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ABSTRACT

Avoiding Penetration in Pushing Dynamics Learning

by

Byeongdo Lim

Department of Mechanical and Aerospace Engineering

Seoul National University

Making an accurate pushing dynamics model is critical in tasks such as pushing

manipulation because it can accurately predict the changes in the poses of objects

caused by the robot’s push motion. In this paper, we argue that pushing dynamics

model can be more accurate if it knows the law of physics in reality. In the real

world, there is a physical law that objects do not penetrate each other, but exist-

ing pushing dynamics models cannot avoid penetration in predicted object poses.

In this paper, we construct a repulsion module that receives and adjusts the poses

predicted by the pushing dynamics model so that there is no penetration between

the objects in the predicted poses. We train the repulsion module with simulation
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datasets and test it with simulation datasets and real-world datasets generated in

real-world robot operation. The results from both datasets show that our method

can avoid penetration and enhance dynamics accuracy in pushing dynamics learn-

ing.
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1
Introduction

Robotic pushing manipulation, in which a robot pushes objects to perform tar-

geting tasks, has been growing interest. Pushing manipulation, for example, can

be used to move objects to make them graspable [1, 2, 3, 4, 5], rearrange ob-

jects [1, 5, 6, 7], and move an occluded object to make it visible [8, 9].

For performing pushing manipulation, model-free and model-based methods

are available. Model-free pushing manipulation constructs policy that takes ob-

servation of the environment as input and directly outputs best pushing action.

They typically learn task-specific reward functions to evaluate each action, or they

directly train the policy. Using model-free approaches, researchers have studied

grasping [2, 3, 4], sorting [6], rearranging [7], and finding the invisible [8, 9] ob-

jects. However, their policy must implicitly learn how the environment changes as

it interacts with the robot, which requires exploration of the environment and a

large amount of data. Furthermore, because they use a task-specific reward func-

tion or policy, if a new task is assigned, the entire algorithm must be re-trained.

Model-based approach, on the other hand, is used to construct a model that
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understands how the environment changes as a result of the robot’s push action. In

other words, the model describes pushing dynamics which explains how the poses

of objects transform according to the robot’s push action. Through the model’s

prediction, the robot can determine which action is best suited for the target task

and perform manipulation using the best action. Furthermore, because the model

learns the general relationship between the environment and action, it can be ap-

plied to other tasks.

Analytic methods [10, 11, 12] had been extensively researched to precisely pre-

dict the pushing dynamics by constructing the model using the dynamic properties

(e.g., shape, mass distribution, and friction distribution) of the manipulated ob-

jects. They cannot be used, however, if one of these properties is unknown. These

methods are especially difficult to be applied when only vision data is provided,

as the mass and friction distribution of the objects cannot be determined.

Recently, in situations where only vision observations were provided, data-driven

approaches [1, 13, 14, 15] that learn pushing dynamics from data have been used.

They use neural network to learn pushing dynamics from vision input. SE3-Nets [13]

and SE3-Pose-Nets [14] take a raw point cloud of the scene, segment it into ob-

jects, predicts each object’s pose transformation, and output the transformed raw

point cloud. However, because this work is limited to raw point cloud, the model

cannot recognize object shapes and learning accurate pushing dynamics is hin-

dered.

DSR-Net [15] solves this problem by recognizing the object shape and predict-

ing the object pose transformation in voxel space. It takes a truncated signed dis-

tance function (TSDF) of the voxelized workspace, segments the voxels to each

object to recognize the object shape, predicts the pose transformation of each ob-

ject, and outputs the voxelized scene flow. However, because recognition in voxel
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space is quite complicated, object shape recognition performance is far-less-than-

satisfying, and thus learned dynamics performance is as well.

SQPD-Net [1] recognizes object shape by employing a shape class known as

superquadrics, which can represent a wide range of shapes such as boxes, cylin-

ders, ellipsoids, octahedrons, and so on. It takes a point cloud of the scene within

workspace, segments it into each objects, recognizes object shapes and poses, and

predicts the pose transformation of each object. Thanks to the simple object recog-

nition in superquadric parameters, its object shape recognition performance is im-

proved, and its pushing dynamics accuracy achieves state-of-the art.

(a) DSR-Net [15]. (b) SQPD-Net [1].

Figure 1.1: Penetration between objects in the poses predicted by existing pushing

dynamics model.

Such approaches have sought to improve the accuracy of the learned dynam-

ics; however, we argue that few studies have attempted to improve dynamics ac-

curacy by learning the realistic aspects of real-world physics. In particular, there

is a physical law that objects cannot penetrate each other in the real world. How-

ever, existing state-of-the-art pushing dynamics models cannot avoid penetration
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and thus cannot reflect the physical law. Figure 1.1 shows the objects in the poses

predicted by DSR-Net [15] and SQPD-Net [1], and the red cylinder and sky-blue

box penetrate each other. Other pushing dynamics models are not shown because

they do not recognize the shapes of objects. An ideal pushing dynamics model

should reflect real-world physics and should not have penetration problem between

the objects, so a model made to avoid the penetration will become more accurate.

In this work, we construct a repulsion module that prevents the object in the

poses predicted by a pushing dynamics model from penetrating. The repulsion

module receives the object poses predicted by the dynamics model, calculates a

potential indicating the degree of penetration between objects, and adjusts the

poses to make the potential zero. The adjustment process is implemented as a

gradient descent of the potential with respect to the object poses, and it serves

as a repulsion between penetrated objects. The repulsion module is designed to

be trainable, in order to achieve a balance between the repulsion of the objects’

positions and orientations.

The structure of this paper is as follows. Chapter 2 discusses details about the

preliminary work, SQPD-Net; details about superquadrics, shape recognition using

superquadrics, and transformed pose prediction using superquadric parameters as

input. In Chapter 3, the theoretical structure of our repulsion module is explained,

and in Chapter 4, we explain the experiments and results of our repulsion module.

Finally, Chapter 5 provides a conclusion as well as opportunities for improvement

of our repulsion module.



2
Preliminaries

Our repulsion module is constructed upon the state-of-the-art pushing dynamics

model, SQPD-Net [1]. This model utilizes superquadrics for both recognizing the

shapes of objects and predicting their transformed poses. As a result, the repulsion

module detects penetration between objects using these superquadrics. Therefore,

before explaining the repulsion module, it is necessary to provide an overview of

superquadrics and overall structure of the SQPD-Net [1], which will be used in

experiments with our repulsion module.

2.1 Superquadrics

Superquadrics are a shape class that can represent various shapes, such as boxes,

cylinders, ellipsoids, octahedrons and so on, using a single continuous parameter

space [16]. Their parameters consist of two shape parameters e1, e2 determining

the shape, and three size parameters a1, a2, a3 determining the size of the shape.

Figure 2.1 shows example of superquadrics when shape parameters are changed.

5
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𝑒1 = 2.0
𝑒2 = 0.2

𝑒1 = 1.0
𝑒2 = 1.0

𝑒1 = 0.2
𝑒2 = 1.0

𝑒1 = 0.2
𝑒2 = 0.2

Figure 2.1: Examples of shapes represented by superquadric.

2.1.1 Explicit and implicit equations of superquadrics

The surface of superquadrics is defined by explicit or implicit equations. The ex-

plicit equation defines the surface vector r from the center of superquadric as

r(η, ω) =


a1 cos

e1 η cose2 ω

a2 cos
e1 η sine2 ω

a3 sin
e1 η

 −π/2 ≤ η ≤ π/2

−π ≤ ω ≤ π
(2.1.1)

where η denotes the inclination which represents the signed angle between the vec-

tor r and xy plane, and ω denotes the azimuth which represents the signed angle

between the vector r and positive x axis [16]. The implicit function is defined as

f(x; s) =

(∣∣∣∣x1a1
∣∣∣∣ 2
e2

+

∣∣∣∣x2a2
∣∣∣∣ 2
e2

) e2
e1

+

∣∣∣∣x3a3
∣∣∣∣ 2
e1

(2.1.2)

where x = [x1 x2 x3]
⊤ ∈ R3 denotes the coordinates of a point and s = (a1, a2, a3, e1, e2)

denotes superquadric parameters. The implicit function indicates relative position

of a point and a superquadric surface; if f(x; s) = 1, the point lies on the surface,

if f(x; s) < 1, the point is inside of the superquadric, and if f(x; s) > 1, the point

is outside of the superquadric.
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2.1.2 Distance between point and superquadric surface

Also, distance between a point x and a superquadric surface defined by a su-

perquadric parameters s is calculated as follows:

δs(x, s) = ∥x∥
∣∣∣1− f− e1

2 (x; s)
∣∣∣ (2.1.3)

where ∥ · ∥ denotes the Euclidean norm [17]. Similar with the implicit function,

the superquadric distance indicates that the point is inside of the superquadric if

δs(x, s) < 0.

2.2 Superquadric pushing dynamics network
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Figure 2.2: The overall structure of R- and GT-SQPD-Net [1].

Superquadric pushing dynamics network [1], abbreviated to SQPD-Net, is a

pushing dynamics model that predicts objects’ transformed poses according to

robot’s push action and uses superquadrics to recognize the objects. It is clas-

sified into R-SQPD-Net and GT-SQPD-Net according to the presence or absence
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of segmentation and recognition modules as shown in Figure 2.2. R-SQPD-Net

takes a scene point cloud as input, segments it to each object’s point cloud, rec-

ognizes the objects using superquadric parameters and poses, and predicts all ob-

jects’ transformed poses using the recognized information and robot’s push action.

GT-SQPD-Net, on the other hand, which does not recognize objects, takes ground-

truth superquadric parameters and poses of objects, and applies them directly to

transformed pose prediction. Point cloud segmentation, object shape recognition,

and transformed pose prediction modules is explained in order in the following

sections.

2.3 Point cloud segmentation

SQPD-Net [1] utilizes a simple segmentation algorithm to segment a scene point

cloud into object point clouds. It takes the scene point cloud as input and outputs

segmentation labels for each point. Mathematically, given the scene point cloud

P := {xi ∈ R3}Npc

i=1 , the module predicts segmentation label vector for each point

ŷi = (yi1, . . . , y1No) ∈ RNo
+ where No denotes the number of objects.

2.3.1 Structure

The overall structure of point cloud segmentation module of SQPD-Net [1] is shown

in Figure 2.3. First, EdgeConv layers from the Dynamic Graph Convolution Neural

Network (DGCNN) [18] is used as a backbone to maintain permutation-invariant

characteristic of point cloud; even if the order of points changes in the point cloud,

it indicates same point cloud, so the output should not be changed. Using five

EdgeConv layers with point-wise latent space dimensions (64, 64, 128, 256) and a

max pooling layer as a backbone, the input point cloud P is transformed into a
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Figure 2.3: Structure of point cloud segmentation module in SQPD-Net [1].

global feature vector with 1024 dimension.

The global feature vector generated by the backbone is transformed into seg-

mentation labels through additional networks. The networks are implemented by

point-wise Multi-Layer Perception (MLP) layers, each of them followed by leaky

Rectified Linear Unit (ReLU) with the negative slope angle of 0.2. Their latent

space dimensions are (512, 256, 128) and they outputs No -dimensional segmenta-

tion labels ŷ = {ŷi}
Npc

i=1 ∈ RNpc×No

+ for each point after softmax activation.

2.3.2 Loss function

Segmented

point cloud

Label-reordered

point cloud

H
u
n
g
ar

ia
n
 

al
g
o
ri

th
m

Loss

Ground-truth

segmentation

Figure 2.4: Reordering predicted segmentation labels and comparison with the

ground-truth segmentation label in SQPD-Net [1].
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The loss function used to train the point cloud segmentation module in SQPD-

Net [1] evaluates the difference between the prediction and ground-truth segmen-

tation labels. First, segmenting the scene point cloud for each object is not a se-

mantic segmentation but close to a instance segmentation, so permutation of the

segmentation labels between the objects is possible. Thus, assigning the predicted

segmentation labels for the ground-truth segmentation labels is necessary. This as-

signment process is implemented by Hungarian algorithm which solves an optimal

assignment problem, as shown in Figure 2.4. Denoting the ground-truth segmen-

tation labels as y, details about the assignment process is as follows:

(i) Define cost matrix C ∈ RNo×No
+ by its entities as

Cjk =

∑Npc

i=1 ŷijyik∑Npc

i=1 ŷij +
∑Npc

i=1 yik −
∑Npc

i=1 ŷijyik
(2.3.4)

where j = 1, . . . , No and k = 1, . . . , No.

(ii) Assign the j-th predicted labels to the k-th ground-truth labels by solving

following assignment problem.

j∗, k∗ = argmax
j,k

∑
j

∑
k

CjkXjk (2.3.5)

where Xjk = 1 iff j is assigned to k.

(iii) Build a Boolean matching matrix M where Mjk = 1 iff j = j∗, k = k∗ and

reorder the predicted segmentation labels as ŷ′ = ŷM.

Following the assignment of predicted labels to the ground-truth labels, the

loss Ls evaluates the difference between the prediction and ground-truth through

a cross-entropy as follows:

Ls =
1

Npc

Npc∑
i=1

− No∑
j=1

(
yij log ŷ

′
ij + (1− yij) log (1− ŷ′ij)

) (2.3.6)
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2.4 Superquadric-based shape recognition

SQPD-Net [1] employs superquadric-based shape recognition, which is derived from

its previous work, DSQNet [19]. It takes partially observed point cloud of a ob-

ject as input and outputs best superquadric parameters and pose that describes

the object. Mathematically, given the partially observed point cloud of a object

Po := {xi ∈ R3}Npc,o

i=1 , the module predicts superquadric parameters ŝ and pose

T̂ ∈ SE(3) which are best-fitted to the full point cloud of the object Pg := {xg,i ∈

R3}Npc,g

i=1 , which is the ground-truth.

2.4.1 Structure

Segmented

point cloud

Label-reordered

point cloud

H
u
n
g
ar

ia
n
 

al
g
o
ri

th
m

Loss

Ground-truth

segmentation

Figure 2.5: Structure of shape recognition module in SQPD-Net [1].

Figure 2.5 shows the overall structure of shape recognition module in SQPD-

Net [1]. The structure of the module is the same as that of DSQNet [19] except

that there is no deformation in superquadrics.

A backbone of the same structure with the one in segmentation module is used

to produce the 1024-dimensional global feature. The superquadric parameters and
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pose are then generated when the global feature vector is passed through addi-

tional networks. The networks are implemented by fully-connected MLP layers,

each of them is followed by leaky ReLU with the negative slope angle of 0.2. Their

descriptions are as follows:

• The shape network consists of MLP layers with latent space dimensions (512,

256) and outputs 2-dimensional shape parameters after sigmoid activation.

To avoid the divergence of equation 2.1.2 as e1 or e2 approaches zero and

to avoid the superquadrics from becoming non-convex shapes, the shape pa-

rameters ê = (e1, e2) is imposed a lower bound of 0.2 and an upper bound

of 1.7.

• The size network has the same structure as the shape network except that

the output dimension is 3. To cover the size of the targeting objects, the size

parameters â = (a1, a2, a3) are bounded in the interval [0.03, 0.53].

• The translation network outputs position part t̂ ∈ R3 of the pose T̂, and

it consists of MLP layers with latent space dimensions (512, 256). It has no

activation layer and output dimension in 3.

• The rotation network outputs orientation part R̂ ∈ SO(3) of the pose T̂ in

the form of the unit quaternion representation q̂. Therefore, its structure is

the same as that of the translation network except that the output dimension

is 4. A normalization is applied to make the norm of the output to 1.

2.4.2 Loss function

In addition to the structure, the loss function used to train the shape recognition

module in SQPD-Net [1] is the same as that of DSQNet [19]. It evaluates the
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suitability of the surface corresponding to the superquadric parameters ŝ and pose

T̂ with the ground-truth point cloud Pg. The suitability is implemented by the

average of squared distances between the surface and the ground-truth point cloud.

To measure the distances, points in the ground-truth point cloud are transformed

with the inverse of pose T̂−1, so that the point cloud is aligned with the surface

with the superquadric’s pose. The loss Lr is then evaluated by the mean squared

error (MSE), where the error is the distance calculated by the equation 2.1.3.

Lr =
1

Npc,g

Npc,g∑
i=1

δ2s(T̂
−1xg,i, ŝ) (2.4.7)

2.5 Superquadric-based transformed pose prediction

Although SQPD-Net [1] was designed for the SE(2)-equivariant pushing dynam-

ics model, but we will focus on how it utilizes superquadric and how it predicts

transformed pose. It takes as input superquadric parameters and poses of given ob-

jects, as well as the robot’s push action, and then predicts the transformed poses.

Given the number of objects No, the superquadric parameters and poses are a set

of tuples {(si,Ti)}No
i=1, and the push action is represented by a tuple (p,v) where

p ∈ R3 is the position of its starting point and v ∈ R3 is the unit vector indicating

its direction. Since the distance traveled by the robot moves during the push ac-

tion is fixed, SQPD-Net [1] is constructed as a discrete-distance pushing dynamics

model that outputs transformed poses {T̂′
i}

No
i=1 = g({(si,Ti)}Ni=1, (p,v)).

2.5.1 Structure

Since the module g predicts each object’s transformed pose individually, it is di-

vided into gi’s where i = 1, . . . , No and gi predicts i-th object’s transformed pose,
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Figure 2.6: Structure of transformed pose prediction module in SQPD-Net [1].

i.e., T̂′
i = gi({(si,Ti)}No

i=1, (p,v)). Figure 2.6 shows the overall structure of trans-

formed pose prediction module for i-th object, gi.

The module to predict i-th object’s transformed pose will be explained. To

impose SE(2)-equivariance on the module, the i-th object’s pose is decomposed as

Ti = CiUi and C−1
i transforms the all poses and the action, but the rationale

will be omitted because it is irrelevant to our work. C is defined as projection of

T on the xy plane, so that it has the form of SE(2) as follows:

C =

Rot(ẑ, θ) txy

0 1

 (2.5.8)

where Rot(ẑ, θ) is a 3×3 matrix for rotation along z-axis with angle θ and txy =

(tx, ty, 0) ∈ R3 is a translation vector on xy plane. U is then defined as C−1T.

The action Ci
−1(p,v), tuple of i-th object’s own pose and superquadric pa-

rameters (si,Ui), and tuples of every objects’ poses and superquadric parameters

{(sj ,Ci
−1Tj)}No

j=1 are entered into action, ego, and scene networks respectively.

The action and ego networks are composed of fully-connected MLP layers, and
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the scene networks are composed of point-wise MLP layers. Every MLP layers are

followed by leaky ReLU with the negative slope angle of 0.2, and their latent space

dimensions are (64, 128) and they outputs 256-dimensional feature vector of ac-

tion ai, ego bi, and scene cji . Scene feature vectors are max-pooled to generate

global scene feature vectors ci.

The action, ego and global scene feature vectors are concatenated and entered

into the motion network to generate pose transformation δTi ∈ SE(3). The pose

transformation is generated in the form of position and orientation, and the motion

network is divided into a position and orientation network. They consist of MLP

layers with latent space dimensions (256, 128, 64). Since we assume planar move-

ment of objects in non-stacked situation, outputs from position and orientation

networks indicates 2-dimensional translation in xy coordinates and 1-dimensional

rotation in z-axis. Rotation is generated in the form of cosine and sine of its an-

gle, so its network generates 2-dimensional vector which is normalized to make the

norm 1.

Finally, the pose transformation δTi is multiplied to the pose before action Ti

and the transformed pose is obtained as T̂′
i = TiδTi. This procedure is applied to

all objects.

2.5.2 Loss function

The transformed pose prediction module in SQPD-Net [1] is trained using a loss

that evaluates the difference between the prediction and ground-truth of trans-

formed object poses. Denote the ground-truth pose of i-th object after action as

T′
i, and decompose it into 2-dimensional xy coordinates vector t′xy,i and 1-dimensional

z-axis rotation angle θ′z,i. The predicted pose of i-th object after action T̂′
i is de-

composed into t̂′xy,i and θ̂′z,i in the same way. The position difference is evaluated
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by the squared error between xy coordinates, and the orientation difference is eval-

uated by the squared error of cosine value of the difference in angle. At last, as

shown in Equation 2.5.9, the loss is defined as a weighted sum of two differences,

and summed to all objects. α is a weight hyperparameter.

Ld =

No∑
i=1

(
∥t′xy,i − t̂′xy,i∥22 + α(1− cos(θ′z,i − θ̂′z,i))

2
2

)
(2.5.9)
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Figure 3.1: The overall structure of SQPD-Net [1] and our repulsion module.

Our repulsion module is constructed upon the SQPD-Net [1] as shown in Fig-

ure 3.1. The repulsion module receives SQPD-Net’s object shape recognition and

transformed pose prediction, calculates penetration potential, and adjusts the pre-

dicted poses using gradient descent of the potential which serves as a repulsion

between penetrated objects. The repulsion module is designed to be trainable in

17
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order to achieve the best balance of position and orientation in repulsion. Sec-

tion 3.1 describes the design of the penetration potential, Section 3.2 describes the

repulsion algorithm, and Section 3.3 describes how to train the repulsion module.

3.1 Penetration potential

In designing the penetration potential, we determine two properties that the po-

tential should have. First, to realize the repulsion process by gradient descent of

the potential until it becomes zero, the potential must be zero when there is no

penetration between objects, i.e., the penetrated volume is zero. Second, to en-

sure that the repulsive force is increased when objects are penetrated deeply, the

potential is increased in that case. As a result, the penetration potential is mathe-

matically defined as an integration of the penetrated volume weighted by the pen-

etration distance.

3.1.1 Penetration distance

The penetration distance δp between a point x and a superquadric surface de-

scribed by a superquadric parameters s is defined by the following descriptions;

the penetration distance is either 1) the opposite of the superquadric distance be-

tween the point and the surface if the superquadric distance is less than or equal

to 0, or 2) 0 if the superquadric distance is greater than 0. Therefore, mathemat-

ically, the penetration distance is defined as follow:

δp(x, s) = max(0,−δs(x, s)) (3.1.1)

where δs denotes the superquadric distance defined in Equation 2.1.3.
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Figure 3.2: Integration for the penetration potential.
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3.1.2 Integration

Figure 3.2 shows penetration between i-th and j-th objects in a top-down view.

To evaluate the penetration potential of the i-th object relative to the j-th-object,

the i-th-object is divided into the infinitesimal volumes and and the penetration

distances between the j-th object are weighted as shown in Figure 3.2a.

To obtain the penetration distance of the i-th-object’s infinitesimal volume be-

tween the j-th-object, following procedures are performed as shown in Figure 3.2b

to 3.2e.

(i) Figure 3.2b: Define object-centric position of its center point xi(dvi) where

dvi is the infinitesimal volume of the i-th object.

(ii) Figure 3.2c: The i-th-object-centric position is transformed to the global po-

sition by xi(dvi)→ Tixi(dvi).

(iii) Figure 3.2d: the global position is transformed to the j-th-object-centric po-

sition by Tixi(dvi)→ T−1
j Tixi(dvi).

(iv) Figure 3.2e: Using the Equation 3.1.1, the penetration distance between the

center point of i-th object’s infinitesimal volume and the j-th object’s surface

is calculated by δp(T
−1
j Tixi(dvi), sj).

Finally, The penetration potential V for the entire scene is defined by integrat-

ing the infinitesimal volume weighted by the penetration distance and summing

over all object combinations as follows:

V =

No∑
i=1

∑
j ̸=i

∫
δp(T

−1
j Tixi(dvi), sj) dvi (3.1.2)
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3.2 Repulsion algorithm

Utilizing the recognized superquadric parameters and predicted transformed poses

for all objects provided by SQPD-Net [1], the repulsion module reconstructs the

scene and compute the penetration potential. In practical implementation, the in-

tegration over infinitesimal volumes is substituted by a summation over a voxel

space to compute the penetration potential. We assume planar movement of ob-

jects in non-stacked situation as same with SQPD-Net [1], so object poses Ti

(i = 1, . . . , No) are decomposed into xy coordinates txy,i and z-axis rotation angles

θz,i. They are adjusted via gradient descent of the potential as shown in Figure 3.3.

A detailed description of the repulsion algorithm is provided in Algorithm 1. The

terminating penetration distance is set as 0.5cm to prevent a long calculation time.

𝑖-th object 𝑗-th object

𝑉

𝜕𝑉

𝜕𝐭𝑥𝑦,𝑖 𝜕𝑉

𝜕𝒕𝑥𝑦,𝑗

𝜕𝑉

𝜕𝜃𝑧,𝑖
𝜕𝑉

𝜕𝜃𝑧,𝑗

Figure 3.3: The gradient descent process as repulsion.
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Algorithm 1 Repulsion algorithm

Require: Number of objects No

Require: Voxel size d

Require: Object’s recognized superquadric parameters si

Require: Object’s xy coordinates txy,i, i = 1, . . . , No

Require: Object’s z-axis rotation angle θz,i, i = 1, . . . , No

Require: Terminating penetration distance δp,eps

Require: Repulsion weight ϵ

Require: Balancing parameter β

1: Voxelize object-centrically each object

2: Denote the number of voxels as Nv,i, i = 1, . . . , No

3: Obtain the object-centric position of each voxel xi,k, i=1, . . . , No, k=1, . . . , Nv,i

4: while true do

5: V ← 0

6: δp,max ← 0 ▷ Maximum penetration distance

7: for i = 1 to No do

8: for j = 1 to No do

9: if j ̸= i then

10: for k = 1 to Nv,i do

11: δp ← δp(T
−1
j Tixi,k, sj)

12: V ← V + δpd
3

13: if δp > δp,max then

14: δp,max ← δp

15: end if

16: end for
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Algorithm 1 Repulsion algorithm (continued)

17: end if

18: end for

19: end for

20: if δp,max > δp,eps then

21: for i = 1 to No do

22: txy,i ← txy,i − (1 + β)ϵ∇txy,iV

23: θz,i ← θz,i − (1− β)ϵ∇θz,iV

24: end for

25: else

26: break

27: end if

28: end while

3.3 Training

Since the repulsion module is designed to be trainable to find optimal balance be-

tween the repulsion of the objects’ positions and orientations, balancing parameter

β is multiplied in gradient descent procedure as line 22 and 23 in Algorithm 1. The

balancing parameter β is initialized with 1e−10 to avoid numerical error. Following

the termination of repulsion, the balancing parameter is updated by the loss func-

tion used in SQPD-Net [1]’s transformed pose prediction defined in Equation 2.5.9

which compares the ground-truth and adjusted after-action poses.



4
Experiments andResults

In this chapter, we provide datasets used to train and test the repulsion mod-

ule, and experiments conducted to evaluate the performance of the repulsion mod-

ule. Section 4.1 describes the simulation dataset and how to collect the real-world

dataset, Section 4.2 describes a evaluation metrics used for dynamics accuracy,

and Section 4.3 describes a metric used for evaluating penetration between objects.

Section 4.4 explains the baseline used to compare the performance, and Section 4.5

explains the experimental results.

4.1 Datasets

4.1.1 Simulation dataset

The simulation dataset in SQPD-Net [1] is used to train the repulsion module,

with training/validation/test data consisting of 12000, 1200, 1200 scenes. It is about

how maximum four objects which consist of cylinder and boxes move according

to the robot’s push action. Each split is divided into four equal sets from one to

24
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four objects. Since we consider repulsion between objects, 300 test data when the

number of objects is 1 are excluded, so total 900 test data are used to evaluation.

One data is comprised with visual observation, e.g., point cloud before and after

action, and action expressed in its starting point and direction. Traveling distance

is fixed as 10cm in every actions. Additionally, to train the recognition and pose

prediction modules in SQPD-Net [1], full point cloud of objects and ground-truth

superquadric parameters and poses before action of objects are included.

4.1.2 Real-world dataset

Figure 4.1: Objects used in real-world dataset.

A real-world test dataset is created to test the transfer of the repulsion module

trained on simulation to real-world. Seven objects which consist of five boxes and

two cylinders as shown in Figure 4.1 are used, and minimum two and maximum
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(a) Point cloud data as vi-

sual observation.

(b) Push action and object

poses before action.

(c) Object poses after ac-

tion.

Figure 4.2: Saved data in real-world dataset.

four objects are chosen at random and placed on the table randomly. Visual ob-

servation before action is saved as point cloud data as shown in Figure 4.2a. Red

means that the point has a high z value, and blue means a low z value. Mean-

while, as same with when simulation data is generated, the robot randomly selects

one object and randomly chooses an action direction among predefined octagonal

directions. The starting point of the action is determined by providing an offset in

the chosen direction from the center of the selected object. The amount of offset is

determined by randomly selecting one of {0, 2, 4, 6}cm and adding the minimum

of xy size parameters in object’s superquadric parameters. For the selected action,

if there is no collision after checking whether the robot collides with objects, the

action is executed. As same with the simulation datasets, robot’s traveling dis-

tance is 10 cm in every actions. To detect object poses before- and after-action,

AprilTag [20] is used. Figure 4.2b and 4.2c show the detected object poses before

and after action. Total 100 data are generated.
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4.2 Evaluation Metrics for dynamics accuracy

To determine how well SQPD-Net [1] predicts the transformed poses of objects

after the action, evaluation metrics for dynamics accuracy are required. SQPD-

Net [1] is divided into R-SQPD-Net and GT-SQPD-Net according to the presence

or absence of a pretrained segmentation and recognition module as explained in

Section 2.2. Our repulsion module is tested with both types, and different evalu-

ation metrics measuring dynamics accuracy are used for each type.

4.2.1 Position and orientation error

The GT-SQPD-Net does not recognize object shapes and poses but directly pre-

dicts the objects’ transformed poses, so position and orientation error between

ground-truth and prediction of transformed pose are used. Position error measures

the difference between the ground-truth and predicted xy positions in Euclidean

distance, and orientation error measures the difference of z-axis rotation angles in

degree.

4.2.2 Flow error

In the R-SQPD-Net, if the segmentation of a scene point cloud is invalid, rec-

ognized objects may differ not be matched with ground-truth objects. Since it is

impossible to compare ground-truth poses with predictions which are not matched

in this case, flow error is employed instead. Following voxelizing the workspace, the

flow error measures the difference between the ground-truth and predicted move-

ment, e.g., flows of voxels inside objects in Euclidean distance. Figure 4.3 shows

procedures to measure flow error in a top-down view.

(i) Figure 4.3a: Following voxelizing the workspace, acquire voxels whose center
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Figure 4.3: Ground-truth and predicted voxel flows.
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points are inside objects before action and note their center positions.

(ii) Figure 4.3b: Obtain ground-truth positions of the voxels after action using

the ground-truth object poses after action.

(iii) Figure 4.3c: Obtain ground-truth flows of the voxels by subtracting the ground-

truth positions after action from the positions before action.

(iv) Figure 4.3d, 4.3e: Obtain predicted positions and flows of the voxels in the

same way with the ground-truth.

(v) Measure the errors between the ground-truth and predicted voxel flows in

Euclidean distance, and average them to obtain the flow error.

4.3 Evaluation Metric for penetration

For measuring the amount of penetration between objects, the ratio of penetrated

volume is used. For each object, it is defined as the ratio of penetrated volume per

object volume, and every objects’ penetration ratios are averaged to penetration

ratio of the entire scene. Voxelization is used in practice to compute the volumes

numerically. Thus, the penetration ratio for each object is numerically defined as

the ratio of the number of penetrated voxels per the number of voxels inside ob-

ject, and those of every objects are averaged.
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Figure 4.4: The overall structure of the baseline and repulsion module.

4.4 Baseline

Looking back at the overall structure before discussing the experimental results,

the pushing dynamics model only is used as baseline. Therefore, as shown in Fig-

ure 4.4, performance of our repulsion module is measured by comparing the pre-

dicted object poses produced by the baseline and the repulsed objects’ poses pro-

duced by adding our repulsion module to the baseline with the ground-truth object

poses.

4.5 Experimental results

4.5.1 Results with GT-SQPD-Net on simulation dataset

Table 4.1 shows the evaluation metrics computed on simulation dataset with the

GT-SQPD-Net. In every object quantities, the penetration ratio is significantly de-

creased when GT-SQPD-Net is combined with the repulsion module, and it shows



4.5. Experimental results 31

Position Orientation Penetration

Objects # METHOD error (cm) error (◦) ratio (%)

2
w/o repulsion 0.607 4.136 1.090

with repulsion 0.599 4.127 0.215

3
w/o repulsion 0.499 3.173 1.306

with repulsion 0.489 3.193 0.193

4
w/o repulsion 0.585 3.052 2.206

with repulsion 0.563 3.052 0.303

Total
w/o repulsion 0.563 3.453 1.534

with repulsion 0.550 3.457 0.237

Table 4.1: Evaluation metrics of the GT-SQPD-Net and repulsion module com-

puted on simulation dataset.
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Figure 4.5: Improvement of the position error and penetration ratio according to

the number of objects in GT-SQPD-Net.
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that our repulsion module solves the penetration problem and GT-SQPD-Net with

the repulsion module avoids penetration in predicting pushing dynamics. The po-

sition error is decreased in every object quantities as well when GT-SQPD-Net is

combined with the repulsion module, and the differences in the orientation error

are negligible. Thus, it shows that avoiding penetration by adding the repulsion

module improves dynamics accuracy of GT-SQPD-Net. Furthermore, as shown in

Figure 4.5, when the number of objects is increased, the position error and pene-

tration ratio is improved when penetration is avoided, so it is critical to use the

repulsion module when manipulated objects are numerous. Figure 4.6 shows the

experimental results based on the number of objects. In every object quantities,

the object poses are closer to the ground-truth if the repulsion is combined with

the GT-SQPD-Net’s prediction.

4.5.2 Results with R-SQPD-Net on simulation dataset

Table 4.2 shows experimental results with the R-SQPD-Net tested on the simula-

tion dataset. The penetration ratio is considerably decreased when combined with

the repulsion module, but the flow errors, which represent the dynamics accuracy,

are increased negligibly for all object quantities. It is caused by the failure of R-

SQPD-Net segmentation, not by the repulsion module.

Figure 4.7 shows how the segmentation influenced the repulsion and dynamics

accuracy by altering success of the segmentation. As shown in the fourth row, if

point cloud segmentation is failed in R-SQPD-Net, recognized objects before ac-

tion are already penetrated. As the points from the red cylinder are segmented into

red, yellow and blue objects, the three objects are incorrectly recognized. Further-

more, the red object is concealed by the yellow object. These misrecognized ob-

jects are already penetrated each other before predicting transformed poses. When
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# of objects METHOD Flow error (cm) Penetration ratio (%)

2
w/o repulsion 0.712 3.228

with repulsion 0.740 0.569

3
w/o repulsion 0.610 4.467

with repulsion 0.679 0.494

4
w/o repulsion 0.805 5.730

with repulsion 0.895 0.536

Total
w/o repulsion 0.709 4.475

with repulsion 0.771 0.533

Table 4.2: Evaluation metrics of the R-SQPD-Net and repulsion module computed

on simulation dataset.

predicting the transformed poses without the repulsion, poses that produce voxel

flows close to the ground truth are somewhat predicted, but adding the repulsion

induces the prediction to differ from the ground truth while avoiding penetration

between objects. As a results, the repulsion module helps avoid the penetration,

but decreases dynamics accuracy when point cloud segmentation and object recog-

nition was already failed. If ground truth segmentation labels are used in the fail-

ure case as shown in the fifth row of Figure 4.7, R-SQPD-Net recognizes objects

correctly and the repulsion makes the prediction of transformed pose close to the

ground truth. If R-SQPD-Net segmented point cloud properly and recognized ob-

jects correctly as shown in the third row of Figure 4.7, the repulsion module im-

proves dynamics accuracy by bringing the prediction close to the ground truth.

Table 4.3 shows experimental results when ground-truth segmentation labels
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is used in R-SQPD-Net. For all data, the flow error is decreased as the penetra-

tion ratio is decreased, so the dynamics accuracy is improved as the penetration

is avoided, thanks to the repulsion.

# of objects METHOD Flow error (cm) Penetration ratio (%)

2
w/o repulsion 0.710 1.301

with repulsion 0.710 0.267

3
w/o repulsion 0.575 1.511

with repulsion 0.569 0.256

4
w/o repulsion 0.683 2.406

with repulsion 0.687 0.365

Total
w/o repulsion 0.656 1.739

with repulsion 0.655 0.296

Table 4.3: Evaluation metrics of the R-SQPD-Net with ground-truth segmentation

labels and repulsion module computed on simulation dataset.

4.5.3 Results with GT-SQPD-Net on real-world dataset

Table 4.4 shows experimental results tested on real-world dataset with the GT-

SQPD-Net. The cases where the number of objects is two is excluded because

there is no penetration in objects on the poses predicted by the GT-SQPD-Net.

Although the dynamics accuracy is slightly decreased due to the issue of trans-

ferring between different domains, it demonstrates that deploying the dynamics

model and repulsion module learned in simulation to real-world is feasible.

As same with the results on the simulation dataset, combining the GT-SQPD-

Net with the repulsion module significantly decreases the penetration ratio across
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Position Orientation Penetration

# of objects METHOD error (cm) error (◦) ratio (%)

3
w/o repulsion 0.902 3.277 0.248

with repulsion 0.900 3.106 0.034

4
w/o repulsion 0.458 2.328 0.163

with repulsion 0.455 2.340 0.023

Total
w/o repulsion 0.680 2.803 0.205

with repulsion 0.677 2.723 0.028

Table 4.4: Evaluation metrics of the GT-SQPD-Net and repulsion module com-

puted on real-world dataset.

every object quantities in real-world dataset. Furthermore, when GT-SQPD-Net is

combined with the repulsion module, the position error is decreased in every object

quantities, and the orientation error is generally decreased. As a result, even in

real-world, adding the repulsion module to prevent the penetration improves the

dynamics accuracy of GT-SQPD-Net.

The experimental results based on the number of objects are shown in Fig-

ure 4.8. When the repulsion is combined with the GT-SQPD-Net’s prediction, the

object poses are closer to the ground-truth in every object quantities.

4.5.4 Results with R-SQPD-Net on real-world dataset

The experimental results with the R-SQPD-Net tested on the real-world dataset

are shows in Table 4.5. When the repulsion module is combined with the R-SQPD-

Net, the penetration ratio is decreased but the flow errors are increased as same

with the results, and the decrease in the ratio and the increase in the errors is
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# of objects METHOD Flow error (cm) Penetration ratio (%)

3
w/o repulsion 1.101 11.708

with repulsion 1.643 0.609

4
w/o repulsion 0.591 5.937

with repulsion 0.919 0.075

Total
w/o repulsion 0.846 8.823

with repulsion 1.281 0.342

Table 4.5: Evaluation metrics of the R-SQPD-Net and repulsion module computed

on real-world dataset.

greater than in the simulation dataset.

Figure 4.9 shows that the degradation of dynamics accuracy is caused by the

failure of R-SQPD-Net segmentation, as in the simulation dataset. As shown in the

fourth row where segmentation fails, the points from the green box and the red

box are segmented into green and red, red and black, respectively. The green and

red objects, therefore, are incorrectly recognized and new black object is created.

These objects are penetrated before the SQPD-Net predicts pose transformation,

so objects in the predicted poses from the SQPD-Net are penetrated as well. In

this case, the penetration avoidance of the repulsion module rather harms the dy-

namics accuracy. Since the real-world dataset has no ground-truth segmentation

labels, the experiments using the ground-truth labels are not included. The re-

pulsion module improves dynamics accuracy by moving SQPD-Net’s prediction as

close to the ground truth if R-SQPD-Net correctly segmented the point cloud and

correctly recognized the objects, as shown in the third row of Figure 4.9.



5
Conclusion and FutureWorks

5.1 Conclusion

We introduce a repulsion module to avoid penetration between objects in poses

predicted by pushing dynamics model, to realize learning realistic dynamics and

improve dynamics accuracy. We conduct experiments to observe how the repulsion

affects to the pushing dynamics model. The experiments and results show that

the repulsion module successfully assists GT-SQPD-Net in avoiding penetration

pushing dynamics learning. In addition to resolving the penetration problem, the

repulsion module improves the dynamics accuracy of GT-SQPD-Net prediction.

However, when combined with R-SQPD-Net, the repulsion module solves pene-

tration, but at the expense of dynamics accuracy. This issue is caused by a failure

in the segmentation of the point cloud in R-SQPD-Net. Since point cloud segmen-

tation fails in R-SQPD-Net, objects are incorrectly recognized, and the objects

are already penetrated before action, as are the objects in predicted poses from

SQPD-Net. In this case, the repulsion module’s penetration avoidance degrades

41
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the dynamics accuracy. It is confirmed that the repulsion module can improve the

dynamics accuracy if the point cloud segmentation is solved by demonstrating that

the repulsion module improves the dynamics accuracy when ground-truth segmen-

tation labels are used.

When using the pushing dynamics model in the real world, the ground-truth

information about objects is not directly accessible, so taking and segmenting point

clouds, and recognizing the objects are required. Thus, the R-SQPD-Net should be

used in real world, and in order to use the repulsion module with the R-SQPD-

Net, the segmentation performance must be improved.

5.2 Future works

5.2.1 Point cloud segmentation

R-SQPD-Net’s segmentation algorithm is conducted point-wisely as shown in Fig-

ure 5.1a, which is vulnerable to spread the segmentation labels between objects.

However, since the object point clouds are generated on the observed surface of

the objects, they have a characteristic to be clustered object-wisely. Therefore, a

clustering-based segmentation method would better segment the object point cloud

than the point-wise segmentation method as shown in Figure 5.1b.

FPCC [21] was constructed for instance segmentation of bin-picking scene, and

its algorithm would help our object segmentation task by clustering method. A

quick clustering algorithm is part of FPCC, along with the FPCC-Net network.

The FPCC-Net includes a module that extracts features of each point and a mod-

ule that infers the geometric center of each cluster. The clustering algorithm then

clusters the points to the closest geometric center in feature space, and brings the



5.2. Future works 43

Point-wisely segmented

(a) Point-wisely segmented point cloud.

Cluster

(b) Point cloud segmentation by clustering.

Figure 5.1: A comparison between point-wisely segmented and clustered point

cloud.

clusters up to input space. Since the segmentation is conducted based on the clus-

tering algorithm, the segmentation labels can be prevented from spreading between

objects, and the segmentation performance can be improved when FPCC is used.

The improved segmentation provided by FPCC would help the repulsion module

in improving dynamics accuracy by avoiding penetration.

5.2.2 Pushing manipulation task

On the other hand, pushing manipulation tasks are required to be preformed fur-

ther, which is helped by the improved dynamics provided by the repulsion module.

Multi-step dynamics prediction would be one example of such manipulation tasks.

Existing pushing dynamics models usually compare their performance on predict-

ing single-step dynamics, not multi-step dynamics, where the previous prediction

is used as the input for the next step.
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Figure 5.2: The multi-step dynamics prediction of the baseline and repulsion mod-

ule.

Since the pushing dynamics model is trained to predict dynamics by using non-

penetrated objects, if objects in the previous prediction are penetrated in multi-

step dynamics prediction, the model, which uses the previous prediction as input

and predicts dynamics in the next step, encounters an outlier that was not en-

countered during training. This situation degrades the performance of multi-step

dynamics prediction because the pushing dynamics models, which are primarily

made up of neural networks, do not predict correctly in outliers. Furthermore, the

further the model predicts, the more errors accumulate and the greater the differ-

ence between the final predicted and ground-truth poses. This outlier problem can

be resolved if repulsion is combined, because the repulsion module separates the

penetrated objects in the previous prediction, and makes the scene inlier for the

pushing dynamics models. Therefore, the repulsion module can help the multi-

step dynamics prediction by maintaining the dynamics accuracy of the pushing
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dynamics models by making the outliers inlier through avoiding penetration. An

experiments to perform the multi-step dynamics prediction should be performed

further.
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국문초록

로봇이 물체를 밀어서 조작하는 상황에서는, 로봇의 밀기 동작으로 인해 조작하는 물

체들의 자세가 어떻게 변하는지 정확하게 예측하는 푸싱 역학 모델을 만드는 것이 중

요하다. 본 논문에서, 우리는 그러한 역학 모델이 실제 물리학의 법칙을 알고있다면

더 정확한 예측을 할 수 있을 것이라 주장한다. 실제 세계에서 물체는 서로 관통하지

않는다는 물리적 법칙이 있지만, 기존의 푸싱 역학 모델들을 활용할 경우 예측된 자

세에서 물체들의 관통을 방지할 수 없었다. 본 논문에서는 푸싱 역학 모델이 예측한

물체들의 자세를 입력으로 받아, 예측된 자세에서 물체들 간에 관통이 없도록 예측

값을 조정하는 반발 모듈을 고안했다. 시뮬레이션 데이터를 통해 해당 반발 모듈을

훈련했고, 동일한 시뮬레이션 데이터 및 실제 로봇 동작을 통해 만든 실제 세계의 데

이터로 해당 알고리즘의 성능을 테스트했다. 두 데이터가 보여주는 결과에 따르면,

우리의 반발 모듈이 물체 간의 관통을 효과적으로 방지하고 학습된 푸싱 역학의 정

확도를 높일 수 있음을 보였다.

주요어: 푸싱 역학 학습, 관통 방지

학번: 2021-28590
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