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ABSTRACT

Group Symmetric Autoencoders for Learning from

Demonstration

by

Minjun Son

Department of Mechanical Engineering

Seoul National University

Learning from Demonstration(LfD) is a powerful motion-planning framework to

resolve limitation of classical algorithm, such as optimization or sampling method.

Without designing explicit cost function or sampling in high-dimensional space,

motion planner can learn demonstration of human expert to generate accurate and

human-like motions. Demonstration data is often given in the form of end-effector

trajectory so that the data is often high-dimensional. To deal with the dimen-

sionality, high-dimensional data are assumed to be embedded on low-dimensional

manifold, which is called manifold hypothesis. Autoencoder is widely used deep
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generative model to learn a data manifold. However, since demonstration is time-

consuming, the number of training data is inevitably small. Lack of training data

can cause over-fitting of neural network model and failure of generating accurate

motion. Since translated or rotated trajectories are indeed identical, endowing trans-

lational or rotational symmetry to model can improve data efficiency and pre-

vent over-fitting. In this paper, we first formulate the natural symmetry of robotic

task as group action. We then propose group symmetric variational autoencoder

(GSVAE) which has group-invariant encoder and group-equivariant decoder about

symmetry group. We show that GSVAE can learn data manifold and generate mo-

tion more accurately than baseline model with water pouring dataset.

Keywords: Learning from Demonstration, manifold learning, representation learn-

ing, autoencoders, symmetry of task, group invariance/equivariance

Student Number: 2021-21058
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1
Introduction

Motion planning is a process of determining a path from an initial state to a

goal state while avoiding obstacles and satisfying certain constraints such as joint

limits or torque limits [2]. Motion planning has been widely studied and is one

of the most essential parts of robotics. Popular approaches for motion planning

are (i) optimization-based algorithms [3] and (ii) sampling-based algorithms [4, 5].

Optimization-based algorithms find a trajectory that minimizes the cost function

while satisfying some constraints. The design of cost function and constraints are

crucial components in optimization, where cost function and constraints should

be designed so that the optimal solution is unique and the optimization process is

stable. However, designing cost functions and constraints which satisfy the above

condition is not a trivial problem. On the other hand, sampling-based algorithms

find a trajectory by sampling on configuration space or state space. Sufficient sam-

ples to cover high-dimensional configuration space or state space are required, how-

ever generating samples to cover high-dimensional space is time-consuming and in-

tractable. Pouring water, pegging in a hole, and scooping are examples of robotic

1
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tasks which are hard to implement with the aforementioned motion planning algo-

rithms. Learning from demonstration (LfD) method is one of the most successful

approaches to avoid these problems [6, 7, 8]. Rather than specifying cost function

analytically or sampling in high-dimensional space, observations of a human ex-

pert (demonstrations) are used to train a motion planner and then the trained

motion planner can generate accurate and human-like motions.

A Motion planner model for LfD should satisfy two properties: (i) generalizabil-

ity and (ii) learning data manifold. (i) Just replaying the given human demonstra-

tion is not sufficient and the motion planner should be able to generate the motion

which is not observed in demonstration data. This property is called generalizabil-

ity of a model. (ii) Demonstration is often given as trajectory of end-effector and as

a result, demonstration data is high-dimensional. We note that high-dimensional

trajectory data do not occupy the whole trajectory space due to smoothness of

trajectory and constraints of the given tasks. To find a low-dimensional represen-

tation of high-dimensional data, we adopt a manifold hypothesis [9, 10]. That is,

high-dimensional data are embedded on a low-dimensional manifold. The motion

planner model should be able to learn the manifold structure of trajectories and

generate a trajectory from low-dimensional parameters.

In this paper, we divide the low-dimensional parameters into two categories:

task parameter and manner parameter [11]. Let’s start with pouring water ex-

ample. In the pouring water example, a user aims to train the motion planner

which generates the trajectory that pours water in a bottle to a cup. Water pour-

ing trajectories are given by human experts and each trajectory is represented by

some low-dimensional parameters. Some low-dimensional parameters should spec-

ify goals of the trajectories such as the position of the cup or the initial config-

uration of the bottle. These parameters are called task parameters. The rest of
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the low-dimensional parameters indicates the information except the goal of the

trajectory such as shape of the trajectory or speed of the trajectory. These pa-

rameters are called manner parameters. The model should be able to represent

high-dimensional trajectory into task and manner parameters separately and gen-

erate a trajectory that executes the given task parameter accurately.

An autoencoder is a widely used deep generative model to generate a general-

ized trajectory and to learn the manifold structure of given human demonstration

[11, 12]. Autoencoder consists of two neural networks: encoder and decoder. An en-

coder is a mapping from high-dimensional space to low-dimensional space and a

decoder is a mapping from low-dimensional space to high-dimensional space. The

low-dimensional space is called a latent space or coordinate space. Encoder and

decoder are trained to minimize the reconstruction loss of the given training data

and become a coordinate chart of the trained manifold. After training, the decoder

can be used to generate a new trajectory. First, sample some low-dimensional pa-

rameters in the latent space and then decode the sampled parameters to high-

dimensional trajectories.

Training deep generative models often requires a large amount of dataset. If the

number of data is insufficient, the model is highly overfitted to the training dataset

and the generalizability of the model is not guaranteed [13]. However, gathering

demonstrations of human experts would be time-consuming and this prevents LfD

framework from being applied to high-dimensional trajectory space. Autoencoders

are often regularized to combine prior knowledge of tasks or to endow better in-

ductive bias [10, 14, 15]. To leverage the difficulty in gathering demonstration,

we focus on the natural symmetry contained in robotic tasks. For the pouring

water example, there are translational symmetry on the planar position of a cup

and rotational symmetry on the relative position of a bottle. If we consider the
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natural symmetry of tasks, all symmetric trajectories from a single demonstration

are known so that we can train the model with much fewer demonstrations. In

this paper, we represent the natural symmetry of task by group action and then

we formalize neural networks which are invariant and equivariant for the given

group. Using these invariant and equivariant neural networks, we propose a Group

Symmetric Varational Autoencoder (GSVAE) which has an invariant encoder and

an equivariant decoder to learn a group symmetric representation of trajectory

demonstration.

Various experimental results on water pouring dataset verify the performance

of our model. The accuracy of manifold learning and generalizability of LfD models

are compared by reconstruction error on training dataset and validation dataset.

We have shown that our GSVAE model can learn the more accurate manifold with

fewer neural network parameters and have better generalization capacity than a

baseline model. In addition, trajectories which are generated from linearly interpo-

lated latent variables are visualized to compare the generation power of LfD mod-

els. Our GSVAE model generates more smoothly varying trajectories by modulat-

ing manner parameters, that is GSVAE can learn more smooth manifolds than the

baseline model. Lastly, robot experiments are implemented to compare the mod-

els in the real world situation. The success rates of the generated trajectories are

compared and GSVAE shows a higher success rate.

The paper is structured in the following way. Chapter 2 contains mathematical

preliminaries which are essential to formulate group symmetric variational autoen-

coder. Autoencoder models for manifold learning are explained and definitions for

group action, invariance and equivariance are given to represent the natural sym-

metry of task. Chapter 3 constructs an invariant neural network and an equiv-

ariant neural network about a given symmetry group. Chapter 4 proposes group
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symmetric autoencoder. Chapter 5 contains experiments for water pouring dataset.

Group action of water pouring dataset is formulated in this chapter and the per-

formances of models are proposed. Chapter 6 concludes the paper with a summary

of contributions and experimental results.



2
Preliminaries

In this chapter, autoencoder models and group action are introduced. First, the

structure and training process of vanilla autoencoder are introduced and other

variants of vanilla autoencoder such as variational autoencoder (VAE) and task-

conditioned autoencoder (TCVAE) are also introduced. The concepts of group ac-

tion, invariance, and equivariance are formulated to represent the natural symme-

try of tasks in mathematical form. Let’s start with autoencoder models.

2.1 Autoencoders

2.1.1 Vanilla Autoencoders

Autoencoder is a neural network model to reconstruct high-dimensional data with

a bottle-neck structure in the middle as shown in Figure 2.1. Autoencoder con-

sists of two networks: an encoder network and a decoder network. The encoder

6
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Figure 2.1: Structure of a vanilla autoencoder [1]. Encoder encodes a high-

dimensional input x into a low-dimensional latent variable z and decoder recovers

the latent variable back into the high-dimensional input x̃. The encoder and de-

coder are parameterized by neural network parameters θ, ϕ and trained to mini-

mize the reconstruction error so that the original input x and the reconstructed

input x̃ are identical.

network encodes the high-dimensional input into a low-dimensional latent vari-

able. The low-dimensional latent variable is a “compressed code” for the high-

dimensional input x which contains essential information for reconstruction and

other non-necessary information is wiped out. The decoder network recovers the

low-dimensional latent variable back into the high-dimensional data. The encoder

function g(·) and the decoder function f(·) are parameterized by ϕ and θ. The

compressed latent variable for input x is z = gϕ(x) and the reconstructed input

is x̃ = fθ(z) = fθ(gϕ(x)). Neural network parameters ϕ and θ are trained to min-

imize the difference between the original input x and the reconstructed input x̃.
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The difference measure for reconstruction is often selected as MSE loss:

L(θ, ϕ) = 1

N

N∑
i=1

(x− fθ(gϕ(xi)))
2 (2.1.1)

where D = {x1, x2, · · · , xN} is a training dataset.

2.1.2 Manifold Interpretation of Autoencoder

A manifold is a topological space that resembles Euclidean space locally. More

specifically, an abstract manifold is a Hausdorff, second-countable topological space

that is locally homeomorphic to Euclidean space of some finite dimension, known

as the dimension of the manifold [16]. This is called the intrinsic definition of a

manifold. Meanwhile, there is another way to define a manifold, which is called the

extrinsic definition of a manifold. In the extrinsic view, a manifold is considered

embedded in some high-dimensional Euclidean space. An n−dimensional manifold

embedded in Rm (n < m) is a subset of Rm such that each point in Rm has a

neighborhood that is homeomorphic to an open subset of Rn. When a manifold is

viewed in the extrinsic view, it is easy to define concepts of tangent or normal us-

ing intuition from high-dimensional Euclidean space. Since an n−manifold locally

resembles Rn, there is an invertible mapping between the manifold and Rn and this

mapping is called a local chart of the manifold. We can describe high-dimensional

points on a manifold by n coordinates using a local chart. For example, the globe

is a 2−dimensional manifold embedded in R3 and a world map is a local chart of

the globe.

In machine learning, there are various types of data such as images and video

and these data are often high-dimensional. For example, a 200×200 sized image is

represented by a 40, 000-dimensional vector and representing color video data re-

quires an even higher-dimensional vector. If we randomly sample vectors in R40000
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Figure 2.2: Number image data are on a low-dimensional manifold rather than oc-

cupying the whole high-dimensional image space. Samples on the low-dimensional

manifold are normal number image data while samples off the manifold are noisy

images.

and visualize these vectors, most of the vectors represent just noisy images. Thus,

natural images such as number images or human face images are concentrated in a

small region rather than occupying the whole high-dimensional image space, that

is, natural images form a low-dimensional manifold embedded in high-dimensional

space as shown in Figure 2.2. This is called the manifold hypothesis [9, 10]. If a

model can learn a local chart of the data manifold, high-dimensional data can be

represented using much fewer variables. Autoencoder is indeed an exact model to

learn the manifold structure of high-dimensional data. In Figure 2.3, the image of

decoder M = fθ(Rn) is the learned data manifold and latent variable z is a low-

dimensional coordinate of input x. The encoder and the decoder act like a local
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Figure 2.3: Autoencoder learns the manifold structure of high-dimensional dataset.

Encoder and decoder become a local chart of the data manifold and latent variable

become a coordinate. The trained data manifold is a image of latent space by

decoder, that is fθ(Rn).

chart of the data manifold. By modulating latent variable z and mapping by the

decoder, we can generate smoothly varying high-dimensional data.

2.1.3 Variational Autoencoder

Vanilla autoencoder maps the input into a fixed vector so that a distribution of

dataset cannot be captured. Rather than mapping the input into a fixed vector,

variational autoencoder (VAE) [12] maps a vector into a distribution. Let’s assume
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that the dataset D = {x1, x2, · · · , xN} is sampled by the following sampling pro-

cess: (i) a latent variable zi is sampled from some prior distribution p(z) = N (0, I),

(ii) a data xi is generated from some conditional distribution p(x|z). We can model

the conditional distribution p(x|z) as a parameterized distribution pθ(x|z).

In estimation theory, maximum likelihood estimation (MLE) or maximum a

posteriori (MAP) estimation are commonly used to estimate the best parameter

θ. For MLE and MAP, the marginal likelihood pθ(x) =
∫
pθ(x|z)p(z)dz and the

posterior density pθ(z|x) = pθ(x|z)p(z)/pθ(x) should be evaluated but these evalu-

ations are often intractable in case of the complicated likelihood functions pθ(x|z)

such as a deep neural network.

Rather than directly estimating the evidence of the posterior, we introduce a

parametric model qϕ(z|x) to estimate the true posterior pθ(z|x). The difference be-

tween the true posterior and the model posterior can be measured with Kullback-

Leibler divergence (KL-divergence):

DKL(qϕ(z|x)||pθ(z|x)) = −
∫

qϕ(z|x) log
pθ(z|x)
qϕ(z|x)

dz (2.1.2)

If we expand the KL-divergence, we can obtain:

DKL(qϕ(z|x)||pθ(z|x)) = log pθ(x) +DKL(qϕ(z|x)||p(z))− Ez∼qϕ(z|x) log pθ(x|z)

(2.1.3)

By rearranging the equation, we can obtain the evidence lower bound (ELBO)

for the marginal likelihood pθ(x):
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log pθ(x) ≥ log pθ(x)−DKL(qϕ(z|x)||pθ(z|x)) (2.1.4)

= Ez∼qϕ(z|x) log pθ(x|z)−DKL(qϕ(z|x)||p(z)) (2.1.5)

= LELBO(θ, ϕ;x) (2.1.6)

Figure 2.4: Structure of a variational autoencoder. Variational autoencoder en-

codes and decodes the high-dimensional input in a probabilistic manner. Latent

variable z is sampled from a probabilistic encoder qϕ(z|x) given the input x and

reconstructed input x̃ is sampled from a probabilistic decoder pθ(x|z) given the la-

tent z. Gaussian prior p(z) = N (0, I) is assumed and parameters θ, ϕ are trained

with ELBO loss.

Maximizing LELBO about θ and ϕ is identical to maximizing the log-likelihood

and to minimizing the KL-divergence between the model posterior and the true

posterior. Thus, the objective function is:
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θ⋆, ϕ⋆ = argmin
θ,ϕ

− 1

N

N∑
i=1

LELBO(θ, ϕ;xi) (2.1.7)

Likelihood pθ(x|z) and posterior qϕ(z|x) construct an autoencoder structure.

Since two functions are probability distributions, the likelihood function is called

a probabilistic encoder and the posterior function is called a probabilistic decoder.

Two distributions are often selected as Gaussians whose means and covariances are

modeled by neural networks as shown in Figure 2.4.

2.1.4 Task-Conditioned Variational Autoencoder

Variational autoencoder can be trained for Learning from Demonstration (LfD) ap-

plications. Human expert’s demonstration is often given in the form of end-effector

trajectory and trajectory for robotic tasks has some constraints. For example, sup-

pose that a human expert demonstrates pouring water into a cup. A demonstra-

tion is a continuous trajectory and a water bottle should be upright not to spill

water until reaching near the cup. These constraints restrict the valid trajectories

and trajectory demonstration data occupy the whole high-dimensional trajectory

space. Thus, demonstration data is often assumed to form a manifold structure.

By learning the demonstration manifold, we can easily generate a new trajectory

that satisfies the above constraints without specifying the constraints analytically.

Task-conditioned variational autoencoder (TCVAE) [11] is proposed to learn

a manifold structure of trajectory demonstration and generate a new trajectory.

Figure 2.5 describes the structure of TCVAE. The input x and the reconstructed

input x̃ of TCVAE are high-dimensional trajectory data. The difference between

VAE and TCVAE is that the latent variable of TCVAE is split into two variables:

task parameter w and manner parameter z. Task parameter w describes the goal
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Figure 2.5: Structure of a task-conditioned autoencoder. The difference between

task-conditioned autoencoder and variational autoencoder is a task parameter. For

learning from demonstration problem, task of given demonstration is represented

by a single parameter w. Probabilistic decoder gets latent variable (manner pa-

rameter) together with task parameter as an input to generate a trajectory which

achieves the given task.

of trajectories such as the position of a cup or the initial configuration of a bottle.

Manner parameter z describes other characteristics of the trajectory such as the

shape of the trajectory or speed of the trajectory. A probabilistic encoder qϕ(z|x)

encodes characteristics of the trajectory input x into manner parameter z, which

is identical to the encoder of VAE. On the other hand, an input of the probabilis-

tic decoder is augmented by concatenating the task parameter w with the manner

parameter z. The decoder translates the latent manner parameter back into tra-

jectory data which targets the given task parameter. A dataset for TCVAE should
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Figure 2.6: Decoder of task-conditioned autoencoder can generate a new trajec-

tory. If we modulate the task parameter w, the decoder generates a new trajec-

tory which aims a different goal while other characteristics such as shape or speed

remain unchanged. If we modulate the manner parameter z, the decoder generates

a new trajectory which has different shape while the goal remains unchanged.

have more information about task parameters. A pair of trajectory x and the cor-

responding task parameter w should be collected together and these pairs compose

a training dataset D:

D = {(x1, w1), (x2, w2), · · · , (xN , wN )} (2.1.8)
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and the evidence lower bound for TCVAE is:

LELBO(θ, ϕ;x,w) = Ez∼qϕ(z|x) log pθ(x|z, w)−DKL(qϕ(z|x)||p(z)) (2.1.9)

By the definitions of task and manner parameters, we want to decouple both

parameters, that is, information about the goal of a trajectory cannot be inferred

from the manner parameter. If not, the goal of the trajectory will change also by

modifying the manner parameter. However, task-conditioned variational autoen-

coder does not ensure such decoupling properties and additional network and reg-

ularization terms are required for decoupling. An auxiliary neural network fη is

added which is used to predict the task parameter w from the manner parameter

z and the auxiliary network fη is trained by the following optimization:

min
η

max
ϕ

Laux = min
η

max
ϕ

L1(fη(µϕ(x)), w) (2.1.10)

By minimizing this auxiliary loss, the auxiliary network fη becomes more skilled

for inferring task parameters from manner parameters. Since our goal is to decou-

ple the task parameter from the manner parameter, TCVAE can be adversarially

optimized by the following alternating optimization problem:

min
θ,ϕ

LELBO − αLaux min
η

Laux (2.1.11)

Despite this auxiliary regularization, we observe that the regularization does not

significantly improve the performance of TCVAE model and does not guarantee

the decoupling. In this paper, we train the TCVAE model without the additional

regularization term.

After training TCVAE, the decoder of TCVAE can generate a new trajectory

with the given task. Figure 2.6 shows the generation process of the trajectory using
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the decoder. Select a manner parameter z and a task parameter w and then de-

coding by the trained decoder generates the corresponding trajectory. If we modify

the task parameter, the generated trajectory is transformed to execute the mod-

ified task parameter while maintaining the shape or speed of the trajectory. On

the other hand, if we modify the manner parameter, the shape of the trajectory

is changed while the objective of the trajectory is unchanged.

In LfD, collecting demonstration data is a highly time-consuming process and

the number of training data often lacks for training a deep neural network without

over-fitting. TCVAE also suffers from this lack of training data and over-fitting

and often fails for the task parameter which is unseen in the training phase. This

over-fitting problem can be resolved by considering the natural symmetry of the

robotic task. In the next section, the natural symmetry of the task is introduced

in the sense of group action, invariance and equivariance.

2.2 Symmetry and Group Action

The goal of this section is to define symmetry of robotic task mathematically. Sym-

metry is often used to refer to an object or a system that is invariant under some

transformation such as translation, reflection, or rotation. The definitions of trans-

formation and invariance are given in the following subsections.

2.2.1 Group Action

A group action is a way for a group to act on a set, it is defined as a function

that assigns a transformation to each element of the group, preserving the group

operation. In other words, a set of transformations on a set forms a group struc-

ture so that transformations can be composited and inverted like group elements
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[17]. Let G be a group with identity element e and X be a set. Then a group

action is a binary operation · : G×X → X satisfies the following two axioms:

(Identity) e · x = x (2.2.12)

(Compatibility) g1 · (g2 · x) = (g1g2) · x (2.2.13)

where x ∈ X and g1, g2 ∈ G. Under these axioms, the set X together with an

action of G is called a G−set.

2.2.2 Invariance and Equivariance

To describe symmetry, invariance should be defined. Let X be a G−set and · :

G × X → X be a group action of G on X. A function f : X → Y is said to be

invariant about G if

f(g · x) = f(x) ∀x ∈ X, g ∈ G (2.2.14)

Since an object (function f) defined on a space X is not changed by the transfor-

mation (group action G), we often say that there exists a symmetry in the space

X.

Meanwhile, we introduce another important concept about symmetry, equiv-

ariance. Assume that Y is also a G−set and ∗ : G× Y → Y be a group action of

G on Y . A function h : X → Y is said to be equivariant about G if

h(g · x) = g ∗ h(x) ∀x ∈ X, g ∈ G (2.2.15)

While an invariant function maps an element of X to the same element regard-

less of group action g, an equivariant function preserves the group action before

and after mapping.



3
Group Invariant andGroup

EquivariantNeural Networks

In this chapter, we construct an invariant neural network and an equivariant neu-

ral network about a given symmetry group G. Invariant neural networks and equiv-

ariant neural networks can be constructed by transforming every input into a stan-

dard input. To define the standard input.

3.1 Group Invariant Neural Networks

A group-invariant neural network can be constructed as follows. Let f̃θ : X → Y be

any function modeled by a neural network where θ is the parameter of the neural

network. Group invariant function fθ : X → Y can be constructed by replacing

all points that can be transformed to each other by some group action into some

standard input x0. More formally, define an equivalence relation ∼ by:

x1 ∼ x2 if there exists g ∈ G such that x1 = g · x2 (3.1.1)

19
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The equivalence relation ∼ partitions the set X into subsets which are called

equivalence classes. For each equivalence class, pick a fixed point x0 that represents

all points in the equivalence class. With abuse of notation, let x0 be a function

that maps every point x ∈ [x0] to the standard x0, that is x0(x) = x0. And define

g0(x) as the group element in G such that x0 = g0(x) · x and g0(g · x) = g0(x)g
−1.

Then the function fθ : X → Y defined as

fθ(x) = f̃θ(g0(x) · x) = f̃θ(x0(x)) (3.1.2)

is invariant about the group G.

Proof.

fθ(g · x) = f̃θ(g0(g · x) · (g · x))

= f̃θ(g0(x)g
−1 · (g · x))

= f̃θ(g0(x) · x)

= fθ(x)

3.2 Group Equivariant Neural Networks

A group equivariant neural network can be constructed as follows. Let h̃ϕ : X → Y

be any function modeled by a neural network where ϕ is the parameter of the

neural network. Then the function hϕ : X → Y defined as

hϕ(x) = g0(x)
−1 ∗ h̃ϕ(g0(x) · x) = g0(x)

−1 ∗ h̃ϕ(x0(x)) (3.2.3)

is equivariant about the group G.
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Proof.

hϕ(g · x) = g0(g · x)−1 ∗ h̃ϕ(g0(g · x) · (g · x))

= (g0(x)g
−1)−1 ∗ h̃ϕ(g0(x)g−1 · (g · x))

= gg0(x) ∗ h̃ϕ(g0(x) · x)

= g ∗ (g0(x) ∗ h̃ϕ(g0(x) · x))

= g ∗ hϕ(x)

A group invariant neural network and a group equivariant neural network are

used to construct an autoencoder model that considers the natural symmetry of

robotic tasks in the following chapter.



4
Group Symmetric Autoencoder

In this chapter, we propose a group symmetric autoencoder model (i) which learns

the manifold structure of trajectory data conditioned by task and (ii) which has

an invariant encoder and equivariant decoder about the natural symmetry of the

given task. To make a notation simple, we first begin with deterministic task-

conditioned autoencoder rather than the variational form. In other words, encoder

hϕ(x) and decoder fθ(z, w) are mappings between vectors instead of distributions.

4.1 Construction of Group Symmetric Autoencoder

We argue that the encoder should be invariant and the decoder should be equiv-

ariant about the symmetry group to consider a natural symmetry of robotic task

and improve data efficiency. Figure 4.1 shows invariance of an encoder. When tra-

jectory x is transformed by group action g, that is g · x, the characteristics of

trajectory such as shape or speed are not changed. Since these characteristics are

22
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encoded into manner parameter, encoder hϕ(z) should encode x and g · x invari-

antly, that is hϕ(z) = hϕ(g · x).

Figure 4.1: Encoder which is invariant to the given symmetry group. The invariant

encoder maps the original trajectory x and the transformed trajectory x′ = g · x

into the same manner z, that is hϕ(x) = hϕ(g · x).

Figure 4.2: Decoder which is equivariant to the given symmetry group. If task

parameter w is transformed to w′, the outputs of w and w′ by the decoder also

differ by the same transformation, that is fθ(z, g · w) = g · fθ(z, w).

Figure 4.2 shows equivariance of the decoder. By modulating task parameters

and decoding through the decoder, we can generate a new trajectory that aims for
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a generalized task. When we transform task parameter w by group action g, that

is g ·w, two decoded trajectories fθ(z, w) and fθ(z, g ·w) have the same characteris-

tics but execute the different tasks which are exactly transformed by g. Therefore,

decoded trajectories fθ(z, w) and fθ(z, g ·w) should be also in the transformation

of one to another, that is fθ(z, g · w) = g · fθ(z, w).

Using invariant and equivariant neural networks introduced in Chapter 3, we

can construct an invariant encoder and an equivariant decoder. Let · : G×X → X

be a group action of G on X and ∗ : G×W → W be a group action of G on W .

An invariant encoder can be constructed as the following steps:

(i) Model a neural network h̃ϕ : X → Z

(ii) Define the standard input x0 for each equivalent class in X/ ∼.

(iii) Find a group action g0(x) that transforms x into the standard input x0, that

is x0 = g0(x) · x.

(iv) Construct an invariant encoder:

hϕ(x) = h̃ϕ(g0(x) · x)

An equivariant decoder can be constructed as the following steps:

(i) Model a neural network f̃θ : (Z ×W ) → X

(ii) Define the standard task w0 for each equivalent class in W/ ∼.

(iii) Find a group action g0(w) that transforms w into the standard input w0,

that is w0 = g0(w) · w.

(iv) Construct an equivariant decoder:

fθ(z, w) = g0(w)
−1 · f̃θ(z, g0(w) ∗ w)
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So far, a group symmetric autoencoder is proposed, which has a deterministic

encoder and decoder. If we generalize the model to a probabilistic model, the mean

function and covariance function of the encoder and decoder should be invariant

and equivariant. This modification is straightforward and we call this variational

model as group symmetric variational autoencoder (GSVAE). In the experiment

chapter, we will use the GSVAE model instead of the deterministic group sym-

metric autoencoder.

4.2 Measures for Invariance and Equivariance

While GSVAE has a completely invariant encoder and equivariant decoder, other

models are not explicitly regularized for the encoder and decoder to be invariant

and equivariant. Therefore, measures to quantify invariance and equivariance are

required. Invariance measure I for encoder fθ is defined as:

I(fθ)(x) =
1

m

m∑
i=1

∥fθ(x)− fθ(gi · x)∥22 (4.2.1)

where gi (i = 1, 2, · · · ,m) is randomly sampled group action from G. Since the

manner space is a Euclidean space, we choose the distance between two manner

parameters as L2−norm ∥ · ∥2. Equivariance measure E for decoder hϕ is defined

as:

E(hϕ)(z, w) =
1

m

m∑
i=1

dist (hϕ(z, gi ∗ w), gi · hϕ(z, w)) (4.2.2)

We need to define a distance function dist(·, ·) between two trajectories of configu-

ration. Since a demonstration trajectory is a sequence of SE(3) for water pouring

dataset, the distance between two sequences of SE(3) should be defined. We de-

fined the distance function dist(·, ·) as an average of geodesic distance between two
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SE(3) for every time step. The geodesic distance between two SE(3) is defined as:

d(T1, T2) = ∥ log(R−1
1 R2)∥22 + ∥p1 − p2∥22 (4.2.3)

where Ri ∈ SO(3) and pi ∈ R3 are the rotation matrix and the position vector of

Ti ∈ SE(3).



5
Experiments

In this section, we will compare TCVAE and group symmetric variational autoen-

coder (GSVAE, our model) on water pouring dataset [7]. Reconstruction loss and

invariance/equivariance measures will be provided for quantitative comparison of

two models. Reconstruction visualization, manner parameter modulation, and task

parameter modulation will be provided for qualitative comparison of two models.

5.1 Water Pouring Dataset

We demonstrate GSVAE and TCVAE to real world LfD problem, water pour-

ing. Configuration of water pouring problem is shown in Figure 5.1. A trajectory

x = [T1, T2, · · · , TNt ] ∈ SE(3)Nt = X consists of Nt samples of SE(3) which are

expressed about the fixed frame {s}. A task parameter w = [xc, yc, zb, yb, zb, θEE ] ∈

R5 × S1 = W is consist of 6 parameters where (xc, yc) is a planar position of the

cup, (xb, yb, zb) is a spatial initial position of the bottle, and θEE is a rotation

angle of bottle frame {b} about bottle axis {zb}.

27
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Figure 5.1: Configuration of water pouring problem. Task parameter is identified

as w = [xc, yc, xb, yb, zb, θEE ] and each trajectory is transformed to the standard

trajectory whose pouring direction is aligned with −x̂s and initial configuration of

bottle is also aligned with x̂s.
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To implement GSVAE, an user should specify a symmetry of task and group

action. There are three different symmetry in water pouring problem: (i) transla-

tion about plane, (ii) rotation about axis of cup, and (iii) rotation of bottle frame

{b} about axis of bottle. We set the symmetry group of water pouring problem as

G = R2 × T2 and define the group actions of G on X and Z ×W as follows:

Group action of G on X

For g = [∆x,∆y,∆θcb,∆θEE ] ∈ R2 × T2 = G, · : G×X → X is defined as follows:

g · x = g · [T1, · · · , TNt ] =
[
T ′
1, · · · , T ′

Nt

]
, (5.1.1)

where T ′
i = Rot (ẑ,∆θcb)TiRot (ẑ,∆θEE) + Trans ([∆x,∆y, 0])

Group action of G on W

For g = [∆x,∆y,∆θcb,∆θEE ] ∈ R2×T2 = G, ∗ : G×W → W is defined as follows:

g ∗ w = g ∗



xc

yc

xb

yb

zb

θEE


=



xc +∆x

yc +∆y

xb +∆x+ (dx cos∆θcb − dy sin∆θcb)

yb +∆y + (dx sin∆θcb + dy cos∆θcb)

zb

θEE +∆θcb +∆θEE


(5.1.2)

where dx = xb − xc and dy = yb − yc.

For group symmetric representation learning, we need to specify standard tra-

jectory x0, standard task w0, and group actions g0(x), g0(w). In water pouring

problem, we set the standard input as the trajectory where the cup is on the

origin and the bottle frame {b} is aligned with {s} as shown in the bottom of
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Figure 5.1. Formal definitions of g0(x), g0(w), and w0(w) is given as:

g0(x) = g0(w) = g0





xc

yc

xb

yb

zb

θEE




=


−xc

−yc

− atan2(dy, dx)

atan2(dy, dx)− θEE

 (5.1.3)

w0(w) =
[
0, 0,

√
d2x + d2y, 0, zb, 0

]
(5.1.4)

Figure 5.2: Pouring angle θ is the angle between x̂s and the pouring di-

rection. We collect various pouring trajectory with 5 different pouring angle,

{−60◦,−30◦, 0◦, 30◦, 60◦}. Varying pouring angle will form 1-dimensional manner

space.
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5.2 Implementation Detail

For Learning from Demonstration, human expert should collect trajectory data.

We collect the end-effector trajectory by AprilTag SE(3) detection algorithm as

shown in Figure 5.3. AprilTag algorithm segments the attached tag on the bottle

and infers the configuration of the tag. For autoencoder training, we collect 75 =

5×3×5 standard trajectories with varying r ∈ {0.4 m, 0.5 m, 0.6 m, 0.7 m, 0.8 m},

h = {0.4 m, 0.5 m, 0.6 m} and pouring angle θ = {−60◦,−30◦, 0◦, 30◦, 60◦} where

the pouring angle θ is the angle between x̂s and the pouring direction as shown

in Figure 5.2. Varying pouring angle from −60◦ to 60◦ will form 1-dimensional

manner space.

Figure 5.3: Demonstration of end-effector trajectory which pours water into the

desired cup position. AprilTag SE(3) detection algorithm infers the configuration

of attached tag.
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In addition, for validation and test, we collect 60 standard trajectories with

randomly sampled r, h, and θ. Trajectory data is transformed by randomly sam-

pled group action g ∈ G in every batch. Since sampling rate of trajectory is 30

fps and total time is 9 s, size of a trajectory data is 3240 = 270× 12 where 12 is

the number of elements in SE(3) matrix except the last row.

We use fully connected neural network for f̃θ and h̃ϕ and set latent space

(manner space) dimension as 1. Autoencoder is trained with Adam optimizer and

0.0001 step size.

5.3 Results

5.3.1 Reconstruction Quality

Reconstruction loss for training dataset shows the accuracy of manifold learning

and reconstruction loss for test dataset shows the generalizabilty of the model.

Reconstruction losses for GSVAE and TCVAE are shown in Table 5.1.

Networks size is the number of hidden nodes and the number of hidden layers

of MLP networks that model f̃θ and h̃ϕ. Reconstruction loss is L2−norm between

data and reconstructed data. In Table 5.1, the larger network size of model is,

the smaller reconstruction loss for training is since the network become flexible.

In contrast, the reconstruction loss for test dataset does not have same tendency.

If the network size is too large, the reconstruction loss for test dataset saturates

due to the over-fitting. To compare the accuracy of manifold learning and general-

izability of two models, we selected TCVAE (512× 2) and GSVAE (32× 2) which

are colored red. Test reconstructions for two models are nearly identical while train

reconstructions and the number of parameters for GSVAE is much smaller than
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Table 5.1: Reconstruction error and the number of parameters of TCVAE and

GSVAE. Train reconstruction error shows the accuracy of manifold learning and

test reconstruction error shows the generalizability of each model. Reconstruction

error of GSVAE is lower than that of TCVAE with much less number of param-

eters.

Model (Net size) Train recon. Test recon. Number of parameters

TCVAE (32× 2) 1.88× 10−2 2.62× 10−2 213,099

TCVAE (128× 2) 5.91× 10−3 5.38× 10−3 867,243

TCVAE (512× 2) 3.30× 10−3 5.70× 10−3 3,852,459

GSVAE (32× 2) 1.14× 10−3 5.71× 10−3 212,939

GSVAE (128× 2) 2.25× 10−4 6.22× 10−3 866,603

GSVAE (512× 2) 2.25× 10−5 5.74× 10−3 3,849,899

TCVAE. Therefore, GSVAE can learn more accurate data manifold with less num-

ber of parameters.

We also qualitatively compare the reconstruction qualities of two models in

Figure 5.4. Blue line is an original demonstration trajectory and orange line is a

reconstructed trajectory by each model. A cup position is indicated as a black dot.

Reconstructed trajectory of TCVAE has some variance with the original demon-

stration trajectory while that of GSVAE is identical with the original demonstra-

tion trajectory. In addition, the reconstructed trajectory of TCVAE is noisy so

that the trajectory should be filtered to be used for real robot implementation.
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Figure 5.4: Reconstruction quality of each model. Blue line is the original trajec-

tory and orange line is the reconstructed trajectory. Cup position is marked with a

black dot. The trajectory reconstructed by TCVAE is far more deviated from the

original trajectory than that of GSVAE. In addition, the trajectory reconstructed

by TCVAE is highly noisy which is not adequate for real robot implementation.
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Table 5.2: Encoder invariance and decoder equivariance are measured for each

model. Invariance and equivariance of GSVAE is numerically zero while those of

TCVAE is not zero. This result shows that invariance and equivariance cannot be

achieved only by the data augmentation.

Model (Net size) Encoder Invariance Decoder Equivariance

TCVAE (32× 2) 9.11× 100 7.10× 102

TCVAE (128× 2) 3.78× 100 1.55× 102

TCVAE (512× 2) 7.40× 100 4.15× 102

GSVAE (128× 2) 1.80× 10−12 3.88× 10−13

GSVAE (512× 2) 9.28× 10−12 3.95× 10−13

GSVAE (512× 2) 2.10× 10−12 3.76× 10−12

5.3.2 Invariance and Equivariance

Since we augment the standard trajectory by randomly selected group action, TC-

VAE might be ale to learn invariance and equivariance of task symmetry without

the explicit regularization of network. To evaluate the invariance and equivariance

of the model, we evaluate two models with metrics defined in Section 4.2. Table 5.2

shows invariance and equivariance of two models. we observe that TCVAE model

cannot learn an invariant encoder and an equivariant decoder although training

data are augmented by group action. Also, we can check our invariant and equiv-

ariant neural network designs are valid from invariance and equivariance measure

of GSVAE. This shows that data augmentation does not ensure the invariance and

equivariance about group symmetry.

For other downstream tasks such as obstacle avoidance, LfD model should be
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able to generate various trajectories with different shapes. To generate a trajec-

tory with new characteristics, we can modulate latent variable (manner parame-

ter). Figure 5.5 and Figure 5.6 show a manner modulation performance of TCVAE

and GSVAE, respectively. We select a trajectory from training dataset and mod-

ify the manner parameter. More precisely, encode the training trajectory, fix the

task parameter, modify the task parameter to linearly interpolated manner param-

eters {−1,−0.5, 0, 0.5, 1}, and then decode by trained decoder. In each figure, cup

position (goal) is marked with black dot and bottle position (initial) is marked

with black cross. pouring directions are aligned to the vertical direction. Trajec-

tory shape (left, straight, or right with respect to the pouring direction) is marked

with black arrow. Figure 5.5 shows the manner modulation results of TCVAE.

Trajectory shapes are randomly varying while manner parameter is monotonically

increasing. For example, the trajectory shapes of Task 1 are varying in the order

of right, left, left, left, and center. This shows that trajectories are not smoothly

varying and the learned trajectory manifold by TCVAE is heavily twisted. In ad-

dition, each manifold with different task does not have aligned latent coordinates.

For example, the manner parameters with straight pouring direction are 1, 0, 0,

1, 0 in Task 1 ∼ 5. This shows that manifolds with different task parameters are

not aligned.

5.3.3 Manner Modulation

Figure 5.6 shows the manner modulation results of GSVAE. Trajectory shapes are

smoothly varying from left to right while manner parameter is monotonically in-

creasing. Furthermore, straight pouring direction is aligned with manner 0. This

shows that GSVAE can learn smooth manifold which is easy to modulate latent

variable and aligned manifolds which have different task parameter. We suggest
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Figure 5.5: Manner modulation of TCVAE. We randomly select 5 training data

and change each manner parameter to linearly interpolated manner parameter

{−1,−0.5, 0, 0.5, 1}. Trajectories are aligned to the vertical direction for visual-

ization. Manner modulation results in new trajectory with different shape. How-

ever, trajectories generated by TCVAE do not smoothly vary with monotonically

increasing manner parameter. This shows that the data manifold learned by TC-

VAE is highly twisted. In addition, manifolds with different task parameters do

not have a aligned latent space. The manifolds with task 2, 3, 5 have straight

pouring trajectory at manner zero but the manifolds with task 1, 4 have straight

pouring trajectory at manner 1.
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Figure 5.6: Manner modulation of GSVAE. The trajectories generated by GSVAE

smoothly vary with monotonically increasing manner parameter. This shows that

the data manifold learned by GSVAE is smooth. In addition, manifolds with dif-

ferent task parameters are also aligned. For every task, trajectories with straight

pouring direction are consistently at manner zero.
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that the reason why GSVAE can smooth and aligned manifolds is because every

training data is aligned and trajectories with the same manner become close.

5.3.4 Task Modulation

For robot to pour water into different goals, LfD model should be able to generate

various trajectories with different tasks. To generate a trajectory with a new goal,

we can modulate task parameter. Figure 5.7 shows the task modulation results of

TCVAE. Each generated trajectory successfully follow the given task parameters.

However, although the manner parameter is fixed and only task parameters are

varying, pouring directions of generated trajectories are also varying. This shows

that learned manner parameter and task parameter are not decoupled by TCVAE

and this is the key limitation of TCVAE model.

Figure 5.8 shows that task modulation results of GSVAE. Each generated tra-

jectory successfully follow the given task parameters. In addition, trajectory di-

rections are remain fixed and only tasks of trajectories are varying. GSVAE can

learn decoupled task parameter and manner parameter.

5.3.5 Robot Implementation

To evaluate the trajectories generated by GSVAE and TCVAE, we implement the

generated trajectories with FRANKA EMIKA robot, which is a 7DoF robot arm.

We generate trajectories by decoding randomly sampled manner parameter and

task parameter. Inverse kinematics should be solved for robot to follow the gener-

ated end-effector trajectory and we use a numerical inverse kinematics algorithms

introduced in [2]. Since the work space of the FRANKA robot is limited, we trans-

form the generated trajectories to the standard trajectory and then solve inverse
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Figure 5.7: Task modulation of TCVAE. We randomly select 5 training data and

change each task parameter to randomly selected cup positions. Task modulation

results in new trajectory with different goal position. However, trajectories gener-

ated by TCVAE do not preserve the shape of trajectory although manner param-

eter remain fixed. This result shows that task parameter and manner parameter

trained by TCVAE are coupled.
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Figure 5.8: Task modulation of GSVAE. Trajectories generated by GSVAE pre-

serve the shape of trajectory. This result shows that task parameter and manner

parameter trained by GSVAE are decoupled.
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kinematics. We smoothen the noisy trajectories by moving average with window

size 15 and upsample the solved joint angle trajectories to fps 1000 since time step

between each joint angle should be 0.001 s for position control of the FRANKA

robot. Before implementing to the real robot, we check the validity of generated

joint trajectory on simulation environment as shown in Figure 5.9.

Figure 5.9: Check validity of generated trajectories on mujoco simulation environ-

ment.

Figure 5.11 shows the robot pouring water with the trajectories randomly gen-

erated by TCVAE and GSVAE. Two failure modes are observed in the trajectories

generated by TCVAE. The trajectories do not pour water into the cup since the

pouring angle of bottle is insufficient or the trajectories spill the water out of the

desired cup position as shown in Figure 5.10. The trajectories of TCVAE are not

smooth so that inverse kinematics cannot be easily solved. Meanwhile, GSVAE

outputs sufficiently smooth and accurate trajectories.

We also count the success rate of water pouring of each model and the result is

given in Table 5.3. We generate 14 trajectories with randomly chosen task param-

eters and manner parameters and then implement them with the robot. Success
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rate of TCVAE is 7/14 = 50% and that of GSVAE is 12/14 = 86%.

Table 5.3: Success rate of water pouring. The trajectories generated by GSVAE

are more accurate and smooth to achieve the given tasks.

Model (Net size) TCVAE (512× 2) GSVAE (32× 2)

Success rate 7/14 12/14

Figure 5.10: Failure modes of TCVAE. The trajectories genereated by TCVAE of-

ten spill the water out of the cup or does not pour the water at all.
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Figure 5.11: Robot implementation of the trajectories generated by each model.

We randomly sample manner and task parameters and decode to trajectories. In

the case of GSVAE, most of the trajectories are smooth so that robot successfully

pour water into the desired cup position. However, in the case of TCVAE, two

failure modes are observed. In Task 2, the trajectory is far away from the cup

position so that the robot spill water. In Task 3, wrist angle are too small so that

the robot do not pour water into the cup.



6
Conclusion

We have proposed group symmetric variational autoencoder (GSVAE) to learn

a demonstration trajectory of a human expert with considering manifold struc-

ture in trajectory space and natural symmetry of robotic task. We have intro-

duced group action and invariance/equivariance to formulate the symmetry of task

and developed invariant and equivariant neural networks which are used for a

group-invariant encoder and a group-equivariant decoder of GSVAE. Two algo-

rithms, TCVAE and GSVAE, are compared with water pouring experiments. We

have verified the efficacy of GSVAE with diverse quantitative and qualitative mea-

sures such as reconstruction loss, invariance/equivariance measure, latent mod-

ulation, and success rate of robot implementation. We argue that our GSVAE

model has three contributions. By considering the natural symmetry of the given

task, GSVAE can (i) learn more accurate and more smooth data manifold with

fewer neural network parameters, (ii) ensure the invariance and equivariance about

group action without any data augmentation, and (iii) align and decoupled task

and manner.
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국문초록

시연 학습은 최적화나 샘플링 기반의 고전적인 동작 계획 알고리즘들의 한계를 해결

하는 강력한 방법론이다. 비용 함수를 명시적으로 정의하거나 고차원 공간에서 샘플

링하지 않고도 동작 계획기는 인간 전문가의 시연을 학습하여 사람과 비슷하고 정확

한 동작을 생성할 수 있다. 시연 데이터는 흔히 엔드 이팩터 경로의 형태로 주어지기

때문에 고차원이다. 이러한 고차원 데이터를 다루기 위해 고차원 데이터가 저차원의

다양체 위에 포함되어 있다고 가정하고, 이를 다양체 가정이라 부른다. 오토인코더는

데이터의 다양체 구조를 학습하기 위해 널리 사용되는 심층 생성 모델 중 하나이다.

그러나 시연 과정은 시간을 크게 소모하기 때문에 학습 데이터는 필연적으로 적다.

학습 데이터의 부족은 인공 신경망 모델이 과적합 되도록 하고, 정확한 동작을 생성

해낼 수 없게 한다. 평행이동이나 회전이동된 경로는 실제로는 같은 것이기 때문에,

평행이동과 회전이동에 대한 대칭성을 모델에 반영하면 데이터의 효율성을 증가시킬

수 있고 과적합을 방지할 수 있다. 이 논문에서는 먼저 로봇 작업에 내재된 대칭성을

군의 작용으로 표현한다. 그리고 대칭성을 나타내는 군에 대해 불변인 인코더와 등변

인 디코더를 가지는 군 대칭 오토인코더를 제안한다. 군 대칭 오토인코더가 다른 비교

모델에 비해 더 정확한 다양체를 학습하며 더 정확한 동작을 생성해낼 수 있음을 물

붓기 데이터셋을 통해 입증하였다.

주요어: 시연 학습, 다양체 학습, 표현 학습, 오토인코더, 작업의 대칭성, 군에 대한

불변성/가변성

학번: 2021-21058
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