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Abstract

Jinsoo Yoo
Department of Mechanical Engineering
The Graduate School

Seoul National University

This dissertation presents a novel longitudinal motion planning of autonomous
vehicle at urban intersection to overcome the limited visibility due to complicated
road structures and sensor specification, guaranteeing the safety from the potential
collision with vehicles appearing from the occluded region.

The intersection autonomous driving requires high level of safety due to
congested traffics and environmental complexities. Due to complicated road
structures and the detection range of perception sensors, the occluded region is
generated in urban autonomous driving. The virtual target is one of the motion
planning methods to react the sudden appearance of vehicles from the blind spot.
The Gaussian Process Regression (GPR) is implemented to train the virtual target
model to generate various future driving trajectories interacting with the motion of
the ego vehicle. The GPR model provides not only the predicted trajectories of the
virtual target but also the uncertainty of the future motion. Therefore, prediction
results from GPR can be utilized to a position constraint for the Model Predictive
Control (MPC), and the uncertainties are taken into account as a chance constraint
in the MPC.

In order to comprehend the surrounding environment including dynamic



objects, a region of interest (ROI) is defined to determine targets of the interest.
With the pre-determined driving route of the ego vehicle and the route information
of the intersection, driving lanes intersecting with the ego driving lane can be
determined, and the intersecting lanes are defined as ROI, reducing the
computational load by eliminating targets of disinterest. Then the future motion of
the selected target is predicted by a Long Short-Term Memory-Recurrent Neural
Network (LSTM-RNN). Driving data for training are directly obtained with two
different autonomous vehicles, providing their odometry information regardless to
the limited field of view (FOV). For a widely known autonomous driving datasets
such as Waymo and nuScenes, the vehicle odometry information are collected from
the perceptive sensors mounted on the test vehicle. Thus, information of target that
are out of the FOV of the test vehicle can’t be obtained. The obtained training data
are organized in the target centered coordinates for better input-domain adaptation
and generalization. The mean squared error and the negative log likelihood loss
functions are adapted to train and provide the uncertainty information of the target
vehicle for the motion planning of the autonomous vehicle.

The MPC with a chance constraint is formulated to optimize the longitudinal
motion of the autonomous vehicle. The dynamic and actuator constraints are
designed to provide ride comfort and safety to drivers. The position constraint with
the chance constraint guarantees the safety and prevent the potential collision with
target vehicles. The position constraint for the travel distance over the prediction
horizon time is determined based on the clearance between the predicted
trajectories of the target and ego vehicle at every prediction sample time.

The performance and feasibility of the proposed algorithm are evaluated via

computer simulation and test-data based simulation. The offline simulation
.. 11 © 1)
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validates the safety of the proposed algorithm, and the suggested motion planner
has been implemented on an autonomous driving vehicle and tested in a real road.
Through the implementation of the algorithm to an actual vehicle, the suggested

algorithm is confirmed to be applicable in real life autonomous driving.

Keyword : Autonomous driving vehicle, vehicle motion prediction, Virtual target,
Gaussian process regression, Long short term memory recurrent neural network,
Stochastic model predictive control

Student Number : 2018-21836
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Chapter 1. Introduction

1.1. Research Background and Motivation of Intersection

Autonomous Driving

The autonomous driving has been rigorously studied and implemented in
real vehicles. Leading automotive manufacturers such as Mercedes Benz, BMW,
Volvo, Hyundai, Toyota, and Tesla have already adopted Advanced Driving
Assistance System (ADAS) several years ago. Most companies developed highway
autonomous driving system such as Highway Driving Assistance (HAD) and
HDA?2 from Hyundai Motor Company. Such highway autonomous driving system
can be operated under the level 2 autonomous driving regulation due to simple road
structures and simple driving patterns of surrounding vehicles.

As a higher level such as the level 3 or 4 of self-driving is being pursued
these days, the Operational Design Domain (ODD) of autonomous driving has
shifted to urban environment. Compared to the highway autonomous driving, the
urban driving requires high level of safety due to the congested traffic and
environmental complexity. The intersection is the most complicated urban road
structures with the following challenges: traffic laws, dynamic surrounding objects,
and complicated driving environments. The intersection traffic is controlled with
various traffic laws such as stop and yield, and with different traffic signals. The
dynamic surrounding objects require precise intention inference and their trajectory
prediction to properly plan the motion of autonomous vehicle. The complex urban

1



environment can be categorized into adverse weather, light condition, and
occlusion, which are critical in perceiving the surrounding.

The urban autonomous driving can be categorized into two: the normal
autonomous driving, and the intersection autonomous driving. Although the
intersection is part of the urban roads, significant differences exist between the
urban intersection autonomous driving and normal self-driving. The differences

between those two autonomous driving are described in the Table 1.
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The road structures of the urban intersection and normal road are different.
The road structure of the intersection diverges to multiple directions or merges into
one, but that of the normal road is a simple one-way or two-way direction. Due to
the complex road structures and boundaries of the urban intersection, the field of
view (FOV) is highly limited. Therefore, the autonomous vehicle should be
extremely cautious when entering or changing the direction in the intersection by
obtaining enough FOV for the safety. On the other hand, the FOV of normal
autonomous driving is generally not obstructed by road structures other than
severely curved road. The critical difference between the intersection and the
normal urban autonomous driving is the traffic flow directions and traffic
participants interactions. Because the roads of the intersection merges to one point
from different directions, the traffic flows in the intersection variates in many
directions, and major and minor traffic stream exist due to traffic rules. In extreme
case, the target vehicle approaches to the intersection from the opposite direction of
the ego vehicle. In the intersection, the conflict region is the critical index to
maintain the safety and avoid collision. Therefore, in the intersection motion
planning, it is significant to properly define the conflict region in the intersection.
Unlike the intersection autonomous driving, the normal autonomous driving with
simple road structures where target and ego vehicles driving in the same direction
maintains the safety and prevent collision through clearance control.

Although different types of intersection exist, the major three different
driving directions are defined in the intersection: left, straight, and right. The
driving directions of the ego vehicle and other intersection traffic properties

4



depending on the ego direction are described in the table 2. When the ego vehicle is
conducting the left turn, the ego vehicle has the right of way to cross the
intersection, and detects target through frontal view. When the ego vehicle turns
left, the vehicle may interact with the target vehicle turning right at the opposite
road. During the left turn at intersection, no occlusion from static obstacles occurs.
When the ego vehicle travels straight through the intersection, the ego vehicle also
has the right of way in the traffic flow. The ego vehicle will interact with a target
vehicle that turns right. The target vehicle can be detected with frontal view of the
ego vehicle. The right turn in the intersection is the most difficult motion in the
urban intersection. When the ego vehicle turns right, the ego has to yield to the
vehicles that have the right of way in the intersection entering from the different
directions. During the right turn, the ego vehicle should continuously observe the
side directions to react to oncoming target vehicle with the right of way to cross the
intersection. Due to the complex road structure of the intersection, the FOV of the
ego vehicle is obstructed. The interaction between ego vehicle and target vehicle in

the intersection is described in Figure 1.1.

Table 2. Ego vehicle direction and related properties in the intersection.

Ego Direction Tr:ff.ic .Flow Targe?: De!:ection Targeif Onf:oming Occlusion from
riority Direction Direction Road Boundary
Left Right of way Front Right No
Straight Right of way Front Right Yes
Right Yield Side Straight Yes
5




Target Vehicle
(Right Turn)

@) @ Target Vehicle

(Right Turn)

(1

Target Vehicle
(Straight)

E Ego Vehicle

Figure 1.1. Possible vehicle interactions in the intersection

The most critical factor for not only the autonomous vehicle but also
human driven automobile is the visibility. In the autonomous driving, the visibility
of the self-driving vehicle is defined as FOV that how far and wide the automotive
can perceive. Although human can acknowledge surrounding environment in wide
range, the self-driving vehicles are limited in field of view when approaching to the
intersection due to sensors’ specification, mounting location of sensors on a vehicle,
and road structures. Among various perceptive sensors providing a vision to an

autonomous vehicle, a Lidar sensor is one of the most promising and commonly
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adopted perceptive sensors. As shown in Table 3 below, channels of lidar sensor
varies from 16 to 128 channels, and the 32 channel Lidar sensor is chosen by many
research institutes and companies such as Google Waymo and General Motors
Cruise. According to the sensor specifications, Lidar sensor provides the
longitudinal measurement range from 80m to 300m. However, the maximum
measurement range does not guarantee the detection and classification of road
users such as vehicles, bicycles, and pedestrians. From Figure 1.1 below, the 16
channel Lidar sensor can detect the vehicle up to 25m, and the 32 channel Lidar
sensor recognizes the vehicle up to 55m. Beyond the range, Lidar point clouds are
sparsely detected, and it is hard to distinguish and classify as a specific object.
Since such detection range of Lidar sensor is insufficient compared to that of
human drivers, the autonomous vehicle motion is highly restricted in driving in
intersection with complex road structures and blind spots. Such limitation can
result in late detection of oncoming traffic participants, leading to a fatal accident.
From extensive reviews of preliminary studies, researchers have attempted
various approaches to guarantee the safety of road users and provide comfortable
riding quality by overcoming challenge of urban autonomous driving. The
autonomous driving is categorized into four different major modules: the
localization, the perception, the planning, and the control. Based on the odometry
of ego and other traffic participants and local geometry information from upper
modules, such as the localization and the perception, the planning module
systematically predicts the surrounding situations and plans the proper ego

behavior that guarantees safety in case of the unexpected obstacles and collisions



from the occlusion. Therefore, we aim to develop a motion planning algorithm for
an autonomous vehicle in a complex urban environment, especially in the
intersection, guaranteeing the safety and preventing collision from the sudden

appearance of traffic participants from the occlusion.

Table 3. 3D Lidar Velodyne Sensor Specification

VELODYNE Specification

16 - channel
Meas. : 30m

] FOW - +15~-15°
Puck/Puck LITE | Ang. Res: 2°

32 - channel
Meas. : 100m

FOW - +11~-317
HDL-32E Ang. Res : 1.35°

32 - channel
Meas. : 200m

FOV - +15~-25°
Ultra Puck Ang. Res : 0.33°

64 - channel
Meas. : 120m

=, FOV : +2~-24.8°
HDL-64E Ang. Res : 0.4°

(i) 1228 - channel

_ Meas. : 180~300
— FOV - +15~-25°
Alpha Prime | Ang. Res: 017

A& gk



50m M

Velodyne Ultra Puck (3D / 32-ch) Velodyne Puck (3D / 16-ch)

Figure 1.2. Detection range of Velodyne sensors.

1.2. Previous Researches on Intersection Autonomous Driving

Various methodologies of different autonomous driving modules have been
employed to the self-driving vehicle to enhance ride comfort and guarantee the
safety of self-driving at urban intersection. In motion planning, literature reviews
have generally studied two specific autonomous driving technologies: Target
trajectory prediction and ego motion planning. In the following sections 1.2.1 and
1.2.2., preliminary studies of surrounding vehicle motion prediction and motion

planning for limited field of view are summarized.



1.2.1. Research on Trajectory Prediction and Intention

Inference at Urban Intersection

In urban environment where road structures are complex, and velocity of
traffic participants varies in wide ranges, a precise and accurate prediction of road
users is critical in safety and collision prevention. Various trajectory prediction
methods can be categorized into physics-based methods and learning-based
methods. The most common physics-based methods that are widely utilized and
compared as a basic prediction model are constant velocity (CV) and constant yaw
rate and acceleration (CYRA) model [Prevost et al. 2007]. Jeong et al generated
three different velocity profiles with Intelligent Driver Model (IDM) and predicted
trajectories using Interactive Multiple Model (IMM) [Jeong et al 2019]. However,
IMM based prediction can only estimate predefined predictive trajectories. Koschi
et al utilized a reachable set for occupancy prediction of surrounding traffic
participants instead of analyzing probability distributions of nearby vehicles,
guaranteeing a full collision free safety [Koschi et al 2020]. However, such
occupancy prediction does not reflect the future field of view as the ego vehicle
proceeds and visibility changes.

In order to predict the future trajectory and contextual behaviors of
surrounding vehicles delicately, learning-based approaches have been widely
adopted in both a short-term and a long-term prediction horizon and proves
enhance performance rather than physic-based prediction. Jeong et al implemented
LSTM-RNN with predicted ego states from model predictive controller as

additional inputs to predict interactive trajectories of vehicles at multi-lane turn
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intersections [Jeong et al. 2020]. Deo et al proposed Convolutional Social Pooling
LSTM model to predict the future trajectory of target vehicles where convolutional
social pooling layer allows to capture the spatial interaction among vehicles [Deo
et al. 2018]. Roy et al proposed Generative Adversarial Networks to predict the
future trajectories of vehicles that captures the social interactions [Roy et al 2019].
Sheng et al proposed Graph-based Spatial Temporal Convolutional Network for
trajectory prediction that graph convolutional network (GCN) defines the spatial
interaction, convolutional neural network (CNN) captures the temporal features,
and the features are encoded and decoded by a gaited recurrent unit (GRU) [Sheng
et al. 2021]. Yoon et al implemented a Gaussian Process Regression (GPR) to
predict lane change trajectories of nearby vehicles [Yoon et al. 2021]. Li et al
designed a Graph-based Interaction aware Trajectory Prediction (GRIP) that
incorporates the graph convolution extracts social interaction features and encodes
and decodes features through LSTM to predict future trajectories [Li et al. 2019].
Most of these prediction results are computer simulated, and predictions are
performed with environmental and dynamic features from space-fixed coordinate
instead of coordinates from a self-driving car perspective. The space fixed

coordinate is disadvantageous in vehicle implementation.

1.2.2. Research on Intersection Motion Planning

In urban autonomous driving, myriad researches have been developed to
overcome the limited field of view due to occlusions. The approach can be

subdivided into the two themes: communication and non-communication
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autonomous systems. With the development of 5G network, the data transmission
speed and load have enhanced dramatically, and the communication among
autonomous vehicles and traffic infrastructures become possible, recently named as
Cooperative-Intelligent Transport Systems (C-ITS). In C-ITS, Vehicle to
Infrastructure (V2I), Vehicle to Vehicle (V2V), and Vehicle to Everything (V2X)
communication systems have been introduced to overcome the sensor limitation
and the blind spots in the intersection. Elleuch et al proposed a Cooperative
Intersection Collision Avoidance Persistent system based on V2V and Real-time
database system to reduce collision risks [I. Elleuch et al 2017]. In accordance with
V2V, Sun et al introduced the Intersection Vehicle Fog (IVF) model to proactively
plan motions at the intersection [G. Sun et al 2020]. Ci et al developed the vehicle
following mode based V2I to enhance traffic efficiency and vehicle operation
behaviors [Y.Ci et al 2019]. Duan et al designed the RGB Point-Voxel-Region
based Convolutional Neural Network (PVRCNN) perception module to improve
the acknowledgement of the surrounding object information comping with V2I
system of road side Lidar sensor [X. Duan et al 2021]. Liu et al proposed the radar-
based road side sensor communication to detect vehicles and vulnerable road users
from the blind corner, and the support vector machine classifier is adopted to
classify object from both sensors mounted on self-driving vehicle and road side
radar sensor [W. Liu et al 2018]. The collision prediction of vehicles and
vulnerable road users is measured based on their velocity, position, and heading.
However, due to the characteristics of the radar, the multiple road users may cause
large uncertainties and noise to detection and classification results. Jung et al
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proposed V2X communication aided autonomous driving vehicle with three sub-
modules: beyond line-of-sight (BLOS) perception, planning, and control [C. Jung
et al 2020]. The BLOS perception module integrates local perception information
from perceptive sensors mounted on vehicle and communication perception from
V2X communication system and allows to overcome the limited visibility. Muller
et al developed the motion planning framework with a sampling-based
optimization method that adopts the external environmental model of V2I system
to ego environmental model with perceptive sensors in prarallel instead of track to
track (T2T) conventional fusion [J. Muller et al 2022]. The T2T fusion method is
not effective by increasing the redundancy of detection and tracking number of
targets in non-mutual field of view. However, these studies are only restricted to
V2V and V2I environment, and most vehicles and road infrastructures in a real
world are not equipped with such communication systems. Furthermore, different
cities and countries do not offer the unified regulation and format of data
transmission of the C-ITS for autonomous vehicles, causing interference when
operating in different regions.

Other than communication-based solutions, a common strategy to
overcome the occlusions that many preliminary studies implemented is to assume
the virtual vehicle at the end of the field of view of autonomous vehicles. With a
virtual vehicle coming from blind spots, the autonomous vehicle can properly plan
the motion to prevent the potential collision. One of the most common methods to
plan the motion with a phantom wvehicle is the Partially Observable Markov
Decision Process (POMDP). Because of the generality of POMDP, many
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researches adopted the approach to optimize the occlusion-aware motion planning
[P. Narksri et al 2021]. Hubmann et al proposed a POMDP based behavior planner
with virtual vehicles that the probability of virtual vehicles represented in reachable
set are determined with the traffic density at the occluded lane described as uniform
probability distribution instead of assurance of existence of phantom vehicle at the
frontier of the field of view [Hubmann et al. 2019]. Schorner et al designed the
field of view calculated based on the vehicle sensor configuration accordance with
the current and future environmental information and incorporate potential hidden
traffic participants from the generated field of view with POMDP to plan the
longitudinal motion [P. Schorner et al. 2019]. The probability of hidden vehicle is
determined based on the traffic density of the occupying lane and distance to the
vehicle. Brechtel et al. developed a continuous POMDP with a dynamic Bayesian
network to determine a discrete finite set of acceleration and deceleration during
the merging scenario at the intersection where the observation model of POMDP
solved with the Monte Carlo Value Iteration algorithm treats the hidden vehicle
probability as Boolean [S. Brechtel et al 2014]. However, when the observation
model encounters the non-visibility, the optimized policy enforces the stop mode to
look behind the blind area. Zhang et al proposed a POMDP based behavior planner
with a phantom vehicle whose probabilities were inferred based on road structures
and pre-defined map information [C. Zhang et al. 2021]. The proposed POMDP is
solved online with Monte Carlo tree with reachable set analysis. Lin et al suggested
a POMDP based decision making through occluded intersection accounting both
static and dynamic obstacles [Lin et al. 2019]. Thornton proposed a longitudinal
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and lateral controller to guarantee the safety at the occluded crosswalk formulating
POMDP that dynamic programming is implemented for control policy to control
the longitudinal motion [Thornton 2018]. The model predictive controller is
applied to generate lateral motion with the velocity scalar from the POMDP.
Bouton et al designed a POMDP formulated with scene decomposition method to
manage multiple traffic participants independently at scene with occlusion [M.
Bouton et al. 2018]. Although the POMDP is a very promising methodology to
resolve the occluded driving scenario at the complex urban road structures, the
computational burden can be high to be solved in real-time, and the method is
difficult to be implemented in a real vehicle. Moreover, most of the POMDP based
researches assumed over-simplified predicted action of virtual targets such as
approaching with the maximum constant velocity. However, under such
assumption, the self-driving vehicle can remain stopped indefinitely, causing a
dead-lock situation.

Deep learning-based approaches have been studied to overcome
autonomous driving scenarios with blind spots. Among various deep learning
approaches such as Long Short-Term Memory Recurrent Neural Network (LSTM-
RNN) and Generative Adversarial Network (GAN), many preliminary studies
utilize Deep Reinforcement Learning to resolve the occlusions at the intersection.
Morales et al proposed a data driven motion planning with an inverse
reinforcement learning to reflect expert driving characteristics, guaranteeing safety
motion at occluded intersection [Morales et al. 2018]. Isele et al generated creeping

behaviors when approaching the occluded intersections with Deep Q Networks to
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improve the safety and achieve visibility [Isele et al. 2018]. Kamran et al proposed
risk-based reward function instead of collision based in order to generate reliable
policies and motions three Deep Q-Networks [Kamran et al. 2020]. Kamran et al
proposed a distributional RL framework with dynamic programming to learn
adaptive policies and consider the maximum uncertainty, guaranteeing the safety
and ride comfort [Kamran et al. 2021]. Instead of trajectory prediction of vehicles,
Ren at el. proposed a novel deep learning model with three different loss functions
to predict the occupancy map to predict unseen vehicles [Ren et al 2021]. Although
such learning-based approaches can easily reflect human driving patterns, some of
the researches only conducted simulation studies, and the relationship between the
input and the output is inexplicable.

Another method for motion planning to overcome the occlusion is to design
the potential risk of unobserved oncoming vehicles and incorporate the risk to
optimize the motion of self-driving vehicle. The advantage of such model-based
approach is the explicit relationship between the risk and output motion of the
vehicle. Tas et al proposed the motion planning based on the environmental model
where the sampling preview point along a center of ego driving corridor is
implemented to up-do date offline map, and the motion planner optimizes a motion
stochastically according to different driving modes with Intelligent Driving Model
[Tas et al 2018]. Morales et al designed a motion planning algorithm at blind
cornered intersection with expert driving data [Morales et al 2017]. With a
geometry of an intersection, Yoshihara et al developed a longitudinal model that
computes the maximum safety velocity at possible proceeding points and critical
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longitudinal point and incorporate the velocity to the Frenet frame path planner to
generate the optimal motion [Yoshihara et al. 2017]. Hoermann et al. proposed a
dynamic grid-map based motion planning that optimizes the trajectory with the
minimum cost incorporated with occluded objects predicted with pre-defined map-
based velocity [Hoermann et al. 2017]. Naumann et al considered a probabilistic
trajectory prediction of the potential object at an edge of a sensing filed to plan a
safe, comfortable, and not overcautious motion [Naumann et al. 2019].
Orzechowsk et al. estimated the occupancy of the over approximations of potential
occluded traffic participants with Kamm’s circle and a velocity interval
[Orzechowsk et al. 2018]. Yu et al predicted the risk of unobserved vehicles with
the pre-defined road structures and incorporate the risk to optimize the trajectory
[Yu et al. 2019]. Zhang et al proposed a game-theoretic based framework that plans
the future trajectory to prevent collision with hidden vehicles from the occlusion
[Zhang et al 2021]. Wang et al proposed aDynamic Bayesian Network based model
for real-time estimation of a potential risks at blind corners and incorporated the
risk to a longitudinal and lateral motion planning [Wang et al 2022]. Narksri et al
proposed a deadlock-free planner of autonomous vehicle at urban intersection that
model multiple velocity profiles and visibilities of hidden vehicles from human
driving data [Narksri et al. 2021]. Jeong et al proposed Approach Phase and Risk
Management Phase to maintain the maximum safety velocity of self-driving
vehicle when approaching the intersection with limited visibility [Jeong et al. 2019].
However, most of previous researches assumes the worst-case scenario with a

virtual vehicle approaching with a constant velocity of road regulation. However,
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the constant velocity assumption may enforce the ego vehicle remains stoped

indefinitely, causing “Dead-lock” situation.

1.3. Thesis Objectives

The dissertation aims to propose the longitudinal motion planning of
autonomous vehicle at urban intersection to improve safety and prevent potential
collision due to occlusions, coping with limited visibility and uncertainty. A simple
way to prevent the collision due to a sudden appearance of oncoming vehicle is
“stop and go” that the autonomous vehicle must stop first and then accelerate to
pass through the intersection. However, in such case, the vehicle stops at every
intersection even if no other traffic participants exist, leading to an inexplicable
behavior for a following vehicles. Therefore, the proposed thesis develops main
two modules for intersection motion planning for autonomous vehicle:
Surrounding vehicle prediction and longitudinal motion planning

The surrounding vehicle prediction module estimates the future trajectories of
the oncoming vehicles. In order to overcome perceptive sensors limitations and
prevent collisions due to occlusions, the surrounding vehicle prediction module is
subdivided into two sub-modules: Virtual target and real target. The virtual target
module anticipates the future trajectories of virtual targets from the occlusion. The
GPR method is implemented to measure the mean and covariance of predicted
trajectories. The visibility index of virtual targets based on the road structure is
designed as one of input features of the GPR. The mean and covariance of future

trajectories of virtual target are implemented in formulation of stochastic model
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predictive controller of the longitudinal motion planning. The real target module
predicts the future trajectories of detected vehicles with LSTM-RNN. The training
and test data for both GPR and LSTM-RNN are obtained from actual driving at the
intersection.

With the future trajectories from surrounding vehicle prediction module, the
longitudinal motion planning proactively plans the ego vehicle motion with
stochastic model predictive control. The stochastic model predictive control is
formulated to consider prediction uncertainties, actuator limits, and jerk to provide

ride comfort and guarantee the safety from collisions.

1.4. Thesis Outline

This dissertation is organized in the following manner. In Chapter 2, the
overall architecture of the proposed algorithm is described. The overview of
software configuration is summarized as different modules. The hardware
configurations of the test vehicle are described. Further, the vehicle test
environment for evaluation of the proposed algorithm is introduced. The test
environment is occupied with unregulated human driven vehicles.

In Chapter 3, the methodology of virtual target modeling and prediction is
described. The proposed algorithm generates virtual targets at the end of the field
of view that encounters target vehicle’s driving routes. The field of view is defined
by configuration of sensors mounted on a vehicle. Virtual targets are modeled using
Gaussian Process Regression to measure the future trajectories. A visibility index

measurement, one of input features for GPR, based on the road structures is
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described. Actual human driving data are collected and used to train and validate
the GPR model. Different effects of kernel functions of GPR are defined.

In Chapter 4, the detected surrounding vehicle prediction is introduced. For
the actual vehicles, historical trajectories of the detected vehicles can be observed
whereas the historical paths of virtual targets don’t exist due to its passive
generation based on change in field of view. The Long Short-Term Memory based
Recurrent Neural Network is constructed to predict the future trajectories of
detected vehicles. LSTM-RNN structures and train setup for trajectory predictions
are described.

In Chapter 5, the longitudinal motion planning of autonomous vehicle is
defined. In order to incorporate the future trajectories of target vehicles to
proactively plan the ego motion, the model predictive control is formulated. The
ego vehicle state prediction and reference states for MPC are described. The
conflict region is the most critical index in intersection motion planning to prevent
collisions and generated based on future trajectories of target and ego vehicles.
Constraints of MPC to provide driver acceptance and safety from collision are
defined.

In Chapter 6, the performance evaluation of the proposed algorithm is
summarized. The GPR based virtual target model prediction accuracy is evaluated
with mean absolute error, root mean squared error, and standard deviation. The
GPR trajectory prediction is compared with a constant velocity model to describe
the efficiency. MATLAB simulation is conducted to describe overcoming the

deadlock situation. The LSTM based surrounding vehicle prediction accuracy is
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described and compared with a constant velocity model. The stochastic model
predictive controller is performed under MATLAB simulation. The vehicle test
result under real urban intersection is described.

In Chapter 7, the conclusion and summary of the proposed longitudinal
motion planning algorithm at urban intersection is presented, and future works are

described.

21



Chapter 2. Overall Architecture of Intersection

Autonomous Driving System

2.1. Software Configuration of Intersection Autonomous

Driving

The autonomous driving system largely consists of perception, localization,

motion planning, and control. From upper modules, perception and localization, the

motion planning obtains global routes, vehicle odometry, and surrounding vehicle

information and determines the desired acceleration. The software architecture of

overall autonomous driving motion planner is described in Figure 2.1.
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Figure 2.1. System overview of the autonomous driving motion planner.

As shown in Figure 2.1, the motion planner can be categorized into a general

road and an intersection motion planner. Both two different motion planners
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operate parallelly. The general road motion planner manipulates vehicle motions
such as lane keeping, lane changes, overtaking, and biased driving. The detailed

description of the intersection motion planning is presented in Figure 2.2.
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Figure 2.2. Intersection motion planning architecture

As described in Figure 2.2, the intersection motion planning is composed of
surrounding vehicle prediction and longitudinal motion planning modules. In
surrounding vehicle prediction module, two different target prediction sub-modules,
virtual target and real target, perform parallelly. Based on the sensor specification
and HD map information, a virtual target is generated, and future trajectories are
predicted based on GPR. When real targets are observed, the future trajectories of
the detected targets are calculated using LSTM-RNN. The virtual target submodule
is activated when no oncoming target vehicle is observed, and deactivated when
targets are detected in the intersection. The predicted future trajectories from
surrounding vehicle prediction modules are utilized for the longitudinal motion

planning. The ego vehicle longitudinal motion is optimized with a stochastic model

23



predictive control in the longitudinal motion planning module. The ego future
trajectories and reference states are defined for the MPC. The future trajectories of
both ego and target from preceding modules are computed to define the conflict
region at the intersection and determine the position constraints of stochastic MPC
to prevent collisions. The mean and covariance of virtual target future trajectories
from GPR are implemented to manipulate the uncertainty of virtual target. Through
the longitudinal motion planning, the desired longitudinal is determined to generate

driving motion and ensure the safety at the intersection.

2.2. Hardware Configuration of Autonomous Driving and

Test Vehicle

The test vehicle for the propose algorithm is a KIA Carnival, a multi-purpose
vehicle. Two 32 channel 3-D Velodyne Lidars are mounted on the front and rear of
the vehicle roof. The front vision camera is also mounted under a front glass for
lane and traffic participants detection. OmniView around view camera for right and
left lanes around the vehicle and Septentrio GPS are used to provide vehicle
odometry through a localization module. Two industrial PCs, Nuvo 8108GC, are
built in to operate perception and motion planning modules respectively. The
desired motion calculated from the industrial PC is provided to a lower-level
controller of a micro-autobox to operate actuators of the autonomous vehicle. Such
hardware configurations for autonomous vehicle system and perceptive sensors

detection ranges are depicted in figure 2.3.
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Figure 2.3. Configuration of sensors for autonomous vehicle.

2.3. Vehicle Test Environment for Intersection Autonomous
Driving

The vehicle tests were performed in a real intersection. A full autonomous
driving interacting with human drivers was conducted in Sangam, Seoul, South
Korea. Sangam city is nominated as self-driving test city, and various autonomous
vehicles from different research institutes conduct test driving and provide

autonomous shuttle service. The driving course of a full autonomous driving is

described in Figure 2.4.
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Figure 2.4. Vehicle test course in Sangam, Seoul, South Korea
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Chapter 3. Virtual Target Modelling for Intersection

Motion Planning

3.1. Limitation of Conventional Virtual Target Model for

Intersection

In many preliminary studies, the virtual targets are utilized as if a real vehicle
is appearing from the occluded region at the intersections. Most conventional
methods assume the virtual targets are approaching to the intersection with constant
velocity and maximum road speed regulation. However, with the assumption of a
constant velocity, the ego vehicle gradually decreases velocity to react to the virtual
target and becomes stopped at the entering point of the intersection. However,
when the ego vehicle reaches to a certain point at the intersection, the predicted
trajectory of the virtual target enforces the ego remain stopped indefinitely, causing
“Deadlock” situation as shown in Figure 3.1. In Figure 3.1, the predicted horizons

of a virtual target and ego vehicles are assumed to be 3 seconds.

27



go Vehicle

(b)

Ego Vehicle

28

2 Mg et

SECHRIL hATIOMAL LIMIVERSTY



(o)

T ?I]h'l r=1s r=2s f=3s
arget Vehicle m m m

Virtual Target [=3

=25
1=1s

Ego Vehicle

Figure 3.1. Predicted trajectories of virtual target with constant velocity in “dead-

lock” situation (a) left turn (b) straight (¢) right turn

Due to a constant velocity prediction of virtual target and fixed position from
field of view of the ego vehicle, the conflict region is generated, and ego vehicle
cannot cross the intersection. However, in real world driving, traffic participants
interact with others and generate different motions such as yield motion instead of
crossing, non-yield motion. Although a virtual target is not a real traffic participant,
the interactive motion can be designed as a real vehicle. Human-driven data can be

utilized to generate yielding motion trajectories as shown in Figure 3.2 below.
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Figure 3.2. Predicted trajectories of virtual target with yield motion (a) left turn (b)

straight (¢) right turn

As shown in Figure 3.2, the trajectory of the virtual targets becomes shortened
as ego vehicle approaches the intersection. Then, the sufficient clearance between
future trajectories of the virtual target and ego vehicle allows the safe region for the

self-driving vehicle to cross the intersection.

3.2. Virtual Target Generation for Intersection Occlusion

An autonomous vehicle based on local perceptive sensors is limited in motion

planning due to blind spots caused by surrounding environments. Since an
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autonomous vehicle perceives surrounding information by analyzing scene images
and point clouds from the perceptive sensors, if rays from those sensors are
obstructed by neighboring objects and road structures, it is difficult to fully identify
the oncoming vehicles beyond the obstruction. The ego vehicle with limited
perception range due to obstruction is difficult to properly plan ego motion in
regard to an oncoming vehicle.

In this study, the concept of virtual target is introduced to overcome the
limitation of perceptive range of sensors and reduce the potential collision risk. The
virtual target generation based on HD map and cognitive sensor specifications are

shown in Figure 3.3.
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Figure 3.3. Virtual target generation with cognitive sensors and road boundary
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Various perceptive sensors have different specifications in perception range.
As shown in Figure 3.3, the field of view of the vehicle is defined based on
perceptive sensor specifications such as resolution, point, density, and horizontal
range. Without understanding the road boundary from the current position, the
correct location of the occluded region cannot be recognized since it is ambiguous
to recognize where the rays of LIDAR or Radar will be prevented. With the road
boundary information from HD map, it is possible to define the correct FOV by
exactly comprehending the borderline where sensor rays are blocked. When the
FOV is generated based on road boundary, it is assumed that virtual targets exist at
the crossing point between the limit of the generated FOV and the expected driving
path of the virtual target. The autonomous ego vehicle assuming the existence of
virtual target can proactively design motion planning and determine driving mode
and control input, providing enhanced ride comfort.

As the ego vehicle proceeds toward the intersection, the virtual target is
generated when no oncoming vehicles are detected, and ego vehicle has not yet
reached to the point, where the full FOV for the target vehicle is allowed. Multiple
virtual targets are generated as shown in Fig. 4 at the limit of the FOV obtained
from the road boundary. The expected driving routes of each virtual target can be
obtained with the geometric information of the intersection from HD map, and the
primary virtual target for motion planning is determined by existence of a conflict
point when interacted with the driving route of the ego vehicle. Among various
virtual targets, the virtual target with the smallest TTCP is chosen as the primary to

continuously plan and control the ego vehicle motion to either cross or stop while
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maintaining the safety clearance until entering the intersection. For the safety
driving of the ego vehicle, the virtual target is assumed to be approaching and

crossing the intersection with the constant velocity of speed limit of the urban road.

3.3. Intersection Virtual Target Modeling

Various methods have been studied to model the vehicle motion in
autonomous driving to mimic human driving behaviors. Rule-based and a learning-
based methodologies are widely used two different categories to generate human-
like driving patterns. Although a rule-based method can generate human-like
driving motions, detailed and fine assumptions of behavior rules and parameters
are required, and a generated motion is still inelegant and clumsy due to a
complexity of other vehicle motion dynamics.

In this study, among various learning-based regression methods, the GPR is
implemented to mimic human driving behaviors to generate “Yield” and “Cross”
trajectories of virtual target vehicles as urban intersection, overcoming the
deadlock situation. The LSTM-RNN is widely utilized when predicting sequential
data such as future vehicle trajectories. Since LSTM-RNN method incorporates the
historical data of the driving motion of the target vehicle, it provides accurate and
precise predicted trajectories. However, the virtual targets in this study are
generated based on the field of view of the sensors mounted on the vehicle and do
not have historical trajectories due to a sensor field of view dependency instead of
time historical sequential dependency. In other words, the virtual target does not

move consecutively and is generated sensor and geometry dependent.
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3.3.1. Gaussian Process Regression based Virtual Target

Model at Intersection

The GPR is a powerful tool which is a data-driven non-parametric estimation
method expressed in terms of mean and variance, providing the uncertainties of
prediction results. A Gaussian process, by its widely known definition, is a
collection of random variables, and those random variables have a characteristic of
joint Gaussian distribution, multivariate Gaussian distribution [Rasmussen et al.
2006]. Gaussian distribution is a distribution of vectors and matrices, whereas
Gaussian process is a distribution of functions. The Gaussian process is defined as
mean and covariance functions, and mean and covariance functions are described

as below,

m(x) = E[ f(x)] (3.1)
cov(x,x") = E[(f(x) —m(x))(f(x")—m(x")] (-2)

The covariance function of a gaussian process can be described as a kernel
function as below,
cov(x,x") =k(x,x") (3.3)
The kernel function describes the similarity and correlation between two
inputs as the covariance between outputs at the query inputs. According to the
widely employed kernel functions, if the two input values are similar and close to
each other, the covariance value of the outputs at the query inputs calculated
becomes larger. However, for some kernel functions, the closer the input points are,

the smaller the covariance is calculated between the outputs at the query inputs.
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Therefore, the overall Gaussian process can be expressed as
f(x)~GP(m(x),k(x,x")) (3.4)
The Gaussian Process Regression, GPR, is a GP based regression method and
estimates the probability distribution of function value f(x*) at given input value x*

and training dataset [Yoon et al. 2021]. The training dataset can be expressed as

below,

D={(", fHi=12,---,n 3-5)

In the equation above, x and f denote the input and output of the dataset, and n
represent the number of training samples. A joint Gaussian distribution of f and

f(x*) with noise free observation can be described as follows,

AR g oo I
S(x*) m(x*) || K(x*, X)  k(x*,x*)

Introducing the noise term to the above equation, the joint Gaussian

distribution can be re-written as below,

{ f }Nﬂm(X)HK(X,X)JriI K(X,x*)D 5
S (x*) m(x*) K(x*,X) k(x*, x*)

where X, x*, and f are the corresponding training inputs, test/query inputs, and
training outputs. From the above equation, the kernel matrix, K(X,X) can be

expressed as,
K(X,X)= : : e R™" (3.8)
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It can be observed from the equation above, all the training input dataset pairs
have corresponding covariance values. Therefore, the kernel matrix determines the
predicted output mean and covariance value with the given query input. The
predictive distribution of function value follows the Gaussian distribution, and
mean and covariance can be described according to the conditional distribution of a

multivariate normal distribution as below,

*_nlle] A€ N(a+CB ' (y—b), A—CB'CT
A Vsl er s = x|y~ N(a+CB'(y-b), A- ) (3.9

The mean and covariance of the predictive distribution of the function value

f(x*) are shown below,

= m(x*) + K5 0O KX, X)+ 02| (f~m(X)  (3.10)

o = k(x*,x%) - K%, X)[ K(X, X)+ o2 | K(X.x*)  (.11)

With the equations above, the Gaussian process regression can conditionally
determine the mean and covariance of output at given query test input using
training datasets. In this study, a Gaussian process model is trained to estimate the
distribution of behavior parameter, a distance from a conflict point to a target

vehicle at predicted time of 5s.

(x,x")  (3.12

fdme, ,pred (5s) - G[)dtcmr ,pred(5s) (mdtcfar ,pred (5s) (x) ? kd

tctar ,pred (5s)
The predictive distribution of the distance to conflict point of target vehicle is

measured as below,

A A2
dtc D, x*~N(dc,, ,.4>Cu,,.) (3.13)

tar, pred >
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For Gaussian process regression five input features and one output feature is
constructed. The input features are dtCiar , Viar , dtCego » Vego , Ivis, Which are distance
to conflict point of target vehicle, velocity of target vehicle, distance to conflict
point of ego vehicle, velocity of ego vehicle, and visibility index respectively. The
output feature is dtCuarpred=s) that is a distance to conflict point of target vehicle at

predicted time of Ss.

3.3.2. Data Processing for Gaussian Process Regression based

Virtual Target Model

The driver behavior modeling is significant to predict future motion accurately
and prevent a potential collision. The driving dataset at the real urban intersection
are collected and analyzed to construct the Gaussian Process model for a behavior
parameter. The data are collected at two different urban intersections at Siheung,
Gyeonggi-do, South Korea. The first intersection as shown in Figure 3.4 is at a test
track of Future Mobility Test Center (FMTC). The intersection is a four-way
intersection, and two ways have two entering lanes and two exiting lanes, and other
two ways have one entering lane and one exiting lane. The distinct characteristic of
the intersection at the test bed is that all traffic participants can have a full open
field of view with no road boundary structures. The second intersection as shown
in Figure 3.5 is a three-way T-shaped intersection outside the test track of FMTC.
The all driving routes of intersection have two entering lanes and two exiting lanes.

Compared to the first intersection at the open field, the second intersection is
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located in the urban area with buildings and construction sites. Therefore, the
vehicles approaching to the intersection with various driving routes have limited
visibility due to road boundary with obstacles such as buildings and walls.
Therefore, driving data from two different intersection affected by different field of
view generate distinctive driving behaviors at the intersection. Two autonomous
vehicles with perceptive sensors, industrial PCs, and GPS shown in Figure 3.6 are
manually driven to collect the data and analyze the interactive motions. Each self-
driving vehicle has four 16-channel Velodyne Lidar sensors, each mounted on each
side of the vehicle. The vehicle states such as position and velocity are collected for

data analysis.
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Figure 3.5. Satellite view of intersection outside FMTC, Siheung, Korea

Vehicle Sensor Configuration

v "N

VLP-16C x4  Nuwvo 8108GC MBC GPS

Figure 3.6. Driving data collection vehicle sensor configuration
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The recorded driving data has been analyzed in terms of distance to conflict
point. In order to grasp all the interactive intersection crossing data of vehicles, the
distance from the vehicle to the estimated conflict point is used to describe the
position of the vehicles. The total 131 driving cases are obtained from 13 different
drivers. The velocity profiles respect to the distance to the conflict point is shown
in Figure 3.7. As shown in the obtained velocity profile, it is observed that
oncoming target vehicle is approaching to the intersection with two different
driving patterns: yield and cross. Since vehicles are driving at the urban
intersection, it is assumed that target vehicle is driving at the maximum speed limit
of 50km/h. From Figure 3.7, the initial velocity of the target vehicle variates within
40km/h to 60km/h. For the cross case, the vehicle tries to maintain the velocity and
tends to decrease the speed to 40km/h at 20m before it reaches to the estimated
conflict point. For the yield case, the vehicle starts to decelerate velocity to 10km/h
around 50m before the conflict point and then accelerates after. There are no

vehicles observed become full stop before the conflict point.
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Figure 3.7. Velocity profile of the driving data at the intersection

The two different driving patterns, yield and cross, are plotted in 3-dimension
of x and y domain along with time domain as depicted in Figure 3.8 and 3.9 in
order to better describe the interaction between target and ego vehicle. In Figure
3.8, the target vehicle approaches to the intersection and crosses the conflict point
without decreasing velocity, acknowledging the sufficient distance between target
and ego vehicle. In Figure 3.9, the target vehicle gradually reduces the speed by
acknowledging the potential risk of collision with the approaching ego vehicle

from the other side.
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Figure 3.8. Driving trajectories of target vehicle crossing at intersection
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Figure 3.9. Driving trajectories of target vehicle yielding at intersection

Moreover, the driving data is analyzed in acceleration distribution in order to
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check if driving dataset are obtained from drivers with different driving behaviors.

The acceleration distribution is depicted as a histogram in Figure. 3.10. As shown

in Figure 3.10, the diverse driving characteristics and no aggressive and naive

driving patterns are observed, and the mean and standard deviation of different

drivers are described in Table 4.
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Figure 3.10. Acceleration histogram of 13 different human drivers
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Table 4. The mean and standard deviation of acceleration of 13 different drivers

Driver | Mean [m/s?] | STD [m/s?]
1 -0.396 0.987
2 -0.376 1.012
3 -0.316 0.873
4 -0.180 0.919
5 -0.388 1.338
6 -0.455 1.103
7 -0.381 0.998
8 -0.292 1.001
9 -0467 1.138
10 -0.326 1.281
11 -0.294 0.976
12 -0.214 1.147
13 -0458 0.934

3.3.3. Definition of Visibility Index of Virtual Target at

Intersection

The first step toward the prediction of virtual targets is to comprehend the

characteristics of visibility generated by urban intersection road boundaries and

obstacles. In order to cross an intersection safely, it is essential to secure the

sufficient visibility and field of view. The wider a secured field of view is, the safer

the autonomous vehicle can plan the motion in react to the other traffic participants

within the visible area. From the perspective of target vehicle, the target vehicle
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can also properly and interactively behave in response to the ego vehicle within the
target vehicle’s field of view. In urban driving, target vehicles driven by human
have wider perceptive range than the autonomous vehicle. In this study, the idea
that target vehicle has a wider field of view is utilized to develop a novel visibility
index employed to design Gaussian process regression model.

The field of view of the autonomous vehicle at the urban intersection depends
on various factors such as road boundary and buildings. In the intersection, traffic
facilities such as sidewalks and crosswalks are constructed at the location where
collisions among various traffic participants and vulnerable road users can be
minimized. According to the Ministry of Land, Infrastructure and Transport
(MOLIT), there exist a regulation that should be secured in designing and
constructing an intersection. Since the visibility is the most significant factor for
vehicles entering the intersection, the regulation is required for not only the road
boundary size but also distance between road boundary and building construction

as shown in Figure 3.11.
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Figure 3.11. Safe intersection design from the Ministry of Land, Infrastructure and

Transport

Considering the worst-case scenario, we designed the intersection with the

regulation of road design parameters from the Ministry of Land, Infrastructure and

Transportation for constructing visibility as shown in Figure 3.12.
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Figure 3.12. Design regulations for intersection and their parameters

According to the regulation by MOLIT, the road corner width, Wy, should be
at least 6m in order for a vehicle to turn at the corner of the intersection. After the
distance of a minimum road corner width, Wy, from the intersection corner, at least
2m of the crosswalk width, W¢, must be secured. A minimum 4m of a side walk
width is required for pedestrians safely walking by the intersection. Buildings are
not allowed to be constructed within the parameters of the road corner width, the

crosswalk width, and the sidewalk width from the intersection road boundary. In
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Figure 3.12, Wr is a road width, and Wy is a lane width. According to the MOLIT,
the lane width should be at least 3m in not only intersection but also general urban
road.

Considering the intersection and structures of traffic facilities, the difference
of field of view between a human driven vehicle and an autonomous vehicle can be
described as in Figure 3.13. In Figure 3.13, a red thick line and a translucent red
colored area represents a visibility limit and field of view of an autonomous vehicle
respectively. A blue thick border and a translucent blue colored region denotes a
visibility limit and field of view of human driven target vehicle. In Figure 3.12, we
will assume that pedestrians, street light, and street plants occupy sidewalks
between thick red and blue colored border line. We can presume that the human
driven vehicles are able to observe other traffic participants through the occupied
region, and vehicles opposite the occupied area cannot be detected by an
autonomous vehicle. In other words, if a target vehicle and an autonomous vehicle
are positioned at the same distance from the intersection but at the different driving
route, it is possible that the self-driving vehicle can be detected by the target
vehicle and cannot observe the target vehicle. With such an assumption, a visibility
distance shown in Figure 3.13 is determined depending on the location of
oncoming target vehicle from the other driving routes of the intersection based on
the road structure. In this study, the oncoming target vehicle will be a virtual target
generated by field of view from an autonomous vehicle; therefore, the visibility of
the virtual target is generated, and it is implemented as one of input features of the

Gaussian process model for virtual target modeling.
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Figure 3.13. Field of view of autonomous vehicle and human driven vehicle

The proposed visibility profile can be determined in as a function of the road

width and a distance to conflict point and is graphed in 3-dimension in Figure 3.14.
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Figure 3.14. Visibility profile of oncoming target vehicle

3.3.4. Long Short-Term Memory based Virtual Target Model

at Intersection

The Long Short-Term Memory Recurrent Neural Network is one of widely
used learning methods to predict future trajectories of the moving objects. The
LSTM-RNN utilizes the data within observation horizon as input. The
characteristics of the LSTM is the sequential history input for prediction. On the
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other hand, the GPR, one of supervised learning methods like LSTM, utilizes data
at current/single time step as an input. The mean and variance of the prediction
result can be obtained from the GPR method. As mentioned previously, the virtual
target is generated at the edge of the FOV of the autonomous vehicle, and the
position of the virtual target becomes further away as the FOV of the self-driving
vehicle increases. Most importantly, since virtual target has no observed historical
positions, it is advantageous to implement the GPR to predict future trajectory of
the virtual target. In order to compare the effectiveness of the GPR and the LSTM

based virtual target model, two different models are designed and described in the

Table 5.
Table 5. GPR and LSTM based virtual target model
GPR based Virtual Target LSTM based Virtual Target
px,tart py,tarf Ux,tar/ dx,tar/ Qtar
Input dtctarr Vtar: dtcego: Vegor Ivis
Px,egor Py,egor Vx,ego: Hego
Output dtctar,pred(t:S) ﬁx,tarz ﬁy,tar
A . = Constant accel/deceleration = Constant velocity over observation
ssumption i . .
over prediction horizon horizon
* No historical information * Integrated with a real target
required prediction module
Advantage | = Variance of prediction = No need to separate virtual and
real target modules
» Detailed position information
(x &)
S = Computational burden L .
Limitation P = No historical trajectory observed
(Relatively compared to LSTM)
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The prediction results of the GPR based, LSTM based, CV based, and
constant turn rate velocity (CTRV) based virtual target model are compared and
analyzed in Table 6. From the Table 6, the GPR based virtual target model shows
better prediction results over the prediction horizon. Figure 3.15 describes the
histogram of prediction errors from the GPR based, LSTM based, CV based, and
CTRYV based models. From Figure 3.15, it is clearly observed that the histogram of

the GPR based virtual target model is more centered at zero.

Table 6. Prediction errors over prediction horizons of different virtual target model

Position Error at Predicted Steps (m) : MAE | RMSE | STD

Case 1s 2s 3s 4s 5s

GPR [146|206 (162|220 | 3.15 | 246 | 236 | 3.36 | 268 | 2.03 | 291 | 257 | 1.71 | 2.80 | 2.80
cv 213|341 295|466 | 744 | 6.28 | 7.79 | 121 [ 995 | 116 | 174 | 13.8 | 159 | 232 | 17.8

LSTM | 255|352 | 242 | 463 | 654 | 462 | 634 | 9.28 | 6.78 | 7.57 | 114 | 855 | 845 | 13.0 | 9.88

CTRV [483 |604|362 922 114|679 139|172 [ 10.1 | 191 | 23.3 | 134 | 246 | 299 | 169
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Figure 3.15. The histogram of prediction errors of four different virtual target

models
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Chapter 4. Surrounding Vehicle Motion Prediction at

Intersection

4.1. Intersection Surrounding Vehicle Classification

In simple driving maneuvers such as lane change and lane keeping, the self-
driving vehicle only needs to consider traffic participants driving in the same
direction. In urban autonomous driving, especially in the intersection, traffic
participants are driving in various directions. However, due to multiple crossing
directions at the intersection, an autonomous driving at urban intersection should
take account of greater degree of drivable area and field of view. However, with the
HD map, it is possible to eliminate traffic participants not in interest. As shown in
Figure 4.1, the HD map contains the information of path, node, and lane in the
intersection. From the HD map, it is possible to define the enter and exit node and
lane of the intersection, and future driving direction and routes of vehicles can be

determined based on the current driving lane.
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Figure 4.1. HD Map of intersection at Sangam, Seoul

For better comprehension, the raw HD map can be redesigned as in Figure 4.2.

The green nodes represent the enter nodes, and red ones are exit nodes. Since the
intersection networks are pre-defined from the HD map, if the vehicle enters to the
intersection from the node 8, the possible exit nodes that the oncoming target can
pass are the node 2 and 4. If the autonomous vehicle is conducting a right turn at
the intersection from the enter node 3 to the exit node 4, the traffic participants to
be considered for the interaction is ones crossing from the node 4. The target
driving path and the ego driving route share the same exit node, the node 4 in
Figure 4.2. From the HD map, the driving route of the autonomous vehicle, the
block dotted path from Figure 4.2, is defined, and therefore it is only necessary to
select the target path that shares the same exit node as the driving route of the

autonomous vehicle. In Figure 4.2, the blue dotted route shares the same exit node
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with the ego driving path. The computational burden of target vehicle prediction
can be diminished with the reduced Region of Interest (ROI) and decreased number
of interested traffic participants in the intersection. The surrounding vehicle

selection methodology is summarized in Algorithm.
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Figure 4.2. Driving lanes and nodes in intersection
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Algorithm 1 : Surrounding Vehicle Selection

1:

10:

11:

12:

Inputs: Estimate states (position, heading angle, velocity) of
surrounding object, Route information from HD map
if object is vehicle
if object is on the lane sharing the same exit node
if object heading within a certain degree
Target of interest
else
Target of disinterest
else
Target of disinterest
else
Other moving object

end
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4.2. Data-driven Vehicle State based Motion Prediction at

Intersection

4.2.1. Network Architecture of Motion Predictor

The driving behavior of a vehicle is sequential and interactive with other
vehicles. Due to the continuous motion of vehicle, the current and future driving
patterns are affected by past driving motions. Various methodologies have been
conducted to predict the future motions of the vehicle, and rule-based and learning-
based models are two widely adopted methods to anticipate the future trajectories
and intentions of target vehicles. However, the rule-based methodologies are
difficult to implement the historical driving information to infer the intention and
predict trajectories. Especially in the intersection where the road structure is
complicated and traffic participants are approaching from various direction with
unexpected driving patterns, it is complicated to predict future driving motion.

In this study, the LSTM-RNN is utilized to incorporate the historical data of
the driving motion of the target vehicle, predicting the accurate and precise
predicted trajectories. The RNN is one of various deep learning technologies and
enables to model time dependent and sequential data problem such as stock market
prediction and text generation. Since vehicle behavior can be interpreted in a
sequential way, many researchers started implementing the RNN to predict future
driving motion of vehicles. However, the RNN suffers from the vanishing gradient

problem which fails to learn and update weights of hidden states. In other words,
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the RNN can easily fail to learn long sequential data. The gradient carries the
information used to update the RNN parameters, and gradients becomes reduced
through activation functions in hidden layers of sequential inputs. Thus, due to
small value of gradient, the parameter update becomes insignificant and no actual
training takes place. Due to a vanishing gradient problem, the very past hidden
states will not be updated, and the RNN is also named as short-term.

In order to overcome the vanishing gradient problem, the LSTM is adopted. In
the LSTM, an additional internal hidden state called cell state is added to manage
the long-term memory for a gradient update. Thus, the LSTM can preserve long-
range information better than the RNN can. The LSTM adopted in this study to

predict the future trajectories of target vehicles is shown in Figure 4.3.

Prediction Time p

- N
Thes Tia Tipt Tiap

|Output | |Output | |Output | |Output |

\ Decoder / \ Decoder / \ Decoder / \ Decoder /

Encoder Encoder Encoder Encoder
Input Input Input Input
Ti-ns1 Th-niz Ti1 Ty

“ J
Y

Observation Time /7

Figure 4.3. Diagram of the proposed LSTM-RNN

We determined the input features and a length of a horizon history through
various combinations and error analysis. The candidates of the combination of

input features and the horizon history are summarized in the Table 7. Different
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types of odometry are analyzed to determine the optimal prediction results along
with two different history horizons. History horizons of 1 second and 2 second are
chosen to compare the prediction results. Due to the limited perception range of the
perceptive sensors, history horizons longer than 2 second are not considered. If we
consider 3 second of a history horizon of target vehicles, the predicted trajectories
of target vehicle can be obtained after 3 second from the initial detection of the
target vehicle. In other words, the target vehicle will be positioned in the middle of
the intersection when the autonomous vehicle is able to incorporate the future
trajectories of the target vehicle. The target vehicle has already crossed the
significant distance in the intersection, and the missing trajectory of 3 second is
critical and fatal for the autonomous vehicle to properly plan the ego motion to

maintain the safety during intersection crossing.
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Table 7. Candidates of Input and Output Feature Combinations for the Proposed

LSTM-RNN
Case | Input Output Hist. Horizon
1 Pitars P y.tar yZ x,tar > £y tar 1s
2 P x.tar> p v.tar> V.\«mr ﬁ x,tar > ﬁ y.tar 1s
3 p.\"tar 2 p_vjar 2 V.\"l‘al‘ 2 d[al‘ ﬁx_tnr 2 ’\y.rar 1 s
4 p.r.mr > pv.mr > vr tar > dmz > gmx ﬁx,mr > ﬁy,rm 1 S
5 p\‘tm’pt tar > \‘tm’dtm’gtm’pvego’l)t ego ﬁx.t{lr’j\?}’.f(lr 15
6 prmz’pwm’ rtm’dm:’gtm’pwgn’plFgﬂ’vf?gﬂ ﬁx,rnr’ﬁ}',fﬂf Ts
7 Pesar> Py sar>Vesar> D> O P eg0> Py.cg0> Vs ego> 9ng ﬁx tar> Py tar Is
8 p,\"tm‘ > p}:tm‘ pr tar 2 p1 rar 2 S
9 | Prsarr Pysar>Vesar Prsars Py tar 2s
10 p.r.mr > pv.mr > vr tar > dmr ﬁx,mr B ﬁy,rm 2s
1 Pitar 9p1 tar> Ve rar ’drm ’Qrm ﬁx,fnr’ﬁy,far 2s
12 p\'ml 9p1 tar ? rtm’dmwgmx ’prego’P1 ego ﬁx,rnr’ﬁy,mr 2s
13| Pevis Pyt Vesars Diars O Progor Prvegor Voo Priers Py 2s
14 p\’ml ’p1 far > \'tal’dtal’gl‘al ’p\'an’pl ?go’v\’Pgn’gFgﬂ ﬁx,f(lr?ﬁy,t[lr 25

In order to enhance the prediction accuracy, the prediction results from input
features of two different coordinates are compared. For the first case, the input
features are measured in the ego vehicle centered coordinate. If the input features
from the ego vehicle centered coordinates are trained for the model,
autonomous vehicle can directly utilize the environmental information obtained
from the local perceptive sensors mounted on the vehicle. The input features of ego
vehicle centered coordinate is advantageous in real-time calculation. The
candidates of input features of the ego vehicle centered coordinate are depicted in
Figure 4.4. The pyark, Pygacks Vxtarks Ork TEpresents a position x, a position y, a

longitudinal velocity, and a heading angle of target vehicle at time k, which is a

*d,, : travel distance between sampling steps
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current time in the scenario in Figure 4.4. The dx is the travel distance between the
position at time k and time k-1. The px.cgo k> Py.cgoks Vxcgoks Oegok TEPresents a position
X, a position y, a longitudinal velocity, and a heading angle of the ego vehicle at

time k.

p x,tar,k-1 P y.tar,k-1

Vatargr  Oranier t=k-1 t=Fk+3

d, !
Pxarke  Prtark

Vi tank gmr,k g t=k E t=kt+2

t=k+I
t=k t=k-1 t=k-2
¥y
=k (0.0
» Pxiark+2 t=k+2 1= k+3
sk Dy tark+2 ¥ t=ktl
562 0,K- k- P y.ego.k : E
Vx,eg0,6-2 Vx,ego,k-1 Vx,ego,k H
Ocgo -z Orgo,kz Oego t=k+3 : =k
px,mr,k+3 i

Pytark+3 ]
t=k-1
m Target Vehicle i

Ego Vehicle a t=k-2

Figure 4.4. Input feature candidates in ego vehicle centered coordinate.

For the second case, the input features are rearranged in the detected target
vehicle centered coordinate. If the input features are organized in the target vehicle
centered coordinate, the training parameters of the model can be more easily

converged. Since the current position of the target vehicle is centered at (0,0), input
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features from different training data share the common and similar odometry at the

current time, allowing better input-domain adaptation and generalization. The

position of the target vehicle at current time k is (0,0). The candidates of input

features are depicted in Figure 4.5.
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Figure 4.5. Input feature candidates in target vehicle centered coordinate.

The optimal network configuration is determined by comparing the accuracy

of prediction results. The prediction errors between the true and predicted

trajectories of the target vehicle over the prediction horizon are analyzed for

various input feature candidates. The position error measurement of the predicted
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trajectories is depicted in Figure 4.6.

t= k+1

m % o

: Current Position
: Ground Truth Position

: Predicted Position

Figure 4.6. Definition of prediction errors over a prediction horizon

A mean squared error and a negative log likelihood are used for the loss
function for training the model. In addition to the mean squared error loss function,
the negative log likelihood function is utilized for the probabilistic prediction. The
negative log likelihood loss function minimizes the negative log likelihood. From
the bivariate gaussian distribution, the negative log likelihood function can be

described as below,

1
2(1-p2) X [O-:.%(x - ﬂx)2+o-§'(y - ﬂy)z_zpaxoy(x - ,U.x)(}' - lu'y)]

1 ) 4.1)
(1-p%

Loss =

—log (oxcry

The outputs of the network consist of mean, sigma, and rho, and the equation

4.1 is formulated with those parameters to train the model.
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4.2.2. Dataset Processing of the Network

The training dataset obtained for the surrounding target vehicle prediction is
the same dataset utilized for the virtual target modeling. As described in the section
3.3.2. Gaussian Process Training, the training dataset for the network is obtained
from two different intersections with 13 different drivers. The dataset of two
different driving scenes is achieved: the ego vehicle crosses straight and the target
vehicle turns right, and the ego vehicle turns right and the target vehicle drives
straight from the right. The total 196 different driving scenarios are obtained where
98 cases are target vehicle yielding scenario and the other 98 cases are non-yielding
scenarios. The total dataset is 141,032, and the training and test dataset are 105,774
and 35,258 respectively. The odometry information of ego and target vehicle are
obtained from the sensors built in autonomous vehicles. Among the total driving
datasets, randomly selected 350 data are plotted in the ego vehicle centered

coordinate as shown in Figure 4.7.
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Figure 4.7. Trajectories of ego and target vehicle in ego vehicle centered coordinate.

The green circles of figure represent history trajectories of target vehicles, and
red circles describe future trajectories of target vehicles. The magenta-colored
circles are trajectories of the ego vehicle. It is observed that the trajectories of
target vehicles are scattered randomly from the center coordinate (0,0) of the ego
vehicle. Also, randomly selected 350 data are plotted in the target vehicle centered
coordinate as shown in Figure 4.8. Compared to trajectories of target vehicles in

the ego vehicle centered coordinate, the those in the target vehicle centered
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coordinate are gathered, and future trajectories of the target vehicle projects from

the shared common position (0,0) at current time.

150

100

Local Position Y {m)

-50

O History Target
©  Future Target
O History Ego

50 100
Local Position X (m)

Figure 4.8. Trajectories of ego and target vehicle in target vehicle

coordinate.
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Chapter 5. Intersection Longitudinal Motion

Planning

5.1. Outlines of Longitudinal Motion Planning with Model

Predictive Control

The longitudinal motion planning of the proposed algorithm implements the
model predictive control to optimize and obtain the desired control input, a desired
longitudinal acceleration. The model predictive control is formulated with the
system dynamics model, reference states, constraints, and input control. The MPC
is one of the optimal control methods and widely implemented in planning and
control in various fields such as robotics and autonomous driving. With the MPC,
system dynamics and constraints are employed to a cost function to generate and
optimized control input suitable for the current situation, thereby enabling a stable
autonomous driving.

The MPC with the state variable at k-1 step plans the control input from k to
predefined prediction horizon in advance and feedbacks the states at the current k-
step with the planned control input. The control input is evaluated by comparing
the response, and the const function is updated accordingly to calculate the control
input from k+1 to the prediction horizon. In other words, with the given constraints,
the optimal control input is obtained with the repetition of plan and evaluation.
Such methodology of MPC is known as a Receding Horizon Control. It is a

significant difference between MPC and Linear Quadratic Regulator that optimizes
6 8



across the entire time horizon.

5.2. Stochastic Model Predictive Control of Intersection

Motion Planner

5.2.1. Definition of System Dynamics Model

For the vehicle dynamics model of the proposed longitudinal motion planning,
a kinematic model with the first-order input delay has been employed for the
vehicle model of the ego vehicle. The continuous-time dynamics model is shown in

equation below,

0 1 0 0
Xiong (=10 O L X (H+| 0 Uiong (®) (5.1)
0 0 -1/t 1/7

Where x(t) represents the state vector of travel distance, p(t), longitudinal
velocity, v(t), and longitudinal acceleration, a(t). The control input u(t) represents

the desired longitudinal acceleration. The time constant, T, is assumed to be 0.33s

in this study. Using the Euler discretization method, the continuous-time model can

be re-written as a discrete-time model.

1 dt 0 0
x,ong(k+1|t)= 0 1 dt xlong(k|t)+ 0 ulong(k|t) (5.2)
0 0 l1-dt/r dt/r
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5.2.2. Ego Vehicle Prediction and Reference States Definition

The MPC is aimed to optimize the reference motion incorporating the
constraints. In the proposed longitudinal motion planning, the reference states are a
travel distance, a longitudinal velocity, and a longitudinal acceleration of the
predicted states of the ego vehicle and are based on the curvilinear velocity when
no target vehicle is approaching at the intersection. In other words, they are the
predicted ego states during crossing the intersection without any interference from
the target vehicle.

The pre-defined driving route of the ego vehicle can be expressed in the 2

order curve fitting equation as below,
Y, =a,x, > +ax, +4a, (5.3)
The radius, 1, of the given ego driving path during a prediction horizon can be

computed using the 2™ order curve fitting equation and expressed as

(5.4)

With the calculated radius and maximum lateral acceleration that is defined as
2m/s? in this study, the longitudinal curvilinear velocity is determined as shown in

an equation below,

P 3/2
‘(1+(dyk/dx) ) ‘
d*y, dx* ‘

vx,k = |@

(5.5)

y,max

The predicted longitudinal velocities can be implemented to a virtual yaw rate

at predicted steps as shown below,
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dzyk/dxz
P 3/2
(1+ (v, /ax)’)

Vi = Vek

(5.6)

Based on the computed virtual yaw rates, the process update model for ego

vehicle state prediction is defined as follows,

. (Ar)
Disst = Dyy TV, €080, -At+(a,, cost —y,v,  sinb,)- 5

x,k

. . (At)
Pyist = Pys TV, SIN 0,-At+(a,,smb -y, cosb,)-

O =6, +7, - At 5.7

‘(1 +(dy, /a’x)2 )3/2 ‘

a’zy,{/dx2 ‘

v, =min| v

X, max ? ay,max

The predicted reference states from the path following model are incorporated
to formulate the model predictive control of the proposed longitudinal motion

planning.

5.2.3. Safety Clearance Decision for Intersection Collision

Avoidance

In autonomous driving at urban intersection, various safety indices such as
time to conflict region, clearance, and distance to conflict region are used to plan
the safe motion at the intersection. Among those criteria, a conflict region is the
most significant factor to consider in motion planning. Though various

methodologies exist to determine the conflict region, we estimated the conflict
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region based on the predicted trajectories of the ego and target vehicles. The
scheme of defining the conflict region is depicted in Figure 5.1. In the 4-way
intersection, the red and blue vehicles are target and ego vehicles. In Figure 5.1, the
prediction horizon is assumed to be 5s, and predicted trajectories and positions of
target and ego vehicles are illustrated with translucent red and blue colors
respectively. Predicted positions are located at intervals of 1s. In order to determine
the conflict region, the clearance, ¢, between future trajectories at every predicted
step is compared. The clearance at every predicted step is compared with a
predefined clearance threshold to determine time to predicted collision.

In order to mimic human driving turn-motion at the intersection, human
driven data at the intersection is collected to analyze and define the conflict region
threshold. Total 131 driving cases of data are obtained from 13 different drivers and
graphed in Figure 3.7. In Figure 5.2, the clearance between a target and ego vehicle
is described in a displacement domain, a distance to conflict. In Figure 5.3, the
clearance between a target and ego vehicle is described in a velocity domain, a
velocity of ego vehicle. It is inferred that as the velocity decreases the clearance
between two vehicles diminishes. The minimum clearance from two different
domain analysis is both Sm. Human drivers tend to maintain at least the minimum

clearance of 5m.
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Figure 5.1. A conflict region from predicted trajectories of target and ego vehicles

(a) left turn (b) straight (c) right turn
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Figure 5.2. Change in clearances between target and ego vehicles in a position

domain.
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Figure 5.3. Change in clearances between target and ego vehicle in a velocity

domain.

With the desired clearance threshold, the predicted time steps where conflict
regions are generated can be determined as in Figure 5.4. In Figure 5.4, it is
assumed that clearances during predicted time steps from 3s to 5s are less than
clearance threshold and depicted with magenta color. The estimated travel
distances of the ego vehicle during the predicted time steps of the conflict region

will be employed as position constraints for MPC formulation. In order to ensure
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the safety from the collision, the gain is applied to the position constraint, and the

position safety constraint is defined as follows,

p(k) S pupper (k)= kTTC DTC
where k.= f(TTC)

(5.8)

The safety gain, krrc, is described in Figure 5.5, and the shorter the predicted

time step of the collision is, the smaller safety gain will be applied to guarantee the

safety margin.

(a)

Target Vehicle

Predicted conflict Region
( C(‘t) < cthreshn:rlf.l)

Closest
Conflict Point

DTC
(distance to collision
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(b)

Predicted conflic
( e(t) <Cthresho
Target Vehicle
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(distance to collision)

Ego Vehicle

Figure 5.4. Closest conflict point from the predicted conflict region in the

intersection (a) left turn (b) straight (c) right turn
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Figure 5.5. The safety gain profile for position upper bound

5.2.4. Driving Mode Decision of Intersection Motion Planning

The driving mode of the longitudinal motion planning of the intersection is
composed of cross, stop, and creep mode. The cross and stop mode are determined
based on the intersection of predicted trajectories of target and ego vehicles. As
shown in Figure 5.4, if the conflict region is generated based on the future
trajectories of the target and ego vehicles, the position constraint is determined to
decelerate the ego vehicle to avoid collision, naturally activating the stop mode. On
the other hand, as shown in Figure 5.6, if the conflict region is not generated based
on the predicted trajectories of vehicles, the position constraint is defined to allow

ego vehicle to cross the intersection, leading to the cross mode.
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I B Ego Vehicle

Figure 5.6. Cross mode activated situation during intersection crossing (a) left turn

(b) straight (c) right turn

The creep mode is sub-mode of the stop mode. The creep mode is designed to
overcome the dead-lock situation and mimic the human driving pattern that a
human driver slowly drives the vehicle forward until enough visibility is achieved.

The creep mode algorithm is described in Figure 5.7.
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Virtual Target?
Constraint basec
Conflict Regio

p—p Stop Mode

€< Creep Mode Count

Creep Mode

= Cross Mode

Target Lane Merge?

Figure 5.7. Diagram of the creep mode algorithm

The creep mode is activated after the stop mode. The stop mode should begin
under generation of conflict region and position constraint from virtual target
trajectory. During the stop mode, the creep mode count increases. The creep mode
is activated if the creep mode count becomes greater than €. The epsilon in the
creep mode count is 2 seconds. During the creep mode, the maximum acceleration

is 1.0m/s? and maximum velocity is 10km/h.
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5.2.5. Formulation of Model Predictive Control with the

Chance Constraint

The MPC is implemented to solve for the desired states and minimize control
efforts while satisfying various constraints. MPC problem is formulated with
vehicle dynamics model, constraints, and input limits. The quadratic const function

of the MPC problem is defined as follows.

N, N,-1 N,-2
min Siong = kZ::,| Xiong (k|l) X (k|t)||; + kZ:(; |ulong (k|t)||; + kZ:(; ||Aulong (k|l)||;”

Ny ) N, , (5.8)
St Ko, + 2l w0l

Where xiong 1S the states that are distance travelled, velocity, and acceleration,
and X.r is the reference motions of travel distance, px, and longitudinal velocity, vy.
The g is the control input, the desired longitudinal acceleration. The Q and R are
the weighting matrix to penalize the reference tracking error and control effort
respectively. Since the field of view while driving at the intersection is limited and
sudden appearance of traffic participants from blind spots is unexpected, the qumin
and q; are the penalties when violating the minimum control input, a longitudinal
acceleration, and a lower bound of a change in control input, a jerk. Ry and R; are
the weight matrix for penalizing. Though the minimum hard constraints are defined
in order to guarantee both safety and ride comfort, it is sometime necessary to give
up a certain degree of the ride comfort to secure the safety from the collision. Since
a crossing the intersection is unpredictable unlike other driving behaviors such as

lane change, lane keeping, and clearance control, the prediction horizon is
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determined as 5s, and a sampling time is 0.2s.

In the MPC formulation, the constraints are defined to consider the system
dynamics, actuator limits, ride comfort, and safety. As explained in chapter 5.2.1,
the kinematic model with the first order input delay is implemented to define the

dynamic constraints.

1 dt 0 0
X K+ 1|1)={ 0 1 dt |x,,, KD+ 0 |u,, k) (5.9)
0 0 1-dt/t dt/ ¢

where T is the time constant of actuator delay. The time constant reflects the

vehicle characteristics and is 0.33s in this model. The control input constraints are
described as below,

amin - qu,min (k| t) < u(k + 1| t) = amax
e + 1)) = u(k| )| < (@0 _ G, (k| AL (5.10)
|u(0| D=, |<(a,,_q,; (k| DAL i

Where amin and amax are the minimum and maximum control input boundary
and are -3m/s* and 2m/s* respectively. The ajn is a slew rate of the control input
and 5m/s>. The upe represents the control input from the previous step. These
parameters are defined to provide comfortable ride comfort to drivers. The
excessive use of control input will cause the discomfort to users.

The chance constraint is implemented to consider the uncertainty of the virtual
target and detected targets. The chance-constrained upper bounds of distance

traveled is defined as below,
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Pr(g” (k|O)x(K|1) <p,,. ) 21-&
base constraint (stop mode)

here, k|t) =
wrnere pupper( | ) { 100 (CI'OSS mOde)

(5.11)

g =[1 0 0]

The Casadi solver is used to solve the MPC formulation for simulation studies

and implementation in test vehicle.
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Chapter 6. Performance Evaluation of Intersection

Longitudinal Motion Planning

6.1. Performance Evaluation of Virtual Target Prediction at

Intersection

6.1.1. GPR based Virtual Target Model Prediction Results

The prediction errors of the distance to a conflict point at prediction time Ss
with 10 different kernel functions are compared to determine the optimal kernel
function of Gaussian Process Regression based virtual target model. The 10
different kernel functions are the Squared Exponential, Exponential, Matern 3/2,
Matern 5/2, Rational Quadratic, ARD Squared Exponential, ARD Exponential,
ARD Matern 3/2, ARD Matern 5/2, and ARD Rational Quadratic. The errors are
evaluated in terms of mean absolute error (MAE), root mean squared error (RMSE),
and standard deviation (STD). The errors of different kernel functions of GPR
model for the virtual target crossing straight is shown in the Table 8. The ARD
Exponential kernel computes the smallest errors of training GPR. As shown in the
Table 8, the MAE, RMSE, and STD are 1.7099, 2.7958, and 2.7956. The GPR
based virtual target model with the optimal kernel function is also compared with
the constant velocity virtual target model. The errors of distance to conflict point

are analyzed with MAE, RMSE, and STD as shown in Table 9 and depicted with
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histogram as in Figure 6.1. The GPR predictor depicts errors more distributed near

zero and expresses the observable improvement in prediction results in a long-term

prediction time.

(Virtual Target Crossing Straight).

Table 8. Prediction Errors of the GPR Model with Different Kernels

Error DTC at 5 sec prediction
Metric a b 4 d e f g h i J
MAE 3.9453 2.6657 2.7395 3.6675 3.3907 3.4436 1.7099 2.9398 3.0403 2.5799
RMSE 5.9161 41741 4.3168 5.5886 5.2230 5.2687 2.7958 4.6082 47641 41319
STD 5.9160 41740 4.3168 5.5885 5.2230 5.2686 2.7956 4.6082 47641 41319
a.  Squared Exponential e Rational Quadratic h.  ARD Matern 3/2
b. Exponential f.  ARD Squared Exponential i. ARD Matern 5/2
¢ Matern 3/2 g- ARD Exponential J. ARD Rational Quadlratic
d.  Matern 5/2

Table 9. Prediction Errors between the CV Model and the GPR Model

(Virtual Target Crossing Straight).

Distance to Conflict Error
at 5s of prediction time (m)

cv Proposed

MAE | RMSE | STD | MAE | RMSE | STD

7.93 1214 | 1034 | 267 2.80 2.80
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Figure 6.1. Histogram of errors of distance to conflict point between the GPR

model and the CV model (virtual target straight cross).

The errors of different kernel functions of the GPR model for the virtual target
turning right at the intersection is shown in the Table 10. The Exponential kernel
computes the smallest errors of training the GPR. As shown in the Table 10, the
MAE, RMSE, and STD are 1.7742, 2.8901, and 2.8901. The GPR based virtual
target model with the optimal kernel function is also compared with the constant
velocity virtual target model. The errors of distance to conflict point are analyzed
with MAE, RMSE, and STD as shown in Table 11 and depicted with histogram as
in Figure 6.2. The GPR predictor depicts errors more distributed near zero and
expresses the observable improvement in prediction results in a long-term

prediction time.
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Table 10. Prediction Errors of the GPR Model with Different Kernels

(Virtual Target Turning Right)

Error DTC at 5 sec prediction

Metric a b c d e f g h i ]
MAE 2.2347 1.7742 2.0507 21821 2.1617 2.0965 1.7862 2.0031 2.0400 21178
RMSE 3.5178 2.8901 3321 34679 3.4469 3.3678 2.9671 3.2755 3.3168 3.3971
STD 3.5178 2.8901 3321 34679 3.4468 3.3678 2.9670 3.2754 3.3168 3.3970

)

Squared Exponential
Bxponential

Matern 3/2

Matern 5/2

e

f

g.

Rational Quadratic

ARD Squared Exponential

ARD Exponential

-

h.  ARD Matern 3/2

i.  ARD Matern 5/2

Table 11. Prediction Errors between the CV Model and the GPR Model

(Virtual Target Turing Right).

Distance to Conflict Error

at 5s of prediction time (m)

cv Proposed
MAE | RMSE | STD | MAE | RMSE | STD
7.03 843 7.71 1.77 2.89 2.89
89

ARD Rational Quadratic
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Figure 6.2. Histogram of errors of distance to conflict point between the GPR

model and the CV model (virtual target turning right).

6.1.2. Intersection Autonomous Driving Computer Simulation

Environment

The simulation studies for the virtual target prediction are performed to
evaluate the feasibility of the proposed algorithm to overcome the dead-lock
situation at the intersection. The simulation study is essential before the vehicle test
since the simulation can generate various scenarios to validate the algorithm
regardless of a dangerous situation, such as collision, and reproduce the same
situation to compare different algorithms. The kinematic model is chosen for the

vehicle model for the ego and target vehicles. The simulation environment is a 4-
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way intersection where each two two-lane roads intersect at 90 degrees as shown in

Figure 6.3. Road length before and after the intersection is 300m each, road width

is 3.5m, and the radius of road curvature is 12m to reflect the actual urban road

geometry of Seoul, Korea.
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Figure 6.3. 4-way intersection offline simulation map

The actual specification of perceptive sensors equipped in the autonomous

vehicle ‘KIA Carnival’ is used to construct FOV with a road boundary as illustrated

in the section 2.2. Hardware Configuration and Test Vehicle. Two 3-D Velodyne

LiDAR sensors are mounted on the top roof of the vehicle, but only one 3-D
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Velodyne LiDAR sensor is considered for the offline simulation. Since two 3-D
Velodyne LiDAR sensors are closely installed on the roof, it is assumed to be
irrelevant to consider two sensors as one. The LiDAR sensor specification of

distance range of 45m and horizontal FOV of 360 degree is selected.

6.1.2.1. Simulation Result of Effect of Virtual Target in

Intersection Autonomous Driving

In order to evaluate the effect of the virtual target, the longitudinal motion
planning with the virtual target has been compared with the based algorithm with
no virtual target. The target vehicle is driving at a constant velocity of 50km/h,
which is the standard speed limit of urban road in Seoul, Korea, and an initial
velocity of 30km/h of ego vehicle is used for the simulation. In order to simulate
the most dangerous collision situation during the right turn crossing at the
intersection, the initial positions of target vehicle and ego vehicle are 90m and 30m
away from the intersection, respectively. The ego vehicle approaches the
intersection from south to north, and the target vehicle drives from west to east
toward the intersection. In Figure 6.4, the change in clearance and TTCP of ego
vehicle has been analyzed to show effect of the virtual target. The Clearance is the
distance between target vehicle and ego vehicle to show risk potential of collision
during intersection crossing. In Figure 6.4(a), The minimum Clearance of the
proposed and base algorithm are 13.08m and 6.62m respectively. For the proposed
algorithm, the Clearance decreases from 45m to 26m as the ego vehicle approaches

16m before the conflict point. At 16m before the conflict point, the actual target
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vehicle within the FOV is detected, and the ego vehicle plans the motion in regard
to the target vehicle, decreasing the Clearance to 13m without change in DTCP. For
the base algorithm with no virtual target, since there is no virtual target, the actual
target has been detected at about 13m before the conflict point, and the Clearance
has diminished to 6m. In Figure 6.4(b), TTCP of ego vehicle of the proposed and
base algorithm has been compared. The minimum TTCP of the proposed and the
conventional are 0.94 and 0.44s respectively. From the slope of the clearance curve
in Figure 6.4, it can be inferred that the proposed algorithm with the virtual target
enables the ego vehicle to proactively decelerate and stop with sufficient clearance

when encountered with the actual target vehicle.
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Figure 6.4. Change in safety indices during right turn at intersection (a) Clearance
with and without virtual target (b) Time to Conflict Point with and without virtual

target

The Monte-Carlo simulation has been conducted 100 times to evaluate the
proposed algorithm in various states of target and ego vehicle. The initial velocity
of target and ego vehicle has been generated using the normal distribution. The
initial velocity of target and ego vehicle is determined as N(50,10) and N(40,10)
respectively. The algorithm with no virtual target shows mean minimum clearances
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of 0.69m with standard deviation of 1.56m. The minimum and maximum are Om

and 3.13m respectively. The 5 randomly selected simulation cases out of 100 are

shown in Figure 6.5. The proposed algorithm with virtual target shows mean

minimum clearance of 11.66m with standard deviation of 1.94m. The minimum

and maximum clearances are 6.90m and 13.57m, respectively. The 5 randomly

selected simulation cases with virtual target out of 100 are shown in Figure 6.6.

The simulation results successfully show that the proposed algorithm can reduce

the collision risk caused by a sudden appearance of the target vehicle from the

occluded region by proactively planning the ego vehicle velocity motion based on

the target vehicle.
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Figure 6.5. Monte Carlo simulation result of intersection crossing with non-virtual

target.
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Figure 6.6. Monte Carlo simulation result of intersection crossing with virtual

target

The post encroachment time (PET) is another safety index for intersection
crossing. PET is the time between the moment that the first vehicle leaves the
potential conflict point and the moment that the second vehicle enters the conflict
point. The PET is calculated for the Monte Carlo simulation. The mean PET is

3.64s, the standard deviation is 1.66s, the minimum PET is 1.3s, and the maximum

PET is 6.1s.

6.1.2.2. Virtual Target Simulation Result of the Right Turn
Across Path Scenario in the Intersection

The offline simulation study of the Right Turn Across Path (RTAP) scenario at
the intersection is conducted to evaluate the feasibility of human data driven virtual
target model to overcome the dead-lock situation. In the signalized intersection, the

maneuver of the ego vehicle is often not regulated by traffic signal in the RTAP
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case. For the RTAP case, even if the traffic signal is red, if the pedestrian traffic
signal is red or no pedestrian is crossing the crosswalk, the vehicle is allowed to
make a right turn at the intersection.

For the RTAP scenario, the ego vehicle is driving with an initial velocity of
20km/h and starts at 30m away from the intersection. The offline simulation result
of the RTAP scenario with the CV virtual target model is illustrated in Figure 6.7.
As shown in Figure 6.7, the ego vehicle decreases a velocity as the predicted
trajectory conflicts with the future trajectory of the constant velocity virtual target.
However, as shown in Figure 6.7(c), the ego vehicle stops permanently as the
predicted trajectory of the constant velocity model virtual target remains the same.

The ego vehicle eventually becomes to a ‘dead-lock’ situation.
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Figure 6.7. Snapshots of the RTAP offline simulation study with the CV based

virtual target model (a) t=3s (b) t=5s (c) t=12s.

The offline simulation result of the RTAP scenario with the GPR based virtual
target model is illustrated in Figure 6.8. The ego vehicle approaches and decreases

the velocity as the predicted ego vehicle trajectory conflicts with future trajectories
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of the target vehicle. Then, it is observed that the future trajectory of the virtual
target decreases by interacting with the ego vehicle in Figure 6.8 (c). With
shortened future trajectory of the virtual target, the ego vehicle manages to turns
right at the intersection safely without collision, resolving the ‘dead-lock’ situation

that happened with constant velocity virtual target model.
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Figure 6.8. Snapshots of the RTAP offline simulation study with the GPR based

In Figure 6.9, the simulation results with the GPR based and constant velocity
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based virtual target model are described over displacement and time domain. For

the acceleration, the ego vehicle with the GPR based virtual target model uses -



1.5m/s? acceleration to decrease the velocity and to maintain a distant clearance for
the safety. However, the ego vehicle with the constant velocity based virtual target
model uses over -2.0m/s? acceleration to lowers the velocity. Such difference in
degree of acceleration is probably due to change in future trajectory of GPR based

virtual target which interacts with the ego vehicle motion.
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Figure 6.9. Comparisons of the RTAP offline simulation results between the GPR

based and the CV based virtual target model.
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6.1.2.3. Virtual Target Simulation Result of the Straight

Across Path Scenario in the Intersection

Like the RTAP scenario that ego vehicle can sometimes ignore the traffic
signal to proceed, for the SAP scenario, even if the ego vehicle crosses the
intersection in a straight direction with a green light, the ego vehicle should plan
the motion in react to the target vehicle turning right from the right side since the
target vehicle can make a right turn with a red light.

The offline simulation of the SAP scenario with CV model virtual target is
simulated. The ego vehicle is driving with an initial velocity of 40km/h and starts at
60m away from the intersection. The snapshots of offline simulation results of the
SAP scenario with virtual target with a constant velocity model are illustrated in
Figure 6.10. The virtual target appears at time t=3s and starts to decrease a velocity
as the motion planner predicts the possible collision due to the intersection of
predicted trajectories from the ego vehicle and the virtual target. From the
simulation, the desired acceleration becomes up to -4m/s’> and the actual
acceleration is used up to about -3m/s>. Such a degree of acceleration is large
enough for drivers and passengers to feel discomfort in ride comfort. Unlike the
ego vehicle during the RTAP scenario, the ego does not remain stopped
permanently in the SAP scenario since target vehicle, attempting to turn right at the
intersection, approaches with relatively low velocity compared to target crossing

the intersection straight.
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Figure 6.10. Snapshots of the SAP offline simulation study with the CV based

virtual target model (a) t=1s (b) t=4s (c) t=5s.

The offline simulation of the SAP scenario with the GPR based model virtual
target is simulated. Like simulation study of the virtual target with constant
velocity model, the ego vehicle is driving with an initial velocity of 40km/h and
60m away from the intersection. The snapshots of offline simulation results of ego
vehicle motion interacting with GPR based virtual target are described in Figure
6.11. The virtual target appears at time t=3s and starts to decrease a velocity as the
motion planner predicts the possible collision due to the intersection of predicted
trajectories from the ego vehicle and the virtual target. However, the GPR based
predicted trajectory becomes shortened and resolves the collision risk quickly,
managing the ego vehicle to use less degree of acceleration. From the simulation,
the desired acceleration becomes up to -3m/s? and the actual acceleration is used up
to about -2m/s. Such a degree of acceleration is much less than the one from the
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CV model virtual target simulation, providing the enhanced ride comfort to drivers.
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Figure 6.11. Snapshots of the SAP offline simulation study with the GPR based

virtual target model (a) t=1s (b) t=3s (¢) t=4s.

Simulation results with different parameters over distance to the conflict point
and time with the GPR based and the CV based virtual target model are described
in Figure 6.12. For the acceleration, the ego vehicle with the GPR based virtual
target model uses -2.0m/s? acceleration to decrease the velocity and to manage a
safety clearance. However, the ego vehicle with the constant velocity based virtual
target model uses over -3.0m/s? acceleration to lowers the velocity. From the time
domain graph, it is observed that the ego vehicle interacting the GPR based virtual
target starts to decelerate earlier than the ego interacting the virtual target with CV
model. The early initial deceleration provides and ensures drivers and passengers
safety when crossing the intersection. From Figure 6.12 (e) and (f), it is cleared that
the predicted trajectory of ego vehicle interacts earlier about 10m in distance

domain and 1s in time domain. Since the ego vehicle approaches to the intersection

106



with 40km/h which is near speed limit of the urban road and crosses the

intersection in short period of time, the difference in clearance change between

GPR model and CV model is negligible and similar.
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Figure 6.12. Comparisons of the SAP offline simulation results between the GPR

based and the CV based virtual target model.
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6.1.2.4. Virtual Target Simulation Result of the Left Turn

Across Path Scenario in the Intersection

The offline simulation of the LTAP scenario with CV model virtual target is
simulated. The ego vehicle is driving with an initial velocity of 40km/h and starts at
60m away from the intersection. The snapshots of offline simulation results of the
LTAP scenario with virtual target with a constant velocity model are illustrated in
Figure 6.13. The virtual target appears at time t=2s and the deceleration command
for autonomous vehicle is applied from time t = 4 to time t = 6. Then, since the
clearance between the autonomous vehicle and the virtual target at the initial
appearance of virtual target is near the maximum distance of FOV, as the
autonomous enters the intersection, the clearance remains constant at the maximum
distance during the scenario. The maximum clearance from the beginning to the
end of the autonomous vehicle crossing the intersection rapidly discards the

conflict region between the virtual target and the autonomous vehicle.
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Figure 6.13. Snapshots of the LTAP offline simulation study with the CV based

virtual target model (a) t=2s (b) t=5s (¢) t=7s.

The offline simulation of the LTAP scenario with the GPR based model virtual
target is simulated. Like simulation study of the virtual target with a constant
velocity model, the ego vehicle is driving with an initial velocity of 40km/h and
60m away from the intersection. The snapshots of offline simulation results of ego
vehicle motion interacting with GPR based virtual target are described in Figure
6.14. The virtual target appears at time t=2s and it is observed that the predicted
trajectory of the virtual target is shorter than that of constant velocity modeled
virtual target. Due to the predicted short trajectory of GPR based virtual target, the
collision region is not generated during the LTAP scenario, and the autonomous

vehicle is able to cross the intersection without any deceleration command.
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Figure 6.14. Snapshots of the LTAP offline simulation study with the GPR based

virtual target model (a) t=2s (b) t=4s (c) t=7s.

Simulation results with various parameters over distance to the conflict point
and time with the GPR based and the CV based virtual target model are depicted in
Figure 6.15. For the acceleration, the ego vehicles with both the GPR based virtual
target model and the CV based virtual target model use -3.0m/s2 acceleration to
decrease the velocity and to manage a safety clearance. From both the distance and
the time domain graph, the acceleration and velocity profiles from two different
virtual target models turn out to be similar. From Figure 6.15 (e), it is observed that
although the conflict region is generated from the CV based virtual target, the
conflict region disappeared rapidly and the effect on the degree of acceleration is

negligible.
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Figure 6.15. Comparisons of the LTAP offline simulation results between the GPR

based and the CV based virtual target model.

6.1.2.5. Virtual Target Simulation Result of Crooked T-

shaped Intersection

The simulation studies for the virtual target prediction are performed to
evaluate the feasibility of the proposed algorithm to overcome the dead-lock
situation at severely crooked T-shaped intersection. According to the Ministry of
Land, Infrastructure and Transportation, the two roads intersecting at the

intersection should maintain the angle between 75 and 105 degrees. In order to
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evaluate the effectiveness of the virtual target model at the complex intersection,
the T-shaped intersections with the intersecting angle of 75 degree are constructed.
The simulation environment is a 3-way intersection where each two two-lane roads
intersect at 75 degrees as shown in Figure 6.16. Road length before and after the
intersection is 100m each, road width is 3.5m, and the radius of road curvature is
10m to reflect the actual urban road geometry of Seoul, Korea. Figure 6.16 (a)
shows the intersection with the rounded corner, and Figure 6.16 (b) describes the
intersection with the sharp corner that obstruct the FOV of the approaching

vehicles.
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Figure 6.16. T-shaped intersection with intersecting angle of 75 degree (a) rounded

corner (b) sharp corner.

The offline simulation of the RTAP scenario with CV model virtual target is
simulated at the intersection in Figure 6.16 (a). The ego vehicle is driving with an
initial velocity of 30km/h and starts at 30m away from the intersection. The
snapshots of offline simulation results of the RTAP scenario with virtual target with
a constant velocity model are illustrated in Figure 6.17. The virtual target appears,
and the ego vehicle starts to decrease a velocity as the motion planner predicts the
possible collision due to the intersection of predicted trajectories from the ego
vehicle and the virtual target. From the simulation, the desired acceleration

becomes up to -4m/s2 and the actual acceleration is used up to about -3m/s2. Such
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a degree of acceleration is large enough for drivers and passengers to feel
discomfort in ride comfort. As shown in Figure 6.17 (b), the ego vehicle stops
permanently as the predicted trajectory of the constant velocity model virtual target

remains the same. The ego vehicle eventually becomes to a ‘dead-lock’ situation.
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Figure 6.17. Snapshots of the RTAP T-shaped intersection offline simulation study

with the CV based virtual target model (a) t=4s (b) t=10s.
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The offline simulation result of the RTAP scenario with the GPR based virtual
target model at T-shaped intersection with smooth corner is illustrated in Figure
6.18. The ego vehicle approaches and decreases the velocity as the predicted ego
vehicle trajectory conflicts with future trajectories of the target vehicle. Then, it is
observed that the future trajectory of the virtual target decreases by interacting with
the ego vehicle in Figure 6.18 (b). With shortened future trajectory of the virtual
target, the ego vehicle manages to turn right at the intersection safely without
collision, resolving the ‘dead-lock’ situation that happened with constant velocity

virtual target model.
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Figure 6.18. Snapshots of the RTAP T-shaped intersection offline simulation study

with the GPR based virtual target model (a) t=3s (b) t=5s (c) t=10s.

In Figure 6.19, the simulation results with the GPR based and constant
velocity based virtual target model in a T-shaped intersection are described. For the
acceleration, the ego vehicle with the GPR based virtual target model uses -3m/s’

acceleration to decrease the velocity and to maintain a distant clearance for the
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safety. However, the ego vehicle with the constant velocity based virtual target
model uses over -3.5m/s? acceleration to lowers the velocity. Such difference in
degree of acceleration is probably due to change in future trajectory of GPR based
virtual target which interacts with the ego vehicle motion. Moreover, the decrease
in the future trajectory of GPR based virtual target allows the self-driving vehicle

to overcome the dead-lock situation.
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Figure 6.19. Comparisons of the RTAP T-shaped intersection offline simulation

results between the GPR based and the CV based virtual target model.
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The offline simulation of the RTAP scenario with GPR model virtual target is
simulated at the T-shaped intersection with severe corner in Figure 6.16 (b). The
ego vehicle is driving with an initial velocity of 30km/h and 30m away from the
intersection. The snapshots of offline simulation results of the RTAP scenario with
virtual target with a constant velocity model are illustrated in Figure 6.20. The
virtual target appears, and the ego vehicle starts to decrease a velocity as the
motion planner predicts the possible collision due to the intersection of predicted
trajectories from the ego vehicle and the virtual target. From the simulation, the
desired acceleration becomes up to -4m/s? and the actual acceleration is used up to
about -3m/s®. Since the intersection corner is sharp, the insufficient FOV is
achieved for the autonomous vehicle to predict proper future trajectory of virtual
target vehicle. As shown in Figure 6.20 (b), the ego vehicle stops permanently as
the predicted trajectory of the GPR model virtual target remains the same. The ego
vehicle eventually becomes to a ‘dead-lock’ situation even with GPR based virtual

target model.
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Figure 6.20. Snapshots of the RTAP severe T-shaped intersection offline simulation

study with the GPR based virtual target model (a) t=5s (b) t=8s.

In order to overcome the dead-lock situation that can’t be resolved with GPR
based virtual target model, the creep mode is implemented in addition to the GPR
based virtual target model. The effectiveness and snapshots of offline simulation
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results of the proposed approaches at the RTAP scenario are illustrated in Figure
6.21. The virtual target appears, and the ego vehicle starts to decrease a velocity as
the motion planner predicts the possible collision due to the intersection of
predicted trajectories from the ego vehicle and the virtual target. In Figure 6.38, the
ego vehicle becomes dead-lock situation and remains stopped permanently.
However, in Figure 6.21 (b), the creep mode is activated to allow the autonomous
vehicle to move forward slowly. In Figure 6.21 (c), the ego vehicle enters to the
target lane, and the cross mode is activated to give “Right-of-way” to the ego

vehicle
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6.2. Performance Evaluation of Data-driven Vehicle State

based Motion Prediction at Intersection

6.2.1. Data-driven Motion Prediction Accuracy Analysis

The prediction analysis for the LSTM training result with different input
feature candidate is performed to determine the optimal combination of input
features. Moreover, the LSTM training results with input features in ego vehicle
centered coordinate and target vehicle centered coordinate are analyzed to examine
the effect of the coordinates. The total of 14 different input features and history
horizon combinations are described in Table 12. The prediction errors of each input
feature candidate are computed in the ego coordinates and shown in the table. The
error results are analyzed in prediction time of 1s, 2s, 3s, 4s, and 5s, and MAE,
RMSE, and STD are computed. The case 1 through 7 represent the input feature
candidates with history horizon of 1s, and the case 8 through 15 express the same
input feature combination from the case 1 through 7 but only different history
horizon of 2s. For the input feature candidates with the history horizon of 1s, the
case 6 shows the best prediction performance in prediction time of 1s, and the case
7 shows the best prediction results after the prediction time of 2s. For the input
feature candidates with the history horizon of 2s, the case 14 shows the best
prediction performance. It can be observed that the effect of difference in
prediction horizon of 1s and 2s are negligible in prediction result. Both prediction

results from input feature candidate with history horizon of 1s and 2s show the
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similar results. The propose LSTM model is also compared with the Constant Turn

Rate Velocity (CTRV) model. The prediction result of CTRV model at prediction

time of 1s show the similar performance when compared with that of the proposed

LSTM model. However, the error becomes greater as the prediction horizon

increases.

Table 12. Prediction Errors of the Future Trajectories from the Model Trained in

Ego Centered Coordinate

The prediction

Position Error at Predicted Steps (m) : MAE | RMSE | STD

Case 1s 2s 3s 4s 5s
0.58 (0.80 | 0.56 | 0.85 | 1.27 | 0.94 [ 1.20 | 1.80 | 1.34 | 1.67 | 253 | 1.90 | 2.30 | 3.45 | 2.58
2 0.32(039|023|041|051|032(059|077|049 080110075119 |1.70 | 1.21
3 045|063 | 044|052 | 066 | 040|068 | 088 | 055|090 |122|083|126)|180]|1.28
4 060 (071|038 | 067|079 | 042 (077|094 | 055|091 (118 075|118 | 1.57 | 1.03
5 047 (060 | 0.36 | 060 | 0.72 | 0.40 [ 0.72 | 0.88 | 0.51 [ 0.85 | 1.06 | 0.63 | 1.09 | 1.38 | 0.84
6 0.33 (043 | 026 | 040 | 049 | 0.28 ( 0.50 | 0.61 | 0.35 | 0.60 | 0.75 | 0.45 | 0.81 | 1.04 | 0.65
7 0.36 (045|027 | 036 | 0.48 | 0.31 [ 0.43 | 0.56 | 0.35 | 0.53 | 0.68 | 0.43 | 0.71 | 0.89 | 0.53
8 049 (065|043 | 076 | 1.02 | 0.69 [ 1.05 | 1.49 | 1.06 | 143 | 217 | 1.64 | 1.96 | 3.14 | 2.46
9 0.36 (044 | 025|045 | 053 | 022 (061|076 | 046 (083 110|072 (117 | 165 | 1.16
10 0.37 (048|030 | 042 | 055 | 0.35 ( 0.58 | 0.74 | 047 | 0.78 [ 1.06 | 0.71 | 1.12 | 1.57 | 1.11
11 0.50 (063 | 0.37 | 0.57 | 0.70 | 0.40 | 0.64 | 0.77 | 0.44 | 0.71 | 0.88 | 0.51 | 0.89 | 1.11 | 0.65
12 0.31 (040 | 025|036 | 044 | 025 | 0.51 | 0.62 | 0.35 | 0.65 | 0.82 | 0.49 | 1.00 | 1.29 | 0.81
13 0.38 (046 | 0.26 | 047 | 0.56 | 0.31 [ 0.57 | 0.69 | 0.39 | 0.64 | 0.79 | 0.47 | 0.74 | 0.94 | 0.58
14 030 (036 |019| 033|039 | 020 (044 | 053 | 029 | 062|076 |044 [ 083 (105|063
CTRV |O.48 I 0.73 I 0.56 | 1.52 | 2.32 { 1.75 I 3.26 | 4.76 | 347 | 5.71 | 7.98 l 5.57 I 8.84 | 11.9 I 7.96
* CTRV : Constant Turn Rate Velocity Model

results of LSTM model with the optimal input feature

candidates with different history horizon and CTRV model are depicted as a

histogram in Figure 6.22. From the histogram, it can be inferred that the prediction

errors from the LSTM model with history horizon of 1s are more clustered to the
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zero compared to the errors from the model with history horizon of 2s and the
CTRV model. Histograms of two different models and CTRV model at each
predicted time horizon are depicted in Figure 6.23. The LSTM (A) is with history

horizon of 1s, and the LSTM (B) is with history horizon of 2s.
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Figure 6.22. Histogram of prediction errors over prediction horizons of models
trained in ego centered coordinate (a) LSTM with history horizon 1s (b) LSTM

with history horizon 2s (¢) CTRV model.
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The prediction errors of each input feature candidate are computed in the
target vehicle coordinates and shown in Table 13. As already done with input
feature candidates measured in ego vehicle centered coordinate, the error results
from input features with target vehicle centered coordinate are analyzed in
prediction time of 1s, 2s, 3s, 4s, and 5s, and MAE, RMSE, and STD are computed.
The total of 14 different input feature and history horizon combinations are
described in the previous Table 7. For the input feature candidates with both history
horizon of 1s and 2s, the case 7 and 14 which are composed of the same input
feature combinations show the best prediction performance. It can be inferred that
the difference in prediction horizon between 1s and 2s is negligible in prediction
result. The prediction result of CTRV model at prediction time of 1s show the
similar performance when compared with that of the proposed LSTM model, and

the error becomes greater as the prediction horizon increases.
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Table 13. Prediction Errors of the Future Trajectories from the Model Trained in

Target Centered Coordinate

Position Error at Predicted Steps (m) : MAE | RMSE | STD

Case 1s 2s 3s 4s S5s

1 |o28]o055] 048087157131 182]300]238]3124|476]358468]674]ass
2 [o019]047 043|070 139120 150 [ 255 [ 2.06 [ 256 | 4.02 [ 300 | 3.93 [ 5.75 | 4.20
3 |018|047 044|063 133117136 | 238 | 1.95 | 246 | 3.82 | 292 | 3.74 | 5.54 | 4.09
4 |016]023|0718| 045|062 043|093 130|090 [160][228]163]251[354]250
5 [o012]026]023] 028|052 044046073057 067100074102 145] 104
6 |010]013]009 020 025]016]031 040 026044]057]037]065]083]052
7 o009 013009018 025017027037 [ 026 038052 035 055074050
8 |024|053|048|078|151|130( 163288238 |281|453]356]440|645]|472
9 |o015|042|039] 054105090120 205166 214]343]268]327]500]391
10 |o016|046| 043|057 122|107 126|229 191|221 366292343531 406
11 |014]022] 017|041 | 058 | 041|085 122|088 143|210 154226327236
12 |o012]016| 010|026 034|021 041055036 059]082]057]08s]1.20]085
13 009013 009020025016 031041 ]026]044058]038]065]086]056
14 |o011]014] 009018023 | 014027036 023|037 |049]032|055]074|040
TRV [0.45 [ 071 [ 055 ] 150 [ 231 [ 1.75 [ 3.25 | 475 [ 3.47 [ 569 | 7.98 | 559 [ 882 [ 11.9 [ 8.00

* CTRV : Constant Turn Rate Velocity Model

The prediction outcomes of LSTM model with the optimal input feature

candidates with different history horizon and CTRV model are described as a

histogram in Figure 6.24. The histograms from both model with history horizon of

Is and 2s show a similar shape, and the prediction errors from the LSTM model

with history horizon of 1s are slightly more gathered around the zero compared to

those from the model with history horizon of 2s. Histograms of two different

models and CTRV model at each predicted time horizon are depicted in Figure 6.25.

The LSTM (A) is with history horizon of 1s, and the LSTM (B) is with history

horizon of 2s.
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Figure 6.24. Histogram of prediction errors over prediction horizons of models

trained in target centered coordinate (a) LSTM with history horizon 1s (b) LSTM

with history horizon 2s (¢) CTRV model.
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The prediction results of the model with the optimal input features in ego and
target centered coordinates are compared and analyzed in Table 14. From the Table
14, it is observed that the model with input features of target centered coordinates
is advantageous in shorter prediction horizon. The prediction errors of the model
with target centered coordinates are less than half of those of the model with ego
centered coordinates. Figure 6.26 describes the histogram of prediction errors from
the LSTM models and the CTRV model. From Figure 6.26, it is clearly observed
that histogram of the model with target vehicle coordinate is more centered at zero.
Histograms of two different LSTM models and CTRV model at each predicted time
horizon are depicted in Figure 6.27. The model with target vehicle centered

coordinate performs better than the model with ego vehicle centered coordinate.

Table 14. Prediction Errors of the Trajectory Prediction from Models Trained in

Different Coordinates.

Position Error at Predicted Steps (m) : MAE | RMSE | STD
Case 1s 2s 3s 4s 5s
A 036)|045|027 (036|048 | 031|043 |056|035|053|068|043|071)0289 (053
B 009]0.13|009 (018 |025|017 | 027 | 037|026 |038|052|035|055]|074|050
CTRV 045|071 (055|150 | 231 | 175|325 | 475|347 | 569|798 |559|882|11.9] 800

* A: LSTM RNN with Ego Vehicle Coordinate
* B: LSTM RNN with Target Vehicle Coordinate
* CTRV: Constant Turn Rate Velocity Model
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Figure 6.27. Histogram of prediction errors of LSTM and CTRV models over

different prediction horizon times (a)1s (b)2s (c)3s (d)4s (e)5s.

6.2.2. Prediction Trajectory Accuracy Analysis

The target trajectory prediction results are analyzed in several driving

scenarios such as the SAP with ego vehicle turning right and the RTAP with ego
134

2 2] &) &

& o



vehicle crossing straight. The ground-truth trajectories, predicted trajectories of the
proposed LSTM and the CTRV model, and history trajectories of target and ego
vehicles are visualized to analyze the feasibility of the prediction model in the
following figures. The black colored line is a ground truth of future trajectory of
the target vehicle, and the red and blue lines are the predicted trajectories of target
vehicle from the proposed LSTM model and CTRV model respectively. The green
circles and magenta circles are history trajectories of target vehicle and ego vehicle.
Figure 6.28 depicts the target vehicle crossing the intersection straight, interacting
with the ego vehicle turning right. The predicted trajectory of the LSTM and the
ground truth trajectory are heading straight, but the predicted trajectory from the
CTRYV model is turning left due to the error in the yaw rate. The predicted positions
errors are analyzed for both models using MAE, RMSE, and STD, and shown in

Table 15.
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Figure 6.28. Trajectory prediction results of the RTAP with ego centered coordinate

(lateral prediction error of the CTRV model)
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Table 15. Prediction Errors of RTAP Scenario with Ego Centered Coordinate

Position Errors (m)

MAE RMSE STD
LSTM 0.62 0.74 042
CTRV 1.77 2.57 1.90

Figure 6.29 also describes the target vehicle crossing the intersection straight,

interacting with the ego vehicle turning right. Like the ground truth trajectory of

the target vehicle, the predicted trajectory from the LSTM model becomes

shortened over the prediction horizon. However, the future trajectory from the

CTRYV model describes the equidistant displacement over the prediction horizon.

The CTRV model is unable to describe the slowing down motion of the vehicle

over the prediction horizon. The predicted positions errors are analyzed in MAE,

RMSE, and STD in Table 16, and from the Table 15 and 16, it can be inferred that

the degree of error becomes greater when the vehicle changes the velocity over the

future horizon.
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Figure 6.29. Trajectory prediction results of the RTAP with ego centered coordinate

(longitudinal prediction error of the CTRV model)

Table 16. Prediction Errors of RTAP Scenario Ego Centered Coordinate

Position Errors (m)

MAE RMSE STD
LSTM 0.36 042 0.22
CTRV 5.98 9.02 6.88

In Figure 6.30, the target vehicle turns right, interacting with the ego vehicle
crossing straight at the intersection. The ego vehicle is driving from 50m away
from the intersection at constant velocity. The proposed model appropriately
predicts the target vehicle making a right turn. However, the CTRV model predicts

the target vehicle driving straight through the intersection. Since the CTRV model
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predicts the future trajectory of the target vehicle with the yaw and the yaw rate

value at the initial guess point, the model fails to predict the turning driving

behavior of the target vehicle as shown in Figure 6.30. The prediction errors of

MAE, RMSE, and STD are described in the Table 17, and the degree of error is

large due to a failure of prediction in future driving direction.
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Figure 6.30. Trajectory prediction results of the SAP with ego centered coordinate
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Table 17. Prediction Errors of SAP Scenario with Ego Centered Coordinate

In Figure 6.31, the SAP scenario of the ego vehicle is described. The ego

Position Errors (m)

MAE RMSE STD
LSTM 0.56 0.63 0.29
CTRV 542 7.14 475

85

vehicle is driving 15m away from the intersection and slowly decreases the velocity.
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The proposed model appropriately predicts the target vehicle making a right turn.

The CTRV model correctly estimate the future driving direction, a right turn, of the

target vehicle, yet fails to predict the degree of turning. The actual driving motion

of the target vehicle in Figure 6.31 is that the target vehicle turns right and shows

the straight driving motion at the end of the turning, and the LSTM model

successfully generates such motion. It is observed that the LSTM model

predicts

the trajectory near perfect in longitudinal direction, but noticeable lateral errors

exist. The CTRV model with its constant yaw rate predicts the target

vehicle

behaves like a circular motion. The predicted position errors are described as MAE,

RMSE, and STD in Table 18.
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Figure 6.31. Trajectory prediction results of the SAP with ego centered coordinate

(constant non-zero yaw rate in CTRV model)
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Table 18. Prediction Errors of SAP Scenario with Ego Centered Coordinate

Position Errors (m)

MAE RMSE STD
LSTM 0.34 0.35 0.08
CTRV 2.81 3.85 2.68

The LSTM model with the optimal input feature with 1s history horizon at the
target vehicle centered coordinate is utilized to analyze the accuracy of the
predicted trajectories. The target trajectory prediction results are analyzed in
driving scenarios such as the SAP with ego vehicle turning right and the RTAP with
ego vehicle crossing straight. The true trajectory, predicted trajectories of the
proposed LSTM and the CTRV model, and history trajectories of target and ego
vehicles are visualized to analyze the feasibility of the prediction model in the
following figures. Each trajectory is colored differently to distinguish the
prediction accuracy. In Figure 6.32, the target vehicle crosses the intersection
straight, interacting with the ego vehicle approaching the intersection. Since the
vehicles are oriented in the target vehicle coordinate, the current position of the
target vehicle is located at the position (0,0). The predicted trajectory of the LSTM
and the ground truth trajectory are heading straight, but the predicted trajectory
from the CTRV model is predicted correctly in longitudinal direction but not in
lateral direction due to the error in the yaw rate, slanted towards left. The predicted
positions errors are analyzed for both models using MAE, RMSE, and STD, and

shown in Table 19.
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Figure 6.32. Trajectory prediction results of the RTAP with target centered

coordinate (lateral prediction error of the CTRV Model)

Table 19. Prediction Errors of RTAP Scenario with Target Centered Coordinate

Position Errors (m)

MAE RMSE STD
LSTM 0.73 1.00 0.70
CTRV 2.58 3.48 2.38

In Figure 6.33, the target vehicle crosses the intersection straight, interacting
with the ego vehicle turning right, yet the targe vehicle in this scene gradually
decreases the velocity. The LSTM model successfully predicts and describes the

decreasing velocity driving behavior of the target. However, the CTRV model
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predicts the target vehicle driving with the constant velocity, predicting the
equidistant trajectory over the prediction horizon. The CTRV model is unable to
describe the slowing down motion of the vehicle over the prediction horizon. The

predicted positions errors are analyzed in MAE, RMSE, and STD in Table 20.
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Figure 6.33. Trajectory prediction results of the RTAP with target centered

coordinate (longitudinal prediction error of the CTRV model)
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Table 20. Prediction Errors of the RTAP Scenario with Target Centered Coordinate

Position Errors (m)

MAE RMSE STD
LSTM 0.16 0.20 0.12
CTRV 9.75 12.7 8.26

In Figure 6.34, the target vehicle turns right, interacting with the ego vehicle
crossing straight at the intersection. The ego vehicle is driving from 15m away
from the intersection. The proposed LSTM model predicts the proper target
vehicle’s right turn motion. The CTRV model correctly estimate the future driving
direction, a right turn, of the target vehicle, yet the degree of yaw rate is not great
enough to successfully predict the amount of turning motion. The radius of
curvature of the predicted trajectory of the CTRV model is less than that of the
predicted path of the LSTM model. The predicted position errors are described as

MAE, RMSE, and STD in Table 21.
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Figure 6.34. Trajectory prediction results of SAP with target centered coordinate

(less constant yaw rate in CTRV model)

Table 21. Prediction Errors of SAP Scenario with Target Centered Coordinate

Position Errors (m)

MAE RMSE STD
LSTM 0.10 0.12 0.06
CTRV 2.44 2.97 1.72

Another SAP scenario of intersection is described in Figure 6.35. The ego

vehicle is driving approximately 10m away towards the intersection. The proposed

model and the CTRV model appropriately predict the driving motion of the target

vehicle, a right turn. Although the CTRV model correctly estimates the future

driving direction, it overpredicts the degree of turning with greater trajectory

curvature. In Figure 6.54, the target vehicle turns right in the beginning, and drives

straight through the intersection at the end of the prediction horizon. The LSTM

model successfully produces such future driving trajectories. The CTRV model

with its constant yaw rate predicts the target vehicle behaves like a circular motion.
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The predicted position errors are described as MAE, RMSE, and STD in Table 22.
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Figure 6.35. Trajectory prediction results of SAP with target centered coordinate

(large constant yaw rate in CTRV model)

Table 22. Prediction Errors of SAP Scenario with Target Centered Coordinate

Position Errors (m)

MAE RMSE STD

LSTM 0.14 0.17 0.10

CTRV 3.03 433 3.16
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6.3. Vehicle Test for Intersection Autonomous Driving

6.3.1. Test Vehicle Configuration for Intersection

Autonomous Driving

KIA Carnival vehicle is used for the test vehicle for the propose the
intersection motion planning algorithm. Two 32 channel 3-D Velodyne Lidars are
mounted front and rear roof of the vehicle to obtain the maximum visibility. The
front vision camera is also mounted under a front glass for lane and traffic
participants detection. In order to overcome weak GPS signal, the localization
module implements Omni view around view camera for right and left lanes around
the vehicle and estimates the odometry of the ego vehicle. Septentrio GPS is used
to provide vehicle odometry. Two industrial PCs, Nuvo 8108GC, are built in to
compute perception and motion planning respectively. The desired motion
calculated from the industrial PC is provided to a lower-level controller in a micro-
autobox to operate actuators of the autonomous vehicle. The detailed hardware
configurations for autonomous vehicle system and perceptive sensors detection

ranges are depicted in Figure 6.36.
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Figure 6.36. Test vehicle configuration for autonomous vehicle.

6.3.2. Software Configuration for Autonomous Vehicle

Operation.

The Robot Operating System (ROS) is used as an environment for developing
autonomous driving algorithm to operate the autonomous vehicle. In ROS system
of autonomous vehicle, each automated driving algorithm modules are constructed
as a node. Each node is communicating with different nodes through publishing
and subscribing messages. The GPR based virtual target module, driving data-
driven target prediction module, and stochastic MPC based longitudinal motion
panning module represent different nodes. The control panel from the ROS allows
to send the desired acceleration and steering angle to operate the autonomous

vehicle. The control panel and example of ROS nodes for the autonomous driving
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are described in Figure 6.37.

<Overall Architecture of ROS node>
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Figure. 6.37. Robot operating system for autonomous driving

6.3.3. Vehicle Test Environment for Intersection Autonomous

Driving

The proposed algorithm is implemented in an autonomous vehicle and has

been evaluated in urban intersection with real traffic participants. The vehicle tests

have been conducted at the intersection in Mapo-gu, Sangam, a city nominated as

an official autonomous driving testbed in Seoul, Korea. Many autonomous driving

institutes and companies develop and test their logics and conduct the vehicle test

in Sangam testbed. As previously mentioned, the proposed algorithm has been

developed based on driving data obtained at Siheung, Gyeonggi-do, Korea.

However, the motion planner has been tested in the different intersection in
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Sangam if the algorithm can be applicable to various intersections other than
intersections where data were obtained. The intersection in Sangam is a three-way
signalized intersection. The vehicle test course and satellite view are described in
Figure 6.38 and Figure 6.39. The HD map of the vehicle test intersection is
described in Figure 6.40. The road view image of the intersection is shown in

Figure 6.41.
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Figure 6.38. Vehicle test course in Sangam.
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Figure 6.41. Road view of Sangam intersection for the vehicle test

6.3.4. Vehicle Test Result of Intersection Autonomous Driving

The proposed algorithm is evaluated in the RTAP scenario at the intersection.
The two different driving conditions are tested at the intersection. For the first case,
the autonomous vehicle turns right at the intersection with no traffic participants
approaching from the opposite direction. For the second case, the autonomous
vehicle turns right and interacts with oncoming vehicles from the right. The vehicle
test result of no traffic participants scenario is described in Figure 6.42. The ego
vehicle enters, turns right, and pass through the intersection. The time history of
trajectory, acceleration, velocity, virtual target mode activation, clearance, and
position upper bound for the MPC is depicted in Figure 6.42. In Figure 6.42 (f), the
clearance between the virtual target and ego vehicle over the prediction time is
described. It is observed that the ego vehicle interacts with the virtual target during
time t =13s to 15s. As shown in Figure 6.42 (e), during time t=13s to 15s, at

prediction time of 4s to 5s, the motion planner expects the predicted trajectory of
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the ego vehicle and the future trajectory of the virtual target collides, and the
negative acceleration command is ordered for deceleration. From Figure 6.43, the
snapshots of vehicle travelling through the intersection is described, the predicted
trajectory of the virtual target vehicle is depicted as green circles, and the FOV of
the autonomous vehicle is drawn with cyan colored circles. The virtual target
allows the ego vehicle to decelerate early to prevent potential collision with the

traffic participants appearing from the occluded region.
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Figure 6.42. Time history of the vehicle test results of no vehicle approach scenario
(a) trajectory history (b) acceleration (c) velocity (d) virtual target mode (e)

clearance (f) travel distance upper bound.
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Figure 6.43. Snapshots of the vehicle test results of no vehicle approach scenario

(a)t=10s (b)t=14s (c)t=20s.

The proposed algorithm is evaluated under the scene where the autonomous
vehicle interacts with multiple traffic participants crossing the intersection. The
vehicle result is summarized in Figure 6.44. The time history of trajectory,
acceleration, velocity, virtual target mode activation, clearance, and position upper
bound for the MPC is depicted in Figure 6.44. In Figure 6.44 (b), it is observed at

the ego vehicle interacts with oncoming vehicles at time t=9s, 13s, 15s, and 18s
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and decelerates. In Figure 6.44 (f), the clearance between the virtual target and ego
vehicle over the prediction time during the RTAP scenario is described. As shown
in Figure 6.44 (e), during time t=8s, the motion planner expects the predicted
trajectory of the ego vehicle and the future trajectory of the target vehicles at
prediction time of 4s to 5s. During time t= 13s, 15s, and 18, the ego vehicle enters
the intersection and becomes close to the oncoming traffic participants. In Figure
6.44 (e), during those time periods, the proposed longitudinal algorithm predicts
the potential collisions at prediction horizon of t=1s and 2s. Unlike the desired
acceleration from the potential collision at time t=9s, since the potential collisions
at time t=13s,15s, and 18s are expected to occur within prediction time of 2s, the
degree of the desired control input is greater. With the proper desired acceleration
command from the algorithm, the velocity profile in Figure 6.44 shows the
autonomous vehicle successfully manages to stop and prevents the possible
collision with oncoming vehicles. In Figure 6.45, the snapshots of the ego vehicle
interacting oncoming vehicles at the intersection are described. The cyan circles
describe the FOV of the autonomous vehicle. The green and white circles represent
the predicted trajectories of the virtual target from GPR model and detected
vehicles from the proposed LSTM model, respectively. The post encroachment
time (PET) is also calculated for this multi vehicle approaching scenario. The time
crossing conflict point of target vehicles are 4.19s, 11.70s, 14.02s, 16.79s, and
20.93s. The ego vehicle enters the conflict point at time of 26.78s. The PET is

5.85s for this vehicle test.
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Figure 6.45. Snapshots of the vehicle test results of multiple vehicles approach

scenario (a)t=9s (b)t=19s (c)t=22s (d)t=28s.
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Chapter 7. Conclusion and Future Work

7.1. Conclusion

This thesis proposes a longitudinal motion planning algorithm in urban
intersection with the limited visibility for fully automated driving system with
open-market perceptive sensors. Three challenges in autonomous driving in
complex urban intersection are identified: virtual target modelling, surround
vehicle prediction, and longitudinal motion planning.

The virtual target method is utilized to ensure the safety and prevent the
potential collision with targets from the blind spot. Human driving data are
collected to model the virtual target and mimic driving patterns. The virtual target
generated based on the field of view of the autonomous vehicle may cause the
“dead-lock” situation that the ego vehicle remains stopped at the intersection
indefinitely. Implementing the human driven data, the virtual target model
interacting with the ego vehicle motion can generate the yield driving behavior that
allows the ego vehicle to pass through the intersection. The Gaussian Process
Regression is implemented to design the virtual target model with human driving
data. The trained GPR model for the virtual target provides the predicted travel
distance and its uncertainty, which can be utilized in the longitudinal motion
planning of the autonomous vehicle as a position (travel distance) constraint and a
chance constraint. The virtual target module is evaluated with the offline simulation

studies in two different driving scenarios: the SAP and the RTAP in the intersection.
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With the data-driven virtual target model, the autonomous vehicle decelerates with
less control input at earlier time in the intersection.

The deep learning method, a LSTM-RNN, is implemented to predict the
surround vehicle motion. The train and test data are collected at the actual urban
intersection with two different autonomous vehicles. Two different autonomous
vehicles can provide their odometry information regardless to the limitation in field
of view. Popular autonomous driving datasets from Waymo open datasets,
nuScenes, and Kitti obtain the target odometry information from the perceptive
sensors mounted on the autonomous vehicle, and such vehicular configuration is
limited in providing wide range of target odometry information due to limited field
of view. The obtained training datasets and their parameters are reorganized in the
detected target centered coordinates for better input-domain adaptation and
generalization. The mean squared error and negative log likelihood loss functions
are adapted to train and provide the uncertainty information of the target vehicle for
the motion planning of the autonomous vehicle. The prediction accuracy with
different input features is analyzed to determine the optimal input features.

The model predictive control with a chance constraint is used to plan the
longitudinal motion at the urban intersection. The dynamic constraints and actuator
constraints are designed to provide ride comfort and safety to drivers and
passengers. The position constraint with the chance constraint guarantees the safety
and prevent the potential collision with target vehicles. The position constraint for
the travel distance over the prediction horizon time is determined based on the

clearance between the predicted trajectories of the target and ego vehicle at every
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prediction sample time.

The feasibility and effectiveness of the proposed automated driving motion
planning algorithm has been evaluated through offline simulation, test-data based
simulation, and vehicle test in a real road of an official autonomous driving test bed.
The proposed motion planner with predictor has been tested with over 35,000 test
data set. The offline simulation verifies the safety of the algorithm from the
potential collision of a sudden appearance of traffic participants from the occlusion.
Through the vehicle test in the urban test road, the autonomous vehicle
successfully passes through the intersection by maintaining safety clearance with
other oncoming traffic participants under no traffic regulation other than traffic
signals. Through the implementation of the algorithm to actual vehicle, it is
confirmed that the algorithm is not just validated in simulation studies, but also can
be applicable in real life right away.

The main contributions of this thesis are as follows. First, the virtual target
model is implemented to overcome the limited FOV of autonomous sensors by
local cognitive sensors and blind spots. Instead of simple assumption of virtual
target driving behavior, the virtual target motion is generated with a data driven
method. The safety boundary of the predicted trajectory of virtual target is
implemented to compensate the prediction uncertainty. Second, the safe trajectory
prediction of detected target vehicles is determined for driver acceptance using
rule-based and learning-based methods. Data collection from two autonomous
vehicles for training a model allows to consider the wide range of interaction

between human driving vehicles and autonomous vehicle. Third, the efficient and
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effective decision-making and motion control are achieved using driving mode and
optimal constraints based on learning based prediction and stochastic MPC. Finally,
the efficacy and feasibility of the proposed algorithm are evaluated through both

simulation and actual vehicle tests in real road.

7.2. Future Work

The proposed longitudinal motion planning at the urban intersection enables
the autonomous vehicle to safely cross the intersection from oncoming target
vehicles from the occluded region due to limited field of view and sensor
configuration. The future works in the intersection motion planning can be
categorized in three aspects. The first is comprehension of different types of
intersection and environment. Although the motion planning algorithm can be
applicable to the general shape of the intersection, the more complicated
intersection such as the y-junction, staggered intersection, and roundabouts that
drivers often encounter should be considered. The second is the prediction of the
dynamic motion of target vehicles. The proposed motion planner can react to the
target vehicle in the pre-defined ROI, and the algorithm may be vulnerable to target
vehicle suddenly conducting lane changes in the middle of intersection and
entering the ROI. The third is the human driven data-based learning model
predictive control with optimal path planning. As the autonomous driving has been
actively studied and implemented in a vehicle for real-life use, many autonomous
driving related companies provide automated shuttle services to people. The scope

of an autonomous vehicle is being extended to commercial vehicles such as a full-
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sized bus and yard trucks. The exploration of these research scopes can
substantially develop urban autonomous driving in complex road environment with

safety and ride comfort.
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