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Abstract 

Assessment of Facility-level Interventions for 

Infection Management under Pandemic 

 

Inseok Yoon 

Department of Architecture & Architectural Engineering 

The Graduate School  

Seoul National University 

 

 

In facility management, many efforts have been made to improve facility 

serviceability and safety risk management capability to ensure safety and 

comfort in indoor spaces. Since the COVID-19 outbreak in late 2019, the 

response to the pandemic has become a new challenge in facility 

management. Our society had implemented various types of non-

pharmacological intervention(NPI) to minimize the spread of COVID-19 

infection. For the scientific approach, pedestrian simulation has been applied 

to various types of facilities in numerous previous studies. However, it had 

little consideration for the reliability of simulation results in the following 

two points: (a) validity of simulation model in reproducing occupants’ social 

distancing behavior and (b) validity of infectious transmission risk metrics 
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for assessment of NPIs. To address these issues, this study aims to improve 

simulation-based NPI assessment method by solving these limitations. To 

this end, this study (a) investigated the validity of the social force 

model(SFM) under a pandemic with human trajectory data and (b) conducted 

a comparative evaluation of transmission risk metrics with correlation 

analysis. The analysis results showed the Pandemic-SFMs (reflecting social 

distancing behavior) outperformed the Basic-SFM in a pandemic situation, 

which implicates the importance of consideration of social distancing 

behavior. Also, this study revealed the applicable transmission risk metrics 

according to disease and building characteristics.  

Based on these findings, simulation experiments are conducted to assess 

the effectiveness of facility-level NPIs in the educational building. Through 

the experiment, this study identified the priority of various types of possible 

facility-level interventions. Also, the author presented two expected 

applications for transmission risk management: policy mix and superspreader 

identification. The main contributions of this research include the following: 

(1) identification of performance improvement through social distancing 

behavior modeling to reproduce pedestrian flow during a pandemic (2) 

identification of transmission risk metric applicability according to the 

pedestrian environment and disease characteristics (3) development of 

simulation-based transmission risk assessment tool and process for facility 

management to respond pandemic (4) proposition of facility-level 

interventions through the effectiveness analysis in the educational building. 

 

Keywords: Facility Management; Social Force Model; Agent-based Model; 

Transmission Risk; Social Distancing; Pandemic 

Student Number: 2016-21076 
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Chapter 1. Introduction 

1.1 Research Background 

In facility management, many efforts have been made to improve 

facility serviceability and safety risk management capability to ensure the 

safety and comfort of indoor people(Vermuyten et al. 2016). In particular, 

safety issues such as fire, terrorist attacks, and crowd disasters (e.g. panic 

stampedes) can lead to many casualties in indoor spaces with high population 

density. To respond to this, research related to the indoor space design or 

crowd management has been conducted. Terrorist attacks at the Bataclan 

theatre in Paris and the station nightclub stampede in Rhode Island, implicate 

the need for developing good crowd management and safety risk response 

procedures(Ibrahim et al. 2019). Managers can promote a safe facility 

environment by changing the pedestrian flow or the facility layout.  However, 

there are needs methods to assess the effectiveness of these strategies. To 

address these issues, many researchers used simulated pedestrian dynamics 

to design safety management strategies through pedestrian behavior analysis 

in the facility. The pedestrian flow within the building can be reproduced 

through simulation. Therefore, policy experiments can be performed by 

adjusting model variables related to pedestrian flow such as the number of 
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people and the movement plan. To this end, pedestrian simulation can 

provide implications about planning control strategies for facility managers. 

Furthermore, in case of a dangerous situation, the simulation approach is 

more efficient because it is hard to collect data or conduct real-world 

experiments. 

Since the COVID-19 outbreak in late 2019, the response to the pandemic 

has become a new challenge in facility management. Indoor space is more 

vulnerable to transmission because the possibility of significant overcrowded 

conditions over space and time could amplify the possibility of prolonged 

contact with infected occupants. The health authorities have implemented 

various types of non-pharmacological intervention(NPI) to minimize the 

spread of COVID-19 infection, due to the delay of pharmaceutical 

intervention development such as vaccines and treatment. They encouraged 

social distancing and personal hygiene rules compliance to reduce the spread 

of infection. Furthermore, NPI has been seen as an effective measure to 

respond to pandemic situations (Bo et al. 2021; Brauner et al. 2021). 

However, due to the prolonged pandemic, socio-economic damage to society 

has been intensifying. Many researchers have revealed the economic impact 

of Covid-19 such as sales activity disruption(Meyer et al. 2022)  and 

unemployment rate increase(Falk 2020). Also, social and psychological 

issues are reported such as learning loss(Loades et al. 2020) and social 
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isolation because of the facility closure policy(Engzell et al. 2021). 

Therefore, health authorities have recommended and implemented step-

by-step reopening policies, which apply restrictions on indoor spaces 

according to their transmission risk. For example, UNICEF recommends that 

in deciding whether to reopen schools, indoor population density (e.g. 

classroom capacity) should be taken into consideration(UNICEF 2020). The 

Korea Disease Control and Prevention Agency recommends taking into 

account factors such as indoor population density and occupancy time(Korea 

Disease Control and Prevention Agency 2021). However, there is difficulty 

in evaluating the risks of spread using these factors. Quantitative assessment 

of the transmission risk is necessary not only for deciding the level of 

restrictions on indoor facilities but also for designing appropriate response 

strategies. To this end, the importance of a scientific approach to identifying 

ineffective NPIs is emphasized to minimize the social cost (Lipton and de 

Prado 2022; Panneer et al. 2022).  

To address these issues, pedestrian simulation has been applied to 

various types of facilities such as schools(Woodhouse et al. 2021; Zafarnejad 

and Griffin 2021), airports(Alam et al. 2022), restaurants(Sparnaaij et al. 

2022), and hospitals(Wang et al. 2022). In particular, pedestrian simulation 

is a suitable method for facility-level transmission risk analysis because it 
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can reproduce pedestrian movement in an indoor space through modeling. 

Zafarnejad and Griffin tested the effectiveness of class scheduling, adjusting 

class duration and change ventilation system for school management. Alam 

et al assessed how the social distancing strategies can reduce the transmission 

risk in the airport. Sparnaajj et al suggested the activity schedule for both 

customers and staff at a restaurant through the agent-based model. Through 

the simulation, there have been efforts to understand the infection 

transmission process and estimate the effect of the policy by comparing the 

risk of transmission before and after applying the NPI.  
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1.2 Problem Description 

Even before Covid-19, Numerous studies had been conducted to analyze 

the process of infection transmission and how to prevent the spread of the 

disease. However, after Covid-19 had an unprecedented and significant 

impact on various members of society, researchers in various fields have 

made efforts to find how we can respond to pandemics from a broader 

perspective. As described in the research background, simulation has been 

treated as an important method to researchers because it is difficult to conduct 

research in real-world or laboratory environments. Especially in facility-level 

intervention assessment, pedestrian simulation has advantages in modeling 

occupants’ behavior in indoor space which affect the spread of diseases. One 

common approach to simulation modeling is to create a mathematical model 

of the disease transmission dynamics and to use this model to predict the 

spread of the disease under different scenarios. The model can be calibrated 

using data from previous outbreaks or from the current outbreak, and can be 

used to explore the impact of different NPIs on the spread of the disease. 

However, these approaches can only provide estimates of the potential 

impact of social distancing measures. Factors such as human behavior, 

changes in the spread of the diseases, and unforeseen events can all impact 

the accuracy of the simulation results. Pedestrian simulation can be an 
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alternative to overcome these limitations. 

Previous studies based on pedestrian simulation generally evaluated the 

transmission risk of buildings and the effectiveness of interventions through 

the following process (Alam et al. 2022; Islam et al. 2021; Lee and Ahn 2021; 

Xiao et al. 2022): (1) modeling occupants’ behavior in the building (2) 

calculation of transmission risk metric (3) comparing the effect of various 

types of non-pharmaceutical interventions. These approaches provide a 

framework for scientific analysis of the transmission risk and establish a basis 

for policy assessment for the pandemic response. However, there are still 

research gaps in simulation-based analysis processes to assess transmission 

risk. Through this study, the author states the following problems. 

1. Validity of social distancing behavior in simulation: 

Previous studies utilized pedestrian simulation models to simulate 

building users’ movement. In particular, social force models (SFMs) have 

been most widely used for simulating building occupants’ behavior in various 

contexts including user evacuation and route optimization(Taherifar et al. 

2019). Since the outbreak of COVID-19, several studies also utilized SFMs 

to simulate building users’ behavior and evaluate the risks of virus 

transmission in indoor spaces based on contact duration and frequency 

observed in simulations(Alam et al. 2022; Bouchnita and Jebrane 2020; Lee 
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and Ahn 2021). These studies shed some light on how much different facility 

management strategies can reduce the transmission risk of the virus.  

As shown in Figure 1-1, the pedestrian movement affects the pedestrian 

flow of the crowd. These changes can be measured through model variables 

such as walking density and speed. Based on these results, metrics for facility 

management can be calculated (e.g. transmission risk). However, due to 

social distancing behaviors, however, pedestrian flow patterns in a pandemic 

situation can be different from that in a non-pandemic situation.  Therefore, 

social distancing behavior should be reflected in pedestrian behavior models 

when using them to assess transmission risk in indoor spaces more accurately 

through simulation. There were some attempts to modify several parameters 

of SFMs to reflect people’s social distancing behavior, and in that regard, 

SFMs can be grouped into two categories: 1) the original SFM which was 

first proposed by Helbing (hereafter Basic-SFM)(Helbing and Molnár 1995) 

and 2) the modified versions of Basic-SFM to reflect social distancing 

behaviors (hereafter Pandemic-SFM(Bouchnita and Jebrane 2020; Xiao et al. 

2022). However, real data-based validation of such modified models has been 

limited, compared to the Basic-SFM, and, as a result, confidence in the 

simulation results about indoor transmission risks based on Pandemic-SFMs 

has been limited.   
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Figure 1-1 Impact of social distancing behavior on pedestrian dynamics 

2. Validity of metrics for transmission risk for assessment of non-

pharmaceutical interventions:  

The second problem related to the existing simulation-based NPI 

evaluation method in this study is about the risk metric. Pedestrians have 

three states in simulation-based infection analysis: susceptible state, exposed 

state, and infected state, as shown in Figure 1-2. During the simulation 

process, the state of each pedestrian changes and the disease spread can be 

analyzed. Transmission risk can be quantified based on the simulation results, 

and the metrics used by previous studies can be divided into three main 

categories. 1) Infection-based metric: metrics based on the number of 

infected people (He et al. 2020; Teng et al. 2022) 2) Contact-based metric: 

The degree of contact within a certain distance (Alam et al. 2022; Lee and 

Ahn 2021) 3) Network-based metric: metrics based on network theory 

(Gunaratne et al. 2022; Pinheiro et al. 2021). If all of these indicators are 
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strongly correlated, the same result is reached matter regardless of which 

metric is used. However, if each metric has a low correlation, the 

interpretation of research results may depend on the metric. This fact 

emphasizes the necessity of analysis and discussions of relationship between 

metrics. In engineering research, it is common situation that there are 

different types of metrics to represent one concept(Balal et al. 2019; 

Farahmandfar and Piratla 2018). In this case, it is important to analyze the 

relationship between metrics. This is because the metric can produce 

conflicting results even for the same situation, and the conclusion of the 

research may differ depending on which metric is used to interpret it. 

However, there are lack of study address these kinds of issues in transmission 

risk analysis in pandemic. This is an important knowledge gap in analyzing 

the effect of NPI by calculating the risk of transmission. To address these 

issues, this study state the following two research questions: 

1) To what extent the common transmission risk metrics are statistically 

correlated with each other? 

2) Will the use of different metrics lead to different results in NPI 

effectiveness assessment? 
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Figure 1-2. Transmission Risk Metrics for NPI Assessment 
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1.3 Research Objectives and Scope 

 Pedestrian simulation is an important methodology to evaluate the 

transmission risk in indoor spaces and to assess the effectiveness of the 

facility-level intervention. However, as mentioned in the previous section, 

the body of knowledge related to exiting methodologies has two limitations. 

This further reduces the reliability of NPI assessment research results based 

on these methodologies. To address the above-mentioned issues, the goal of 

this research is to improve the simulation-based transmission risk assessment 

method in a pandemic. To achieve this goal, existing methods are verified 

and improved from the perspective of social force model and transmission 

risk. To this end, the effectiveness of NPIs that can be applied to school are 

compared and analyzed to propose the policy for facility managers. A 

detailed description of the research objectives as follows. 

1. To verify whether existing pedestrian simulation models – specifically 

social force models – can reproduce social distancing behaviors in indoor 

spaces during a pandemic: 

The author conducted the verification by comparing the performances 

of the simulation models with trajectory data in an indoor space. For the 

trajectory data acquisition, we use videos of corridors at Texas A&M 
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University recorded between 20 and 28 September 2020. We selected SFMs 

for our verification because they are the most widely used pedestrian 

simulation models in recent studies that analyze the risks of infection and 

transmission of COVID-19 and in pedestrian simulation software. SFMs can 

be grouped into two categories: 1) the Basic-SFM which was first proposed 

by Helbing and 2) some modified versions of Basic-SFM to reflect social 

distancing behaviors. Our results provide an important insight for modeling 

pedestrian flow dynamics that reflects social distancing behaviors in 

pandemic situations, which thereby also contributes to improving the 

reliability of simulation methodology in assessing transmission risk of 

infectious diseases in indoor facilities.  

2. To evaluate the metrics for transmission risk through correlation 

analysis with the pedestrian simulation:  

The author investigated which transmission risk metrics are most 

applicable in which situation with data acquired from the simulation 

environment data. To this end, this study developed an agent-based model 

that can implement various environments and derive various types of metrics. 

An agent-based model is a computer simulation that involves multiple 

autonomous agents interacting with each other and their environment to 

achieve a certain goal or set of goals. To generate various situations, the 

author set two categories of environment variables: disease characteristics 
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and pedestrian flow characteristics. Then, the correlation analysis is 

conducted between simulation results from infection-based metrics and other 

metrics: contact-based metric (exposure time), and network-based metrics 

(degree centrality, betweenness centrality, and closeness centrality). Based 

on the results, the author answered the following question: (a) what 

environments do the metrics produce contrasting results (b) how the 

contrasting results can be interpreted for transmission risk assessment. 

3. To assess facility-level interventions in the educational building based 

on social distancing behavior modeling and tested metrics in this study 

The effects of non-pharmaceutical interventions are analyzed based on 

the investigation of social distancing modeling and transmission risk metrics 

performed in the previous chapters. As first addressed in problem description, 

social distancing behaviors have to be reflected in analysis to improve the 

reliability of pedestrian simulation-based transmission risk assessment. Also, 

as secondly addressed in problem description, the priority of NPI should be 

determined by considering the features of various types of transmission risk 

metrics. The author addressed these issues by developing an agent-based 

simulation model for educational facilities with Anylogic software. First, the 

author represented the social distancing behavior with the functions of social 

distancing in Anylogic software. Second, as in Chapter 4, the author 
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developed a model that can derive the network-based metrics based on the 

contact matrix as simulation results. Through the developed model, this study 

identified whether the spatial and temporal interventions are practically 

effective and which interventions are most effective. The target interventions 

are as follows: (a) staggered schedule (b) adjusting breaktime (c) movement 

restriction (d) classroom zoning. 
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1.4 Dissertation Outline 

This dissertation is organized into six chapters and a brief description of 

the chapters is as follows. Figure 1-3 shows the research process for the 

enhancement of existing infectious transmission risk assessment methods.  

In Chapter 2, theoretical backgrounds, introduce previous efforts to 

evaluate non-pharmaceutical interventions using pedestrian simulation 

methods. Through the in-depth reviews, this chapter points out the limitation 

of previous studies, especially in social distancing modeling and metrics for 

transmission risk assessment 

In Chapter 3, the validity of the social force model in simulating 

occupants’ social distancing, describes the verification process of the existing 

pedestrian simulation models with human trajectory data in a pandemic.  The 

study identifies social distancing behavior in collected data through 

sensitivity analysis. Then, this chapter compared the existing social force 

models to verify the performance in a pandemic situation. 

In Chapter 4, a comparative evaluation of infectious transmission risk 

metrics examines, the applicability of transmission risk metrics through 

correlation analysis. For constructing an experimental environment, this 

research developed the simulation model which can derive three types of 
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metrics(infection-based metric, contact-based metric, and network-based 

metric). With the data from simulation results, correlation analysis between 

different metrics was performed in this study. Based on the results of the 

correlation analysis, this chapter revealed the relationships among the various 

types of metrics and discussed how to interpret the metrics in NPI 

effectiveness assessment. 

In Chapter 5, an assessment of facility-level interventions in indoor 

spaces, analyzed how we can reduce the transmission risk in educational 

buildings. To evaluate the transmission risk, an agent-based simulation 

model considering social distancing behavior is developed. This model can 

derive exposure time and centrality for transmission risk assessment. The 

effectiveness of spatial (zoning, movement restriction) and 

temporal(staggering, adjusting breaktime) constraints are compared through 

the developed model. 

In Chapter 6 as conclusions, the research results which can contribute to 

the body of knowledge in the field of construction as an effective assessment 

of facility-level interventions for transmission risk reduction are described. 

This dissertation ends with explaining limitations this research has not 

overcome and future research plans for addressing them.  



 

17 

 

 

 

 

 

Figure 1-3 Dissertation outline 
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Chapter 2. Theoretical Backgrounds 

Even before Covid-19, previous studies had been conducted to analyze 

the process of infection transmission and how to prevent the spread of the 

disease. However, with Covid-19 having an unprecedented and significant 

impact on various members of society, researchers in various fields have 

made efforts to find how we can respond to pandemics from diverse 

perspectives. In conducting these studies, the simulation has been treated as 

an important method to researchers because it is difficult to conduct research 

in real-world or laboratory environments. Section 2.1 introduces the related 

studies conducted from this perspective. In particular, the importance of 

facility-level analysis and the contents of related studies are described. 

Afterward, this chapter introduced simulation-based studies to evaluate the 

effect of NPIs and describes the problems of existing methods in detail from 

two aspects: social distancing behavior and transmission risk metrics. A 

literature review of these two issues revealed a research gap in the body of 

knowledge of pedestrian simulation-based transmission risk assessment.   
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2.1 Infectious Transmission Risk Assessment 

2.1.1 Non-Pharmaceutical interventions 

The most direct way to minimize infection transmission is a 

pharmaceutical approach such as vaccines and treatments. However, in the 

case of Covid-19, there was a delay in the development of a pharmacological 

method. Therefore, the government implemented a non-pharmacological 

method to minimize the transmission of infection(Bo et al. 2021). NPIs have 

played a significant role in mitigating COVID-19. Yang et al grouped the 

urban design interventions of the previous efforts into six high-level 

strategies(Yang et al. 2022). Table 2-1 shows the various types of 

interventions and detailed strategies for implementation. These NPIs can be 

classified into a bottom-up method that encourages personal hygiene 

behavior (e.g. wearing a mask, self-isolation), and a top-down method for 

government and facility managers to induce social distancing(Perra 2021). 

Top-down measures aim to minimize contact between people by changing 

pedestrian flow through spatial constraints (e.g. limited capacity of space) 

and temporal constraints (e.g. limited breaktime in school). NPIs can be also 

classified into phases of policy implementation. Building ventilation, city 

management, individual tracking technology, and infrastructure management 

for environmental and pandemic prevention are some short-term COVID-19 
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interventions. In the medium- and long-term, spatial planning can improve 

public services and access to amenities. For example, neighborhood 

(re)design can accommodate both compact city development and low 

population density, which is suggested by epidemiological researches; and 

public space design is crucial to support healthy activities and social 

interaction. 

These NPIs are inevitable to respond to the pandemic. However, as the 

pandemic prolonged, such policies have also caused various socio-economic 

problems. Previous research reported deepening social conflict, sales 

decrease (Meyer et al. 2022), unemployment (Falk 2020), social 

isolation(Loades et al. 2020), and learning loss(Engzell et al. 2021)). 

Therefore, policy design considering the trade-off between infectious 

transmission risk reduction and socioeconomic damage is required. To this 

end, the method is necessary to assess the effectiveness of NPI by evaluating 

the infectious transmission risk. However, before COVID-19, related studies 

were mainly theoretical, and due to the lack of empirical data. Therefore, 

there have remained questions about the effectiveness of NPIs(Perra 2021). 

In this regard, recent studies have attempted to collect relevant data and 

analyze the effect of NPI using various approaches. The following sections 

introduce the approaches to address above mentioned issues.
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Table 2-1 Non-pharmaceutical interventions for reducing spread of infection 

High-level intervention Detailed urban design methods 

Social distancing 

interventions 

Encouragement to keep a defined physical distance; Avoiding crowding; School and workplace measures and 

closures; Contact tracing 

Travel-related 

interventions 
Internal travel restrictions(restrict to public transportation) 

Individual-level 

interventions 
Individual behavioral changes(Mobility pattern, Avoiding going outside) 

Building-level design 

interventions 

Design/Redesign of indoor space(physical separation, room capacity design, vertical movement design); 

Ventilation; Modifying humidity 

Neighborhood-level design 

interventions 
Design of public/open spaces; Pedestrian-friendly design 

City-level design 

interventions 

Population density; Land use mixture; Transport accessibility(the number of bus stops, the number of transfer 

centers) 

Other interventions 
Public facilities provision; Transport system specific design; Mapping techniques; Urban design and planning 

methods 
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2.1.2 Macro-level Approach 

Traditionally, mathematical modeling is used in analyzing transmission 

patterns of infectious diseases and assessing their risks (He et al. 2020; Lipton 

and de Prado 2022; Mukhamadiarov et al. 2021). Since the outbreak of 

COVID-19, several studies have analyzed transmission patterns of infectious 

diseases using compartmental models like SEIR (Susceptible-Exposed-

Infectious-Recovered) models (Amiruzzaman et al. 2021; Prakash et al. 

2022; Sharma et al. 2021). Compartmental models can measure the process 

of people getting infected through contact with others using R0 (reproduction 

number), which is an indicator of how contagious an infectious disease is 

(Kröger and Schlickeiser 2020; Schlickeiser and Kröger 2021). In assessing 

the risks of COVID-19 transmission, many relevant studies have calculated 

R0 by estimating values of variables such as contact rate and positivity rate, 

by using data such as the number of COVID-19 cases published by health 

authorities and human mobility data (Gerlee et al. 2021). Effects of spread 

prevention policies are then analyzed by examining the change of the R0 

value before and after the implementation of the policies (Karnakov et al. 

2020; Linka et al. 2020). Compartment model is proven to be effective in 

analyzing policies at a macro-level such as at the city or community level, 

however, there are limitations in using it to analyze policies at a micro-level 
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such as at the facility level(Cuevas 2020; D’Orazio et al. 2021). This is 

because to accurately estimate the contact rate between people in an indoor 

facility, microscopic-scale observations such as interactions between people 

should also be taken into consideration (Cuevas 2020), while compartment 

models are unable to carry out such microscopic-scale modelings (D’Orazio 

et al. 2021; Lee et al. 2021). Therefore, the compartment model was mainly 

used at the community level or city level, so a method that can overcome 

these limitations is required for the NPI effect analysis at the facility level. 

2.1.3 Micro-level Approach 

Pedestrian simulation has been used in various fields to study 

management methods to provide a safe and comfortable walking 

environment for occupants in indoor spaces(Vermuyten et al. 2016). With the 

recent outbreak of Covid-19, response to infectious diseases has been 

recognized as an area of facility management, and many studies have applied 

pedestrian simulation for indoor infection transmission analysis (Li and Yin 

2021; Tatapudi and Das 2021). In particular, the SFM is a representative 

methodology for implementing pedestrian simulation and has been used in 

many research fields as a tool to support decision-making by examining 

various strategies (Á lvarez-Pomar and Rojas-Galeano 2021). SFM describes 

the movement of individuals in a crowd by considering the interactions 
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between individuals and their environment as forces that influence their 

behavior. SFM can reflect the heterogeneity of each agent in the model, 

enabling analysis at the individual level. Also, since it can include spatial 

information, indoor pedestrian flow data can be generated through 

simulation. Due to these characteristics, SFM has been used to estimate the 

risk of infection transmission in indoor spaces and to evaluate strategies for 

risk management. Related studies have focused on the type of facility (e.g. 

educational facilities, transportation facilities, and multi-use facilities), 

including spatial constraints (e. g. redesign of shared spaces)(Gouda et al. 

2021), temporal constraints (e. g. change of operating hours)(Lee and Ahn 

2021), and facility users. The reduction effects of interventions such as 

behavioral induction (e. g. observance of distance)(PAN 2021; Ugail et al. 

2021) were analyzed and compared. The detailed theoretical backgrounds of 

SFM are introduced in the next section. Also, the limitations of SFM in 

transmission risk assessment are discussed. 
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2.3 Social Distancing Modeling in Pedestrian Dynamics 

2.3.1 Social Force Model 

The social force model (SFM) is a mathematical model that is 

commonly used in the field of pedestrian dynamics to simulate and analyze 

the movement of large groups of people. The main advantage of using the 

SFM is that it allows researchers to study the behavior of pedestrians in 

complex environments and to identify potential bottlenecks or dangerous 

situations that may arise. Additionally, the SFM can be used to optimize the 

design of public spaces, such as shopping malls or transportation hubs, to 

improve the safety and efficiency of pedestrian flow. Therefore, SFM is the 

basis of commercial pedestrian simulation tools such as Anylogic and 

VisWalk, and is used in various fields such as urban planning, evacuation 

response, and virtual environment. 

The social force model (SFM) is a simulation-based approach for 

modeling and analyzing human crowd behavior. The SFM was developed in 

the late 1990s and early 2000s by Dirk Helbing and his colleagues, who were 

seeking to create a realistic simulation of human crowds and pedestrian 

behavior. The SFM models each person in a crowd as a point-like object that 

is subject to various social and physical forces, such as personal attraction 
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and repulsion, physical obstacles, and social norms. The SFM has been 

applied to a variety of problems, including evacuation simulations, crowd 

management planning, and pedestrian behavior analysis. The SFM is 

considered a step forward in the development of crowd simulation models 

because of its ability to capture the complex and dynamic interactions that 

occur between individuals in a crowd. 

SFM assumes that each pedestrian meets the laws of motion as a 

pedestrian flow is determined by pedestrians being influenced by three 

different types of social forces that stem from the pedestrians’ characteristics 

and their surrounding environment(Si and Fang 2021). The three types of 

forces are as follows: desired force (the force that makes a pedestrian move 

to the direction of the desired destination), obstacle repulsive force (force 

generated from encountering obstacles), and pedestrian repulsive force (force 

generated from encountering other pedestrians). The agent’s speed is 

determined by summing the vectors of these three types of forces (see 

equation (1) below).  

𝑓𝑖(𝑡)  =  𝑓𝑑𝑒𝑠(𝑡)  + 𝑓𝑜𝑏𝑠(𝑡)  + 𝑓𝑝𝑒𝑑(𝑡)                        (1) 

The desired force term(𝑓𝑑𝑒𝑠(𝑡)) in equation (1) represents the force that 

drives a pedestrian towards their desired destination. It is typically modeled 

as a force that is proportional to the difference between the pedestrian's 
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current position and their desired position, and is directed towards the desired 

position. The desired force is intended to capture the idea that pedestrians 

have a goal or destination that they are trying to reach, and will try to move 

towards that destination as efficiently as possible. It is typically the dominant 

force acting on a pedestrian, and will usually be much stronger than the 

repulsive and friction forces. 

The obstacle repulsive force term(𝑓𝑜𝑏𝑠(𝑡)) in equation (1) represents the 

force that drives a pedestrian away from obstacles or other pedestrians in 

order to avoid collisions. It is typically modeled as a force that is proportional 

to the distance between the pedestrian and the obstacle, and is directed away 

from the obstacle. The obstacle repulsive force is intended to capture the idea 

that pedestrians have a natural tendency to avoid collisions with other objects 

or pedestrians, and will try to maintain a certain minimum distance from 

these objects in order to do so. It is usually much weaker than the desired 

force, but can become more significant if the pedestrian is approaching an 

obstacle or another pedestrian too closely. 

The pedestrian repulsive force term in equation (1) represents the force 

that drives a pedestrian away from other pedestrians in order to avoid 

collisions. It is typically modeled as a force that is proportional to the distance 

between the pedestrians, and is directed away from the other pedestrian. The 
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pedestrian repulsive force can be modified to include additional factors such 

as the pedestrians' velocities and directions, as well as their relative positions 

and sizes. By taking these factors into account, the pedestrian repulsive force 

term can help to predict more realistic and nuanced pedestrian movement 

patterns. 

To reflect interactions between people in indoor facilities in assessing 

risks of infection, prior studies have utilized pedestrian simulation models 

(Alam et al. 2022; Harweg et al. 2021; Lee and Ahn 2021). As a result, in 

areas where reflecting pedestrian movements is important such as evacuation 

research(Helbing et al. 2000), facility layout design (Helbing et al. 2005), and 

route optimization (Taherifar et al. 2019), SFMs are most widely used. 

Relevant prior studies have applied SFMs in various types of indoor facilities 

such as supermarkets (Harweg et al. 2021), schools (Lee and Ahn 2021), and 

airports (Alam et al. 2022), and suggest simulation frameworks for evaluating 

risk-reducing strategies such as social distancing and separating pedestrian 

routes.  

Social force models (SFMs) are the most widely used pedestrian 

simulation models for indoor spaces and have been applied in various fields 

including evacuation research and route optimization(Taherifar et al. 2019). 

Since the outbreak of COVID-19, many studies have utilized SFMs to 
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evaluate the risks of virus transmission in indoor spaces and to analyze the 

risk reduction effects of different facility management strategies.   

2.3.2 Social Distancing Modeling 

Considering social distancing behavior is important in transmission risk 

assessment as it directly affects the likelihood of disease spread. The degree 

of social distancing behavior can impact the number of close contacts 

between individuals, which in turn influences the likelihood of disease 

transmission. Factors such as personal attitudes towards social distancing, 

government policies, and cultural norms can all play a role in determining 

the level of social distancing behavior. By incorporating this information into 

transmission risk assessments, it is possible to make more accurate 

predictions about the spread of infectious diseases and guide the development 

of effective public health interventions. 

Social distancing behavior can be modeled using the social force model 

(SFM) by incorporating additional social forces that represent the individual's 

desire to maintain a safe distance from others. These forces can be modeled 

as repulsive forces between individuals, with the strength of the force 

proportional to the distance between them. The SFM can also take into 

account external factors such as government policies and personal attitudes 

towards social distancing. The SFM can then be used to simulate different 
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scenarios and evaluate the impact of different social distancing policies on 

crowd behavior. The SFM can also provide insights into the effectiveness of 

social distancing measures in reducing the spread of infectious diseases. 

However, it's important to note that SFM is a simulation model and its results 

should be validated with real-world data and observations. 

Several studies analyzing pedestrian flow dynamics attempted the 

validation of their simulation model by comparing the simulation results 

against real pedestrian movement data and fine-tuning the parameters of 

SFMs involved in Eq (1)(Seer et al. 2014). Since the outbreak of COVID-19, 

there have been also several attempts to consider social distancing behavior 

in SFMs by modifying the pedestrian repulsive force term in equation (1) so 

that the model can be more suited to simulating people’s behavior under a 

pandemic. For example, Bouchnita and Jebrane modified the Basic-SFM 

model to apply a larger repulsion force between pedestrians when they are 

within a specific distance, and through this, they replicate the tendency of 

pedestrians to keep a distance from others while walking. Xiao et al. 

hypothesized that pedestrians are affected the most by their nearest pedestrian 

when practicing. To apply this hypothesis to the model, they suggested a 

modification to the model such that an additional ‘prevention force’ is created 

by the nearest pedestrian. 
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While providing thought-provoking ideas, these studies had limitations 

in validating their models based on real data. A few studies attempted to 

validate their modified pedestrian behavior model rather indirectly, by 

observing the relationship between pedestrian density and velocity from the 

simulations  (Ding et al. 2021; Kabalan et al. 2016; Wu et al. 2021b). This 

type of validation can help with confirming the model’s correct working and 

the plausibility of simulated behavior, but it provides limited perspectives on 

how true the simulated human behavior is to actual human behavior in terms 

of the pattern of movement and distancing.  In order to accurately estimate 

transmission risk based on building users’ contact frequency, distance, and 

duration, the pedestrian behavior model must be validated against real data 

measuring people’s movement behavior, and this has been identified as a 

knowledge gap in the current body of knowledge. 
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2.4 Metrics for Transmission Risk Assessment 

Research has been conducted to compare and analyze various metrics to 

measure abstract concepts in various fields of engineering. In particular, 

studies were conducted to investigate the applicability of metrics based on 

data generated through simulation to overcome the environment in which it 

is difficult to collect data required for analysis. A study by Farahmandfar & 

Piratla compared and analyzed two types of metrics (topology-based metric 

& flow-based metric) to evaluate the earthquake resilience of water supply 

networks(Farahmandfar and Piratla 2018).  This study revealed strengths and 

weaknesses of each metric. Balal et al evaluated the validity of various 

indicators (queue length, link speed, link travel time, etc.) to evaluate the 

resilience of traffic flow due to traffic accidents on highways(Balal et al. 

2019). The study revealed that each indicator did not have a significant 

correlation and insisted that an appropriate metric should be selected 

according to the purpose of the study. 

Abovementioned issues (how we can indicate the transmission risk 

quantitatively) also exist in simulation-based NPIs' effectiveness assessment. 

Previous studies compare and analyze how risks of transmission in facilities 

vary depending on the spatial characteristics of each facility and the facility 

operation strategies under various scenarios. For the comparison and 
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analysis, they defined metrics for assessing transmission risk, which they 

deduce through simulations. Previous studies have proposed several types of 

simulation-based metrics. The most popular metric is the infection-based 

metric, which means number of infected people derived through transmission 

modeling (Chen et al. 2022; Wang et al. 2022). The number of infected 

people can be measured through following process: (1) Some people in the 

model are set infected (2) susceptible person are infected in the specific 

condition designed by modeler during simulation. The infection-based metric 

is the most intuitive, but it has a disadvantage due to its high sensitivity to the 

probabilistic variables such as the initial infected person. Therefore, 

depending on the modeling method, simulation results are different even in 

the same indoor environment (Gunaratne et al. 2022). In contrast, contact-

based metrics and network-based metrics are methods that can overcome the 

disadvantages of infection-based metrics. Contact-based metric refers to the 

degree of contact among the crowd, and previous studies measured exposure 

time within a specific distance (e.g. 2m) as a metric for transmission risk 

assessment (Islam et al. 2021; Jones et al. 2020). On the other hand, the 

network-based metric has an advantage in analyzing the effect of the social 

network structure on disease spread.  Centrality, which means the impact of 

the node in social network analysis, was applied in previous studies(Darabi 

and Siami 2021; Shen et al. 2021). In transmission risk assessment, 
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individuals with high centrality mean that individuals have a high probability 

to make other individuals infected, which means superspreader. Therefore, 

transmission risk of social network can be represented as average of 

centrality of each node. Therefore, network-based metric can provide 

information to facility managers about the connections and dependencies 

between pedestrians and their potential impact on the disease spread. 

 As such, various types of metrics have been applied in terms of 

modeling methods and research goals. However, when the metrics show 

contradictory results in the same environment, it is difficult to decide which 

interventions have to be implemented in the buildings. Figure 1-2 shows the 

example situation that addresses these concerns. The table on the left of the 

figure shows the different types of metrics previously described. The table 

on the right of the figure shows the most effective policies vary depending 

on the metric. There are several reports in which the metrics are contrasted 

in the same simulation environment(Gunaratne et al. 2022; Jo et al. 2021). In 

this situation, the priority of intervention varies depending on the type of 

transmission risk metric and it is hard for policymakers to decide to select the 

appropriate intervention. Therefore, it is necessary to investigate in which 

environment conflicting results are derived depending on the different 

metrics. However, few studies are comparing the results of different 

transmission risk assessments in the same environment. In this section, the 
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author described the proposed metrics in the previous studies. Therefore, 

research is needed to investigate the relationship between metrics. The 

remainder of this section explains how each metric is defined and how it can 

be calculated through simulation. And the pros and cons of each metric are 

explained in more detail. 

 

Figure 2-1 Various types of transmission risk assessment metrics 
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2.4.1 Infection-based Metric 

The infection-based metric is based on the number of infected people in 

a simulated environment. Setting a certain percentage of people in the model 

as infected, the value of the metric can be derived by observing how many 

infections occurred during the simulation. One of the important factors 

influencing the result is the infection modeling method. Previous studies 

developed the infection model as follows: (1) capture the moment an infected 

individual contacts other individuals within a certain distance (e.g. 2m) (2) 

determine the probability of being infected (transmission rate) when 

individuals contact. Compartment models such as SEIR (He et al. 2020) and 

agent-based models are developed by these processes (Teng et al. 2022). 

However, the infection-based metric has a disadvantage in that the 

experiment results vary depending on which individual in the model is set as 

the initial infected person. To address this issue, it is necessary to perform 

several times of simulations with different initial infected patients in a single 

situation. Therefore, infection-based metrics required numerous simulations 

which needed lots of computation resource. Mathematical methods such as 

the compartment model are free from these issues because the simulation 

execution time is short(Gugole et al. 2021; Jensen et al. 2022). However, in 

the case of the pedestrian simulation model, computational time may be 
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crucial for the type of experiments such as sensitivity analysis and 

optimization. In particular, as the size of the model increases, more 

calculation costs are required(Shamil et al. 2021). In the case of pedestrian 

simulation for facility management, large buildings such as shopping malls 

can be research subject. In this case, the number of people increases, and the 

computational resource of the agent-based model is sensitively affected by 

the number of agents(Rai and Hu 2018). Furthermore, a large number of 

simulations are required according to the number of policy variables. To 

address these issues, Previous studies have made efforts for reducing 

computational cost of agent-based model through technical tricks (Rai and 

Hu 2018; Schuhmacher et al. 2014). Therefore, computational resources can 

be an important issue in practice. With this regard, another type of metric is 

necessary to overcome the limitations. 
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2.4.2 Contact-based Metric 

The research with contact-based metrics defines a dangerous situation 

as an individual being within a certain distance from another individual. 

Contact-based metrics can be calculated by measuring the time exposed to 

danger. Previous studies have measured the risk exposure time based on the 

distance of 2m or 1.5ft recommended by health authorities (Alam et al. 2022; 

Lee and Ahn 2021). Since the exposure time is determined only by pedestrian 

movement, the results can be derived regardless of the infection modeling 

unlike infection-based metrics. Therefore, transmission risk can be estimated 

with fewer calculations compared to the infection-based metric. For this 

reason, it is a metric that can overcome the shortcomings of infection-based 

metrics and can be effectively used in research that requires a large number 

of simulations (ex. simulation-based optimization, sensitivity analysis) (Al 

Handawi and Kokkolaras 2021; Jensen et al. 2022; Teng et al. 2022) 

However, contact-based metrics cannot always accurately represent the 

transmission risk. Figure 2-1 shows the limitation of the exposure time 

metric. Figure 2-1 (a) represents pedestrians in an open space, and Figure 2-

1(b) shows a situation where two groups are separated. Case (b) is safer than 

case (a) if pedestrians in both cases move sufficiently to reach the same 

exposure time. However, the two cases cannot be distinguished by exposure 

https://www.zotero.org/google-docs/?8j52ay
https://www.zotero.org/google-docs/?8j52ay
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time. Through such a simple thought experiment, it is confirmed that the 

amount of contact as well as the contact network must be considered together 

in transmission risk assessment. 

 

Figure 2-2 Disadvantage of the contact-based metric  
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2.4.3 Network-based Metric 

The network-based metric is an indicator to analyze the effect of the 

structure of a social network on infection transmission based on network 

theory. Network theory is a framework for understanding how different 

nodes (e.g., individuals or organizations) are connected and how information 

or other substances flow through these connections. In the context of 

infectious disease transmission, network theory can be used to analyze the 

structure of social networks and understand how infections spread within and 

between different groups. 

 To quantify transmission risk as network-based metrics, centrality can 

be utilized which means the importance of nodes in network theory. Some 

nodes within a network may be more central than others, meaning that they 

have more connections and may be more influential in transmitting 

infections. Identifying these central nodes can be important for targeting 

interventions and controlling the spread of infections. Network-based metric 

has the advantage of being able to identify the superspreader through the 

centraliy. In addition, the centrality value of each individual can be 

aggregated to compare the infection risk between networks. However, it has 

the disadvantage that the result can vary depending on how centrality is 

defined and calculated. In fact, there are various centralities such as degree 
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centrality, betweenness centrality, close centrality, pagerank centrality, and 

katz centrality. Therefore, there is a disadvantage in that it is unclear which 

centrality value is appropriate. 

The calculation process of a network-based metric is as follows. First, a 

contact network is constructed that represents the individual as a node of the 

network, the contact between individuals as a link, and the degree of contact 

as the weight of the link. Then, the centralities of all nodes in the contact 

network are calculated. A high centrality of a node means a high probability 

spread the infection to other people when the node is infected. Many nodes 

with high centrality mean the contact network is vulnerable to infection. 

Afterward, for risk estimation of the network, the average value of the nodes 

with high centrality is calculated. This metric refers to the transmission speed 

of disease spread through the network when an individual with a high 

probability of being superspreader is infected.  There are various types of 

centrality applied in network theory. Degree centrality (Gunaratne et al. 

2022; Wu et al. 2021a), betweenness centrality(Li et al. 2022), and closeness 

centrality(Pinheiro et al. 2021) were tested which is the most popular 

centrality in previous studies.  
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Chapter 3. Validity of the Social Force Model in 

Simulating Occupants’ Social Distancing1 

This chapter verified whether existing pedestrian simulation models – 

specifically SFMs – can reproduce social distancing behaviors in indoor 

spaces during a pandemic. We conduct our verification by comparing the 

performances of the simulation models with real pedestrian trajectory data to 

confirm whether the existing models to take into account social distancing 

are meaningful.  We selected three models for our verification: the original 

SFM model proposed by Helbing (Basic-SFM), a model proposed by 

Bouchnita and Jebrane (Pandemic-SFM-1), and a model proposed by Xiao et 

al. (Pandemic-SFM-2). The last two models are models that reflect social 

distancing behaviors in a pandemic situation. Our process of verifying the 

models using real pedestrian trajectory data is as follows. First, we measure 

the starting position, starting speed, and final position of each pedestrian in 

the data. Then we use those values as inputs for the SFMs and carry out 

simulations. We can compare the performances of the models by calculating 

the similarity between their simulation results and the real trajectory data.   

                                                      
1 Yoon, I., Ahn, C., Ahn, S., Lee. B, and Park, M.(2023). Validity of Social Force Models in 

Simulating Occupants’ Social Distancing Under a Pandemic, Natural Hazards Reivew 

(Submitted) 
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3.1 Variants of Social Force Models 

Basic-SFM 

The most well-known equation of pedestrian repulsive force was 

proposed by Helbing, which is based on a circular specification of repulsive 

force(Helbing and Molnár 1995). In the social force model, the pedestrian 

repulsive force terms describe the forces that act on a pedestrian to prevent 

them from colliding with other pedestrians or obstacles in their environment. 

These forces are typically modeled as being proportional to the distance 

between the pedestrian and the other object, and inversely proportional to the 

distance between the pedestrian and the object. The strength of the repulsive 

force can be adjusted by changing the constants in the equation, and it is 

typically used to help simulate the behavior of crowds and pedestrian traffic 

in simulations.  

The equation is given as Figure 3-1. where 𝑑𝑖𝑗 is the distance between 

pedestrian i and j, and 𝑛𝑖𝑗 is the normalized distance between pedestrian i to 

j. 𝐴 represents the degree of social repulsion between pedestrian i and j., and 

𝐵 represents the fall-off length within the social repulsion. In the simulation, 

each pedestrian is represented as a circle and 𝑟𝑖𝑗 represents the radius of the 

pedestrian. The social force each pedestrian receives is the sum of all social 
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forces they receive from other pedestrians.  

 

Figure 3-1 The concept of Basic-SFM  
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Pandemic-SFM-1  

Bouchnita and Jebrane added a desired distance (𝑑0) variable to Basic-

SFM to reflect the existence of distance that pedestrians desire to keep from 

each other. Their model assumes that there is no repulsive force between 

pedestrians when the distance between them is greater than the desired 

distance. If the desired distance is equal to 𝑟0 in below equation, Pandemic-

SFM-1 has a similar force value to that of Basic-SFM. This model has 

modified the model to have a larger repulsion force between pedestrians than 

the original SFM does when pedestrians are within a specific distance, and 

through this have represented the tendency of pedestrians to keep a distance 

from others to practice social distancing. 

𝑓𝑖𝑗 {
∑

𝑗≠𝑖

𝐴 𝑒𝑥𝑝[(𝑑𝑖𝑗 − 𝑑0)/𝐵] 𝑛𝑖𝑗       𝑖𝑓   𝑑𝑖𝑗  <  𝑑0

                     𝐵𝑎𝑠𝑖𝑐 − 𝑆𝐹𝑀                  𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒
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Figure 3-2 Concept of Pandemic-SFM-1  
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Pandemic-SFM-2  

Xiao et al have hypothesized that pedestrians are affected the most by 

their nearest pedestrian when practicing social distancing. To apply this 

hypothesis to the model, they suggested a modification to the model such that 

an additional ‘prevention force’ is created by the nearest pedestrian. 

However, these studies have limitations in that they simply suggest modeling 

methods to reflect social distancing without conducting verifications using 

real pedestrian data in pandemic situations. Specifically, Xiao et al added a 

minimum distance variable 𝑑𝑖
𝑚𝑖𝑛

, which represents the distance between 

pedestrian 𝑖  and his/her nearest pedestrian. Repulsive force in this model 

consists of two forces: 1) prevention force related to the nearest pedestrian, 

and 2) physical force related to other pedestrians except the nearest one. In 

this model, if the desired distance 𝐷𝑖 is greater than 𝑑𝑖
𝑚𝑖𝑛

,  an additional 

force is applied to secure the desired distance with the nearest pedestrian(s). 

If there is no pedestrian within the desired distance 𝐷𝑖, Pandemic-SFM-2 

produces the same result as Basic-SFM. 

𝑓𝑖 =

{
  
 

  
 𝐴𝑖

𝑝  [
𝐷𝑖𝑗 − 𝑑𝑖𝑗

𝑚𝑖𝑛

𝐷𝑖𝑗
] 𝑛𝑖𝑗 + ∑ 𝐴𝑖

1𝑒𝑥𝑝 [
𝑟𝑖𝑘 − 𝑑𝑖𝑘

𝐵𝑖
1

] 𝑛𝑖𝑘
𝑘(≠𝑖,𝑗)

      𝑖𝑓   𝐷𝑖𝑗  <  𝑑𝑖𝑗
𝑚𝑖𝑛

                  ∑ 𝐴𝑖
1𝑒𝑥𝑝 [

𝑟𝑖𝑘 − 𝑑𝑖𝑘

𝐵𝑖
1

]

𝑘(≠𝑖)

𝑛𝑖𝑘                                𝑖𝑓   𝐷𝑖𝑗 ≤ 𝑑𝑖𝑗
𝑚𝑖𝑛
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Figure 3-3 Concept of Pandemic-SFM-2  
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3.2 Data Collection 

To verify these three SFMs in the context of pedestrian behaviors in 

indoor facilities during a pandemic, we would need real data that shows the 

social distancing behaviors of pedestrians in indoor facilities. We collected 

13-hour-long CCTV footage recorded during the second wave of COVID-19 

(20 – 28 September 2020) when the perceived risks of infection were high. 

The footages show a corridor of the Memorial student center at Texas A&M 

University. We have received IRB approval from Texas A&M University for 

the collection and use of the footage for research purposes.  

From the CCTV footage, we extracted clips where more than two people 

are walking toward each other. This is because it is more likely that 

pedestrians practice social distancing when they recognize that other 

pedestrians are walking toward them. We use these extracted clips as our 

cases for evaluating the performances of the three models. Each case starts 

when target pedestrians appear and ends when they disappear from the clip. 

We extracted 84 cases in total, and the length of each case and the number of 

people appearing in each case are reported in Table 3-1. 
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Table 3-1 Descriptive statistics of our cases 

 Mean Maximum Minimum 
Standard 

Deviation 

Number of 

people 
3.79 10.00 2.00 1.78 

Length of 

each case 

(seconds) 

15.98 7.30 29.28 5.26 

 

To retrieve the walking trajectories of pedestrians from each clip, we use 

Kinovea, an open-source motion analysis software widely used in research 

for analyzing human movements (Aguilar et al. 2015; Damsted et al. 2015; 

Puig-Diví et al. 2019; Torres-Luque et al. 2015). To obtain the location 

coordinates of pedestrians in each frame of the clips, we first set the axes in 

the clip (see the left image of Figure 3-4). Then we mark the location of each 

pedestrian for each frame (see the right image of Figure 3-4). As SFMs 

assume the location of pedestrians to be at the center of their body, in our 

study we consider the location of pedestrians to be at the center of their feet. 

Using the coordinate axes and the location data, Kinovea can extract the time 

series data of x and y coordinates of each pedestrian through coordinate 

transformation.  

We group our data collected into four types according to their Social 

Distancing Violence Rate (SDVR) and indoor population density: High 
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SDVR, Low SDVR, High Density, and Low Density. SDVR represents the 

ratio between the total number of frames and the number of frames where the 

distance between two pedestrians is within 2m. Low SDVR and High SDVR 

each represent situations where pedestrians do and do not practice social 

distancing. SDVR is widely used to quantify whether pedestrians practice 

social distancing(Harweg et al. 2021; Islam et al. 2021). Low Density and 

High Density each represent situations where the number of pedestrians 

appearing in each case is low and high. Out of the four pedestrian 

environments, High SDVR and High Density represent relatively more 

crowded environments. We set the reference point for dividing the pedestrian 

environments into four types at the mean value of total cases, which is 0.247 

for SDVR and 3.785 for indoor population density.  

 

Figure 3-4 Setting coordinate axes(Left); Marking to extract trajectory data 

using Kinovea 
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3.3 Experimental Design 

3.3.1 Experiment Framework 

The objective of this study is to test how well SFMs can replicate 

building users’ behavior including social distancing under a pandemic and 

also determine model parameters to fit the model to social distancing 

behavior. The test was performed by comparing the simulation results with 

real building users’ pedestrian trajectory data described in the previous 

section.  

In this research, three versions of SFMs models, the original SFM model 

proposed by Helbing (Basic-SFM), the model proposed by Bouchnita and 

Jebrane (Pandemic-SFM-1), and the model proposed by Xiao et al. 

(Pandemic-SFM-2) are investigated. Among three, the last two models were 

designed to reflect social distancing behaviors in a pandemic situation, while 

the first one does not consider it. The process of validating the models using 

real pedestrian trajectory data went as follows. First, the starting position, 

starting speed, and final position of each pedestrian in the video data was 

recorded. Second, these data are used as model inputs into each of the SFMs, 

and a simulation was run. Third, the model’s performance was measured in 

terms of the similarity between the simulation result and the real trajectory 
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data observed and compared between different SFMs.      

 In addition, a follow-up experimental study was conducted to 

ascertain how well the Pandemic-SFMs replicate the social distancing 

behaviors of building users. First, the performance of the Basic-SFM and the 

Pandemic-SFMs are compared to see whether these models create 

significantly different simulation results. Next, a sensitivity analysis was 

conducted to determine the desired distance parameter of the Pandemic-

SFMs such that the resulting model can replicate the social distancing 

behavior of building users most accurately. Based on the sensitivity analysis 

result, it is also analyzed how much simulation results are affected when 

different values are used for the desired distance parameter in the Pandemic-

SFMs. 
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Figure 3-5 Experiment framework for testing SFMs 



 

56 

 

 

3.3.2 Evaluation Metrics 

Performances of SFMs can be evaluated by calculating the similarity 

between their simulation results and the real trajectory data. In our study, we 

utilize Average displacement error (ADE) and Dynamic Time Warping 

(DTW) metrics. ADE is a metric most widely used in evaluating the 

similarity between time series data(Bae and Jeon 2021; Kothari et al. 2021; 

Mohamed et al. 2020). In the context of trajectory analysis, it represents the 

mean difference between the location of the ground truth data and the 

simulation result at each time point. In the context of our study, ADE 

represents the difference between the pedestrian trajectory in simulation and 

the real data. However, point-to-point evaluation may be difficult if the 

lengths of the two trajectory data points are different (Song et al. 2021), and 

it is highly likely that the lengths of our SFM-based simulation results and 

that of real data are different. We utilize Dynamic Time Warping (DTW) to 

account for this issue. DTW is another metric for analyzing similarity 

between time series data and is calculated by comparing two trajectories for 

locations where the relative distance is minimum. This allows for comparing 

trajectory patterns even when the two data points have different lengths 

(Song et al. 2021). Due to this advantage, it is widely used in evaluating time 

series forecasting models in various fields including voice recognition 
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(Ismail et al. 2020) and route analysis(Cheng et al. 2020).  

In summary, both Average Displacement Error (ADE) and Dynamic 

Time Warping (DTW) are methods used to evaluate the performance of time 

series classification models. While ADE is a simpler and faster method that 

measures the average difference between the predicted and actual position of 

an object in time series data, DTW is a more flexible and accurate measure 

that takes into account the temporal structure of the data by finding the 

optimal match between two sequences. However, DTW is also more 

computationally expensive than ADE. Ultimately, the choice between ADE 

and DTW depends on the specific requirements of the time series 

classification task, with ADE being a good choice for fast and simple 

evaluations, and DTW being a better choice when more accurate evaluations 

that consider the temporal structure of the data are needed. 

 

Figure 3-6 Concept of average displacement error and dynamic time warping  
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3.4 Analysis Results 

3.4.1 Performance Comparison of the SFMs 

 In Table 3-2, we report the performances of the three models in different 

pedestrian environments.  Since ADE and DTW both represent the difference 

between two trajectories, a smaller ADE or DTW indicates higher accuracy 

of the simulation result when compared to the real trajectory data. Overall, 

Basic-SFM and Social-SFMs all show higher accuracy in less crowded 

environments (Low SDVR, Low Density) than in more crowded 

environments (High SDVR, High Density). The ADE and DTW of Basic-

SFM were higher than Social-SFMs in all four environments. This indicates 

that Social-SFMs can explain data in pandemic situations better than Basic-

SFM. The performance differences in crowded environments (High SDVR, 

High Density) were particularly greater than in less crowded environments 

(Low SDVR, Low Density). This follows that a large part of the total 

difference in ADE or DTW may be due to the performance difference in 

crowded environments. 
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Table 3-2 Performances of SFMs in four different pedestrian environments 

Pedestrian 

Environment 

Basic-SFM Social-SFM-1 Social-SFM-2 

ADE DTW ADE DTW ADE DTW 

Total 

(N=84) 
0.582 45.19 0.55 37.71 0.55 42.20 

High SDVR 

(N=34) 
0.684 63.93 0.604 46.80 0.611 58.32 

Low SDVR 

(N=50) 
0.512 32.44 0.509 32.52 0.502 31.23 

High Density 

(N=40) 
0.631 57.14 0.575 44.57 0.573 52.46 

Low Density 

(N=44) 
0.537 34.32 0.523 31.46 0.522 32.87 

* N: Number of cases
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We conducted statistical verifications to check if the ADE or DTW 

differences between the models are meaningful. We first checked if our 

dataset satisfies normality using the Shapiro-Wilk Test. All data pairs had p-

values lower than 0.05 and hence did not satisfy normality (see Table 3-3). 

We therefore instead used Wilcoxon signed-rank test (Wilcoxon et al. 1963), 

a non-parametric statistical test for datasets that do not satisfy normality. We 

set the alpha level at 0.05 and verified it with a p-value of 0.05. We report 

the test results in Table 3-4. The DTW between Social-SFM-1 and Basic-

SFM and the DTW between Social-SFM-2 and Basic-SFM were both 

statistically significant in High SDVR and High-Density environments. Also, 

the ADE between Social-SFM-2 and Basic-SFM was statistically significant. 

These results indicate that we can improve the reproducibility of pedestrian 

trajectories in indoor facilities during a pandemic by modeling social 

distancing behaviors. 
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Table 3-3 Shapiro-Wilk test results 

Test 

ADE DTW 

B S1 S2 B S1 S2 

Statistic Value 

(W) 
0.782 0.661 0.799 0.643 0.472 0.616 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 

* B: Basic-SFM, S1: Social-SFM-1, S2: Social-SFM-2 

 

Table 3-4 Wilcoxon singed-rank test results 

Pedestrian 

Environment 

ADE DTW 

B-S1 B-S2 S1-S2 B-S1 B-S2 S1-S2 

Total X O X X X O 

High SDVR X O X O O O 

Low SDVR X X X X X X 

High Density X O X O O O 

Low Density X X O X X X 

* Note: O = difference is statistically significant (p < 0.05),  

 X = difference is not statistically significant (p ≥ 0.05)
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Figure 3-7 Comparisons of social force model performance according to the environments 
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3.4.2 Sensitivity Analysis of the Desired Distance Parameter of 

Pandemic-SFMs 

The desired distance parameter of Social-SFMs represents the distance 

that pedestrians desire to keep from other pedestrians. To deduce the optimal 

desired distance for each case, we conducted a parameter sensitivity analysis. 

Table 3-5 shows the distribution of the optimal desired distances deduced for 

all 84 cases. If the optimal desired distance is 0, it means that the model has 

strong explanatory power for the case when social distancing behaviors are 

not reflected, and the repulsive force between pedestrians only consists of the 

repulsive force to avoid colliding with other pedestrians. If the optimal 

desired distance is greater than 0, it means the explanatory power of the 

model is higher when social distancing behaviors are reflected. The results 

show that using ADE, the optimal desired distance was greater than 0 for 

67.86% and 72.14% of the total cases for Social SFM-1 and Social SFM-2 

respectively. Using DTW, the optimal desired distance was greater than 0 for 

32.24% and 65.47% of the total cases of Social SFM-1 and Social SFM-2 

respectively.  Except for when DTW is applied to Social-SFM-1, around 65% 

of the time, the explanatory power of models improves when the additional 
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repulsive force from social distancing behaviors is applied. Through this, we 

can indirectly confirm that some pedestrians appearing in our data exhibit 

social distancing behaviors. From the results in Tables 3-3, 3-4, and 3-5, we 

can conclude that there exist social distancing behaviors in certain pedestrian 

environments, and by modeling the behaviors, we can improve the 

explanatory power of the models 

Table 3-5 Distribution of desired distance parameter 

Optimal 

Desired 

Distance 

Social-SFM-1 Social-SFM-2 

ADE DTW ADE DTW 

0m 32.14% 67.86% 17.86% 34.53% 

0m ~ 1m 21.43% 19.05% 25.00% 33.33% 

1m ~ 2m 21.43% 9.52% 21.43% 17.86% 

2m ~ 3m 16.67% 1.19% 13.09% 9.52% 

3m ~ 4m 8.33% 2.38% 22.62% 4.76% 
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3.5 Discussions 

We compared the performances of three different SFMs against real 

pedestrian trajectory data collected from CCTV footage during the second 

wave of COVID-19. For Basic-SFM, the ADE was 0.582, which is larger 

than the ADE reported in a prior study (Alahi et al. 2016) that tested the 

model against real data before the COVID-19 pandemic (see Table 3-6), 

which indicates that the explanatory power of Basic-SFM in a pandemic 

situation is lower than that in a non-pandemic situation. Considering that 

pedestrian flows are different during a pandemic due to pedestrians practicing 

social distancing, we can infer that our large ADE value may be due to the 

pedestrians’ social distancing behaviors.  

Table 3-6 Performance of Basic-SFM across different datasets 

Dataset 

ETH 

(Pellegrin

i et al. 

2009) 

HOTEL 

(Pellegrin

i et al. 

2009) 

ZARA1 

(Lerner 

et al. 

2007) 

ZARA2 

(Lerner 

et al. 

2007) 

UCY 

(Lerner 

et al. 

2007) 

This 

Research 

ADE 0.54 0.38 0.37 0.4 0.51 0.582 

 

Social SFMs are modified versions of Basic-SFM that take into account 
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the social distancing behaviors of pedestrians. In our study, we tested two 

types of Social-SFMs: a model proposed by Bouchnita and Jebrane (Social-

SFM-1 model) and a model proposed by Xiao et al. (Social-SFM-2). 

Analyzing the sensitivity of the desired distance parameter of the Social-

SFMs (see Table 3-2), we found that using ADE, the optimal desired distance 

is greater than 0 for 67.86% of the total cases for Social-SFM-1, and 82.14% 

of the total cases for Social-SFM-2. This shows that the accuracy in many 

cases improves when additional repulsive force stemming from social 

distancing is applied. For both models, for 25% of the total cases, the optimal 

desired distance was equal to or greater than 2m (which is generally the 

distance recommended by health authorities for social distancing). This 

indirectly proves the existence of social distancing behaviors in pandemic 

situations and highlights the need for models that reflect social distancing 

behaviors for reliable assessment and analysis of infection and transmission 

risks in indoor facilities. 

Table 3-2 shows that the ADE and DTW of Social-SFMs are lower than 

that of Basic-SFM, which illustrates that the performance of models 

improves when social distancing behaviors are reflected. The improvement 
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was more visible in crowded environments (High Density, High SDVR), 

where the performance differences between Basic-SFM and Social-SFMs are 

statistically significant (see Table 3-4). This highlights the importance of 

taking social distancing behaviors into account when analyzing transmission 

risk in indoor facilities. The purpose of utilizing simulation models in a 

pandemic situation is often to evaluate pandemic response strategies on 

indoor facilities, such as separating pedestrian routes and imposing capacity 

limitations. Such response strategies are usually evaluated based on how well 

pedestrians in indoor facilities practice social distancing, which then follows 

that the reliability of the evaluation depends on the reliability of the social 

distancing behaviors exhibited in simulation models. Considering that it is 

more difficult to practice social distancing behavior in indoor spaces than in 

outdoor spaces, pedestrian environments in indoor spaces are relatively more 

crowded than in outdoor spaces. This follows that the low model performance 

in crowded environments does not guarantee the reliability of transmission 

risks in indoor spaces deduced through simulations. This further highlights 

the importance of social distancing modeling in analyzing the transmission 

risk in indoor spaces.  



 

68 

 

 

As such, this study verified the existence of distancing behavior and the 

performance of Pandemic-SFM based on actual data. However, even in the 

same environment, social distancing behavior can be different depending on 

individual characteristics. Previous studies related to social force model 

development have reported that there are differences in preferred direction of 

pedestrians for collision avoidance. For example, pedestrians in Central 

Europe have a slight tendency to walk on the right-hand side while 

pedestrians in Japan prefer left-hand side walking(Helbing et al. 2005; 

Moussaïd et al. 2009). In addition, the other studies have shown that the 

degree of social distancing can vary depending on the degree of perceived 

risk by infection(Castex et al. 2021; Lee et al. 2021). Therefore, the research 

results shown in Tables 3-3, 3-4, and 3-5 are reflected in the American 

culture, and the preceding discussions based on these results are limited to 

the American culture. Nevertheless, the development of a simulation model 

to reflect distancing behavior is an important issue in the analysis of 

propagation risk. Therefore, there is a need to continue research by collecting 

data from various subjects (e.g. other cultures) in the future. 

Through our results, we were also able to confirm the limitations of 
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existing social distancing modeling. Table 3-5 shows that while both Social-

SFM-1 and Social SFM-2 show better performances compared to Basic-SFM 

in crowded environments, their performances are still low in non-crowded 

environments. This highlights that there still is a need for improvement in 

modeling pedestrian dynamics to reproduce pedestrian flows in a pandemic 

situation. The two Social-SFMs we verified in this paper account for the 

occurrence of additional force such as repulsive force when the distance 

between pedestrians reaches a certain level. However, whether pedestrians 

practice social distancing behavior not only depends on their distance from 

other pedestrians but also on other factors such as the speed of the other 

pedestrians, etc. Figure 3-8 compares the pedestrian trajectory in video 

footage (ground truth) with our simulation result. The left image in Figure 3-

8 shows pedestrians securing some distance from other pedestrians in 

advance after recognizing that they are approaching them from 10m apart 

(dotted line). However, for Social-SFMs, since repulsive force only occurs 

when the distance between pedestrians becomes close to one another at a 

certain level, we can see that the pedestrians in our simulation are headed 

directly toward their destination (solid line). The modeling concepts of 

existing Social-SFMs make it difficult to express real pedestrian movements. 
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Also, such models generate movements that do not readily happen in the real 

world. The right image of Figure 3-8 illustrates how pedestrians in our 

simulation make an immediate change in direction, as an additional repulsive 

force only occurs when the distance between two pedestrians reaches a 

certain level. If we could utilize a social distancing modeling method that can 

solve this issue, a more reliable assessment of transmission risks in indoor 

spaces through simulation would be possible.
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Figure 3-8 Comparison of ground truth trajectory (dotted) and simulation result(solid) 
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3.6 Summary 

In this chapter, it is investigated whether pedestrian simulation models, 

such as SFMs, can be effective for assessing the transmission risk of 

infectious diseases in indoor built environments during a pandemic, by 

comparing the performance of SFMs against real pedestrian video footage 

data. Specifically, the performance of Basic-SFM with Pandemic-SFMs 

(modified versions of the Basic-SFM to reflect social distancing behaviors) 

was compared in terms of how well the model replicates the actual people's 

behavior (i.e., pedestrian movement trajectory). The result shows that the 

Pandemic-SFMs outperformed the Basic-SFM, especially for crowded 

environment conditions (e.g., high density). Additionally, through sensitivity 

analysis, it has been confirmed that there are many situations in indoor built 

environments where simulations that reflect social distancing behaviors are 

necessary and that when social distancing behaviors are reflected in the 

models, the models show significant improvements in their performance in 

replicating actual behavior of pedestrians. This indicates that social 

distancing behaviors should be considered in the model when such a 

simulation-based approach is used to assess transmission risk in indoor built 

environments.  On the other hand, our study also revealed the limitations of 

existing Pandemic-SFMs, which has difficulty in capturing various types of 
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social distancing behaviors. In particular, it fails to reproduce the pedestrian 

behavior of securing distance in advance after recognizing the existence of 

other pedestrians approaching from afar. Therefore, future developments are 

required to make the SFMs even more realistic and a true reflection of actual 

pedestrian behavior in various situations. The result also indicates the 

limitations of existing Pandemic-SFMs and suggests future developments 

required to make the SFMs even more realistic and a true reflection of actual 

pedestrian behavior in various situations.  

Although this study provides the basis for constructing simulation 

models for assessing transmission risk in indoor built environments, the 

contributions are limited to a certain extent. First, the findings of this study 

are based on the results in a specific environment(corridor). Thus, the 

performance of SFMs may be different from other pedestrian environments 

such as large open spaces. Second, the pedestrian dynamics model tested 

through this study is limited to the SFM-based model. There are several 

concepts (e.g. deep learning model) to simulate the movement of building 

users. Although the SFM-based model has been the most widely used, it is 

necessary to investigate whether other concepts make better performance in 

social distancing modeling. Future studies should address these limitations 

by expanding the datasets and testing the other types of models.
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Chapter 4. Comparative Evaluation of Infectious 

Transmission Risk Metrics 

This chapter analyzes the statistical correlation between infection-based 

metrics and other metrics in a simulation environment. This study starts with 

two research questions: (1) To what extent the common transmission risk 

metrics are statistically correlated with each other? 2) Will the use of different 

metrics lead to different results in NPI effectiveness assessment? Through 

the correlation analysis between metrics, both research questions can be 

solved. If the correlations between metrics are low in same environment, it 

means the simulation results are interpreted differently depending on the 

metrics. In this case, it is possible to reveal which environment metrics lead 

to different conclusions by identifying environments where correlation 

between metrics are low. Therefore, the author investigated how the 

correlation between metric changes depending on the characteristics of the 

infectious disease and the walking environment in this chapter. Based on the 

derived correlation, it is revealed under what circumstances the metrics 

produce contrasting results, and how to interpret the results is discussed. 

There are a total of four indicators for comparison of infection-based metric 

(infected ratio): contact-based metric (exposure time), and network-based 

metrics (degree centrality, betweenness centrality, and closeness centrality). 
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The results of this study provide insight into applying various infection 

transmission risk metrics to NPI effect analysis. Through this, it contributes 

to improving the pandemic response capacity of facility managers and 

government policymakers, and facility managers. 
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4.1 Model Development 

An agent-based simulation model was developed for the experimental 

environment necessary for comparative analysis of the metrics indicating the 

risk of infection of the transmission risk. An agent-based model is a type of 

pedestrian simulation model that considers each individual as an autonomous 

agent, capable of making decisions and interactions with the environment and 

other agents. The main advantage of this type of model is the ability to 

capture the complexity and variability of pedestrian behavior. The pedestrian 

library in AnyLogic software is a tool used to model and simulate pedestrian 

behavior in crowded environments. The library is designed to be integrated 

into AnyLogic's simulation platform, which is a multi-method modeling and 

simulation software that supports a wide range of modeling paradigms.  

This study modeled the movement of school students indoors based on 

their timetable, with a focus on the 35th building of Seoul National 

University. The building consists of 10 lecture rooms, 5 rest areas including 

toilets, and open corridor space. The input for this model was the timetable, 

which provided information on the lectures students were taking and the 

classrooms they were allocated to. Over the course of a 4 hour simulation, 

the agents repeatedly attended their classes. After the lecture, they would 

move to the assigned classroom as per the timetable and allocation. Some 
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students would take a break in the rest area before heading to the next class, 

while others would go directly to the next lecture. Figure 4-1 illustrates the 

concept of the pedestrian simulation model developed in this study. The 

necessary input information, simulation results, and a detailed explanation of 

the movement rules for the agents in the model are outlined in the following 

sections of this study. 

 

Figure 4-1 Pedestrian flow modeling of the model in this study 
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4.1.1 Input of the Simulation Model 

For simulating the movement of students in the school, this model 

requires two types of information: class schedule and lecture room allocation. 

The class schedule represents the table that provides information on the 

lectures students are taking during a specific period, and the lecture room 

allocation represents the rooms in the building where the lectures are held. 

Based on these two inputs, it's determined which classroom the students will 

go to in each period of the simulation. By changing the lecture room 

allocation information, different pedestrian flows can be generated in the 

same environment (e.g. layout, pedestrian flow characteristics). In this study, 

a correlation analysis between metrics is performed to analyze the 

relationship between metrics. To secure statistical significance, a large 

number of data is required. This can be achieved by changing the lecture 

room allocation information randomly and generating multiple data for the 

same environment. This process enables the collection of a large amount of 

data for each environment, making it possible to perform correlation analysis 

between metrics.  
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4.1.2 Agent's behavior rule 

In the simulation environment of this study, student movement to their 

next classroom during breaktime is modeled based on input data information 

(as shown in Figure 4-1). Some students may stay at another location for a 

certain amount of time before moving to their destination. The behavior of 

the agents in this study was set using a state machine implemented with 

components from Anylogic's pedestrian library (as shown in Figure 4-2). 

Students enter the building through a Source(pedEnter), and one of three 

doors is randomly selected for their entrance. Depending on the environment 

parameter of the model, the "free activity ratio," some agents will move to a 

location other than the classroom (free_delay) for a set amount of time before 

moving to the lecture room (PedWait). The remaining agents move directly 

to the classroom. This process is repeated until all lectures are completed and 

students exit the building through a randomly selected door.

 

Figure 4-2. state machine chart for modeling agent's behavior rule 
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4.1.3 Output of the Simulation Model 

The simulation models of this study were designed to derive three types 

of metrics (infection-based metric, contact-based metric, and network-based 

metrics).  At first, this study set the infected ratio(ratio of the infected) agent 

when simulation is over as the infection-based metric. In order to calculate 

the infected ratio through the model of this study, it is necessary to model the 

process by which an agent is infected from an infected person. To this end, 

when an infected agent comes into contact with another agent for more than 

the contact time, propagation is modeled with the probability of the infection 

rate. In the study of Harweg et al., the relationship between contact time and 

the infection rate was estimated through simulation. This study was 

conducted in the range of contact time and infection rate investigated in this 

study. 

 In the case of contact-based metric and network-based metric, it can be 

obtained from the contact matrix that can be derived from contact matrix 

which is the simulation results. Contact matrix means information about how 

many contacts each agent has with each other. The value of each element in 

the contact matrix means the time the two agents contacted within 2 m. For 

example, if the value of the j-th column of the i-th row is 20, it means that 

agent i and agent j were within a distance of 2m for 20 seconds during the 

simulation. By summing the values of each element in the contact matrix, the 
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exposure time, which is a contact-based metric representing the risk of 

propagation, can be obtained(Figure 4-3).  

 

Figure 4-3. Exposure time calculation process with conactac matrix 

 

Also, since the contact matrix corresponds to the network model of 

network theory one-to-one (Gunaratne et al. 2022), the centrality value of 

each agent can be derived from the contact matrix. In this study, the centrality 

average of the top 10% agents was set as an index to evaluate the propagation 

risk of the contact network, and the centrality for this study was set as the 

most widely used degree centrality, betweenness centrality, and closeness 

centrality. Table 4-1 summarizes the types of metrics that can be obtained 

through the simulation model and their formulas. Networkx, a python-based 

Application Programming Interface (API), was used to calculate the metrics 

in Table 4-1. This API creates a network by entering node, edge, and weight 

information of the network theory. After that, it provides a function to 

automatically calculate the centrality value of each node. In this study, the 
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centrality value was calculated by inputting the contact matrix, which is the 

result of simulation through anylogic, into networkx. Afterwards, the average 

of the centrality values of the top 10% was set as a network-based metric, 

which means transmission risk(Figure 4-4). 

 

 

Figure 4-4. Centrality estimation with pedestrian simulation
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Table 4-1 Outputs of simulation: metrics for infectious transmission risk assessment 

Metrics Description Equation 

Infection-based 

metric 

infected ratio 

(M1) 

The ratio of infected 

agents among all 

agents 

𝑀1 =  
𝑛

𝑁
 

* N: The number of agents, n: The number of infected agents 

Contact-based 

metric 

Exposure time 

(M2) 

Total exposure time 

agent exposed to other 

agents within a certain 

distance 

𝑀2 =  ∑ 𝑇(𝑖) 

* T(i): exposure time of agent i exposed to other agents 

Network-based 

metric 

Degree 

centrality 

(M3) 

The number of links of 

the node 
𝑀3(𝑖)  =

𝑑(𝑖)

𝑁 − 1
  

* d(i): The number of a linked node with node i, N: The number of the nodes 

Betweenness 

centrality 

(M4) 

The number of cases 

when the shortest 

paths contain the node 

𝑀4(𝑖)  =  ∑𝑗<𝑘
𝑝𝑠𝑡(𝑖)

𝑝𝑗𝑘
:  

* 𝑝𝑗𝑘     : Number of the shortest path between node j and node k 

 * 𝑝𝑗𝑘(i):  Number of the shortest path containing node i between node j and k  

Closeness 

centrality 

(M5) 

The total length of the 

shortest path contains 

the node 

𝑀5(𝑖) =
1

∑𝑖≠𝑗 𝑑(𝑣, 𝑖)
 

* d(v, i): length between node v and i 
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4.2 Experimental Design 

This study examines the applicability of each metric by performing a 

simulation based on the previously introduced model, deriving the values of 

the metrics, and comparing the results. To analyze the applicability of the 

metric according to the environment, this model sets the following four 

environmental variables: (1) infection transmission rate (2) free activity rate 

(3) separated level. 

The infection transmission rate is an environmental variable that 

indicates the characteristics of an infectious disease. It means the probability 

of spreading the infection to other people when a contact time of more than 

a specific time is made. Free activity rate and separated level are 

environmental variables related to the characteristics of pedestrian flow, 

indicating how orderly people move indoors. Free activity rate refers to the 

ratio of agents moving to the rest area without moving directly to the next 

lecture room among all agents when the lecture is over. The higher this ratio, 

the higher the probability of contact between agents with different timetables. 

The separated level is an index indicating how separated the agents are and 

can be adjusted by setting the value of the class table. As there are more 

agents with the same composition of timetable, the number of agents moving 

in groups increases, which means that the separated level is lowered. In this 
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study, experiments were performed on a range of environmental variables as 

shown in Table 4-2 below, and a total of 60 experiments were performed with 

combinations of all environmental variables. 

Table 4-2 Model variables 

Environment Factors Model Variables Value 

Disease 

Characteristics 

Infection  

transmission 

rate(I) 

Infection 

transmission rate 

I1(0.01), I2(0.05), 

I3(0.1), I4(0.2), I5(0.3) 

Exposure time 

for infection 

(C) 

Exposure time for 

infection 

C1(15 sec), C2(30 sec), 

C3(45 sec) 

Pedestrian Flow 

Characteristics 

Degrees of 

freedom(F) 
Free activity rate 

F1(0), F2(0.1), F3(0.2), 

F4(0.3), F5(0.4), F6(0.5) 

Separated 

level(G) 
Class Schedule 

G1(High separated level) 

G2(Low separated level) 

Number of 

people 
Number of people 50 
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Figure 4-2 describes the process of the entire experiment. First, Figure 

4-2 (1) shows the process of deriving the metric value for one case. At this 

time, the number of agents is simulated to derive the infected ratio. Figure 4-

2 (2) shows the process of accumulating data for correlation analysis by 

repeatedly performing the method of (1). To generate 50 different cases, the 

classroom allocation information was changed randomly. Even in the same 

timetable-based simulation, if the classroom allocation is changed, the 

movement of pedestrians is changed, so various cases can be created for one 

timetable. Then, as shown in Figure 4-2 (3), based on the results of 50 cases, 

the Pearson correlation coefficient between each metric is derived. Repeat 

steps (1), (2), and (3) according to environmental variables, and analyze how 

the correlation between metrics changes according to the characteristics of 

pedestrian flow for several infectious diseases as shown in Figure 4-2 (4). 

In conducting this experiment, an important issue is how to address the 

randomness of the agents' movements. This is because, even if the same 

initial conditions are given, different results may appear due to various 

parameters related to agents’ movement. This is a crucial issue considering 

the purpose of the experiment to compare metric values for the same 

situation. To solve this problem, this study applied the fixed seed function of 

anylogic. This option enables reproducible simulation by fixing other 

parameters other than the environment variables intended by the modeler. 
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Figure 4-5 Experiment process
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4.3 Analysis Results 

4.3.1 Correlation analysis according to infection transmission rate 

This study analyzed changes in correlation between infection ratio, an 

infection-based metric, and other metrics as the infection transmission rate 

was changed. Figure 4-3 shows the change of correlation for each of the four 

experimental environments. In all four environments, it can be seen that the 

correlation with the infected ratio increases as the infection transmission rate 

increases for all indicators except the Betweenness centrality indicated by the 

gray dotted line. The reason for this result is that the exposure time measures 

the amount of contact with a risk of infection, and it is thought that the higher 

the infection transmission rate, the higher the probability that the contact will 

lead to infection. The centrality indicator, which shows the structural 

characteristics of the contact network, also shows a similar tendency to the 

exposure time because the network is constructed based on the information 

of the contact with the risk of infection. 

 However, in the case of centrality, the degree of tendency was different 

depending on the type. In the case of degree centrality and closeness 

centrality, as the infection transmission rate increased, the correlation with 

the infected ratio tended to increase, and the degree varied according to the 

experimental environment. However, in the case of betweenness centrality, 
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the correlation with the infection transmission rate varied according to the 

experimental environment. In particular, it showed a weak positive 

correlation in the environment where people moved regularly, but the 

correlation became smaller as it became irregular. In particular, the most 

irregular environment (Figure 4-3 (b)) showed a rather weak negative 

correlation.  

 

Figure 4-6 Correlation of metrics with infected ratio according to infection 

transmission rate(free activity: 0.3) 
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4.3.2 Correlation analysis according to pedestrian activity 

Following the previous analysis, changes in correlation coefficients 

between metrics according to Pedestrian flow characteristics (free activity 

rate and separated level) were observed. Figure 4-4 and Figure 4-5 show how 

exposure time, degree centrality, betweenness centrality, and closeness 

centrality change the correlation coefficient with the infected ratio according 

to the change of the free activity rate and the separated level. It can be seen 

that the larger the two parameters, the higher the randomness of the 

pedestrian flow. In the case of exposure time and degree centrality, it can be 

seen that the correlation coefficient with the infected ratio decreases as the 

free activity rate increases. In particular, the correlation coefficient decreased 

further in an environment with a high separate level. When the free activity 

rate was 0, the correlation coefficients with the infected ratio of the two 

indicators were 0.85 and 0.76, respectively, whereas when the free activity 

rate was 0.5, they significantly decreased to 0.291 and 0.259, indicating a 

weak positive correlation. 

On the other hand, the correlation of closeness centrality showed 

relatively little influence on the characteristics of pedestrian flow (Figure 4-

5 (a)). In particular, even in a high randomness environment (0.5 of free 

activity rate and high separated level), the correlation coefficient with the 

infected ratio was more than 0.5, which is higher than the correlation 
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coefficient of exposure time. This result means that the index indicating the 

characteristics of the contact network can have a greater correlation with the 

total number of infected than the amount of simple contact. This is to 

reconfirm the reports of previous studies that the structure of the network 

affects the overall spread of infection. Finally, in the case of betweenness 

centrality, it was difficult to see that there was a correlation in most 

environments, or rather, it had a negative correlation. Only in the case of low 

randomness (0 of free activity rate and low separated level), the Pearson 

correlation coefficient had a value of 0.4 or higher, which correlated with the 

infected ratio, but was small when compared with other metrics. These results 

suggest that betweenness centrality is effective as an indicator of the risk of 

transmission only in situations where people move in groups in an indoor 

space or move within a fixed route.  
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Figure 4-7 Comparison of metrics according to the pedestrian flow 

characteristics(exposure time and degree centrality)   
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Figure 4-8 Comparisons of metrics according to the pedestrian flow 

characteristics(betweenness centrality and closeness centrality) 
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4.3 Discussions 

In this study, correlation analysis was performed based on data collected 

in a simulation environment to compare and analyze five metrics for 

evaluating the risk of infection transmission in facilities through simulation. 

Among the five metrics, correlation coefficients of the contact-based metric 

(exposure time) and network-based metric (degree, betweenness, closeness) 

were derived based on the infection-based metric (infected ratio). Infected-

based metric has been used as an indicator of risk assessment because the 

number of infected people can be obtained through simulation. However, as 

mentioned in the background, the results vary depending on which person is 

initially infected, so a large number of simulations must be performed to 

derive reasonable results. Figure 4-6 is a graphical representation of the 

infected ratio value when each of the 50 agents in the experimental 

environment of this study was initially infected. From the graph, it can be 

seen that the result values vary from a minimum infected ratio of 4% to a 

maximum infected ratio of 72%. These results have the meaning of 

reconfirming the results of previous studies that pointed out the shortcomings 

of the infection-based metric through experiments (Gugole et al. 2021; 

Gunaratne et al. 2022). Several simulations are required to secure reliability 

due to different results according to the initial setting. For this reason, it 

requires a lot of computation time compared to other metrics, and it becomes 
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more important as the size of the model increases(Gunaratne et al. 2022). 

Considering that the target for evaluating the effect of NPI is an indoor space 

where a lot of people gather, the issues pointed out by the results of this study 

should be treated as important in evaluating the risk of propagation using 

simulation. 

 

Figure 4-9 The  number of infected people depends on the initial infected 

If there is another metric that has a high correlation with the infection-

based metric, it can be used as an alternative to overcome the aforementioned 

issues. The results of this study (Figure 4) show that exposure time, closeness 

centrality, and degree centrality have a higher correlation with the infected 

ratio as the infection transmission rate increases. This means that the smaller 

the transmission rate, the more difficult it is to substitute the infected ratio 

with other metrics. As shown in Table 4-3, the infection transmission rate 
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varies depending on the disease. In light of this data, it is reasonable to 

evaluate the risk of transmission with a network-based metric and a contact-

based metric for diseases with a high infection rate such as COVID-19 or 

measles, but computation time is a problem in cases with a low infection rate 

such as MERS or SARS. Nevertheless, it can be seen that it is necessary to 

estimate the infected ratio. Based on these discussions, the results of this 

study support the validity of the exposure time indicator mainly used by 

recent studies on COVID-19. 

Table 4-3 Infection transmission rate of the various types of diseases (Leung 

2021; Madewell et al. 2020) 

 MERS SARS COVID-19 Measles 

Min 0.009 0.048 0.140 0.520 

Max 0.107 0.107 0.220 0.846 

Average 0.058 0.077 0.170 0.683 
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Figure 4-10 Applicable metrics according to the type of infectious disease 

The correlation between metrics may vary depending on the 

characteristics of the pedestrian flow as well as the characteristics of the 

infectious disease. In particular, the results of this study shown in Figure 4-7 

showed that there was a difference in the correlation coefficient between the 

two indicators of exposure time and closeness centrality with the infected 

ratio according to how randomly people move in an indoor space. These 

results emphasize the need for facility managers to select standard indicators 

in consideration of the characteristics of pedestrian flow for each facility in 

comparative analysis of NPIs. The results of this study showed that the lower 

the randomness of pedestrian activity, the higher the correlation between 

exposure time and infected ratio. These results indicate that it is appropriate 

to use a contact-based metric in an environment where pedestrian activity is 

simple and grouping is high, such as a school. On the other hand, in an 
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environment with high randomness of pedestrian flow, such as a complex 

shopping mall, it is implied that the closeness centrality indicator among the 

network-based metrics will be a reliable indicator. 

Previous discussions based on the results of this study were conducted 

on the premise that the infected ratio is the ground truth. However, the 

infected ratio can vary depending on how the infection process is modeled as 

described in the background. Therefore, the results and interpretation of this 

study are limited to the infectious disease modeling method. Despite these 

limitations, this study is meaningful in that it revealed that there is no 

universally suitable metric in selecting the infection transmission risk 

assessment index, and the purpose of the study, infectious disease, and 

characteristics of pedestrian flow should be considered. In addition, in 

consideration of these points, the basis of the comparative analysis method 

for selecting the metric was provided. The simulation model of this study can 

not only obtain various types of metrics as a result but also set the 

experimental environment by parameterizing the characteristics of infectious 

diseases and pedestrian flow. Through this, the validity and reliability of the 

indicators for evaluating the risk of infection transmission in indoor spaces 

can be tested. Therefore, the results of this study enable a rational 

comparative analysis of the effects of various NPIs and ultimately contribute 

to responding to the current Covid-19 and the upcoming pandemic. 
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4.4 Summary 

This study comparatively analyzed five types of metrics to evaluate the 

risk of facility infection transmission in a pandemic situation and investigated 

their applicability. A pedestrian simulation model was built for the 

experimental environment for comparative analysis, and how the correlation 

between metrics changes according to the characteristics of infectious 

diseases and pedestrian flow was observed. Through this, the strengths and 

weaknesses of infection-based metrics and the relationship between the 

contact-based metric and infection-based metric of network-based metric 

were analyzed. The infection-based metric most directly represents the risk 

of infection but has the disadvantage of requiring a large number of 

simulations for reliability, and the results may vary depending on the 

modeling of the infection propagation method. To overcome this problem, 

contact-based metrics and network-based metrics can be considered, but 

there is a difference in correlation with infection-based metrics depending on 

the characteristics of infectious diseases and pedestrian flow. This suggests 

that the appropriate metric may also differ depending on the purpose of the 

study, infectious disease, and type of facility. The results of this study 

emphasize that there is no universally suitable metric for selecting the risk 

assessment index for infection transmission. Therefore, it means that a 

situation may arise in which priorities may vary depending on the metric as 
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a standard in comparative analysis of the effects of various NPIs through 

simulation. The framework of the comparative analysis presented in this 

study can be used as an important way to select a standard metric. This 

enables a reasonable comparative analysis of NPIs for facility infection 

transmission management and ultimately contributes to facility managers and 

government officials responding to the current Covid-19 and the upcoming 

pandemic.  
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Chapter 5. Assessment of Facility-level 

Interventions in Indoor Spaces 

In this chapter, the effects of non-pharmaceutical interventions are 

analyzed based on the investigation of social distancing modeling and 

transmission risk metrics performed in the previous chapters. As described 

in chapter 3, social distancing behaviors have to be reflected in analysis to 

improve the reliability of pedestrian simulation-based transmission risk 

assessment. Also, as described in chapter 4, the priority of NPI should be 

determined by considering the features of various types of transmission risk 

metrics. The author addressed these issues by developing an agent-based 

simulation model for educational facilities with Anylogic software. First, 

First, the author represented the social distancing behavior with the functions 

of social distancing in Anylogic software. Second, as in Chapter 4, the author 

developed a model that can derive the network-based metrics based on the 

contact matrix as simulation results. Through the developed model, this study 

Identified whether the spatial and temporal interventions are practically 

effective and which interventions are most effective. In this study, in order to 

compare the transmission risk reduction effect between policies, the 

effectiveness index was set as the ratio of the transmission risk of base case 

and policy implemented(Figure 5-7 ~ Figure 5-11).  
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5.1 Experimental Design 

5.1.1 Model Development 

This section outlines the model development process for evaluating the 

effectiveness of various facility-level interventions in educational buildings. 

The pedestrian library of Anylogic software was used, building upon the 

model developed in the previous chapter for comparing metrics. The 

following section describes the additional steps taken for NPI evaluation. 

The behavior rules for the agents were consistent with the previous 

chapter's model for correlation analysis. After each class, agents would move 

to the next classroom based on the schedule. However, a portion of the 

students would stay in a randomly selected space in the simulation before 

moving to the next classroom. 

In this study's simulation, social distancing behavior was incorporated 

into the agents' movements. As discussed in chapter 3, modeling social 

distancing behavior in a pandemic scenario can improve the reproducibility 

of the simulation. Anylogic software provides a function to implement social 

distancing behavior by adjusting the social distance parameter. This 

constraint ensures that agents maintain the assigned distance between each 

other when moving, waiting in lines, and staying in designated areas. If not 
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set, the agents in the simulation would move according to the results of the 

Basic-SFM outlined in the previous chapter. In the experiment, the social 

distance parameter was set to 1m to represent social distancing behavior. 

The simulation outputs are transmission risk metrics from the contact 

matrix, as described in 4.1.2. Based on the contact matrix, this study selected 

exposure time per student and closeness centrality as indicators for assessing 

the effectiveness of facility-level interventions. The decision to use only two 

metrics was based on the findings in chapter 4. Betweeness centrality was 

excluded due to its low correlation with the infection ratio, while degree 

centrality was omitted for its high correlation with exposure time. However, 

closeness centrality and exposure time both showed a high correlation with 

the infection ratio in various walking environments, making it appropriate to 

use both metrics. 

 

Figure 5-1 Case layout in this study 
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5.1.2 Facility-level Interventions 

This section describes which interventions will be tested based on the 

developed model and explains how to implement the interventions in the 

simulation. Facility-level interventions can be divided into spatial constraints 

and temporal constraints. The spatial constraint is a method to change the 

pedestrian flow by separating spaces for transmission risk reduction. On the 

other hand, the temporal constraint is a method separating the pedestrian 

activity schedule. These policies are intended to reduce the amount of contact 

by changing pedestrian flow by limiting space and time. However, these 

policies inevitably reduce facility serviceability because they limit the 

existing pedestrian activity. Therefore, if the effect of the policy is 

insignificant, it will only cause inconvenience to the occupants. Therefore, 

this study aims to analyze the effects of interventions that are implemented 

or recommended by health organizations. Figure 5-2 summarizes the 

interventions tested in this study. The rest of this section describes the 

facility-level interventions in Figure 5-2. Also, it describes how each specific 

intervention can be reproduced within our simulation.  
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Figure 5-2 Facility-level interventions adopted in this model
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Spatial Constraint 1: Zoning  

The first spatial constraint to test the effectiveness of this study is the 

zoning strategy. Zoning is a method to induce the movement of different 

groups of people not overlapping. To protect patients in hospitals, various 

health organizations such as UNICEF recommended a policy to separate the 

movement of patients from general occupants(ref). In this regard, for the 

management of various types of buildings such as supermarkets, schools, and 

offices, rules for limiting the entrances that can be used for each zone have 

been adopted. Considering the pedestrian flow, it is necessary to analyze the 

effectiveness of dividing the entire space into different zones. 

To this end, the schedule was constructed in which each student moves 

only within the assigned zone. For example, in the case of two divided zones, 

the students assigned to the first zone get the lecture only in classrooms from 

0 to 5 randomly, and the other students use only the remaining classrooms. 

 

Figure 5-3 Concept of classroom zoning  
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By setting the value of "student schedule" in Figure 5-3, the simulation 

can implement the zoned environment. The building targeted in this study 

has 12 lecture rooms. Figure 5-4 demonstrates how to set the zonal schedule 

through the student schedule. For a 2-zonal schedule, it can be achieved by 

creating a student schedule with a group taking 4 classes in lecture rooms 1-

6 and another group taking 4 classes in lecture rooms 7-12. Similarly, for a 

3-zonal schedule, it's implemented by dividing it into periods respectively 1-

4, 5-8, and 9-12. 

 

Figure 5-4 Example of zonal schedule generation 
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Spatial Constraint 2: Movement Restriction  

The second spatial constraint is to restrict pedestrian movement. To this 

end, prohibiting the use of a specific space and one-way movement in a 

corridor are an example of movement restrictions (Gunaratne et al. 2022; 

Islam et al. 2021). Previous studies analyzed the effect of only passing in one 

direction in the hallway. As such, various types of movement restrictions 

have been proposed and implemented to reduce transmission risk in indoor 

spaces. 

This study analyzes the effectiveness of movement restrictions that 

prohibit students from moving to other spaces during break time. In schools, 

it is possible to try to limit the risk of transmission while lasting educational 

activity. For the analysis, the free activity ratio parameters are simulated 

when they are 1, 0.5, and 0, respectively. The free activity ratio means the 

strength of the policy, and the lower it is, the stronger the restriction. 

 

Figure 5-5 Concept of movement restriction 
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The "period_start" block in Figure 5-6 serves as a branching point for 

the movement logic of agents. In this case, a portion of the agents, determined 

by the free activity rate, follow the lower logic flow. After a short random 

pause in the "free_delay" block, ranging from 1 minute to the length of the 

rest period, they then move to "pedGoTo1". By adjusting the free activity 

rate, the number of agents following the lower logic flow can be controlled, 

thus implementing movement restriction policies in the simulation. The 

remaining agents follow the upper logic flow and proceed directly to the 

"pedGoTo1" block. 

 

Figure 5-6. implementation of movement restriction policy using state 

machine chart 
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Temporal Constraint 1: Staggered Schedule 

The first temporal constraint is staggering the pedestrian activity 

schedule. The staggered schedule can be implemented by planning a student's 

activity schedule. Centrality Elementary School District(CESD) 

recommended the staggered schedule to prevent the spread of diseases in 

schools in California. Through the Covid-19 safety plan, students who utilize 

the District’s Transportation services may receive a staggered schedule for 

arrival and dismissal in taking lectures.  

In this study, the effectiveness of staggered schedules was analyzed by 

comparing the staggered schedule and the normal schedule. To generate a 

staggered schedule, the lecture room was divided into two groups as shown 

in Figure 5-5. The lectures in Schedule A are set to start at 9:00, and the 

lectures in schedule B start at 9:30. The students in schedule A only take 

classes in Schedule A, and the others take classes in Schedule B. 

 

Figure 5-7 Concept of the staggered schedule 
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By setting the values of "student schedule" and "timetable" in Figure 5-3, 

the simulation can implement a staggered environment. Figure 5-8 illustrates 

how to set a staggered environment using the student schedule and timetable. 

For the staggered schedule, two timetables are created first. Timetable 2 begins 

30 minutes later than Timetable 1. Students who follow Timetable 1 attend 

classes only in odd-numbered classrooms, while students' schedules are set to 

attend classes only in even-numbered classrooms in the case of Timetable 2. 

 

Figure 5-8. Example of staggered schedule generation 
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Temporal Constraint 2: Adjusting Breaktime 

The second temporal constraint tested in this study is to adjust the length 

of break time. Having prolonged break time is recommended as a key 

operational measure for educational facilities (Minnesota Department of 

Health 2020). It can be expected that the crowd can be dispersed by 

increasing the break time. However, at the same time, there is a possibility 

that transmission risk may increase as the contact time between students 

increases. 

In this study, the experiment was conducted by setting the length of 

break time to 5,10, and 15 minutes. During the break time, the free activity 

ratio of students stays in a random space before moving to the next classroom. 

The time to stay in a random space was randomly set from 1 minute to the 

length of break time. 

 

Figure 5-9 Concept of the adjusting break time 
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5.3 Temporal Constraints Analysis 

5.3.1 Effectiveness of Staggered Schedule 

To analyze the effectiveness of the staggering schedule, the 2-grouped 

schedule and the non-staggering schedule were tested. It was confirmed that 

exposure time per person can be reduced in the range of 42.49% - 54.18% 

through the intervention. Closeness centrality also showed that for all 

population densities, the centrality of the staggered schedule was smaller than 

the non-staggered schedule. These results mean staggered schedules are 

effective in reducing the infectious transmission risk. However, there were 

different trends in intervention effectiveness according to the population 

between contact-based metrics and network-based metrics. The reduction 

effect of exposure time was similar regardless of the number of students as 

shown in Figure 5-7. On the other hand, from the perspective of closeness 

centrality, the effectiveness of the intervention gradually decreased as the 

number of students increased. In the case of 40 students, closeness centrality 

decreased by 64.26%, whereas it was only an 8.59% decrease in the case of 

200 students. 
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Figure 5-10 Effectiveness of staggered schedule 

 

5.3.2 Effectiveness of Adjusting Breaktime 

To evaluate the effect of adjusting breaktime, experiments were 

performed when the breaktime lengths were 5 (reference), 10, and 15, 

respectively. To consider only the influence of breaktime, zoning and 

staggering were not performed, and the free activity ratio was set to 1. As 

shown in Figure 5-8, Prolonged the breaktime to 15 minutes had an effect in 

terms of both metrics. However, with the same staggered schedule, the 

reduction effect of closeness centrality decreased as the number of students 

increased. On the other side, in the case of prolonging for 20 minutes, there 
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was a low reduction effect. Also, when it was abbreviated to 5 minutes, 

transmission risk increased especially in the low number of students. These 

results revealed the possibility of reducing transmission risk by adjusting the 

breaktime. However, it also showed the possibility of increasing transmission 

risk by changing the length of breaktime. In summary, our results showed the 

expected effectiveness and limitation of this intervention as mentioned in 

section 5.1.2.  

The reason for these results is that if break time is shortened, 

transmission risk increases as people are crowded in the space. A previous 

study related to this intervention stated prolonged breaktime can resolve the 

bottlenecks during breaktime. In this research, prolonging the breaktime 

reduced the peak value of exposure time by 35%(Lee and Ahn 2021). 

Minnesota department of health also recommended breaktime adjustment as 

the key operational measure for pandemic response in schools. On the other 

hand, our results revealed transmission risk may increase when prolonged 

breaktime is excessive. This is because the increase in space-sharing duration 

is more influential than the reduction effect caused by the students' 

dispersion. 
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Figure 5-11 Effectiveness of adjusting breaktime compared to 5 min 

breaktime 
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5.4 Spatial Constraints Analysis 

5.4.1 Effectiveness of Classroom Zoning 

The transmission risk of the non-zoning schedule (reference), 2-divided 

schedule, and 3-divided schedule were calculated in this section. After that, 

it was estimated how much reduction effect compared to the non-zoning 

schedule. As shown in Figure 5-9, there was no case having an effect of more 

than 10% except for the case where the 2-divided schedule was applied to 

140 and 160 students. In particular, the risk increased when there were few 

people (40, 60 students). 

- Taken together, classroom zoning has insignificant effects, and it 

means that risks may increase in a space with low density. The reason for this 

result is interpreted to be that the classroom zoning in this study is not a 

complete separation of space. Both exposure time and closeness centrality 

are interpreted as having no reduction effect because students from other 

zones can be encountered during breaktime. The mixed policy of movement 

restriction and zoning, which will be described later, had a greater effect than 

simply implementing only movement restriction. Therefore, in the case of 

classroom zoning, complete separation of space including breaktime as well 

as main activities must be achieved.  
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Figure 5-12 Effectiveness of classroom zoning compared to non-divided 

schedule 
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5.4.2 Effectiveness of Movement Restriction 

To analyze the effect of movement restriction, exposure time per student 

and closeness centrality were compared according to the free activity ratio, a 

model parameter. The lower the free activity ratio, the more students directly 

move to the classroom without going to another space during break time. 

Therefore, a low free-activity rate means a strong movement restriction. 

In the case of exposure time, both free activity ratios were more than 

40% effective regardless of the number of students. However, the difference 

between the free activity rate of 0.5 and 1 was insignificant. These results 

mean that the transmission risk is not decreased from a certain level of 

intervention. This study also analyzed from the perspective of closeness 

centrality. When the free activity rate is 0.5, the effectiveness of intervention 

gradually decreased as the number of students increases as with staggered 

schedules. There was an effect of 72.98% in the case of 40 students while an 

effect was only 20.92% in the case of 200 students. However, when students 

were restricted from using any space other than the classroom (when the free 

activity rate was 0), the effect was maintained even if the number of students 

increased. 
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Figure 5-13 Effectiveness of movement restriction compared to free activity 

rate 0 environment  
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5.5 Discussions 

5.5.1 Comparison of various types of NPI 

This study analyzed the effectiveness of temporal constraint based 

intervention (staggered schedule, adjusting break time) and spatial constraint 

based intervention (classroom zoning, movement restriction) through 

exposure time and closeness centrality indicators. Figure 5-11 represented 

the comparisons of the effectiveness of the major interventions. Except for 

classroom zoning, the three interventions were effective in reducing the 

amount of contact. However, the extent of effectiveness was different 

depending on the strength of the policy. In the case of adjusting breaktime, if 

it was too short or too long, the amount of contact was rather increased. In 

the case of movement restriction, the amount of contact could be reduced as 

the intensity are stronger, but there was no significant difference between the 

free activity rate of 0.5 and 0. On the other hand, the effect of preventing the 

speed of disease spread decreased as the population density increased. Except 

when free activity was 0(strict movement restriction), a reduction effect of 

more than 60% when there were 40 students also decreased to less than 30% 

when there were 200 students. This means that although the amount of 

contact can be decreased through major facility-level interventions, it is 

difficult to prevent the effects of superspreaders.  
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Figure 5-14 Comparison of the effectiveness of major interventions 
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5.5.2 Expected Application 

Based on the results and implications of the study in this chapter, the 

author presented two facility management plans that can reduce the 

transmission risk in the educational building. The movement restriction, 

which is revealed as the most effective intervention among the interventions 

tested in this study, can adjust the policy strength with the free activity rate 

which is the policy parameter in this study. However, the free activity rate is 

not an intuitive factor, unlike other interventions. For example, the length of 

breaktime, which is the policy parameter of adjusting breaktime intervention, 

can be adopted in the real world directly. On the other hand, the free activity 

ratio means the proportion of students who don’t move directly to the next 

classroom. Therefore, practical suggestions are necessary to apply the results 

of this study in the real world. 

Elementary institutions (e.g. Centrality Elementary School District and 

Health) authority(e.g. Minnesota Department of Health) recommended 

controlling the students’ movement in the school for pandemic response. In 

this regard, school managers such as teachers can control the students and 

class timetable to minimize the transmission risk. In our experiment, 

movement restriction with 0 of free activity rate was the best intervention 

among the tested in this research. However, this means that no space is 

available during breaktime except for the classroom, and it may be an 
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unrealistic intervention. Therefore, the author suggests the policy mix as the 

applicable intervention based on the simulation results. Figure 5-12 shows 

the effectiveness of various types of policy mixes combining two or more 

interventions introduced in this study. The author tested the two combined 

interventions: moderate-intensity movement restriction (0.5 of free activity 

rate) with the staggered schedule and 3-divided zoning. The effectiveness of 

the intervention was compared with the strict movement restriction (0 of free 

activity rate). The results showed both combined interventions achieved 

similar or better impact in terms of both metrics (exposure time and closeness 

centrality). The first implication of the policy mix experiment was staggered 

schedule with movement restriction achieved a better effect in terms of 

exposure time. Also, this intervention had the reduction effect of closeness 

centrality in a high population density environment, different from other 

interventions tested in this study. Another point is that classroom zoning, 

which had no effect as a single intervention, had an effect when combined 

with the movement restriction. 

 It implies that combining two interventions has a greater effect than one 

intervention with a strong policy length. Also, 0.5 of the free activity rate is 

more realistic than 0 of the free activity rate. For example, if the students can 

be divided into two groups, it could be achieved the same condition with 0.5 

of free activity: One group uses the free activity space only in even-numbered 
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breaktime and the other group uses in odd-numbered breaktime. Therefore, a 

staggered schedule with the abovementioned intervention can be a more 

effective and realistic method to reduce transmission risk in the educational 

building. 

The second management plan for the pandemic response in this study is 

superspreader management. As mentioned in numerous previous research, 

monitoring superspreader is a crucial activity in preventing disease spread. 

The model developed in this research can derive the individuals who have a 

high probability of being superspreaders based on the contact matrix, which 

is the output of the simulation. School managers can identify the hazard 

spaces through the following process: (1) conducting pedestrian simulation 

with students' activity schedule and timetable as the input (2) Calculation of 

closeness centrality of each student based on the contact matrix (3) 

Classifying the top 10% of students with high closeness centrality (4) 

Investigation of the identified students’ schedule (5) Identification of 

hazardous space through the deriving the space where superspreader pass the 

most. To this end, it can contribute to supplementing facility-level 

interventions that are difficult to prevent propagation speed by 

superspreaders in a high population density environment.  
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Figure 5-15 Comparisons of effectiveness of policy mix  
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5.6 Summary 

This chapter identified whether the spatial and temporal interventions 

are practically effective and which interventions are most effective. The four 

interventions(staggered schedule, adjusting breaktime, movement restriction, 

and classroom zoning) are tested based on the investigation of social 

distancing modeling and transmission risk metrics performed in the previous 

chapters. The author developed an agent-based simulation model to address 

the previous findings. The simulation results showed the interventions tested 

in this study were effective in reducing the amount of contact except for 

classroom zoning. However, the extent of effectiveness was different 

depending on the strength of the policy. Based on the results and implications 

of the study in this chapter, the author presented two facility management 

plans that can reduce the transmission risk in the educational building. First, 

staggered schedule with the abovementioned intervention can be a more 

effective and realistic method to reduce transmission risk in the educational 

building. Second, school managers can identify the hazard spaces through the 

closeness centrality of each student. To this end, it can contribute to 

supplementing facility-level interventions that are difficult to prevent 

propagation speed by superspreaders in a high population density 

environment.   
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Chapter 6. Conclusions 

6.1 Research Results 

The necessity of simulation-based transmission assessment tools has 

resonated with many researchers. In particular, pedestrian simulation has 

been considered the most appropriate tool to analyze the effectiveness of 

facility-level interventions. However, the previous studies had little 

consideration for the reliability of simulation results. Since invalid methods 

lead to unreliable results, method validation is a crucial issue in securing the 

reliability of simulation-based assessment. To achieve these issues, this 

research investigated the following two issues: (1) social distancing modeling 

behavior in the pedestrian model (chapter 3) (2) comparative evaluation of 

transmission risk metrics (chapter 4). The authors suggested meaningful 

implications to solve these problems through the two experiments. Based on 

the findings in the experiments, this study assessed the effectiveness of 

facility-level interventions through the development simulation-based 

assessment process. 

In Chapter 3, the performances of social force based models for 

pedestrian simulation were compared based on human trajectory data which 

was collected during the covid-19 period. Through the sensitivity analysis, 
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this study revealed the existence of social distancing behavior by comparing 

the results based on existing data such as ZARA. Afterward, the accuracy 

(ADE and DTW) of the trajectory prediction of social force based models 

were compared. The models reflecting the distancing behavior (Pandemic-

SFM-1 and Pandemic-SFM-2) showed higher accuracy than the existing 

model (Basic-SFM). In particular, Pandemic-SFMs had higher performance 

in the crowded walking environment. The results indicate the importance of 

social distancing modeling in transmission risk assessment in indoor spaces. 

Chapter 4 comparatively analyzed five types of metrics to evaluate the 

transmission risk during the pandemic and investigated their applicability. 

For analysis, this study conducted a correlation analysis of metrics by 

changing the pedestrian environment and disease characteristics. While the 

infection-based metric most directly indicates the transmission risk, it has a 

computational problem due to the uncertainty by simulation setting and 

infection modeling. It is revealed that exposure time (contact-based metric) 

and closeness centrality (network-based metric) can overcome the 

abovementioned limitations because of the high correlation in the case of 

high transmission rate disease. However, the suitable alternative metric was 

different according to the pedestrian environment. In a highly congested 

environment, closeness centrality can be alternative of infection-based metric 

while the exposure time was an appropriate transmission risk metric in the 
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opposite case. These results implied that the spread by superspreaders 

increases the transmission risk in a crowded environment, and the amount of 

contact has an important effect on transmission risk in an opposite 

environment. 

In chapter 5, the effectiveness of various types of facility-level 

interventions for educational facilities was analyzed by reflecting on the 

results of the previous two chapters. For this purpose, social distancing 

behavior was reflected through the pedestrian library in Anylogic. Also, two 

metrics (exposure time and closeness centrality) indicating the transmission 

risk were adopted in the result interpretation simultaneously. Through the 

analysis of the four types of interventions, this study revealed the limitation 

of interventions in preventing the disease spread by superspreaders in high 

population density environments while the amount of contact can be reduced. 

In the case of the movement restriction policy, it was also effective from the 

perspective of closeness centrality in high-density environments. In addition, 

the results of the study showed that high-intensity interventions can’t 

guarantee high effectiveness. These results emphasized the importance of 

identifying the appropriate policy strength which can minimize the decrease 

in building serviceability. 
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6.2 Research Contributions 

The main contributions of this research include the following: (1) 

identification of performance improvement through social distancing 

behavior modeling to reproduce pedestrian flow during a pandemic (2) 

identification of transmission risk metric applicability according to the 

pedestrian environment and disease characteristics (3) development of 

simulation-based transmission risk assessment tool and process for facility 

management to respond pandemic (4) proposition of facility-level 

interventions through the effectiveness analysis in the educational building. 

This dissertation specifically contributed to the body of knowledge in three 

aspects as follows: 

In political aspects, this study established a theoretical basis for a facility 

restriction policy in accordance with pandemic. Through the distancing 

simulation model, which is the result of this study, it is possible to quantify 

the transmission risk of facilities by reflecting social distancing behavior of 

pedestrians. Therefore, it is possible to present scientific and rational basis in 

determining the target and means NPIs, such as limiting the number of people 

and operating hours. Through this, it is possible to contribute to minimizing 

inevitable economic damage and social conflict by deriving target facilities 

in advance for which the policy is not effective. 
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In practical aspects, this study emphasized the role of multi-use facility 

managers and securing response capabilities in a pandemic situation. Facility 

managers can use the results of this study to establish infectious disease 

reduction strategies tailored to the characteristics of individual facilities, and 

develop a mobile application that simulates the risk of spread so that they can 

use it easily. This is expected to make a great contribution to improving 

facility managers' Pandemic response capabilities. This will serve as a 

foundation for establishing national resilience against infectious diseases by 

expanding the subject of response to the spread of infectious diseases, which 

was limited to the government/citizen, to individual facility managers. 

In academic aspects, this study secured reliability of Pandemic-SFMs 

by identifying pedestrians’ social distancing behavior. This study confirmed 

the performance improvement of pedestrian simulation model by reflecting 

social distancing behavior with real pedestrian data. These research results 

enhanced the understanding of social distancing behavior in pandemic. 

Furthermore, when developing a simulation model necessary to analyze the 

impact of NPIs considering social distancing behavior, it provides basic data 

for reliable models. Furthermore, these results can be adopted in various 

research field which pedestrian simulation is mainly adopted. SFM to be 

improved through this study is used as a basic theory in related software such 

as Viswalk and Anylogic as described in previous section. Therefore, the 
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results of this research can be widely applied to various fields such as 

architecture and urban planning, evacuation simulation, robot navigation-

related research, and related software development. 

Despite the efforts for contributions of this research, it is required to 

improve the applicability of the methods including the various situations of 

social distancing behavior and pedestrian environment. Although Pandemic 

SFMs are outperformed within data collected in this study, different results 

can appear in the other environments. For example, only social distancing 

behavior between people facing each other was included since data was 

collected in the corridor. However, other forms of distancing behavior can 

appear in other environments such as open spaces included. Transmission 

risk metrics validation also had the same perspective of limitation. The data 

for correlation analysis was acquired from simulation environments 

representing the educational building. Therefore, the findings in this research 

are limited to pedestrian environments where the main activity and break 

times are repeated. To achieve the goal suggested in this research, modeling 

and data collection for various walking environments are required. Based on 

this, further studies need to validate the transmission risk assessment method.   
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6.3 Applications for Transmission Risk Management 

In order to better respond to the upcoming pandemic, more useful tools 

and information are needed for facility managers and policy makers. In this 

section, we propose several applications that can be applied based on the 

findings of this study. Afterwards, the limitations of this study and further 

studies for more effective application are described. 

The first application proposed through this study is related to social 

distancing behavior modeling. As described in Chapter 3, Pandemic-SFM to 

reflect distancing behavior was found to reflect real movements better than 

Basic-SFM. Many preceding studies are conducting NPI assessment studies 

through SFM-based pedestrian simulation software such as VisWalk or 

Anylogic. By modifying the pedestrian module, these software can enable 

researchers to conduct reliable research about NPI assessment in pandemic. 

The second application based on the results of this study is the agent-

based model that can calculate transmission risk metrics can be applied to 

various types of facility types. The simulation model developed in this study 

can be divided into 1) layout setting module 2) pedestrian movement logic 

module 3) matric calculation module. In the case of the third module, a 

contact matrix is generated by collecting the data related to agents’ 

movement. After that, contact-based metric and network-based metric are 
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calculated based on contact matrix. Also, this module can simultaneously 

calculate infection-based metrics. Through the modeling the layout of other 

facilities and the pedestrian movement logic, it is possible to analyze other 

types of facilities by applying the metric calculation module. Therefore, 

facility managers can apply the results of this study to analyze the 

effectiveness of NPI alternatives considering the facility characteristics. 

The last proposed application is a transmission risk management policy 

that can be implemented in school facilities. NPI is essential to prevent spread 

of infection, but at the same time has the disadvantage of lowering 

serviceability. This study analyzed the policy considering both transmission 

risk and serviceability. The findings discussed in Chapter 5.5 can be used to 

establish a facility management plan to prevent infection of students in 

schools. In particular, it contributes to securing the serviceability of the 

facility because it can prevent policies with insignificant effects from being 

implemented. Therefore, it is expected to be of great help in establishing 

reopening planning. 
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6.4 Future Research 

In a pandemic situation, pedestrian simulation is an important method 

for facility management to reduce the infectious transmission risk, but there 

are still several limitations. In this section the directions of further study 

research are described in three categories based on the research results of this 

thesis in order to expand the body of knowledge.  

First, verification and improvement of pedestrian simulation model are 

required to accurately reflect social distancing behavior. In this study, 

Pandemic-SFMs were verified with pedestrian trajectory data in America. 

However, social distancing behavior may differ depending on the 

characteristics of each pedestrian. Therefore, the Pandemic-SFM validation 

conducted in this study is limited to the movements of American students. 

Additional research based on actual data is required to reproduce pedestrian 

movement. To this end, it is essential to collect data including various 

pedestrian characteristics (culture, age, etc.). Also, various types of 

pedestrian simulation model also have to be verified compared to SFM. There 

are other concepts of simulation model such as celluar autonoma and optimal 

steps model. There were several researches to reflect social distancing 

behavior models based on this concept. Repeated verification can improve 

the reproducibility of social distancing behavior modeling and ultimately 
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secure the reliability of the transmission risk assessment method. 

Second, additional comparative evaluation of various types of 

transmission risk metrics should be necessary. This study revealed the 

relationship between infection-based metric, contact-based metric, and 

network-based metric. However, the correlations among the metrics may 

change depending on the layout of the facility or pedestrian movement 

pattern. Therefore, there is a need to test the relationship between metrics for 

various facility types based on the research method conducted in this study. 

Through these processes, it can expand knowledge about which metrics are 

appropriate for which situations. Furthermore, facility managers can assess 

the NPIs with a scientific basis through these studies. 

Finally, studies that analyze the effects of NPI on various facilities by 

applying the methodological findings of this study are needed. A number of 

studies where Covid-19 has occurred have conducted studies analyzing the 

effects of NPI. However, these studies applied the existing research method 

using pedestrian simulation to transmission risk analysis. As revealed 

through this study, this method has limitations in terms of modeling method 

and transmission risk metric. Accordingly, this study performed NPI analysis 

on school facilities by reflecting two issues. As such, future studies also need 

to perform more reliable policy analysis by analyzing other facilities and 

policies based on the findings of this study.  
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국 문 초 록 

팬데믹 상황에서 감염병 관리를 위한 시설물 레벨 

정책평가 

시설물 관리에 있어 실내공간의 안전 확보를 위해 시설물의 

안전관리능력을 향상시키기 위한 많은 노력이 이루어졌다. 2019 년 말 

COVID-19 발생 이후 팬데믹 대응은 시설물 관리의 새로운 과제가 로 

인식되기 시작하였다. 이에 우리 사회는 코로나 19 감염 확산을 

최소화하기 위해 다양한 형태의 비약물적 개입(Non-pharmaceutical 

Intervention, NPI)을 시행해왔다. NPI 의 효과를 과학으로 분석하기 

위해 많은 선행연구에서 다양한 형태의 시설물에 보행자 시뮬레이션을 

적용하였다. (a)거주자의 사회적 거리두기 행동을 재현하는 시뮬레이션 

모델의 유효성과 (b)NPI 평가를 위한 감염 전파 위험 지표의 유효성은 

시뮬레이션 모델의 신뢰도에 영향을 미치는 중요한 두 요인이다. 하지만 

아직까지 보행자 시뮬레이션 기반 감염 전파 위험 분석에 있어 

시뮬레이션의 신뢰도에 대한 고려가 충분히 이루어지지 않았다. 이러한 

문제를 해결하기 위해 본 연구는 두 가지 측면의 유효성에 대해 

검증하여 시뮬레이션 기반 NPI 평가 방법을 개선하는 것을 목표로 한다. 

이를 위해 본 연구는 (a) 사람들의 보행궤적 데이터를 이용하여 팬데믹 

상황에서의 SFM(Social Force Model)의 타당성을 조사하고, (b) 

상관관계 분석을 통한 전파 위험 지표의 비교 평가를 수행하였다. 분석 

결과 Pandemic-SFM(사회적 거리두기 행동 반영)이 팬데믹 상황에서 
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Basic-SFM 보다 우수한 것으로 나타나 사회적 거리두기 행동에 대한 

고려가 중요함을 시사한다. 또한 본 연구는 질병 및 건물 특성에 따라 

적용 가능한 전파 위험 지표를 밝혔다. 

이러한 결과를 바탕으로 교육 시설물을 대상으로 시설물 레벨의 NPI 

효과를 평가하기 위해 시뮬레이션 실험을 수행하였다. 실험을 통해 본 

연구는 가능한 다양한 유형의 NPI 들에 대해 우선 순위를 확인했다. 

또한 저자는 감염전파위험 관리를 위해 유효할 것으로 판단되는 정책 

혼합 방법과 및 슈퍼전파자 식별 방법을 제시했다. 본 연구의 주요 

기여는 다음과 같다. (1) 팬데믹 상황에서 보행자 동선을 재현하기 위한 

사회적 거리두기 행동 모델링을 통한 성능 향상 규명 (2) 보행자 환경 

및 질병 특성에 따른 전파 위험 지표 적용 가능성 규명 (3) 개발 팬데믹 

대응을 위한 시설관리를 위한 시뮬레이션 기반 전파위험 평가 도구 및 

프로세스 구축 (4) 교육관의 효과성 분석을 통한 시설 차원의 개입 제안 

 

주요어: 시설물 관리; Social Force Model; 행위자 기반 모델; 

감염전파위험도; 거리두기 행동; Pandemic 

학 번: 2016-21076 
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