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Abstract 

 
Critical Dimension SEM (CD-SEM) is a dedicated system for 

measuring the shape, size and roughness of patterns formed on 

semiconductor wafers. As designs shrink and product development 

challenges increase, the ability to quickly measure large amounts of 

samples for accurate Optical Proximity Correction (OPC) is 

required. Design Based Metrology (DBM) technology allowed the 

rapid creation of large volumes of recipes using design images and 

reduced measurement time. However, there were still many 

problems in the alignment between the design image and the SEM 

image, and to solve this problem, a new pattern alignment method 

using Generative Adversarial Network (GAN) technology was 

developed. In this paper, training patterns are classified according 

to polygon types of design patterns and the alignment effect 

according to each type is confirmed. We also studied how to 

effectively select a training set for model training through the 

relationship between training set and alignment accuracy. 

 

Keyword : Scanning Electron Microscopy, Design-based metrology, 

Generative Adversarial Network, Supervised learning 

Student Number : 2021-24764 
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Chapter 1. Introduction 
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1.1. Semiconductor design and optical proximity 

correction 
 

Semiconductor design begins by with setting the specifications of 

a chip and explaining the operation of the chip, and appears as a 

logical design expressing the connection relationship between gates, 

which are the basic components of a semiconductor. The verified 

logical design is converted into a physical layout through Place & 

Route (P&R)1. P&R is the process of placing a library and wiring it 

to connect, which results in very complex geometries as it has to 

navigate the placement and routing paths that satisfy given design 

constraints. The P&R process creates a physical drawing, which is 

saved as a Graphics Design System (GDS)2 format file. This 

process is called Physical Synthesis. 

  GDS files express the physical shape of semiconductors using 

layers and polygons. A GDS file is a format similar to a vector 

graphic file, but it is composed of basic geometric elements such as 

rectangle, polygon, and path, excluding complex elements. A set of 

these elements is defined in a unit called a cell, and a complex 

drawing is expressed with a small size of data by repeatedly placing 

cells or organizing them into hierarchies3. 

  It is very difficult to express a complexly designed 

semiconductor design as an actual physical process. In order to 

check the pattern generated in the actual pattern in advance and 

solve the problem, the semiconductor design process mainly uses 



 

 ３ 

the technique of predicting the result value for a given design by 

creating a model that expresses the actual physical process as it is. 

In general, Optical Proximity Correction (OPC)4 models an optical 

system in which a photomask pattern is formed on a wafer surface 

or a process in which a photosensitive material reacts with light. In 

this process, in order to reduce the error between the model and 

the actual physical process, a test pattern is made into a wafer and 

then observed with a Critical Dimension Scanning Electronic 

Microscope (CD-SEM) to calibrate the error. 

In the case of the latest semiconductor chip, it is often large 

enough to store more than trillions of polygons, and the test pattern 

consists of a combination of polygons. The accuracy of the model 

expressing the process is determined according to the type of test 

pattern used in the process of modeling each process, and it is very 

important to accurately select a test pattern that reflects the 

characteristics of the process to reduce cost and experiment time. 

Optical Proximity Correction (OPC) is a technology that 

accurately patterns circuits designed on wafers by correcting 

distortions such as refraction caused by the characteristics of light 

in the photo process5,6. According to Moore's Law7, the number of 

transistors integrated into a semiconductor doubles every two 

years. This increase in density can be achieved by reducing the 

minimum feature size, but the limits of optical resolution are 

reached as the feature size decreases. In order to overcome the 
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limitation of optical resolution, an optical element having a large 

numerical aperture (high-NA, aberrations)8,9, off-axis illumination 

(OAI)10,11, a short wavelength light source (ArF, ArF-

Immersion)12,13, and a phase shift mask (PSM)14 were used. OPC is 

a technology that improves the limitations of photolithography to 

overcome these optical limitations and improves the semiconductor 

process so that patterns are formed identically to the design. The 

pattern of the photomask may be modified so that a pattern having a 

small or large line width may be formed into a pattern having a 

desired size. However, other distortions, such as rounded corners, 

are difficult to correct with normal resizing methods. In this case, 

use a precomputed bias table to correct errors by moving edges or 

adding polygons to the pattern. 

Since the early 2000s, model-based optical proximity correction 

(MB-OPC)15,16 has been used rather than a rule-based method17 

using a bias table. MB-OPC has been used in the semiconductor 

industry to improve linewidth uniformity and pattern fidelity in 

photolithography. Calculate the pattern edge deviation in the design 

using an aerial image instead of a bias table to compensate for 

linewidth variations and distortion of patterns due to optical 

proximity effect. The MB-OPC process helps improve process 

windows as well as distortion of patterns, and also includes sub-

resolution assist feature (SRAF)18,19, auxiliary patterns and 

techniques such as hammerheads20 and serifs21. 
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Unlike rule-based OPC, MB-OPC is performed using a model, so 

problems arise when the modeling is inaccurate. Model errors are 

most often the result of not accurately modeling the lithography 

process. To improve this, resist characteristics such as Chemically 

Amplified Resist (CAR)22 and Negative Tone Development (NTD)23, 

mask scattering effect modeling such as Mask 3D (M3D)24 and etch 

loading effect25 were included in model elements. 

MB-OPC includes basic data collection for model calibration26 and 

verification27, and OPC validation. In order to implement and verify 

the model, it is necessary to extract hundreds to thousands of 

design circuit pattern samples and measure the CD through SEM, 

and accurate calibration is possible with accurate measurement. 

 

1.2. SEM inspection and design-based metrology 
 

OPC is most often performed using software packages provided 

by electronic design automation (EDA) vendors. This software 

provides simulation-based verification of the physical behavior of 

illumination systems and projection optics. On the other hand, resist 

development, mask 3D effect, and etch loading effect are difficult to 

characterize with general simulation, so they are modeled and 

generalized using a huge amount of experimental data. In this 

process, in order to reduce the error between the model and the 

actual physical process, the test pattern is made into a wafer and 
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observed with a Critical Dimension Scanning Electronic Microscope 

(CD-SEM)28 to correct the error. 

One of the most accurate tools for collecting this vast amount of 

data is the CD-SEM. CD-SEM is an important tool for 

characterizing nanoscale materials. By using electrons instead of 

photons to capture images, CD-SEM achieves sub-nanometer 

spatial resolution, revealing topological and compositional features 

not visible with conventional optical microscopes. It can measure 

the shape, size and roughness of patterns formed on semiconductor 

wafers. 

A common way to measure the size of a pattern is to derive the 

critical dimension (CD)29 between edges using a 1D pattern with 

line/space. This approach does not utilize the entire image, but only 

a portion of the image by limiting it to the measurement window. 

However, when dealing with complex 2D patterns, the size of the 

measurement window becomes very small, and measurements are 

often unreliable unless more time is spent. Until the early 2000s, 

acquiring and measuring images using SEM equipment was not an 

easy task. This is because the wafer had to be loaded into the 

equipment, and the operator had to manually navigate to the 

measurement location and acquire images manually30. Due to the 

shape of the various patterns, CD measurements are usually 

performed manually and take a long time. Additionally, the 

introduction of 193nm resists, which are much more sensitive to 
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SEM e-beam exposure31, required greater attention to both the 

focusing and measurement steps to obtain reliable results. 

As designs shrink and product development challenges increase, 

we need the ability to quickly measure large samples for accurate 

optical proximity correction (OPC). Since the late 2000s, a 

measurement technique using design image has been applied to 

measurement recipe setup and measurement automation, which is 

called Design Based Metrology32 (DBM). Unlike previous image-

based measurement techniques, DBM technology sets up a 

measurement recipe based on the design image and matches 

between the design image and the SEM image to perform the 

measurement. With this device, fully automatic CD measurement is 

possible by entering the design coordinates. Based on the 

superimposition of the design image and the SEM image, the 

algorithm can accurately recognize the measurement position and 

achieve high positioning accuracy. This device greatly reduces 

measurement time in the typical automatic CD measurement time 

range and improves reproducibility by allowing different structures 

to be defined for addressing and focusing prior to measurement. 

This new system enables more accurate OPC modeling and OPC 

verification of a variety of products that for various reasons cannot 

be measured33. 

 As shown in Figure 1, pattern alignment in DBM is image 

processing that calculates the correspondence between the design 
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layout of the measurement point and the SEM image, and the area 

with the highest score is selected as the measurement point34-36. 

Because the pattern shape of the circuit can be deformed during 

manufacturing, the score must be calculated taking into account the 

difference in shape that occurs during manufacturing.  

 For accurate pattern alignment, it is necessary to accurately 

extract the shape information of the pattern included in the SEM 

image37-39, and if the quality of the SEM image is low, the pattern 

shape information cannot be extracted from the image and pattern 

alignment will fail 

 

 

 

Figure. 1 Design based metrology system for pattern alignment 

 

This pattern alignment is carried out based on image processing and 

the pattern alignment may fail depending on the quality of the SEM 
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image. As the semiconductor design became smaller, various 

patterns such as EUVs and various patterning methods were applied, 

and the amount of additional work due to the failure of the pattern 

match increased rapidly.  

 

1.3. A new method of lithography pattern alignment  
 

A generative adversarial network40 (GAN) is a class of machine 

learning frameworks designed by Ian Goodfellow and his colleagues 

in 2014. GAN can imitate any distribution of data through learning 

and create data in virtually every field. Two models, the Generator 

and the Discriminator, are created to perform adversarial training. 

The Generator receives a particular noise as input and generates an 

output in the same form as the data it wants to generate. The 

Discriminator identifies the output of the Generator and the training 

dataset of the data that it wants to generate. Through that process, 

the Generator is closer to the learning dataset, the Discriminator is 

more accurately identified, and the data that is closer to the real is 

created.  

Since GAN first appeared, they have been gaining popularity in 

image processing, especially for transforming images from one 

domain to another. It is used in numerous fields such as image 

dataset generation41, human face generation42, realistic photo 

generation43, cartoon characters44, super-, resolution45, text-to-
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image translation46, semantic-image-to-image photo translation47, 

face aging48, photo blending49, video prediction50 and image-to-

image translation51etc. 

Pix2Pix is an image-to-image translation model based on CCAN 

(Conditional GAN)52, known as an effective way to transform an 

input image into an image of a specific domain. In Pix2Pix, the 

conditional input (x) is input to G to generate the image output G(x), 

and the input (x) and output G(x) are input together to 

Discriminator D(x). Target(y) exists in target domain, and 

target(y) enters Discriminator D(x) as input(x). Generator is a U-

Net53 with an encoder-decoder structure, and U-Net is a form in 

which symmetric skip connections are added to the encoder-

decoder structure. Adding skip connections can solve the problem 

of the decoder not learning well. The Discriminator divides the 

image into N*N sized patches and classifies true/false for each 

patch and classifies it as 'true' if there are many true and 'false' if 

there are many false54. (Figure 2) 

A new method of alignment the SEM image with the design image 

has been proposed55. First, use the unsorted data set to create 

training data pairs for training. Training data pairs are created using 

three-channel images, with the SEM image in channel 0 and the 

clipped design image in channel 1 to create one image. The training 

data is manually aligned and then clipped so that it is precisely 

aligned. Using the training data generated in this way, the generator 
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is trained to convert the SEM image into the design image. The next 

step is to train the generator and discriminator to be able to 

accurately infer images. An inference step that converts SEM 

images into design images using a trained generator. Finally, align 

the inferred design image with the actual design image to obtain 

alignment coordinates. SEM images are precisely positioned using 

these coordinates. 
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Figure. 2 Architecture of SEM image translation. 
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Figure. 3 Explanation of the proposed alignment. 
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We use Pix2Pix to effectively infer SEM images. Our approach 

models the process of removing noise and shape distortion from 

SEM images and can remove both noise and shape distortion from 

the expected design images. Also, the expected design layout has 

the same domain as the actual design images. Therefore, the match 

between the expected design images and the actual design images 

is much easier than the match between SEM image and design 

image due to noise-free, no morphological distortion, and simple 

intensity levels. 

The most important thing in SEM-CAD alignment technology using 

Pix2Pix is to convert SEM images to design images. Ideally, we 

need to train the entire data set to accurately infer all images, but 

the time to train the model increases with the number of images. In 

some cases, it may take several hours or longer. This is because 

SEM-CAD alignment technology is proposed for accurate and fast 

alignment, so a lot of learning time does not fit the purpose. 

Training is required using minimal samples for immediate use. It is 

necessary to select an image representing the whole, use it as 

training data, and arrange it so that it is evenly distributed without 

bias. If these conditions are not met, model training will fail and the 

desired image quality will not be achieved. 

This study proposes a method for effectively selecting for robust 

training of deep learning network for lithography pattern alignment. 
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Training, validation, and testing of deep learning usually requires a 

suitable data set to ensure robust use. To do this, we need to divide 

the dataset into different characteristics for each subset. For 

example, the design image is a binary image, which allows you to 

extract polygons from each image and classify the image using the 

extracted polygon. Using the classified image to confirm the effect 

of each image on the alignment accuracy. After determining the 

effect of each pattern, the optimal distance is inferred to select the 

sample set that can maximize alignment accuracy.  
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Chapter 2. Motivation 
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2.1. Relationship between accuracy and sample set 
 

There are two main methods of training models in deep learning: 

supervised learning and unsupervised learning. Supervised learning 

is a method of training a model using data with correct answer 

labels and inferring correct answers from another data set based on 

the trained data set. In contrast, unsupervised learning is a method 

of clustering similar features in data with no correct answer labels 

and predicting the outcome on a new data set. Unsupervised models 

can help automate the entire flow but have serious problems. 

Unsupervised models cannot correctly distinguish between patterns 

and backgrounds for unknown (or un-trained) images and can have 

unexpected intervals between inferenced images and input design 

images.  

Supervised learning is a method of machine learning algorithms 

that learns from labeled data sets. This means that if the correct 

answer is not properly learned, the model will not be able to 

correctly distinguish patterns and backgrounds from unknown (or 

untrained) images, and there may be unexpected gaps between the 

inferred images.  

This is one example of SEM-CAD alignment using Pix2Pix. The 

case below is a very difficult case in which the so-called 1D type 

consisting of lines and spaces and the 2D type called T2T are 

mixed in the shape of the pattern. The total number of samples is 

23, of which 5 are 1D type composed of Line/Space and 18 are 2D 
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type composed of T2T. (Figure 4) 

 

 

 

Figure. 4 Full training set of SEM-CAD alignment 

 

As described above, training with all 23 images will give the most 

accurate alignment, but time and resource constraints make it 

difficult to use all images. So, we selected only a few samples and 

proceeded with training. In this case, only 7 samples were selected 

out of a total of 23 samples, and training and alignment were 

performed with only 7 samples. When using only 7 samples, we can 

see that the accuracy varies with the sample set. The sample set 

used in each case is summarized. (Figure 5,6) 
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Figure. 5 Experiment 1 with only 7 samples selected 

 

 

Figure. 6 Experiment 2 with only 7 samples selected 

 

In both cases, the model was trained using 7 samples, but the 

accuracy is 97.24% for the experiment1 and 79.16% for the 

experiment2. So, why is there such a variation from sample to 

sample? Why is it not 100% successful? We analyzed the reasons 

why the two cases were not 100% successful in matching. 

First, let's look at the sample set configuration of Experiment 1. 

The number of sample sets is 7 in total, 3 of which are the so-
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called 1D type composed of lines and spaces and 4 of the 2D type 

composed of T2T. When looking at only the 1D type consisting of 

lines and spaces, the difference from the full sample set is that it 

does not include the case where there is only one pattern called Iso. 

The entire sample set has an iso pattern, but the 3 1D patterns 

selected do not have an iso pattern. As a result, the model could not 

be accurately inferred for the iso patterns that were not included in 

the training, and due to this, the alignment accuracy was 97.24%, 

which did not reach 100%. 

 

 

Figure. 7 SEM-CAD alignment failure case by ISO training sample 
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In Experiment 2, the composition of the sample set is related to 

the direction rather than the type of pattern. Among the entire 

patterns, the so-called 1D type composed of lines and spaces is in 

the vertical direction, and the 2D type composed of T2T is in the 

horizontal direction. All samples included in the training were 2D 

type and used only the horizontal direction and no vertical direction. 

This resulted in poor inference for the 1D type, resulting in an 

alignment accuracy of 79.16%. 

 

 

Figure. 8 SEM-CAD alignment failure case by direction of training 

sample 
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Accuracy varies from 79.16% to 97.24% depending on the type of 

pattern. Many factors affect the accuracy of the alignment, and it 

may be that the particular pattern is the problem, or the orientation 

of the pattern itself is the problem. Based on the above experiment, 

the samples were carefully reviewed and classified, and patterns 

were classified according to type and direction as follows. (Figure 

9) 

 

 

Figure. 9 Alignment sample selection according to pattern 

characteristics 
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A total of four samples were selected by selecting only one 

representative pattern among the classified samples, and training 

and alignment were performed with only the four samples. We were 

able to train a model that could achieve 100% concordance with 

only 4 samples. Through this experiment, it was found that it is 

more important to accurately analyze and correctly select a set of 

samples than to increase the number of samples in order to 

accurately train the model. If you choose the right samples, you'll 

be able to match more accurately with fewer samples than you can 

now. 

 

 

 

 

Figure. 10 SEM-CAD alignment success case by optimal training 

sample 
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Chapter 3. Experiments 
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Through several cases, it was found that it is important to select 

an appropriate pattern to train the model. In order to select an 

appropriate pattern, it is necessary to identify and classify the 

characteristics of the pattern. SEM images are noisy and have poor 

boundaries, making it difficult to extract features that can be used 

for classification. Classify images using design images instead of 

SEM images. As mentioned earlier, design images are made up of 

GDS files, and GDS files are made up of basic geometric elements 

such as rectangles and polygons. This geometrical information 

consists of 0s and 1s, and polygonal information can be easily 

extracted. We can extract the number of polygons, width of 

polygons, and spacing of polygons from a design image. Finally, the 

design image can be classified according to the desired criteria 

using the extracted polygon information. (Figure 11) 

 

Figure. 11 Example of SEM and CAD image 
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In deep learning training, which converts SEM images into design 

images, it is important to select appropriate training images to 

improve alignment accuracy. Training images must be 

representative of the entire set, and not including the entire set can 

lead to serious alignment problems. To more clearly see the 

relationship between training images and alignment, we 

experimented with several cases. In order to confirm the 

relationship between learning images and alignment accuracy, 

polygon characteristics were extracted and patterns were separated, 

and the factors affecting alignment accuracy for each separated 

pattern were identified as follows. 

1. Relationship between train pattern size and alignment result 

2. Dense-to-iso or iso-to-dense pattern  

3. The pattern shifted and direction 

 

3.1. Relationship between train pattern size and 

alignment result 
 

Figure 9 shows the inference results after training the model using 

one pattern. The size of the target polygon is 27 pixels, the spatial 

area that looks black in the SEM image is inferred as a spatial area 

of 27 pixels, and the photoresist (PR) next to the space that looks 

gray is drawn with a line of 27 pixels. When the model is trained 

using this image, the model will infer the photoresist (PR) next to 

the space as a 27-pixel polygon, and the actual inference result 



 

 ２７ 

forms lines and spaces as predicted. To check the relationship 

between train pattern size and alignment accuracy, we test patterns 

of various sizes (2x, 3x, 4x) and compare the alignment results. 

 

 

Figure. 12 Training result with w27s27 polygon  
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3.1.1 The result of inferring an image twice the size 

of the pattern learned by the model 
 

The target pattern size for case1 is 54 pixels x 30 pixels. The size 

of the polygon of the target pattern is twice the size of the pattern 

used for learning (27pixel), while the size of the space is 30pixel, 

which is almost similar to the space used for learning (27pixel). 

This is the result of inferring the SEM image of case1 as a CAD 

image using the trained model. Looking at the inferred result, the 

size of the space remains unchanged because it is almost similar to 

the space of the image used for training. On the other hand, 

Photoresist next to space was inferred as a polygon of 27 pixels. 

However, since the size of the polygon is twice the size of the 

trained image, the PR next to the space is converted to a polygon of 

54 pixels, so there is no problem with alignment. 
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Figure. 13 Inference & alignment result with width 54 pixel polygon  

 

 

3.1.2 The result of inferring an image three times the 

size of the pattern learned by the model 
 

In this case, the size of the pattern is about 3 times the size of the 

learning pattern. The target pattern size for case2 is 79 pixels by 

30 pixels. This is the result of inferring the SEM image of case2 to 

the CAD image using the trained model. Looking at the analogy 

result, since it is almost similar to the space of the image used for 

learning as in case 1, the size of the space remains the same, while 

the photoresist next to the space is inferred as a 27-pixel polygon. 

Since the size of the polygon is 3 times the size of the trained image, 

the PR next to space was converted to a polygon with 27 pixels on 

either side and a space in the middle. In this case, the polygon's 
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centroid information is missing, potentially causing alignment issues. 

 

 

Figure. 14 Inference & alignment result with 79 pixel polygon  

 

3.1.3 The result of inferring an image 4 times the 

size of the pattern learned by the model 
 

 For the last case, the target pattern size for case3 is 108px x 

30px. The polygon size of the target pattern is 4 times the pattern 
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used for learning (27 pixels), and the size of the space is 30 pixels, 

which is almost similar to the space used for learning (27 pixels). 

As a result of inferring the SEM image of case 3 as a CAD image 

using the trained model, the photoresist next to the space was 

inferred as a 27-pixel polygon. Similar to case2, since the size of 

the polygon is 4 times the size of the trained image, the PR next to 

the space was converted to a polygon with 27 pixels on either side 

and a space in the middle. The size of the space in the middle was 

created larger than the size of the space in the original target 

pattern, in which case alignment fails due to incorrect information. 
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Figure. 15 Inference & alignment result with 108 pixel polygon 

 

3.2. Dense-to-iso or iso-to-dense pattern 

relationship 
 

Proximity effect is a change in line width of a feature (or shape of 

a 2D pattern) due to the proximity of another nearby feature. The 

simplest example of the optical proximity effect is the difference in 

printed line width between an isolated line and a line in a dense 

array of identical lines and spaces. This is called iso-dense bias.56 

OPC compensates for iso-dense bias by exposing a test pattern on 

the wafer and measuring the linewidth in various environments to 

determine the iso-dense bias. A relationship between these 

patterns and alignment was identified. 
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3.2.1 Dense-to-iso pattern relationship 
 

In the first case, after learning a model using a dense pattern, 

inference was performed on the iso pattern to confirm the 

relationship between the type of pattern and alignment accuracy. In 

this case, contrary to previous experiments, the space between the 

photoresist is a polygon and the photoresist is a space. The 

line/space size of the dense pattern is 25 pixels by 28 pixels. After 

learning the model using this pattern, the inference result of the Iso 

pattern was confirmed. The inference around the iso pattern is 

relatively accurate, but it creates unnecessary images in the 

background area. These inappropriate inferences have the potential 

to affect alignment. (Figure 12) 
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Figure. 16 Inference & alignment result with dense-to-iso pattern 

 

3.2.2 Iso-to-dense pattern relationship 
 

In the second case, the alignment accuracy for dense patterns 

was verified by training with iso patterns. The size of the pattern is 

39 pixels, and after learning using the iso pattern, the reasoning 

result of the dense pattern was confirmed. Looking at the 

characteristics of the iso pattern used for learning, the rest of the 

area except the center is an empty space, confirming the tendency 

to follow the characteristics of these learning images as they are. 

The dense pattern inference results failed to form a pattern within a 

certain space, and the image was converted into a form with missing 

information. In this case, there is a very high probability that the 

alignment will fail because the pattern information is not delivered 

properly, and the alignment was also failed in the actual result. 

(Figure 13) 
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Figure. 17 Inference & alignment result with iso-to-dense 

pattern 

 

3.3. The pattern shifted and direction 
 

Ideally, the measured image should always be in the center, but 

movement in up, down, left and right directions often occurs due to 

instrumental errors. If the same image is moved and measured, it is 

checked whether a new training image needs to be added or the 
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existing image can be used as it is. In the case below, it is an image 

composed of line/space, and the inferred image is confirmed while 

moving the image to the right. Because the FOV is fixed, if the 

pattern is out of alignment, the pattern seen on the screen may look 

different from the original image. A shift in which the shape of the 

original pattern remained within the screen by about 90% was found 

to be acceptable. 
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Figure. 18 Shifted pattern inference & alignment result 

 

One factor to consider is the orientation of the measurement 

image. Since the instrument acquires images while scanning in the X 

direction during measurement, most of the measurement patterns 

exist in the vertical direction. However, in patterns such as T2T, 

the direction of patterns other than T2T is horizontal because the 

position to be measured is between the tips. That is, the pattern 

appears rotated. In this case, we checked the predictive ability of 

the model. As for the direction of the pattern, after training the 

model using the vertical pattern, the inference result for the pattern 

in the horizontal direction was confirmed. In this case, it was 

difficult to check the shape of the pattern because the reasoning 

was not done properly, and it was confirmed that the alignment 

failed. 
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Figure. 19 Pattern direction and inference result 

 

Through the above experiment, we were able to confirm the 

following facts. The most important thing when inference of a 

pattern from an SEM image to a CAD image is the size of the 

pattern. This is because inference is made only by the size of the 

pattern used for training. Training results are affected by both the 

width and space of the pattern. From the inference results for two 

different shapes (dense/iso) with similar widths, it was confirmed 

that additional patterns were formed or patterns were lost. If the 

pattern is shifted while maintaining the shape, there is no problem. 

But the direction of the pattern is very important for training. Since 

an appropriate training pattern must be selected according to the 

direction of the pattern, the training pattern must also be selected in 

consideration of the direction. 
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Chapter 4. Methodology and Result 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 ４０ 

Through previous experiments, we confirmed several cases that 

affect alignment. First, the size of the pattern directly affects the 

inference. It is very important to check the size of the pattern used 

for learning because we try to inference with the same size as the 

learned size. In addition, there are many factors to be checked in 

order to select a learning pattern, such as whether the pattern is 

dense/iso and direction. The process of selecting a pattern while 

checking these factors every time requires quite a bit of effort. We 

studied how to effectively select patterns while minimizing these 

efforts. 

By analyzing failure cases, we learned how to construct train 

images for successful alignment. The goal of effective sample 

selection is to achieve 100% alignment with the fewest samples. In 

order to select the minimum sample from the entire sample set, the 

following two are essential. 

1) All patterns in the sample must be classified based on their 

shape. 

2) If the first clustering was done with a similar shape, then 

clustering according to the size of the pattern is required. (if the 

size of the pattern is more than 4 times larger than the image used 

in the train, it should be added to the train.) 

Figure 16 shows the distribution of the line/space pattern of 

testcase. The width and space of the entire pattern were extracted 

using a test case with various types of line/space. Each blue dot in 
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the picture represents one image. This graph contains information 

for a total of 1000 images. 

 In order to check the alignment accuracy for the learning pattern, 

after learning with one pattern, another pattern was inferred and 

aligned. It is necessary to establish a criterion to check the 

alignment accuracy by learning pattern. Alignment accuracy was 

verified by comparing the image shifts for each case based on the 

image shift values for the cases learned using all training datasets. 

 

 

Figure. 20 Pattern distribution according to line/space 
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4.1. How to select the minimum sample that can 

cover the entire pattern 
 

When you train by pattern, the trained model infers from the 

learned size. If so, how well can the alignment proceed if the 

alignment is performed with the model learned in this way? In order 

to check the alignment accuracy according to the pattern, after 

training the model with one pattern, alignment was performed on 

the remaining 999 patterns to check the alignment accuracy. 

Successfully aligned patterns are marked with blue dots and 

misaligned patterns are marked with red dots. Below is a map of 

alignment accuracy for different patterns. 

 

 

Figure. 21 A map that checks the alignment accuracy 
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We identified the alignment pass/fail relationship for all patterns. 

The most successful case of alignment with one pattern was when 

930 patterns were successful. Based on this case, we studied how 

to successfully align the entire pattern while adding the minimum 

number of samples. Using the alignment pass/fail relationship for all 

patterns, select the cases in which the alignment of the most 

patterns can succeed, and filter the successful patterns. Next, 

select the case where the most patterns can be sorted out of the 

remaining patterns and exclude successful patterns. We figured that 

by repeating this process, we would be able to align the entire 

pattern with a minimal sample. 

 

 

Figure. 22 A map for case where most of the patterns are 

successfully alignment 
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As a result of repeating this process, a total of three patterns were 

selected. After learning the model using three samples, alignment 

accuracy was confirmed by performing alignment on the entire 

pattern. Contrary to the expected results, alignment failed in some 

areas. Through this result, we learned that it is difficult to select a 

pattern that can cover the entire pattern simply by using only the 

pass/fail information of each pattern. So, how to select a pattern so 

that you can choose a sample that can cover the entire set with a 

minimum number of samples? 

 

 

 

Figure. 23 Minimum pattern selection method using pass/fail 

information 
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Figure. 24 Result using minimum pattern selection method using 

pass/fail information 

 

 

4.2. Proposed method and improvement  
 

The previous results showed the possibility of selecting a pattern 

that could cover the entire pattern, but it was not sufficient. Judging 

from the previous experience, it is very difficult to accurately 

identify the pattern covered by one pattern. When multiple patterns 

are used for learning, the result is different from simply adding the 

results of each pattern. In order to solve this problem and select a 

pattern more clearly, we want to select a pattern by designating a 

region. In addition, in order to improve the method of specifying the 

region, the concept of minimum effective distance was introduced. 
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4.2.1 Proposed method  
 

The dense pattern, 27 pixels wide and 30 pixels apart, is the 

smallest pattern in the entire data set and is located in the lower 

left corner. After learning the model using this pattern, the 

alignment accuracy was verified by inferring the remaining 999 

images using the learned model. Previous experiments have 

confirmed that there is a relationship between training pattern size 

and alignment accuracy. In this experiment, it was confirmed that 

the alignment failed a lot in the area 4 times the size of the pattern. 

In this way, the area where the alignment failed a lot by the model 

trained with one learning pattern was called a hidden region. The 

hidden region is not an area with an exact range, and it takes a 

process of finding areas where many patterns fail experimentally. 

 

Figure. 25 A map that checks the alignment accuracy after learning 

with the W27S27 pattern. 



 

 ４７ 

The hidden region is determined by the size of the pattern. For 

example, the image below is a pattern with a width of 180 and a 

space of 155. This pattern has the largest width and space in the 

entire data set and is located in the upper right corner of the entire 

map. After training the model, this is a map that checks the 

alignment accuracy for the remaining patterns. Unlike the case of 

width27 and space27 above, it was confirmed that alignment failed 

for almost all patterns except for the pattern with space of 155 in 

the entire map. As the alignment accuracy differs depending on the 

type of learning pattern, it is necessary to check the alignment 

accuracy after training the model for all patterns. As a result of 

checking the alignment accuracy according to the pattern using 

different patterns, it was confirmed that they had different hidden 

areas as shown below. 

 

Figure. 26 A map that checks the alignment accuracy after learning 

with the W180S155 pattern. 
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Figure. 27 A map that checks the alignment accuracy after learning 

with other patterns. 

 

 

The hidden region is the area where alignment using each pattern 

fails. If the pattern is properly selected so that the hidden region is 

minimized, you can select a pattern that can cover the entire pattern. 

Based on the above idea, we figured the optimal case for selecting 

the entire pattern based on each hidden region. The left, right, top, 

bottom, and center patterns were selected from all patterns as 

shown below. Afterwards, the model was trained using only 5 

patterns and the alignment accuracy was checked. As a result of 

checking, alignment was successful for all 1000 patterns. This is 

the result of confirming that 1000 images can be successfully 

aligned even if only 5 are used, if the pattern in the appropriate 
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position is carefully selected using the information of the hidden 

region confirmed experimentally. 

 

 

Figure. 28 Pattern alignment map using 5 patterns 

 

4.2.2 Improvement using effective distance-based 

pattern extraction 
 

Pattern selection using the hidden region can be determined by the 

individual's subjective point of view using an alignment map using a 

model learned with each pattern. If the individual's subjective 

judgment is included, it is difficult to increase the reliability of the 

test because the interpretation of the test result can be divided into 

various points of view. In order to clearly and quantitatively 

organize these experimental results, the concept of effective 

distance was introduced. After training the model on one pattern, 

perform alignment on the remaining patterns to see success/failure. 
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We calculated the distance from the training sample to the failing 

sample and defined the smallest value as the minimum valid 

distance. As with the hidden area seen earlier, the effective 

distance is specified differently for each pattern size. Therefore, 

the effective distance was checked for all samples. Unlike the 

hidden region, the smallest distance to the failed sample is used for 

the effective distance, so we can more intuitively figure out the 

relationship between training samples and alignment accuracy. In 

addition, since it can be expressed quantitatively, it is possible to 

exclude subjective elements and select an appropriate pattern 

through an accurate algorithm. 

 

 

 

Figure. 29 Effective distance calculation for each pattern 
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To further clarify the results confirmed experimentally, we 

implemented an algorithm to determine the minimum pattern that 

can cover the entire area. This algorithm borrows the area 

coverage problem used in telecommunication networks. Area 

coverage problems monitor or cover the entire area of a specified 

network with the goal of leaving no points in the target area 

unreached by an observer. A point or target coverage problem is a 

special case of area coverage problem in which a limited number of 

mobile devices or points of interest are monitored or tracked by 

activating the required number of previously deployed sensor units 

instead of inspecting all points in a specific area.57 

Since the area that can be covered is different for each pattern, the 

effective distance for all patterns is experimentally derived, and the 

algorithm is implemented to cover the entire area while minimizing 

the overlapping area using each distance. The implemented 

algorithm starts from the point with the largest effective distance, 

draws a circle with radius of effective distance, and removes points 

inside the circle. Then, the best sample is found by repeatedly 

removing the first operation using the point with the largest valid 

distance among the remaining points. 
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Figure. 30 Algorithm for minimum pattern selection 
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Figure. 31 Pattern selection flow 

 

The first selected sample is the bottom right pattern with the 

largest effective distance. The size of the pattern is width 243 pixel, 

space 28 pixel, and the effective distance of this pattern is 129.5 

pixel. Iteration 1 ends after excluding all patterns within the 

effective distance of this pattern. 

Iteration 2, like iteration 1, selects the pattern that can cover the 

remaining patterns maximally, that is, the pattern with the largest 

effective distance. The pattern selected this time is the pattern on 

the top left, the size is width 42 pixel, space 150 pixel, and the 

effective distance is 86.1 pixel. By using this pattern, all patterns 

within the effective distance are excluded. 

The result of extracting the sample is as follows. A total of 4 

iterations were carried out, and 5 samples were selected, and the 
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model was trained using the selected samples to check whether all 

samples were successfully aligned. 

 

 

 

 

Fig. 32 Final result with effective distance and optimization 

algorithm  
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The final result using the effective distance and optimization 

algorithm were compared with the results of randomly selecting five 

patterns. A total of five randomized trials were conducted, and the 

average value was 85.3% and the standard deviation was 4.42, 

resulting in an average improvement of about 15% in accuracy. 

It takes about 1 minute to find the effective distance for one 

pattern. In other words, it is a very large task that takes about 16 

hours when checking all 1000 patterns However, since the map 

constructed in this way is created based on polygon information, it 

can be applied immediately without having to recheck similar 

polygon sets. Also, as the number of samples increases and the map 

becomes more sophisticated, the sample can be selected more 

reliably. 

 

5 patterns training 

Random  

selection  

Try1 

Random  

selection  

Try2 

Random  

selection  

Try3 

Random  

selection  

Try4 

Random  

selection  

Try5 

Proposed  

method 

Alignment 

 Accuracy 

(%) 

87.3 89.5 85.1 86.7 77.9 100 

 

Table 1. Comparison results between random selection and the 

proposed method 
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Chapter 5. Conclusion 
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Optical Proximity Correction (OPC) is a technology that allows the 

design circuit to accurately pattern the design circuit on the wafer 

by correcting distortions such as the refraction caused by the 

characteristics of light in the photo process drawing complex 

electrical design circuits on the silicon wafer substrate during a 

semiconductor manufacturing process. In order to implement the 

exact pattern, hundreds to thousands of samples of the design 

circuit pattern must be extracted and the CD must be measured 

through the SEM, and the exact measurement enables accurate 

correction. The improvement of measurement ability is becoming 

increasingly important. Techniques that accurately recognize and 

measure the pattern you want will help improve the speed of 

measurement.  

In this paper, we proposed a method to improve alignment by 

selecting a training set for deep learning model. The optimal sample 

was selected through effective distance-based pattern selection 

using optimization algorithms. In the past, the sample selection 

method was selected by the user's subjective method or a random 

method, but using the above method, a sample that can match the 

alignment 100% can be selected regardless of the user's personal 

experience Additionally, this method not only reduces extra work 

due to pattern inconsistency, but also reduces possible human 

errors in measurements. This is the first experimental study of how 

to select an appropriate training set to train an adversarial 
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generative network model for lithographic pattern alignment. Based 

on the results of this research, we will conduct additional research 

to accurately measure OPC samples of more diverse shapes, which 

will contribute to the development of semiconductor processes. 
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Abstract (Korean) 

 

 Critical Dimension SEM(CD-SEM)은 반도체 웨이퍼에 형성된 

패턴의 모양, 크기 및 거칠기를 측정하는 전용 시스템이다. 설계가 

축소되고 제품 개발 과제가 증가함에 따라 정확한 Optical 

Proximity Correction (OPC)를 위해 대량의 샘플을 신속하게 측

정할 수 있는 기능이 필요하다. Design Based Metrology (DBM) 

기술을 통해 설계 이미지를 사용하여 대량의 레시피를 빠르게 생

성하고 측정 시간을 단축할 수 있었다. 그러나 디자인 이미지와 

SEM 이미지 간의 정렬에는 여전히 많은 문제가 있었고, 이를 해

결하기 위해 Generative Adversarial Network (GAN) 기술을 사

용한 새로운 패턴 정렬 방법이 개발되었다. 본 논문에서는 디자인 

패턴의 폴리곤 유형에 따라 학습 패턴을 분류하고 각 유형에 따른 

정렬 효과를 확인하였다. 또한 훈련 세트와 정렬 정확도의 관계를 

통해 모델 훈련을 위한 훈련 세트를 효과적으로 선택하는 방법을 

연구하였다. 
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