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Abstract 
 

As the importance of data utilization increases, manufacturing 

industries aim to become smart factories through meaningful 

information from various sensors. The priority is to collect data 

generated in fields and monitor the machine. Among many types of 

data, sound is not only easily acquired but also economic data 

containing much site information. However, there are many 

restrictions to be addressed in the central data center because sound 

sources are relatively large and complex to protect privacy. We 

propose a sound-based machine monitoring system embedded in an 

edge computer to overcome these limitations. The proposed system 

consists of Jetson Nano, an edge computer, and a microphone array 

Respeaker v2.0 for data acquisition. The recorded sounds are 

augmented with random mixing and amplitude adjustment then 

optimal parameters are selected. To reduce the computational cost, 

a model is designed to be small but capable of fast inference and high 

accuracy. Considering the noise generated in the environment, the 

model is trained using a dataset generated by an autoencoder 

network. This system is developed and verified in a lab environment 

and then demonstrated at a manufacturing site. As a result, this model 

monitors the operation state of the target machine with an accuracy 

of 93% and an inference time of 1.1 seconds in a noisy environment. 

Keyword : sound, real time, edge computer, IoT, machine monitoring 

Student Number : 2021-21595 
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Chapter 1. Introduction 
 

 

1.1. Background 
 

The fourth industrial revolution is leading the breakthrough 

growth of manufacturing industries around the world by analyzing 

information generated from sites through advanced technologies such 

as the internet of things (IoT), Artificial Intelligence (AI), and 

blockchain [1-4]. Since these changes affect enterprises' growth 

and social problems such as global warming and environmental 

pollution, many studies are being conducted in industries and 

academia [5]. However, while large enterprises can respond to this 

flow, converting small and medium-sized enterprises (SMEs) face a 

lack of technology and data and a financial burden [6, 7]. With the 

concern of SMEs, Jung et al. proposed an appropriate smart factory 

to build a system that performs proper functions, is available for 

purchase, and is easy to apply on-site [8]. 

A monitoring system is essential for establishing a smart factory 

[9]. Monitoring of processing equipment increases productivity and 

is based on managing and predicting the health of machines [10-12]. 

However, state-of-the-art machines are equipped with monitoring 

and analyzing systems. Legacy equipment has fewer features like 

these. For this reason, many studies have proposed to remotely 

monitor the state of old equipment by combining IoT, communication, 

and AI technologies with various sensors, including vibration, sound, 

electricity, and vision [13]. Table 1.1 compares clustered sensors by 
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detection method. Kim et al. [14] monitored a 3-axis computer 

numerical control (CNC) milling machine through a low-cost camera 

and open-source technologies. This system led an SME to reduce 

operation time and energy consumption. Jung et al. [15] implemented 

an IoT-based power monitoring system for sewing machines and 

demonstrated it in a garment manufacturing factory. Consequently, 

the power monitoring system improved productivity as well as work 

efficiency. Kim et al. [16] proposed a sound-based machine 

monitoring system and demonstrated it in a small factory.   

 

Table 1.1. Comparison of sensors used in an industrial site. Radio 

detection and ranging (RADAR) (***: Good / **: Normal / *: Bad) 

Index 
Motion 

[17] 

Vibration 

[18]  

Optical 

[19] 

Energy 

[20] 

Acoustic 

/sound 

[16] 

Sensor 

type 
RADAR 

Accelero-

meter  
Camera 

Power- 

meter 

Micro- 

phone 

Sensor 

cost 
* ** * ** *** 

Simple to 

install 
*** * *** * *** 

Detection 

range 
*** * *** * *** 

Data size * ** * *** ** 

Privacy 

security 
** *** * *** * 

Noise 

immunity 
** * *** ** * 

Process 

complexity 
* ** * ** ** 
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However, IoT-based systems face several challenges when data 

moves from the sensing location to a centralized server: latency, 

scalability, and privacy [21]. For example, a vision-based application 

in an autonomous vehicle system may need three-dimensional 

images as raw data. However, the data size is so large that it is 

impossible to proceed with the inference process after going through 

the central server in real-time [22]. Moreover, the more IoT devices 

connecting to the central server, the more traffic will increase, and 

eventually, a bottleneck occurs, making data transmission on the 

network inefficient. Lastly, transferring private data such as face 

photos and recorded voices can cause an infringement of personal 

information [23]. 

Edge computing is considered a suitable solution for addressing 

these obstacles by decentralizing the workloads of the main server. 

To address the latency challenge, edge devices collect and compute 

data to reduce end-to-end latency and thus enable real-time 

services. In terms of scalability, the number of edge computers 

increases in proportion to the number of users; the bottleneck is 

reduced. Lastly, edge computer processes raw data locally; thus, 

privacy and security attacks are prevented. Although the advantages 

of edge computing, edge computers have relatively low computer 

power [24], so it is limited to embed a deep learning model. 

Therefore, it is required to develop an edge computing system 

equipped with an optimal deep learning model suitable for the specific 

purpose. 
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1.2. Purpose of Research 
 

In a factory environment, machine sounds contain meaningful 

information such as operation rate, machine state, prognostics, and 

health management (PHM). In this study, we propose a sound-based 

machine state monitoring system and embed this system in an edge 

computer described in Figure 1.1. We aim to develop a small but 

accurate classification model so that it can operate on an edge 

computer. Then, we demonstrate the system in different 

manufacturing environments: a laboratory environment for 

prototyping and a manufacturing industry for small-quantity batch 

production. 
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Figure 1.1. Schema of the proposed sound-based real-time 

monitoring system.  



 

 ６

Chapter 2. Sound analysis and processing 
 

 

2.1. Physical property of sound 
 

The sound waves provide us with multifactorial information such 

as frequency, intensity, and timbre with identified characteristics. In 

physical, sound is a type of energy produced by the vibration of an 

object through a transmission medium such as a gas, liquid, or solid. 

When vibration occurs, air molecules oscillate through space, tending 

to bump into each other. This movement generates waves consisting 

of compression parts with relatively more molecules and rarefaction 

parts with relatively fewer molecules.  

A waveform consists of frequency, amplitude, and phase. 

Frequency refers to the number of oscillations through the medium 

per unit of time. Amplitude indicates the magnitude of energy with 

respect to atmospheric pressure. When molecules in a medium are 

significantly vibrated, it has a high magnitude. Lastly, phase specifies 

the position of the waveform.  
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Figure 2.1. The sound wave consists of amplitude, frequency, and 

phase. In particular, the amplitude represents the degree to which 

the molecules in the air are concentrated. 
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2.2. Fourier transform 
 

Complex sound waves represented by the time domain can be 

decomposed into their frequency components by mathematical 

transformations called Fourier transform. This method is based on a 

principle; every complex sound is represented as a sum of sinusoid 

waves with distinct frequency, amplitude, and phase. In digital signal 

processing, since 𝑁 data are sampled at finite intervals, the complex 

number 𝑋  of a frequency 𝑘 is expressed as follows: 

 

 
𝑋 =  𝑥 ∙ 𝑒  

… eq 2.1 

 

 From the formula above, although the Fourier transform has the 

advantage of being analytical through three components, it is 

impossible to represent a continuous perspective because time 

information disappears. A Short Time Fourier Transform (STFT) is 

presented to complement the Fourier transform by multiplying the 

entire signal by a window function 𝜔  and dividing it into short 

segments of the time series. Windows have the same length of the 

number of data 𝑁, and it is called frame length. So, at the current 

frame number 𝑚 with the hop size 𝐻, the value of the frequency 𝑘 

in the current window 𝑚 is expressed as: 

 

 
𝑆( , ) =  𝑥(𝑛 + 𝑚𝐻) ∙ 𝜔(𝑛) ∙ 𝑒  

… eq 2.2 
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However, the measured signal is leaked at the end of the window 

because the processed signal is not an integer number of periods, so 

the spectrum is smeared. To minimize the leakage effect, the weights 

of samples at both ends of a frame should be eliminated by 

convoluting a shaped window with an amplitude varying smoothly 

toward zero at the endpoints of the signal. Then, the window is 

shifted slightly, overlapping the previous window to compensate for 

reduced weights at the edges, and its overlapping length is called hop 

length. This pipeline converts the digital signals in the time domain 

into the frequency domain from which frequency features are 

extracted. Finally, the sound analysis is performed by restructuring 

the spectrums computed in frame units into a vector or matrix form.  

 

 

2.3. Spectrogram and filter bank 
 

Spectrogram refers to a 3D image representing the spectrums of 

frequencies over time, which is suitable for analyzing sound data 

through machine learning. In a spectrogram, each column represents 

the frequency and magnitude that STFT calculates in each window. 

Figure 2.2 shows three types of digital filter banks that can be 

applied to each frequency's weights to improve the analysis 

efficiency by frequency selectivity. A Mel filter bank, a triangular 

filter bank, provides higher frequency resolution at low-frequency 

range, while lower frequency resolution at high-frequency range in 

logarithmic scale, imitating the human ears perception of sound. 
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𝑚 = 2595 ∙ log (1 +

𝑓

500
)  

… eq 2.3 

 

 𝑓 = 700( 10 / − 1) 

 

… eq 2.4 

 

 

 

Figure 2.2. The shape of digital filter banks. (a) and (d) represent 

the log-mel scale, (b) and (e) represent the tangent scale, and (c) 

and (f) represent the exponential scale. 
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Figure 2.3. Process of Fast Fourier Transform for discrete signal.  
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2.4. Convolutional neural network 
 

In the field of Deep Learning (DL), a Convolutional Neural 

Network (CNN) has shown significant research results in image 

analysis [25, 26]. The CNN was first presented by Yann et al. to 

overcome the limits of traditional models of pattern recognition and 

machine learning algorithms [27]. This promising network has been 

developed from 1989 until today in various fields, including speech 

processing [28], computer vision systems [29]. 

A CNN consists of convolution and pooling processes. In the 

convolution process, a kernel called a filter plays the role of the 

feature extractor. The kernel made of a grid of weights is computed 

as a dot product to the image with several setting parameters; grid 

size, stride, and depth. Grid size is the number of pixels for height 

and width. Each grid size of a kernel is generally odd for preventing 

image distortion by clarifying the position of the center pixel. A stride 

is the step size used for sliding the kernel on the image. The color of 

the original image data decides the depth. The depth is three for RGB 

images, while the depth is one for gray images. Next, we obtain a 

non-linear feature map by applying an activation function to the 

weights following: 

 

 

 ℎ = 𝑓(𝑊 ∙ 𝑥 + 𝑏 ) … eq 2.5 
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Whereas a pooling process is performed after convolution to 

prevent overfitting during training by removing the feature map's 

location dependency and reducing the computational cost through 

down-sampling. Max or average pooling methods are generally used. 

While max pooling extracts only the largest value from the input 

image by a patch with a specific grid size and stride, average pooling 

extracts the average value of the values in the patch.  

After a bunch of convolution and pooling processes, the last 2D 

image from which high-level features are extracted is flattened as a 

vector and then classified by an activation function such as softmax, 

sigmoid, or Rectified Linear Unit (ReLU). Finally, the prediction 

output for each class is deduced then the weights are optimized 

gradually based on error backpropagation with a proper loss function.  

In this study, we employed a CNN-based architecture for data 

analysis, considering sound as a spectrogram image. This visualized 

sound represents the time, frequency, and amplitude of the x, y, and 

pixel value, respectively.  
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Chapter 3. Real-time sound monitoring system 
 

 

3.1. Hardware of monitoring system 
 

This chapter describes the hardware configuration used to 

monitor the sound of the designated machine in real-time in a noisy 

indoor space and a process for efficient data gathering, pre-

processing, learning, and classification. As an edge computer, a 

Jetson nano (NVIDIA, USA) was chosen to serve as a classifier 

embedded with trained models and sound data recording, as 

described in Table 3.1. This edge device delivers 472 GFLOPs 

(Floating point Operations Per Second) of computing performance 

and a GPU mounted with only 5 watts of low power consumption. 

With these advantages, many domains prefer to utilize jetson nano, 

where AI or machine learning techniques are applied with edge 

computing. Specifications for the microphone array (Seeed studio, 

China) selected for sound data acquisition are shown in Table 2.2. 

 

3.2. Data acquisition and preprocessing 
 

We recorded machine sounds in a laboratory environment and 

manufacturing factory with noise, reflection, and diffraction for the 

generalization of the acquiring dataset as well as preprocessing 

parameters.   
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Table 3.1. Specification of used edge computer 

Specification Description 

Name (company) Jetson Nano (NVIDIA corp) 

GPU 128-core Maxwell 

CPU Quad-core ARM A57 

Memory 4 GB 64-bit 

Dimension 69 x 45 𝑚𝑚  

Appearance of Jetson nano 
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Table 2.2. Specification of mic array 

Specification Description 

Name (company) 
Respeaker Mic Array v2.0 

(seeed studio) 

Signal processor XVF-3000 from XMOS 

Microphone type 
ST MP34DT01TR-M  

(Digital MEMS) 

Sensitivity - 26 dBFS 

Signal to noise ratio 61 dB 

Dimension 70 mm (Diameter) 

Max sample rate 16 kHz 

Appearance of respeaker mic array v2.0 

 

 

  



 

 １７

The machining sound amplitude of each target machine was 

measured in decibels(dB), and a mic array was installed at a position 

where the sound volume was as similar as possible. Furthermore, the 

mic array is set parallel to the ground so that all mic arrays can record 

the sound of all equipment. The data acquired in this way are divided 

into clean data recorded by processing equipment in the absence of 

noise and various noises that may occur in the environment. Figure 

3.1 shows the data augmentation process using parameters 

appropriate for the acquired raw data to prevent overfitting and 

enable real-time processing. This technique not only increases the 

amount of data but also considers variables of the physical properties 

of sound. 
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Figure 3.1. Data augmentation process. 
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At first, we crop an arbitrary time interval from the waveform of 

any amount of equipment. The selected waveforms are randomly 

multiplied by 0.1 to 1.1 times amplitude to prevent performance 

degradation due to a change in position between the mic array and 

the machines. Then the data are mixed and multiplied by gaussian 

noise. Finally, the augmented sound data pool is prepared. Next, 

STFT is performed using parameters including frame length, window 

length, and hop length, shown in Table3.3. We use the Hann window 

to minimize frequency resolution and amplitude deformation errors. 

A digital filter bank is selected to generate a spectrogram. Generally, 

a Log-Mel filter bank is used to emulate human ears, but in this study, 

we compare the performance of the log scale, exponential scale, and 

tangent scale. The spectrogram is along a vertical image with a 

256x32x1 grayscale because frequency information is more 

characterized than time information. Figure 3.2 is the generated data 

through the above preprocessing and is fed as input data for inference 

and model training. 
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Table 3.3. Parameters to compare the performance of models. 

Parameter Values used in this study 

Frame length (seconds) 

(Number of data) 

0.2, 0.5, 0.8 

(3,200, 8,000, 12,800) 

Window length ratio to frame 

length 
0.1, 0.3 0.5 

Filter bank type Log-mel, Exponential, Tangent 

Sampling rate, image size 16 kHz, (256, 32) 

 

 

 

Figure 3.2. Generated images(256x32x1) with different frame 

lengths of 50, 100, and 200 milliseconds and a window length ratio 

of 0.5. 
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3.3. Design of a classification model 
 

To infer in real time using edge computers, a model that 

accurately deduces while reducing the number of parameters and 

FLOPs used for updates is needed. We adopt a Depthwise Separable 

Convolutions(DSC) technique that combines depthwise and pointwise 

convolution from the mobilenet presented by Howard et al. [30], 

which is the most widely used CNN model for analyzing images. 

Figure 3.3 shows the structure of the proposed network using DSC. 

Depthwise convolution train filters use only spatial information 

for each channel by proceeding with convolution in the spatial 

direction except for the channel direction. Simultaneously, we 

compress the channel using pointwise convolution to perform 

convolution in the channel direction rather than the spatial direction.  

Let the size of the squared kernel of the input be 𝐷  and the size 

of output feature maps by 𝐷 , and each has the number of channels 

𝑀 and 𝑁, respectively. The ratio of the number of parameters and 

Flops of the standard CNN and the DSC is shown in eq 3.1 and eq 3.2. 

 

 

 𝑃

𝑃
=  

(𝑁 + 𝐷 ) × 𝑀

𝑁 × 𝐷 × 𝑀
 

… eq 3.1 

 

 𝐹

𝐹
=  

𝐷 (𝐷 + 𝑁) × 𝑀

𝑁 × 𝐷 × 𝐷 × 𝑀
 

 

… eq 3.2 
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where, 𝑃  and 𝐹  are the number of parameters and the floating 

points of standard CNN, respectively and 𝑃  and 𝐹  are the number 

of parameters and floating points of DSC.  

 

Figure 3.3. Structure of the proposed network. Mobilenet is 

referred to as a backbone network. 
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3.4. Design of autoencoder network 
  

Sound analysis is vulnerable in the manufacturing areas where 

unexpected noise, such as working fans, human voice, and vehicle 

sound, occurs. To prevent performance degradation to noise, we 

adopted the autoencoder technique. 

Autoencoder [31] is a network of selecting and extracting 

features of input data to learn data encoding in an unsupervised 

manner. There are three parts in an autoencoder: encoder, decoder, 

and bottleneck. Firstly, the encoder compresses the input data into 

an encoded representation while decreasing the dimension. At the 

end of the encoder, the bottleneck performs to contain the most 

crucial feature of the network. Lastly, a decoder consisting of the 

same architecture as the encoder reconstructs the compressed data 

and generates data from its latent attributes. The network parameter 

of the autoencoder is trained by comparing the output image with 

ground truth in a supervised manner. 
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Figure 3.4. Process of training for autoencoder network and 

proposed network. 
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A dataset consists of a pure sound of equipment acquired in a 

noise-controlled environment and a dataset of noise in the site, with 

the preprocessing parameters presented in Table . We trained the 

autoencoder model with a mean squared error as a loss function. 

Figure 3.5 shows samples of spectrograms of purified machine sound, 

a machine with noise sound, and generated sound by autoencoder in 

order. 
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Table 3.4. Processing parameters for training the autoencoder. 

Parameter Value 

Frame length (Seconds) 

(Number of data) 

0.5 

(8,000) 

Window length ratio 

to frame length 
0.3 

Filter bank type Log-mel 

Sampling rate 16 kHz 

Number of generated data 20,000 

Image size 256, 32 

 

 

Figure 3.5. Two samples of images of machine sound, the machine 

with random noise, and generated. 
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Chapter 4. Results 
 

 

To verify the performance of the developed sound monitoring 

system, we conducted tests in two places, including laboratories and 

the manufacturing industry, with different target machines, noise, and 

areas. 

 

4.1. Case 1 – Lab environment for manufacturing 

prototyping 
 

Figure 4.1 shows the laboratory where researchers conduct 

experiments and prototypes with small machines such as drills, mini 

lathes, 3D printers, collaborative robots, and laser cutters. Among 

these machines, we decided to monitor the sound of a mini lathe, band 

saw, CNC milling, and drill press which are conventional pieces of 

equipment. 

We evaluated the performance of this system with data set 

according to the scheme in Figure 4.1 and Table. At first, we 

compared the performance of each combination of the preprocessing 

parameters. A performance comparison of each parameter is shown 

in Figure 4.2. When the frame length was 0.5 seconds and 0.8 

seconds, similar results were obtained with an accuracy of about 

0.94%, but the longer the frame length, the longer the inference time, 

so 0.5 seconds was selected. In addition, the window length ratio of 

0.3 seconds was selected as the optimal parameter. 
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Figure 4.1. Layout of a real-time sound monitoring system in the 

laboratory and a spectrogram of noise 
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Figure 4.2. Comparison of model performances according to 

different frame lengths and window length ratios. 

 

 

Figure 4.3. Comparison of binary cross entropy accuracy of each 

filter bank. 
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We compared the performance of the three filter bank types 

using the optimized parameter selected. The log-Mel filter bank 

increases the resolution for the relatively low-frequency range, 

while the exponential filter bank increases the resolution for the 

high-frequency range. Moreover, instead of decreasing the 

resolution for the intermediate frequency range, the tangent filter 

bank focuses on low-frequency and high-frequency ranges. Figure 

2.2 shows that the accuracy differs according to each filter bank type, 

proving that weight selection for each frequency range is essential.  

With the proposed network, we trained a model using 20,000 

generated data, 100 ms frame lengths, and a 0.25 window length ratio. 

Then, we compared the training results, including binary accuracy, 

precision, recall, number of parameters, and FLOPs, with the baseline 

models. Table  proves that the number of parameters and FLOPs of 

the proposed network was lower than the existing networks, which 

means that a fast and accurate model with an inference time of 0.3 

seconds and being accurate with low memory usage. 

The proposed model classified the machine sound with a 0.95% 

accuracy. However, in the noisy environment, its accuracy was 

significantly reduced to 0.81~0.87%. To consider the noise effect, 

we trained the proposed classification model with the dataset 

generated by autoencoder. Figure 4.4 compares the accuracy of 

models with the model trained by only purifying data in a noisy 

environment. With slight noise, including sneezing, clapping, door, 

and char dragging, the autoencoder model, improves the accuracy 

from 0.87% to 0.95%. On the other hand, in a loud, noisy environment 
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where non-target machines operate, the accuracy increased from 

0.81% to 0.95%. The total processing time is about 1.1 seconds, of 

which 0.5 seconds is for data sampling, 0.3 seconds is for passing the 

autoencoder network, and 0.3 seconds is for inference time. 
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Table 4.1. Performance comparison of proposed network with 

reference networks. 

Model 

Performance 
VGG11 MobileNet 

Proposed 

Network 

Binary accuracy 0.978 0.978 0.986 

Precision 0.493 0.493 0.495 

Recall 0.984 0.984 0.987 

Number of parameters 24.4 M 3.2 M 2.6 M 

FLOPs 82.4 M 11.6 M 5.2 M 

 

 

 

Figure 4.4. Comparison of model performance in small and loud noise 

environments. 
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4.2. Case 2 – Manufacturing industry for small 

quantity batch production  
 

Another place where this system is demonstrated is a small 

quantity batch production factory using several types of 

manufacturing equipment such as a hydraulic oil press, welding robot, 

and various conventional machines described in Figure 4.5. We 

targeted manual milling, a hydraulic oil press, and a manual lathe. 

To obtain the training dataset, we controlled the environment so 

that ambient noise could not be heard to obtain training dataset. Then, 

we recorded various combinations of target machines without any 

control to verify the model. The noise at this place is louder and more 

varied than in the lab environment. The sounds include living noise 

and non-target equipment such as a hand drill, hoist, and grinder.  

We optimized the preprocessing parameters of this system 

through the same process applied in the laboratory environment. 

Figure 4.6 shows the results of the performance by different 

preprocessing parameters. As a result, the frame length, the window 

length ratio, and the filter bank were determined to be 0.5 seconds, 

0.1, and Log-Mel type, respectively. 
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Figure 4.5. Layout of sound monitoring system and the target devices 

in the manufacturing site and a spectrogram of noise 
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Figure 4.6. Comparison of binary cross entropy accuracy of each 

preprocessing parameter. (a) binary cross entropy accuracy by 

frame lengths and window lengths (b) binary cross entropy accuracy 

by filter banks. 
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We trained the classification model to consider the noisy 

environment with generated data from an autoencoder. Then, we 

finally evaluated the monitoring system at the factory without any 

control. The operation monitoring results for three pieces of 

equipment are shown in Figure 4.7. When the lathe was operating 

alone or in conjunction with the milling, this system inferred the 

operating state with almost 100% accuracy. On the other hand, the 

monitoring accuracy for the simultaneous operation of the press and 

the milling was about 72%, and the performance was relatively poor. 

Overall, the sound monitoring model infers the operation of the 

equipment with a 93% accuracy and 0.92 F1 scores in the noisy 

manufacturing area.  



 

 ３７

 

Figure 4.7. Process monitoring results at the manufacturing site 
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Chapter 5. Conclusion 
 

 

In this study, we developed a sound monitoring system that can 

classify several machine sounds with low computational cost but in 

real-time and with high accuracy so that the system can be 

embedded in the edge computer. We analyzed the machine sound 

using STFT and converted it to a spectrogram with optimized 

preprocessing parameters. We also designed the DSC-based 

classification model to be suitable for edge computing systems by 

reducing the computational cost. In addition, we applied an 

autoencoder network for data generation that minimizes the impact 

of noise to build the system even in noisy environments robustly. 

Consequently, the model performed classification in a laboratory 

environment with a 94% accuracy in a noisy environment with 

optimized preprocessing parameters. While in a manufacturing area, 

it classified the operation state of each machine with a 93% accuracy 

with 1.1 seconds inference time. 

With the sound-based real-time monitoring system, 

manufacturing industries can access information obtained from 

legacy machines and reduce the burden of constructing the network 

infrastructure because the edge computers transmit only processed 

data, not raw data. Moreover, if this system is developed to specify 

a particular location using phase difference through a mic array, it 

will apply to factories with multiple identical pieces of equipment. 
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Abstract 
 

데이터 활용에 대한 중요성이 대두되면서, 산업현장은 다양한 

센서의 유의미한 정보를 통한 스마트 공장화를 지향하고 있다. 스마트 

공장화를 위한 첫번째 단계는 공장에서 발생하는 영상, 전류, 소리 등 

데이터를 수집하고 이를 통해 기계 장비를 모니터링하는 것이다. 많은 

종류의 센서 중, 소리 데이터는 현장의 많은 정보를 담고 있을 뿐 

아니라, 쉽게 획득할 수 있는 경제적인 데이터이다. 하지만 소리 데이터 

원본은 비교적 용량이 크다는 점과 개인정보 보호의 어려움으로 인해 

중앙 데이터 센터에서 다루기에는 제약사항이 많다. 이를 해결하기 위해, 

본 연구에서는 에지 컴퓨터를 기반으로 소리 데이터 분석을 통한 실시간 

장비 가동 모니터링 시스템을 제안한다. 제안하는 시스템은 에지 컴퓨터 

역할을 수행하는 Jetson Nano와 데이터 취득을 위한 마이크 어레이 

Respeaker Mic Array v2.0로 구성된다. 이 시스템을 이용하여 

공작기계로부터 발생하는 소리를 녹음한 후, 무작위 혼합, 소리의 진폭 

조정 등을 통해 데이터를 증강하였으며, 신호 처리 구간에서 모델에 

적합한 최적의 파라미터를 선정하였다. 또한, 에지 컴퓨팅을 위해 

작지만 빠른 추론이 가능하며, 높은 정확도를 갖는 모델을 개발하였다. 

실제 공장에서 발생할 수 있는 노이즈에 대한 영향을 고려하여 

Autoencoder 기법이 사용되었다. 이 시스템은 시제품을 제작하는 

연구실 장비들을 이용하여 개발되고 검증되었으며, 실제 소품종 

대량생산을 하는 제조업체에 적용되었다. 결과적으로 이 시스템은 

93%의 정확도와 1.1초의 추론 시간으로 장비들의 작동상태를 

모니터링하였다. 
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