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Abstract 
 

Defect detection is a crucial process to improve the productivity 

and quality of products in the industry. However, defects in the 

nanoscale-manufacture become difficult to detect, since the shapes 

of the defects are complex and noises and unclean backgrounds cover 

the defects frequently. It is laborious and inefficient to utilize human 

resources for defect detection because the rate of defects in the 

industry is extremely low and it requires professional knowledge to 

detect the defects in some cases. Applying an anomaly detection 

model as a defect detector in the industry is the best solution which 

will save time and human resources. However, there are many 

difficulties to apply the data-driven based anomaly detection model 

to real industry inspection. In our research, we found that our target 

product wafers contain “resin bleed”, which hinders detecting 

cracks on the wafer surfaces. The resin bleed impedes the anomaly 

detection on wafers because it is similar to the cracks in the wafer 

and at the same time it belongs to the normal components. In this 

paper, we propose a method to improve the crack detection 

performance of the anomaly detection model by enhancing the edge 

information of cracks. Our model achieved 96.7% at the image level 

AUROC and 98.6% at pixel level AUROC by improving 4.5% and 2.0% 

respectively without additional annotation. 

 

Keyword : Industrial inspection, Machine learning, Anomaly detection, 

Edge detection, Wafer inspection, Crack 

Student Number : 2021-26800 
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Chapter 1. Introduction 
 

Defect detection becomes important as the demand for 

manufacturing at the nanoscale increases. Unlike defects that occur 

in macroscale manufacturing, defects in the nanoscale manufacturing 

are hard to discover. Because they have complex shapes and require 

professional knowledge about the defects for identification. Detecting 

all the defects that occurred in production is the best situation, 

however, humans can’t supervise all the products that have been 

produced. Therefore, automatic defect detection is the better 

alternative for productivity improvement. The defect detection model 

can inspect every product have been made and define the abnormality 

in the products. In addition, we do not need abnormal data for the 

defect detection model. This ability makes the anomaly detection 

model to be easily applied to the industry as a defect detection tool. 

Well-trained anomaly detection can be a perfect inspector in the 

industry and saves time and resources that would have been wasted 

if the anomaly detection model was not applied.  

There are many studies for anomaly detection that shows high 

performance in the industrial dataset. The rapid development of 

machine learning and deep learning makes data-driven based 

anomaly detection models efficient. They learn the normal data 

distribution in the many different methods and define their 

abnormality criteria. The anomaly detection models already 

guarantee high defect detection performance in the industrial 

benchmark dataset. However, there are many challenges to applying 
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computer vision models in the real industry field. First, the ratio of 

defective data to normal data is extremely low [1] since the goal of 

optimizing manufacturing processes in the industry is to reduce 

defective products. Thus, a lack of defective data is inevitable, the 

data-driven anomaly detection methods focus on utilizing normal 

image data that are very easy to acquire in the industry. Second, the 

defects can have various shapes, even if they belong to the same 

crack type [1]. The anomaly detection model needs too many 

defective images if the model deals with test input images by learning 

every type of defect that could have been in the manufacture. The 

strategy to focus on the normal images solves not only the lack of 

defective data but also various types of defects that possibly occur. 

Third, complex backgrounds hinder the defects from being detected 

as problems [2]. In the case of crack detection on concrete roads, 

the complex texture of the concrete roads hinders crack detection. 

In our research, a wafer dataset contains ‘resin bleed’, which belongs 

to the normal component, hindering crack detection. Our primary 

object in research is to detect cracks in wafers from the unclean 

background (e.g., the complexity of background and resin bleed) by 

using an anomaly detection model. This section introduces related 

works for solving problems of wafer industrial inspection in 

subsections: (1.1) Anomaly detection (1.2) Wafer defect detection 

(1.3) Crack detection 
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1.1. Anomaly Detection 
 

Anomaly detection is an active research field for outlier 

detection in machine learning. Visual anomaly detection can be used 

as defect detection when it is used in an industrial inspection. Most 

anomaly detection models infer the outlier by learning the normal 

data distribution. Before the deep learning-based methods are 

researched, SIFT [3] and HOG [4] utilize the shallow features in the 

image’s gray value. Deep learning-based methods utilize the good 

representation capability of convolution neural networks, achieving 

high performance in anomaly detection. Anomaly detection can be 

grouped into two categories: image-level and pixel-level anomaly 

detection. Image-level anomaly detection models only decide 

whether a given image is abnormal or not. In [5], a traditional 

machine learning technique, SVM, is used for One-Class SVM (OC-

SVM) that searches the support vector at the normal data distribution 

composed on the hyperplane. Similar to [5], [6] trains the deep 

convolution network to map normal images into the points that 

construct a hypersphere in the latent space. Then, the [6] infers the 

outlier by measuring the distance between the hypersphere and the 

point to which the given test image is mapped. Pixel-level anomaly 

detection models decide whether or not a region of the image is 

abnormal, as well as an abnormality on individual images. The 

anomaly detection models for a pixel-level decision can be 

categorized into image reconstruction and feature modeling [7]. 

Image reconstruction-based methods utilize variational autoencoder 
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(VAE) [8] and generative adversarial network (GAN) [9] as 

backbone models for image reconstruction. Both [10] and [11] use 

autoencoder for image reconstruction, but [10] uses image structure 

similarity measure (SSIM) [12] for measuring the degree of the 

unconstructed region of the image, and [11] uses 𝑙2-distance [13] 

for measurement. The image reconstruction method using generative 

adversarial networks trains the networks to generate the normal 

input images [14, 15, 16]. The recent feature-based methods utilize 

the representation capability of deep convolution networks pre-

trained on ImageNet [17]. The SPADE [18] uses a memory bank 

technique for saving deep features of normal images and refers to 

the features when the model infers the given test images by using 

the nearest neighbor method. Then, the PaDiM [19] solves the 

computation complexity problem in the SPADE, which costs time for 

the inference. The PaDiM solves the problem by assuming that the 

whole set of normal features constructs the normal distribution. The 

PatchCore, which is our research’s backbone model, avoids the 

computation complexity in the SPADE [18] by core set-subsampling 

and achieves the highest performance in the benchmark dataset [1]. 

The anomaly detection model can be evaluated at both the image-

level and the pixel-level AUROC (Area Under Receiver Operator 

Curve). 
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1.2. Wafer Defect Inspection 
 

Before computer vision methods are applied, conventional 

techniques, mainly operated by manpower, are used for wafer 

surface inspection. For example, thin-crack on wafers can be 

detected by measuring sound from mechanically exciting vibratory 

modes in silicon wafers [19]. However, deep learning-based 

methods are more efficient both in terms of time and resources than 

the existing defect detection techniques [20]. Many defect detection 

techniques are being researched to detect defects throughout the 

semiconductor manufacturing process. The research for wafers can 

be grouped into three categories: (1) defect detection on wafers (2) 

Inference of root problems in semiconductor manufacturing (3) 

Wafer die defect inspection. As in [21], defect detection on the wafer 

entails detecting and segmenting defects on the wafer while taking 

silicon wafer properties into account. For example, in [21], a 

modified U-Net [22] is used for defect detection on a polycrystalline 

silicon wafer. Inhomogeneous texture [23] in polycrystalline silicon 

wafers and wafer contamination [24] caused by the dicing process 

hinder the detection of defects on the wafers. Other studies for 

inferring problems in semiconductor manufacturing use a wafer 

defect map, which is a set of wafer dies marked with a normal or 

abnormal label [25, 26]. The wafer map that is used to find out the 

problems in manufacturing steps is made up of labels of dies. Wafer 

die defect inspection decides whether given dies are normal or not 

for quality control. Neural networks are trained with pre-processed 
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die images for geometric and texture inspection in [27] and [28]. 

Three categories of defect inspection on wafers are applied to the 

whole manufacturing process for improving yield. 

 

1.3. Crack Detection 
 

Detecting cracks is a crucial process for manufacturing systems, 

especially for products with thin structures that are vulnerable to 

cracks. Since cracks are able to propagate under fatigue stress and 

repeated loading, early crack detection prevents subsequent loss. 

Image-based methods are actively researched for reasons that they 

are efficient and non-destructive. The image-based methods utilize 

many types of images, including camera, ultrasonic, and IR images to 

detect cracks. Traditional image-based approaches consider edge 

information [29] or image correlation [30]. However, the traditional 

methods have some difficulties that are due to the random shape and 

size of cracks and noises from the surroundings. Unlike crack 

detection through machine learning, the deep learning-based method 

shows high detection performance. [31] proposed image-based 

method using YOLO v2 [32], which is a famous object detection 

model, to detect cracks. Also classification model (e.g., GoogLeNet 

[33]) is able to be used to detect cracks on concrete surfaces [34]. 

Deep learning-based models can be evaluated with accuracy, recall, 

and F1-score. 
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Figure 1 Images from the wafer surface boundary dataset (a) examples from 

the wafer training dataset (b) examples from the wafer test dataset The test 

dataset is classified into one normal class and two abnormal classes [Normal, 

Cracks, Resin Bleed Cracks]. Wavy patterns are at both (a) and (b). The 

resin bleed is located at the random position of the wafer surface regardless 

of the class.  
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Chapter 2. Edge-Enhanced Anomaly Detection 
 

In this section, we propose a new method to detect cracks on 

wafer surfaces by enhancing edge information in the cracks. It 

becomes difficult to detect cracks because many components 

appearing on the wafer surface weaken the crack’s edge information. 

Since the capability to detect outliers in the anomaly detection model 

is based on robustly learning the normal data distribution from the 

dataset which is only composed of normal images, these components, 

confusing the whole images not to clear, limit the performance of the 

anomaly detection model. The impeding components originate from 

the features of the product itself, the wafer. The difficulties 

originated from the properties of the wafer. Because of the wafer’s 

structure, most cracks are thin, and resin bleed from the wafer 

covers cracks. Both of these factors cause the crack region to lose 

its edge information. Thus, to supplement the crack ’ s edge 

information, we combine an edge detection model with the anomaly 

detection model. The method to augment the edge information is 

introduced in the rest of this section. 

In the study, we select DexiNed [35], which is an edge detection 

model, for extracting edge information because the DexiNed shows 

high performance on the edge detection task, and we can choose 

features optionally from seven features of the DexiNed based on the 

depth of the deep learning model. The edge detection is performed in 

the pre-processing step, and the augmentation of edge information 

is performed after the feature extraction step. Structural changes to 
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the original anomaly detection model are shown in Figure 2. The 

anomaly detection augmented with edge information consists of the 

following four steps: (2.1) edge information extraction, (2.2) normal 

data set augmented with edge information, (2.3) compression of 

normal data set, and (2.4) Inference for anomalies. 

 

Figure 2 (a) Simplified schematic of the existing anomaly detection model, 

PatchCore (b) Simplified schematic of our modified anomaly detection 

model, PatchCore. A step for edge information by utilizing the pre-trained 

edge detection model, DexiNed is added into the preprocessing stage. The 

summation of the original information and the edge information is added to 

the training stage. 

 

2.1. Edge Information Extraction 
 

To utilize the edge information in anomaly detection, we use the 

DexiNed, the edge detection model, for extracting edge features from 

the wafer images. We can use pre-trained DexiNed on a BIPED v2 

dataset because the DexiNed has a strong generalization to images 

that are not used in model training. When the wafer images are 
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entered into the edge detection model, the model outputs seven 

features: six features come from each convolution neural network 

block, and the last output can be obtained from an additional 

convolution block that receives the sixth output as an input. The 

simplified structure of DexiNed is shown in Figure 3. After the model 

outputs seven features, the pre-trained up-sampling convolution 

blocks unify each feature with a different resolution to have a unified 

resolution. The recommended method to extract the most accurate 

edge image is to average all of the model’s features, but the most 

advantageous method for anomaly detection on the wafer dataset is 

to select certain features based on the impact of each feature. The 

advantageous method is to extract edge information to average the 

fourth, fifth, and sixth features. As a result, we can get gray-scale 

images as auxiliary images, and examples of the result are shown in 

Figure 4. As the last step for pre-processing, a gray-scale image 

should be concatenated with itself twice so that we can have a three-

channel edge image. In Figure 4, we can see that the model whitens 

the wafer’s background, which has a wavy pattern in some examples. 

Also, blurry cracks on the wafer in Figure 4 (b) have become clear, 

especially an example in the fourth row, which is difficult to visually 

identify, showing an impressive improvement in the result edge 

image. 
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Figure 3 Edge detected wafer surface images (a) the normal RGB images 

and their corresponding edge images (b) the test RGB wafer images and 

their corresponding edge images. Both cases contain clean and unclean 

surfaces. Cracks, which are blurry or covered by the resin bleed in the edge 

images are highlighted.  
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Figure 4 Overview of edge extraction step. Seven feature maps about edges 

are extracted from the original RGB images. Three feature maps from the 

fourth to sixth features are used as auxiliary data for edge information 

enhancement. 
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2.2. Edge-Enhanced Features into a Memory Bank 
 

In this study, we use a modified PatchCore [36], which is an 

anomaly detection model, to detect cracks on the wafer surface as 

anomalies. Pre-trained convolution neural network, WideResNet50 

[37], is used as a backbone model for feature extraction. In the 

feature extraction step, the CNN model is not trained with 

BackPropagation but outputs multi-resolution feature maps from 

each convolution neural network block when+ an image is entered 

into the CNN model. To utilize both the original images and the edge 

images, two WideResNet50 models are used in parallel. We can 

obtain the extracted feature maps {ℱ𝑖,1, ℱ𝑖,2, ℱ𝑖,3, ℱ𝑖,4}  from each 

normal image 𝑥𝑖 in the normal train dataset 𝒳𝑁, and {ℱ𝑖,1
𝑒 , ℱ𝑖,2

𝑒 , ℱ𝑖,3
𝑒 , ℱ𝑖,4

e } 

from each edge image 𝑥𝑖
𝑒  in the edge train dataset 𝒳𝑁

𝑒 . The first 

subscript 𝑖 of the feature map means the index of the images, the 

second subscript, a number from 1 to 4, means the hierarchy level of 

the convolution blocks in the CNN model and the superscript e means 

that the feature map comes from the edge image. Among each 

image’s four feature maps, the first and last feature maps are not 

adequate to use because the features in the first feature map are too 

general, and the features in the last feature map are too biased to the 

dataset ImageNet [17], which is the dataset used to train the CNN 

model. Therefore, {ℱ𝑖,2, ℱ𝑖,3, ℱ𝑖,2
𝑒 , ℱ𝑖,3

𝑒 } are used for anomaly detection. 

Considering that wafer images are not uniform as shown in 

Figure 1, the features that represent normal data should be able to 

deal with local spatial variation, since products can’t be aligned 
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accurately every time the image is taken and in our case image 

dataset are acquired from the high spinning wafer’s boundary. As in 

[36], we locally aggregate the pixel’s neighbor information into every 

pixel in spatial resolution. 

ℱ𝑖,𝑗(ℎ, 𝑤),  ℱ𝑖,𝑗
𝑒 (ℎ, 𝑤) =  ∑ ∑ ℱ𝑖,𝑗(ℎ∗, 𝑤∗),  ℱ𝑖,𝑗

𝑒 (ℎ∗, 𝑤∗)

ℎ∗=ℎ+1

ℎ∗=ℎ−1

𝑤∗=𝑤+1

𝑤∗=𝑤−1

 

 

In the above equation, ℎ and 𝑤 mean the height and weight of the 

pixel in the feature map. We perform this process to all feature maps 

{ℱ𝑖,2, ℱ𝑖,3, ℱ𝑖,2
𝑒 , ℱ𝑖,3

𝑒 }. The spatial size and the number of channels of each 

feature map remain constant after the process. To utilize the feature 

maps {ℱ𝑖,3, ℱ𝑖,3
𝑒 } in higher resolution, we resize the feature maps from 

the third hierarchy level of the CNN to the size of the feature maps 

{ℱ𝑖,2, ℱ𝑖,2
𝑒 } which come from the second hierarchy level. After resizing, 

we combine the normal feature maps and edge feature maps that have 

the same hierarchy level. In the combination process, the feature 

maps are element-wise summed. Each feature map consists of 28 

pixels in width and height, and each pixel consists of 1792 channels. 

In the view of vector, the element-wise summation of both pixels 

can be interpreted into vector summation, which is a method 

conceptually used in [residual network]. 

ℱ𝑖,2 = ℱ𝑖,2 + ℱ𝑖,2
𝑒  

ℱ𝑖,3 = ℱ𝑖,3 + ℱ𝑖,3
𝑒  

The final feature map for each training image can be obtained by 

concatenating ℱ𝑖,2 and ℱ𝑖,3 in channel dimension. 

ℱ𝑖 = 𝑐𝑜𝑛𝑐𝑎𝑡(ℱ𝑖,2, ℱ𝑖,3) 
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After concatenation, the feature map ℱ𝑖 is saved into the memory 

bank ℳ, which is used as feature storage. Processes for the feature 

extraction are performed until all normal train images’ final feature 

maps are saved into the memory bank. 

 

2.3. Effective Memory Bank Subset Search 

 

The size of the memory bank is too large to use the memory 

bank as it is to infer anomalies. This computation complexity 

originated from the resin bleed on the wafer surface. The random 

shape of the resin bleed on the wafer surface makes it the anomaly 

detection model hard to deal with the resin bleed and requires more 

wafer images for anomaly detection. Since we use the k-nearest 

neighbor technique for searching the proper features from the 

memory bank, it is impossible to use as many wafer images as 

possible. To alleviate the computation complexity issue, we apply a 

core set sub-sampling method to the memory bank. The core set 

sub-sampling is an optimal method to find a subset that can represent 

the memory bank well [36]. It is more useful to use the core set sub-

sampling method than random sampling in this case because features 

in the memory bank are not distributed uniformly. 

To approximate the memory bank by using coreset sub-

sampling, we apply a minimax facility location as in [38, 40] for 

searching the subset which approximates the memory bank well. 

Implementing the minimax facility location is a NP-hard problem, so 
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we solve the problem with iterative greedy approximation [38] and 

Johnson-Lindenstrauss theorem [39] as used in [36, 40], for 

reducing dimensionalities. By core set sub-sampling, we can reduce 

the size of the memory bank to 0.4% of the original size. This process 

accelerates anomaly detection inference because it avoids referring 

to all features of the memory bank. 

 

 

2.4. Algorithm for Anomaly Detection and Localization 

 

Inference of anomaly detection to the test wafer image gives the 

degree of abnormality to the given image, and if the given image is 

abnormal, it also gives the degree of abnormality to the regions in the 

image. The abnormality of the given image is decided by estimating 

the abnormal score 𝑠 , which represents the degree of the given 

image’s abnormality, and the abnormality of the region is decided by 

the abnormal score at each spatial position. To estimate the abnormal 

score 𝑠 , we measure the maximum distance 𝑠∗  between the 

extracted feature 𝑓𝑡𝑒𝑠𝑡, which makes the distance maximum, and the 

saved feature 𝑓 , the nearest feature of 𝑓𝑡𝑒𝑠𝑡 , searched from the 

memory bank ℳ. 

 

𝑓𝑡𝑒𝑠𝑡,∗, 𝑓∗ =  argmax
𝑓𝑡𝑒𝑠𝑡∈ℱ𝑡𝑒𝑠𝑡

argmin
𝑓∈ℳ

‖𝑓𝑡𝑒𝑠𝑡 − 𝑓‖2 

𝑠∗ =  ‖𝑓𝑡𝑒𝑠𝑡,∗ − 𝑓∗‖2 
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However, there is a possibility that the memory bank contains 

abnormal features or unique features. This means that the abnormal 

score 𝑠∗  may be low because the selected feature 𝑓∗  cannot 

represent a normal feature. To prevent the wrong decision, re-

weighting is applied to the maximum distance 𝑠∗ . The re-weight 

value is determined by considering the nine nearest features of 𝑓𝑡𝑒𝑠𝑡, 

denoted the nearest set as 𝒩9(𝑓∗). 

 

𝑠 = (1 − 
𝑒𝑥𝑝‖𝑓𝑡𝑒𝑠𝑡,∗ − 𝑓∗‖2

∑ exp‖𝑓𝑡𝑒𝑠𝑡,∗ − 𝑓∗‖𝑓∈𝒩9(𝑓∗) 2

) ∙ 𝑠∗ 

 

In the above equation, the re-weight value is close to 1 when the 

𝑓𝑡𝑒𝑠𝑡,∗ is far from most of the features in the 𝒩9(𝑓∗) and it is close to 

0 when the 𝑓𝑡𝑒𝑠𝑡,∗ is close to the features in the 𝒩9(𝑓∗). The re-

weight value allows anomaly detection to be performed well, even if 

the normal dataset contains rare or unique components. Anomaly 

segmentation is performed by calculating abnormal scores at the local 

spatial pixels as in Padim [19]. The score map has a 24×24 spatial 

resolution, and it is resized to the original resolution of 224×224 by 

bi-linear interpolation. Then the resized score map is smoothed by a 

Gaussian of kernel width σ = 4. 
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Figure 5 Overview of our proposed anomaly detection method. The overall 

structure is the same as the anomaly detection model, PatchCore. The 

PatchCore is modified to be able to accept additional edge images.  
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Note for Figure 5. 

To use edge information of the original RGB image in the inference, the 

edge detection model, DexiNed, is used in the preprocessing step of the 

whole process. In the preprocessing step, we choose the fourth, fifth, and 

sixth features about edge among seven features about edge extracted from 

the original RGB images. An edge image for each RGB image is acquired by 

averaging three edge features. 

In the training step, two CNN models, pre-trained on the ImageNet, are 

used in parallel. Four different sizes of feature maps are extracted after the 

RGB image and edge image are inputted into each CNN model. Two feature 

maps which are the second and third maps among whole feature maps are 

used to represent an input image. Thus, we can acquire four feature maps 

for an RGB image, two for an RGB image, and two for an edge image. 

Feature maps are combined by element-wise summation and concatenation. 

The collection of the feature maps from the entire training dataset is called 

a ‘memory bank’ that can represent the training image dataset in the matrix 

form. We can effectively compact the memory bank by searching the 

optimal subset through coreset subsampling. 

In the inference step, one feature map that combined all extracted feature 

maps from the test image is used to infer the abnormality of the test image. 

Then we search the most similar matrices from the memory bank by K-NN 

search. The abnormality of the test image can be scored by measuring the 

Euclidean distance between the most similar matrices and the feature map 

representing the test image. In this research, we use the F2 score to 

localize the cracks adequately, since crack regions occupy a small portion of 

each test image.  
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Chapter 3. Model Validation on Wafer Dataset 

 

3.1. Experiments Detail 

3.1.1. Datasets and Training Details 

 

Our method for crack detection aims to improve anomaly 

detection performance on a real wafer surface dataset. The dataset 

is acquired after a protective cover of the packaged wafer is removed. 

The wafer is vulnerable to cracks right after the cover is removed, 

and there is no industrial inspection in this phase. As shown in Figure 

1, there are many failures to detect cracks because the cracks on the 

wafer are covered with resin bleed. The dataset used in our research 

is composed of 736 normal training images and 353 abnormal images. 

The training dataset only contains normal class and the test dataset 

includes ‘Crack’, ‘Normal’, and ‘Resin bleed cracks’. We made ground 

truth masks for evaluating the anomaly localization performance. The 

images are resized to 256 × 256 pixels and center cropped to 

224×224 during the preprocessing phase as in [7, 8, 13]. We set the 

corset sampling ratio to 0.4% in the training phase, considering the 

size of the training dataset. We used a single NVIDIA GeForce RTX 

3090 for evaluating performance. 
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3.1.2. Evaluation Metrics for Anomaly Detection 

 

To evaluate the anomaly detection performance, we use the 

area under the receiver-operator curve (AUROC) at both the 

image-level and pixel-level. The receiver-operator curve (ROC) is 

a curve representing the performance of the binary classifier for 

various thresholds. The curve is plotted with the true positive rate 

(TPR) and the false positive rate (FPR). Thus, a perfect binary 

classifier achieves 1.0 in the AUROC score. 

 

3.2. Anomaly Detection on Wafer Surface 

 

The image-level and pixel-level anomaly detection 

performance of our method are shown in Table 1. Most of the existing 

methods are unable to perform anomaly detection on the wafer 

datasets because the aforementioned problems make it difficult to 

distinguish extracted features. The PatchCore [8], used as our 

method’s backbone model, shows the highest performance on both 

our wafer dataset and the benchmark dataset MVTec [18]. However, 

the PatchCore model can’t localize the regions of cracks as shown in 

Figure 5. Cracks that were not clearly detected are usually covered 

by resin bleed or blurry due to out-focusing. Our method, which 

employs the edge detection model, DexiNed, improves anomaly 

detection performance on images with resin bleed and blurriness. For 

the wafer dataset, our method achieves 96.7% image-level AUROC 



 

 ２６ 

and 98.6% pixel-level AUROC, which resulted in 4.5% and 2.0% 

performance improvements, respectively. The performance 

improvements are achieved without any additional annotations. 
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Model Image AUROC Pixel AUROC 

SPADE 51.1% 52.3% 

PaDiM 59.3% 90.0% 

PatchCore 

(Res18) 
85.1% 95.5% 

PatchCore 

(WRN50) 
92.2% 96.6% 

Ours 

(Res18) 
92.8% 97.7% 

Ours 

(WRN50) 
96.7% 98.6% 

 

Table 1 The result of the anomaly detection on the wafer dataset. The 

approaches of SPADE and PaDiM are similar to the approaches of 

PatchCore. PatchCore is better able to deal with the wafer dataset than the 

other existing method, but it still shows poor performance. Our method 

shows improvements in both Image-level and Pixel-level scores. 
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Figure 6 First results of visualized results on the anomaly detection model. 

Both wafer images have a crack on the clear background. The existing 

model and our modified model both show good detection performance. 
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Figure 7 Second results of visualized results on the anomaly detection model. 

Though both wafer images have a crack on a clear background, the existing 

model cannot detect the lower part of the crack. The difference originates 

from the blurriness and wavy pattern of the images. (a) crack is well 

segmented at both ours and PatchCore. (b) Our model detects the crack well, 

but PatchCore misses the portion of the crack. 
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Figure 8 Third results of visualized results on the anomaly detection model. 

The existing model does not give high abnormal scores to the middle part of 

a crack on both images. These results show that the PatchCore is not 

trained to be sensitive to the edges.  
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Figure 9 Fourth results of visualized results on the anomaly detection 

model. These examples are the case of not having good performance 

despite cracks on a clean background. Adding edge information shows 

dramatic performance improvements in the cases.  
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Figure 10 Fifth results of visualized results on the anomaly detection model. 

In Figure 10 (a), the model gives relatively lower values to the crack, since 

the crack is similar to the resin bleed in the training dataset.



 

 ３３ 

 

Figure 11 Sixth results of visualized results on the anomaly detection 

model. When the resin bleed or black dots are around the cracks, the 

anomaly detection model hardly detects the cracks. 
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Figure 12 Seventh results of visualized results on the anomaly detection 

model. Not only the resin bleed or noises but also the blurriness of the 

cracks make the anomaly detection model hardly detect cracks on the 

wafers.
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Figure 13 Eighth results of visualized results on the anomaly detection 

model. The upper image has the resin bleed layer at the boundary compared 

to the lower image. The existing model cannot detect the crack at the resin 

bleed layer.
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Figure 14 Ninth results of visualized results on the anomaly detection 

model. Our method shows general performance improvements on both 

images. These performance improvements are because the addition of edge 

information makes the score boundary clear.  
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Figure 15 Tenth results of visualized results on the anomaly detection 

model. Even though both models give relatively high values to the region of 

the cracks as shown in heat maps, our model gives the more adequate level 

of abnormal scores.
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Figure 16 Eleventh results of visualized results on the anomaly detection 

model. Our modified anomaly detection model detects cracks from the 

images that the existing model fails to detect cracks. The existing model 

gives not enough high abnormal scores to the region of the cracks. 
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Figure 17 Twelfth results of visualized results on the anomaly detection 

model. Both models give relatively high abnormal scores to the region of 

resin bleed than the clear background. But they have the ability to classify 

the region of resin bleed as the normal part.  
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3.3. Result Analysis 
 

Our method improves the anomaly detection model, PatchCore 

to be able to detect cracks on the wafers’ unclean background. We 

proposed many conditions that affect the crack detection 

performance of PatchCore, the anomaly detection model, from Figure 

6 to Figure 17. The modified version of the anomaly detection model 

becomes more sensitive to the edges so that the model can detect 

cracks better than its original version. The modified version has a 

2.0% higher pixel-wise crack localization score. Our model shows 

that it can detect the entire crack area, which the existing model 

cannot detect, in Figure 16 (a) and (b). 

The existing model, PatchCore already can detect cracks on a 

clear wafer surface as shown in Figure 6. The anomaly detection 

model can easily detect cracks that are not blurry and has clear 

backgrounds. However, the PatchCore is very vulnerable to the 

noises like black dots as figured in Figure 7 (b). In Figure 7 (b), the 

PatchCore gives not enough abnormal scores to the lower portion of 

the crack. Cracks, with wavy patterns on the clear surface or black 

dots, are close to the normal components from the perspective of the 

PatchCore. In Figure 8 (a), the middle part of the crack is classified 

as normal. The result means that the crack region with a big black 

dot and the wavy patterns is in the normal data distribution to the 

PatchCore. Also, Figure 8 (b) belongs to the case that the noises like 

black dots and wavy patterns confuse the model to regard the crack 

as normal. The PatchCore cannot detect cracks in Figure 9 for the 
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same reason. In the numerical view, these cases can be interpreted 

as that crack has a weak edge information intensity. Even though 

these cases are not dealing with blurry cracks, the anomaly detection 

model needs to regard the cracks as the stronger intensity. Our 

method solves this issue by summing the edge information extracted 

from the deep-learning based edge extraction model. The 

information about the black dots and wavy patterns appears once in 

the original backbone model, however, the information about the 

cracks appears both in the original backbone and modified backbone, 

thus the crack’s edge information can be enhanced. Our modified 

PatchCore can detect the entire region of cracks as shown in Figures 

7, 8, and 9. Noises are not the only reason why the existing anomaly 

detection model cannot detect cracks from clear backgrounds. Blurry 

cracks are also the components, which the PatchCore cannot detect. 

Figure 12 (b) is a clear example of the vulnerability of blurriness. 

The crack in Figure 12 (b) is not disturbed by noises and already has 

a weak intensity. Because many anomaly detection models are based 

on the patch-based model that analyzes the test input in the patch 

unit, a long crack isn’t compared by itself. All the cracks, which are 

long in most cases, are compared after being split into small patch 

units. The efficient strategy to the view of the memory computation 

is a weakness to the properties of the cracks. It will be difficult to 

determine if it is a defect by looking at only a small piece of the 

blurred crack. Our method highlights the cracks so that they can have 

strong value. The modified model can detect blurry cracks in Figure 

14 too. Both noises and blurriness cases can be explained in the 
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vector view. The PatchCore and our modified version model learn the 

normal data distribution in the vector form. They infer the 

abnormality by measuring the distance between the vector that is 

explaining the test input region and its most similar vector from the 

normal image dataset. In the case of noise, our method to enhance 

the edge information of cracks is used to distinguish the cracks from 

the noises. In other words, the vector of cracks with noises points in 

the wrong direction compared with the direction the vector of the 

cracks without noises points in. In the blurriness case, it is similar to 

the case of the noise but the difference is that the vector of the crack 

points in the right direction. Our method in the PatchCore has the 

same role in both cases, however, they acted differently in the view 

of the vector. 

The dramatic performance improvements are shown in Figure 

11 (a), Figure 16 (a), and Figure 16 (b). Those figures are filled with 

the resin bleed, and the PatchCore cannot detect entire cracks in 

Figure 16 (a) and (b). The PatchCore and our modified model both 

use a 24×24 feature map to infer the 224×224-size image. It means 

that one pixel in the feature map represents 9~10 pixels in the input 

image.  Since the cracks in the wafer dataset usually have a thin-

width and long-height, one pixel in the score map can contain 

information on not only cracks but also the resin bleed in the test 

images. In some cases, the resin bleed regions occupy more region 

than the crack region in 1×1 pixel of the score map, which is 81~100 

pixels in the input image. Figure 11 (a), Figure 16 (a), and (b), are 

the examples that correspond to the cases. In this case, it is hard to 
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distinguish the patch of the wafer’s resin bleed region in the normal 

dataset from the patch of the wafer’s crack region with the resin 

bleed. In the figures, our model shows dramatic improvements in 

anomaly segmentation under the F2-score threshold. Our model has 

improvements on the cracks when we refer the Figure 17 (a) and (b). 

Results on images show that our model does not classify the resin 

bleed as abnormal but does localize more crack regions compared to 

the existing model. And the results prove that our proposed method 

augments the edge information that is important to detect cracks.  
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3.4. Comparison Study for Selecting Edge Features 
 

 

We experimented to evaluate the impact of edge information on 

anomaly detection performance. The DexiNed [35], an edge 

detection model, outputs different edge features depending on depth, 

and an edge image is created by averaging seven edge features. Our 

method to utilize the edge information to detect anomalies aims to 

make the anomaly detection model focus on the crack’s edge. At the 

same time, our method aims to make the anomaly detection model 

distract from the resin bleed, which confuses the model. To maximize 

the impact of auxiliary edge data, we verify the impact of each 

combination of edge features on anomaly detection performance.  

Among all edge features, we select those with continuous depth 

levels ranging from one to seven. We choose edge features, which 

have continuous depth levels from one to seven among all edge 

features. The more we select edge features from the shallow depth 

level, the coarser the extracted edge images become, as in Figure 18. 

Using the auxiliary edge image improves performance in all cases, 

but each case has a different degree of improvement. The improved 

results are shown in Table 2. The performance results are an average 

of ten trial tests for each case. Because the problem in wafer anomaly 

detection is in the score map, which has a small score difference 

between the crack and the normal area, small performance 

improvement on pixel AUROC shows significant improvements for 

detecting cracks fully covered with the resin bleed.
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Figure 18 (a) Seven examples from the corresponding level of the edge 

features. The edge images are coarse at the shallow level and soft at the deep 

level. Both properties have pros and cons in the image abnormal decision and 

pixel abnormal localization. (b) Seven examples from the combination of two 

near features from the edge features. Overall, all images are similar, but they 

are different in detail. 
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Figure 19 The examples of edge images that three and four features are 

mixed. In the case that the fourth, fifth, and sixth features are mixed, the 

model shows the maximum crack detection performance. There is the biggest 

difference in the ability to describe the interior part of the resin bleed.  
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Figure 20 The examples of the combinations of four, five, and six edge 

features. They show a small difference in images and their corresponding 

detection performances. Their detection performance at the pixel level is 

almost the same, showing a difference of about 0.2%. 
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Selected features Average Image-AUROC Average Pixel-AUROC 

1 95.9% 97.7% 

2 95.4% 97.7% 

3 93.5% 97.9% 

4 93.9% 98.0% 

5 95.6% 98.4% 

6 95.1% 98.4% 

7 93.5% 98.0% 

   

1+2 95.8% 97.8% 

2+3 94.6% 97.8% 

3+4 93.7% 98.0% 

4+5 94.9% 98.3% 

5+6 95.3% 98.3% 

6+7 94.8% 98.2% 

   

1+2+3 94.7% 97.8% 

2+3+4 94.8% 98.0% 

3+4+5 94.9% 98.2% 

4+5+6 95.8% 98.4% 

5+6+7 95.1% 98.3% 

   

1+2+3+4 95.4% 97.9% 

2+3+4+5 95.4% 98.0% 

3+4+5+6 95.0% 98.3% 

4+5+6+7 94.7% 98.4% 

   

1+2+3+4+5 95.9% 98.0% 

2+3+4+5+6 95.6% 98.1% 

3+4+5+6+7 94.8% 98.2% 

   

1+2+3+4+5+6 96.1% 98.1% 

2+3+4+5+6+7 95.8% 98.1% 

   

1+2+3+4+5+6+7 95.9% 98.0% 

Table 2 Results of anomaly detection on every selected edge features case. 
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According to the results, feature selection affects the additional 

improvement of anomaly detection performance. In the case of which 

fourth, fifth, and sixth features in auxiliary edge image acquisition, 

the model has the highest anomaly detection performance. The 

anomaly detection model performs worse when using the middle part 

of the features. Using the second half of the edge features shows 

higher performance in pixel-level AUROC, but using the last features 

is harmful to the performance in both image and pixel scores. The 

rest of the results let us know in which cases we can achieve the 

highest anomaly detection performance.  
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Chapter 4. Conclusions 
 

 

In this paper, we propose an anomaly detection method to 

improve anomaly detection performance on the wafer dataset, 

including a ‘resin bleed’ that hinders detecting cracks. Our method 

improves performances without any additional datasets and 

annotations. Our method extracts 7 features of the edge using the 

edge detection model and selects some of the outputs based on their 

impact on anomaly detection performance. Then we propose a 

method to combine the features from the original RGB images and the 

features from the edge image. As a result, our method has a great 

ability to detect cracks with unclean backgrounds while maintaining 

good performance for clear cracks with clean backgrounds. On the 

wafer surface dataset, our approach achieves 96.7% in image-level 

AUROC and 98.6% in pixel-level AUROC. No additional data and 

annotations are used for performance improvements. 

Our method has several contributions: (1) Our method can be 

applied to the real wafer inspector (2) Our approach proposes a 

better method to approximate cracks so that the cracks can be more 

clearly distinguished. (3) Our method can be applied to other real 

datasets that have cracks and components that hinder detecting 

cracks.  
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Abstract 

 

결함 탐지는 산업에서 제품의 생산성이나 질을 향상시키는데 매우 중요

한 과정입니다. 그러나 나노 스케일 공정에서 결함의 형상이나 노이즈, 

불분명한 배경 같은 요소들은 결함 탐지를 어렵게 만듭니다. 산업에서 

결함의 비율은 매우 작고 결함 탐지를 위해서 전문적인 지식을 필요로 

하는 경우도 많기 때문에 사람이 직접 결함 탐지를 수행하는 것은 매우 

소모적이고 비효율적입니다. 그러므로 산업에서 컴퓨터 비전 기반 결함 

탐지 모델을 활용하는 것은 시간이나 물적, 인적 자원을 절약하고 부족

한 결함 데이터 문제도 해결할 수 있는 훌륭한 방법입니다. 그러나 데이

터 기반 이상 탐지 모델을 실제 산업 검사에 활용하는 것은 많은 어려움

을 가지고 있습니다. 해당 연구에서 우리는 결함 탐지의 목표로 하는 웨

이퍼 제품에서 ‘resin bleed’ 라는 크랙 검출을 방해하는 요소를 확인했

습니다. ‘resin bleed’는 정상 요소에 속하지만 머신 비전의 관점에서는 

크랙과 비슷합니다. 이러한 특징들은 데이터 셋 전체에 분포되어 있는 

Resin bleed가 결함 탐지 모델이 크랙들을 정상 요소들과 분명하게 구

별할 수 있는 능력을 저해합니다. 이 논문에서 우리는 크랙의 엣지 성분

을 강화하여 이상 탐지 모델이 크랙을 더 잘 검출할 수 있도록 하는 방

법을 제시합니다. 저희가 제안하는 방법들은 결함 탐지 성능을 이미지 

레벨에서 96.7%, 픽셀 레벨에서 98.6% 성능을 달성했습니다. 저희가 

달성한 성과들은 기존 이상 탐지 모델을 사용했을 때와 비교하여 추가 

데이터 주석 없이 이미지 레벨에서 4.5%, 픽셀 레벨에서 2.0% 성능 향

상한 결과입니다. 
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