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Abstract

Path Following Control for Safe Flight of Micro Aerial
Vehicle under Intermittency in Disturbance and Estimation

Seungjoon Lee

Mechanical Engineering

The Graduate School

Seoul National University

In this work, we present the velocity field-based path following control of UAV

for the safe flight system under intermittency in disturbance and estimation.

While the trajectory tracking control requires the vehicle to have desired posi-

tion, velocity and acceleration at specific time, the path following control aims

at just converging to and traversing the desired path. This difference makes the

path following control safer than trajectory tracking control under not only in-

termittent disturbance like wind, but also intermittent estimation such as loop

closure of SLAM. For the velocity field generation, we extend the existing work

theoretically by separating coefficients, which enables the wider application of

the algorithm. We also conduct realistic simulations and real-world experiments

in various scenarios to verify the safety and feasibility of our system.

Keywords: Unmanned aerial vehicle (UAV), Autonomous flight, Path follow-

ing, Velocity field

Student Number: 2021-21855
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Chapter 1

Introduction

1.1 Motivation

In recent years, unmanned aerial vehicles (UAVs) have been actively utilized in

various fields due to their mobility in 3D space and affordability. Although the

most-used case until now is filming such as movie shooting or sports broadcasting,

industrial applications and research works are receiving substantial interests and

growing rapidly. Inspection and measurement are representative cases of indus-

trial applications, and the solutions are also being provided by companies such

as Skydio [1] or DJI [2]. Both vendors offer ready-made drones with fully/semi-

autonomous flight and mapping system so that they can be used for inspection

of public infrastructure or for data acquisition and management in construction

1
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Figure 1.1: Skydio X2 Thermal for the inspection work

site. Examples of the products are shown in Fig 1.1 and Fig 1.2. However, most

applications until now are semiautonomous with intervention of manual control,

not fully autonomous.

On the other hand, many research works concerning autonomous flight system

have been conducted including localization, path planning, collision avoidance

and control. For localization, global positioning system (GPS) is the most used

system in the outdoor case, but it suffers from the signal loss in the environment

like indoor or vicinity of the building. Instead, motion capture (MoCap) system

is frequently used in the indoor case, which shows not only high accuracy in pose

estimation, but also high rate in data acquisition. However, it also has a limit
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Figure 1.2: DJI Phantom 4 RTK for accurate data capturing and mapping

that once the system is built, it is hard to move the system to another place so

that the area where the pose can be estimated is constrained to specific place. As

a countermeasure, visual odometry is one of the feasible localization methods,

which is free from infrastructure and works in both indoor and outdoor. Although

the visual odometry usually requires relatively high computation power and is

vulnerable to lighting or scene conditions, it has been actively used and studied
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in various form such as simultaneous localization and mapping (SLAM) or fusion

with other sensors like inertial measurement unit (IMU).

For path planning, which often contains obstacle avoidance, A* or RRT based

initial path generation and optimization method is used usually considering col-

lision avoidance, minimum time, or minimum snap. The generated path then

followed usually by trajectory tracking control. While the trajectory tracking

control shows high tracking accuracy and applicability to high speed flight, it

requires the vehicle to have specific pose, velocity, and acceleration at specific

time, which can generate unsafe and unintended motion due to disturbance or

imperfection of state estimation. Although the issue can be resolved by some

algorithms in trajectory replanning level, the field engineers who apply UAVs to

their fields usually do not have enough domain knowledge to implement them

and in some situations, the replanning strategy could not succeed in real time.

On the other hand, the path following control, which is another method to follow

the desired path, aims at just converging to and traversing the path regardless

of time. In other words, the path following control can follow the desired path

without supplementary algorithms even in the presence of the intermittent distur-

bance and estimation. Although the path following control has been commonly

used in wheeled mobile robots [3]-[4], autonomous underwater vehicles [5], and

manipulators [6], to our knowledge, only a few works have considered the path

following control of UAVs. Therefore, we applicate the velocity field-based path

following control to UAV for safe and simple autonomous flight system. To verify
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the safety and feasibility of the system, we also conduct the realistic simulations

and real-world experiments in various scenarios.

1.2 Related Works

Trajectory planning has been widely used and investigated for autonomous flight

of UAV. Mellinger [7] proposed minimum snap trajectory generation and control

algorithm for quadrotors, which generates optimal trajectories in real time with

relaxation of small angle assumptions. In Mueller’s work [8], the method for rapid

generation of motion primitives is presented, which minimizes the cost function

concerning input aggressiveness. It is shown that the method can generate and

evaluate a million motion primitives per second on a general laptop computer.

As a next step of trajectory generation, studies related to trajectory replanning

have been widely conducted. Zhou [9] proposed perception-aware trajectory re-

planning algorithm based on their previous work [10], which considers potential

risk of unknown obstacles by exploiting yaw planning strategy to actively ob-

serve unknown area. Furthermore, Romero [11] presented time-optimal online

replanning method which enables agile flight of quadrotor over 60 km/h and en-

dures wind disturbance up to 68 km/h. It efficiently generates trajectory with

sampling-based method and tracks the trajectory using model predictive con-

touring control which also considers the full quadrotor dynamics and the single

rotor thrust limits.
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Besides trajectory tracking control, path following control is also used to navigate

UAV autonomously, especially in fixed-wing UAV. As an early path following al-

gorithm, nonlinear guidance logic was presented in Park’s study [12]. It generates

acceleration command that follows 2D straight line or curved path, based on the

forward reference point of the desired path which is specified by pre-defined pa-

rameters. It was extended to 3D space using the Frenet-Serret frame in Cho’s

work [13], where the look-ahead vector is proposed by which the generated accel-

eration command attracts the vehicle’s velocity to follow the desired path. Unlike

the precedent works, vector field-based time-varying path following approach is

presented in [14]. It computes artificial vector fields which allow the vehicle to

converge to and circulate around n-dimensional desired curve. Based on that

work, the control strategy to follow the vector field is proposed in [15] where the

control inputs are thrust and angular rates. Furthermore, an obstacle avoidance

method was also introduced with model predictive control (MPC) in Pereira’s

work [16], where the obstacles are assumed to be rigid vertical cylinders so that

the vector fields are modified to circulate the obstacle’s boundary.

1.3 Contribution

In this paper, we revive the velocity field-based path following control for au-

tonomous flight of multi-rotor UAV. To generate the velocity field, we extend the

algorithm of the existing work [17] theoretically. The extension is accomplished

by coefficients separation, and makes our method feasible for wider applications
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than the original one. Furthermore, we verify the safety and feasibility of our

method by realistic simulations and experiments. For verification, we conduct

comparison between our method and the trajectory tracking control under inter-

mittent disturbance and estimation scenarios.

The rest of the paper is organized as follows. In chapter 2, we explain our ve-

locity field generation method with the convergence analysis. We decouple the

coefficients in our method and prove its independence to convergence property. In

chapter 3, we describe our path following control system architecture including

modeling and hardware specs of our custom hexa-rotor UAV. The system con-

sists of velocity field generator mentioned above, and velocity tracking controller

that tracks the generated velocity. Then we show the results of simulations and

experiments in chapter 4. Both Gazebo [18] simulation and real-world experiment

are conducted for intermittent disturbance scenario. For intermittent estimation

scenario, only Gazebo simulation is conducted by assuming perceptual aliasing

case. Finally, we conclude this paper with our future works in chapter 5. The

future works include reactive coefficients planning which can be applicated to

collision avoidance problem.



Chapter 2

Velocity Field Generation

2.1 Problem Setup

The problem setup, assumptions, and the basic elements for our velocity field

generation method are almost same as those of [17] except that the desired path

is time-invariant. Therefore, we only mention the problem with our own notation

as below.

Problem 1. Let us define C as a desired path and x(t) as a current position of

a vehicle at time t. Then, the objective is to generate a velocity field V(x(t))

that makes the trajectories of a system ẋ(t) = V(x(t)) converge to and follow

the desired path C.

8
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The detail of the velocity field calculation to solve problem 1 will be stated in

section 2.2.

2.2 Methodology

For generation of the velocity field, the definitions of three elements and two

functions are brought from [17] with our own notation and small modification.

Definition 1. Let us define y as an arbitrary point on the desired path C. Then,

the closest point x∗(t) on C from x(t) is defined as follows.

x∗(t) = argmin
y
||x(t)− y|| (2.1)

Definition 2. The distance vector D(x(t)) from x∗(t) to x(t), its norm D(x(t)),

and the tangent vector T(x(t)) of C at x∗(t) is defined as follows.

D(x(t)) = x(t)− x∗(t) (2.2)

D(x(t)) = ||D(x(t))|| (2.3)

T(x(t)) =
dC

dx∗(t)
(2.4)
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(a) Calculation elements (b) Velocity components

Figure 2.1: Velocity field generation

Elements defined in Definition 1 and Definition 2 are described in Figure 2.1a.

Also, functionsG(x(t)) andH(x(t)) are defined using the distanceD(x(t)). Func-

tion G(x(t)) can be any function that is Lipschitz continuous, strictly increasing,

and G(0) = 0. The choice of both functions are given as follows.

G(x(t)) =
2

π
arctan(kfD(x(t))) (2.5)

H(x(t)) =
√
1−G(x(t))2 (2.6)

In equation (2.5), kf is a positive scalar gain that determines the convergence

weight. Using these definitions and equations, the velocity field V(x(t)) to solve

Problem 1 is generated as follows.

V(x(t)) =− ηconv(x(t))G(x(t))
D(x(t))

D(x(t))
(convergence)

+ ηtrav(x(t))H(x(t))T(x(t)) (traversal)

(2.7)
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Figure 2.2: VF example

As written in equation (2.7) and shown in Figure 2.1b, the generated velocity

consists of convergence and traversal components. G(x(t)) and H(x(t)) functions

adjust the relative predominance of both components depending on the distance

D(x(t)). Also, ηconv(x(t)) and ηtrav(x(t)) are the coefficients which define the

maximum norm of each component. An example of velocity field generated by

equation (2.7) is shown in Figure 2.2.



Chapter 2. Velocity Field Generation 12

In the existing work [17], ηconv(x(t)) and ηtrav(x(t)) are not separated but set to

η(x(t)) identically. This separation of coefficients is the key contribution of our

work and largely extend the application coverage of the algorithm without any

perturbation to the convergence property. Here, we can write two theorems as

follows and the proof will be given in section 2.3.

Theorem 1 (Convergence of ˙x(t) = V(x(t))).

Let us define ϕ(x; t) as a transition mapping of V(x(t)), and δx(t) = D(x(t)) ◦

ϕ(x; t). Then, lim
t→∞

δx(t)→ 0 if ηconv(x(t)) > 0.

Theorem 2. δx(t) is independent of ηtrav(x(t)).

2.3 Convergence Analysis

Convergence analysis of Theorem 1 and Theorem 2 is not much different from

the proof of [17]’s Proposition 2 except that the desired path is time invariant

in our method. Therefore, we only mention the parts of the analysis associated

to our theoretical extension with our own notations.

Proof: If we consider the Lyapunov candidate function P (x(t)) = 1
2D

2(x(t)),

following results can be obtained.

Ṗ (x(t)) = −ηconv(x(t))G(x(t))D(x(t)) (2.8)
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From equation 2.8 and Ṗ (x(t)) = D(x(t))Ḋ(x(t)), we have that

Ḋ(x(t)) = −ηconv(x(t))G(x(t)) (2.9)

Therefore, lim
t→∞

D(x(t)) → 0 if ηconv(x(t)) > 0, and it proves the Theorem 1.

Also, from equation (2.9), we can see that the convergence property does not

depend on the traversal coefficient ηtrav(x(t)), and thus, Theorem 2 is proven as

well.

The fact that the traversal coefficient does not affect the convergence property

makes our method more flexible than the existing work and widens an application

scope. For example, we can make a vehicle stop or move backward by setting the

traversal coefficient to 0 or negative value, which is impossible in the existing

work. Blending these motions, we can implement features such as a collision

avoidance with range sensor, or hovering of multi-rotor UAVs.

2.4 Implementation

For implementation, we defined the desired paths as combination of lines, circles,

and hovering which are also common in the practical applications. As mentioned

in section 2.3, our method can implement the hovering task by setting ηtrav = 0

after the previous path is terminated. Then, we smoothly ramp up ηtrav from

zero after the hovering task to proceed to the next path. This process is repeated
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until the entire paths are terminated, and the details are described in Algorithm

1.

Algorithm 1 Velocity Field Generation

1: i← 0, np ← Len(Paths)

2: while i < np do

3: x← current position, Path← Paths[i]

4: vtrav, vconv ← traversal speed, convergence speed

5: if Terminated(Path) then

6: i← i+ 1

7: Continue

8: if Path == Hover then

9: ηtrav, ηconv ← 0, vconv

10: else if tcurrent ≤ tramping then

11: ηtrav, ηconv ← Ramping(vtrav), vc

12: else

13: ηtrav, ηconv ← vtrav, vconv

14: x∗ ← FindClosestPoint(Path,x)

15: D← x− x∗, T← GetTangent(x∗)

16: G,H ← CalculateGH(kf , D)

17: V← −ηconvGD
D + ηtravHT



Chapter 3

System Architecture

3.1 Overview

The overview of our path following control system is described in Figure 3.1.

As described in Chapter 2, the velocity field generator takes the desired path C

and the current position x(t) as inputs, and generates desired velocity V(x(t))

as an output. Then, the velocity tracking controller, which will be discussed in

section 3.3, takes a current velocity v(t) and the desired velocity V(x(t)) as

inputs, and computes a desired thrust f and desired moment M as outputs to

track the desired velocity. These control inputs are sent to PX4 Autopilot [19],

which is an open source software for flight control of drones. In the software, the

desired thrust and moment are distributed and converted to a rotation speed of

15



Chapter 3. System Architecture 16

Figure 3.1: System overview

each rotor. This conversion is conducted using hexa-rotor dynamics which will

be described in section 3.2.

3.2 Custom Hexa-rotor UAV

3.2.1 System modeling

The dynamics of multi-rotor drone can be written by the following Newton-Euler

rigid body dynamics equation [20]:

mẍ = −fRe3 +mge3 (3.1)

JΩ̇+Ω× JΩ = M, Ṙ = RΩ̂ (3.2)

where m > 0 is the mass, f ∈ ℜ is a norm of the total thrust f ∈ ℜ3, R ∈ SO(3)

represents the rotation of the body-frame with respect to inertial frame, g is the

gravitation constant, and e3 = [0, 0, 1]T is the basis vector specifying the down
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Figure 3.2: Hexarotor X of PX4 airframe reference

direction. Also, for equation (3.2), J ∈ ℜ3 is the body-fixed rotational inertia,

Ω := [Ω1,Ω2,Ω3]
T ∈ ℜ3 is the angular velocity of the body-frame relative to the

inertial frame represented in the body frame, M := [M1,M2,M3]
T ∈ ℜ3 is the

moment input represented in the body-frame, and the hat map ·̂ : ℜ3 → SO(3)

is defined by the condition that x̂y = x× y for all x, y ∈ ℜ3.

In equation (3.1)-(3.2), the control inputs are the thrust f and the moment M.

For our custom hexa-rotor UAV, we refered to Hexarotor X of PX4 airframe
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reference [21] which is also shown in Figure 3.2. This (f,M) can often be written

by the following simplified relation:


f

M1

M2

M3

 =


cf cf cf cf cf cf

−lcf lcf
1
2 lcf −1

2 lcf −1
2 lcf

1
2 lcf

0 0 −
√
3
2 lcf

√
3
2 lcf −

√
3
2 lcf

√
3
2 lcf

cM −cM cM −cM −cM cM


︸ ︷︷ ︸

=:Γ



ω2
1

ω2
2

ω2
3

ω2
4

ω2
5

ω2
6


(3.3)

where cf [Ns2/rad2] ∈ ℜ is a thrust-rotor speed coefficient, l [m] ∈ ℜ is an offset

from centre of mass to each rotor (arm length), cM [Nms2/rad2] ∈ ℜ is a yaw

reaction moment-rotor speed coefficient, and ωi [rad/s] ∈ ℜ is a i-th rotor speed.

The PX4 Autopilot software uses a desired thrust of each rotor to control the

drone. Therefore, we should rewrite the relation of equation (3.3) to compute the

desired thrust of each rotor from the desired total thrust and moments. It can

be implemented by computing a pseudo inverse matrix of Γ as follows.
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3.2.2 Hardware specification

We designed and made a custom hexa-rotor UAV as a hardware for the real-

world experiment. A CAD model and real hardware are shown in Figure 3.3

and 3.4. Also, dimensions and specifications are shown in Table 3.1 and 3.2.

The velocity field generation is conducted on onboard computer, and the control

inputs to track the velocity field is computed on FCU. Then, the control inputs

are converted into desired thrust of each rotor by equation (3.4), and again,

these are converted into PWM signals to rotate motors via ESCs. Although we

do not use in this work, RealSense D435 depth camera can be used for collision

detection or SLAM. Also, GPS can be mounted on the top of our UAV for an

outdoor flying.
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Figure 3.3: CAD model of custom hexa-rotor UAV

Figure 3.4: Real hardware of custom hexa-rotor UAV
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Arm length [m] Weight [kg]

0.171 1.39

Table 3.1: Dimension of custom Hexa-rotor UAV

Onboard computer Intel NUC8i7BEH

Camera Intel RealSense Depth Camera D435

ESC Flycolor X-Cross 60A 3-6S BLHeli32 4-in-1 ESC

FCU Holybro Pixhawk 4

Power distribution board Holybro Micro Power Module (PM06 v2)

Motor T-MOTOR P2306 V2 KV2550

Propeller Gemfan Hurricane MCK 51466-3

Table 3.2: Specs of custom Hexa-rotor UAV

3.3 Velocity Tracking Control

To track the desired velocity generated by equation (2.7), we use Geometric

Tracking Control [22] method as a velocity tracking controller. The original con-

troller computes the desired thrust and moment as control inputs by using posi-

tion error, velocity error, rotation error, and angular velocity error. In our case,

there is no desired position but desired velocity, and thus, with the addition of

the integral term and the separation of xy and z terms, the control inputs are

calculated as follows.
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f =− (−kvev − kvzevz − kIeI − kIzeIz −mge3) ·Re3

M =− kReR − kRzeRz − kΩeΩ − kΩzeΩz − kRIeRI − kRIzeRIz

+Ω× JΩ− J(Ω̂RTRdΩd −RTRdΩ̇d)

(3.5)

In equation (3.5), ev, eR, eΩ ∈ ℜ2 are tracking error of velocity, rotation, and

angular velocity for xy elements, evz, eRz, eΩz ∈ ℜ are those for z element,

eI, eRI ∈ ℜ2 are integral error related to velocity and rotation for xy elements,

and eIz, eRIz ∈ ℜ are those for z element. Also, kv, kvz, kR, kRz, kΩ, kΩz, kI , kIz,

kRI , kRIz ∈ ℜ are corresponding controller gains and subscript d means “de-

sired”.
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Results

In this section, we show the verification results of our path following control

by comparing to existing trajectory tracking control in various scenarios. The

first scenario emulates an intermittent disturbance by assuming the UAV flies

in circular path under the situation that wind blows intermittently. The second

scenario emulates an intermittent estimation by assuming a perceptual aliasing

situation while the UAV patrols in predefined path. Both Gazebo simulation

and real-world experiment are conducted for the first scenario, and the only

Gazebo simulation is conducted for the second scenario. For Gazebo simulation,

we customized Gazebo’s Typhoon H480 hexa-rotor model [23] shown in Figure

4.1. For real-world experiment, we used our custom hexa-rotor UAV shown in

Figure 3.4. Also, parameters and controller gains for velocity field generation and

velocity tracking controller are described in Table 4.1a and Table 4.1b, which

23
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Figure 4.1: Gazebo’s Typhoon H480 hexa-rotor model

ηconv 0.20 ηtrav 0.20

kv 8.50 kvz 11.60

kR 5.00 kRz 1.00

kΩ 0.50 kΩz 0.30

kI 4.00 kIz 10.00

kRI 0.00 kRIz 0.00

m [kg] 2.25 l [m] 0.24

(a) Gazebo simulations

ηconv 0.20 ηtrav 0.20

kv 5.30 kvz 10.10

kR 1.50 kRz 0.50

kΩ 0.21 kΩz 0.15

kI 0.00 kIz 5.00

kRI 0.50 kRIz 0.00

m [kg] 1.39 l [m] 0.17

(b) Real-world experiment

Table 4.1: Parameters and controller gains

are used in the Gazebo simulations and real-world experiment in order. The

convergence gain kf of equation (2.5) is set to 8.0 for the both.
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Figure 4.2: Gazebo simulation setup for the intermittent disturbance

4.1 Intermittent Disturbance

For verification under the intermittent disturbance, we implemented both Gazebo

simulation and real-world experiment in same scenario as follows. First, the UAV

starts flight in a circular path. The path has an obstacle in the center of it. Next,

turn on the wind at specific time to interrupt the flight of the UAV. After a while,

turn off the wind and observe how different motions are in existing trajectory

tracking control and our path following control.
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(a) Wind interrupts the
flight

(b) Setpoint keeps moving

(c) UAV tries to track the
setpoint

(d) Collision occurs

Figure 4.3: Gazebo simulation results for the trajectory tracking control
under the intermittent disturbance

4.1.1 Gazebo simulation

We used Gazebo wind plug-in to generate a wind for specific time duration, and

the simulation setup is shown in Figure 4.2. The results of the trajectory tracking

control is shown in Figure 4.3. Figure 4.3a shows the moment that the wind is
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(a) Wind interrupts the
flight

(b) Reference point is
recomputed

(c) UAV flies to
new reference point

(d) Converge to and
follow the original path

Figure 4.4: Gazebo simulation results for the path following control
under the intermittent disturbance

turned on and the flight of the UAV is interrupted by the wind. Meanwhile, the

setpoint keeps moving in circular trajectory over time as shown in Figure 4.3b.

After the wind is turned off, the UAV flies in a direction that tracks the setpoint,

which makes the UAV fly through the obstacle, and as a result, the UAV collides

to the obstacle as shown in Figure 4.3c - 4.3d.
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(a) Trajectory tracking (b) Path following

Figure 4.5: Setpoint and reference point under the wind disturbance
in Gazebo simulation

On the other hand, as shown in Figure 4.4, the path following control shows more

safe motion than trajectory tracking control. Although the flight of the UAV is

interrupted as well as the case of the trajectory tracking control, the reference

point is recomputed depending on the UAV’s current position as shown in Figure

4.4b. The recomputed reference point is the closest point on the path from the

UAV’s current position, and thus, we can see from Figure 4.4c that the generated

motion does not have a risk of collision to the obstacle. As a result, the UAV

converges and follows the original path without collision as shown in Figure 4.4d.

This difference can be also shown by position data in plots as Figure 4.5 which

are snapshots of animated plots at the moment that the flight is interrupted. The

blue line represents the desired path, the orange line represents the executed path,

and the red line represents the trace until the snapped moment. The setpoint
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Figure 4.6: Real-world experiment setup for the intermittent disturbance

of the trajectory tracking control and the reference point of the path following

control are marked in red dots. From Figure 4.5a and 4.5b, we can see that

during the interruption of flight, while the setpoint of the trajectory tracking

control proceeds along the desired path, the reference point of the path following

control stays on the closest point until the UAV returns to the desired path.

Consequently, as displayed in the orange line, UAV collides to the obstacle and

falls in the trajectory tracking control, and on the other hand, UAV returns to

and follows the desired path in the path following control.

4.1.2 Real-world experiment

The setup for real-world experiment is shown in Figure 4.6. The scenario is

same as that of Gazebo simulation which is described in section 4.1.1. The only
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(a) Wind interrupts the
flight

(b) Setpoint keeps moving

(c) UAV tries to track the
setpoint

(d) Collision occurs

Figure 4.7: Real-world experiment results for the trajectory tracking control
under the intermittent disturbance

difference is that a flight altitude is higher than a height of the obstacle to avoid

real collision for safety. First, the result of trajectory tracking control is shown

in Figure 4.7. Similar to the result of the Gazebo simulation, the setpoint keeps

moving (Figure 4.7b) while the flight is being interrupted so that the UAV flies

above the obstacle (Figure 4.7c), which could be the collision if the flight altitude

was lower than the height of the obstacle (Figure 4.7d).

On the other hand, as shown in Figure 4.8, the new reference point is set to the

closest point on the desired path from the current position of the UAV. Therefore,
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(a) Wind interrupts the
flight

(b) Reference point is
recomputed

(c) UAV flies to
new reference point

(d) Converge to and
follow the original path

Figure 4.8: Real-world experiment results for the path following control
under the intermittent disturbance

similar to the result of the Gazebo simulation, UAV was able to converge to and

follow the original path without colliding to the obstacle.

Also, similar to the Figure 4.5, computations of the setpoint and the reference

point can be seen in Figure 4.9. In trajectory tracking control, the setpoint

proceeds to the opposite side of the circular path, and due to the influence of the

wind, the UAV flies to y direction where the obstacle exists to track the setpoint.

In path following control, the reference point is recomputed depending on the
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(a) Trajectory tracking (b) Path following

Figure 4.9: Setpoint and reference point under the wind disturbance
in real-world experiment

current position, and thus, the UAV converges to and follow the original path

after the wind is turned off.

4.2 Intermittent Estimation

For verification under the intermittent estimation, we implemented only the

Gazebo simulation as the following scenario. First, we assumed the situation

in which the UAV is commanded to patrol the warehouse-like environment with

SLAM. Second, we also assumed that the pose estimation from SLAM is incor-

rect due to the perceptual aliasing at the beginning. The perceptual aliasing is

a phenomenon that different places generate a similar visual footprint so that



Chapter 4. Results 33

Figure 4.10: Gazebo simulation setup for the intermittent estimation

it causes the SLAM to result in incorrect estimation [24]. Third, due to the in-

correct initial pose, the UAV enters to the wrong corridor. Here, the desired

corridor is the second corridor and the wrong corridor is the third corridor from

the top. Finally, the correction of the estimation occurs in the middle due to

some distinguishable features. Under this scenario, we observed the difference of

the trajectory tracking control and the path following control. The simulation

setup is shown in Figure 4.10.
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(a) Enters to the wrong
corridor

(b) Correction occurs

(c) UAV tries to track the
setpoint

(d) Collision occurs

Figure 4.11: Gazebo simulation results for the trajectory tracking control
under the intermittent estimation

First, the result of the trajectory tracking control is shown in Figure 4.11. At

the beginning, while the ground truth is in the second corridor, estimated pose

is in the third corridor due to the perceptual aliasing. As a result, the UAV

flies to the left which is the patrol direction of the third corridor as shown in

Figure 4.11a. When the correction occurs, the estimated pose becomes consistent

with the ground truth (Figure 4.11b). However, the setpoint is still in the third
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(a) Enters to the wrong
corridor

(b) Correction occurs

(c) Reference point is
recomputed

(d) Converge to and
follow the new path

Figure 4.12: Gazebo simulation results for the trajectory tracking control
under the intermittent estimation

corridor and keeps moving to the left, which makes the UAV flies to the third

corridor through the obstacles and the collision occur (Figure 4.11c-4.11d).

Next, the result of the path following control is shown in Figure 4.12. Unlike the

case of the trajectory tracking control, the reference point is recomputed to the

closest point from the corrected pose estimation so that the new reference point

is on the patrol path of the second corridor (Figure 4.12b-4.11c). As a result, the
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(a) Trajectory tracking (b) Path following

Figure 4.13: Setpoint and reference point under the estimation update
in Gazebo simulation

UAV follows the new path segment in the desired direction without any collision

(Figure 4.12d).

Finally, snapshots of animated position plots are attached in Figure 4.13. Here,

the blue line represents the entire desired path, the green and the red lines

represent the trace of the ground truth and the estimated pose until the snapped

moment, and the purple dot represents the setpoint in the trajectory tracking

control and the reference point in the path following control. Also, the orange line

represents the entire estimation so that we can know that the correction occurs

where the orange line jumps from the second corridor to the third corridor. From

Figure 4.13a, we can see that the setpoint keeps moving in the third corridor

after the correction occurs. As a result, the UAV collides to the obstacles and

falls which can be also known by the falling green line. On the other hand, the
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reference point is reset to the path segment in the second corridor as shown in

Figure 4.13b, which prevents the collision and makes the UAV fly in the right

direction.
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Conclusion and Future Work

5.1 Conclusion

In this paper, we presented the velocity field-based path following control system

for the safe flight of UAV. The system consists of the velocity field generation and

the velocity tracking control. For the velocity field generation, we theoretically

extend the existing work [17] by separating the traversal coefficient and the

convergence coefficient. Then, we showed that the coefficients separation does not

have any effect on the convergence analysis. We also showed that the convergence

property is independent of the traversal coefficient, which makes our method

more flexible and applicable than the existing method. For the velocity tracking

control, we used the Geometric Tracking Control [22] with the modifications such

38
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as the addition of the integral term and the separation of controller gains to xy

and z components.

To verify that our method is safer than the trajectory tracking control which is

the most common method for the autonomous flight, we conducted the Gazebo

simulations and the real-world experiment under the intermittent disturbance

and estimation. We used the Gazebo’s Typhoon H480 hexa-rotor model for the

simulations and the custom hexa-rotor UAV for the experiment. In the inter-

mittent disturbance scenario, the UAV safely followed the desired path after the

wind had turned off in the path following control, while the collision occurred in

the trajectory tracking control. Also when the correction of the pose estimation

occurred in the intermittent estimation scenario, the UAV followed the new path

segment in the path following control, while the collision occurred again in the

trajectory tracking control.

5.2 Future Work

In future works, we intend to applicate our method to wider area by present-

ing the coefficient planning method. One example of the possible applications is

AGV-like collision avoidance. The AGV follows the desired path marked by such

as wires, radio waves, or lasers as shown in Figure 5.1 [25]. When the obstacle is

on the path so that the AGV can not proceed, different from AMR, it stops and
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Figure 5.1: Automated guided vehicle (AGV)

waits until the obstacle is removed. Based on the same idea, we can simply im-

plement the collision avoidance by reactive coefficient planning without complex

algorithms.

To show that our method can be applicated in such situation, we conducted

simple simulation that changes the flying direction during the flight by changing

the traversal coefficient. The simulation result is shown in Figure 5.2. First, we

commanded the UAV to fly from (0.0, 0.0, 1.2) to (10.0, 0.0, 1.2) with the value

of traversal coefficient ηtrav = 0.2. Then we changed the traversal coefficient to

ηtrav = −0.2 at the time of 15s when it arrived to (3.0, 0.0, 1.2). As we can see in

the plot, the UAV successfully changed direction and flew backward although the
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Figure 5.2: Position plot with the traversal coefficient transition

traversal coefficient was changed discontinuously. This result indicates that our

method can be applicated for various purposes using reactive coefficient planning.
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요약

본 논문에서는 간헐적 외란 및 추정 갱신 하에서도 드론의 안전 비행을 수행하기

위한 velocity field 기반 path following 기법을 제시한다. 특정 시간에 특정 상태를

가져야하는 trajectory tracking기법과는달리, path following기법은목표경로에

수렴및추종하는것을목표로한다.이러한차이는바람이나 SLAM의 loop closure

같은간헐적외란및추정갱신환경에서, path following기법이더욱안전한특성을

보이도록 한다. Velocity field 생성에는 기존 알고리즘에서 계수를 분리하는 이론적

확장을 통해 보다 널리 적용 가능한 알고리즘을 제안한다. 또한, 다양한 상황을 가

정한 시뮬레이션 및 실험을 통해 본 논문에서 제안하는 시스템의 안전성 및 활용성

검증을 진행하였다.

주요어: Unmanned aerial vehicle (UAV), Autonomous flight, Path following,

Velocity field

학번: 2021-21855
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던 민성이형, 재우형, 석진이, 석현이, 현수 모두 감사하다는 말씀드리고 싶습니다.

이 외에도 많은 교류는 못했지만 많은 것을 배우고 깨닫게 해준 다른 동료분들에게

도 감사드리고, 특히 학생들이 연구에만 집중할 수 있도록 큰 도움을 주신 주남희

선생님에게도 감사의 말씀을 전합니다.

무엇보다도 항상 기도와 사랑으로 대학원 생활과 취업 활동에 힘이 되어 주셨던

외할머니, 어머니, 이모, 외삼촌을 비롯한 가족들께 감사드리고 사랑한다는 말을

전합니다. 헌신적인 사랑과 지지 없이는 석사학위와 취업의 결실을 맺지 못했을

것입니다.
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