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Abstract 
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This dissertation presents a novel longitudinal motion planning of autonomous 

vehicle at urban intersection to overcome the limited visibility due to complicated 

road structures and sensor specification, guaranteeing the safety from the potential 

collision with vehicles appearing from the occluded region.  

The intersection autonomous driving requires high level of safety due to 

congested traffics and environmental complexities. Due to complicated road 

structures and the detection range of perception sensors, the occluded region is 

generated in urban autonomous driving. The virtual target is one of the motion 

planning methods to react the sudden appearance of vehicles from the blind spot. 

The Gaussian Process Regression (GPR) is implemented to train the virtual target 

model to generate various future driving trajectories interacting with the motion of 

the ego vehicle. The GPR model provides not only the predicted trajectories of the 

virtual target but also the uncertainty of the future motion. Therefore, prediction 

results from GPR can be utilized to a position constraint for the Model Predictive 

Control (MPC), and the uncertainties are taken into account as a chance constraint 

in the MPC.  

In order to comprehend the surrounding environment including dynamic 
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objects, a region of interest (ROI) is defined to determine targets of the interest. 

With the pre-determined driving route of the ego vehicle and the route information 

of the intersection, driving lanes intersecting with the ego driving lane can be 

determined, and the intersecting lanes are defined as ROI, reducing the 

computational load by eliminating targets of disinterest. Then the future motion of 

the selected target is predicted by a Long Short-Term Memory-Recurrent Neural 

Network (LSTM-RNN). Driving data for training are directly obtained with two 

different autonomous vehicles, providing their odometry information regardless to 

the limited field of view (FOV). For a widely known autonomous driving datasets 

such as Waymo and nuScenes, the vehicle odometry information are collected from 

the perceptive sensors mounted on the test vehicle. Thus, information of target that 

are out of the FOV of the test vehicle can’t be obtained. The obtained training data 

are organized in the target centered coordinates for better input-domain adaptation 

and generalization. The mean squared error and the negative log likelihood loss 

functions are adapted to train and provide the uncertainty information of the target 

vehicle for the motion planning of the autonomous vehicle. 

The MPC with a chance constraint is formulated to optimize the longitudinal 

motion of the autonomous vehicle. The dynamic and actuator constraints are 

designed to provide ride comfort and safety to drivers. The position constraint with 

the chance constraint guarantees the safety and prevent the potential collision with 

target vehicles. The position constraint for the travel distance over the prediction 

horizon time is determined based on the clearance between the predicted 

trajectories of the target and ego vehicle at every prediction sample time. 

The performance and feasibility of the proposed algorithm are evaluated via 

computer simulation and test-data based simulation. The offline simulation 
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validates the safety of the proposed algorithm, and the suggested motion planner 

has been implemented on an autonomous driving vehicle and tested in a real road. 

Through the implementation of the algorithm to an actual vehicle, the suggested 

algorithm is confirmed to be applicable in real life autonomous driving. 
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Chapter 1. Introduction 

 

1.1. Research Background and Motivation of Intersection 

Autonomous Driving 

The autonomous driving has been rigorously studied and implemented in 

real vehicles. Leading automotive manufacturers such as Mercedes Benz, BMW, 

Volvo, Hyundai, Toyota, and Tesla have already adopted Advanced Driving 

Assistance System (ADAS) several years ago. Most companies developed highway 

autonomous driving system such as Highway Driving Assistance (HAD) and 

HDA2 from Hyundai Motor Company. Such highway autonomous driving system 

can be operated under the level 2 autonomous driving regulation due to simple road 

structures and simple driving patterns of surrounding vehicles.  

As a higher level such as the level 3 or 4 of self-driving is being pursued 

these days, the Operational Design Domain (ODD) of autonomous driving has 

shifted to urban environment. Compared to the highway autonomous driving, the 

urban driving requires high level of safety due to the congested traffic and 

environmental complexity. The intersection is the most complicated urban road 

structures with the following challenges: traffic laws, dynamic surrounding objects, 

and complicated driving environments. The intersection traffic is controlled with 

various traffic laws such as stop and yield, and with different traffic signals. The 

dynamic surrounding objects require precise intention inference and their trajectory 

prediction to properly plan the motion of autonomous vehicle. The complex urban 
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environment can be categorized into adverse weather, light condition, and 

occlusion, which are critical in perceiving the surrounding. 

The urban autonomous driving can be categorized into two: the normal 

autonomous driving, and the intersection autonomous driving. Although the 

intersection is part of the urban roads, significant differences exist between the 

urban intersection autonomous driving and normal self-driving. The differences 

between those two autonomous driving are described in the Table 1.  
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The road structures of the urban intersection and normal road are different. 

The road structure of the intersection diverges to multiple directions or merges into 

one, but that of the normal road is a simple one-way or two-way direction. Due to 

the complex road structures and boundaries of the urban intersection, the field of 

view (FOV) is highly limited. Therefore, the autonomous vehicle should be 

extremely cautious when entering or changing the direction in the intersection by 

obtaining enough FOV for the safety. On the other hand, the FOV of normal 

autonomous driving is generally not obstructed by road structures other than 

severely curved road. The critical difference between the intersection and the 

normal urban autonomous driving is the traffic flow directions and traffic 

participants interactions. Because the roads of the intersection merges to one point 

from different directions, the traffic flows in the intersection variates in many 

directions, and major and minor traffic stream exist due to traffic rules. In extreme 

case, the target vehicle approaches to the intersection from the opposite direction of 

the ego vehicle. In the intersection, the conflict region is the critical index to 

maintain the safety and avoid collision. Therefore, in the intersection motion 

planning, it is significant to properly define the conflict region in the intersection. 

Unlike the intersection autonomous driving, the normal autonomous driving with 

simple road structures where target and ego vehicles driving in the same direction 

maintains the safety and prevent collision through clearance control. 

Although different types of intersection exist, the major three different 

driving directions are defined in the intersection: left, straight, and right. The 

driving directions of the ego vehicle and other intersection traffic properties 
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depending on the ego direction are described in the table 2. When the ego vehicle is 

conducting the left turn, the ego vehicle has the right of way to cross the 

intersection, and detects target through frontal view. When the ego vehicle turns 

left, the vehicle may interact with the target vehicle turning right at the opposite 

road. During the left turn at intersection, no occlusion from static obstacles occurs. 

When the ego vehicle travels straight through the intersection, the ego vehicle also 

has the right of way in the traffic flow. The ego vehicle will interact with a target 

vehicle that turns right. The target vehicle can be detected with frontal view of the 

ego vehicle. The right turn in the intersection is the most difficult motion in the 

urban intersection. When the ego vehicle turns right, the ego has to yield to the 

vehicles that have the right of way in the intersection entering from the different 

directions. During the right turn, the ego vehicle should continuously observe the 

side directions to react to oncoming target vehicle with the right of way to cross the 

intersection. Due to the complex road structure of the intersection, the FOV of the 

ego vehicle is obstructed. The interaction between ego vehicle and target vehicle in 

the intersection is described in Figure 1.1. 

 

Table 2. Ego vehicle direction and related properties in the intersection. 
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Figure 1.1. Possible vehicle interactions in the intersection 

 

The most critical factor for not only the autonomous vehicle but also 

human driven automobile is the visibility. In the autonomous driving, the visibility 

of the self-driving vehicle is defined as FOV that how far and wide the automotive 

can perceive. Although human can acknowledge surrounding environment in wide 

range, the self-driving vehicles are limited in field of view when approaching to the 

intersection due to sensors’ specification, mounting location of sensors on a vehicle, 

and road structures. Among various perceptive sensors providing a vision to an 

autonomous vehicle, a Lidar sensor is one of the most promising and commonly 
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adopted perceptive sensors. As shown in Table 3 below, channels of lidar sensor 

varies from 16 to 128 channels, and the 32 channel Lidar sensor is chosen by many 

research institutes and companies such as Google Waymo and General Motors 

Cruise. According to the sensor specifications, Lidar sensor provides the 

longitudinal measurement range from 80m to 300m. However, the maximum 

measurement range does not guarantee the detection and classification of road 

users such as vehicles, bicycles, and pedestrians. From Figure 1.1 below, the 16 

channel Lidar sensor can detect the vehicle up to 25m, and the 32 channel Lidar 

sensor recognizes the vehicle up to 55m. Beyond the range, Lidar point clouds are 

sparsely detected, and it is hard to distinguish and classify as a specific object. 

Since such detection range of Lidar sensor is insufficient compared to that of 

human drivers, the autonomous vehicle motion is highly restricted in driving in 

intersection with complex road structures and blind spots. Such limitation can 

result in late detection of oncoming traffic participants, leading to a fatal accident. 

From extensive reviews of preliminary studies, researchers have attempted 

various approaches to guarantee the safety of road users and provide comfortable 

riding quality by overcoming challenge of urban autonomous driving. The 

autonomous driving is categorized into four different major modules: the 

localization, the perception, the planning, and the control. Based on the odometry 

of ego and other traffic participants and local geometry information from upper 

modules, such as the localization and the perception, the planning module 

systematically predicts the surrounding situations and plans the proper ego 

behavior that guarantees safety in case of the unexpected obstacles and collisions 



 

 ８ 

from the occlusion. Therefore, we aim to develop a motion planning algorithm for 

an autonomous vehicle in a complex urban environment, especially in the 

intersection, guaranteeing the safety and preventing collision from the sudden 

appearance of traffic participants from the occlusion. 

 

Table 3. 3D Lidar Velodyne Sensor Specification 
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Figure 1.2. Detection range of Velodyne sensors.  
 

 

1.2. Previous Researches on Intersection Autonomous Driving 

Various methodologies of different autonomous driving modules have been 

employed to the self-driving vehicle to enhance ride comfort and guarantee the 

safety of self-driving at urban intersection. In motion planning, literature reviews 

have generally studied two specific autonomous driving technologies: Target 

trajectory prediction and ego motion planning. In the following sections 1.2.1 and 

1.2.2., preliminary studies of surrounding vehicle motion prediction and motion 

planning for limited field of view are summarized. 
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1.2.1. Research on Trajectory Prediction and Intention 

Inference at Urban Intersection 

In urban environment where road structures are complex, and velocity of 

traffic participants varies in wide ranges, a precise and accurate prediction of road 

users is critical in safety and collision prevention. Various trajectory prediction 

methods can be categorized into physics-based methods and learning-based 

methods. The most common physics-based methods that are widely utilized and 

compared as a basic prediction model are constant velocity (CV) and constant yaw 

rate and acceleration (CYRA) model [Prevost et al. 2007]. Jeong et al generated 

three different velocity profiles with Intelligent Driver Model (IDM) and predicted 

trajectories using Interactive Multiple Model (IMM) [Jeong et al 2019]. However, 

IMM based prediction can only estimate predefined predictive trajectories. Koschi 

et al utilized a reachable set for occupancy prediction of surrounding traffic 

participants instead of analyzing probability distributions of nearby vehicles, 

guaranteeing a full collision free safety [Koschi et al 2020]. However, such 

occupancy prediction does not reflect the future field of view as the ego vehicle 

proceeds and visibility changes. 

In order to predict the future trajectory and contextual behaviors of 

surrounding vehicles delicately, learning-based approaches have been widely 

adopted in both a short-term and a long-term prediction horizon and proves 

enhance performance rather than physic-based prediction. Jeong et al implemented 

LSTM-RNN with predicted ego states from model predictive controller as 

additional inputs to predict interactive trajectories of vehicles at multi-lane turn 
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intersections [Jeong et al. 2020]. Deo et al proposed Convolutional Social Pooling 

LSTM model to predict the future trajectory of target vehicles where convolutional 

social pooling layer allows to capture the spatial interaction among vehicles [Deo 

et al. 2018]. Roy et al proposed Generative Adversarial Networks to predict the 

future trajectories of vehicles that captures the social interactions [Roy et al 2019]. 

Sheng et al proposed Graph-based Spatial Temporal Convolutional Network for 

trajectory prediction that graph convolutional network (GCN) defines the spatial 

interaction, convolutional neural network (CNN) captures the temporal features, 

and the features are encoded and decoded by a gaited recurrent unit (GRU) [Sheng 

et al. 2021]. Yoon et al implemented a Gaussian Process Regression (GPR) to 

predict lane change trajectories of nearby vehicles [Yoon et al. 2021]. Li et al 

designed a Graph-based Interaction aware Trajectory Prediction (GRIP) that 

incorporates the graph convolution extracts social interaction features and encodes 

and decodes features through LSTM to predict future trajectories [Li et al. 2019]. 

Most of these prediction results are computer simulated, and predictions are 

performed with environmental and dynamic features from space-fixed coordinate 

instead of coordinates from a self-driving car perspective. The space fixed 

coordinate is disadvantageous in vehicle implementation. 

 

1.2.2. Research on Intersection Motion Planning 

In urban autonomous driving, myriad researches have been developed to 

overcome the limited field of view due to occlusions. The approach can be 

subdivided into the two themes: communication and non-communication 
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autonomous systems. With the development of 5G network, the data transmission 

speed and load have enhanced dramatically, and the communication among 

autonomous vehicles and traffic infrastructures become possible, recently named as 

Cooperative-Intelligent Transport Systems (C-ITS). In C-ITS, Vehicle to 

Infrastructure (V2I), Vehicle to Vehicle (V2V), and Vehicle to Everything (V2X) 

communication systems have been introduced to overcome the sensor limitation 

and the blind spots in the intersection. Elleuch et al proposed a Cooperative 

Intersection Collision Avoidance Persistent system based on V2V and Real-time 

database system to reduce collision risks [I. Elleuch et al 2017]. In accordance with 

V2V, Sun et al introduced the Intersection Vehicle Fog (IVF) model to proactively 

plan motions at the intersection [G. Sun et al 2020]. Ci et al developed the vehicle 

following mode based V2I to enhance traffic efficiency and vehicle operation 

behaviors [Y.Ci et al 2019]. Duan et al designed the RGB Point-Voxel-Region 

based Convolutional Neural Network (PVRCNN) perception module to improve 

the acknowledgement of the surrounding object information comping with V2I 

system of road side Lidar sensor [X. Duan et al 2021]. Liu et al proposed the radar-

based road side sensor communication to detect vehicles and vulnerable road users 

from the blind corner, and the support vector machine classifier is adopted to 

classify object from both sensors mounted on self-driving vehicle and road side 

radar sensor [W. Liu et al 2018]. The collision prediction of vehicles and 

vulnerable road users is measured based on their velocity, position, and heading. 

However, due to the characteristics of the radar, the multiple road users may cause 

large uncertainties and noise to detection and classification results. Jung et al 
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proposed V2X communication aided autonomous driving vehicle with three sub-

modules: beyond line-of-sight (BLOS) perception, planning, and control [C. Jung 

et al 2020]. The BLOS perception module integrates local perception information 

from perceptive sensors mounted on vehicle and communication perception from 

V2X communication system and allows to overcome the limited visibility. Muller 

et al developed the motion planning framework with a sampling-based 

optimization method that adopts the external environmental model of V2I system 

to ego environmental model with perceptive sensors in prarallel instead of track to 

track (T2T) conventional fusion [J. Muller et al 2022]. The T2T fusion method is 

not effective by increasing the redundancy of detection and tracking number of 

targets in non-mutual field of view. However, these studies are only restricted to 

V2V and V2I environment, and most vehicles and road infrastructures in a real 

world are not equipped with such communication systems. Furthermore, different 

cities and countries do not offer the unified regulation and format of data 

transmission of the C-ITS for autonomous vehicles, causing interference when 

operating in different regions. 

Other than communication-based solutions, a common strategy to 

overcome the occlusions that many preliminary studies implemented is to assume 

the virtual vehicle at the end of the field of view of autonomous vehicles. With a 

virtual vehicle coming from blind spots, the autonomous vehicle can properly plan 

the motion to prevent the potential collision. One of the most common methods to 

plan the motion with a phantom vehicle is the Partially Observable Markov 

Decision Process (POMDP). Because of the generality of POMDP, many 
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researches adopted the approach to optimize the occlusion-aware motion planning 

[P. Narksri et al 2021]. Hubmann et al proposed a POMDP based behavior planner 

with virtual vehicles that the probability of virtual vehicles represented in reachable 

set are determined with the traffic density at the occluded lane described as uniform 

probability distribution instead of assurance of existence of phantom vehicle at the 

frontier of the field of view [Hubmann et al. 2019]. Schorner et al designed the 

field of view calculated based on the vehicle sensor configuration accordance with 

the current and future environmental information and incorporate potential hidden 

traffic participants from the generated field of view with POMDP to plan the 

longitudinal motion [P. Schorner et al. 2019]. The probability of hidden vehicle is 

determined based on the traffic density of the occupying lane and distance to the 

vehicle. Brechtel et al. developed a continuous POMDP with a dynamic Bayesian 

network to determine a discrete finite set of acceleration and deceleration during 

the merging scenario at the intersection where the observation model of POMDP 

solved with the Monte Carlo Value Iteration algorithm treats the hidden vehicle 

probability as Boolean [S. Brechtel et al 2014]. However, when the observation 

model encounters the non-visibility, the optimized policy enforces the stop mode to 

look behind the blind area. Zhang et al proposed a POMDP based behavior planner 

with a phantom vehicle whose probabilities were inferred based on road structures 

and pre-defined map information [C. Zhang et al. 2021]. The proposed POMDP is 

solved online with Monte Carlo tree with reachable set analysis. Lin et al suggested 

a POMDP based decision making through occluded intersection accounting both 

static and dynamic obstacles [Lin et al. 2019]. Thornton proposed a longitudinal 
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and lateral controller to guarantee the safety at the occluded crosswalk formulating 

POMDP that dynamic programming is implemented for control policy to control 

the longitudinal motion [Thornton 2018]. The model predictive controller is 

applied to generate lateral motion with the velocity scalar from the POMDP. 

Bouton et al designed a POMDP formulated with scene decomposition method to 

manage multiple traffic participants independently at scene with occlusion [M. 

Bouton et al. 2018]. Although the POMDP is a very promising methodology to 

resolve the occluded driving scenario at the complex urban road structures, the 

computational burden can be high to be solved in real-time, and the method is 

difficult to be implemented in a real vehicle. Moreover, most of the POMDP based 

researches assumed over-simplified predicted action of virtual targets such as 

approaching with the maximum constant velocity. However, under such 

assumption, the self-driving vehicle can remain stopped indefinitely, causing a 

dead-lock situation. 

Deep learning-based approaches have been studied to overcome 

autonomous driving scenarios with blind spots. Among various deep learning 

approaches such as Long Short-Term Memory Recurrent Neural Network (LSTM-

RNN) and Generative Adversarial Network (GAN), many preliminary studies 

utilize Deep Reinforcement Learning to resolve the occlusions at the intersection. 

Morales et al proposed a data driven motion planning with an inverse 

reinforcement learning to reflect expert driving characteristics, guaranteeing safety 

motion at occluded intersection [Morales et al. 2018]. Isele et al generated creeping 

behaviors when approaching the occluded intersections with Deep Q Networks to 
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improve the safety and achieve visibility [Isele et al. 2018]. Kamran et al proposed 

risk-based reward function instead of collision based in order to generate reliable 

policies and motions three Deep Q-Networks [Kamran et al. 2020]. Kamran et al 

proposed a distributional RL framework with dynamic programming to learn 

adaptive policies and consider the maximum uncertainty, guaranteeing the safety 

and ride comfort [Kamran et al. 2021]. Instead of trajectory prediction of vehicles, 

Ren at el. proposed a novel deep learning model with three different loss functions 

to predict the occupancy map to predict unseen vehicles [Ren et al 2021]. Although 

such learning-based approaches can easily reflect human driving patterns, some of 

the researches only conducted simulation studies, and the relationship between the 

input and the output is inexplicable.  

Another method for motion planning to overcome the occlusion is to design 

the potential risk of unobserved oncoming vehicles and incorporate the risk to 

optimize the motion of self-driving vehicle. The advantage of such model-based 

approach is the explicit relationship between the risk and output motion of the 

vehicle. Tas et al proposed the motion planning based on the environmental model 

where the sampling preview point along a center of ego driving corridor is 

implemented to up-do date offline map, and the motion planner optimizes a motion 

stochastically according to different driving modes with Intelligent Driving Model 

[Tas et al 2018]. Morales et al designed a motion planning algorithm at blind 

cornered intersection with expert driving data [Morales et al 2017]. With a 

geometry of an intersection, Yoshihara et al developed a longitudinal model that 

computes the maximum safety velocity at possible proceeding points and critical 
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longitudinal point and incorporate the velocity to the Frenet frame path planner to 

generate the optimal motion [Yoshihara et al. 2017]. Hoermann et al. proposed a 

dynamic grid-map based motion planning that optimizes the trajectory with the 

minimum cost incorporated with occluded objects predicted with pre-defined map-

based velocity [Hoermann et al. 2017]. Naumann et al considered a probabilistic 

trajectory prediction of the potential object at an edge of a sensing filed to plan a 

safe, comfortable, and not overcautious motion [Naumann et al. 2019]. 

Orzechowsk et al. estimated the occupancy of the over approximations of potential 

occluded traffic participants with Kamm’s circle and a velocity interval 

[Orzechowsk et al. 2018]. Yu et al predicted the risk of unobserved vehicles with 

the pre-defined road structures and incorporate the risk to optimize the trajectory 

[Yu et al. 2019]. Zhang et al proposed a game-theoretic based framework that plans 

the future trajectory to prevent collision with hidden vehicles from the occlusion 

[Zhang et al 2021]. Wang et al proposed aDynamic Bayesian Network based model 

for real-time estimation of a potential risks at blind corners and incorporated the 

risk to a longitudinal and lateral motion planning [Wang et al 2022]. Narksri et al 

proposed a deadlock-free planner of autonomous vehicle at urban intersection that 

model multiple velocity profiles and visibilities of hidden vehicles from human 

driving data [Narksri et al. 2021]. Jeong et al proposed Approach Phase and Risk 

Management Phase to maintain the maximum safety velocity of self-driving 

vehicle when approaching the intersection with limited visibility [Jeong et al. 2019]. 

However, most of previous researches assumes the worst-case scenario with a 

virtual vehicle approaching with a constant velocity of road regulation. However, 
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the constant velocity assumption may enforce the ego vehicle remains stoped 

indefinitely, causing “Dead-lock” situation. 

 

1.3. Thesis Objectives 

The dissertation aims to propose the longitudinal motion planning of 

autonomous vehicle at urban intersection to improve safety and prevent potential 

collision due to occlusions, coping with limited visibility and uncertainty. A simple 

way to prevent the collision due to a sudden appearance of oncoming vehicle is 

“stop and go” that the autonomous vehicle must stop first and then accelerate to 

pass through the intersection. However, in such case, the vehicle stops at every 

intersection even if no other traffic participants exist, leading to an inexplicable 

behavior for a following vehicles. Therefore, the proposed thesis develops main 

two modules for intersection motion planning for autonomous vehicle: 

Surrounding vehicle prediction and longitudinal motion planning 

The surrounding vehicle prediction module estimates the future trajectories of 

the oncoming vehicles. In order to overcome perceptive sensors limitations and 

prevent collisions due to occlusions, the surrounding vehicle prediction module is 

subdivided into two sub-modules: Virtual target and real target. The virtual target 

module anticipates the future trajectories of virtual targets from the occlusion. The 

GPR method is implemented to measure the mean and covariance of predicted 

trajectories. The visibility index of virtual targets based on the road structure is 

designed as one of input features of the GPR. The mean and covariance of future 

trajectories of virtual target are implemented in formulation of stochastic model 
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predictive controller of the longitudinal motion planning. The real target module 

predicts the future trajectories of detected vehicles with LSTM-RNN. The training 

and test data for both GPR and LSTM-RNN are obtained from actual driving at the 

intersection. 

With the future trajectories from surrounding vehicle prediction module, the 

longitudinal motion planning proactively plans the ego vehicle motion with 

stochastic model predictive control. The stochastic model predictive control is 

formulated to consider prediction uncertainties, actuator limits, and jerk to provide 

ride comfort and guarantee the safety from collisions. 

 

1.4. Thesis Outline 

This dissertation is organized in the following manner. In Chapter 2, the 

overall architecture of the proposed algorithm is described. The overview of 

software configuration is summarized as different modules. The hardware 

configurations of the test vehicle are described. Further, the vehicle test 

environment for evaluation of the proposed algorithm is introduced. The test 

environment is occupied with unregulated human driven vehicles. 

In Chapter 3, the methodology of virtual target modeling and prediction is 

described. The proposed algorithm generates virtual targets at the end of the field 

of view that encounters target vehicle’s driving routes. The field of view is defined 

by configuration of sensors mounted on a vehicle. Virtual targets are modeled using 

Gaussian Process Regression to measure the future trajectories. A visibility index 

measurement, one of input features for GPR, based on the road structures is 
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described. Actual human driving data are collected and used to train and validate 

the GPR model. Different effects of kernel functions of GPR are defined. 

In Chapter 4, the detected surrounding vehicle prediction is introduced. For 

the actual vehicles, historical trajectories of the detected vehicles can be observed 

whereas the historical paths of virtual targets don’t exist due to its passive 

generation based on change in field of view. The Long Short-Term Memory based 

Recurrent Neural Network is constructed to predict the future trajectories of 

detected vehicles. LSTM-RNN structures and train setup for trajectory predictions 

are described. 

In Chapter 5, the longitudinal motion planning of autonomous vehicle is 

defined. In order to incorporate the future trajectories of target vehicles to 

proactively plan the ego motion, the model predictive control is formulated. The 

ego vehicle state prediction and reference states for MPC are described. The 

conflict region is the most critical index in intersection motion planning to prevent 

collisions and generated based on future trajectories of target and ego vehicles. 

Constraints of MPC to provide driver acceptance and safety from collision are 

defined. 

In Chapter 6, the performance evaluation of the proposed algorithm is 

summarized. The GPR based virtual target model prediction accuracy is evaluated 

with mean absolute error, root mean squared error, and standard deviation. The 

GPR trajectory prediction is compared with a constant velocity model to describe 

the efficiency. MATLAB simulation is conducted to describe overcoming the 

deadlock situation. The LSTM based surrounding vehicle prediction accuracy is 
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described and compared with a constant velocity model. The stochastic model 

predictive controller is performed under MATLAB simulation. The vehicle test 

result under real urban intersection is described. 

In Chapter 7, the conclusion and summary of the proposed longitudinal 

motion planning algorithm at urban intersection is presented, and future works are 

described. 
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Chapter 2. Overall Architecture of Intersection 

Autonomous Driving System 

 

2.1. Software Configuration of Intersection Autonomous 

Driving 

The autonomous driving system largely consists of perception, localization, 

motion planning, and control. From upper modules, perception and localization, the 

motion planning obtains global routes, vehicle odometry, and surrounding vehicle 

information and determines the desired acceleration. The software architecture of 

overall autonomous driving motion planner is described in Figure 2.1. 

 

 

Figure 2.1. System overview of the autonomous driving motion planner.  
 

As shown in Figure 2.1, the motion planner can be categorized into a general 

road and an intersection motion planner. Both two different motion planners 
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operate parallelly. The general road motion planner manipulates vehicle motions 

such as lane keeping, lane changes, overtaking, and biased driving. The detailed 

description of the intersection motion planning is presented in Figure 2.2. 

 

 

Figure 2.2. Intersection motion planning architecture  
 

As described in Figure 2.2, the intersection motion planning is composed of 

surrounding vehicle prediction and longitudinal motion planning modules. In 

surrounding vehicle prediction module, two different target prediction sub-modules, 

virtual target and real target, perform parallelly. Based on the sensor specification 

and HD map information, a virtual target is generated, and future trajectories are 

predicted based on GPR. When real targets are observed, the future trajectories of 

the detected targets are calculated using LSTM-RNN. The virtual target submodule 

is activated when no oncoming target vehicle is observed, and deactivated when 

targets are detected in the intersection. The predicted future trajectories from 

surrounding vehicle prediction modules are utilized for the longitudinal motion 

planning. The ego vehicle longitudinal motion is optimized with a stochastic model 
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predictive control in the longitudinal motion planning module. The ego future 

trajectories and reference states are defined for the MPC. The future trajectories of 

both ego and target from preceding modules are computed to define the conflict 

region at the intersection and determine the position constraints of stochastic MPC 

to prevent collisions. The mean and covariance of virtual target future trajectories 

from GPR are implemented to manipulate the uncertainty of virtual target. Through 

the longitudinal motion planning, the desired longitudinal is determined to generate 

driving motion and ensure the safety at the intersection. 

 

2.2. Hardware Configuration of Autonomous Driving and 

Test Vehicle 

The test vehicle for the propose algorithm is a KIA Carnival, a multi-purpose 

vehicle. Two 32 channel 3-D Velodyne Lidars are mounted on the front and rear of 

the vehicle roof. The front vision camera is also mounted under a front glass for 

lane and traffic participants detection. OmniView around view camera for right and 

left lanes around the vehicle and Septentrio GPS are used to provide vehicle 

odometry through a localization module. Two industrial PCs, Nuvo 8108GC, are 

built in to operate perception and motion planning modules respectively. The 

desired motion calculated from the industrial PC is provided to a lower-level 

controller of a micro-autobox to operate actuators of the autonomous vehicle. Such 

hardware configurations for autonomous vehicle system and perceptive sensors 

detection ranges are depicted in figure 2.3. 
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Figure 2.3. Configuration of sensors for autonomous vehicle. 

 

2.3. Vehicle Test Environment for Intersection Autonomous 

Driving 

The vehicle tests were performed in a real intersection. A full autonomous 

driving interacting with human drivers was conducted in Sangam, Seoul, South 

Korea. Sangam city is nominated as self-driving test city, and various autonomous 

vehicles from different research institutes conduct test driving and provide 

autonomous shuttle service. The driving course of a full autonomous driving is 

described in Figure 2.4. 
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Figure 2.4. Vehicle test course in Sangam, Seoul, South Korea 
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Chapter 3. Virtual Target Modelling for Intersection 

Motion Planning 

 

3.1. Limitation of Conventional Virtual Target Model for 

Intersection 

In many preliminary studies, the virtual targets are utilized as if a real vehicle 

is appearing from the occluded region at the intersections. Most conventional 

methods assume the virtual targets are approaching to the intersection with constant 

velocity and maximum road speed regulation. However, with the assumption of a 

constant velocity, the ego vehicle gradually decreases velocity to react to the virtual 

target and becomes stopped at the entering point of the intersection. However, 

when the ego vehicle reaches to a certain point at the intersection, the predicted 

trajectory of the virtual target enforces the ego remain stopped indefinitely, causing 

“Deadlock” situation as shown in Figure 3.1. In Figure 3.1, the predicted horizons 

of a virtual target and ego vehicles are assumed to be 3 seconds. 
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Figure 3.1. Predicted trajectories of virtual target with constant velocity in “dead-

lock” situation (a) left turn (b) straight (c) right turn 

 

Due to a constant velocity prediction of virtual target and fixed position from 

field of view of the ego vehicle, the conflict region is generated, and ego vehicle 

cannot cross the intersection. However, in real world driving, traffic participants 

interact with others and generate different motions such as yield motion instead of 

crossing, non-yield motion. Although a virtual target is not a real traffic participant, 

the interactive motion can be designed as a real vehicle. Human-driven data can be 

utilized to generate yielding motion trajectories as shown in Figure 3.2 below. 
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Figure 3.2. Predicted trajectories of virtual target with yield motion (a) left turn (b) 

straight (c) right turn 

 

As shown in Figure 3.2, the trajectory of the virtual targets becomes shortened 

as ego vehicle approaches the intersection. Then, the sufficient clearance between 

future trajectories of the virtual target and ego vehicle allows the safe region for the 

self-driving vehicle to cross the intersection. 

 

3.2. Virtual Target Generation for Intersection Occlusion 

An autonomous vehicle based on local perceptive sensors is limited in motion 

planning due to blind spots caused by surrounding environments. Since an 
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autonomous vehicle perceives surrounding information by analyzing scene images 

and point clouds from the perceptive sensors, if rays from those sensors are 

obstructed by neighboring objects and road structures, it is difficult to fully identify 

the oncoming vehicles beyond the obstruction. The ego vehicle with limited 

perception range due to obstruction is difficult to properly plan ego motion in 

regard to an oncoming vehicle. 

In this study, the concept of virtual target is introduced to overcome the 

limitation of perceptive range of sensors and reduce the potential collision risk. The 

virtual target generation based on HD map and cognitive sensor specifications are 

shown in Figure 3.3. 

 

 

Figure 3.3. Virtual target generation with cognitive sensors and road boundary 



 

 ３３ 

Various perceptive sensors have different specifications in perception range. 

As shown in Figure 3.3, the field of view of the vehicle is defined based on 

perceptive sensor specifications such as resolution, point, density, and horizontal 

range. Without understanding the road boundary from the current position, the 

correct location of the occluded region cannot be recognized since it is ambiguous 

to recognize where the rays of LiDAR or Radar will be prevented. With the road 

boundary information from HD map, it is possible to define the correct FOV by 

exactly comprehending the borderline where sensor rays are blocked. When the 

FOV is generated based on road boundary, it is assumed that virtual targets exist at 

the crossing point between the limit of the generated FOV and the expected driving 

path of the virtual target. The autonomous ego vehicle assuming the existence of 

virtual target can proactively design motion planning and determine driving mode 

and control input, providing enhanced ride comfort. 

As the ego vehicle proceeds toward the intersection, the virtual target is 

generated when no oncoming vehicles are detected, and ego vehicle has not yet 

reached to the point, where the full FOV for the target vehicle is allowed. Multiple 

virtual targets are generated as shown in Fig. 4 at the limit of the FOV obtained 

from the road boundary. The expected driving routes of each virtual target can be 

obtained with the geometric information of the intersection from HD map, and the 

primary virtual target for motion planning is determined by existence of a conflict 

point when interacted with the driving route of the ego vehicle. Among various 

virtual targets, the virtual target with the smallest TTCP is chosen as the primary to 

continuously plan and control the ego vehicle motion to either cross or stop while 
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maintaining the safety clearance until entering the intersection. For the safety 

driving of the ego vehicle, the virtual target is assumed to be approaching and 

crossing the intersection with the constant velocity of speed limit of the urban road. 

 

3.3. Intersection Virtual Target Modeling 

Various methods have been studied to model the vehicle motion in 

autonomous driving to mimic human driving behaviors. Rule-based and a learning-

based methodologies are widely used two different categories to generate human-

like driving patterns. Although a rule-based method can generate human-like 

driving motions, detailed and fine assumptions of behavior rules and parameters 

are required, and a generated motion is still inelegant and clumsy due to a 

complexity of other vehicle motion dynamics. 

In this study, among various learning-based regression methods, the GPR is 

implemented to mimic human driving behaviors to generate “Yield” and “Cross” 

trajectories of virtual target vehicles as urban intersection, overcoming the 

deadlock situation. The LSTM-RNN is widely utilized when predicting sequential 

data such as future vehicle trajectories. Since LSTM-RNN method incorporates the 

historical data of the driving motion of the target vehicle, it provides accurate and 

precise predicted trajectories. However, the virtual targets in this study are 

generated based on the field of view of the sensors mounted on the vehicle and do 

not have historical trajectories due to a sensor field of view dependency instead of 

time historical sequential dependency. In other words, the virtual target does not 

move consecutively and is generated sensor and geometry dependent. 
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3.3.1. Gaussian Process Regression based Virtual Target 

Model at Intersection 

The GPR is a powerful tool which is a data-driven non-parametric estimation 

method expressed in terms of mean and variance, providing the uncertainties of 

prediction results. A Gaussian process, by its widely known definition, is a 

collection of random variables, and those random variables have a characteristic of 

joint Gaussian distribution, multivariate Gaussian distribution [Rasmussen et al. 

2006]. Gaussian distribution is a distribution of vectors and matrices, whereas 

Gaussian process is a distribution of functions. The Gaussian process is defined as 

mean and covariance functions, and mean and covariance functions are described 

as below, 

 ( ) [ ( )]m x f x= Ε  (3.1) 

 cov( , ') [( ( ) ( ))( ( ') ( '))]x x f x m x f x m x= Ε − −  (3.2) 

The covariance function of a gaussian process can be described as a kernel 

function as below, 

 cov( , ') ( , ')x x k x x=  (3.3) 

The kernel function describes the similarity and correlation between two 

inputs as the covariance between outputs at the query inputs. According to the 

widely employed kernel functions, if the two input values are similar and close to 

each other, the covariance value of the outputs at the query inputs calculated 

becomes larger. However, for some kernel functions, the closer the input points are, 

the smaller the covariance is calculated between the outputs at the query inputs. 
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Therefore, the overall Gaussian process can be expressed as 

 ( ) ( ( ), ( , '))f x GP m x k x x  (3.4) 

The Gaussian Process Regression, GPR, is a GP based regression method and 

estimates the probability distribution of function value f(x*) at given input value x* 

and training dataset [Yoon et al. 2021]. The training dataset can be expressed as 

below, 

 {( , ) 1, 2, , }i iD x f i n= =   (3.5) 

In the equation above, x and f denote the input and output of the dataset, and n 

represent the number of training samples. A joint Gaussian distribution of f and 

f(x*) with noise free observation can be described as follows, 

 ( ) ( , ) ( , *)
,

( *) ( *) ( *, ) ( *, *)
f m X K X X K X x

N
f x m x K x X k x x

      
      

      
  (3.6) 

Introducing the noise term to the above equation, the joint Gaussian 

distribution can be re-written as below, 

 2( ) ( , ) ( , *)
,

( *) ( *) ( *, ) ( *, *)
nf m X K X X I K X x

N
f x m x K x X k x x

σ  +   
            

  (3.7) 

where X, x*, and f are the corresponding training inputs, test/query inputs, and 

training outputs. From the above equation, the kernel matrix, K(X,X) can be 

expressed as, 
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It can be observed from the equation above, all the training input dataset pairs 

have corresponding covariance values. Therefore, the kernel matrix determines the 

predicted output mean and covariance value with the given query input. The 

predictive distribution of function value follows the Gaussian distribution, and 

mean and covariance can be described according to the conditional distribution of a 

multivariate normal distribution as below, 

 
1 1, ( ( ), )T

T

x a A C
N x y N a CB y b A CB C

y b C B
− −      

⇒ + − −      
      

 
 (3.9) 

The mean and covariance of the predictive distribution of the function value 

f(x*) are shown below, 

 12* ( *) ( *, ) ( , ) ( ( ))nm x K x X K X X I f m Xµ σ
−

 = + + −   (3.10) 

 12 2* ( *, *) ( *, ) ( , ) ( , *)nk x x K x X K X X I K X xσ σ
−

 = − +   (3.11) 

With the equations above, the Gaussian process regression can conditionally 

determine the mean and covariance of output at given query test input using 

training datasets. In this study, a Gaussian process model is trained to estimate the 

distribution of behavior parameter, a distance from a conflict point to a target 

vehicle at predicted time of 5s. 

 
, (5 ) , (5 ) , (5 ) , (5 )

( ( ), ( , '))
tar pred s tar pred s tar pred s tar pred sdtc dtc dtc dtcf GP m x k x x  (3.12) 

The predictive distribution of the distance to conflict point of target vehicle is 

measured as below, 

 
,

2
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For Gaussian process regression five input features and one output feature is 

constructed. The input features are dtctar , vtar , dtcego , vego , Ivis, which are distance 

to conflict point of target vehicle, velocity of target vehicle, distance to conflict 

point of ego vehicle, velocity of ego vehicle, and visibility index respectively. The 

output feature is dtctar,pred(t=5) that is a distance to conflict point of target vehicle at 

predicted time of 5s. 

 

3.3.2. Data Processing for Gaussian Process Regression based 

Virtual Target Model 

The driver behavior modeling is significant to predict future motion accurately 

and prevent a potential collision. The driving dataset at the real urban intersection 

are collected and analyzed to construct the Gaussian Process model for a behavior 

parameter. The data are collected at two different urban intersections at Siheung, 

Gyeonggi-do, South Korea. The first intersection as shown in Figure 3.4 is at a test 

track of Future Mobility Test Center (FMTC). The intersection is a four-way 

intersection, and two ways have two entering lanes and two exiting lanes, and other 

two ways have one entering lane and one exiting lane. The distinct characteristic of 

the intersection at the test bed is that all traffic participants can have a full open 

field of view with no road boundary structures. The second intersection as shown 

in Figure 3.5 is a three-way T-shaped intersection outside the test track of FMTC. 

The all driving routes of intersection have two entering lanes and two exiting lanes. 

Compared to the first intersection at the open field, the second intersection is 
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located in the urban area with buildings and construction sites. Therefore, the 

vehicles approaching to the intersection with various driving routes have limited 

visibility due to road boundary with obstacles such as buildings and walls. 

Therefore, driving data from two different intersection affected by different field of 

view generate distinctive driving behaviors at the intersection. Two autonomous 

vehicles with perceptive sensors, industrial PCs, and GPS shown in Figure 3.6 are 

manually driven to collect the data and analyze the interactive motions. Each self-

driving vehicle has four 16-channel Velodyne Lidar sensors, each mounted on each 

side of the vehicle. The vehicle states such as position and velocity are collected for 

data analysis. 

 

 

Figure 3.4. Satellite view of intersection in FMTC, Siheung, Korea 
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Figure 3.5. Satellite view of intersection outside FMTC, Siheung, Korea 

 

Figure 3.6. Driving data collection vehicle sensor configuration 
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The recorded driving data has been analyzed in terms of distance to conflict 

point. In order to grasp all the interactive intersection crossing data of vehicles, the 

distance from the vehicle to the estimated conflict point is used to describe the 

position of the vehicles. The total 131 driving cases are obtained from 13 different 

drivers. The velocity profiles respect to the distance to the conflict point is shown 

in Figure 3.7. As shown in the obtained velocity profile, it is observed that 

oncoming target vehicle is approaching to the intersection with two different 

driving patterns: yield and cross. Since vehicles are driving at the urban 

intersection, it is assumed that target vehicle is driving at the maximum speed limit 

of 50km/h. From Figure 3.7, the initial velocity of the target vehicle variates within 

40km/h to 60km/h. For the cross case, the vehicle tries to maintain the velocity and 

tends to decrease the speed to 40km/h at 20m before it reaches to the estimated 

conflict point. For the yield case, the vehicle starts to decelerate velocity to 10km/h 

around 50m before the conflict point and then accelerates after. There are no 

vehicles observed become full stop before the conflict point. 
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Figure 3.7. Velocity profile of the driving data at the intersection 

 

The two different driving patterns, yield and cross, are plotted in 3-dimension 

of x and y domain along with time domain as depicted in Figure 3.8 and 3.9 in 

order to better describe the interaction between target and ego vehicle. In Figure 

3.8, the target vehicle approaches to the intersection and crosses the conflict point 

without decreasing velocity, acknowledging the sufficient distance between target 

and ego vehicle. In Figure 3.9, the target vehicle gradually reduces the speed by 

acknowledging the potential risk of collision with the approaching ego vehicle 

from the other side. 
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Figure 3.8. Driving trajectories of target vehicle crossing at intersection 

 

Figure 3.9. Driving trajectories of target vehicle yielding at intersection 

 

Moreover, the driving data is analyzed in acceleration distribution in order to 
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check if driving dataset are obtained from drivers with different driving behaviors. 

The acceleration distribution is depicted as a histogram in Figure. 3.10. As shown 

in Figure 3.10, the diverse driving characteristics and no aggressive and naïve 

driving patterns are observed, and the mean and standard deviation of different 

drivers are described in Table 4. 

 

 

Figure 3.10. Acceleration histogram of 13 different human drivers 
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Table 4. The mean and standard deviation of acceleration of 13 different drivers 

 

 

 

3.3.3. Definition of Visibility Index of Virtual Target at 

Intersection 

The first step toward the prediction of virtual targets is to comprehend the 

characteristics of visibility generated by urban intersection road boundaries and 

obstacles. In order to cross an intersection safely, it is essential to secure the 

sufficient visibility and field of view. The wider a secured field of view is, the safer 

the autonomous vehicle can plan the motion in react to the other traffic participants 

within the visible area. From the perspective of target vehicle, the target vehicle 
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can also properly and interactively behave in response to the ego vehicle within the 

target vehicle’s field of view. In urban driving, target vehicles driven by human 

have wider perceptive range than the autonomous vehicle. In this study, the idea 

that target vehicle has a wider field of view is utilized to develop a novel visibility 

index employed to design Gaussian process regression model. 

The field of view of the autonomous vehicle at the urban intersection depends 

on various factors such as road boundary and buildings. In the intersection, traffic 

facilities such as sidewalks and crosswalks are constructed at the location where 

collisions among various traffic participants and vulnerable road users can be 

minimized. According to the Ministry of Land, Infrastructure and Transport 

(MOLIT), there exist a regulation that should be secured in designing and 

constructing an intersection. Since the visibility is the most significant factor for 

vehicles entering the intersection, the regulation is required for not only the road 

boundary size but also distance between road boundary and building construction 

as shown in Figure 3.11. 
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Figure 3.11. Safe intersection design from the Ministry of Land, Infrastructure and 

Transport 

 

Considering the worst-case scenario, we designed the intersection with the 

regulation of road design parameters from the Ministry of Land, Infrastructure and 

Transportation for constructing visibility as shown in Figure 3.12. 
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Figure 3.12. Design regulations for intersection and their parameters 

 

According to the regulation by MOLIT, the road corner width, WM, should be 

at least 6m in order for a vehicle to turn at the corner of the intersection. After the 

distance of a minimum road corner width, WM, from the intersection corner, at least 

2m of the crosswalk width, WC, must be secured. A minimum 4m of a side walk 

width is required for pedestrians safely walking by the intersection. Buildings are 

not allowed to be constructed within the parameters of the road corner width, the 

crosswalk width, and the sidewalk width from the intersection road boundary. In 
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Figure 3.12, WR is a road width, and WL is a lane width. According to the MOLIT, 

the lane width should be at least 3m in not only intersection but also general urban 

road. 

Considering the intersection and structures of traffic facilities, the difference 

of field of view between a human driven vehicle and an autonomous vehicle can be 

described as in Figure 3.13. In Figure 3.13, a red thick line and a translucent red 

colored area represents a visibility limit and field of view of an autonomous vehicle 

respectively. A blue thick border and a translucent blue colored region denotes a 

visibility limit and field of view of human driven target vehicle. In Figure 3.12, we 

will assume that pedestrians, street light, and street plants occupy sidewalks 

between thick red and blue colored border line. We can presume that the human 

driven vehicles are able to observe other traffic participants through the occupied 

region, and vehicles opposite the occupied area cannot be detected by an 

autonomous vehicle. In other words, if a target vehicle and an autonomous vehicle 

are positioned at the same distance from the intersection but at the different driving 

route, it is possible that the self-driving vehicle can be detected by the target 

vehicle and cannot observe the target vehicle. With such an assumption, a visibility 

distance shown in Figure 3.13 is determined depending on the location of 

oncoming target vehicle from the other driving routes of the intersection based on 

the road structure. In this study, the oncoming target vehicle will be a virtual target 

generated by field of view from an autonomous vehicle; therefore, the visibility of 

the virtual target is generated, and it is implemented as one of input features of the 

Gaussian process model for virtual target modeling. 
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Figure 3.13. Field of view of autonomous vehicle and human driven vehicle 

 

The proposed visibility profile can be determined in as a function of the road 

width and a distance to conflict point and is graphed in 3-dimension in Figure 3.14. 
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Figure 3.14. Visibility profile of oncoming target vehicle 

 

3.3.4. Long Short-Term Memory based Virtual Target Model 

at Intersection 

    The Long Short-Term Memory Recurrent Neural Network is one of widely 

used learning methods to predict future trajectories of the moving objects. The 

LSTM-RNN utilizes the data within observation horizon as input. The 

characteristics of the LSTM is the sequential history input for prediction. On the 
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other hand, the GPR, one of supervised learning methods like LSTM, utilizes data 

at current/single time step as an input. The mean and variance of the prediction 

result can be obtained from the GPR method. As mentioned previously, the virtual 

target is generated at the edge of the FOV of the autonomous vehicle, and the 

position of the virtual target becomes further away as the FOV of the self-driving 

vehicle increases. Most importantly, since virtual target has no observed historical 

positions, it is advantageous to implement the GPR to predict future trajectory of 

the virtual target. In order to compare the effectiveness of the GPR and the LSTM 

based virtual target model, two different models are designed and described in the 

Table 5. 

 

Table 5. GPR and LSTM based virtual target model 
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The prediction results of the GPR based, LSTM based, CV based, and 

constant turn rate velocity (CTRV) based virtual target model are compared and 

analyzed in Table 6. From the Table 6, the GPR based virtual target model shows 

better prediction results over the prediction horizon. Figure 3.15 describes the 

histogram of prediction errors from the GPR based, LSTM based, CV based, and 

CTRV based models. From Figure 3.15, it is clearly observed that the histogram of 

the GPR based virtual target model is more centered at zero. 

 

Table 6. Prediction errors over prediction horizons of different virtual target model 

 

 

 

Figure 3.15. The histogram of prediction errors of four different virtual target 

models 
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Chapter 4. Surrounding Vehicle Motion Prediction at 

Intersection 

 

4.1. Intersection Surrounding Vehicle Classification 

In simple driving maneuvers such as lane change and lane keeping, the self-

driving vehicle only needs to consider traffic participants driving in the same 

direction. In urban autonomous driving, especially in the intersection, traffic 

participants are driving in various directions. However, due to multiple crossing 

directions at the intersection, an autonomous driving at urban intersection should 

take account of greater degree of drivable area and field of view. However, with the 

HD map, it is possible to eliminate traffic participants not in interest. As shown in 

Figure 4.1, the HD map contains the information of path, node, and lane in the 

intersection. From the HD map, it is possible to define the enter and exit node and 

lane of the intersection, and future driving direction and routes of vehicles can be 

determined based on the current driving lane. 
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Figure 4.1. HD Map of intersection at Sangam, Seoul 

 

For better comprehension, the raw HD map can be redesigned as in Figure 4.2. 

The green nodes represent the enter nodes, and red ones are exit nodes. Since the 

intersection networks are pre-defined from the HD map, if the vehicle enters to the 

intersection from the node 8, the possible exit nodes that the oncoming target can 

pass are the node 2 and 4. If the autonomous vehicle is conducting a right turn at 

the intersection from the enter node 3 to the exit node 4, the traffic participants to 

be considered for the interaction is ones crossing from the node 4. The target 

driving path and the ego driving route share the same exit node, the node 4 in 

Figure 4.2. From the HD map, the driving route of the autonomous vehicle, the 

block dotted path from Figure 4.2, is defined, and therefore it is only necessary to 

select the target path that shares the same exit node as the driving route of the 

autonomous vehicle. In Figure 4.2, the blue dotted route shares the same exit node 
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with the ego driving path. The computational burden of target vehicle prediction 

can be diminished with the reduced Region of Interest (ROI) and decreased number 

of interested traffic participants in the intersection. The surrounding vehicle 

selection methodology is summarized in Algorithm. 

 

 

Figure 4.2. Driving lanes and nodes in intersection 
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Algorithm 1 : Surrounding Vehicle Selection 

1: Inputs: Estimate states (position, heading angle, velocity) of 

surrounding object, Route information from HD map 

2: if object is vehicle 

3: if object is on the lane sharing the same exit node 

4: if object heading within a certain degree 

5:      Target of interest 

6: else 

7:      Target of disinterest 

8: else  

9: Target of disinterest 

10: else 

11: Other moving object 

12: end  
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4.2. Data-driven Vehicle State based Motion Prediction at 

Intersection 

 

4.2.1. Network Architecture of Motion Predictor 

 

The driving behavior of a vehicle is sequential and interactive with other 

vehicles. Due to the continuous motion of vehicle, the current and future driving 

patterns are affected by past driving motions. Various methodologies have been 

conducted to predict the future motions of the vehicle, and rule-based and learning-

based models are two widely adopted methods to anticipate the future trajectories 

and intentions of target vehicles. However, the rule-based methodologies are 

difficult to implement the historical driving information to infer the intention and 

predict trajectories. Especially in the intersection where the road structure is 

complicated and traffic participants are approaching from various direction with 

unexpected driving patterns, it is complicated to predict future driving motion. 

In this study, the LSTM-RNN is utilized to incorporate the historical data of 

the driving motion of the target vehicle, predicting the accurate and precise 

predicted trajectories. The RNN is one of various deep learning technologies and 

enables to model time dependent and sequential data problem such as stock market 

prediction and text generation. Since vehicle behavior can be interpreted in a 

sequential way, many researchers started implementing the RNN to predict future 

driving motion of vehicles. However, the RNN suffers from the vanishing gradient 

problem which fails to learn and update weights of hidden states. In other words, 
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the RNN can easily fail to learn long sequential data. The gradient carries the 

information used to update the RNN parameters, and gradients becomes reduced 

through activation functions in hidden layers of sequential inputs. Thus, due to 

small value of gradient, the parameter update becomes insignificant and no actual 

training takes place. Due to a vanishing gradient problem, the very past hidden 

states will not be updated, and the RNN is also named as short-term. 

In order to overcome the vanishing gradient problem, the LSTM is adopted. In 

the LSTM, an additional internal hidden state called cell state is added to manage 

the long-term memory for a gradient update. Thus, the LSTM can preserve long-

range information better than the RNN can. The LSTM adopted in this study to 

predict the future trajectories of target vehicles is shown in Figure 4.3. 

 

 

Figure 4.3. Diagram of the proposed LSTM-RNN 

 

We determined the input features and a length of a horizon history through 

various combinations and error analysis. The candidates of the combination of 

input features and the horizon history are summarized in the Table 7. Different 
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types of odometry are analyzed to determine the optimal prediction results along 

with two different history horizons. History horizons of 1 second and 2 second are 

chosen to compare the prediction results. Due to the limited perception range of the 

perceptive sensors, history horizons longer than 2 second are not considered. If we 

consider 3 second of a history horizon of target vehicles, the predicted trajectories 

of target vehicle can be obtained after 3 second from the initial detection of the 

target vehicle. In other words, the target vehicle will be positioned in the middle of 

the intersection when the autonomous vehicle is able to incorporate the future 

trajectories of the target vehicle. The target vehicle has already crossed the 

significant distance in the intersection, and the missing trajectory of 3 second is 

critical and fatal for the autonomous vehicle to properly plan the ego motion to 

maintain the safety during intersection crossing. 
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Table 7. Candidates of Input and Output Feature Combinations for the Proposed 

LSTM-RNN 

 

 

In order to enhance the prediction accuracy, the prediction results from input 

features of two different coordinates are compared. For the first case, the input 

features are measured in the ego vehicle centered coordinate. If the input features 

from the ego vehicle centered coordinates are trained for the model, the 

autonomous vehicle can directly utilize the environmental information obtained 

from the local perceptive sensors mounted on the vehicle. The input features of ego 

vehicle centered coordinate is advantageous in real-time calculation. The 

candidates of input features of the ego vehicle centered coordinate are depicted in 

Figure 4.4. The px,tar,k, py,tar,k, vx,tar,k, θtar,k represents a position x, a position y, a 

longitudinal velocity, and a heading angle of target vehicle at time k, which is a 
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current time in the scenario in Figure 4.4. The dk is the travel distance between the 

position at time k and time k-1. The px,ego,k, py,ego,k, vx,ego,k, θego,k represents a position 

x, a position y, a longitudinal velocity, and a heading angle of the ego vehicle at 

time k. 

 

 

Figure 4.4. Input feature candidates in ego vehicle centered coordinate. 

 

For the second case, the input features are rearranged in the detected target 

vehicle centered coordinate. If the input features are organized in the target vehicle 

centered coordinate, the training parameters of the model can be more easily 

converged. Since the current position of the target vehicle is centered at (0,0), input 
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features from different training data share the common and similar odometry at the 

current time, allowing better input-domain adaptation and generalization. The 

position of the target vehicle at current time k is (0,0). The candidates of input 

features are depicted in Figure 4.5. 

 

 

Figure 4.5. Input feature candidates in target vehicle centered coordinate. 

 

The optimal network configuration is determined by comparing the accuracy 

of prediction results. The prediction errors between the true and predicted 

trajectories of the target vehicle over the prediction horizon are analyzed for 

various input feature candidates. The position error measurement of the predicted 
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trajectories is depicted in Figure 4.6. 

 

 

Figure 4.6. Definition of prediction errors over a prediction horizon 

 

    A mean squared error and a negative log likelihood are used for the loss 

function for training the model. In addition to the mean squared error loss function, 

the negative log likelihood function is utilized for the probabilistic prediction. The 

negative log likelihood loss function minimizes the negative log likelihood. From 

the bivariate gaussian distribution, the negative log likelihood function can be 

described as below, 

 

(4.1) 

    The outputs of the network consist of mean, sigma, and rho, and the equation 

4.1 is formulated with those parameters to train the model. 
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4.2.2. Dataset Processing of the Network 

    The training dataset obtained for the surrounding target vehicle prediction is 

the same dataset utilized for the virtual target modeling. As described in the section 

3.3.2. Gaussian Process Training, the training dataset for the network is obtained 

from two different intersections with 13 different drivers. The dataset of two 

different driving scenes is achieved: the ego vehicle crosses straight and the target 

vehicle turns right, and the ego vehicle turns right and the target vehicle drives 

straight from the right. The total 196 different driving scenarios are obtained where 

98 cases are target vehicle yielding scenario and the other 98 cases are non-yielding 

scenarios. The total dataset is 141,032, and the training and test dataset are 105,774 

and 35,258 respectively. The odometry information of ego and target vehicle are 

obtained from the sensors built in autonomous vehicles. Among the total driving 

datasets, randomly selected 350 data are plotted in the ego vehicle centered 

coordinate as shown in Figure 4.7. 
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Figure 4.7. Trajectories of ego and target vehicle in ego vehicle centered coordinate. 

 

    The green circles of figure represent history trajectories of target vehicles, and 

red circles describe future trajectories of target vehicles. The magenta-colored 

circles are trajectories of the ego vehicle. It is observed that the trajectories of 

target vehicles are scattered randomly from the center coordinate (0,0) of the ego 

vehicle. Also, randomly selected 350 data are plotted in the target vehicle centered 

coordinate as shown in Figure 4.8. Compared to trajectories of target vehicles in 

the ego vehicle centered coordinate, the those in the target vehicle centered 
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coordinate are gathered, and future trajectories of the target vehicle projects from 

the shared common position (0,0) at current time.  

 

 

Figure 4.8. Trajectories of ego and target vehicle in target vehicle centered 

coordinate. 
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Chapter 5. Intersection Longitudinal Motion 

Planning 

 

5.1. Outlines of Longitudinal Motion Planning with Model 

Predictive Control 

The longitudinal motion planning of the proposed algorithm implements the 

model predictive control to optimize and obtain the desired control input, a desired 

longitudinal acceleration. The model predictive control is formulated with the 

system dynamics model, reference states, constraints, and input control. The MPC 

is one of the optimal control methods and widely implemented in planning and 

control in various fields such as robotics and autonomous driving. With the MPC, 

system dynamics and constraints are employed to a cost function to generate and 

optimized control input suitable for the current situation, thereby enabling a stable 

autonomous driving. 

The MPC with the state variable at k-1 step plans the control input from k to 

predefined prediction horizon in advance and feedbacks the states at the current k-

step with the planned control input. The control input is evaluated by comparing 

the response, and the const function is updated accordingly to calculate the control 

input from k+1 to the prediction horizon. In other words, with the given constraints, 

the optimal control input is obtained with the repetition of plan and evaluation. 

Such methodology of MPC is known as a Receding Horizon Control. It is a 

significant difference between MPC and Linear Quadratic Regulator that optimizes 
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across the entire time horizon. 

 

5.2. Stochastic Model Predictive Control of Intersection 

Motion Planner 

 

5.2.1. Definition of System Dynamics Model 

For the vehicle dynamics model of the proposed longitudinal motion planning, 

a kinematic model with the first-order input delay has been employed for the 

vehicle model of the ego vehicle. The continuous-time dynamics model is shown in 

equation below, 

 0 1 0 0
( ) 0 0 1 ( ) 0 ( )

0 0 1/ 1/
long long longx t x t u t

τ τ

   
   = +   
   −   



 

(5.1) 

Where x(t) represents the state vector of travel distance, p(t), longitudinal 

velocity, v(t), and longitudinal acceleration, a(t). The control input u(t) represents 

the desired longitudinal acceleration. The time constant, , is assumed to be 0.33s 

in this study. Using the Euler discretization method, the continuous-time model can 

be re-written as a discrete-time model. 
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5.2.2. Ego Vehicle Prediction and Reference States Definition 

The MPC is aimed to optimize the reference motion incorporating the 

constraints. In the proposed longitudinal motion planning, the reference states are a 

travel distance, a longitudinal velocity, and a longitudinal acceleration of the 

predicted states of the ego vehicle and are based on the curvilinear velocity when 

no target vehicle is approaching at the intersection. In other words, they are the 

predicted ego states during crossing the intersection without any interference from 

the target vehicle. 

The pre-defined driving route of the ego vehicle can be expressed in the 2nd 

order curve fitting equation as below, 

 2
2 1 0k k ky a x a x a= + +  (5.3) 

The radius, r, of the given ego driving path during a prediction horizon can be 

computed using the 2nd order curve fitting equation and expressed as 
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With the calculated radius and maximum lateral acceleration that is defined as 

2m/s2 in this study, the longitudinal curvilinear velocity is determined as shown in 

an equation below, 
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(5.5) 

The predicted longitudinal velocities can be implemented to a virtual yaw rate 

at predicted steps as shown below, 
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Based on the computed virtual yaw rates, the process update model for ego 

vehicle state prediction is defined as follows, 
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 (5.7) 

The predicted reference states from the path following model are incorporated 

to formulate the model predictive control of the proposed longitudinal motion 

planning. 

 

5.2.3. Safety Clearance Decision for Intersection Collision 

Avoidance 

In autonomous driving at urban intersection, various safety indices such as 

time to conflict region, clearance, and distance to conflict region are used to plan 

the safe motion at the intersection. Among those criteria, a conflict region is the 

most significant factor to consider in motion planning. Though various 

methodologies exist to determine the conflict region, we estimated the conflict 
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region based on the predicted trajectories of the ego and target vehicles. The 

scheme of defining the conflict region is depicted in Figure 5.1. In the 4-way 

intersection, the red and blue vehicles are target and ego vehicles. In Figure 5.1, the 

prediction horizon is assumed to be 5s, and predicted trajectories and positions of 

target and ego vehicles are illustrated with translucent red and blue colors 

respectively. Predicted positions are located at intervals of 1s. In order to determine 

the conflict region, the clearance, c, between future trajectories at every predicted 

step is compared. The clearance at every predicted step is compared with a 

predefined clearance threshold to determine time to predicted collision. 

In order to mimic human driving turn-motion at the intersection, human 

driven data at the intersection is collected to analyze and define the conflict region 

threshold. Total 131 driving cases of data are obtained from 13 different drivers and 

graphed in Figure 3.7. In Figure 5.2, the clearance between a target and ego vehicle 

is described in a displacement domain, a distance to conflict. In Figure 5.3, the 

clearance between a target and ego vehicle is described in a velocity domain, a 

velocity of ego vehicle. It is inferred that as the velocity decreases the clearance 

between two vehicles diminishes. The minimum clearance from two different 

domain analysis is both 5m. Human drivers tend to maintain at least the minimum 

clearance of 5m. 
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Figure 5.1. A conflict region from predicted trajectories of target and ego vehicles 

(a) left turn (b) straight (c) right turn 
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Figure 5.2. Change in clearances between target and ego vehicles in a position 

domain. 
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Figure 5.3. Change in clearances between target and ego vehicle in a velocity 

domain. 

 

With the desired clearance threshold, the predicted time steps where conflict 

regions are generated can be determined as in Figure 5.4. In Figure 5.4, it is 

assumed that clearances during predicted time steps from 3s to 5s are less than 

clearance threshold and depicted with magenta color. The estimated travel 

distances of the ego vehicle during the predicted time steps of the conflict region 

will be employed as position constraints for MPC formulation. In order to ensure 
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the safety from the collision, the gain is applied to the position constraint, and the 

position safety constraint is defined as follows, 

 ( ) ( )
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The safety gain, kTTC, is described in Figure 5.5, and the shorter the predicted 

time step of the collision is, the smaller safety gain will be applied to guarantee the 

safety margin. 
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Figure 5.4. Closest conflict point from the predicted conflict region in the 

intersection (a) left turn (b) straight (c) right turn 
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Figure 5.5. The safety gain profile for position upper bound 

 

5.2.4. Driving Mode Decision of Intersection Motion Planning 

    The driving mode of the longitudinal motion planning of the intersection is 

composed of cross, stop, and creep mode. The cross and stop mode are determined 

based on the intersection of predicted trajectories of target and ego vehicles. As 

shown in Figure 5.4, if the conflict region is generated based on the future 

trajectories of the target and ego vehicles, the position constraint is determined to 

decelerate the ego vehicle to avoid collision, naturally activating the stop mode. On 

the other hand, as shown in Figure 5.6, if the conflict region is not generated based 

on the predicted trajectories of vehicles, the position constraint is defined to allow 

ego vehicle to cross the intersection, leading to the cross mode. 
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Figure 5.6. Cross mode activated situation during intersection crossing (a) left turn 

(b) straight (c) right turn 

 

    The creep mode is sub-mode of the stop mode. The creep mode is designed to 

overcome the dead-lock situation and mimic the human driving pattern that a 

human driver slowly drives the vehicle forward until enough visibility is achieved. 

The creep mode algorithm is described in Figure 5.7. 
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Figure 5.7. Diagram of the creep mode algorithm 

 

The creep mode is activated after the stop mode. The stop mode should begin 

under generation of conflict region and position constraint from virtual target 

trajectory. During the stop mode, the creep mode count increases. The creep mode 

is activated if the creep mode count becomes greater than ε. The epsilon in the 

creep mode count is 2 seconds. During the creep mode, the maximum acceleration 

is 1.0m/s2 and maximum velocity is 10km/h.  
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5.2.5. Formulation of Model Predictive Control with the 

Chance Constraint 

The MPC is implemented to solve for the desired states and minimize control 

efforts while satisfying various constraints. MPC problem is formulated with 

vehicle dynamics model, constraints, and input limits. The quadratic const function 

of the MPC problem is defined as follows. 
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Where xlong is the states that are distance travelled, velocity, and acceleration, 

and xref is the reference motions of travel distance, px, and longitudinal velocity, vx. 

The ulong is the control input, the desired longitudinal acceleration. The Q and R are 

the weighting matrix to penalize the reference tracking error and control effort 

respectively. Since the field of view while driving at the intersection is limited and 

sudden appearance of traffic participants from blind spots is unexpected, the qu,min 

and qj are the penalties when violating the minimum control input, a longitudinal 

acceleration, and a lower bound of a change in control input, a jerk. Ru and Rj are 

the weight matrix for penalizing. Though the minimum hard constraints are defined 

in order to guarantee both safety and ride comfort, it is sometime necessary to give 

up a certain degree of the ride comfort to secure the safety from the collision. Since 

a crossing the intersection is unpredictable unlike other driving behaviors such as 

lane change, lane keeping, and clearance control, the prediction horizon is 
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determined as 5s, and a sampling time is 0.2s. 

In the MPC formulation, the constraints are defined to consider the system 

dynamics, actuator limits, ride comfort, and safety. As explained in chapter 5.2.1, 

the kinematic model with the first order input delay is implemented to define the 

dynamic constraints. 
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where τ is the time constant of actuator delay. The time constant reflects the 

vehicle characteristics and is 0.33s in this model. The control input constraints are 

described as below, 
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Where amin and amax are the minimum and maximum control input boundary 

and are -3m/s2 and 2m/s2 respectively. The ajerk is a slew rate of the control input 

and 5m/s2. The upre represents the control input from the previous step. These 

parameters are defined to provide comfortable ride comfort to drivers. The 

excessive use of control input will cause the discomfort to users. 

The chance constraint is implemented to consider the uncertainty of the virtual 

target and detected targets. The chance-constrained upper bounds of distance 

traveled is defined as below, 
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    The Casadi solver is used to solve the MPC formulation for simulation studies 

and implementation in test vehicle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 ８６ 

Chapter 6. Performance Evaluation of Intersection 

Longitudinal Motion Planning 

 

6.1. Performance Evaluation of Virtual Target Prediction at 

Intersection 

 

6.1.1. GPR based Virtual Target Model Prediction Results 

The prediction errors of the distance to a conflict point at prediction time 5s 

with 10 different kernel functions are compared to determine the optimal kernel 

function of Gaussian Process Regression based virtual target model. The 10 

different kernel functions are the Squared Exponential, Exponential, Matern 3/2, 

Matern 5/2, Rational Quadratic, ARD Squared Exponential, ARD Exponential, 

ARD Matern 3/2, ARD Matern 5/2, and ARD Rational Quadratic. The errors are 

evaluated in terms of mean absolute error (MAE), root mean squared error (RMSE), 

and standard deviation (STD). The errors of different kernel functions of GPR 

model for the virtual target crossing straight is shown in the Table 8. The ARD 

Exponential kernel computes the smallest errors of training GPR. As shown in the 

Table 8, the MAE, RMSE, and STD are 1.7099, 2.7958, and 2.7956. The GPR 

based virtual target model with the optimal kernel function is also compared with 

the constant velocity virtual target model. The errors of distance to conflict point 

are analyzed with MAE, RMSE, and STD as shown in Table 9 and depicted with 
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histogram as in Figure 6.1. The GPR predictor depicts errors more distributed near 

zero and expresses the observable improvement in prediction results in a long-term 

prediction time. 

 

Table 8. Prediction Errors of the GPR Model with Different Kernels 

(Virtual Target Crossing Straight). 

 

 

Table 9. Prediction Errors between the CV Model and the GPR Model 

(Virtual Target Crossing Straight). 
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Figure 6.1. Histogram of errors of distance to conflict point between the GPR 

model and the CV model (virtual target straight cross). 

 

    The errors of different kernel functions of the GPR model for the virtual target 

turning right at the intersection is shown in the Table 10. The Exponential kernel 

computes the smallest errors of training the GPR. As shown in the Table 10, the 

MAE, RMSE, and STD are 1.7742, 2.8901, and 2.8901. The GPR based virtual 

target model with the optimal kernel function is also compared with the constant 

velocity virtual target model. The errors of distance to conflict point are analyzed 

with MAE, RMSE, and STD as shown in Table 11 and depicted with histogram as 

in Figure 6.2. The GPR predictor depicts errors more distributed near zero and 

expresses the observable improvement in prediction results in a long-term 

prediction time. 
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Table 10. Prediction Errors of the GPR Model with Different Kernels 

(Virtual Target Turning Right) 

 

 

Table 11. Prediction Errors between the CV Model and the GPR Model 

(Virtual Target Turing Right). 
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Figure 6.2. Histogram of errors of distance to conflict point between the GPR 

model and the CV model (virtual target turning right). 

 

6.1.2. Intersection Autonomous Driving Computer Simulation 

Environment 

The simulation studies for the virtual target prediction are performed to 

evaluate the feasibility of the proposed algorithm to overcome the dead-lock 

situation at the intersection. The simulation study is essential before the vehicle test 

since the simulation can generate various scenarios to validate the algorithm 

regardless of a dangerous situation, such as collision, and reproduce the same 

situation to compare different algorithms. The kinematic model is chosen for the 

vehicle model for the ego and target vehicles. The simulation environment is a 4-
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way intersection where each two two-lane roads intersect at 90 degrees as shown in 

Figure 6.3. Road length before and after the intersection is 300m each, road width 

is 3.5m, and the radius of road curvature is 12m to reflect the actual urban road 

geometry of Seoul, Korea. 

-100 -80 -60 -40 -20 0 20 40 60 80 100

Global X [m]

40

60

80

100

120

140

160

180

200

G
lo

ba
l Y

 [m
]

11 22

3
3

4

4

5 56 6

7
7

8

8

 

Figure 6.3. 4-way intersection offline simulation map 

 

The actual specification of perceptive sensors equipped in the autonomous 

vehicle ‘KIA Carnival’ is used to construct FOV with a road boundary as illustrated 

in the section 2.2. Hardware Configuration and Test Vehicle. Two 3-D Velodyne 

LiDAR sensors are mounted on the top roof of the vehicle, but only one 3-D 
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Velodyne LiDAR sensor is considered for the offline simulation. Since two 3-D 

Velodyne LiDAR sensors are closely installed on the roof, it is assumed to be 

irrelevant to consider two sensors as one. The LiDAR sensor specification of 

distance range of 45m and horizontal FOV of 360 degree is selected. 

 

6.1.2.1. Simulation Result of Effect of Virtual Target in 

Intersection Autonomous Driving 

In order to evaluate the effect of the virtual target, the longitudinal motion 

planning with the virtual target has been compared with the based algorithm with 

no virtual target. The target vehicle is driving at a constant velocity of 50km/h, 

which is the standard speed limit of urban road in Seoul, Korea, and an initial 

velocity of 30km/h of ego vehicle is used for the simulation. In order to simulate 

the most dangerous collision situation during the right turn crossing at the 

intersection, the initial positions of target vehicle and ego vehicle are 90m and 30m 

away from the intersection, respectively. The ego vehicle approaches the 

intersection from south to north, and the target vehicle drives from west to east 

toward the intersection. In Figure 6.4, the change in clearance and TTCP of ego 

vehicle has been analyzed to show effect of the virtual target. The Clearance is the 

distance between target vehicle and ego vehicle to show risk potential of collision 

during intersection crossing. In Figure 6.4(a), The minimum Clearance of the 

proposed and base algorithm are 13.08m and 6.62m respectively. For the proposed 

algorithm, the Clearance decreases from 45m to 26m as the ego vehicle approaches 

16m before the conflict point. At 16m before the conflict point, the actual target 
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vehicle within the FOV is detected, and the ego vehicle plans the motion in regard 

to the target vehicle, decreasing the Clearance to 13m without change in DTCP. For 

the base algorithm with no virtual target, since there is no virtual target, the actual 

target has been detected at about 13m before the conflict point, and the Clearance 

has diminished to 6m. In Figure 6.4(b), TTCP of ego vehicle of the proposed and 

base algorithm has been compared. The minimum TTCP of the proposed and the 

conventional are 0.94 and 0.44s respectively. From the slope of the clearance curve 

in Figure 6.4, it can be inferred that the proposed algorithm with the virtual target 

enables the ego vehicle to proactively decelerate and stop with sufficient clearance 

when encountered with the actual target vehicle. 
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Figure 6.4. Change in safety indices during right turn at intersection (a) Clearance 

with and without virtual target (b) Time to Conflict Point with and without virtual 

target 

 

The Monte-Carlo simulation has been conducted 100 times to evaluate the 

proposed algorithm in various states of target and ego vehicle. The initial velocity 

of target and ego vehicle has been generated using the normal distribution. The 

initial velocity of target and ego vehicle is determined as N(50,10) and N(40,10) 

respectively. The algorithm with no virtual target shows mean minimum clearances 
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of 0.69m with standard deviation of 1.56m. The minimum and maximum are 0m 

and 3.13m respectively. The 5 randomly selected simulation cases out of 100 are 

shown in Figure 6.5. The proposed algorithm with virtual target shows mean 

minimum clearance of 11.66m with standard deviation of 1.94m. The minimum 

and maximum clearances are 6.90m and 13.57m, respectively.  The 5 randomly 

selected simulation cases with virtual target out of 100 are shown in Figure 6.6. 

The simulation results successfully show that the proposed algorithm can reduce 

the collision risk caused by a sudden appearance of the target vehicle from the 

occluded region by proactively planning the ego vehicle velocity motion based on 

the target vehicle. 

 

 

Figure 6.5. Monte Carlo simulation result of intersection crossing with non-virtual 

target. 
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Figure 6.6. Monte Carlo simulation result of intersection crossing with virtual 

target 

 

    The post encroachment time (PET) is another safety index for intersection 

crossing. PET is the time between the moment that the first vehicle leaves the 

potential conflict point and the moment that the second vehicle enters the conflict 

point. The PET is calculated for the Monte Carlo simulation. The mean PET is 

3.64s, the standard deviation is 1.66s, the minimum PET is 1.3s, and the maximum 

PET is 6.1s. 

 

6.1.2.2. Virtual Target Simulation Result of the Right Turn 

Across Path Scenario in the Intersection 

The offline simulation study of the Right Turn Across Path (RTAP) scenario at 

the intersection is conducted to evaluate the feasibility of human data driven virtual 

target model to overcome the dead-lock situation. In the signalized intersection, the 

maneuver of the ego vehicle is often not regulated by traffic signal in the RTAP 
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case. For the RTAP case, even if the traffic signal is red, if the pedestrian traffic 

signal is red or no pedestrian is crossing the crosswalk, the vehicle is allowed to 

make a right turn at the intersection. 

For the RTAP scenario, the ego vehicle is driving with an initial velocity of 

20km/h and starts at 30m away from the intersection. The offline simulation result 

of the RTAP scenario with the CV virtual target model is illustrated in Figure 6.7. 

As shown in Figure 6.7, the ego vehicle decreases a velocity as the predicted 

trajectory conflicts with the future trajectory of the constant velocity virtual target. 

However, as shown in Figure 6.7(c), the ego vehicle stops permanently as the 

predicted trajectory of the constant velocity model virtual target remains the same. 

The ego vehicle eventually becomes to a ‘dead-lock’ situation. 
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Figure 6.7. Snapshots of the RTAP offline simulation study with the CV based 

virtual target model (a) t=3s (b) t=5s (c) t=12s. 

 

The offline simulation result of the RTAP scenario with the GPR based virtual 

target model is illustrated in Figure 6.8. The ego vehicle approaches and decreases 

the velocity as the predicted ego vehicle trajectory conflicts with future trajectories 
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of the target vehicle. Then, it is observed that the future trajectory of the virtual 

target decreases by interacting with the ego vehicle in Figure 6.8 (c). With 

shortened future trajectory of the virtual target, the ego vehicle manages to turns 

right at the intersection safely without collision, resolving the ‘dead-lock’ situation 

that happened with constant velocity virtual target model. 
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Figure 6.8. Snapshots of the RTAP offline simulation study with the GPR based 

virtual target model (a) t=3s (b) t=5s (c) t=9s (d) t=11s. 

 

In Figure 6.9, the simulation results with the GPR based and constant velocity 

based virtual target model are described over displacement and time domain. For 

the acceleration, the ego vehicle with the GPR based virtual target model uses -
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1.5m/s2 acceleration to decrease the velocity and to maintain a distant clearance for 

the safety. However, the ego vehicle with the constant velocity based virtual target 

model uses over -2.0m/s2 acceleration to lowers the velocity. Such difference in 

degree of acceleration is probably due to change in future trajectory of GPR based 

virtual target which interacts with the ego vehicle motion.  

 

 

Figure 6.9. Comparisons of the RTAP offline simulation results between the GPR 

based and the CV based virtual target model. 
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6.1.2.3. Virtual Target Simulation Result of the Straight 

Across Path Scenario in the Intersection 

Like the RTAP scenario that ego vehicle can sometimes ignore the traffic 

signal to proceed, for the SAP scenario, even if the ego vehicle crosses the 

intersection in a straight direction with a green light, the ego vehicle should plan 

the motion in react to the target vehicle turning right from the right side since the 

target vehicle can make a right turn with a red light.  

The offline simulation of the SAP scenario with CV model virtual target is 

simulated. The ego vehicle is driving with an initial velocity of 40km/h and starts at 

60m away from the intersection. The snapshots of offline simulation results of the 

SAP scenario with virtual target with a constant velocity model are illustrated in 

Figure 6.10. The virtual target appears at time t=3s and starts to decrease a velocity 

as the motion planner predicts the possible collision due to the intersection of 

predicted trajectories from the ego vehicle and the virtual target. From the 

simulation, the desired acceleration becomes up to -4m/s2 and the actual 

acceleration is used up to about -3m/s2. Such a degree of acceleration is large 

enough for drivers and passengers to feel discomfort in ride comfort. Unlike the 

ego vehicle during the RTAP scenario, the ego does not remain stopped 

permanently in the SAP scenario since target vehicle, attempting to turn right at the 

intersection, approaches with relatively low velocity compared to target crossing 

the intersection straight. 
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Figure 6.10. Snapshots of the SAP offline simulation study with the CV based 

virtual target model (a) t=1s (b) t=4s (c) t=5s. 

 

The offline simulation of the SAP scenario with the GPR based model virtual 

target is simulated. Like simulation study of the virtual target with constant 

velocity model, the ego vehicle is driving with an initial velocity of 40km/h and 

60m away from the intersection. The snapshots of offline simulation results of ego 

vehicle motion interacting with GPR based virtual target are described in Figure 

6.11. The virtual target appears at time t=3s and starts to decrease a velocity as the 

motion planner predicts the possible collision due to the intersection of predicted 

trajectories from the ego vehicle and the virtual target. However, the GPR based 

predicted trajectory becomes shortened and resolves the collision risk quickly, 

managing the ego vehicle to use less degree of acceleration. From the simulation, 

the desired acceleration becomes up to -3m/s2 and the actual acceleration is used up 

to about -2m/s2. Such a degree of acceleration is much less than the one from the 
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CV model virtual target simulation, providing the enhanced ride comfort to drivers. 
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Figure 6.11. Snapshots of the SAP offline simulation study with the GPR based 

virtual target model (a) t=1s (b) t=3s (c) t=4s. 

 

Simulation results with different parameters over distance to the conflict point 

and time with the GPR based and the CV based virtual target model are described 

in Figure 6.12. For the acceleration, the ego vehicle with the GPR based virtual 

target model uses -2.0m/s2 acceleration to decrease the velocity and to manage a 

safety clearance. However, the ego vehicle with the constant velocity based virtual 

target model uses over -3.0m/s2 acceleration to lowers the velocity. From the time 

domain graph, it is observed that the ego vehicle interacting the GPR based virtual 

target starts to decelerate earlier than the ego interacting the virtual target with CV 

model. The early initial deceleration provides and ensures drivers and passengers 

safety when crossing the intersection. From Figure 6.12 (e) and (f), it is cleared that 

the predicted trajectory of ego vehicle interacts earlier about 10m in distance 

domain and 1s in time domain. Since the ego vehicle approaches to the intersection 



 

 １０７ 

with 40km/h which is near speed limit of the urban road and crosses the 

intersection in short period of time, the difference in clearance change between 

GPR model and CV model is negligible and similar. 

 

 

Figure 6.12. Comparisons of the SAP offline simulation results between the GPR 

based and the CV based virtual target model. 
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6.1.2.4. Virtual Target Simulation Result of the Left Turn 

Across Path Scenario in the Intersection 

The offline simulation of the LTAP scenario with CV model virtual target is 

simulated. The ego vehicle is driving with an initial velocity of 40km/h and starts at 

60m away from the intersection. The snapshots of offline simulation results of the 

LTAP scenario with virtual target with a constant velocity model are illustrated in 

Figure 6.13. The virtual target appears at time t=2s and the deceleration command 

for autonomous vehicle is applied from time t = 4 to time t = 6. Then, since the 

clearance between the autonomous vehicle and the virtual target at the initial 

appearance of virtual target is near the maximum distance of FOV, as the 

autonomous enters the intersection, the clearance remains constant at the maximum 

distance during the scenario. The maximum clearance from the beginning to the 

end of the autonomous vehicle crossing the intersection rapidly discards the 

conflict region between the virtual target and the autonomous vehicle. 
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Figure 6.13. Snapshots of the LTAP offline simulation study with the CV based 

virtual target model (a) t=2s (b) t=5s (c) t=7s. 

 

The offline simulation of the LTAP scenario with the GPR based model virtual 

target is simulated. Like simulation study of the virtual target with a constant 

velocity model, the ego vehicle is driving with an initial velocity of 40km/h and 

60m away from the intersection. The snapshots of offline simulation results of ego 

vehicle motion interacting with GPR based virtual target are described in Figure 

6.14. The virtual target appears at time t=2s and it is observed that the predicted 

trajectory of the virtual target is shorter than that of constant velocity modeled 

virtual target. Due to the predicted short trajectory of GPR based virtual target, the 

collision region is not generated during the LTAP scenario, and the autonomous 

vehicle is able to cross the intersection without any deceleration command. 
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Figure 6.14. Snapshots of the LTAP offline simulation study with the GPR based 

virtual target model (a) t=2s (b) t=4s (c) t=7s. 

 

Simulation results with various parameters over distance to the conflict point 

and time with the GPR based and the CV based virtual target model are depicted in 

Figure 6.15. For the acceleration, the ego vehicles with both the GPR based virtual 

target model and the CV based virtual target model use -3.0m/s2 acceleration to 

decrease the velocity and to manage a safety clearance. From both the distance and 

the time domain graph, the acceleration and velocity profiles from two different 

virtual target models turn out to be similar. From Figure 6.15 (e), it is observed that 

although the conflict region is generated from the CV based virtual target, the 

conflict region disappeared rapidly and the effect on the degree of acceleration is 

negligible. 
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Figure 6.15. Comparisons of the LTAP offline simulation results between the GPR 

based and the CV based virtual target model. 

 

6.1.2.5. Virtual Target Simulation Result of Crooked T-

shaped Intersection 

The simulation studies for the virtual target prediction are performed to 

evaluate the feasibility of the proposed algorithm to overcome the dead-lock 

situation at severely crooked T-shaped intersection. According to the Ministry of 

Land, Infrastructure and Transportation, the two roads intersecting at the 

intersection should maintain the angle between 75 and 105 degrees. In order to 
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evaluate the effectiveness of the virtual target model at the complex intersection, 

the T-shaped intersections with the intersecting angle of 75 degree are constructed. 

The simulation environment is a 3-way intersection where each two two-lane roads 

intersect at 75 degrees as shown in Figure 6.16. Road length before and after the 

intersection is 100m each, road width is 3.5m, and the radius of road curvature is 

10m to reflect the actual urban road geometry of Seoul, Korea. Figure 6.16 (a) 

shows the intersection with the rounded corner, and Figure 6.16 (b) describes the 

intersection with the sharp corner that obstruct the FOV of the approaching 

vehicles.  
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Figure 6.16. T-shaped intersection with intersecting angle of 75 degree (a) rounded 

corner (b) sharp corner. 

 

The offline simulation of the RTAP scenario with CV model virtual target is 

simulated at the intersection in Figure 6.16 (a). The ego vehicle is driving with an 

initial velocity of 30km/h and starts at 30m away from the intersection. The 

snapshots of offline simulation results of the RTAP scenario with virtual target with 

a constant velocity model are illustrated in Figure 6.17. The virtual target appears, 

and the ego vehicle starts to decrease a velocity as the motion planner predicts the 

possible collision due to the intersection of predicted trajectories from the ego 

vehicle and the virtual target. From the simulation, the desired acceleration 

becomes up to -4m/s2 and the actual acceleration is used up to about -3m/s2. Such 
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a degree of acceleration is large enough for drivers and passengers to feel 

discomfort in ride comfort. As shown in Figure 6.17 (b), the ego vehicle stops 

permanently as the predicted trajectory of the constant velocity model virtual target 

remains the same. The ego vehicle eventually becomes to a ‘dead-lock’ situation. 

 

 

 

Figure 6.17. Snapshots of the RTAP T-shaped intersection offline simulation study 

with the CV based virtual target model (a) t=4s (b) t=10s. 



 

 １１７ 

The offline simulation result of the RTAP scenario with the GPR based virtual 

target model at T-shaped intersection with smooth corner is illustrated in Figure 

6.18. The ego vehicle approaches and decreases the velocity as the predicted ego 

vehicle trajectory conflicts with future trajectories of the target vehicle. Then, it is 

observed that the future trajectory of the virtual target decreases by interacting with 

the ego vehicle in Figure 6.18 (b). With shortened future trajectory of the virtual 

target, the ego vehicle manages to turn right at the intersection safely without 

collision, resolving the ‘dead-lock’ situation that happened with constant velocity 

virtual target model. 
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Figure 6.18. Snapshots of the RTAP T-shaped intersection offline simulation study 

with the GPR based virtual target model (a) t=3s (b) t=5s (c) t=10s. 

 

In Figure 6.19, the simulation results with the GPR based and constant 

velocity based virtual target model in a T-shaped intersection are described. For the 

acceleration, the ego vehicle with the GPR based virtual target model uses -3m/s2 

acceleration to decrease the velocity and to maintain a distant clearance for the 
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safety. However, the ego vehicle with the constant velocity based virtual target 

model uses over -3.5m/s2 acceleration to lowers the velocity. Such difference in 

degree of acceleration is probably due to change in future trajectory of GPR based 

virtual target which interacts with the ego vehicle motion. Moreover, the decrease 

in the future trajectory of GPR based virtual target allows the self-driving vehicle 

to overcome the dead-lock situation. 

 

 

Figure 6.19. Comparisons of the RTAP T-shaped intersection offline simulation 

results between the GPR based and the CV based virtual target model. 
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The offline simulation of the RTAP scenario with GPR model virtual target is 

simulated at the T-shaped intersection with severe corner in Figure 6.16 (b). The 

ego vehicle is driving with an initial velocity of 30km/h and 30m away from the 

intersection. The snapshots of offline simulation results of the RTAP scenario with 

virtual target with a constant velocity model are illustrated in Figure 6.20. The 

virtual target appears, and the ego vehicle starts to decrease a velocity as the 

motion planner predicts the possible collision due to the intersection of predicted 

trajectories from the ego vehicle and the virtual target. From the simulation, the 

desired acceleration becomes up to -4m/s2 and the actual acceleration is used up to 

about -3m/s2. Since the intersection corner is sharp, the insufficient FOV is 

achieved for the autonomous vehicle to predict proper future trajectory of virtual 

target vehicle. As shown in Figure 6.20 (b), the ego vehicle stops permanently as 

the predicted trajectory of the GPR model virtual target remains the same. The ego 

vehicle eventually becomes to a ‘dead-lock’ situation even with GPR based virtual 

target model. 
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Figure 6.20. Snapshots of the RTAP severe T-shaped intersection offline simulation 

study with the GPR based virtual target model (a) t=5s (b) t=8s. 

 

In order to overcome the dead-lock situation that can’t be resolved with GPR 

based virtual target model, the creep mode is implemented in addition to the GPR 

based virtual target model. The effectiveness and snapshots of offline simulation 
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results of the proposed approaches at the RTAP scenario are illustrated in Figure 

6.21. The virtual target appears, and the ego vehicle starts to decrease a velocity as 

the motion planner predicts the possible collision due to the intersection of 

predicted trajectories from the ego vehicle and the virtual target. In Figure 6.38, the 

ego vehicle becomes dead-lock situation and remains stopped permanently. 

However, in Figure 6.21 (b), the creep mode is activated to allow the autonomous 

vehicle to move forward slowly. In Figure 6.21 (c), the ego vehicle enters to the 

target lane, and the cross mode is activated to give “Right-of-way” to the ego 

vehicle 
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Figure 6.21. Snapshots of the RTAP severe T-shaped intersection offline simulation 

study with the GPR based virtual target model and the creep mode (a) t=7s (b) 

t=10s (c) t=12s. 
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6.2. Performance Evaluation of Data-driven Vehicle State 

based Motion Prediction at Intersection 

 

6.2.1. Data-driven Motion Prediction Accuracy Analysis 

The prediction analysis for the LSTM training result with different input 

feature candidate is performed to determine the optimal combination of input 

features. Moreover, the LSTM training results with input features in ego vehicle 

centered coordinate and target vehicle centered coordinate are analyzed to examine 

the effect of the coordinates. The total of 14 different input features and history 

horizon combinations are described in Table 12. The prediction errors of each input 

feature candidate are computed in the ego coordinates and shown in the table. The 

error results are analyzed in prediction time of 1s, 2s, 3s, 4s, and 5s, and MAE, 

RMSE, and STD are computed. The case 1 through 7 represent the input feature 

candidates with history horizon of 1s, and the case 8 through 15 express the same 

input feature combination from the case 1 through 7 but only different history 

horizon of 2s. For the input feature candidates with the history horizon of 1s, the 

case 6 shows the best prediction performance in prediction time of 1s, and the case 

7 shows the best prediction results after the prediction time of 2s. For the input 

feature candidates with the history horizon of 2s, the case 14 shows the best 

prediction performance. It can be observed that the effect of difference in 

prediction horizon of 1s and 2s are negligible in prediction result. Both prediction 

results from input feature candidate with history horizon of 1s and 2s show the 
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similar results. The propose LSTM model is also compared with the Constant Turn 

Rate Velocity (CTRV) model. The prediction result of CTRV model at prediction 

time of 1s show the similar performance when compared with that of the proposed 

LSTM model. However, the error becomes greater as the prediction horizon 

increases.  

 

Table 12. Prediction Errors of the Future Trajectories from the Model Trained in 

Ego Centered Coordinate 

 

 

The prediction results of LSTM model with the optimal input feature 

candidates with different history horizon and CTRV model are depicted as a 

histogram in Figure 6.22. From the histogram, it can be inferred that the prediction 

errors from the LSTM model with history horizon of 1s are more clustered to the 
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zero compared to the errors from the model with history horizon of 2s and the 

CTRV model. Histograms of two different models and CTRV model at each 

predicted time horizon are depicted in Figure 6.23. The LSTM (A) is with history 

horizon of 1s, and the LSTM (B) is with history horizon of 2s. 

 

 

Figure 6.22. Histogram of prediction errors over prediction horizons of models 

trained in ego centered coordinate (a) LSTM with history horizon 1s (b) LSTM 

with history horizon 2s (c) CTRV model. 
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Figure 6.23. Histogram of prediction errors of models with different history 

horizons trained in ego centered coordinate over different prediction horizon times 

(a)1s (b)2s (c)3s (d)4s (e)5s. 
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The prediction errors of each input feature candidate are computed in the 

target vehicle coordinates and shown in Table 13. As already done with input 

feature candidates measured in ego vehicle centered coordinate, the error results 

from input features with target vehicle centered coordinate are analyzed in 

prediction time of 1s, 2s, 3s, 4s, and 5s, and MAE, RMSE, and STD are computed. 

The total of 14 different input feature and history horizon combinations are 

described in the previous Table 7. For the input feature candidates with both history 

horizon of 1s and 2s, the case 7 and 14 which are composed of the same input 

feature combinations show the best prediction performance. It can be inferred that 

the difference in prediction horizon between 1s and 2s is negligible in prediction 

result. The prediction result of CTRV model at prediction time of 1s show the 

similar performance when compared with that of the proposed LSTM model, and 

the error becomes greater as the prediction horizon increases. 

 

 

 

 

 

 

 

 

 

 



 

 １２９ 

Table 13. Prediction Errors of the Future Trajectories from the Model Trained in 

Target Centered Coordinate 

 

 

The prediction outcomes of LSTM model with the optimal input feature 

candidates with different history horizon and CTRV model are described as a 

histogram in Figure 6.24. The histograms from both model with history horizon of 

1s and 2s show a similar shape, and the prediction errors from the LSTM model 

with history horizon of 1s are slightly more gathered around the zero compared to 

those from the model with history horizon of 2s. Histograms of two different 

models and CTRV model at each predicted time horizon are depicted in Figure 6.25. 

The LSTM (A) is with history horizon of 1s, and the LSTM (B) is with history 

horizon of 2s. 
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Figure 6.24. Histogram of prediction errors over prediction horizons of models 

trained in target centered coordinate (a) LSTM with history horizon 1s (b) LSTM 

with history horizon 2s (c) CTRV model. 
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Figure 6.25. Histogram of prediction errors of models with different history 

horizons trained in target centered coordinate over different prediction horizon 

times (a)1s (b)2s (c)3s (d)4s (e)5s. 
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The prediction results of the model with the optimal input features in ego and 

target centered coordinates are compared and analyzed in Table 14. From the Table 

14, it is observed that the model with input features of target centered coordinates 

is advantageous in shorter prediction horizon. The prediction errors of the model 

with target centered coordinates are less than half of those of the model with ego 

centered coordinates. Figure 6.26 describes the histogram of prediction errors from 

the LSTM models and the CTRV model. From Figure 6.26, it is clearly observed 

that histogram of the model with target vehicle coordinate is more centered at zero. 

Histograms of two different LSTM models and CTRV model at each predicted time 

horizon are depicted in Figure 6.27. The model with target vehicle centered 

coordinate performs better than the model with ego vehicle centered coordinate. 

 

Table 14. Prediction Errors of the Trajectory Prediction from Models Trained in 

Different Coordinates. 
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Figure 6.26. Histogram of prediction errors over prediction horizons (a) LSTM 

with ego centered coordinate (b) LSTM with target centered coordinate (c) CTRV 

model. 
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Figure 6.27. Histogram of prediction errors of LSTM and CTRV models over 

different prediction horizon times (a)1s (b)2s (c)3s (d)4s (e)5s. 

 

6.2.2. Prediction Trajectory Accuracy Analysis 

The target trajectory prediction results are analyzed in several driving 

scenarios such as the SAP with ego vehicle turning right and the RTAP with ego 
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vehicle crossing straight. The ground-truth trajectories, predicted trajectories of the 

proposed LSTM and the CTRV model, and history trajectories of target and ego 

vehicles are visualized to analyze the feasibility of the prediction model in the 

following figures. The black colored line is a ground truth of future trajectory of 

the target vehicle, and the red and blue lines are the predicted trajectories of target 

vehicle from the proposed LSTM model and CTRV model respectively. The green 

circles and magenta circles are history trajectories of target vehicle and ego vehicle. 

Figure 6.28 depicts the target vehicle crossing the intersection straight, interacting 

with the ego vehicle turning right. The predicted trajectory of the LSTM and the 

ground truth trajectory are heading straight, but the predicted trajectory from the 

CTRV model is turning left due to the error in the yaw rate. The predicted positions 

errors are analyzed for both models using MAE, RMSE, and STD, and shown in 

Table 15. 
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Figure 6.28. Trajectory prediction results of the RTAP with ego centered coordinate 

(lateral prediction error of the CTRV model) 
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Table 15. Prediction Errors of RTAP Scenario with Ego Centered Coordinate 

 

 

Figure 6.29 also describes the target vehicle crossing the intersection straight, 

interacting with the ego vehicle turning right. Like the ground truth trajectory of 

the target vehicle, the predicted trajectory from the LSTM model becomes 

shortened over the prediction horizon. However, the future trajectory from the 

CTRV model describes the equidistant displacement over the prediction horizon. 

The CTRV model is unable to describe the slowing down motion of the vehicle 

over the prediction horizon. The predicted positions errors are analyzed in MAE, 

RMSE, and STD in Table 16, and from the Table 15 and 16, it can be inferred that 

the degree of error becomes greater when the vehicle changes the velocity over the 

future horizon. 
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Figure 6.29. Trajectory prediction results of the RTAP with ego centered coordinate 

(longitudinal prediction error of the CTRV model) 

 

Table 16. Prediction Errors of RTAP Scenario Ego Centered Coordinate 

 

 

In Figure 6.30, the target vehicle turns right, interacting with the ego vehicle 

crossing straight at the intersection. The ego vehicle is driving from 50m away 

from the intersection at constant velocity. The proposed model appropriately 

predicts the target vehicle making a right turn. However, the CTRV model predicts 

the target vehicle driving straight through the intersection. Since the CTRV model 
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predicts the future trajectory of the target vehicle with the yaw and the yaw rate 

value at the initial guess point, the model fails to predict the turning driving 

behavior of the target vehicle as shown in Figure 6.30. The prediction errors of 

MAE, RMSE, and STD are described in the Table 17, and the degree of error is 

large due to a failure of prediction in future driving direction. 

 

 

Figure 6.30. Trajectory prediction results of the SAP with ego centered coordinate 

(constant zero yaw rate in CTRV model) 

 

Table 17. Prediction Errors of SAP Scenario with Ego Centered Coordinate 

 

 

In Figure 6.31, the SAP scenario of the ego vehicle is described. The ego 

vehicle is driving 15m away from the intersection and slowly decreases the velocity. 
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The proposed model appropriately predicts the target vehicle making a right turn. 

The CTRV model correctly estimate the future driving direction, a right turn, of the 

target vehicle, yet fails to predict the degree of turning. The actual driving motion 

of the target vehicle in Figure 6.31 is that the target vehicle turns right and shows 

the straight driving motion at the end of the turning, and the LSTM model 

successfully generates such motion. It is observed that the LSTM model predicts 

the trajectory near perfect in longitudinal direction, but noticeable lateral errors 

exist. The CTRV model with its constant yaw rate predicts the target vehicle 

behaves like a circular motion. The predicted position errors are described as MAE, 

RMSE, and STD in Table 18. 

 

 

Figure 6.31. Trajectory prediction results of the SAP with ego centered coordinate 

(constant non-zero yaw rate in CTRV model) 
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Table 18. Prediction Errors of SAP Scenario with Ego Centered Coordinate 

 

 

The LSTM model with the optimal input feature with 1s history horizon at the 

target vehicle centered coordinate is utilized to analyze the accuracy of the 

predicted trajectories. The target trajectory prediction results are analyzed in 

driving scenarios such as the SAP with ego vehicle turning right and the RTAP with 

ego vehicle crossing straight. The true trajectory, predicted trajectories of the 

proposed LSTM and the CTRV model, and history trajectories of target and ego 

vehicles are visualized to analyze the feasibility of the prediction model in the 

following figures. Each trajectory is colored differently to distinguish the 

prediction accuracy. In Figure 6.32, the target vehicle crosses the intersection 

straight, interacting with the ego vehicle approaching the intersection. Since the 

vehicles are oriented in the target vehicle coordinate, the current position of the 

target vehicle is located at the position (0,0). The predicted trajectory of the LSTM 

and the ground truth trajectory are heading straight, but the predicted trajectory 

from the CTRV model is predicted correctly in longitudinal direction but not in 

lateral direction due to the error in the yaw rate, slanted towards left. The predicted 

positions errors are analyzed for both models using MAE, RMSE, and STD, and 

shown in Table 19. 
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Figure 6.32. Trajectory prediction results of the RTAP with target centered 

coordinate (lateral prediction error of the CTRV Model) 

 

Table 19. Prediction Errors of RTAP Scenario with Target Centered Coordinate 

 

 

In Figure 6.33, the target vehicle crosses the intersection straight, interacting 

with the ego vehicle turning right, yet the targe vehicle in this scene gradually 

decreases the velocity. The LSTM model successfully predicts and describes the 

decreasing velocity driving behavior of the target. However, the CTRV model 
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predicts the target vehicle driving with the constant velocity, predicting the 

equidistant trajectory over the prediction horizon. The CTRV model is unable to 

describe the slowing down motion of the vehicle over the prediction horizon. The 

predicted positions errors are analyzed in MAE, RMSE, and STD in Table 20. 
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Figure 6.33. Trajectory prediction results of the RTAP with target centered 

coordinate (longitudinal prediction error of the CTRV model) 
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Table 20. Prediction Errors of the RTAP Scenario with Target Centered Coordinate 

 

 

In Figure 6.34, the target vehicle turns right, interacting with the ego vehicle 

crossing straight at the intersection. The ego vehicle is driving from 15m away 

from the intersection. The proposed LSTM model predicts the proper target 

vehicle’s right turn motion. The CTRV model correctly estimate the future driving 

direction, a right turn, of the target vehicle, yet the degree of yaw rate is not great 

enough to successfully predict the amount of turning motion. The radius of 

curvature of the predicted trajectory of the CTRV model is less than that of the 

predicted path of the LSTM model. The predicted position errors are described as 

MAE, RMSE, and STD in Table 21. 
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Figure 6.34. Trajectory prediction results of SAP with target centered coordinate 

(less constant yaw rate in CTRV model) 

 

Table 21. Prediction Errors of SAP Scenario with Target Centered Coordinate 

 

 

Another SAP scenario of intersection is described in Figure 6.35. The ego 

vehicle is driving approximately 10m away towards the intersection. The proposed 

model and the CTRV model appropriately predict the driving motion of the target 

vehicle, a right turn. Although the CTRV model correctly estimates the future 

driving direction, it overpredicts the degree of turning with greater trajectory 

curvature. In Figure 6.54, the target vehicle turns right in the beginning, and drives 

straight through the intersection at the end of the prediction horizon. The LSTM 

model successfully produces such future driving trajectories. The CTRV model 

with its constant yaw rate predicts the target vehicle behaves like a circular motion. 
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The predicted position errors are described as MAE, RMSE, and STD in Table 22. 

 

 

Figure 6.35. Trajectory prediction results of SAP with target centered coordinate 

(large constant yaw rate in CTRV model) 

 

Table 22. Prediction Errors of SAP Scenario with Target Centered Coordinate 
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6.3. Vehicle Test for Intersection Autonomous Driving 

 

6.3.1. Test Vehicle Configuration for Intersection 

Autonomous Driving 

    KIA Carnival vehicle is used for the test vehicle for the propose the 

intersection motion planning algorithm. Two 32 channel 3-D Velodyne Lidars are 

mounted front and rear roof of the vehicle to obtain the maximum visibility. The 

front vision camera is also mounted under a front glass for lane and traffic 

participants detection. In order to overcome weak GPS signal, the localization 

module implements Omni view around view camera for right and left lanes around 

the vehicle and estimates the odometry of the ego vehicle. Septentrio GPS is used 

to provide vehicle odometry. Two industrial PCs, Nuvo 8108GC, are built in to 

compute perception and motion planning respectively. The desired motion 

calculated from the industrial PC is provided to a lower-level controller in a micro-

autobox to operate actuators of the autonomous vehicle. The detailed hardware 

configurations for autonomous vehicle system and perceptive sensors detection 

ranges are depicted in Figure 6.36. 
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Figure 6.36. Test vehicle configuration for autonomous vehicle. 

 

6.3.2. Software Configuration for Autonomous Vehicle 

Operation. 

    The Robot Operating System (ROS) is used as an environment for developing 

autonomous driving algorithm to operate the autonomous vehicle. In ROS system 

of autonomous vehicle, each automated driving algorithm modules are constructed 

as a node. Each node is communicating with different nodes through publishing 

and subscribing messages. The GPR based virtual target module, driving data-

driven target prediction module, and stochastic MPC based longitudinal motion 

panning module represent different nodes. The control panel from the ROS allows 

to send the desired acceleration and steering angle to operate the autonomous 

vehicle. The control panel and example of ROS nodes for the autonomous driving 
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are described in Figure 6.37. 

 

 

Figure. 6.37. Robot operating system for autonomous driving 

 

6.3.3. Vehicle Test Environment for Intersection Autonomous 

Driving 

The proposed algorithm is implemented in an autonomous vehicle and has 

been evaluated in urban intersection with real traffic participants. The vehicle tests 

have been conducted at the intersection in Mapo-gu, Sangam, a city nominated as 

an official autonomous driving testbed in Seoul, Korea. Many autonomous driving 

institutes and companies develop and test their logics and conduct the vehicle test 

in Sangam testbed. As previously mentioned, the proposed algorithm has been 

developed based on driving data obtained at Siheung, Gyeonggi-do, Korea. 

However, the motion planner has been tested in the different intersection in 
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Sangam if the algorithm can be applicable to various intersections other than 

intersections where data were obtained. The intersection in Sangam is a three-way 

signalized intersection. The vehicle test course and satellite view are described in 

Figure 6.38 and Figure 6.39.  The HD map of the vehicle test intersection is 

described in Figure 6.40. The road view image of the intersection is shown in 

Figure 6.41.  

 

 

Figure 6.38. Vehicle test course in Sangam. 
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Figure 6.39. Satellite view of intersection for the vehicle test in Sangam 

 

 

Figure 6.40. HD map of Sangam intersection for the vehicle test 
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Figure 6.41. Road view of Sangam intersection for the vehicle test 

 

6.3.4. Vehicle Test Result of Intersection Autonomous Driving 

    The proposed algorithm is evaluated in the RTAP scenario at the intersection. 

The two different driving conditions are tested at the intersection. For the first case, 

the autonomous vehicle turns right at the intersection with no traffic participants 

approaching from the opposite direction. For the second case, the autonomous 

vehicle turns right and interacts with oncoming vehicles from the right. The vehicle 

test result of no traffic participants scenario is described in Figure 6.42. The ego 

vehicle enters, turns right, and pass through the intersection. The time history of 

trajectory, acceleration, velocity, virtual target mode activation, clearance, and 

position upper bound for the MPC is depicted in Figure 6.42. In Figure 6.42 (f), the 

clearance between the virtual target and ego vehicle over the prediction time is 

described. It is observed that the ego vehicle interacts with the virtual target during 

time t =13s to 15s. As shown in Figure 6.42 (e), during time t=13s to 15s, at 

prediction time of 4s to 5s, the motion planner expects the predicted trajectory of 
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the ego vehicle and the future trajectory of the virtual target collides, and the 

negative acceleration command is ordered for deceleration. From Figure 6.43, the 

snapshots of vehicle travelling through the intersection is described, the predicted 

trajectory of the virtual target vehicle is depicted as green circles, and the FOV of 

the autonomous vehicle is drawn with cyan colored circles. The virtual target 

allows the ego vehicle to decelerate early to prevent potential collision with the 

traffic participants appearing from the occluded region.  
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Figure 6.42. Time history of the vehicle test results of no vehicle approach scenario 

(a) trajectory history (b) acceleration (c) velocity (d) virtual target mode (e) 

clearance (f) travel distance upper bound. 
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Figure 6.43. Snapshots of the vehicle test results of no vehicle approach scenario 

(a)t=10s (b)t=14s (c)t=20s. 

 

    The proposed algorithm is evaluated under the scene where the autonomous 

vehicle interacts with multiple traffic participants crossing the intersection. The 

vehicle result is summarized in Figure 6.44. The time history of trajectory, 

acceleration, velocity, virtual target mode activation, clearance, and position upper 

bound for the MPC is depicted in Figure 6.44. In Figure 6.44 (b), it is observed at 

the ego vehicle interacts with oncoming vehicles at time t=9s, 13s, 15s, and 18s 



 

 １５６ 

and decelerates. In Figure 6.44 (f), the clearance between the virtual target and ego 

vehicle over the prediction time during the RTAP scenario is described. As shown 

in Figure 6.44 (e), during time t=8s, the motion planner expects the predicted 

trajectory of the ego vehicle and the future trajectory of the target vehicles at 

prediction time of 4s to 5s. During time t= 13s, 15s, and 18, the ego vehicle enters 

the intersection and becomes close to the oncoming traffic participants. In Figure 

6.44 (e), during those time periods, the proposed longitudinal algorithm predicts 

the potential collisions at prediction horizon of t=1s and 2s. Unlike the desired 

acceleration from the potential collision at time t=9s, since the potential collisions 

at time t=13s,15s, and 18s are expected to occur within prediction time of 2s, the 

degree of the desired control input is greater. With the proper desired acceleration 

command from the algorithm, the velocity profile in Figure 6.44 shows the 

autonomous vehicle successfully manages to stop and prevents the possible 

collision with oncoming vehicles. In Figure 6.45, the snapshots of the ego vehicle 

interacting oncoming vehicles at the intersection are described. The cyan circles 

describe the FOV of the autonomous vehicle. The green and white circles represent 

the predicted trajectories of the virtual target from GPR model and detected 

vehicles from the proposed LSTM model, respectively. The post encroachment 

time (PET) is also calculated for this multi vehicle approaching scenario. The time 

crossing conflict point of target vehicles are 4.19s, 11.70s, 14.02s, 16.79s, and 

20.93s. The ego vehicle enters the conflict point at time of 26.78s. The PET is 

5.85s for this vehicle test. 
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Figure 6.44. Time history of the vehicle test results of multiple vehicles approach 

scenario (a) trajectory history (b) acceleration (c) velocity (d) virtual target mode 

(e) clearance (f) travel distance upper bound. 



 

 １５９ 

 

 

 



 

 １６０ 

 

Figure 6.45. Snapshots of the vehicle test results of multiple vehicles approach 

scenario (a)t=9s (b)t=19s (c)t=22s (d)t=28s. 
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Chapter 7. Conclusion and Future Work 

 

7.1. Conclusion 

This thesis proposes a longitudinal motion planning algorithm in urban 

intersection with the limited visibility for fully automated driving system with 

open-market perceptive sensors. Three challenges in autonomous driving in 

complex urban intersection are identified: virtual target modelling, surround 

vehicle prediction, and longitudinal motion planning.  

The virtual target method is utilized to ensure the safety and prevent the 

potential collision with targets from the blind spot. Human driving data are 

collected to model the virtual target and mimic driving patterns. The virtual target 

generated based on the field of view of the autonomous vehicle may cause the 

“dead-lock” situation that the ego vehicle remains stopped at the intersection 

indefinitely. Implementing the human driven data, the virtual target model 

interacting with the ego vehicle motion can generate the yield driving behavior that 

allows the ego vehicle to pass through the intersection. The Gaussian Process 

Regression is implemented to design the virtual target model with human driving 

data. The trained GPR model for the virtual target provides the predicted travel 

distance and its uncertainty, which can be utilized in the longitudinal motion 

planning of the autonomous vehicle as a position (travel distance) constraint and a 

chance constraint. The virtual target module is evaluated with the offline simulation 

studies in two different driving scenarios: the SAP and the RTAP in the intersection. 
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With the data-driven virtual target model, the autonomous vehicle decelerates with 

less control input at earlier time in the intersection. 

The deep learning method, a LSTM-RNN, is implemented to predict the 

surround vehicle motion. The train and test data are collected at the actual urban 

intersection with two different autonomous vehicles. Two different autonomous 

vehicles can provide their odometry information regardless to the limitation in field 

of view. Popular autonomous driving datasets from Waymo open datasets, 

nuScenes, and Kitti obtain the target odometry information from the perceptive 

sensors mounted on the autonomous vehicle, and such vehicular configuration is 

limited in providing wide range of target odometry information due to limited field 

of view. The obtained training datasets and their parameters are reorganized in the 

detected target centered coordinates for better input-domain adaptation and 

generalization. The mean squared error and negative log likelihood loss functions 

are adapted to train and provide the uncertainty information of the target vehicle for 

the motion planning of the autonomous vehicle. The prediction accuracy with 

different input features is analyzed to determine the optimal input features. 

The model predictive control with a chance constraint is used to plan the 

longitudinal motion at the urban intersection. The dynamic constraints and actuator 

constraints are designed to provide ride comfort and safety to drivers and 

passengers. The position constraint with the chance constraint guarantees the safety 

and prevent the potential collision with target vehicles. The position constraint for 

the travel distance over the prediction horizon time is determined based on the 

clearance between the predicted trajectories of the target and ego vehicle at every 
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prediction sample time. 

The feasibility and effectiveness of the proposed automated driving motion 

planning algorithm has been evaluated through offline simulation, test-data based 

simulation, and vehicle test in a real road of an official autonomous driving test bed. 

The proposed motion planner with predictor has been tested with over 35,000 test 

data set. The offline simulation verifies the safety of the algorithm from the 

potential collision of a sudden appearance of traffic participants from the occlusion. 

Through the vehicle test in the urban test road, the autonomous vehicle 

successfully passes through the intersection by maintaining safety clearance with 

other oncoming traffic participants under no traffic regulation other than traffic 

signals. Through the implementation of the algorithm to actual vehicle, it is 

confirmed that the algorithm is not just validated in simulation studies, but also can 

be applicable in real life right away. 

The main contributions of this thesis are as follows. First, the virtual target 

model is implemented to overcome the limited FOV of autonomous sensors by 

local cognitive sensors and blind spots. Instead of simple assumption of virtual 

target driving behavior, the virtual target motion is generated with a data driven 

method. The safety boundary of the predicted trajectory of virtual target is 

implemented to compensate the prediction uncertainty. Second, the safe trajectory 

prediction of detected target vehicles is determined for driver acceptance using 

rule-based and learning-based methods. Data collection from two autonomous 

vehicles for training a model allows to consider the wide range of interaction 

between human driving vehicles and autonomous vehicle. Third, the efficient and 
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effective decision-making and motion control are achieved using driving mode and 

optimal constraints based on learning based prediction and stochastic MPC. Finally, 

the efficacy and feasibility of the proposed algorithm are evaluated through both 

simulation and actual vehicle tests in real road. 

 

7.2. Future Work 

The proposed longitudinal motion planning at the urban intersection enables 

the autonomous vehicle to safely cross the intersection from oncoming target 

vehicles from the occluded region due to limited field of view and sensor 

configuration. The future works in the intersection motion planning can be 

categorized in three aspects. The first is comprehension of different types of 

intersection and environment. Although the motion planning algorithm can be 

applicable to the general shape of the intersection, the more complicated 

intersection such as the y-junction, staggered intersection, and roundabouts that 

drivers often encounter should be considered. The second is the prediction of the 

dynamic motion of target vehicles. The proposed motion planner can react to the 

target vehicle in the pre-defined ROI, and the algorithm may be vulnerable to target 

vehicle suddenly conducting lane changes in the middle of intersection and 

entering the ROI. The third is the human driven data-based learning model 

predictive control with optimal path planning. As the autonomous driving has been 

actively studied and implemented in a vehicle for real-life use, many autonomous 

driving related companies provide automated shuttle services to people. The scope 

of an autonomous vehicle is being extended to commercial vehicles such as a full-



 

 １６５ 

sized bus and yard trucks. The exploration of these research scopes can 

substantially develop urban autonomous driving in complex road environment with 

safety and ride comfort. 
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Abstract in Korean 

 

본 논문은 복잡한 도로 구조와 센서 사양으로 인한 시야 제한을 

극복하며 사각지대에서 등장하는 차량과의 잠재적인 충돌로부터 안전을 

보장하기 위한 도심 교차로에서의 자율주행차의 새로운 종방향 거동 

계획을 제시한다. 

도심 자율주행은 교통체증과 환경의 복잡성으로 인해 높은 수준의 

안전성이 요구됩니다. 복잡한 도로 구조와 인지 센서의 인지 범위로 

인해 도심 자율주행에서는 사각지대가 발생한다. 가상 타겟은 

사각지대에서 차량의 갑작스러운 출현에 대응하기 위한 거동 계획 방법 

중 하나입니다. 자차량의 거동과 상호작용하는 다양한 미래 주행 궤적을 

생성하는 가상 타겟 모델을 구현하기 위하여 Gaussian Process Regression 

(GPR) 방법을 사용합니다. GPR 모델은 가상 표적의 예측된 궤적뿐만 

아니라 미래 궤적에 대한 불확실성도 제공합니다. 따라서 GPR의 예측 

결과는 Model Predictive Control (MPC)에 대한 위치 제약 조건으로 활용될 

수 있으며 불확실성은 MPC에서 기회 제약 조건으로 고려됩니다. 

동적 객체를 포함한 주변 환경을 파악하기 위해 관심영역을 

정의하여 목표 대상을 결정합니다. 미리 결정된 자차량의 주행경로와 

교차로의 경로정보를 통하여 자차량의 주행차로와 교차하는 다른 차선을 

판단하여 관심영역으로 정의함으로써 관심영역 밖의 차량을 제외하여 
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연산량을 감소시킬 수 있다. 다음으로 인지된 차량의 미래 이동 궤적은 

LSTM-RNN (Long Short-Term Memory Recurrent Neural Network)에 의해 

예측됩니다. 훈련을 위한 주행 데이터는 두 대의 자율주행 차량에서 

직접 획득하여 제한된 시야에 관계없이 차량의 상태 정보를 제공합니다. 

구글 Waymo 및 nuScenes와 같이 널리 알려진 자율주행 데이터의 경우 

차량 상태 정보는 테스트 차량에 장착된 인지 센서에서 수집됩니다. 

따라서 테스트 차량의 시야에서 벗어나 있는 차량 정보는 얻을 수 

없습니다. 취득한 주행 데이터는 더 나은 입력 데이터 적응 및 일반화를 

위해 자차가 아닌 타겟차량 중심 좌표로 구성됩니다. 손실함수로 평균 

제곱 오차 및 음의 로그 우도함수를 사용하였고 음의 로그 우도함수는 

자율주행 차량의 거동계획에 사용될 수 있게 타겟차량의 미래 궤적에 

대한 불확실성 정보를 제공한다. 

기회 제약 조건이 있는 MPC는 자율차량의 종방향 거동을 

최적화하도록 구현됩니다. 동적 제약 조건 및 구동기 제약 조건은 

운전자에게 승차감과 안전을 제공하도록 설계되었습니다. 기회 제약 

조건은 위치 제약 조건을 강건하게 하여 안전을 보장하고 대상 차량과의 

잠재적인 충돌을 방지합니다. 예측 시간동안 이동 거리에 대한 위치 

제약 조건은 각 예측시간의 타겟과 자차량의 예측된 궤적 간의 거리 

차이에 의해 결정된다. 

제안한 알고리즘의 성능과 타당성은 컴퓨터 시뮬레이션과 
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테스트 데이터 기반 시뮬레이션을 통해 평가된다. 오프라인 

시뮬레이션을 통해 제안한 알고리즘의 안전성을 검증하였으며 제안한 

거동계획 알고리즘을 자율주행차에 구현하여 실제 도로에서 

테스트하였다. 제안한 알고리즘을 실제 차량에 구현하여 실제 

자율주행에 적용할 수 있음을 확인하였다. 
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