creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

N 84S 9 2 Y LETY

Group Symmetric Autoencoders for
Learning from Demonstration

20234 2¢



Ad g A8 £ 93 LEU3Y

Group Symmetric Autoencoders for Learning from
Demonstration

ALens v F ¢
o] =ES FTHHA Y =foz AT
2022 1049

Asdstx g
7143

20224 12¢¥

a943: ()

4% : ()

9 4: Q)




ABSTRACT

Group Symmetric Autoencoders for Learning from

Demonstration
by
Minjun Son

Department of Mechanical Engineering

Seoul National University

Learning from Demonstration(LfD) is a powerful motion-planning framework to
resolve limitation of classical algorithm, such as optimization or sampling method.
Without designing explicit cost function or sampling in high-dimensional space,
motion planner can learn demonstration of human expert to generate accurate and
human-like motions. Demonstration data is often given in the form of end-effector
trajectory so that the data is often high-dimensional. To deal with the dimen-
sionality, high-dimensional data are assumed to be embedded on low-dimensional

manifold, which is called manifold hypothesis. Autoencoder is widely used deep



generative model to learn a data manifold. However, since demonstration is time-
consuming, the number of training data is inevitably small. Lack of training data
can cause over-fitting of neural network model and failure of generating accurate
motion. Since translated or rotated trajectories are indeed identical, endowing trans-
lational or rotational symmetry to model can improve data efficiency and pre-
vent over-fitting. In this paper, we first formulate the natural symmetry of robotic
task as group action. We then propose group symmetric variational autoencoder
(GSVAE) which has group-invariant encoder and group-equivariant decoder about
symmetry group. We show that GSVAE can learn data manifold and generate mo-

tion more accurately than baseline model with water pouring dataset.

Keywords: Learning from Demonstration, manifold learning, representation learn-

ing, autoencoders, symmetry of task, group invariance/equivariance
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Introduction

Motion planning is a process of determining a path from an initial state to a
goal state while avoiding obstacles and satisfying certain constraints such as joint
limits or torque limits [2]. Motion planning has been widely studied and is one
of the most essential parts of robotics. Popular approaches for motion planning
are (i) optimization-based algorithms [3] and (ii) sampling-based algorithms [4, B].
Optimization-based algorithms find a trajectory that minimizes the cost function
while satisfying some constraints. The design of cost function and constraints are
crucial components in optimization, where cost function and constraints should
be designed so that the optimal solution is unique and the optimization process is
stable. However, designing cost functions and constraints which satisfy the above
condition is not a trivial problem. On the other hand, sampling-based algorithms
find a trajectory by sampling on configuration space or state space. Sufficient sam-
ples to cover high-dimensional configuration space or state space are required, how-
ever generating samples to cover high-dimensional space is time-consuming and in-

tractable. Pouring water, pegging in a hole, and scooping are examples of robotic



tasks which are hard to implement with the aforementioned motion planning algo-
rithms. Learning from demonstration (LfD) method is one of the most successful
approaches to avoid these problems [0} [7, 8]. Rather than specifying cost function
analytically or sampling in high-dimensional space, observations of a human ex-
pert (demonstrations) are used to train a motion planner and then the trained
motion planner can generate accurate and human-like motions.

A Motion planner model for LfD should satisfy two properties: (i) generalizabil-
ity and (ii) learning data manifold. (i) Just replaying the given human demonstra-
tion is not sufficient and the motion planner should be able to generate the motion
which is not observed in demonstration data. This property is called generalizabil-
ity of a model. (ii) Demonstration is often given as trajectory of end-effector and as
a result, demonstration data is high-dimensional. We note that high-dimensional
trajectory data do not occupy the whole trajectory space due to smoothness of
trajectory and constraints of the given tasks. To find a low-dimensional represen-
tation of high-dimensional data, we adopt a manifold hypothesis [9] [10]. That is,
high-dimensional data are embedded on a low-dimensional manifold. The motion
planner model should be able to learn the manifold structure of trajectories and
generate a trajectory from low-dimensional parameters.

In this paper, we divide the low-dimensional parameters into two categories:
task parameter and manner parameter [II]. Let’s start with pouring water ex-
ample. In the pouring water example, a user aims to train the motion planner
which generates the trajectory that pours water in a bottle to a cup. Water pour-
ing trajectories are given by human experts and each trajectory is represented by
some low-dimensional parameters. Some low-dimensional parameters should spec-
ify goals of the trajectories such as the position of the cup or the initial config-

uration of the bottle. These parameters are called task parameters. The rest of



the low-dimensional parameters indicates the information except the goal of the
trajectory such as shape of the trajectory or speed of the trajectory. These pa-
rameters are called manner parameters. The model should be able to represent
high-dimensional trajectory into task and manner parameters separately and gen-
erate a trajectory that executes the given task parameter accurately.

An autoencoder is a widely used deep generative model to generate a general-
ized trajectory and to learn the manifold structure of given human demonstration
[11, 12]. Autoencoder consists of two neural networks: encoder and decoder. An en-
coder is a mapping from high-dimensional space to low-dimensional space and a
decoder is a mapping from low-dimensional space to high-dimensional space. The
low-dimensional space is called a latent space or coordinate space. Encoder and
decoder are trained to minimize the reconstruction loss of the given training data
and become a coordinate chart of the trained manifold. After training, the decoder
can be used to generate a new trajectory. First, sample some low-dimensional pa-
rameters in the latent space and then decode the sampled parameters to high-
dimensional trajectories.

Training deep generative models often requires a large amount of dataset. If the
number of data is insufficient, the model is highly overfitted to the training dataset
and the generalizability of the model is not guaranteed [I3]. However, gathering
demonstrations of human experts would be time-consuming and this prevents LfD
framework from being applied to high-dimensional trajectory space. Autoencoders
are often regularized to combine prior knowledge of tasks or to endow better in-
ductive bias [I0, 14, 15]. To leverage the difficulty in gathering demonstration,
we focus on the natural symmetry contained in robotic tasks. For the pouring
water example, there are translational symmetry on the planar position of a cup

and rotational symmetry on the relative position of a bottle. If we consider the



natural symmetry of tasks, all symmetric trajectories from a single demonstration
are known so that we can train the model with much fewer demonstrations. In
this paper, we represent the natural symmetry of task by group action and then
we formalize neural networks which are invariant and equivariant for the given
group. Using these invariant and equivariant neural networks, we propose a Group
Symmetric Varational Autoencoder (GSVAE) which has an invariant encoder and
an equivariant decoder to learn a group symmetric representation of trajectory
demonstration.

Various experimental results on water pouring dataset verify the performance
of our model. The accuracy of manifold learning and generalizability of LfD models
are compared by reconstruction error on training dataset and validation dataset.
We have shown that our GSVAE model can learn the more accurate manifold with
fewer neural network parameters and have better generalization capacity than a
baseline model. In addition, trajectories which are generated from linearly interpo-
lated latent variables are visualized to compare the generation power of LfD mod-
els. Our GSVAE model generates more smoothly varying trajectories by modulat-
ing manner parameters, that is GSVAE can learn more smooth manifolds than the
baseline model. Lastly, robot experiments are implemented to compare the mod-
els in the real world situation. The success rates of the generated trajectories are
compared and GSVAE shows a higher success rate.

The paper is structured in the following way. Chapter 2 contains mathematical
preliminaries which are essential to formulate group symmetric variational autoen-
coder. Autoencoder models for manifold learning are explained and definitions for
group action, invariance and equivariance are given to represent the natural sym-
metry of task. Chapter 3 constructs an invariant neural network and an equiv-

ariant neural network about a given symmetry group. Chapter 4 proposes group



symmetric autoencoder. Chapter 5 contains experiments for water pouring dataset.
Group action of water pouring dataset is formulated in this chapter and the per-
formances of models are proposed. Chapter 6 concludes the paper with a summary

of contributions and experimental results.



Preliminaries

In this chapter, autoencoder models and group action are introduced. First, the
structure and training process of vanilla autoencoder are introduced and other
variants of vanilla autoencoder such as variational autoencoder (VAE) and task-
conditioned autoencoder (TCVAE) are also introduced. The concepts of group ac-
tion, invariance, and equivariance are formulated to represent the natural symme-

try of tasks in mathematical form. Let’s start with autoencoder models.

2.1 Autoencoders

2.1.1 Vanilla Autoencoders

Autoencoder is a neural network model to reconstruct high-dimensional data with
a bottle-neck structure in the middle as shown in Figure Autoencoder con-

sists of two networks: an encoder network and a decoder network. The encoder
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Ideally they are identical Reconstructed
Input B N .
XX input
Bottleneck
Encoder
x |— h SE— T Decoder __ .
s fa

Low-dimensional representation
of high-dimensional input

Figure 2.1: Structure of a vanilla autoencoder [I]. Encoder encodes a high-
dimensional input = into a low-dimensional latent variable z and decoder recovers
the latent variable back into the high-dimensional input . The encoder and de-
coder are parameterized by neural network parameters 6,¢ and trained to mini-
mize the reconstruction error so that the original input z and the reconstructed

input Z are identical.

network encodes the high-dimensional input into a low-dimensional latent vari-
able. The low-dimensional latent variable is a “compressed code” for the high-
dimensional input x which contains essential information for reconstruction and
other non-necessary information is wiped out. The decoder network recovers the
low-dimensional latent variable back into the high-dimensional data. The encoder
function g(-) and the decoder function f(-) are parameterized by ¢ and 6. The
compressed latent variable for input = is z = g¢(x) and the reconstructed input
is T = fp(2) = fo(g9s(x)). Neural network parameters ¢ and 6 are trained to min-

imize the difference between the original input z and the reconstructed input Z.
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The difference measure for reconstruction is often selected as MSE loss:
Z z — folgs(xi)))? (2.1.1)
=1

where D = {x1,x9,--- ,zn} is a training dataset.

2.1.2 Manifold Interpretation of Autoencoder

A manifold is a topological space that resembles Euclidean space locally. More
specifically, an abstract manifold is a Hausdorff, second-countable topological space
that is locally homeomorphic to Euclidean space of some finite dimension, known
as the dimension of the manifold [I6]. This is called the intrinsic definition of a
manifold. Meanwhile, there is another way to define a manifold, which is called the
extrinsic definition of a manifold. In the extrinsic view, a manifold is considered
embedded in some high-dimensional Euclidean space. An n—dimensional manifold
embedded in R™ (n < m) is a subset of R™ such that each point in R has a
neighborhood that is homeomorphic to an open subset of R™. When a manifold is
viewed in the extrinsic view, it is easy to define concepts of tangent or normal us-
ing intuition from high-dimensional Euclidean space. Since an n—manifold locally
resembles R™, there is an invertible mapping between the manifold and R” and this
mapping is called a local chart of the manifold. We can describe high-dimensional
points on a manifold by n coordinates using a local chart. For example, the globe
is a 2—dimensional manifold embedded in R® and a world map is a local chart of
the globe.

In machine learning, there are various types of data such as images and video
and these data are often high-dimensional. For example, a 200 x 200 sized image is
represented by a 40, 000-dimensional vector and representing color video data re-

quires an even higher-dimensional vector. If we randomly sample vectors in R40000
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Off-manifold
images Manifold of
Number images

On-manifold
4 4 y 'b. images

]R/}OOOU

Figure 2.2: Number image data are on a low-dimensional manifold rather than oc-
cupying the whole high-dimensional image space. Samples on the low-dimensional
manifold are normal number image data while samples off the manifold are noisy

images.

and visualize these vectors, most of the vectors represent just noisy images. Thus,
natural images such as number images or human face images are concentrated in a
small region rather than occupying the whole high-dimensional image space, that
is, natural images form a low-dimensional manifold embedded in high-dimensional
space as shown in Figure This is called the manifold hypothesis [9, [10]. If a
model can learn a local chart of the data manifold, high-dimensional data can be
represented using much fewer variables. Autoencoder is indeed an exact model to
learn the manifold structure of high-dimensional data. In Figure the image of
decoder M = fp(R") is the learned data manifold and latent variable z is a low-

dimensional coordinate of input x. The encoder and the decoder act like a local

&) et



2.1. Autoencoders 10

Coordinate (latent)

Encoder Decoder

hg (x) fo(2)

=t

Rm Rﬂ Rm

9o v fo

‘J_' Coordinate Space }’
(Latent Space)

Figure 2.3: Autoencoder learns the manifold structure of high-dimensional dataset.
Encoder and decoder become a local chart of the data manifold and latent variable
become a coordinate. The trained data manifold is a image of latent space by

decoder, that is fg(R"™).

chart of the data manifold. By modulating latent variable z and mapping by the

decoder, we can generate smoothly varying high-dimensional data.

2.1.3 Variational Autoencoder

Vanilla autoencoder maps the input into a fixed vector so that a distribution of
dataset cannot be captured. Rather than mapping the input into a fixed vector,

variational autoencoder (VAE) [12] maps a vector into a distribution. Let’s assume
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that the dataset D = {z1,x9, - ,zn} is sampled by the following sampling pro-
cess: (i) a latent variable z; is sampled from some prior distribution p(z) = N (0, 1),
(ii) a data z; is generated from some conditional distribution p(z|z). We can model
the conditional distribution p(x|z) as a parameterized distribution pg(x|z).

In estimation theory, maximum likelihood estimation (MLE) or maximum a
posteriori (MAP) estimation are commonly used to estimate the best parameter
6. For MLE and MAP, the marginal likelihood pp(z) = [ pg(z|z)p(z)dz and the
posterior density pg(z|z) = pg(x|2)p(2)/pe(x) should be evaluated but these evalu-
ations are often intractable in case of the complicated likelihood functions py(x|z)
such as a deep neural network.

Rather than directly estimating the evidence of the posterior, we introduce a
parametric model gy(z|x) to estimate the true posterior pg(z|x). The difference be-
tween the true posterior and the model posterior can be measured with Kullback-

Leibler divergence (KL-divergence):

e e Pl
Diculas(elo)llpn(ele)) = [ aoelo)1 K (2.12)

If we expand the KL-divergence, we can obtain:

Dicr(ag(2|2)l|po(z]2)) = log po(x) + D r(qs(212)|1p(2)) = Bz, (2)2) log po(2l2)
(2.1.3)
By rearranging the equation, we can obtain the evidence lower bound (ELBO)

for the marginal likelihood pg(z):
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log pg(x) = log po(x) — Dxr(qs(z]2)]|pe(z|2)) (2.1.4)
= Ez~q¢(z\a§) log py (:L'|Z) — Dk1 (Q¢(z|l‘) | |p(2)) (215)
= Lerpo(0, ¢; ) (2.1.6)
B Ideally they are identical _ Reconstructed
Input < x &% ! input
Probabilistic Encoder Probabilistic Decoder
qp(zlx) pa(x|z)
Sampled
latent vector
ﬂ¢(x) e (2)
x z %
E¢(x) Zg(2)
Low-dimensional representation
of high-dimensional input

Figure 2.4: Structure of a variational autoencoder. Variational autoencoder en-
codes and decodes the high-dimensional input in a probabilistic manner. Latent
variable z is sampled from a probabilistic encoder gy(z|x) given the input x and
reconstructed input Z is sampled from a probabilistic decoder py(z|z) given the la-
tent z. Gaussian prior p(z) = N(0,1) is assumed and parameters 6, ¢ are trained

with ELBO loss.

Maximizing Lrrpo about 6 and ¢ is identical to maximizing the log-likelihood
and to minimizing the KL-divergence between the model posterior and the true

posterior. Thus, the objective function is:
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N

1

0%, ¢~ = argeglin—NZEELBO(H,qﬁ; x;) (2.1.7)
: i=1

Likelihood pg(x|z) and posterior g4(z|z) construct an autoencoder structure.
Since two functions are probability distributions, the likelihood function is called
a probabilistic encoder and the posterior function is called a probabilistic decoder.
Two distributions are often selected as Gaussians whose means and covariances are

modeled by neural networks as shown in Figure

2.1.4 Task-Conditioned Variational Autoencoder

Variational autoencoder can be trained for Learning from Demonstration (LfD) ap-
plications. Human expert’s demonstration is often given in the form of end-effector
trajectory and trajectory for robotic tasks has some constraints. For example, sup-
pose that a human expert demonstrates pouring water into a cup. A demonstra-
tion is a continuous trajectory and a water bottle should be upright not to spill
water until reaching near the cup. These constraints restrict the valid trajectories
and trajectory demonstration data occupy the whole high-dimensional trajectory
space. Thus, demonstration data is often assumed to form a manifold structure.
By learning the demonstration manifold, we can easily generate a new trajectory
that satisfies the above constraints without specifying the constraints analytically.

Task-conditioned variational autoencoder (TCVAE) [II] is proposed to learn
a manifold structure of trajectory demonstration and generate a new trajectory.
Figure describes the structure of TCVAE. The input x and the reconstructed
input & of TCVAE are high-dimensional trajectory data. The difference between
VAE and TCVAE is that the latent variable of TCVAE is split into two variables:

task parameter w and manner parameter z. Task parameter w describes the goal
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Input . Ideally they are identical Reconstructed
npu x =X input
Manner parameter

1 (x) i
“ 1o (z,w)
X ng(x) %
/ Z(z,w)
w
Probabilistic Encoder Probabilistic Decoder
Task parameter
q4(z|x) po(x|z,w)

Figure 2.5: Structure of a task-conditioned autoencoder. The difference between
task-conditioned autoencoder and variational autoencoder is a task parameter. For
learning from demonstration problem, task of given demonstration is represented
by a single parameter w. Probabilistic decoder gets latent variable (manner pa-
rameter) together with task parameter as an input to generate a trajectory which

achieves the given task.

of trajectories such as the position of a cup or the initial configuration of a bottle.
Manner parameter z describes other characteristics of the trajectory such as the
shape of the trajectory or speed of the trajectory. A probabilistic encoder g4(z|x)
encodes characteristics of the trajectory input x into manner parameter z, which
is identical to the encoder of VAE. On the other hand, an input of the probabilis-
tic decoder is augmented by concatenating the task parameter w with the manner
parameter z. The decoder translates the latent manner parameter back into tra-

jectory data which targets the given task parameter. A dataset for TCVAE should
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Figure 2.6: Decoder of task-conditioned autoencoder can generate a new trajec-

tory. If we modulate the task parameter w, the decoder generates a new trajec-

tory which aims a different goal while other characteristics such as shape or speed

remain unchanged. If we modulate the manner parameter z, the decoder generates

a new trajectory which has different shape while the goal remains unchanged.

have more information about task parameters. A pair of trajectory x and the cor-

responding task parameter w should be collected together and these pairs compose

a training dataset D:

D = {(x1,w1), (x2,w2), -, (zN,wN)}

(2.1.8)
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and the evidence lower bound for TCVAE is:

EELBO(av ¢;x, w) = Ezwq¢(z|m) lng9($|Z, w) - DKL(Q¢(Z|:C)HP(Z)) (219)

By the definitions of task and manner parameters, we want to decouple both
parameters, that is, information about the goal of a trajectory cannot be inferred
from the manner parameter. If not, the goal of the trajectory will change also by
modifying the manner parameter. However, task-conditioned variational autoen-
coder does not ensure such decoupling properties and additional network and reg-
ularization terms are required for decoupling. An auxiliary neural network f;, is
added which is used to predict the task parameter w from the manner parameter

z and the auxiliary network f, is trained by the following optimization:

min mgxﬁam = min mgx Li(fn(pg(x)), w) (2.1.10)
U n

By minimizing this auxiliary loss, the auxiliary network f,, becomes more skilled
for inferring task parameters from manner parameters. Since our goal is to decou-
ple the task parameter from the manner parameter, TCVAE can be adversarially

optimized by the following alternating optimization problem:

Igli(bn EELBO — aﬁaw min Eaux (2.1.11)
n

)

Despite this auxiliary regularization, we observe that the regularization does not
significantly improve the performance of TCVAE model and does not guarantee
the decoupling. In this paper, we train the TCVAE model without the additional
regularization term.

After training TCVAE, the decoder of TCVAE can generate a new trajectory

with the given task. Figure shows the generation process of the trajectory using
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the decoder. Select a manner parameter z and a task parameter w and then de-
coding by the trained decoder generates the corresponding trajectory. If we modify
the task parameter, the generated trajectory is transformed to execute the mod-
ified task parameter while maintaining the shape or speed of the trajectory. On
the other hand, if we modify the manner parameter, the shape of the trajectory
is changed while the objective of the trajectory is unchanged.

In LfD, collecting demonstration data is a highly time-consuming process and
the number of training data often lacks for training a deep neural network without
over-fitting. TCVAE also suffers from this lack of training data and over-fitting
and often fails for the task parameter which is unseen in the training phase. This
over-fitting problem can be resolved by considering the natural symmetry of the
robotic task. In the next section, the natural symmetry of the task is introduced

in the sense of group action, invariance and equivariance.

2.2 Symmetry and Group Action

The goal of this section is to define symmetry of robotic task mathematically. Sym-
metry is often used to refer to an object or a system that is invariant under some
transformation such as translation, reflection, or rotation. The definitions of trans-

formation and invariance are given in the following subsections.

2.2.1 Group Action

A group action is a way for a group to act on a set, it is defined as a function
that assigns a transformation to each element of the group, preserving the group
operation. In other words, a set of transformations on a set forms a group struc-

ture so that transformations can be composited and inverted like group elements
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[I7]. Let G be a group with identity element e and X be a set. Then a group

action is a binary operation - : G x X — X satisfies the following two axioms:

(Identity) e-x = (2.2.12)

(Compatibility) g1 - (g2 - z) = (9192) - © (2.2.13)

where x € X and ¢1,92 € G. Under these axioms, the set X together with an

action of GG is called a G—set.

2.2.2 Invariance and Equivariance

To describe symmetry, invariance should be defined. Let X be a G—set and - :
G x X — X be a group action of G on X. A function f: X — Y is said to be
invariant about G if

flg-z)=f(x) Vx e X,9€ G (2.2.14)

Since an object (function f) defined on a space X is not changed by the transfor-
mation (group action G), we often say that there exists a symmetry in the space
X.

Meanwhile, we introduce another important concept about symmetry, equiv-
ariance. Assume that Y is also a G—set and *: G x Y — Y be a group action of

G on Y. A function h: X — Y is said to be equivariant about G if
hg-x)=gx*h(z) Ve X,g€ G (2.2.15)

While an invariant function maps an element of X to the same element regard-
less of group action g, an equivariant function preserves the group action before

and after mapping.



Group Invariant and Group

Equivariant Neural Networks

In this chapter, we construct an invariant neural network and an equivariant neu-
ral network about a given symmetry group G. Invariant neural networks and equiv-
ariant neural networks can be constructed by transforming every input into a stan-

dard input. To define the standard input.

3.1 Group Invariant Neural Networks

A group-invariant neural network can be constructed as follows. Let fg : X =Y be
any function modeled by a neural network where 6 is the parameter of the neural
network. Group invariant function fy : X — Y can be constructed by replacing
all points that can be transformed to each other by some group action into some

standard input zg. More formally, define an equivalence relation ~ by:

x1 ~ x9 if there exists ¢ € G such that z1 = ¢ - x2 (3.1.1)

19

S— ]



3.2. Group Equivariant Neural Networks 20

The equivalence relation ~ partitions the set X into subsets which are called
equivalence classes. For each equivalence class, pick a fixed point x( that represents
all points in the equivalence class. With abuse of notation, let zg be a function
that maps every point = € [xo] to the standard x¢, that is xo(z) = z9. And define
go(z) as the group element in G such that x¢ = go(z) -z and go(g-x) = go(z)g~'.

Then the function fy: X — Y defined as

fo(x) = folgo(x) - z) = fo(xo(x)) (3.1.2)
is invariant about the group G.

Proof.

3.2 Group Equivariant Neural Networks

A group equivariant neural network can be constructed as follows. Let l~1¢ X —>Y
be any function modeled by a neural network where ¢ is the parameter of the

neural network. Then the function hg : X — Y defined as

hol) = go(@) ™" # hs(go(x) - 2) = go(a) ™"  hs(wo(a)) (3.2.3)

is equivariant about the group G.
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Proof.

he(g-2) = golg - )" *hg(go(g - x) - (9~ )
= (go(x)g™") " * hy(go(x)g™" - (g - x))
= ggo(x) * hy(go(x) - x)
= g+ (go(x) * hy(go(w) - 7))

= g* hy()
O

A group invariant neural network and a group equivariant neural network are
used to construct an autoencoder model that considers the natural symmetry of

robotic tasks in the following chapter.



Group Symmetric Autoencoder

In this chapter, we propose a group symmetric autoencoder model (i) which learns
the manifold structure of trajectory data conditioned by task and (ii) which has
an invariant encoder and equivariant decoder about the natural symmetry of the
given task. To make a notation simple, we first begin with deterministic task-
conditioned autoencoder rather than the variational form. In other words, encoder

he(x) and decoder fp(z, w) are mappings between vectors instead of distributions.

4.1 Construction of Group Symmetric Autoencoder

We argue that the encoder should be invariant and the decoder should be equiv-
ariant about the symmetry group to consider a natural symmetry of robotic task
and improve data efficiency. Figure [£.]] shows invariance of an encoder. When tra-
jectory x is transformed by group action g, that is g - x, the characteristics of

trajectory such as shape or speed are not changed. Since these characteristics are

22
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encoded into manner parameter, encoder hg(z) should encode x and g -z invari-

antly, that is hg(z) = hg(g - x).

@ Manner space

Transform

= z=hy(x) = hg(x')

Figure 4.1: Encoder which is invariant to the given symmetry group. The invariant
encoder maps the original trajectory z and the transformed trajectory 2’ = g -«

into the same manner z, that is he(z) = hy(g - ).

fo x
W’ /
I

Transform/ x L~ }H\/—\
w fo @
Task space / Transform

Figure 4.2: Decoder which is equivariant to the given symmetry group. If task
parameter w is transformed to w’, the outputs of w and w’ by the decoder also

differ by the same transformation, that is fy(z,9-w) =g fo(z,w).

Figure shows equivariance of the decoder. By modulating task parameters

and decoding through the decoder, we can generate a new trajectory that aims for



4.1. Construction of Group Symmetric Autoencoder 24

a generalized task. When we transform task parameter w by group action g, that
is g-w, two decoded trajectories fy(z,w) and fy(z, g-w) have the same characteris-
tics but execute the different tasks which are exactly transformed by g. Therefore,
decoded trajectories fy(z,w) and fy(z,g-w) should be also in the transformation
of one to another, that is fy(z,9-w) =g - fo(z,w).

Using invariant and equivariant neural networks introduced in Chapter [3| we
can construct an invariant encoder and an equivariant decoder. Let - : G x X — X
be a group action of G on X and *: G x W — W be a group action of G on W.

An invariant encoder can be constructed as the following steps:
(i) Model a neural network hg: X — Z
(ii) Define the standard input zp for each equivalent class in X/ ~.

(iii) Find a group action go(x) that transforms x into the standard input xg, that

is g = go(z) - .
(iv) Construct an invariant encoder:
ho(@) = he(go(x) - @)
An equivariant decoder can be constructed as the following steps:
(i) Model a neural network fy: (Z x W) — X
(ii) Define the standard task wq for each equivalent class in W/ ~.

(iii) Find a group action gp(w) that transforms w into the standard input wy,

that is wo = go(w) - w.

(iv) Construct an equivariant decoder:

fo(z,w0) = go(w) ™" - fo(z, go(w) * w)
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So far, a group symmetric autoencoder is proposed, which has a deterministic
encoder and decoder. If we generalize the model to a probabilistic model, the mean
function and covariance function of the encoder and decoder should be invariant
and equivariant. This modification is straightforward and we call this variational
model as group symmetric variational autoencoder (GSVAE). In the experiment
chapter, we will use the GSVAE model instead of the deterministic group sym-

metric autoencoder.

4.2 Measures for Invariance and Equivariance

While GSVAE has a completely invariant encoder and equivariant decoder, other
models are not explicitly regularized for the encoder and decoder to be invariant
and equivariant. Therefore, measures to quantify invariance and equivariance are

required. Invariance measure Z for encoder fy is defined as:

1 m
I(fo)(x) = — > Ilfo(x) = falgi - )|3 (4.2.1)
i=1
where ¢; (i = 1,2,--- ,m) is randomly sampled group action from G. Since the

manner space is a Euclidean space, we choose the distance between two manner

parameters as Lp—norm || - ||2. Equivariance measure £ for decoder hy is defined
as:
1 &
E(hg)(z,w) = — Y _dist (hg(z, gi * w), gi - he(z,w)) (4.2.2)
Lt

We need to define a distance function dist(-,-) between two trajectories of configu-
ration. Since a demonstration trajectory is a sequence of SFE(3) for water pouring
dataset, the distance between two sequences of SE(3) should be defined. We de-

fined the distance function dist(-,-) as an average of geodesic distance between two
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SE(3) for every time step. The geodesic distance between two SE(3) is defined as:
d(T1,Ty) = |[log(Ry ' Ro)|3 + llp1 — p2ll3 (4.2.3)

where R; € SO(3) and p; € R? are the rotation matrix and the position vector of

T; € SE(3).



Experiments

In this section, we will compare TCVAE and group symmetric variational autoen-
coder (GSVAE, our model) on water pouring dataset [7]. Reconstruction loss and
invariance/equivariance measures will be provided for quantitative comparison of
two models. Reconstruction visualization, manner parameter modulation, and task

parameter modulation will be provided for qualitative comparison of two models.

5.1 Water Pouring Dataset

We demonstrate GSVAE and TCVAE to real world LfD problem, water pour-
ing. Configuration of water pouring problem is shown in Figure A trajectory
r = [Ty, Ty, ---,Tn,] € SE(3)M = X consists of N; samples of SFE(3) which are
expressed about the fixed frame {s}. A task parameter w = [z, Yc, 2, Yp, 2b, OEE| €
R® x St = W is consist of 6 parameters where (z.,¥.) is a planar position of the
cup, (xp,yp, 2p) is a spatial initial position of the bottle, and Opp is a rotation

angle of bottle frame {b} about bottle axis {z}.

27
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(X5, Yb, Zb]

W= [xCI YorXb) Vbr Zbs BEE]

Act
go(x) = go(w)

Xo(x) = go(x) - x

[r,0,R]

TS % T

wo(w) = go(w) + w = [0,0,7,0,h]
Figure 5.1: Configuration of water pouring problem. Task parameter is identified
as w = [Xc, Ye, T, Yo, 2, Opp] and each trajectory is transformed to the standard
trajectory whose pouring direction is aligned with —Z, and initial configuration of

bottle is also aligned with .
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To implement GSVAE, an user should specify a symmetry of task and group
action. There are three different symmetry in water pouring problem: (i) transla-
tion about plane, (ii) rotation about axis of cup, and (iii) rotation of bottle frame
{b} about axis of bottle. We set the symmetry group of water pouring problem as

G = R? x T? and define the group actions of G on X and Z x W as follows:

Group action of G on X
For g = [Az, Ay, Aby, AOpp] € RZX T2 =G, - : G x X — X is defined as follows:

g‘x:g'[T17”‘7TNt]:|:T1/7"'7T]/\[t]7 (511)
where T} = Rot (2, AOy,) T;Rot (2, AOgg) + Trans ([Az, Ay, 0])

Group action of G on W
For g = [Ax, Ay, ABy, AOpp] € R2xT?2 =G, * : Gx W — W is defined as follows:

[ Te ] [ T+ Az |
Ye ye + Ay
Ty Ty + Ax + (dx cos Ay, — dy sin Ach)
gxw =g * = (5.1.2)
Ub yp + Ay + (dy sin Al + dyy cos Abgy)
Zb Zb
125721 Opr + Al + AbpE

where d; = xp — . and dy, = yp — Ye.

For group symmetric representation learning, we need to specify standard tra-
jectory xg, standard task wg, and group actions gg(x),go(w). In water pouring
problem, we set the standard input as the trajectory where the cup is on the

origin and the bottle frame {b} is aligned with {s} as shown in the bottom of
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Figure Formal definitions of go(x), go(w), and wp(w) is given as:

_ N -
Ye | —Zec ]
9o(x) = go(w) = go mb = e (5.1.3)
Up —atan2(dy, d;)
2 _atanQ(dy, dy) — OpE |
9pE

wo(w) = {0,0, 2+ dg,o,zb,o] (5.1.4)

Initial Bottle
Position

Varying
Pouring Angle

Varying
Pouring
Angle

T T t T U
M -0.2 -0.1 0.0 0.1 0.2
y

Figure 5.2: Pouring angle 6 is the angle between Z; and the pouring di-

\ Desired Cup

Position

rection. We collect various pouring trajectory with 5 different pouring angle,
{—60°,—-30°,0°,30°,60°}. Varying pouring angle will form 1-dimensional manner

space.

MqET

H 8}

TU
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5.2 Implementation Detail

For Learning from Demonstration, human expert should collect trajectory data.
We collect the end-effector trajectory by AprilTag SE(3) detection algorithm as
shown in Figure AprilTag algorithm segments the attached tag on the bottle
and infers the configuration of the tag. For autoencoder training, we collect 75 =
5x 3 x5 standard trajectories with varying r € {0.4 m,0.5 m,0.6 m,0.7 m,0.8 m},
h ={0.4 m,0.5 m,0.6 m} and pouring angle § = {—60°, —30°,0°,30°,60°} where
the pouring angle 6 is the angle between Z; and the pouring direction as shown
in Figure Varying pouring angle from —60° to 60° will form 1-dimensional

manner space.

Figure 5.3: Demonstration of end-effector trajectory which pours water into the
desired cup position. AprilTag SE(3) detection algorithm infers the configuration
of attached tag.
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In addition, for validation and test, we collect 60 standard trajectories with
randomly sampled r, h, and . Trajectory data is transformed by randomly sam-
pled group action g € G in every batch. Since sampling rate of trajectory is 30
fps and total time is 9 s, size of a trajectory data is 3240 = 270 x 12 where 12 is
the number of elements in SE(3) matrix except the last row.

We use fully connected neural network for fp and ﬁ(b and set latent space
(manner space) dimension as 1. Autoencoder is trained with Adam optimizer and

0.0001 step size.

5.3 Results

5.3.1 Reconstruction Quality

Reconstruction loss for training dataset shows the accuracy of manifold learning
and reconstruction loss for test dataset shows the generalizabilty of the model.
Reconstruction losses for GSVAE and TCVAE are shown in Table [E.11

Networks size is the number of hidden nodes and the number of hidden layers
of MLP networks that model fg and ﬁ¢. Reconstruction loss is Ly—norm between
data and reconstructed data. In Table the larger network size of model is,
the smaller reconstruction loss for training is since the network become flexible.
In contrast, the reconstruction loss for test dataset does not have same tendency.
If the network size is too large, the reconstruction loss for test dataset saturates
due to the over-fitting. To compare the accuracy of manifold learning and general-
izability of two models, we selected TCVAE (512 x 2) and GSVAE (32 x 2) which
are colored red. Test reconstructions for two models are nearly identical while train

reconstructions and the number of parameters for GSVAE is much smaller than
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Table 5.1: Reconstruction error and the number of parameters of TCVAE and
GSVAE. Train reconstruction error shows the accuracy of manifold learning and
test reconstruction error shows the generalizability of each model. Reconstruction

error of GSVAE is lower than that of TCVAE with much less number of param-

eters.

Model (Net size) | Train recon. Test recon. | Number of parameters
TCVAE (32 x 2) 1.88x 1072 2.62 x 1072 213,099

TCVAE (128 x 2) | 591 x 1072  5.38 x 1073 867,243
TCVAE (512x2) | 330x 1073 570 x 1073 3,852,459
GSVAE (32 x 2) 1.14 x 1073 5.71 x 1073 212,939

GSVAE (128 x2) | 2.25x107*  6.22x 1073 866,603

GSVAE (512 x 2) 225 x 107 5.74 x 1073 3,849,899

TCVAE. Therefore, GSVAE can learn more accurate data manifold with less num-
ber of parameters.

We also qualitatively compare the reconstruction qualities of two models in
Figure Blue line is an original demonstration trajectory and orange line is a
reconstructed trajectory by each model. A cup position is indicated as a black dot.
Reconstructed trajectory of TCVAE has some variance with the original demon-
stration trajectory while that of GSVAE is identical with the original demonstra-
tion trajectory. In addition, the reconstructed trajectory of TCVAE is noisy so

that the trajectory should be filtered to be used for real robot implementation.
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Reconstruction of TCVAE (512 X 2)

= : Original Trajectory = : Recon Trajectory e : Cup Position

Figure 5.4: Reconstruction quality of each model. Blue line is the original trajec-
tory and orange line is the reconstructed trajectory. Cup position is marked with a
black dot. The trajectory reconstructed by TCVAE is far more deviated from the
original trajectory than that of GSVAE. In addition, the trajectory reconstructed

by TCVAE is highly noisy which is not adequate for real robot implementation.

A-ed) st
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Table 5.2: Encoder invariance and decoder equivariance are measured for each
model. Invariance and equivariance of GSVAE is numerically zero while those of
TCVAE is not zero. This result shows that invariance and equivariance cannot be

achieved only by the data augmentation.

Model (Net size) | Encoder Invariance Decoder Equivariance
TCVAE (32 x 2) 9.11 x 10° 7.10 x 102
TCVAE (128 x 2) 3.78 x 10° 1.55 x 102
TCVAE (512 x 2) 7.40 x 10° 4.15 x 10?
GSVAE (128 x 2) 1.80 x 10712 3.88 x 10713
GSVAE (512 x 2) 9.28 x 10712 3.95 x 10713
GSVAE (512 x 2) 2.10 x 10712 3.76 x 10712

5.3.2 Invariance and Equivariance

Since we augment the standard trajectory by randomly selected group action, TC-
VAE might be ale to learn invariance and equivariance of task symmetry without
the explicit regularization of network. To evaluate the invariance and equivariance
of the model, we evaluate two models with metrics defined in Section Table
shows invariance and equivariance of two models. we observe that TCVAE model
cannot learn an invariant encoder and an equivariant decoder although training
data are augmented by group action. Also, we can check our invariant and equiv-
ariant neural network designs are valid from invariance and equivariance measure
of GSVAE. This shows that data augmentation does not ensure the invariance and
equivariance about group symmetry.

For other downstream tasks such as obstacle avoidance, LfD model should be
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able to generate various trajectories with different shapes. To generate a trajec-
tory with new characteristics, we can modulate latent variable (manner parame-
ter). Figure and Figure show a manner modulation performance of TCVAE
and GSVAE, respectively. We select a trajectory from training dataset and mod-
ify the manner parameter. More precisely, encode the training trajectory, fix the
task parameter, modify the task parameter to linearly interpolated manner param-
eters {—1,—0.5,0,0.5,1}, and then decode by trained decoder. In each figure, cup
position (goal) is marked with black dot and bottle position (initial) is marked
with black cross. pouring directions are aligned to the vertical direction. Trajec-
tory shape (left, straight, or right with respect to the pouring direction) is marked
with black arrow. Figure 5.5 shows the manner modulation results of TCVAE.
Trajectory shapes are randomly varying while manner parameter is monotonically
increasing. For example, the trajectory shapes of Task 1 are varying in the order
of right, left, left, left, and center. This shows that trajectories are not smoothly
varying and the learned trajectory manifold by TCVAE is heavily twisted. In ad-
dition, each manifold with different task does not have aligned latent coordinates.
For example, the manner parameters with straight pouring direction are 1, 0, 0,
1, 0 in Task 1 ~ 5. This shows that manifolds with different task parameters are

not aligned.

5.3.3 Manner Modulation

Figure [5.6] shows the manner modulation results of GSVAE. Trajectory shapes are
smoothly varying from left to right while manner parameter is monotonically in-
creasing. Furthermore, straight pouring direction is aligned with manner 0. This
shows that GSVAE can learn smooth manifold which is easy to modulate latent

variable and aligned manifolds which have different task parameter. We suggest
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Manner Modulation of TCVAE (512 X 2)

Original Modified Modified Modified Modified Modified
Manner Manner 1 Manner 2 Manner 3 Manner 4 Manner 5
Task 1
Task 2
Task 3
Task 4
Task 5

Manner
z

-1 —0.5 0 0.5 1

Figure 5.5: Manner modulation of TCVAE. We randomly select 5 training data
and change each manner parameter to linearly interpolated manner parameter
{-1,-0.5,0,0.5,1}. Trajectories are aligned to the vertical direction for visual-
ization. Manner modulation results in new trajectory with different shape. How-
ever, trajectories generated by TCVAE do not smoothly vary with monotonically
increasing manner parameter. This shows that the data manifold learned by TC-
VAE is highly twisted. In addition, manifolds with different task parameters do
not have a aligned latent space. The manifolds with task 2, 3, 5 have straight
pouring trajectory at manner zero but the manifolds with task 1, 4 have straight

pouring trajectory at manner 1.
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Manner Modulation of GSVAE (32 X 2)

Original Modified Modified Modified Modified Modified
Manner Manner 1 Manner 2 Manner 3 Manner 4 Manner 5
Task 1
Task 2
Task 3
Task 4
- - - -
. o . S . . 5
Task 5 % ‘} L i o % 5 I E s E
0.0, 0.0] 0.0) 0.0] 0.0 0.0}
L 01 oy 01 o1 01
302300050, 192930255 0003020200 000202035, 00203, 400203040
_ N N Manner
z

-1 -0.5 0 0.5 1

Figure 5.6: Manner modulation of GSVAE. The trajectories generated by GSVAE
smoothly vary with monotonically increasing manner parameter. This shows that
the data manifold learned by GSVAE is smooth. In addition, manifolds with dif-
ferent task parameters are also aligned. For every task, trajectories with straight

pouring direction are consistently at manner zero.
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that the reason why GSVAE can smooth and aligned manifolds is because every

training data is aligned and trajectories with the same manner become close.

5.3.4 Task Modulation

For robot to pour water into different goals, LfD model should be able to generate
various trajectories with different tasks. To generate a trajectory with a new goal,
we can modulate task parameter. Figure shows the task modulation results of
TCVAE. Each generated trajectory successfully follow the given task parameters.
However, although the manner parameter is fixed and only task parameters are
varying, pouring directions of generated trajectories are also varying. This shows
that learned manner parameter and task parameter are not decoupled by TCVAE
and this is the key limitation of TCVAE model.

Figure [5.8) shows that task modulation results of GSVAE. Each generated tra-
jectory successfully follow the given task parameters. In addition, trajectory di-
rections are remain fixed and only tasks of trajectories are varying. GSVAE can

learn decoupled task parameter and manner parameter.

5.3.5 Robot Implementation

To evaluate the trajectories generated by GSVAE and TCVAE, we implement the
generated trajectories with FRANKA EMIKA robot, which is a 7DoF robot arm.
We generate trajectories by decoding randomly sampled manner parameter and
task parameter. Inverse kinematics should be solved for robot to follow the gener-
ated end-effector trajectory and we use a numerical inverse kinematics algorithms
introduced in [2]. Since the work space of the FRANKA robot is limited, we trans-

form the generated trajectories to the standard trajectory and then solve inverse
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Task Modulation of TCVAE (512 X 2)

Original Modified Modified Modified Modified Modified
Task Task 1 Task 2 Task 3 Task 4 Task 5
Manner 1
Manner 2
Manner 3
Manner 4
Manner 5

Figure 5.7: Task modulation of TCVAE. We randomly select 5 training data and
change each task parameter to randomly selected cup positions. Task modulation
results in new trajectory with different goal position. However, trajectories gener-
ated by TCVAE do not preserve the shape of trajectory although manner param-
eter remain fixed. This result shows that task parameter and manner parameter

trained by TCVAE are coupled.
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Task Modulation of GSVAE (32 x 2)

Modified
Task 2

Modified
Task 3

Modified
Task 4

Modified
Task 5

Original Modified
Task Task 1
Manner 1 »:} fos®
-0.1 0%
00
RSN
Manner 2 o6
Los
o foa
00
Y o1
02 %oz
Manner 3 £
fos
-2 3 o
00 fos
¥ 01
02 -02
y
Q. ).

Manner 4 £
¥/ [
¥ ~05

; RO S
o0 Los
Voo
Manner 5 o6
Los
-01 04
00
Y o1
02 02

00

o,

0™

02
04 06

00 02y

02
00*
02
.
o6
04
0z P

Figure 5.8: Task modulation of GSVAE. Trajectories generated by GSVAE pre-

serve the shape of trajectory. This result shows that task parameter and manner

parameter trained by GSVAE are decoupled.

Ll

]

-

SLT



5.3. Results 42

kinematics. We smoothen the noisy trajectories by moving average with window
size 15 and upsample the solved joint angle trajectories to fps 1000 since time step
between each joint angle should be 0.001 s for position control of the FRANKA
robot. Before implementing to the real robot, we check the validity of generated

joint trajectory on simulation environment as shown in Figure [5.9

Task 1

Task 2

Figure 5.9: Check validity of generated trajectories on mujoco simulation environ-

ment.

Figure shows the robot pouring water with the trajectories randomly gen-
erated by TCVAE and GSVAE. Two failure modes are observed in the trajectories
generated by TCVAE. The trajectories do not pour water into the cup since the
pouring angle of bottle is insufficient or the trajectories spill the water out of the
desired cup position as shown in Figure [5.10] The trajectories of TCVAE are not
smooth so that inverse kinematics cannot be easily solved. Meanwhile, GSVAE
outputs sufficiently smooth and accurate trajectories.

We also count the success rate of water pouring of each model and the result is
given in Table We generate 14 trajectories with randomly chosen task param-

eters and manner parameters and then implement them with the robot. Success
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rate of TCVAE is 7/14 = 50% and that of GSVAE is 12/14 = 86%.

Table 5.3: Success rate of water pouring. The trajectories generated by GSVAE

are more accurate and smooth to achieve the given tasks.

Model (Net size) ‘ TCVAE (512 x 2) GSVAE (32 x 2)
Success rate ‘ 7/14 12/14

Spilt Not poured

Figure 5.10: Failure modes of TCVAE. The trajectories genereated by TCVAE of-

ten spill the water out of the cup or does not pour the water at all.
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t=0s t=3.6s t=73s t=11s
Task 1
TCVAE
Task 2
(512 x 2) (spilt)
Task 3
(Not Poured)
Task 1
GSVAE
(32%2) Task 2
Task 3

Figure 5.11: Robot implementation of the trajectories generated by each model.
We randomly sample manner and task parameters and decode to trajectories. In
the case of GSVAE, most of the trajectories are smooth so that robot successfully
pour water into the desired cup position. However, in the case of TCVAE, two
failure modes are observed. In Task 2, the trajectory is far away from the cup
position so that the robot spill water. In Task 3, wrist angle are too small so that

the robot do not pour water into the cup.

25 Al=ds
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Conclusion

We have proposed group symmetric variational autoencoder (GSVAE) to learn
a demonstration trajectory of a human expert with considering manifold struc-
ture in trajectory space and natural symmetry of robotic task. We have intro-
duced group action and invariance/equivariance to formulate the symmetry of task
and developed invariant and equivariant neural networks which are used for a
group-invariant encoder and a group-equivariant decoder of GSVAE. Two algo-
rithms, TCVAE and GSVAE, are compared with water pouring experiments. We
have verified the efficacy of GSVAE with diverse quantitative and qualitative mea-
sures such as reconstruction loss, invariance/equivariance measure, latent mod-
ulation, and success rate of robot implementation. We argue that our GSVAE
model has three contributions. By considering the natural symmetry of the given
task, GSVAE can (i) learn more accurate and more smooth data manifold with
fewer neural network parameters, (ii) ensure the invariance and equivariance about
group action without any data augmentation, and (iii) align and decoupled task

and manner.
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