an example of the estimation process 

and result comparison between the three approaches. In summary, compared 

to the existing approaches, the proposed methodology provided all estimated 

information about the deck condition, damage size, and repair cost and 

showed outstanding performance in estimating deck repair cost for predictive 
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maintenance. Specifically, it was confirmed that the proposed methodology 

had 73.7% improved performance compared to the practical method and 41.3% 

improved performance compared to the repair cost estimation model. 

 

Table 6.3 Comparison results between the proposed methodology and 

existing approaches 

Type of predictive 

information 

Proposed 

methodology 

Existing approach 

Practical method Repair cost 

estimation model 

Deck condition * (F1 score 0.845) **  

Damage size on 

deck 

* (ERR 85.0%)   

Unit cost by 

repair method 

* (ERR 64.2%)   

Deck repair cost *  

(MAE: 6,996.3) 

*  

(MAE: 26,603.1) 

*  

(MAE: 11,925.5) 

Note: (*) indicates the approach provides the predictive information; (**) indicates 

the predictive information is provided by the model that has already been developed; 

F1 score = weighted average F1 score; and ERR = error reduction rate to the SD. 
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Figure 6.4 Example of the estimation processes and results for the proposed 

methodology and existing approaches  
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6.3. Industrial Applications 

The experimental results showed that the proposed methodology had 

superior performance in estimating specific information (i.e., the condition 

grades, damage size, and repair cost) on bridge elements for predictive 

maintenance compared to the existing approaches. Through the developed 

methodology, the damage size and unit cost by repair method at a future time 

when maintenance will be performed can be estimated in detail. In line with 

the construction cost calculation method, the repair costs on elements 

estimated based on this information can be more concrete and precise than 

the estimated costs in practice. 

The predictive information can be used as a basis for bridge managers 

to prepare details and costs for repair works in advance and establish a 

reasonable repair plan, including repair methods, priorities, and budgets. 

Bridge managers can also obtain a reasonable range for damage size and 

repair costs that may occur on bridge elements in the future from the 

predictive information. This can also help restrict unnecessary repair 

activities and prevent exorbitantly high repair costs in bridge maintenance 

practice. 

In addition, it was confirmed that the developed methodology could 

estimate the condition, damage size, and repair cost on bridge elements for 
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consecutive future points in time. This predictive information can be utilized 

by managers to examine element deterioration patterns in the mid to long-

term rather. It can also help managers plan efficient repair times and costs by 

providing information on future points when a sharp increase in repair costs 

is expected. The change in damage size over time can be useful for 

discovering the patterns by types of damage, such as the rate of increase in 

damage size and the relationship between damage types. 
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Chapter 7. Conclusions 

 

This chapter summarizes and discusses the objectives, achievements, 

and contributions of this research. Recommendations for future research are 

also provided. 

 

7.1. Summary of Research Objectives and Achievements 

The primary objective of this research presented in this dissertation was 

to provide bridge managers with integrated predictive maintenance 

information based on element condition, damage size, and repair cost 

estimation. To accomplish this objective, the specific objectives were (1) 

bridge element condition estimation based on outstanding algorithm selection 

and influential variables identification to provide information on where to 

undertake repair, (2) bridge damage size estimation on elements through a 

comparison of the regression model and the classification model to provide 

information on how much repair-required damage there will be, and (3) 

bridge repair cost estimation on elements according to damage size and unit 

cost by repair method to provide information on what the repair cost will be. 

To address the research objectives, this research achieved the results and 

findings as follows: 
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(1) The author developed an optimized model to estimate bridge 

elements’ condition by utilizing the outstanding algorithm and the 

influential variables. XGBoost was selected as the optimal algorithm, 

and ‘bridge age,’ ‘first past condition grade of deck,’ ‘ADT,’ ‘annual 

freeze-thaw frequency,’ ‘bridge length,’ and ‘total width’ were 

explored as representative influential variables. The optimized model 

showed satisfactory performance with an average weighted average 

F1 score of 0.876 and an average AUC of 0.840. 

 

(2) The author developed and compared regression and classification 

models using XGBoost and DNN to estimate repair-required damage 

size by type of element’s damage. As a result of model evaluation, the 

regression model with XGBoost showed the best performance with 

an error reduction rate of 84.3% to the standard deviation. Although 

the regression model had superior performance, the author also found 

that the classification model had lower model complexity and higher 

robustness to outliers than the regression model. 

 

(3) To estimate damage size by repair method, the author explored data 

distribution according to the damage size and portion by repair 
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method and then developed classification models using XGBoost to 

estimate the damage portion by repair method. The models showed a 

weighted average F1 score of 0.802 and 0.938 for respectively line-

cracking and segregation of deck. To identify unit cost by repair 

method, influential variables affecting the unit cost were selected by 

conducting an expert interview, and the unit cost was expected based 

on the similarity between data for the selected seven variables (i.e., 

‘damage size,’ ‘ADT,’ ‘bridge age,’ ‘bridge length,’ ‘height,’ 

‘management agency,’ and ‘main superstructure type’) The total 

repair cost could be calculated by multiplying the estimated damage 

size and unit cost by repair method. 

 

To validate the proposed methodology, the author implemented the 

experiment to conduct performance verification and demonstrate the 

superiority in providing predictive maintenance information by comparing 

with existing approaches. The proposed methodology could estimate 

predictive maintenance information (i.e., the condition grade, damage size, 

and repair cost on bridge elements) in line with the construction cost 

calculation method. In estimating deck repair costs, 73.7% and 41.3% 

performance improvement was shown compared to the practical method and 
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the repair cost estimation model, respectively. Consequently, the research 

methodology enabled predictive bridge maintenance to respond to future 

maintenance demand in advance by estimating element condition, repair-

required damage size, and repair cost.  
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7.2. Research Contributions 

The main contributions of this research include the following: (1) 

determining three specific types of information about predictive bridge 

maintenance; (2) identifying data-driven approaches that fit the BMS data to 

derive three specific types of information; (3) utilizing predictive information 

for bridge managers in bridge maintenance practice, and (4) reducing bridge 

life-cycle costs and realizing a safe society. This research specifically 

contributed to the body of knowledge by doing the following: 

 

(1) This research determined three specific types of predictive 

maintenance information about a future time—where to undertake 

repair, how much repair-required damage there will be, and what the 

repair cost will be—for predictive bridge maintenance, according to 

the construction cost calculation method. The information supports 

bridge managers in making maintenance decisions to respond to 

future maintenance demands ahead of time. 

 

(2) This research identified data-driven approaches for element condition, 

damage size, and repair cost estimation to derive these three types of 

predictive information. For each step of the proposed methodology, 
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the author developed an estimation model with an optimal algorithm 

and combination of variables that fit BMS data. The proposed 

methodology provides bridge managers with predictive information 

that integrates the three types of information estimated by the 

developed models. 

 

(3) In bridge maintenance practice, utilizing predictive information 

enables bridge managers to maintain proper bridge condition by 

proactively preparing for future condition, damage, and repair works 

on bridge elements (e.g., details and costs based on the damage size 

and unit cost by repair methods). In addition, bridge managers can 

obtain from the predictive information a reasonable range for damage 

size and repair costs that may occur on elements in the future. This 

can help restrict unnecessary repair activities and prevent exorbitantly 

high repair costs in bridge maintenance practice. 

 

(4) This research assists in reducing bridge life-cycle costs by 

discovering influential factors that affect the bridge condition and 

damage in the management field and reflecting them in the bridge’s 

life-cycle (i.e., design, construction, and management). It eventually 
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contributes to making society safer by preventing bridge safety 

accidents through predictive maintenance. 

 



178 

 

7.3. Recommendations for Future Research  

Even so, there are still opportunities for improvements and future 

research that would further enhance this research. In order to validate the 

further applicability and improve the performance of this research, the 

recommendations for future research should be followed: 

 

(1) To improve the performance of this research, additional data should 

be accumulated in the BMS database and used for data analysis and 

model training. In particular, it was confirmed that the insufficient 

number of data at the damage level and the biased data distribution 

(e.g., damage size distribution biased toward small values) adversely 

affected the model performance; thus, a large amount of evenly 

distributed data can help improve the model performance. 

Furthermore, enhancing the collected data’s reliability by 

supplementing the collection and verification systems for BMS data 

helps improve the developed model's performance and practical 

applicability. In addition, this research had limitations in directly 

considering the repair history to estimate element condition and 

damage size. The model’s reliability can be improved by linking 

inspection and repair records and utilizing the repair information as 
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an explanatory variable for estimating element condition, damage 

size, repair cost. 

 

(2) To validate the further applicability of this research, additional 

research should be conducted to expand the research scope. The 

proposed research methodology can be applied to several bridge types 

(e.g., steel bridges), other bridge elements (e.g., girder and pavement), 

and BMS data from other countries. Specifically, comparing the 

model performance by region or country and examining which 

characteristics cause performance differences can suggest practical 

insights for bridge maintenance to managers. Furthermore, the 

proposed methods can be utilized to other urban infrastructures (e.g., 

tunnels and a water distribution system). This will enable predictive 

maintenance across various types of infrastructures by providing 

managers with information such as condition, repair-required damage 

size, and repair cost by component.  

 

(3) To improve practical applicability, the author recommends future 

research to establish a smart bridge management system in which the 

proposed research framework is implemented. In the system, the 
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bridge information, inspection records, and repair records 

accumulated in the BMS database can be automatically collected and 

preprocessed at the level of the bridge, element, and damage, and 

environmental information can be updated by linking with external 

databases. The system can utilize the preprocessed data to estimate 

element condition, damage size, and repair cost at a specific future 

time set by the bridge manager and enables preemptive notification 

of such predictive information. 3D modeling and object-based 

building information modeling can also help with the ease of 

information storage and visualization. 
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국문 초록 

 

교량의 스마트 유지관리를 위한  

부재상태, 손상크기, 보수비용 추정  

 

장태연 

 

서울대학교 대학원 

건설환경공학부 

 

교량을 적절한 상태로 유지하기 위해, 관리자는 각 부재의 

상태와 손상을 주기적으로 점검하고 예산 내에서 알맞은 유지보수 

계획을 수립한다. 이 과정에서 공사 물량과 단가의 곱으로 

정의되는 건설공사비 계산 방법을 고려할 때, 구체적으로 어떤 

부재에서 얼마나 많은 손상에 대한 보수가 필요한지 아는 것은 

중요하다. 그러나, 부재 손상의 양상은 공용년수, 제원, 최근 

점검이력 등 교량의 특성에 따라 다양하게 나타나기 때문에, 

유지보수가 수행될 미래 시점에서 보수가 필요한 손상의 크기와 

보수비용을 확인하는 데에 어려움이 있다. 따라서, 교량 

관리자에게 유지보수가 수행되는 특정 미래 시점에서의 세 가지 

예측 정보(‘어떤 부재를 보수해야 하는지’, ‘보수가 필요한 손상이 
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얼마나 있는지’, ‘보수하는 데에 얼마의 비용이 드는지’)를 

제공하는 것은 필요하다. 이를 위해 다수의 연구에서는 

교량유지관리시스템 데이터를 활용하여 교량의 향후 부재상태와 

손상의 발생여부 및 심각도를 추정하고 향후 보수비용을 분석했다. 

기존 연구의 성과에도 불구하고, 향후 예상되는 손상크기에 

기반하여 정확한 보수비용을 추정하는 데에는 여전히 한계점이 

존재한다.  

 

이를 해결하기 위해, 본 연구는 교량 부재상태, 손상크기, 

보수비용 추정에 기반하여 관리자에게 스마트 유지관리를 위한 

예측 정보를 제공하고자 한다. 첫 째로, 교량정보, 환경정보, 

점검기록을 활용하여 최적 알고리즘 선택 및 영향변수 도출에 

기반한 최적의 교량 부재상태 추정모델을 개발한다. 둘 째로, 

보수가 필요한 손상크기를 추정하기 위해 교량정보, 환경정보, 

손상점검내역을 활용하여 분류모델과 회귀모델을 구축하고 

비교한다. 셋 째로, 예상되는 손상에 대한 보수비용을 추정하기 

위해 교량정보, 환경정보, 손상점검내역, 보수공사내역을 활용하여 

보수 공법별 손상크기와 단가를 추정하는 방법을 제안한다. 

 

제안된 방법론을 검증하기 위해 본 연구는 추정 가능한 

정보의 유형 및 모델 성능 측면에서 기존 방법들과의 비교 분석을 

수행했다. 검증 결과, 제안된 방법론은 스마트 교량 유지관리를 
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위해 필요한 세 가지 예측 정보를 구체적으로 제공할 수 있으며 

보수비용을 더 정확하게 추정할 수 있음을 확인했다.  

결론적으로, 본 논문은 교량의 스마트 유지관리를 위한 

부재상태, 손상크기, 보수비용 추정 방법론을 제안했다. 특히, 본 

연구는 교량 관리자의 유지보수 의사결정을 지원하기 위한 세 

가지 예측 정보를 정의하고, 이러한 정보를 도출하기 위해 

교량유지관리시스템 데이터에 잘 맞는 데이터 기반 접근법을 

제안했다. 이는 교량의 스마트 유지관리 및 예방적 유지관리에 

있어 구체적인 손상크기를 추정하고 공법별 손상크기와 단가를 

활용해 향후 보수비용을 제공하는 것에 대한 선구적인 시도이다. 

제안된 방법론은 교량 유지관리 실무에서 부재의 상태 저하와 

손상을 사전에 파악하고 보수조치를 준비함으로써 교량을 적절한 

상태로 유지하는 데에 도움을 줄 수 있다. 또한 교량 관리자에게 

향후 발생할 수 있는 손상크기와 보수비용의 합리적인 범위를 

제공하여 불필요한 보수공사나 과도한 보수비용을 제한하는 데에 

활용될 수 있다. 궁극적으로 본 연구는 교량의 생애주기 비용 

감소와 안전한 사회 구현에 기여할 것이다.   

 

주요어: 시설물 유지관리; 스마트 유지관리; 교량유지관리시스템; 

상태 추정; 교량 손상크기; 교량 보수비용; 보수공법별 단가; 

데이터 기반 접근법 
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