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Abstract 

Stability of Cylindrical Concrete 

Structures in 3D Printing Process 

 
Jeong, Seung Su 

Department of Architecture and Architectural Engineering 

College of Engineering 

Seoul National University 

 

Preventing the failure by self-weight loading during 3D printing process is a 

major consideration for the 3D printed structure. Since the fresh state concrete 

material which has lower stiffness and strength is used during printing, the 

maximum length that can be printed in a single printing process should be 

estimated in the design or construction process. The mechanical model is 

suggested in this paper which can be used for analyzing the mechanical 

performance and optimizing the priting parameters of the cylindrical structures 

in 3D printing process. Three types of failure mechanism are considered, such 

as elastic global buckling, elstic local buckling and plastic collapse, by the 

column model, shell model and yield criterion, repectively. The model includes 

the various parameters which are relating to the material properties, geometrical 

features and printing variables. The curing effect, characteristic of concrete 
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material, has been considred by heterogenous stiffness and strength along the 

length when modeling the structure. The non-dimensional critical buckling 

length is first analyized and compared between two buckling model on the 

design graphs, while the non-dimensional plastic collapse length is predicted 

on another coordinates. The specific case study that all the paramters are 

determined shows the process interpreting the numerical analysis results, and 

governing failure mechanism, lenghth and corresponding buckilng mode are 

obtained. The linearly assumed curing function is verified from the experiment 

measuring material properties. Data from the printing test which was conducted 

with the different sizes of cylindrical structures is compared with the predicted 

failure length from the model for the validation. The model can be utilized as a 

tool for exploring the influence of each printing parameter on the mechanical 

performance of the arbitrary cylindrical structures and predicting the failure 

length and governing failure mechanism. 

Keywords : 3D printing, Cylindrical structure, Heterogeneous material, 

Buckling, Plastic collapse, Numerical analysis, Design graph 

Student Number : 2021-24853  
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Chapter 1. Introduction 

1.1 Background 

As the global population continuously increases and the global contruction 

market is expected to be larger than the present, construction industry is 

interested in developing construction technologies for the future, considering 

sustainability, eco-friendliness, and energy saving. In addition, as construction 

materials, structures and construction methods develop, architectural styles 

gradually changing from formal to un-formal. Traditional construction methods 

using concrete material have limitations in following the architectural trends. 

Thus, 3D printing technology is attracting attention which is already widely 

used in various fields due to many advantages. The architectural and civil 

engineering are making great efforts to incorporate the 3D printing technology 

into the construction field. 

Unlike subtractive manufacturing method, SM, 3D printing technology 

refers to additive manufacturing, AM, technology that produces 3-dimensional 

object according to computer design by adding materials one layer at a time [1]. 

Various additive manufacturing techniques have been developed according to 

the materials and additive methods, and can be divided into seven processes. 

Material extrusion, binder jetting, directed energy deposition, material jetting, 

powder bed fusion, sheet lamination abd vat photopolymerization [2]. The 3D 

printing process used in the construction field so far is FDM, fused depositioin 

modeling, method among the material extrusion manufacturing process. Since 
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this method has a great advantage of being able to directly extrude concrete 

materilas, it can replace the traditional construction method in a relatively short 

period of time. Furthermore, it is suitable for application to the construction 

filed in that it is the method with the least space constraints during construction 

and it can be easily introduced. 

Table 1-1 Types of additive manufacturing process (Lee et al., 2020) 

Process Category Definition Related Technology 

Material Extrusion, 

ME 

material is selectively 

dispensed through a Nozzle 

or Orifice 

FDM (Fused Deposition 

Modeling), DDM (Direct 

Digital Manufacturing) 

Binder Jetting, 

BJ 

a liquid bonding agent is 

selectively deposited to join 

powder materials 

3DP, IPP, VoxelJet 

Directed Energy 

Deposition, 

DED 

focused thermal energy is 

used to fuse materials by 

melting as they are being 

deposited 

LENS, LD, LC, WLAM, 

WAAM, EBF, PEBF 

Material Jetting, 

MJ 

droplets of feedstock 

material are selectively 

deposited 

Polyjet, MJP, NPJ, DOD 

Powder Bed Fusion, 

PBF 

thermal energy selectively 

fuses regions of a powder 

bed 

SLS, DMLS, SLM, EBM, 

PEBM 

Sheet Lamination, 

SHL 

sheets of material are 

bonded to form a part 

LOM, CAM-LEM, VLM-

ST 

Vat 

Photopolymerization, 

VPP 

liquid photopolymer in a vat 

is selectively cured by light-

activated polymerization 

SLA, 3PS, DLP 

 

When FEM 3D printing technology is applied to the construction industry, it 

is possible to digitize all processes from design to construction, reducing labor 

dependence, which is the cause of low productivity and efficiency, and 

improving complex interests among the person concerned. In terms of 

construction, unlike the general reinforced concrete construction method, it 
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does not require a mold, so it can simplify the consruction process of the 

structure element and increase the degree of freedom of shape, which has great 

advantages in the construction of atypical architecture. In addition, it is possible 

to make a fast prototype, and it is relatively advantageous in terms of material 

or energy consumption and cost. These advantages are why construction 

industry pay attention to 3D printing technology as a future construction 

technology. 

However, in reality, while some industries and manufacturing fields, such as 

aerospace, automotive, and medicine, have already applied 3D printing 

technology to create high productivity, accuracy and efficiency, architecture 

and civil engineering have relatively slow technological progress and few field 

applications. The main reason is that the scale of object, which will be printed 

by 3DP, is large due to the characteristics of the construction field, and 

structural stability, safety, and reliability should be ensured, so it is still 

dangerous and inefficient to apply 3DP technology instead of the existing 

method. In addition, there are limitations in controlling the production 

environment or various variables that affect the quality of the printed structure, 

and furthermore, there are many restrictions on field application. 

Although applying 3DP technology is difficult due to these characteristics of 

the construction field, research and development of 3DP related to the 

architecture and civil engineering have been actively conducted since 2010. The 

number of papers published since 2010 is approximately twice of the total 

number of previous papaers, and is rapidly increasing recently [3]. Half of the 

total studies were conducted in United States and United Kingdom, with about 
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2 in Korea. Most of the papers written focus on developing materials suitable 

for 3DP by measuring and evalutating the concrete material properties. This is 

because due to the characteristics of 3DP, the required performance varies 

depending on the moving stage of the material, and the material properties vary 

over time due to the curing effect of the concrete. Figure 1-1 shows the features 

related to the performance of concrete materials required at each stage from the 

production of the material to the operation after printing. First, since 3D printer 

discharges and stacks materials limitedly by a certain volume per unit time, 

resistance to material separation is required in the production and transportation 

process so that the discharged materials can be homogeneous. In addition, 

sufficient fluidity and viscosity are required to pass through the pipe 

consistenetly carrying the material from the pump to the nozzle. The 

performances required in the process of discharging and adding the material 

from the nozzle are extrudability and buildability. The performance of 

continuous priting of fresh state concrete without breaking is called 

extrudability, and the performance of adding discharged concrete at a constant 

height without deformation and collapse is called buildability. This is the most 

important performance considered in the development of materials for 3D 

printing, and is related to the rheological properties, viscosity and yield stress. 

These characteristics are also related to the bond strength between layers that 

affect the strength of the entire structure in the printing process. In addition, 

sufficient intial compressive strength of fresh concrete is required to prevent 

the yield of the bottom layer to the increasing vertical stress as the material is 

adding. Finally, structures whose printed object has been completed and cured 

require hardened mechanical performance of the material, such as compressive 
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strength and bending strength, to satisfy the structural design [4]. 

 

Figure 1-1 Required performance of 3DPC according to the process 

 

There are cases where building have been constructed by applying 3D 

printing technology from where research has been actively conducted, but 

research and technology development are relatively slow in Korea and there are 

few cases of construction. Howere, it has not progressed to the large-scale 

building construction and commercialization anywhere. This is because 

previous studies evaluated the performance of the printed structure in material 

units as mentioned above. In other words, it focused only on the properties of 

the concrete material, and there are few researches on measuring and evaluating 

the mechanical performance of the entire structure printed with 3DP technology. 

Although the performance of the material is satisfying to the design, it is not 

linked to the performance of entire structure. 

   

Figure 1-2 3D printed bridge and building (from IAAC) 
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In order to apply FDM concrete 3D printing technology to the construction 

industry, it is necessary to identify and verify structural performance, stability, 

by considering the mechanical performance of the entire structure and the 

influence of various parameters. In particular, the structure in printing process 

is built by fresh state concrete, which has fluidity, viscosity and low strength 

and stiffness. Thus, resisting to the failure during construction is more 

important than after printing completed. For example, since concrete is placed 

without mold, maintaining its shape without collapse with sufficient material 

properties and mechanical performance of printing structure is necessary. If the 

performance is not sufficient, failure may occur due to the occurrence of 

geometric imperfections, buckling or plastic collapse in 3D printing process. 

However, quantitatively estimating the performance of the structure during 

construction is not easy, since diverse printing variables such as printing speed 

and layer dimensions, material properties such as curing effect, and geometric 

characteristics of structure affect the mechanical performance in combination. 

Therefore, in the field, some parameters are generally determined through trial 

and error methods. Hoeverever, since the size of the printing object is relatively 

large, determining the variables in this way will result in additional unnecessary 

costs and inefficiencies. Therefore, in order to improve, it is necessary to 

develeop a model that can identify parameters that affect the mechanical 

performance of the entire structure in 3D printing process and predict it. 
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1.2 Prior research 

Suiker developed a model that can determine the mechanical performance of 

concrete wall structures constructed by 3D printing (3DP) [5]. This model is 

suitable for the analysis of rectangular wall lay-out types of wall structures with 

supporting walls as well as walls with boundary conditions such as free, simply-

supported or fully clamped. First a simplified 3DP concrete wall with a constant 

cross-section of the layer and no horizontal curvature is modeled as a plate 

element. Plate elements have heterogeneous material properties in the length 

direction due to the curing effect of concrete mateirals, and the non-uniform 

load generated by the self-weight is set as the main load. The model deals with 

two types of failure mechanism, elastic buckling and plastic collapse of wall 

structure. The elastic buckling model formulates the total potential energy and 

minimizes it to satisfy the equilibrium condition. Governing buckling equation 

is derived including the boundary condition and the time effect, and non-

dimensionless buckling length is calculated by converting original coordinate 

system to dimensionless. The dimensionless parameters include printing 

variables, material properties and geometric characteristics, and there three 

non-dimensional parameters. On the other hand, before buckling occurs, plastic 

collapse occurs when the self-weight per unit area raches the yield strength of 

the lowest layer. This failure mode is analysed by two independent parameters 

and is influenced by the functional form of the curing effect of the material. In 

the case of a linear function, the non-dimensional plastic collapse length can be 

expressed explicitly with the dimensionless curing rate. Otherwise, in the form 

of an exponential function, a nonlinear equation is obtained, and thus a solution 

may be calculated by a numerical analysis. In conclusion, the simplely-
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supported wall provides a buckling length as lower bound, the fully-clamped 

wall provides an upper bound, and the plastic collapse length narrows this range. 

Therefore, the elastic buckling and plastic collapse model enable accurate 

prediction of the failure length and failure mechanism for arbitrary wall 

configuration and printing condition. For the verification experiment, some 

parameters are fixed to the speicif value, and the buckling length is estimated 

from the numerical analysis, and the error is within 10% when compared with 

the experimental result. Suiker’s research provides insight into the development 

of the mechanistic model that can predict the mechanical performance of 3D 

printing concrete structures and optimize parameters by considering the dead 

weight and the curing effect of material. 

 

Figure 1-3 Rectangular plate subjected to non-uniform in-plane forces in the 

mid-plane (modified from Suiker, 2018) 
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Figure 1-4 Buckling of free wall and wall with support wall (Suiker, 2018) 
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1.3 Objectives 

Among the types of walls covered by Suiker’s model, simply-supported and 

fully-clamped walls can not be fully implemented in 3D printing in reality if 

they are single wall lay-out. Since the concrete is not hardened during 

construction, the material at the point cannot resist the reaction force and 

deformation occurs or element breaks. Therefore, the walls which can be 

constructed with 3DP are a free wall or a rectangular wall lay-out type with 

supporting wall. The free wall which deos not have a lateral support has very 

low stiffness, thus buckling occurse easily in printing process. On the other 

hand, in the case of the rectangular wall lay-out type, the stiffness and 

performance are increased when the area tangent to the floor is assumed as same 

as the free wall type. However, as the overall shape is maintained and the 

circumferential length of the wall increases, the performance of the two types 

decreases and the difference between the two decrease. Since most of the actual 

case constructed with 3DP is wall type structures with a long horizontal length, 

support elements are placed inside the rectangular wall lay-out to compensate 

for the reduced stiffeness as the horizontal length increases. Wall structure with 

internal supports have excellent performance during construction, but it is a 

relatively inefficient method in terms of cost and material consumption. 
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Figure 1-5 Rectangular wall lay-out with internal support (from Apis Cor) 

 

3D printing concrete structures are designed to have no curvature or constant 

curvature for ease of construction. Suiker’s model is limited to 3DP concrete 

structures with no curvature, and is suitable for column analysis with 

rectangular hollow sections as well as wall anyslis. However, predicting the 

performance for cylindrical structures which have constante curvature, column 

or wall, with hollow section is not possible. If the area and size of the bottom 

layer are constant and only the shape of the cross-section changes from square 

to circular, the cross-section rigidity and stiffness increases with the 

performance increasing. Therefore, by changing the cross-sectional shape, the 

sufficient performance can be secured without unnecessary internal support 

elements and reduce material consumption. If the hollow square structure is 

designed to be equal to the stiffness of the circular structure, the amount of 

material used increases. In summary, in order to satisfy a certain structure’s 

performance during 3DP construction, it is efficient and effective to design the 

layout of the structure in the circular shape rather than rectangular. 
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Figure 1-6 Rectangular wall lay-out structure and circular cylindrical structure  

 

However, when printing the circular cylindrical structure, the length and 

period of a single layer are relatively short, thus a model that accurately predicts 

the performance of the structure in printing process is needed. Since the ratio 

of layer height to diameter is small, applying the plate element in Suiker’s paper 

is not appropriate to model cylindrical structures. In addition, new boundary 

conditions are needed to suit a new model. 

When constructing the structure with 3D printing, there are four main failure 

mechanism during construction, buckling, plastic collapse by material yielding, 

collapse by geometric imperfections and failure due to displacement 

accumulation. In general, thin hollow circular structures show various buckling 

behaviors depending on the diameter - length ratio and thickness - diameter 

ratio, and can be divided into four types, elastic global buckling, inelastic global 

buckling, elastic local buckling and inelastic local buckling. When the ratio of 

thickness to diameter is large, the cross-sectional rigidity is large, and thus the 

global buckling is expected to be occurred in which the cross-sectional shape 

is not greatly distorted, and as the ratio becomes smaller, the local buckling 

behavior is expected. 
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Figure 1-7 Failure behaviors of 3D printed circular structures :           (a) 

geometrically perfect strucure, (b) global buckling, (c) local buckling, (d) 

plastic collpase, (e) geometric imperfection, (f) failure due to deformation 

 

In this paper, the maximum length and time that can be continuously printed 

by developing the model that predicts the critical buckling length and plastic 

collapse length for arbitrary cylindrical structure caused by the self-weight in 

3D printing process. The model, considering the stiffness and strength that 

increases as the length of the strucutre increases, predicts the mechanical 

performance of the cylindrical structures with various shape ratios and presents 

a 3D printing design method based on design graphs and validation experiments. 
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Chapter 2. Models for Numerical Analysis of 

Cylindircal Structures 

2.1 Research Models 

The configuration of the 3D printed cylindrical structure carrying out the 

numerical analysis is shown in the following figure. The height of a layer is ℎ, 

and the distance from the center of the hollow circular structure to the average 

height of the layer is 𝑅, since the analysis will be proceeded at the mid-plane. 

The depth of a layer is denoted by 𝑑 and the overall length of the structure is 

represented by 𝑙 . The length 𝑙  may be the critical buckling length, 𝑙𝑐𝑟 , or 

plastic collapse length, 𝑙𝑝, depending on the failure mode of the structure. The 

smaller of the two length values becomes the governing failure length, 𝑙𝑓. In 

order to predict this length, a separate analysis model is required for each failure 

mode. Since the buckling behavior of cylindrical structure varies depending on 

the geometric ratio, appropriate analysis models are needed. 

 

Figure 2-1 Geometric configuration and notation of cylindrical structure 
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2.1.1 Column model for elastic global buckling  

In the case of the cylindrical structure with a large layer thickness – diamter 

ratio, it is expected that deformation of cross-sectional shape is not significant 

and then elastic global buckling will occur due to its high flexural rigidity. 

These structures can be modeled as a column model using beam theory. 

Assuming the deformation form as soon as buckling begins, the bifurcation 

approach is used to derive the governing equation with equilibrium conditions 

[6]. 

  

Figure 2-2 Column model for global buckling analysis 
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2.1.2 Shell model for elastic local buckling 

On the other hand, as the ratio decreases, cross-sectional deformation is more 

likely to occur and large, thus it is appropriate to model the cylindrical structure 

as a shell element instead of the column. Since the shell elements cannot 

directly be used to derive the equilibrium equation, this equation is drived by 

using energy method with minimizing the total potential energy. Unlike the 

column model that use 2-dimensional coordinate axes (𝑥, 𝑦), the shell model 

performs 3-dimensional analysis, thus it uses a coordinate system representing 

the length direction x, radius r and rotation angle from the center 𝜃 [7]. 

Although the buckling model is divided into two models according to the 

expected buckling behavior based on the geometric features of the cylindrical 

structure, the selection criteria for the models are not clear. Therefore, this paper 

applies both models to arbitrary cylindrical structures with various geometric 

characteristics to proceed numerical analysis and compare the results between 

two models to specify the model selection criteria.  

     

Figure 2-3 Shell model for local buckling analysis 
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2.1.3 Yield criterion for plastic collapse at the bottom of structure 

In addition to the failure cased by the buckling during construction, the 3D 

printed structure also has a case of the plastic collapse due to the material 

yielding by the dead weight. As the length of the structure increases, the weight 

per unit area applied to the bottom layer reaches the compressive strength of 

the material. By placing the stress when the bottom layer yields and the yield 

strength of the material, the plastic model can be expressed by an equation. This 

model is highly influenced by the initial compressive strength of the fresh 

concrete, the growth rate of strength and the form of the curing function, and 

the formulation of the model varies depending on the characteristics of the 

material [5]. 

 

Figure 2-4 Plastic collapse mechanism 
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2.2 Assumption and Coordinate System 

2.2.1 Growth of structure length subjected to self-weight load 

The main load causing the failure of the structure in 3D printing process is 

the structures’s own weight. Therefore, in the three models mentioned at 

previous chaper, the mechanical performance is measured by considering only 

the dead weight of the structure. It is assumed that the load at a specific location 

increasese linearly as the length increases. This assumption means that the 

length of the structure increases to a constant speed, 𝑙,̇ and a symmetrical load, 

constant loading on a layer, is applied relative to the central axis of the 

cylindrical structure. 

 

Figure 2-5 Linearly increasing self-weight subjecting to cylindrical structure 

 

 

Figure 2-6 Length growth for (a) real printing process and (b) assumption 
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2.2.2 Curing function of stiffness modulus and compressive strength 

The properties of printing material that affects the mechanical performance 

of the 3D printed structure during construction, initial elastic modulus and 

initaial compressive strength of the fresh concrete, can be assumed in the form 

of linear of exponential functions over time. In particular, the exponentially-

decaying curing function appears when the curing process is accelerated by 

external stimulus, such as UV light or heat. Typical concrete amterials are 

assumed in linear functional form. Therefore, assuming the stiffness and 

strength as a linear increasing in this model, the model includes the 

heterogeneous property of the material in the length direction in printing 

process. This assumption will be verified through experiments. 

 

Figure 2-7 Linear and exponentially-decaying curing funcions (from Suiker)  
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2.2.3 Coordinate systems 

The curing effect of concrete material is a function of time. The time when 

the bottom layer material is cured, in other words, the time it takes to build up 

to a certain length after the bottom layer is printed, is expressed in 𝑡, and the 

length, 𝑙, is expressed by multiplying time 𝑡 and growth speed of length 𝑙.̇ 

Since time 𝑡  is based on the bottom layer, the time taken from a specific 

location to the currelty printed length can be calculated using both location 𝑥 

and time 𝑡 variables to determine the degree of curing of the material at the 

specific location. However, in this model, since the length 𝑙 is a variable to be 

found, time 𝑡 is also treated as a variable. Ultimately, there are two variables 

in the curing function, location 𝑥 and time 𝑡, thus a new coordinate system is 

needed to consider the two together. Therefore, if the coordinate system is set 

in terms of the current position of the nozzle, the reference point for measuring 

the location of the specific material and the time taken becomes the same. This 

coordinate system is called the Eulerian coordinate system. 

  

Figure 2-8 Lagrangian coordinate system and Eulerian coordinate system  
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2.3 Cylindrical Column Model 

2.3.1 Theoretical background 

To confirm the global buckling failure, consider the cylindrical structure with 

the constant cross-sectional area and the second moment of inertia in the length 

direction and the length 𝑙 , as shown in the figure below. The bifurcation 

approach is used to find another equilibrium state assuming the deformed shape 

at the moment when buckling occurs. Since this buckling behavior generally 

occurs in the column member, it is called the column model. The body force 

applied to unit length is calculated as 𝑞 = 𝜌𝑔𝐴, where 𝜌 is the density of the 

material, 𝑔 is the acceleration of gravity, and 𝐴 is the cross-sectional area of 

the structure. The horizontal deflection 𝑤(𝑥)  represents a displacement 

generated in the 𝑦 direction at the location 𝑥. The equilibrium equation can 

be derived at the specific location by placing the moment and the internal 

moment generated by self-weight as equal [6]. In the equation, the modulus of 

elasticity 𝐸 is described as 𝐸 =  𝐸∗(𝑥), since it varies with time and is not 

uniform with location. Therefore, the governing equation for the global 

buckling of the 3D printed cylindrical structure can be expressed by substituting 

an equation representing the increasing dead weight of the structure and the 

stiffness of the material into the equilibrium equation. 
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Figure 2-9 Free body diagram of column model to derive governing equation 
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2.3.2 Derivation of governing equation 

The moment equation generated by the load acting on the deformed structure 

at a specific location 𝑥 = 𝑠 can be described as follows 

 ( ) ( ) ( )( )
0

l

M s q w x w s dx= −  (2.1) 

meanwhile, the internal moment at the same location can be expressed as Eq. 

(2.2) along the Euler - Bernoulli beam theory. 

  ( )
( )2

* 2int

d w s
M s E I

ds
=  (2.2) 

The bending stiffness of the hollow cross-sectional cylinder is equal to the 

elastic modulus 𝐸∗ multiplied by the second moment of interia 𝐼. Since the 

stiffness modulus is a function of height, the bending stiffness is also not 

constant along the lenghth. 

  
( )

( ) ( )
2 2

* * *
8

hd D
E I E x D x

h +
= =  (2.3) 

here, 𝑑 represents the average diameter between outer and inner circular and 

ℎ  is the height of layer. The moment equilibrium at location 𝑥 = 𝑠  can be 

expressed as the following equation. 

  ( ) ( )intM s M s=  (2.4) 

  
( )

( ) ( )( )
2

* 2 0

ld w s
D q w x w s dx

ds
= −  (2.5) 

The buckling equation for the cylindrical structure subjected to the self-
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weight with the non-uniform elastic modulus in the length direction can be 

obtained by differentiating both sides with respect to 𝑠, as Eq. (2.6) 

  
( ) ( )

( )
( )2 3

*
*2 3

d w s d w s dw sdD
D q s l

ds ds ds ds
+ = −  (2.6) 

The effect of increasing the elastic modulus of the material located at 𝑥 = 0 

over time can be expressed as below.  

  ( ) ( )* * 00,E x t g t E= =  (2.7) 

  ( )*   : 1 ELinear function g t t= +  (2.8) 

Here, 𝐸0 is the initial elastic modulus of the material discharged from the 

nozzle, and 𝑔∗(𝑡) is a function defining the curing effect. In this study, the 

stiffness modulus is assumed as a material that linearly increases. 𝜉𝐸 

represents the curing rate for the elastic modulus. 

In Chapter 2.2.1, it is assumed that the length of the structure during 

construction increases to the constant speed 𝑙.̇ Parameter 𝑙 ̇ is determined by 

the printing variables, and when the structure length is divided by the growth 

speed of length, the time 𝑡 which represents consumed time is determined. 

  
n l

Q
l

v hT
=  (2.9) 

  
l

t
l

=  (2.10) 

where 𝑄 represents the volume of the material discharged per unit time, 𝑣𝑛 

represents the printing speed of nozzle and 𝑇𝑙 is the printing period of a layer.  
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For convenience in calculation, the buckling equation consisting of variables 

𝑥  and 𝑡  can be reformulated in terms of the Eulerian coordinate, 𝑋 . In 

addition, the dimensionless Eulerian coordinate, 𝑋̅, is defined as follows 

  ( ),X X x t x l x lt= = − = −  (2.11) 

  ( ) ( ) ( ), E E EX
X x t x l x lt

l l l

  
= = − = −  (2.12) 

If the elastic modulus and curing function are expressed with the 

dimensionless coordinate system, it is as below 

  ( )* 0, 1 E

x
E x t t E

l


  
= + −  

  
 (2.13) 

  ( ) ( ) ( )* * 0 01E X g X E X E= = −  (2.14) 

In order to make Eq. (2.6) dimensionless, a process of substituting 𝑥 to 𝑋̅ 

is necessary. Therefore, the following equation shows the relationship between 

differential of 𝑥 and differential of 𝑋̅. 

 
E

lx
l

X


= +  (2.15) 

 
E

l
dx dX


=  (2.16) 

Substitue Eq. (2.16) into Eq. (2.6) 

 ( ) ( )2 3

*
*2 3

. . :
d w x d w xdD

L H S D
dx dx dx

+ (2.17) 
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( ) ( )3 32 3
*

*2 3

dD d w X d w X
E E D

dXl ldX dX

    
= +   
   
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  ( )
( ) ( )

. . : E

E

dw Xdw x l
R H S q x l qX

dx dXl





  
− =   

  
 (2.18) 

The horizontal deflection 𝑤 is divided by the layer height ℎ to represent 

the dimensionless deflection 𝑤̅, and is applied to the buckling equation. 

 

3 33 2

*
* 3 2

0E E dDd w d w dw
D qX

dX dX dX dXl l

    
+ − =   

   
 (2.19) 

 ( ) ( ) ( ) ( )* * * * 0 * 0D D X E X I g X E I g X D= = = =  (2.20) 

Finally, the dimensionless buckling equation can be summarized by dividing 

Eq. (2.19) by 𝐷0 (
𝜉𝐸

𝑙̇ )
3
. Here, the initial bending stiffness can be expressed as 

𝐷0 =
𝜋𝑑ℎ(𝑑2+ℎ2)

8
𝐸0. 
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 
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,   A dh=  (2.22) 

The location 𝑥 = 0, 𝑙 correspond to 𝑋̅ = −𝜅, 0 and are fixed end and free 

end, respectively. These boundary conditions are represented for the 

dimensionless Eulerian coordinate system 𝑋̅. 

 
El

l


 =  (2.23) 
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    0, : 0, 0
dw

Fixed at x X w
dX

= = − = =

2 3

2 3
    , 0 : 0, 0

d w d w
Freeat x l X

dX dX
= = = =  

(2.24) 

The deflection 𝑤 is assumed in the form of a polynomial as follows, since 

the integral caclus becomes simpler compared to the trigonometric function.  

 ( ) 1 2 1

1 2 3

0 0

m m
i m

i i m

i i

w X w C X C C X C X C X− −

= =

= = = + + + +   (2.25) 

here, 𝑚  represents the degree of the polynomial and 𝐶𝑚  is the 𝑚𝑡ℎ 

unknown coefficient. In this paper, 𝑚 = 8 is used. Substituting the boundary 

conditions from Eq. (2.24), the four coefficients are first found. 

 

4 5 6 7

1 5 6 7 83 4 5 6C C C C C   = − + −  

3 4 5 6

2 5 6 7 84 5 6 7C C C C C   = − + −  

3 4 0C C= =  

(2.26) 

By substituting Eq. (2.26) into Eq. (2.25), it becomes a trial function 

satisfying the boundary condition. This is expressed as a linear combination of 

the unknown coefficient 𝐶𝑚 and the basis function as shown in Eq. (2.27) 

 

( ) ( ) ( )4 5 6 7

5 6 7 85,6,
3 4 5 6

m
w X C C C C   

=
= − + −  

( )3 4 5 6

5 6 7 84 5 6 7C C C C X   + − + −

4 5 6 7

5 6 7 8C X C X C X C X+ + + +  

(2.27) 

The solution of the differential Eq. (2.21) is calculated from the weak form 

as shown in Eq. (2.29) below. The approximate solution can be obtained by 
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using the weighted residual method, which is a way to make the weighed mean 

of the error zero. 

 
0

( ) 0
X
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X
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 


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(2.29) 

The residual is constructed by substituting the trial function into the left- 

hand side of Eq. (2.21), and partial differentiation is performed for each 

unknown coefficient to obtain the weight function consisting of 𝜅 and 𝑋̅. By 

calculating Eq. (2.28), a linear equation of the unknown coefficient can be 

obtained. Then, by constructing this as a matrix equation for the unknown 

coefficient, the buckling equation is organized as an eigenvalue problem. 

 

5,5 5, 5

,1 ,

0

0

m

m m m m

A A C

A A C

     
     

 =     
        

 

  : det 0Non trivial solution A− =  

(2.30) 
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The high-order equation obtained by calculating the determinant of matrix is 

an equation in terms of 𝜆𝑐  and 𝜅 , and can be analyzed by introducing the 

following two dimensionless parameters. 

 

1

3
1/3

,

0

cr column c cr

gA
l l

D


 

 
= =  

 
 

1

3
1/3 0

,
E

E column c

D

gA l


 



−    
= =    

  
 

(2.31) 

Here, 𝑙𝑐̅𝑟 is the non-dimensional buckling length including the body force 

and bending stiffness, and 𝜉𝐸̅ is the non-dimensional curing rate representing 

the ratio of the vertical printing speed to the curing rate. Finally, 𝑙𝑐̅𝑟, which is 

a solution of the dimensionless high-order buckling equation, is obtained from 

the value of 𝜉𝐸̅. 
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2.4 Cylindrical Shell Model 

2.4.1 Principle of total potential energy 

When the buckling occurs, deformation occurs in the cross section, and if it 

is not constant in the length direction, it is considred as local buckling. These 

behaviors are analyzed by using the minimum total potential energy in the shell 

element. The total potential enegy consists of the elastic strain energy and the 

potential energy and is expresses as a sum. The strain energy consists of two 

parts, thebending strain energy and the membrane strain energy due to the 

stretching of the mid-surface. The following strain energy equation can be 

obtained from ‘Theory of Elastic Stability’ written by Timoshenko and Gere [8]. 

  

Figure 2-10 (a) The coordinates in the middle surface of the shell, (b) The 

element cut out from the cylindrical shell (from Timoshenko et. al., 1963) 
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The strain energy due to bending and twisting moments of thin plate is 

expressed by integration as below 

 

2 2
2 2 2 2

2 2 2 2

1
2

2
b

w w w w
U D

x y x y


        = + +    
         

  

( )
2

2

2 1
w

dA
x y


   + −   
    

 

(2.32) 

in which 𝐷 is the flexural rigidity given by 

 
( )

3/2
2

2 2/21 12 1

h

h

E Eh
D z dz

 −
= =

− −
  (2.33) 

where 𝜈 is Possion’s ratio. 

The part of the strain energy due to stretching of the middle surface of thin 

plate is  

 ( )1 2

1

2
s x y xyU N N N dA  = + +  (2.34) 

whereby the normal forces applied at the centroid of the side of the element are 

given by 

 

( )1 221
x

Eh
N  


= +

−
,   ( )2 121

y

Eh
N  


= +

−

( )2 1
xy

hE
N




=

+
 

(2.35) 

with the components of strain 𝜀1, 𝜀2 and γ of the middle surface of element. 
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Substituting in Eq. (2.32) the changes of curvatures 𝜒𝑥 , 𝜒𝜃  and 𝜒𝑥𝜃 

instead of curvatures 
𝜕2𝑤

𝜕𝑥2 , 
𝜕2𝑤

𝜕𝑦2  and 
𝜕2𝑤

𝜕𝑥𝜕𝑦
 to consider the circular cylindrical 

shell instead of the thin plate, Eq. (2.32) will be written as follows 

 ( )
2

2 2 2
*

0 0

1
2 2 1

2

l

b x x xU D Rd dx


         = + + + −    (2.36) 

where 𝑅  is the radius of the middle surface of the shell and 𝐷∗  is the 

heterogeneous flexural rigidity which is considering the curing effect of the 

material given by 

 ( )
( ) ( )

( )

3
/2

* *2
* 2 2/21 12 1

h

h

E x E x h
D x z dz

 −
= =

− −
 . (2.37) 

where 𝐸∗ is the heterogenous stiffness modulus with the linear curing function 

as Eq. (2.8). 

Eq. (2.34) will be expressed as below in terms of the strain 𝜀𝑥, 𝜀𝜃 and 𝜀𝑥𝜃 

( )
( )2

2 2 2
*2 0 0

1
2

22 1

l

s x x x

h
U E Rd dx



  


     



 −
= + + + 

−  
   (2.38) 

The total energy of deformation is obtained by adding together expression 

(2.36) and (2.38) which are expressed with the three curvature changes and the 

three strain componenets, respectively. These components are represented in 

terms of the displacements 𝑢, 𝑣 and 𝑤 as follows 

 x

u

x



=


,  1 v
w

R




 
= + 

 
,  

1 u v

R x




 
= +

 
 (2.39) 
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2

2x

w

x



= −


,  

2

2 2

1 v w

R


 

  
= − 

  
 

21
x

v w

R x x




  
= − 

   
 

The potential energy generated by the in-plane forces can be expressed as 

 

2 2
2

0 0

1

2

l

xx

v w
V Rd dx

x x



 
     

= +    
      

   (2.40) 

where 𝜂𝑥𝑥  denotes the compressive self-weight subjecting to the opposite 

direction of 𝑥-axis. The potential energy 𝑉 is rewritten as  

 ( )
2 2

2

0 0

1

2

l v w
V gh l x Rd dx

x x



 
     

= − − +    
      

   (2.41) 

Thus, the total potential energy of the circular cylindrical shell can be 

expressed by adding together all of the strain energy and the potential energy. 

     : b sTotal Potential Energy U U V= + +  (2.42) 
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2.4.2 Displacement Approxiamtion Function 

The dimesionless deflection is specified as following expressions which are 

dividing displacement 𝑢, 𝑣 and 𝑤 by layer height, h. 

 ( )
( )u x

u x
h

= ,  ( )
( )v x

v x
h

= ,  ( )
( )w x

w x
h

=  (2.43) 

Since the sinusoidal buckling wave is expected to form in the circumferential 

direction of the cylindrical shell, the displacements are the functions of 

variables 𝑥 and 𝜃 and they may be separated as below [7] 

 

( ) ( ) ( ) ( ) ( ), cos cosu x u x n hu x n  = =  

( ) ( ) ( ) ( ) ( ), sin sinv x v x n hv x n  = =  

( ) ( ) ( ) ( ) ( ), cos cosw x w x n hw x n  = =  

(2.44) 

where 𝑛 is the circumferential wavenumber which is an integer greater than 

or equal to zero, 𝑛 = 0,1,2, ⋯. If 𝑛 = 0, Eq. (2.44) represents axisymmetric 

buckling, otherwise it provides axi-unsymmetric buckling modes. 

Eq. (2.44) can be rewritten in terms of dimensionless coordinate which is 

already dealt from Chaper 2.3 Eq. (2.12) and will also be covred in Eq. (2.49). 

 

( ) ( ) ( ), cosu x u x n = , ( ) ( ) ( ), cosu X hu X n =  

( ) ( ) ( ), sinv x v x n = , ( ) ( ) ( ), sinv X hv X n =  

( ) ( ) ( ), cosw x w x n = , ( ) ( ) ( ), cosw X hw X n =  

(2.45) 
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𝑛 = 0                𝑛 = 1                𝑛 = 2 

 

𝑛 = 3                𝑛 = 4                𝑛 = 5 

Figure 2-11 Deformed cross-section according to the wavenumber 𝑛 = 0 ~ 5 

 

To approximate the dimensionless displacements 𝑢̅ , 𝑣̅  and 𝑤̅ , the p-

version finite element method suggested by Babuska is adopted. The admissible 

functions can be expressed by using polynomial functions as follows 

 

( ) ( ) 1

1

k
u i

u i

i

u X f X C X −

=

=  , ( ) ( )
Γ Γ

u
ub
t

uf X X X= +  

( ) ( ) 1

1

p
v i

v i

i

v X f X C X −

=

=  , ( ) ( )
Γ Γ

v
vb
t

vf X X X= +  

( ) ( ) 1

1

q
w i

w i

i

w X f X C X −

=

=  , ( ) ( )
Γ Γ

w
wb
t

wf X X X= +  

(2.46) 

where 𝐶𝑖
𝑢, 𝐶𝑖

𝑣 and 𝐶𝑖
𝑤 are coefficients of the admissible functions and 𝑘, 𝑝 

and 𝑞 are the number of polynomial terms. To satisfy the geometric boundary 
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conditions of the cylindrical shell, the power terms of the basic functions 𝑓𝑢(𝑋̅), 

𝑓𝑣(𝑋̅) and 𝑓𝑤(𝑋̅) are determined by the following equations. 

 

: Γ 0,Γ 0,Γ 0u v w
j j jFree = = =  

  : Γ 0,Γ 1,Γ 1u v w
j j jSimply Supported = = =  

: Γ 1,Γ 1,Γ 2u v w
j j jClamped = = =  

(2.47) 

where 𝑗 indicates bottom or top. In this paper, since the cylindrical shell which 

has clamped bottom and free top is considered, substituting the corresponding 

factor to Eq. (2.47) and the number of polynomial terms as 𝑘 = 𝑝 = 𝑞 = 8, 

the approximated displacement functions are expressed as follows 

 

( ) ( )
8

1

1

u i
i

i

u X X C X −

=

= +   

( ) ( )
8

1

1

v i
i

i

v X X C X −

=

= +   

( ) ( )
8

2 1

1

w i
i

i

w X X C X −

=

= +   

(2.48) 
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2.4.3 Derivation of dimensionless expression of total potential energy 

In the same manner as deriving the dimensionless column buckling equation 

from previous chapter 2.3, the dimensionless coordinate system 𝑋̅  is used 

instead of Lagrangian coordinate system. 

 
( ) ( )E E EX

X x l x lt
l l l

  
= = − = −  

(2.49) 

The expression of bending strain energy (2.36) can be rewritten as Eq. (2.50) 

in terms of the displacements 𝑢, 𝑣 and 𝑤. 

 

2 2
2 22

* 2 4 20 0

1 1

2

l

b

w v w
U D

x R



 

     
= − + −   

    






   

2 2

2 2 2

2 w v w

R x



 

    
+ − −  

   

( )
2

2

2

2 1 v w
Rd dx

x xR






−   
+ − 

     

 

(2.50) 

Substituting Eqs. (2.37), (2.45) and (2.49), the bending strain energy with 

diensionless coordinate system is expressed as follows 

 

( )
( )

2
4 20 2

2 2

4

0

22 0

3

cos
24 1

1 E
b

w
U

E h
X h n

l X


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


 −

 
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− 

−

 



   

( ) ( ) 
2 2

2 2

4
cos

h
n n v X nw X

R
+ +

( ) ( ) 2

2

22 2

2 2

2
cosEh w

n n v X nw X
R l X



 

− + 
 

( )
2

22 2
2

2

2 1
sinE

E

h v w l
n n Rd dX

X XR l

 
 



−    
+ +   

 






  

 

(2.51) 
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where 𝜅 is non-dimensional location of the bottom and 𝜅 = 𝜉𝐸𝑙 𝑙̇⁄ . 

To make the equation simple, take ℎ2𝑅
𝜉𝐸

3

𝑙̇3  out of the integral and use 𝐷0 

expression instead of 𝐸0ℎ3 12(1 − 𝜈2)⁄ . 

 

( )
2

3 20 2
2

3 2
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D
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 
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4 2

2 2

4 4
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
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( ) ( ) 
2 2
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22 2

2
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E

l w
n n v X nw X

R X






 
− + 

 

( ) 22

2

2

2

2 1
sin

E

l v w
n n d dX

X XR


 



−   
+





+ 
  

 

(2.52) 

Finally, using dimensionless parameter, 𝜀 =
𝜉𝐸

𝑙̇ 𝑅, can reduce the number of 

parameters in the equation and makes the calculation time faster. 
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 
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( ) ( ) 
2

2 2
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
+ +

( ) ( ) 22

2
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n n v X nw X
X






 
− + 

 

( ) 2

2

2

2 1
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v w
n n d dX

X X


 



−  
+





 
+ 

  
 

(2.53) 

The membrane strain energy and the potential energy can be reformulated 

with the same process as Eq. (2.50) ~ (2.52). 
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( )

2 2
2

*2 20 0

1

2 1

l

s

u v
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x R

h
E w





    
= + +   

   

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
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



   
+ +  

   

( ) 2
1 1

2

u v
Rd dx

R x






−   
+ +  

   

 

(2.54) 

where the heterogeneous elastic modulus is represented as 𝐸∗ = 𝐸0(1 − 𝑋̅). 

Substituting Eqs. (2.37), (2.45) and (2.49) in Eq. (2.54), the membrane strain 

energy is expressed as follows 
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220 2
2 2
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 
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 
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
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(2.55) 

Take ℎ2𝑅
𝜉𝐸

𝑙̇  out of the integral and substitue 𝐷0. 
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(2.56) 

Final expression of the membrane strain energy with parameter, 𝜀, is derived. 
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(2.57) 

Using Eqs. (2.45) and (2.49), the potential energy Eq. (2.41) is rewritten as 

follows 
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(2.58) 

By taking ℎ2𝑅
𝜉𝐸

𝑙̇  out of the integral, final expression of the potential energy 

is obtained. 
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(2.59) 

The total potential energy of the cylindrical shell can be formulated by 

adding Eqs. (2.53), (2.57) and (2.58). The terms which are multiplied in front 

of the integrals are organized and the common term, 
𝐷0

2
ℎ2𝑅

𝜉𝐸
3

𝑙̇3  can be taken 

out as following ways. 
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(2.60) 

whereby dimensionless parameters for the shell model 𝛼 and 𝜆𝑠 are given by 
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The differences between parameter 𝜆𝑐 and 𝜆𝑠 are that the layer height ℎ 

is included in 𝜆𝑠 instead of the cross-sectional area 𝐴 which is in 𝜆𝑐 and the 

expression of the initial bending stiffness is 𝐷0,𝑠ℎ𝑒𝑙𝑙 = 𝐸0ℎ3 12(1 − 𝜈2)⁄  , 

otherwise 𝐷0,𝑐𝑜𝑙𝑢𝑚𝑛 =
𝜋𝑑ℎ(𝑑2+ℎ2)

8
𝐸0 . The parameter 𝛼  represents the ratio 

the layer height ℎ of the raidus of the cylindrical shell ℎ. Figure 2-12 shows 

the configuration of the cross-section of the shell. 
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Figure 2-12 The configuration of the cross-section of the shell according to 

the different values of the parameter 𝛼 

 

 Finally, the total potential energy is expressed as below, Eq. (2.63). 
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(2.63) 

This expression consists of the five parameters, such as 𝛼, 𝜀, 𝜆, 𝑛 and 𝜅.  

Substituting the approximated displacement functions from Eq. (2.48) in Eq. 
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(2.63), the total potential energy can be minimized by partial derivative with 

respect to undetermined coefficients 𝐶𝑖
𝑢, 𝐶𝑖

𝑣 and 𝐶𝑖
𝑤 as following equation. 

 ( )
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0, 1,2, , , ,
u v w
i i i

i k p q
C C C

  
= = = = 

  
 (2.64) 

Thus, an eigenvalue problem is obtained for an analysis of the local buckling 

behavior of the circular cylindrical shell. 
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  : det 0Non trivial solution A− =  

(2.65) 

A high-order equation obtained from determination of matrix 𝐴  can be 

rewritten in terms of three non-dimensional paramters 𝑅̅ , 𝜉𝐸̅,𝑠ℎ𝑒𝑙𝑙  and 

𝑙𝑐̅𝑟,𝑠ℎ𝑒𝑙𝑙. 
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where 𝑅̅  and 𝜉𝐸̅,𝑠ℎ𝑒𝑙𝑙  represents the dimensionless radius of the cylindrical 

shell and the dimensionless curing rate, respectively, and and 𝑙𝑐̅𝑟,𝑠ℎ𝑒𝑙𝑙 is the 

dimensionless critical buckling length. After the various values of 𝛼 , 𝑛 , 𝑅̅ 

and 𝜉𝐸̅,𝑠ℎ𝑒𝑙𝑙  are substituted in the governing equation, the dimensioless 

buckling length can be found.   
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2.5 Conversion Factor  

Since the parameter 𝜆 has different form for column model and shell model 

as expressed in Eqs. (2.22) and (2.62), respectively, a conversion factor which 

is the ratio between 𝜆𝑠ℎ𝑒𝑙𝑙  and 𝜆𝑐𝑜𝑙𝑢𝑚𝑛  is necessary to plot a graph 

comparing the two models. The factor 𝐾 can be drived as follows 
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(2.67) 

Consequently, the conversion factor 𝐾 is related to parameter 𝜈 and 𝛼. 
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When the graphs are plotted both for the column model and shell model, the 

dimensionless curing rate of column model should be multiplied by the factor 

𝐾 and the dimensionless critical buckling length of column model should be 

divided by the factor 𝐾.  
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2.6 Convergence Study 

A converence study is necessary for finding and checking the adequate 

number of polynomial terms, 𝑚, 𝑘, 𝑝 and 𝑞 from Eqs. (2.25) and (2.46), of 

the approximated displacement functions. As the number increases from 5 to 9, 

the graph converges as figures below. 

 

Figure 2-13 Convergence study for the column model : 𝑁 = 5 ~ 9 

 

 

Figure 2-14 Convergence study for the shell model : 𝛼 = 0.1, 𝑅̅ = 5.5 
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If the number of polynomial terms of the displacement functions are more 

than 7, the value of the dimensionless critical buckling length 𝑙𝑐̅𝑟 converges 

rapidly for both of the column model and the shell model. By using the 

conversion factor 𝐾 , the column model graphs can be plotted on the shell 

model coordinate axis. 

 

Figure 2-15 Convergence graphs with the column model and the shell model 

 

Selecting the number of polynomial terms as 8 is appropriate to calculate the 

accurate solution, otherwise the calculation time dramatically increases if the 

number is greater than 8.  
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2.7 Plastic Collapse 

The 3D printed cylindrical structure may fail by plastic collapse as the 

compressive stress subjecting to the bottom layer is reaching the yield strength 

𝜎𝑝 under its self-weight. The yield criterion for plactic collapse failure can be 

formulated as 

 p cgl  = =  (2.69) 

where the uniaxial compressive strength of the material 𝜎𝑐   is from the 

compressive failure criteria described by the maximal stress theory. 

Similar to the elastic stiffness expression Eqs. (2.7) and (2.8), the 

heterogenous yield strength can be expressed as linear function related to the 

curing rate. The linearly assumed time evolution of the yield strength at the 

bottom of the cylindrical structure is given by  

 ( ) ( )* * ,00,p px t h t = =  (2.70) 

 ( )* 1h t t= +  
(2.71) 

where 𝜎𝑝,0 is an intial yield strength which can be measured from the material 

at the moment of discharge from the nozzle. Eq. (2.70) can be expressed in 

terms of the dimensionless Eulerian coordinate in same manner as the elastic 

stiffness is expressed with the dimensionless Eulerian coordinate 𝑋̅ =
𝜉𝜎𝑋

𝑙̇ . 

 ( ) ( )* * ,0p pX h X =  (2.72) 
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 ( )* 1h X X= −  (2.73) 

The location of the bottom layer in terms of the dimensionless coordinate 

can be written as 

 
l

l

 =  (2.74) 

Combining Eqs. (2.69), (2.72) and (2.74), the yield condition specializes to 
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The length of failure caused by plastic collapse is derived from Eq. (2.75) as 
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(2.76) 

The dimensionless plastic collapse length 𝑙𝑝̅  and curing rate 𝜉𝜎̅  are 

introduced to develop the expression (2.76). 
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with the range of the dimensionless curing rate 0 ≤ 𝜉𝜎̅ < 1. By setting 𝑙 = 𝑙𝑝 

from Eq. (2.76) and substituting the dimensionless parameters in Eq. (2.76), an 

explicit expression for the dimensionless plastic collapse length can be obtained 

as follows 
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Chapter 3. Analysis and Results 

3.1 Cylindrical Column Analysis Results 

3.1.1 Global buckling length 

By using the governing equation of the cylindrical column model, Eq. (2.22), 

with dimsionless coordinate system and non-dimensional parameters, critical 

buckling lengths can be predicted for each curing rate. Due to having different 

components of the paraemet, 𝜆, between column model and shell model, the 

conversion fator, 𝐾 , is multiplied to the dimesionless curing rate and the 

dimensionless length is divided by 𝐾. To compare the column curves according 

to the value of α within the same range of 𝜉𝐸̅,𝑠ℎ𝑒𝑙𝑙 = 0 ~ 3, the corresponding 

values of 𝜉𝐸̅,𝑐𝑜𝑙𝑢𝑚𝑛 are shown as figure below. 
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Figure 3-1 Dimensionless criticl buckling length - curing rate curve on the 

column coordinates system and corresponding value of α 

Table 3-1 Values of the conversion factor and 𝛼 and corresonding values of 

dimensionless curing rate for column model and shell model 

 𝑲 𝝃̅𝑬,𝒄𝒐𝒍𝒖𝒎𝒏 𝝃̅𝑬,𝒔𝒉𝒆𝒍𝒍 

𝛼 = 0.5 0.3506 8.55 

3 

𝛼 = 0.4 0.3043 9.85 

𝛼 = 0.3 0.2526 11.87 

𝛼 = 0.2 0.1936 15.49 

𝛼 = 0.1 0.1223 24.54 

 

After conversion of the parameters from column model to shell model, the 

dimensionless curing rate decreases and the length increase. Each curve 

according to the value of 𝛼 can be plotted as Figure 3-2. If the value of 𝛼 gets 

lower, the curve goes upward and the slope becomes steeper. 

 

Figure 3-2 Dimensionless criticl buckling length - curing rate curve on the 
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shell coordinates system according to the value of 𝛼 

3.1.2 Global buckling mode shape of column model 

From Chapter 2, the column model represents the global and the column 

buckling equation is organized as an eigenvalue problem from the matrix 

equation for the unknown coefficients. Since the buckling legth is estimated by 

calculating the non-trivial solution of the matrix equation, determinant of the 

matrix should be zero. This also means rank of the matrix is smaller than the 

number of unknwon coefficient and the matrix equation has infinitely many 

solutions for the unkown coefficients. Thus, to predict the deflection of 

cylindrical column, a procedure that assumes an unknown coefficient as a 

specific value is needed, such as 𝐶1 = 1. Then, every unknown coefficient can 

be calculated by solving the system of linear equations and they are 

noramlaized by the maximum value. Polynomial equation of the dimensionless 

lateral deflection is formulated with known coefficients and coordinate 𝑋̅ . 

Substituting the height 𝑋̅ from -𝜅 to 0, the deflection 𝑤̅ is obtained along the 

height, then the normalized lateral deflection 𝑤̅𝑛𝑜𝑟𝑚  can be calculated by 

dividing 𝑤̅ by maximum deformation value. 
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(3.1) 
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Figure 3-3 Lateral deflection along the height according to the different curing 

rate from 0.01 to 1 

 

The non-dimensional curing rate is the only parameter affecting to the results 

of the cylindrical column model. The deflection shape is getting steeper as the 

curing rate increase, however the differences between the various curing rate 

are not significant. 
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Figure 3-4 Deformed shape of global buckling predicted by column model 

 

According to the lateral deflection 𝑤̅𝑛𝑜𝑟𝑚 calculated from above, overall 

deformed shape of global buckling mode from column model can be predicted 

and drawn as Figure 3-4. Since the global buckling occurs without any 

deformation on cross section, the structure buckles only with lateral deflection. 
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3.2 Cylindrical Shell Ananlysis Results 

The parameters used in the cylindrical shell model can be classified into three 

groups, such as material properties, geometric characteristics and printing 

variables. All the parameters are arranged in Table 3-2.  

Table 3-2 Paramters considered in the cylindrical shell model 

Material Properties 
Geometric 

Characteristics 
Printing Variables 

𝜈, 𝜌, 𝐸0, 𝜉𝐸 ℎ, 𝑅, 𝛼 𝑙 ̇

 

These parameters affect the performance of the structure in combination 

since the dimensionless parameters which are used for calculating the 

diemensionless buckling length consist of them. Thus, to predict the behavior 

of the shell, identifying the relation between the variables and controlling some 

parameters to estimate the influence of the other is important process. The 

results from the numerical analysis will be shown under three control 

conditions : 1) fixed geometric characteristics 𝛼 , 2) fixed non-dimensionial 

radius, and 3) fixed non-dimensionless curing rate. 

Table 3-3 Controlled paramters of three analysis conditions 

1 2 3 

𝛼 𝑅̅ 𝜉𝐸̅ 
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3.2.1 Fixed geometric characteristics 

Controlling 𝛼 as a specific value represents that the ratio of the layer height 

to the radius of the structure is constant, which also means when the radius of 

shell increases, the height of layer increases at a constant ratio. Furthermore, it 

can be interpreted as a structure, having the same radius and same layer height, 

is printed by a different material and different printing condition. On the 3-D 

graphs with the dimensionless radius as x-axis and the dimensionless curing 

rate as y-axis, the critical buckling length has been predicted when the value of 

𝛼 and 𝑛 are selected as 0.1 and 1, respectively. 

 

Figure 3-5 𝑅̅ - 𝜉𝐸̅ - 𝑙𝑐̅𝑟 3-dimensional graph when 𝛼 = 0.1 and 𝑛 = 1 

 

The graph illustrstes that when the non-dimensional radius increases and the 

non-dimensional curing rate decreases, the non-dimensional buckling length 

decreases rapidly. The section of the graph at 𝑅̅ = 1 to 5 are shown below. 
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Figure 3-6 Section of the 3-D graph for 𝛼 = 0.1 and 𝑛 = 1 conditions at   𝑅̅ 

= 1 to 5 

From Figure 3-6, the buckling length decreases rapidly between 𝑅̅ = 3 and 

4 at the lower curing rate and the length increases dramatically after 0.06 and 

0.21 curing rate for 𝑅̅ = 4 and 5, respectively. After these points, curves for 

each 𝑅̅  increase in a similar form. However, for the large non-dimensional 

radius, the higher buckling mode is expected and thus the govering buckling 

length would be lower than mode 1. 

 

Figure 3-7 Comparion of the buckling length for 𝑛 = 1 to 4 with same 𝛼 
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Figure 3-7 shows that the expected buckling modes are 𝑛 = 2 (large curing 

rate) and 3 (low curing rate) for 𝑅̅ = 5 and corresponding buckling length is 

lower than mode 𝑛  = 1, thus this mode and length governs the buckling. 

Considering the buckling mode, the shape of graph, Figure 3-5, will be changed 

and the critical buckling length will decrease for the specific conditions. 

 

Figure 3-8 Governing 𝑅̅ - 𝜉𝐸̅ - 𝑙𝑐̅𝑟 3-dimensional graph when 𝛼 = 0.1 

 

 

Figure 3-9 Buckling mode when 𝛼 = 0.1 
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When the 𝛼 value of the cylindrical shell is changed, the performance of 

other cases can be predicted by the graphs below. 

 

 

Figure 3-10 Other cases when 𝛼 = 0.3 and 0.5 with 𝑛 = 1 and 𝑅̅ = 1 to 5 

 

If the parameters except for the value of 𝛼 are constant, as the ratio between 

the layer height and radius increases, the buckling length decreases, especially 

rapdily decreasing in the range of 𝛼 = 0.1 and 0.3. 
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3.2.2 Fixed non-dimensional radius 

The paramter 𝑅̅  relates to the material properties and 𝛼 . If the same 

material is used, in other words, if the material properties using for the anaylsis 

and the ratio 
𝑅

ℎ2 are consistent, the 𝑅̅ value is constant. However, that does 

not mean 𝛼 is constant. Thus, depending on whether 𝛼 is constant or not, the 

graph can be plotted by 2-dimension or 3-dimension. With considering the 

buckling mode, a 3-D graph can be plotted when 𝑅̅  is constant as 5.4865 

which is the specific value from the validation experiment for 0.3 m radius 

sample with the layer height 0.02 m. 

 

Figure 3-11 Governing 𝛼 - 𝜉𝐸̅ - 𝑙𝑐̅𝑟 3-dimensional graph when 𝑅̅ =5.4865 

 

The above figure represents the rapid decreasing of the non-dimensional 

buckling length at the small 𝛼. If the 𝛼 value and the material properties are 

already determined during the design process, the 𝑅̅ value is always same and 

only 2-D graph obtained by cutting the section of 3-D graph can be used to 

predict the behavior of the cylindrical shell with considering the buckling mode. 
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Figure 3-12 Buckling mode when 𝑅̅ = 5.4865 

 

 

Figure 3-13 2-D graphs cut at (a) 𝛼 = 0.01, (b) 𝛼 = 0.1 ~ 0.5  
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3.2.3 Fixed non-dimensional curing rate  

In the real printing process, the raidus of the cylindrical column is commly 

the major variable, since the material properties are already determined in 

consideration of the printability and the size of the nozzle is fixed. Furthermore, 

the growth speed of the length can be determined by the horizontal speed of the 

nozzle. Then, the non-dimensional curing rate has a constant value. The only 

variable that affects to the performance of the shell is the radius of the cylindal 

and 𝛼 will be determined by the radius. 

 

Figure 3-14 Governing 𝑅̅ - 𝛼 - 𝑙𝑐̅𝑟 3-dimensional graph when 𝜉𝐸̅= 0.0233 

 

If the target value of the radius of the designed cylindrical structure is 

decided, the non-dimensional radius 𝑅̅ and the ratio 𝛼 can be calculated and 

then the non-dimensional buckling length is obtained from the one point of the 

3-D graph. A value 𝜉𝐸̅ = 0.0233 is related to the validation experiement which 

will be dealt from Chapter 5. 
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Figure 3-15 Buckling mode when 𝜉𝐸̅ = 0.0233 
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3.2.4 Local buckling mode shape of shell model 

The cylindrical shell model can show global or local buckling according to 

the governing buckling mode and it can be compared with the column model. 

All of the parameters in the shell buckling equation where the determinant of 

matrix equation is zero should be specified as a value to estimate the lateral 

deflections. Controlling the parameters according to the three conditions : 1) 

fixed 𝛼 and 𝜉𝐸̅, 2) fixed 𝛼 and 𝑅̅ and 3) fixed 𝜉𝐸̅ and 𝑅̅. 

Conditions 1 2 3 

Fixed 

Parameters 
𝛼, 𝜉𝐸̅  𝛼, 𝑅̅ 𝜉𝐸̅ , 𝑅̅ 

Variance 𝑅̅ 𝜉𝐸̅ 𝛼 

 

First, Figure 3-16 shows the different buckling mode shpes according to the 

non-dimensionless radius. As the radius increases, the deflection curve has 

more complex shape in the beginning. Especially when 𝑅̅ = 3, the cylindrical 

structure deflects back and forth based on the center of layer, 𝑤̅ = 0. However, 

the more radius increases, the structure shows the similar buckling mode shape 

regardless of the governing buckling mode for each 𝑅̅. 

When the paramters, 𝛼  and 𝑅̅ , are fixed, for the small curing rates, the 

structures collapse in almost the same mode shape. However, as the curing rate 

increases, the structure shows complex deflection curve. 

There is less tendency when the parameter 𝛼  increases while the other 

parameters are fixed. Althought the deflection curves seem to converge until 𝛼 

increases from 0.01 to 0.4, when 𝛼 is 0.5, the structure deflects into complex 

shape. 
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Figure 3-16 Lateral deflections according the different 𝑅̅ and fixed 

paramters, 𝛼 = 0.1 and 𝜉𝐸̅ = 0.1 

 

 

Figure 3-17 Lateral deflections according the different 𝜉𝐸̅ and fixed 

paramters, 𝛼 = 0.1 and 𝑅̅ = 5.4865 
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Figure 3-18 Lateral deflections according the different 𝛼 and fixed 

paramters, 𝜉𝐸̅ = 0.0233 and 𝑅̅ = 5 

 

Compared to the column model, to predict the deformed shape of local 

buckling from shell model, the sinual terms are also included as Eq. (2.45). 

Cosine term is multiplied to the radial displacement 𝑤̅  and sine term is 

multiplied to the circumferential displacement 𝑣̅ . Since these terms are 

multiplied, the cross section of shell structure is deformed differently along the 

height according to the calculated displacement like above. Overall deformed 

shapes of shell structures with different governing buckling modes are shown 

as following figures. 
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Figure 3-19 Deformed shape of local buckling predicted by shell model with 

different buckling mode 𝑛  
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3.2.5 Shell structure with geometric imperfection 

Additionally, as a final step, the effect of geometric imperfections on the shell 

buckling behavior is explored by decomposing the dimensionless deflection 𝑤̅ 

along the height as 

 ( ) 0 Fw X w w= +  (3.2) 

where 𝑤̅0 is the geometric imperfections and 𝑤̅𝐹 is the deflection under the 

applied load, in this case self-weight of upper layers, and computing the 

buckling response. The imperfection profile in terms of Lagrangian coordinate 

𝑥 can be idealised with the combination of harmonic and exponential terms as 

 ( ) ( )0 0 0 sin 1 exp
2 2

t l

m

t l

x xw x
n t n

w w
t

 




  
 = − + −     


=

 
−  (3.3) 

where 𝑤𝑚
0  is the amplitude of the imperfection, 𝑛𝑡 is the number of printed 

layers defining the wavelength of the imperfection profile, 𝑡𝑙 is the height of 

a printed layer and 𝜔  is a factor quantifying the influence length of the 

exponential term at the boundary 𝑥  = 0. This admissible equation can be 

transformed in terms of the dimensionless Eulerian coordinate 𝑋̅ as 

( ) ( )( ) ( )0 0 sin 1 exp w
m w

k
w X w k X X  



   
= − + + − − +    

   

 (3.4) 

with the dimensionless imperfection amplitude, 𝑤̅𝑚
0 =

𝑤𝑚
0

ℎ
, the dimensionless 

wavenumber 𝑘̅𝑤 =
2𝜋𝑙̇

𝑛𝑡𝑡𝑙𝜉𝐸
 and the boundary factor 𝜏̅ =

2𝜋

𝜔𝑛𝑡𝑡𝑙
. 
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When applying the decamped dimensionless displacement 𝑤̅ to Eq. (2.63), the 

initial imperfections are assumed that they do not generate stresses, in other 

words, the strain energy under the initial imperfections is zero. In accordance 

with this assumption, linear equations obtained from the partial differential for 

unknown coefficients turn into the following non-homogeneous form.  

 

1,

,1

1,1 1 1

,

m

m m m m m

A A C

A

B

A BC

     
     

 =     
         

 (3.5) 

Since Eq. (3.5) consists of five non-dimensional parameters and has non-

homogeneous form, calculating the critical buckling length directly is not 

possible. However, the unknown coefficients of displacements can be predicted 

under specific conditions, in other words, under fixed values of parameters. The 

deflection 𝑤̅ at the top 𝑋̅ = 0 of cylindrical structure during 3D printing can 

be estimated as the length of structure increases. 

 

Figure 3-20 Shell structure with geometric imperfection during 3D printing 
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The influence of exponential term in Eq. (3.4) is assumed relatively small by 

taking the boundary factor 𝜏̅ = 0.5. Thus, the imperfection is determined by 

the two paramters, 𝑤̅𝑚
0  and 𝑘̅𝑤. Figure 3-21 and 3-22 illustrates the deflection 

at the top of cylindrical structure for two different imperfection amplitude 𝑤̅𝑚
0  

= 0.01 and 0.05 and six different wavenumber 𝑘̅𝑤 = 0, 1, 5, 20, 60 and 120. 

 

 

Figure 3-21 Deflection 𝑤̅ at the top 𝑋̅ = 0 of structure for 𝑤̅𝑚
0  = 0.01 



 Chapter 3. Analysis and Results 

 

 
71 

A horizontal dashed line indicates the critical buckling length calculated 

from buckling equation under certain condition, 𝛼 = 0.1, 𝑛 = 3, 𝜉̅ = 0.1 and 

𝑅̅ = 5, which does not consider geometric imperfection. A vertically straight 

line when the wavenumber is zero represents the bifurcation buckling path 

when the structure is gemetrically perfectly printed. As wavenumber 𝑘̅𝑤 

increases, the deflection at the top increases in the beginning, and then 

decreases. Furthermore, the deflection curve has more sinusoidal wave and 

complex profile as wavenumber increases, and it is close to the bifurcation 

buckling path.  

From Figure 3-21 and 3-22, both for the small and large imperfection 

amplitudes, the curves for the different wavenumber asymptote towards the 

crical buckling length. However, for the large imperfection amplitude 𝑤̅𝑚
0  = 

0.05, the converegence occurs with the larger deflection than small amplitude. 

In conclusion, when the geometric imperfection generated on the cylindrical 

structure during 3D printing has a relatively small amplitude and large 

wavenumber, the bifurcation buckling length calculated from homogeneous 

buckling equation serves as an adequate design value. 
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Figure 3-22 Deflection 𝑤̅ at the top 𝑋̅ = 0 of structure for 𝑤̅𝑚
0  = 0.05 
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3.3 Comparison between Cylindrical Column and Shell 

The analysis for the cylindrical column depends on the value of 𝛼 

regardless of 𝑅̅ when it converts to the shell model coordinate from its own 

coordinate. Thus, to compare the two differnet models, three types of the 3-D 

graphs from each condition can be used. First, when 𝛼 is constant, as shown 

in Figure 3-23, the buckling length of the column model is always higher than 

shell model with 𝑅̅ = 1 ~ 10 and 𝜉𝐸̅ = 0 ~ 1. 

 

Figure 3-23 Governing 𝑅̅ - 𝜉𝐸̅ - 𝑙𝑐̅𝑟 3-D graph for column and shell model 

when 𝛼 = 0.1  

 

For the shell having small non-dimensional radius and high curing rate, the 

analysis results from column and shell is almost same. Figure 3-24 shows the 

section of the 3-D graph at 𝑅̅ = 1 to 5 and it seems column and shell curves 

converge as the curing rate is higher. 
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Figure 3-24 Comparison between column and shell model with 𝛼 = 0.1 and 

 𝑛 = 1 conditions for 𝑅̅ = 1 to 5 

 

Following figures represent the analysis results both for column and shell 

model with the conditions of the constant 𝑅̅ and 𝜉𝐸̅, respectively.  

 

Figure 3-25 Governing 𝛼 - 𝜉𝐸̅ - 𝑙𝑐̅𝑟 3-D graph for column and shell model 

when 𝑅̅ = 5.4865 
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Figure 3-26 Governing 𝑅̅ - 𝛼 - 𝑙𝑐̅𝑟 3-D graph for column and shell model 

when 𝜉𝐸̅ = 0.0233 

 

Comparing the anaylsis results from the column model with the shell model, 

three figures which have different condition represent that the non-dimensional 

buckling length from the column model is always higher than from the shell 

model. However, as the values of the parameters, 𝑅̅, 𝜉𝐸̅ and 𝛼 get smaller, 

the differences between the two models get smaller. 
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3.4 Plastic Collpase Analysis Results 

The non-dimensional plastic collapse length can be calculated from the 

simple equation. Since the non-dimensionless curing rate for the compressive 

strength ranges 0 or more and less than 1, the non-dimensionless plastic 

collapse length is 1 at zero curing rate and increases infinitely when the curing 

rate gets closer to 1. A conversion from the plastic collapse coordinate to the 

shell model coordinate is not possible, since the parameters used in the 

dimensionless parameter are not same. 

 

Figure 3-27 Plastic collapse length from zero curing rate and under one 

  



 Chapter 3. Analysis and Results 

 

 
77 

3.5 Case Study for Three Models 

Understanding the meaning of the non-dimensional values is difficult and 

complicated, since various parameters which indicates the properties of 

material or geometric and printing conditions exist. Thus, to show clearly how 

to predict the performance of the cylindrical structures by using the suggested 

models, the case study has been conducted to predict the governing failure 

length which can be estimated by comparing the results from the column, shell 

and plastic collapse models. The properties of the material which will be 

handled at Chapter 4, the geometric configuration and printing conditions are 

chosen as below. 

Table 3-4 Concret mixture proportions 

Material Properties Geometric Characteristics Printing Variables 

𝜈 0.3 
ℎ 20 mm 

𝑣𝑛 0.1 m/sec 
𝜌 1850 kg/m3 

𝐸0 35.02 kPa 
𝑑 10 mm 

𝜉𝐸 0. 35 Pa/sec 

 

The analysis is predicting the failure length from each model according to 

the various radius, from 40mm to 400mm. The buckling length is plotted as a 

line, the column as a dot line and dash-dot line for the yield failure. Gray dash 

lines represent the changing points of the govering failure mode. 



Chapter 3. Analysis and Results 

 

 
78 

 

Figure 3-28 Case study with the column, shell and plastic models and 

governing failure length and mode 

 

As shown in the figure above, the cylindrical structure having large radius 

buckles earlier and has higher buckling mode. However, for smaller structure, 

it collpases at higher and by the material yielding at the bottom layer. 

Furthermore, the column model overestimates the buckling length for the 

cylindrical structures. 
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Chapter 4. Material Tests and Properties 

4.1 Concrete Mixture Proportions 

The printabiliy of the material used in 3D printing is relate to the rheological 

properties of the fresh concrete, such as yield stress and plastic viscosity. A 

material mixture design for validation experiments targets to low plastic 

viscosity to easily slip inside the hose, high initial yield stress to sustain shape 

of layer and prevent segregation. The usage of cement and flyash is same and 

four types of sand are used for half of cement. The ratio of water to cement is 

0.64 which is high relative to the normal concretes and superplasticizer is used 

as much as 0.375% of cement. Table 4-1 shows the overall proportions of the 

concrete material which is used for the experiments. 

Table 4-1 Concret mixture proportions 

OPC FA SF W Sand PP SP 

1 1 0.1 0.64 0.5 0.0015 0.00375 

 

Table 4-2 Particle sizes and proportions of four types of sand 

 Size [mm] Proportion 

Sand5 0.6 ~ 1.2 0.25 

Sand6 0.25 ~ 0.6 0.25 

Sand7 0.15 ~ 0.25 0.1 

Sand8 ~ 0.15 0.4 
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4.2 Fresh Concrete Properties 

4.2.1 Modulus of elasticity 

From Chapter 2.2.2, the curing function of the concrete material is assumed 

as linear function. Uniaxial unconfined compression tests for estimating the 

stiffness modulus of fresh concrete are conducted by using universal testing 

machine. The experiments are conducted from 15 minutes to 70 minutes in 15 

minutes intervals and five samples are tested in each time. Here, ‘15 minutes’ 

refers to the time elapsed since the concrete begins to be mixed. The samples 

are cylinder diameter of 50mm and 100mm height. The displacement-

controlled tests are performed at a rate of 20mm/min and the average test time 

is 2 min which is equal to 40% strain [9]. 

\   

Figure 4-1 Samples for universal testing machine 

 

Laod - displacement graphs of the experiements show that the load initially 

increases approximately linearly and keeps increasing as the verical 

displacement increases. The average load increases for older concrete as Figure 

4-1.  
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Figure 4-2 Force - displacement graphs of compression tests for concrete age 

15 to 75 minutes 

 

Young’s modulus of each specimens can be measured at 5% strain since in 

this range the slopes of the graphs are almost linear for each concrete age. The 

values of stiffness modulus from each sample are shown in Table 4-3. 
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Table 4-3 Values of modulus of elasticiy from each samples and concrete age 

 
15 min 

[kPa] 

30 min 

[kPa] 

45 min 

[kPa] 

60 min 

[kPa] 

75 min 

[kPa] 

Sample 1 40.31  45.41  53.27  65.32 80.58 

Sample 2 32.18  40.63  66.35 63.83 80.80 

Sample 3 33.92 48.18  53.13 70.25 78.66 

Sample 4 37.43  44.46  55.72 64.69 83.17 

Sample 5 35.19  49.87  56.68 67.22 80.59 

Average 35.81 45.71 57.03 66.26 80.76 

 

A linear function for modulus of elasticity can be obtained from the linear 

regression on the average values from each concrete age. The stifness modulus 

of the fresh concrete is initaially 23.98 kPa and linearly increases by the rate of 

0.7364 kPa/min. 

 

Figure 4-3 Measured modulus of elasticity and linear regression function 
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4.2.2 Compressive strength 

A compressive strength of the material can be measured with the tests dealt 

from the previous chapter. However, to calculate the stresses of each sample, 

updated cross - sectional area are necessary, since the large lateral deformations 

occur. The horizontal strain is measrued using edge detection technique by 

MATLAB program. The boundary of the sample in the video is tracked by 

green line having coordinate values which indicate the location. Then, the 

average horizontal distance between two side lines can be calculated. 

Comparing the average distance from previous image and current image, the 

average horizontal strain between two images is obtained. Since original 

diameter of cylinder is already given as 50mm, the updated diameter can be 

measured by multiplying the strain stey by step.  

       

Figure 4-4 Tracking the boundary of sample using edge detection technique 

 

Dividing the increased cross-sectional area of cylinder due to the lateral 

deformation, the compressive stress can be calculated diving the force by 

updated area. Then, as shown in Figure 4-5, the slope of stress - strain curve is 

gradually decreasing and the peak occur, especially for older samples. 



Chapter 4. Material Tests and Properties 

 

 
84 

 

 

 

Figure 4-5 Stress - strain curves of compression tests for concrete age 15 to 75 



 Chapter 4. Material Tests and Properties 

 

 
85 

 

Figure 4-6 Average compressive stresses for concrete age 15 to 75 

 

However, since the cracks or failure occur as the lateral deformation 

increases, the data should be cut-off at the moment when the cracks occur. 

These points are different according to the samples. Table 4-4 shows the cut-

off strain where the cracks occur. 

Table 4-4 Vertical strain when the failure occrus  

 
15 min 

[%] 

30 min 

[%] 

45 min 

[%] 

60 min 

[%] 

75 min 

[%] 

Sample 1 31 29 34 29 25 

Sample 2 24 28 30 30 31 

Sample 3 34 23 34 25 30 

Sample 4 27 30 30 26 23 

Sample 5 25 28 28 30 33 

 

The stresses corresponding to the vertical strain from Table 4-4 are arranged 

as following table. However, the outliers exist in each concrete age. 

Table 4-5 Stresses corresponding to the strain obtained from Table 4-4 
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15 min 

[kPa] 

30 min 

[kPa] 

45 min 

[kPa] 

60 min 

[kPa] 

75 min 

[kPa] 

Sample 1 4.11 5.89 6.63 9.68 11.90 

Sample 2 4.83 6.26 7.61 7.76 13.05 

Sample 3 6.75 6.24 7.66 10.82 16.07 

Sample 4 5.28 6.17 7.50 10.53 13.79 

Sample 5 5.67 7.12 7.82 8.93 12.36 

Average 5.33 6.34 7.44 9.54 13.44 

Modified 4.97 6.14 7.65 9.99 12.78 

 

By eliminating the outliers expressed as underline in Table 4-5, the average 

compressive stress increases or decreases. The data fits better with the linear 

function, thus assuming the curing function for compressive strength as linear 

is appropriate method. An initial compressive strength can be estimated as  

2.46 kPa and the curing rate for the compressive strength is 0.13 kPa/min. 

 

Figure 4-7 Growth of compressive strength with total data 
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Figure 4-8 Growth of compressive strength without outliers 
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4.2.3 Plastic viscosity 

The plastic viscosity is measured by Viskomat rheometer machine. Three 

liter of the fresh material is needed for one sample. Totally, 9 samples are tested 

and each sample is used up to 7 times with interval of 5 minutes. A fishbone 

probe rotates at a linearly incrasing speed from 0 rpm to 80 rpm in 1.67 minutes 

or 2.67 minutes to prevent the slippage between the material and bowl. From 

the obtained data, the data is cut-off at the point where the R square is greater 

than 0.9, then the value of slope which has N-mm/rpm dimension can be 

obtained by linear regression.  

    

Figure 4-9 Viskomat rheometer machine and testing image 

 

 

Figure 4-10 Growth of compressive strength without outliers 
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Sine the dimesion of slope estimated from the data as show in Figure 4-10 is 

N-mm/rpm, a calibration constant, 2.62 which is from the manul of Viskomat 

machine, shoule be multiplied to the slope to get a dimension Pa-sec. Total 60 

data is plotted on the graph according to the time and Figure 4-11 shows that 

the average plastic viscosity from different concrete age is almost similar 

regardless of time effect. Thus, the plastic viscosity of the material used can be 

assumed as approximately constant as 11.53 Pa-sec.  

 

Figure 4-11 Plastic viscosity with lower and upper bound 
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4.2.4 Yield stress 

By using same rheometer machine but with different type of probe, vane 

probe, the yield stress can be measured as Figure 4-12. The bowl where the 

material is in rotates every 10 minutes at 0.33 rpm during 10 seconds. The peak 

torque occurs during rotation as shown in Figure 4-12. As in the previous 

chapter, a calibration constant, 1.45343, will be multiplied to the peak value to 

convert the dimension from torque [N-mm] to stress [N/m2] and this value 

represents the yield stress of matieral at that curing time. 

 

Figure 4-12 Data of a sample with linearly increasing peak value 

 

Using the average yield stress at each curing time and doing linear regression, 

data fits well in linear function as Figure 4-13 and assuming the evolution of 

the yield stress linear with the time is proved from the articles written by 

Roussel. 
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Figure 4-13 Growth of yield stress with linear regression function 

 

  



Chapter 4. Material Tests and Properties 

 

 
92 

4.2.5 Bond Strength 

To sufficiently initiate the flow in the printed layer at rest to mix adjacent 

layers, the stresses generated by the flow of the upper layer should be greater 

than the staic yield stress of the resting layer. The stresses generated between 

two layers can be approximately decomposed into independent normal stresses 

and shear stresses. The normal stresses generated by the printing layer are 

related to the weight of the layer as below [10] 

 
6

xx yy

gd
 = =  

3
zz

gd
 = −  

(4.1) 

with the density of the material 𝜌, the acceleration of gravity 𝑔 and the depth 

of the printing layer 𝑑. 

The shear stress generated at the interface between the adjacent layers by the 

printing of the upper layer can be expressed as follows 

 00

2
xz p

V

d
  = +  (4.2) 

where 𝜏00 is the initial static yield stress of the material, 𝜇𝑝 represents the 

plastic viscosity and the horizontall print speed of the concrete 𝑉 divided by 

the average depth 
𝑑

2
 of the second layer equals the shear rate. 

Considering a Von Mises criterion as the plasticity criterion, a resting time, 

which represents a maximum printing period to mix the adjacent layers, can be 

formulated by expressing the stress generated by the upper layer equals the 

yield stress of the lower layer. 
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 ( )
2 2 2

2 2
0

2

xx yy zz

xz restt
  

 
+ +

+   (4.3) 

whereby 𝜏0(𝑡𝑟𝑒𝑠𝑡) representing the static yield stress of the printed layer after 

the resting time 𝑡𝑟𝑒𝑠𝑡 is given by 

 ( )0 00rest thix restt A t = +  (4.4) 

with the rate of increase of the static yield stress of the material 𝐴𝑡ℎ𝑖𝑥 at rest. 

Substituting Eqs. (4.1), (4.2) and (4.4) in Eq. (4.3), the inequality which shows 

the maximum resting time is expressed as follows  

 

( )
2 2

00 00
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12
p
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thix

gd V
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t
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
  
 

+ + − 
 

  
(4.5) 

For the case study, using the estimated plastic viscosity and yield stress from 

the previous chapter, the maximum resting time can be calculated. The 

parameters are chosen as below. The initial static yield stress is determined 

based on the time past after the material has been mixed, here, 15 min selected. 

Table 4-6 Chosen parameters for calculating the maximum resting time 

Parameters   Resting time 

Density 𝜌 1850 kg/m3 

298.9 sec 

Acceleration of gravity 𝑔 9.8 m/sec2 

Depth of layer 𝑑 0.01 m 

Print speed 𝑉 0.1 m/sec 

Plastic viscosity 𝜇𝑝 11.53 Pa-sec 

Initial static yield stress 𝜏00 2004.22 Pa 

Structuration rate 𝐴𝑡ℎ𝑖𝑥 0.7796 Pa/sec 
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4.3 Hardened Concrete Properties 

Additionaly, the compressive strength of the hardened concrete is measured 

after curing 7 days, 14 days and 28 days. Test samples are 50×50×50 volume 

cubes and are tested by UTM. The average compressive strengths are 41.4 MPa, 

52.39 MPa and 66.64 MPa, respectively.  

     

Figure 4-14 Hardened concrete cube for compressive strength test 

 

 

Figure 4-15 Compressive strength of hardened concrete in 7, 14 and 28 days 
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Chapter 5. Experimental Verification of 3D 

Printing 

5.1 3D Printing Process 

5.1.1 Experimental conditions 

The 3D printing experiments were carried out using the material which has 

specific properties covered in the previous chapter at Korea Institue of Civil 

Engineering and Building Technology laboratory. The 3D concrete printer used 

was the grantry-type which has three axes movement and at least 40 liters of 

the concrete material is needed to operate the pump which is the screw type.  

      

Figure 5-1 Gantry type 3D concrete printer, concrete blender and pump 

 

The 10 meters hose was used and two types of nozzles, 13mm and 25mm, 

were used to make the parameter conditions, such as layer height and depth, 𝛼 

and structure growth velocity. The probability of buckling may be increased 

when the value of 𝛼  decreases, which means using smaller nozzle is more 

appropriate for the test to measure the critical buckling length 
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Figure 5-2 Two types of printing nozzles : 25mm and 13mm 
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5.1.2 Experimental specimens 

By using 25 mm size nozzle, totally 19 samples were printed with the 

horizontal printing velocity, 𝑣𝑛 = 0.07 m/sec. The actual printed layer height 

is larger than the nozzle size, since the material spreads on the lower layer 

during the discharge process. Average layer height when the 25 mm diameter 

nozzle is used is 30 mm and layer depth is 15mm. The layer height as ℎ = 30 

mm is used in the analysis, thus the 𝛼 is 0.12 for the 250 mm radius structure. 

Table 5-1 Geometric configurations and printing parameters of samples 

printed by 25 mm nozzle 

Radius 𝜶 𝑻 [sec] 𝒍̇ [mm/s] 
Number of 

specimens 

50 mm 0.6 4.52 3.32 5 

62.5 mm 0.48 5.65 2.65 4 

83.3 mm 0.36 7.53 1.99 4 

125 mm 0.24 11.3 1.33 4 

250 mm 0.12 22.6 0.66 2 

 

 

Figure 5-3 250 mm radius 3D printed concrete structure with 25 mm nozzle 
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A total of 28 experiements were conducted by 13 mm size nozzle on 9 types 

of different geometric structures with 𝑣𝑛 = 0.1 m/sec. Same as 25 mm nozzle, 

the actual printed layer height is 20 mm and nozzle depth is 10 mm which is 

larget than the size of nozzle. 

Table 5-2 Geometric configurations and printing parameters of samples 

printed by 13 mm nozzle 

Radius 𝜶 𝑻 [sec] 𝒍̇ [mm/s] 
Number of 

specimens 

50 mm 0.4 3.12 3.21 3 

62.5 mm 0.32 3.90 2.57 1 

75 mm 0.27 4.68 2.14 1 

83.3 mm 0.24 5.19 1.93 2 

125 mm 0.16 7.79 1.28 3 

150 mm 0.13 9.35 1.07 3 

250 mm 0.08 15.58 0.64 4 

300 mm 0.07 18.7 0.53 8 

325 mm 0.06 20.26 0.49 3 

 

  

Figure 5-4 300 mm radius 3D printed concrete structures with 13 mm nozzle 
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5.2 Comparison of Experimental and Analytical Results 

5.2.1 3D printing with 25 mm diamaeter nozzle 

A buckling behavior was detected from 50 mm radius sample at the early 

concrete age. However, the other specimens collapsed since the material at the 

bottom layer yielded. For some samples, yielding occurred more than two times. 

A part of the bottom layer yielded at first and other part yielded after more 

layers printed. Furthermore, after the cylindrical structure loses the stiffness due 

to the occurrence of yielding at the bottom, the shape of the structure was 

maintained and it did not collapse even if more layers were printed.  

Table 5-3 Experimental results with ℎ = 30 mm 

Radius  15 ~ 25 min 25 ~ 35 min 35 min ~ 

50mm 

Buckling 255mm (19)   

Plastic 225mm (22) 
255mm (25) 

240mm (28) 
270mm (41) 

62.5mm Plastic  
225mm (29) 

270mm (32) 

240mm (35) 

270mm (37) 

83.33mm Plastic 

165mm, 210mm 

225mm, 240mm 

(17) 

195mm, 225mm 

 (20) 

255mm, 285mm 

 (21) 

 

 

240mm, 285mm 

 (41) 

125mm Plastic 

180mm, 195mm 

210mm, 240mm 

(22) 

240mm, 285mm 

330mm (24) 

180mm, 210mm 

225mm  

(25) 

240mm, 285mm 

300mm, 345mm 

375mm  

(45) 

250mm Plastic  
255mm, 285mm 

(29) 

240mm, 285mm 

390mm  

(37) 
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Figure 5-5 Results from 50 mm radius cylindrical structure with ℎ = 30 mm 

 

Figure 5-6 Results from 62.5 mm radius structure with ℎ = 30 mm 

 

Figure 5-7 Results from 83.3 mm radius structure with ℎ = 30 mm 
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Figure 5-8 Results from 125 mm radius structure with ℎ = 30 mm 

 

Figure 5-9 Results from 250 mm radius structure with ℎ = 30 mm 

 

The buckling length from the 50 mm radius sample is greater than the 

predicted buckling length of shell model. The other points that plastic collapse 

occurred are located below the prediction curve. However, 70 percents of them 

are above the actual plastic collapse length which is estimated by the validation 

experiment data and below the predicted critical buckling length 
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5.2.2 3D printing with 13 mm diameter nozzle 

More occurrence of the buckling is expected by using smaller nozzle since 

the 𝛼 value gets smaller than the bigger nozzle in the case of the structure 

having same radius. 

Table 5-4 Experimental results with ℎ = 20 mm 

Radius  15 ~ 40min 40 ~70 min 70 min ~ 

50mm Plastic 199mm (32) 290mm (63) 292mm (93) 

62.5mm Plastic   283mm (90) 

75mm Plastic 193mm (25)   

83.33mm Plastic 
193mm, 229mm 

(26) 
 283mm (70) 

125mm Plastic 
229mm, 256mm 

(31) 

211mm, 265mm 

(42) 
265mm (84) 

150mm 

Buckling  220mm (67)  

Plastic 220mm (29)  265mm (73) 

250mm 

Buckling  211mm (51)  

Plastic  274mm (60) 
256mm (73) 

326mm (108) 

300mm 

Buckling 
202mm (19) 

202mm (26) 

309mm (45) 

301mm (50) 
352mm (79) 

Plastic 220mm (36)  
256mm (73) 

335mm (85) 

325mm 

Buckling 165mm (36)  292mm (86) 

Plastic  256mm (46)  

 

The buckling occurred 9 times especially for the 300 mm radius structures.  
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Figure 5-10 Results from 50 mm radius cylindrical structure with ℎ = 20 mm 

 

Figure 5-11 Results from 62.5 mm radius structure with ℎ = 20 mm 

 

Figure 5-12 Results from 75 mm radius structure with ℎ = 20 mm 
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Figure 5-13 Results from 83.3 mm radius structure with ℎ = 20 mm 

 

Figure 5-14 Results from 125 mm radius structure with ℎ = 20 mm 

 

Figure 5-15 Results from 150 mm radius structure with ℎ = 20 mm 
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Figure 5-16 Results from 250 mm radius structure with ℎ = 20 mm 

 

Figure 5-17 Results from 300 mm radius structure with ℎ = 20 mm 

 

Figure 5-18 Results from 325 mm radius structure with ℎ = 20 mm  
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5.3 Summary 

5.3.1 Error between experimental data and prediction for buckling 

length and buckling mode 

The differences between the critical buckling length from the validation 

experiment and numerical analysis are arranged as table below. 

Table 5-5 Result comparison for the buckling length between experimental 

data and prediction 

𝒉 - 𝑹 - (min) Experiment Prediction Error 

30 - 50 - (19) 255 mm 252 mm +1.2 % 

20 - 150 - (67) 220 mm 422 mm -47.8 % 

20 - 250 - (51) 211 mm 268 mm -21.3 % 

20 - 300 - (19) 202 mm 158 mm +27.7 % 

20 - 300 - (26) 202 mm 178 mm +13.4 % 

20 - 300 - (45) 309 mm 222 mm +39.3 % 

20 - 300 - (50) 301 mm 233 mm +29 % 

20 - 300 - (79) 352 mm 298 mm +18.3 % 

20 - 325 - (36) 165 mm 194 mm -15.1 % 

20 - 325 - (86) 292 mm 299 mm -2.4 % 

 

The errors between actual data and predition are ranged from -47.8 % to 

+39.3 %. Half of the bucklings occurred from the 300 mm radius cylindrical 

structure with ℎ = 20 mm and the lengths of the structures when they collapse 

were always higher than predicted. Otherwise, most of them collapsed below 

the estimated length.  
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Furthermore, most of samples show same buckling mode as predicted when 

they collpased. Samples which collapsed with lower or higher buckling mode 

than estimated had large error for comparison of buckling length. 

Table 5-6 Result comparison for the buckling mode between experimental 

data and prediction 

𝒉 - 𝑹 - (min) Experiment Prediction 

30 - 50 - (19) 1 1 

20 - 150 - (67) 2 2 

20 - 250 - (51) 2 3 

20 - 300 - (19) 3 3 

20 - 300 - (26) 3 3 

20 - 300 - (45) 2 3 

20 - 300 - (50) 3 3 

20 - 300 - (79) 3 3 

20 - 325 - (36) 4 3 

20 - 325 - (86) 3 3 

 

   

Figure 5-19 Sequence of experimental verification 

  



Chapter 5. Experimental Verification of 3D Printing 

 

 
108 

5.3.2 Actual compressive strength from experiments 

The compressive strength of the material which is used for the validation 

experiement is already measured from Chapter 4.2.2. However, when the 

stresses obtained from the samples, which were collapsed by yielding at the 

bottom layer, are plotted, all of experimental data are located under the 

measured compressive strength and has lower slope. This figure indicates that 

the compressive strength changes after pupmped or while the material is 

passing through the pipe. 

 

Figure 5-20 Different compressive strength curve during printing 
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5.4 Discussion 

From the experimental verification process, some data are located below the 

predicted curves and failed by plastic collapse unexpectively. The actual 

material properties which are discharged from the printing nozzle are different 

from the measured material properties as Figure 5-20, since the material during 

the pumping or on the way through the hose is re-mixed. Thus, the properties 

are changed which can not be measured accurately, since the various printing 

conditions influence to them in combination. Furthermore, the actual strengths 

and stiffness are expected to be lower than measured from the static condition, 

since the curing effect of material does not occur as well as expected during 

printing process. As a result, samples which are estimated to have high stiffness 

and strength collapsed at a different length and by a different failure mode from 

the prediction. The other reason why some samples collapsed below the 

predicted failure length and collapsed by different failure mode is the effect of 

the eccentricity. In the numerical anaylsis process, the model assumes the length 

of structure increases consistenly. However, in actual printing process, the layer 

having the specific thickness is printed on the lower layer and this condition 

occurs asymmetry loading along the circumference. In addition, due to this 

limitation, the deformation does not occur simultaneously in the circumferential 

direction, and it leads to the geometric imperfection. Thus, a stiffness of 

cylindrical structure decreases and a stress on a part of layer being printed 

increases than prediction. 
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Chapter 6. Conclusion 

The mechanical performance of cylindrical structures during the 3D printing 

process can be analysied by using the model suggested in this paper. The model 

distinguishes between the failure mode by elastic global buckling, elastic local 

buckling and plastic collapse. The cylindrical column model is used for 

analyzing elastic global buckling and the shell model for elastic local buckling. 

These models consider the curing effect of the material as linear function and 

analyze in the dimensionless coordinate system. The column model predicts the 

failure length always higher than shell model while the difference can be almost 

negligible at specific condition. The shell model provides the critical buckling 

length and corresponding buckling mode. Generally, as the raidus of structure 

increases, it buckles at the low length while other parameters are constant. In 

addition, by considering the effect of geometric imperfection to the shell model, 

the decrease in stiffness of structure and the change in buckling response are 

identified. Plastic collapse failure relates to the stress at the bottom layer and 

the yield strength of the material, affected from the material properties. The 

model results are summarized in the design graphs which have different 

conditions and these graphs provides the practical tool for predicting the 

performance of arbitrary cylindrical structure under the broad range of possible 

conditions. The column model, reflecting the global buckling, provides the 

upper bound to the elasic buckling length while the shell model, corresponding 

to the local buckling, gives the lower bound according to the buckling mode. 

The failure length for plastic collapse may narrow or widen the boundary 

boundary, determining the governing failure mode of the cylindrical structure 
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under specific conditions. This can be demonstrated by the case study which 

shows the governing failure mode according to the conditions. The properties 

of material, such as the intial modulus of elasticity, compressive strength and 

yield stress, are measured and each property shows linear increasing. Assuming 

the curing function for material properties as the linear evolution in the anaylsis 

process is verified. The accuracy of the proposed model can be shown from 

experimental validation and the model underestimates the buckling length in 

most cases. The models can be utilized as a design or validation tool for 3D 

printed cylindrical structures. 
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콘크리트 원형 중공 단면 구조물의                   

3D 프린팅 출력 중 구조적 안전성 

 
 

정 승 수 

 

서울대학교 건축학과 대학원 

 
 

3D 프린팅 시공 중 자중에 의한 붕괴를 방지하는 것은 3D 

프린팅 구조물의 주요 고려 사항이다. 출력 중에는 낮은 강성과 

강도를 가지는 굳지 않은 상태의 콘크리트 재료를 사용하기 때문에, 

설계 또는 시공 과정에서 한 번에 출력 가능한 최대 높이를 

계산해야 한다. 본 논문에서는 원형 중공 단면 구조물의 3D 프린팅 

중 기계적 성능을 해석하고 출력 파라미터를 최적화하는데 사용할 

수 있는 역학 모델을 제안한다. 탄성 좌굴과 탄성 국부 좌굴, 

그리고 소성 붕괴, 3 종류의 붕괴 메커니즘을 고려한다. 각각의 붕괴 

종류에 대해서 기둥 모델, 쉘 모델 그리고 항복 조건을 사용한다. 

모델은 재료의 특성, 기하학적 특징 그리고 프린팅 변수와 같은 

다양한 변수들을 포함한다. 콘크리트 재료의 특징인 경화 효과는 

구조물 모델링 시 높이 방향으로 일정하지 않은 강성과 강도에 

의해 고려된다. 무차원 좌굴 길이에 대해 먼저 해석을 진행한 후, 
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두 좌굴 모델 사이의 결과값을 디자인 그래프에서 비교한다. 한편, 

무차원 소성 붕괴 길이는 다른 좌표축에 대해서 예측되며, 좌굴 

그래프와 같이 나타낼 수 없다. 모든 파라미터가 결정된 특정 

구조물에 대한 사례 연구는 수치 해석 결과를 분석하는 과정을 

보여준다. 또한, 특정 상황에서 지배하는 좌굴 메커니즘과 대응하는 

좌굴 모드를 알 수 있다. 기존에 선형 함수 형태로 가정된 경화 

특성은 재료 특성을 측정하는 실험을 통해 검증할 수 있다. 다양한 

반지름을 가지는 원형 구조물에 대해 출력 실험을 진행하여 얻은 

데이터와 모델로부터 예측된 붕괴 높이를 비교하여 모델의 

정확도를 검증한다. 본 모델은 임의의 원형 구조물의 역학적 성능에 

대한 각 출력 변수들의 영향을 알아내고, 붕괴 높이와 붕괴 

메커니즘을 예측하는 모델로 사용될 수 있다. 
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