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Abstract 
 

Robust Pose Estimation using LiDAR for 

Autonomous Vehicles on Urban Roads 
 

 

Woojin Kwon 

Department of Mechanical Engineering 

The Graduate School 

Seoul National University 
 

This paper presents a method for tackling erroneous odometry estimation 

results from LiDAR-based simultaneous localization and mapping (SLAM) 

techniques on complex urban roads. Most SLAM techniques estimate sensor 

odometry through a comparison between measurements from the current and the 

previous step. As such, a static environment is generally more advantageous for 

SLAM systems. However, urban environments contain a significant number of 

dynamic objects, the point clouds of which can noticeably hinder the performance 

of SLAM systems. As a countermeasure, this paper proposes a 3D LiDAR SLAM 

system based on static LiDAR point clouds for use in dynamic outdoor urban 

environments. The proposed method is primarily composed of two parts, moving 

object detection and pose estimation through 3D LiDAR SLAM. First, moving 

objects in the vicinity of the ego-vehicle are detected from a referred algorithm based 

on a geometric model-free approach (GMFA) and a static obstacle map (STOM). 

GMFA works in conjunction with STOM to estimate the state of moving objects in 
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real-time. The bounding boxes occupied by these moving objects are utilized to 

remove points corresponding to dynamic objects in the raw LiDAR point clouds. 

The remaining static points are applied to LiDAR SLAM. The second part of the 

proposed method describes odometry estimation through referred LiDAR SLAM, 

LeGO-LOAM. The LeGO-LOAM, a feature-based LiDAR SLAM framework, 

converts LiDAR point clouds into range images, from which edge and planar points 

are extracted as features. The range images are further utilized in a preprocessing 

stage to improve the computation efficiency of the overall algorithm. Additionally, a 

6-DOF transformation is utilized, the model equation of which can be obtained by 

setting a residual to be the distance between an extracted feature of the current step 

and the corresponding feature geometry of the previous step. The equation is 

optimized through the Levenberg-Marquardt method. Furthermore, GMFA and 

LeGO-LOAM operate in parallel to resolve computational delays associated with 

GMFA. Actual vehicle tests were conducted on urban roads through a test vehicle 

equipped with a 32-channel 3D LiDAR and a real-time kinematics GPS (RTK GPS). 

Validations results have shown the proposed method to significantly decrease 

estimation errors related to moving feature points while securing target output 

frequency.  
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 Introduction 

 

1.1. Research Motivation 

The rapid development of autonomous driving technology has allowed its 

application to complex environments over the years. Following the progress in this 

field, standards for autonomous vehicles from renowned programs, such as the 

DARPA Urban Challenge, are becoming increasingly meticulous, requiring more 

complex motion planning algorithms for the vehicles. In order to develop advanced 

motion planning algorithms for autonomous vehicles, one can say that accurate 

localization of the ego-vehicle is of the utmost importance. So far, the GPS has stood 

as the simplest solution to acquire the pose of the ego-vehicle. However, GPS has 

shown degradation in localization performance depending on the surrounding 

environment, particularly in urban environments such as tunnels and near high-rise 

buildings. The reduction of GPS signals in such areas has proven to severely affect 

the accuracy of the estimated pose, resulting in significant safety concerns. 

The simultaneous localization and mapping (SLAM) technique has been 

proposed to assist localization capabilities and reduce dependence on GPS. So far, 

SLAM has shown numerous use cases on various platforms such as indoor robots 

and autonomous vehicles. SLAM estimates odometry by observing changes in 

sensor measurements, forming a map of the global coordinates. The map is then used 

to correct the estimated pose obtained through accumulated odometry when the 

sensors detect a point that has been traversed before, a process known as loop-closure. 

Most implementations of SLAM form a system that accumulates past states for this 
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loop-closure process, and hence a preference for graph-based SLAM exists for its 

efficient state management [1]. 

Furthermore, most SLAM algorithms carry the assumption that the sensors 

move around in environments without dynamic objects as SLAM works by matching 

measurements from the surrounding environment. As such, SLAM shows the best 

performance in static environments, where dynamic objects are treated as noise and 

outliers that negatively affect its performance [2, 3]. This is further intensified in 

feature-based SLAM where the odometry is estimated through the extraction of 

specific features from a LiDAR point cloud. Feature-based SLAM shows improved 

computation efficiency due to the reduced number of processed points but is also 

susceptible to faults in estimation if a large amount of these extracted features 

belongs to moving objects.  

This research has the primary purpose of reducing the effect of dynamic objects 

in feature-based SLAM, ultimately preventing disruptions in estimations. The 

proposed method forms a static point cloud by referring to an algorithm meant for 

detecting and tracking dynamic objects in the LiDAR point cloud, which acts as an 

input to LiDAR SLAM to better estimate the pose of the ego-vehicle. 
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1.2. Previous Research 

1.2.1. Moving Object Detection 

To date, a wide variety of methods have been utilized to detect moving objects 

with LiDAR. Of these, the pointwise tracking method is one of the most intuitive 

methods which works by finding the corresponding points in successive LiDAR 

scans. Kaestner et al. [4] utilized an unsupervised approach to estimate the states of 

each point. However, pointwise tracking has its issues with regard to real-time 

operations. Pomerleau, Francois, et al. [5] have made claims that the method shows 

ideal performance for stationary sensors only. Next, geometric model-based 

approach models have also been suggested, which model the motion and shape of 

target objects through a probabilistic method. A single Bayes filter is applied to 

estimate each dynamic state of a vehicle along with a simultaneous update of the 

vehicle’s geometric shape through an efficient Rao-Blackwellized particle filter 

(RBPF) [6]. He, Mengwen, et al. [7] have shown similar usage of RBPF to estimate 

the geometry of a vehicle with the addition of a scaling series particle filter (SSPF) 

to ensure efficient motion estimation and geometry fitting. Another method for 

detecting moving objects is through the usage of a map developed with a LiDAR 

point cloud [8, 9]. Pagad. S [9] proposed an algorithm that showed a simultaneous 

utilization of a model-based and a map-based method. The algorithm transforms 

input point clouds into voxels, volumes of space, which are then structured as octrees 

[10, 11]. Additionally, a neural network model has been implemented to initialize 

object and non-object points in the point cloud at a preprocessing stage. The 

occupancy probability of each grid is then updated to form an occupancy map of the 
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static environment. Finally, this map is utilized as a filter to detect moving objects 

within the LiDAR point cloud. Again, this method carries the same issue with regard 

to real-time operations as occupancy maps must be pre-built with repeatedly sampled 

data to increase its accuracy. 

The aforementioned geometric model approaches provide a good platform for 

classifying dynamic objects but hold reduced weight when it comes to removing 

moving features in SLAM. As long as accurate information regarding the location, 

state, and the location of the corresponding points is given, the present study can 

fulfill its primary goal. As a method to track moving objects by forming real-time 

static maps without the use of geometric models, literature regarding geometric 

model-free approaches were reviewed [12]. Simply put, the algorithm is comprised 

of a complimentary operation between STOM, a map consisting of static obstacles, 

and the tracking of moving objects. This method guarantees real-time operations 

while providing performance that matches that of pointwise tracking. Furthermore, 

sets of rigid bodies (SPRB) [13] are used to track a variety of objects without 

categorizing the objects’ geometric characteristics. For this reason, GMFA was 

selected as the main method for obtaining static LiDAR point clouds in this paper. 

Further details are given in the methodology section.  

 

1.2.2. SLAM 

1.2.2.1. Visual SLAM 

Visual SLAM can be generally classified into 3 types: Feature-base, Direct-

based. And RGB-D camera-based SLAM. Firstly, feature-based SLAM is used to 
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estimate odometry through feature matching with vision camera data from the 

current and the previous step. This method has been extensively researched, giving 

rise to multiple feature extraction methods for the image plane, such as the Harris 

corner, SIFT, SURF, FAST, and ORB [14-17]. The first feature-based visual SLAM, 

MonoSLAM, was developed by Davison et al. [18] with a monocular camera. 

MonoSLAM utilizes an extended Kalman filter (EKF) to estimate 6-DOF camera 

odometry and the 3D positions of feature points within an image. On a similar note, 

Chiuso et al. [19] utilized the EKF to estimate a sensor motion propagating map and 

state uncertainties This method, however, is inapplicable to long-distance motion and 

impractical for handling multiple features simultaneously as a simple gradient 

descent optimization is used to match features. Hence, the main contribution of 

MonoSLAM comes from its active search [20] for features and the simplification of 

propagation for real-time operations. Here, the linear and angular velocities are 

estimated to be elements of a state to predict and model motion. In this process, 

constant velocity between steps is assumed, and updates are performed through a 

point mass model. Measurement updates are then made by matching features from a 

new image with those of the previous step. As is with monocular cameras, depth 

information regarding the features is unavailable. To cope with this missing 

information, a map and feature initialization process is first carried out with an object 

of known size to estimate the depth of the features. MonoSLAM has shown real-

time operation capabilities for environments with a small number of features, but 

beyond a certain increase in the environment and the size of the state vector, the real-

time operation cannot be guaranteed.  
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To reduce the computational cost of MonoSLAM, Klein Georg and Murray 

David [21] developed an algorithm known as PTAM using a multi-thread to perform 

feature tracking and mapping in parallel. PTAM also introduced a keyframe structure; 

an input image is designated as a keyframe if there is a large disparity between the 

input image and the previous keyframe. Another advantage PTAM shows over 

MonoSLAM is bundle adjustment (BA for odometry estimation which allows PTAM 

to handle multiple feature points [22]. Overall, the above methods allow PTAM to 

guarantee real-time BA optimization. Upon the introduction of PTAM, most visual 

SLAM methods nowadays utilize multi-threads.  

As an extension of PTAM, ORB SLAM [23] was developed, which is currently 

one of the most prominent feature-based visual SLAM methodologies. Similar to 

that of PTAM, this method also utilizes BA, multi-threads, and keyframe selection 

for odometry estimation through a monocular camera. However, ORB SLAM brings 

additional methods that contribute to this algorithm: 

1) Selection of an ORB feature [17] for all system tasks. In contrast to the patch 

search of PTAM for finding a feature point in a map, an ORB feature is 

selected instead as a matching target which is used for all system tasks. 

2) The usage of a covisibility graph and an essential graph for real-time 

tracking, mapping, and loop-closing. In the covisibility graph, keyframes act 

as a node while the edge between two nodes is denoted as covisibility 

information, which indicates the number of observations shared in the same 

environment. The managed connections within a covisibility graph are local, 

implying that tracking and mapping processes are independent of the global 

map size. On the other hand, an essential graph corresponds to the global 
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map and contains all keyframes and subgraphs from the covisibility graph. 

Hence, a minimal number of essential connections are used to span a tree 

structure allowing for an effective and efficient operation of loop closure and 

pose graph optimization.  

3) Automatic map initialization that does not require human intervention. Two 

models are utilized for the automatic initialization: Homography for a planar 

scene and a fundamental matrix for a non-planar scene. These two models 

allow for efficient odometry computation regardless of scenes. A heuristic 

approach is adopted to obtain scores for the two models, of which the one 

with a high score is utilized for motion recovery and map construction 

through BA. 

Contrary to the PTAM, ORB SLAM is capable of achieving accurate and real-

time results in a wide variety of environments. Furthermore, follow-up research for 

the extension of ORB SLAM to stereo and RGB-D cameras is currently available 

[24]. 

Moving on, direct-based SLAM uses all image pixels available to optimize 

odometry and is commonly referred to as a feature-less approach. LSD-SLAM [25] 

currently stands as one of the representative direct-based SLAM methods for 

monocular cameras. First, input images and a 7-DOF pose are tracked as pose graphs 

and keyframes in a 3D global environment. This environment is then reconstructed 

semi-dense maps [26], formed through a probabilistic method. Hence, two 

keyframes with the closest match to that of the reconstructed 3D map are used to 

estimate odometry considering a scale drift of the input images [27]. Even with the 

excessive computational load arising from the calculation of photometric errors for 
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all pixels within an image, LSD-SLAM is still capable of real-time operation through 

a semi-dense approach. 

RGB-D SLAM, on the other hand, can utilize a 3D environment as an RGB-D 

camera is capable of providing not only a 2D image but also depth information for 

each pixel, contrary to that of a monocular camera which presents issues regarding 

scale Depth information is typically collected through a light time-of-flight or a 

structured light approach [28]. The extensive progress made in developing RGB-D 

cameras over the years has drastically reduced its cost, along with its portability 

allowing for further research to be conducted with regards to RGB-D SLAM. Since 

3D information for pixels are available, methods such as iterative closest point (ICP) 

are used in matching processes to estimate odometry. Coupling these methods with 

the RGB values has resulted in noticeable performance improvements for SLAM. 

In this regard, Newcombe et al. [29] developed KinectFusion, a method that 

utilizes voxelization to construct a 3D environment with a Kinect camera [30], the 

first RGB-D camera developed by Microsoft. In this research, the 6-DOF sensor pose 

is estimated by matching consecutive voxel spaces using the ICP method. In this 

research, the 6-DOF sensor pose is estimated by matching consecutive voxel spaces 

using the ICP method. However, KinectFusion was developed for not only tracking 

the location and motion of robots and autonomous vehicles, as is the case for SLAM,  

but also for user-interfacing through 3D modeling. As such, the KinectFusion 

algorithm also contains methods for object segmentation and rendering. Similar 

algorithms that conduct 3D object segmentation were developed by Salas-Moreno et 

al. [31] and Tateno et al. [32]. These algorithms utilize 3D objects recognized within 

the environment to refine the map and sensor odometry. Alejo Concha and Javier 
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Civera [33] developed RGBDTAM, a fusion of RGB-D SLAM with direct-based 

SLAM. RGBDTAM optimizes sensor odometry by minimizing a robust loss 

function which is a weighted sum of photometric error and inverse depth error. 

Qinxuan Sun et al. [34] proposed a seamless fusion of plane and edge features, aptly 

named Plane-Edge-SLAM. In this algorithm, constraints for camera motion arising 

from the plane and edge features are first defined. Next, these constraints are used 

for a seamless fusion process, achieving robust and accurate motion estimation. 

Unlike point features such as SIFT, SURF, and FAST, plane features have 

demonstrated high tolerance of changes in illumination and better performance in 

areas lacking in texture [34, 35]. 

So far, a variety of visual SLAM methods have been discussed, which are cost-

effective approaches to utilizing SLAM. However, limitations exist when it comes 

to estimating exact 3D motion with 2D images. While RGB-D cameras have allowed 

for 3D measurements, they are still susceptible to illumination and perspective 

changes, with limited detection ranges when compared to that of LiDAR sensors. 

 

1.2.2.2. LiDAR SLAM 

LiDAR sensors boast a long detection range, wider field of view, dense 

information, and are robust to environmental factors when compared to cameras. As 

such, LiDAR-based SLAM has been actively researched over the years. However, 

due to the large number of points scanned, distortion can occur from a single scan of 

a LiDAR if the sensor is moving, unless the sampling rate is overwhelmingly higher 

than its motion. Therefore, most LiDAR SLAM algorithms incorporate motion 

compensation for more accurate results, particularly for algorithms designed to work 
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on high-speed platforms such as autonomous vehicles. This compensation is 

typically done through a motion model with measurements from the IMU or a 

GPS/INS [36-38]. Barfoot et al. [37] simply approached this problem with a constant 

velocity model and a gaussian process. Furgale et al. [38] took a different approach 

by using B-spline functions for modeling sensor motions. Bosse et al. [39] designed 

Zebedee, an implementation of SLAM using a 2D LiDAR and the IMU, to be 

mounted on various platforms or even be handheld. In Zebedee, a surface element 

(surfel), containing a position and a normal vector, is utilized to match scans and 

estimate odometry. Raw point cloud data is clustered into the form of a multi-

resolution voxel grid, from which a surfel is computed for clusters with sufficient 

points. 6-DOF odometry is initialized with IMU measurements before estimation is 

carried out through a surfel-to-surfel matching process, coupled with IMU deviation 

and an M-estimator based on a Lorentzian function [40]. Additionally, Zebedee 

utilizes measurement latency information to synchronize LiDAR and IMU 

measurements to obtain more accurate estimation results. However, their paper still 

suggests that improvements in accuracy are required and real-time implementation 

is currently difficult. Currently, one of the most well-known LiDAR SLAM methods 

is LOAM, developed by Zhang and Singh [41]. LOAM utilizes raw LiDAR point 

clouds in the form of a range image [42] that shares similarities with a projected 2D 

image. Within the range image, the distance between continuous points within the 

same row is used as a metric to extract edge and planar points. These points are then 

used as feature points for sequential matching. Next, the distance between the 

geometries (edge lines and planar patches), formed by the feature points in the 

previous step, and the feature points of the current step undergo a Levenberg-
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Marquardt (L-M) optimization process [43] to estimate LiDAR odometry. The 

odometry and feature points are stored in a KD-tree for later use in a map 

optimization sequence which includes loop-closure. To date, LOAM has inspired 

many and birthed multiple variations of itself. Shan and Englot [44] considered the 

fact that platforms on which LiDARs are installed typically move on the ground. 

With this information, further developments were made on LOAM through a ground-

optimized approach, known as LeGO-LOAM. LeGO-LOAM was built on a similar 

platform to LOAM, with the introduction of several methods that improve 

computational efficiency and accuracy: 

1) Segmentation of ground and non-ground points. Within the developed 

LiDAR range image, a column-wise ground labeling process [45] is carried 

out to segment ground points and non-ground points. From the ground 

points, only planar features are extracted whereas only edge features are 

extracted from the non-ground points. This process significantly reduced 

the overall number of calculations required.  

2) Object-wise segmentation. A range image-based segmentation approach 

[46] was adopted to segment each object within the point cloud of a range 

image. For each segment, viable objects contain sufficient points for feature 

extraction, whereas small objects and sensor noise only contain a small 

number of points. Using this information, only feasible features are utilized, 

improving the estimation accuracy for sensor motion. 

3) 2-step optimization for 6-DOF sensor motion. A 2-step Levenberg-

Marquardt optimization is carried out to obtain 6-DOF sensor motion in 3D 

coordinates. Optimization is first done using planar features, followed by 
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optimization of edge features. The planar features and edge features each 

contribute to separate components of the transformation. 

This method utilizes a reduced number of features to achieve improved accuracy 

within 60% of the computation time required for LOAM. Other variations of LOAM 

include the LiO-SAM [47] which uses the IMU to correct distortions in LiDAR data 

while estimating and rejecting IMU bias to improve performance. Additionally, GPS 

measurements were adopted into the factor graph [48], a back-end of the estimation 

process, to optimize sensor motion. A common feature for the methods listed so far 

was all SLAM techniques based on a single LiDAR. Consequently, it follows that 

multiple LiDARs can be used to improve measurement density over a wider area to 

tackle the issue of point sparsity. However, the issue with such a method arises from 

LiDAR calibrations since the exact position of points is required for the effective 

implementation of SLAM. Jiao et al. [49] proposed M-LOAM, a method for the 

robust implementation of LiDAR SLAM, to handle the aforementioned issues with 

multi-LiDAR setups. Their research included online and self-calibration of multiple 

LiDARs into a single coordinate system by checking for calibration convergence 

during the odometry estimation process. However, LiDAR SLAM ultimately 

required feature points, which are all negatively affected by moving features from 

dynamic objects. In developing a solution to this issue, LeGO-LOAM was selected 

among the various LiDAR SLAM algorithms for its simplicity and performance.  
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1.3. Thesis Objective and Outline 

The primary objective of this research is to develop a LiDAR SLAM system 

that counteracts the performance degradation caused by dynamic objects in feature-

based LiDAR SLAM through a real-time removal of moving objects in LiDAR point 

clouds. From the perspective of a sensor, it is difficult to distinguish between 

scenarios where a LiDAR is moving forwards in a static environment and scenarios 

where an object is moving toward a stationary LiDAR. In such scenarios, LiDAR 

odometry estimation techniques that assume static environments are prone to failure 

cases. For such cases, it is advantageous to first remove moving objects from the raw 

LiDAR point cloud to construct a static point cloud for use in LiDAR SLAM. Figure 

1 depicts the overall structure of the proposed algorithm. 

The current paper is structured as follows. Chapter 2 introduces the overall 

structure and methodology adopted in the proposed algorithm. The perception 

modules used for removing dynamic objects and LeGO-LOAM, a practical LiDAR 

SLAM method, are explained in detail. Furthermore, the construction process for a 

static LiDAR point cloud through the time compensation of outputs from GMFA is 

included. Chapter 3 details the environment and results of validation tests conducted 

for the proposed method. Manual driving data obtained with an actual vehicle 

equipped with sensors on urban roads were used. Failure cases for conventional 

LiDAR SLAM methods arising from moving objects within the dataset are compared 

qualitatively with the results of the proposed method. 6-DOF pose errors referred to 

from an RTK GPS and computational time were selected as primary metrics for 

comparison. Finally, chapter 4 provides a conclusion and future prospects of this 

study.  
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 Methodology 

 

2.1. Moving Object Detection & Rejection 

A referral was made to a method implementing GMFA and STOM [12] in this 

paper in order to achieve real-time removal of moving objects in a LiDAR point 

cloud. This section describes the detailed process of the referred method and sections 

that were utilized in the proposed algorithm. 

 

2.1.1. Static Obstacle Map 

STOM denotes a map comprised of 2 grids, each of which can have one of two 

states: Static and Unknown. First, each grid is initialized with identical static 

probabilities. Next, the STOM of the previous step (�̂�𝑘−1) is transformed into the 

frame of the current step using a point mass model that incorporates the velocity and 

yaw rate of the ego-vehicle. Figure 2 visualizes the prediction for the current step’s 

STOM (�̂�𝑘|𝑘−1) based off the transformed STOM (�̅�𝑘) of the previous step. Grids 

�̂�𝑘−1
𝑖  [𝑖 = 1,2,3,4] of �̂�𝑘|𝑘−1 are selected if the distance with the center of �̅�𝑘

𝑗
 is 

less than √2𝑑𝑔𝑟𝑖𝑑. Then the prediction probability of the j-th grid can be expressed 

as the weighted average shown in equation (1).  
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Using the states of LiDAR points obtained from GMFA, the measurement for 

each grid can be classified into one of four types: Free, Unclassified, Moving, and 

Static. Following this, a measurement update is carried out using the 1st order 

Markov assumption. The update equation is represented as the product of the 

prediction STOM probability and the experimentally predetermined likelihood. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐿 =∑𝑙𝑖
−1

4

𝑖=1

 

𝑝(�̅�𝑘
𝑗
) =

{
 

 ∑
𝑙𝑖
−1

𝐿
𝑝(�̂�𝑘−1

𝑖 )   (𝑙𝑖 ≠ 0) 

4

𝑖=1

𝑝(�̂�𝑘−1
𝑖 )        (𝑙𝑖 = 0)

 

(1) 
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Figure 2. Current STOM prediction based off previous step. [12] 

 

Figure 3. States of target in GMFA. 
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2.1.2. Geometric Model-Free Approach 

GMFA detects moving objects and tracks their states using candidates of 

moving points acquired from STOM. Figure 3 depicts the target states of GMFA. 

The state estimation of GMFA is conducted in two coordinates: the global coordinate 

frame (𝑂𝑥𝑦𝑔) and the local coordinate frame of the ego-vehicle at time 𝑡 (𝑂𝑥𝑦𝑡
𝑒). 

The state of the 𝑖 -th track in the 𝑘  step (𝑜𝑘
𝑖 )  is comprised of 8 components, 

detailed in equation (2). The SPRB (𝑆𝑖) is the accumulated LiDAR point cloud of 

the corresponding track for 4 steps, where the mean position of 𝑆𝑖 is denoted by 

𝑝𝑥,𝑖 and 𝑝𝑦,𝑖 in 𝑂𝑥𝑦𝑡
𝑒. 𝜃𝑖 represents the yaw angle of the track in 𝑂𝑥𝑦𝑡

𝑒 frame. 

𝑣𝑖, 𝛾𝑖, 𝑎𝑖, and �̇�𝑖 indicate the longitudinal velocity, yaw rate, acceleration in the 

direction of 𝑣𝑖, and the angular acceleration at 𝑂𝑥𝑦𝑔, respectively. 

 

GMFA clusters candidates of moving points through a distance-based clustering 

method [50]. Each cluster contains a 4-dimensional feature vector where each 

dimension corresponds to the mean positions of the comprised points, the maximum, 

and the minimum eigenvalue of the covariance. Here, a correspondence between the 

cluster of the previous step and the current step is observed, followed by a 

compensation of the previous step’s cluster (𝑍𝑘−1) into the current coordinate frame 

of the ego-vehicle. Next, the difference between the feature vectors of the current 

step’s cluster (𝑍𝑘 ) and the compensated cluster of the previous state (�̅�𝑘−1 ) is 

computed, the norm of which is compared against a specific value. If the norm of the 

𝑜𝑘
𝑖 = [𝑆𝑖,  𝑝𝑥,𝑖 ,  𝑝𝑦,𝑖,  𝜃𝑖,  𝑣𝑖,  𝛾𝑖 ,  𝑎𝑖 ,  �̇�𝑖] (2) 
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difference is smaller than a set value, 𝑍𝑘 is initialized as a new target. The tracks 

states are then initialized through changes in position and orientation calculated by 

an ICP matching process with 𝑍𝑘  and �̅�𝑘−1 . If the resulting track remains 

indefinitely or discontinuity arises within the correspondence of the tracks, the 

overall process may become increasingly inefficient. Hence, a confidence index is 

assigned to each track in GMFA. The confidence index of all tracks is initialized as 

2, which increases by 1 every time the track is associated with a new measurement, 

up to a maximum of 50. If clusters that correspond to existing tracks are not found 

within 2 consecutive LiDAR scans, the value of the index is reduced by 30%. As this 

process is repeated, if the confidence index for any track is smaller than, or equal to, 

8, the index is assigned a new value of 3. Finally, any tracks with a confidence index 

smaller than 2 are removed.  

If a correspondence between the tracks of the previous and current step can be 

formed, a state update is conducted for each track that has correspondence. As for 

the update method, an EKF and particle filter-based method was suggested by H. 

Lee et al. [12], of which the EKF was adopted for this paper. The adopted EKF 

method assumes gaussian distribution and utilizes comparatively simple calculations 

which is advantageous for the LiDAR odometry estimation at a later stage. The state 

of the track is divided into the 𝑆𝑖 and the dynamic state (𝑥𝑖) as follows: 

 

 

 

𝑜𝑘
𝑖 = [𝑆𝑖, 𝑥𝑖] 

𝑥𝑖 = [𝑝𝑥,𝑖, 𝑝𝑦,𝑖, 𝜃𝑖, 𝑣𝑖, 𝛾𝑖 , 𝑎𝑖 , �̇�𝑖] 

(3) 
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Next, the prediction update for the dynamic states and covariance is conducted 

through a constant acceleration model and method proposed by Simon [51], detailed 

in equation (4) and (5), where the dynamic states of the ego-vehicle, 𝑣𝑘 and 𝛾𝑘, 

make up the input, 𝑢𝑘. The prediction update for 𝑆𝑖 is conducted through a 2D 

linear transformation method that utilizes the state of the target vehicle, 𝑥𝑘−1
𝑖  and 

𝑢𝑘. Following this, the assigned 𝑛-th cluster in the 𝑘-th step (𝑍𝑘
𝑛) is matched with 

the predicted cluster in the prior step. Finally, the measurement update for the 

dynamic state of each track is done using the mean point and yaw angle values given 

by 𝑍𝑘
𝑛. 
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�̅�𝑘+1
𝑖 = 𝒇𝑘(𝑥𝑘

𝑖 , 𝑢𝑘 , 𝑤𝑘) 

= [𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7]
T 

𝑓1 = 𝑝𝑘
𝑥,𝑖 + 𝑣𝑘

𝑖 cos(𝜃𝑘
𝑖 ) ∆𝑡 − 𝑣𝑘∆𝑡 + 𝑝𝑘

𝑦,𝑖
∙ 𝛾𝑘∆𝑡 

𝑓2 = 𝑝𝑘
𝑦,𝑖
+ 𝑣𝑘

𝑛 sin(𝜃𝑘
𝑛)𝑑𝑡 − 𝑝𝑘

𝑥,𝑖 ∙ 𝛾𝑘𝑑𝑡 

𝑓3 = 𝜃𝑘
𝑖 + 𝛾𝑘

𝑖𝑑𝑡 − 𝛾𝑘𝑑𝑡 

𝑓4 = 𝑣𝑘
𝑖 + 𝑎𝑘

𝑖 ∆𝑡 

𝑓5 = 𝛾𝑘
𝑖 + �̇�𝑘

𝑖∆𝑡 

𝑓6 = 𝑎𝑘
𝑖 +𝑤𝑘

1, 𝑓7 = �̇�𝑘
𝑛 +𝑤𝑘

2 

     𝑤𝑘 ~ (0, 𝑄𝑘) 

(4) 

𝐹𝑘 =
𝜕𝒇𝑘
𝜕𝑥𝑛

|
�̂�𝑘
𝑖
 

=

[
 
 
 
 
 
 

1 𝛾𝑘∆𝑡 −𝑣𝑘
𝑖 sin(𝜃𝑘

𝑖 )∆𝑡

−𝛾𝑘∆𝑡    1 𝑣𝑘
𝑖 cos(𝜃𝑘

𝑖 )∆𝑡

 0    0   1

cos(𝜃𝑘
𝑖 )∆𝑡 0 0    0

sin(𝜃𝑘
𝑖 )∆𝑡 0 0    0

0  ∆𝑡 0    0
0         0               0      
0         0              0     
0         0              0     
0         0              0     

         1           0 ∆𝑡 0 
         0           1 0 ∆𝑡
         0           0 1 0 
         0           0 0 1 ]

 
 
 
 
 
 

 

𝐿𝑘 =
𝜕𝒇𝑘
𝜕𝑤

|
�̂�𝑘
𝑖
 

P̅𝑘+1
𝑖 = 𝐹𝑘P̂𝑘

𝑖𝐹𝑘
𝑇 + 𝐿𝑘𝑄𝑘𝐿𝑘

𝑇  

(5) 
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2.2. LiDAR SLAM 

For this paper, LeGO-LOAM [44] was selected as the method for estimating 

LiDAR odometry and map construction. LeGO-LOAM is a method specialized for 

ground vehicles. LeGO-LOAM is comprised of the following processes: feature 

extraction and segmentation, LiDAR odometry, LiDAR mapping, and 

transformation integration. First, in feature extraction and segmentation, the LiDAR 

point cloud is preprocessed. Next, the LiDAR odometry process performs an 

optimization through the feature mating of two consecutive LiDAR scans. A local 

map is then formed in the LiDAR mapping module and finally, the 6-DOF pose is 

calculated through a correlation with map correction and LiDAR odometry from 

successive scans. The overview for LeGO-LOAM is visualized in Figure 4. 

 

2.2.1. Segmentation 

In this section, the methods used for improving computational efficiency by 

preprocessing LiDAR point clouds are introduced. An input point cloud is first 

projected on a range image of preset resolutions. For this paper, the projected range 

image has a resolution of 1800x32 pixels determined based on the specifications and 

data obtained from one full scan of a Velodyne Ultra Puck LiDAR [52]. Once the 

image projection is complete, column-wise ground labeling [45] is carried out, 

visualized in Figure 5. In Figure 5, the blue box indicates the column comprised of 

a set of points that share the same azimuth among different LiDAR channels. If the 

angle denoted by successive points within a column is smaller than a certain 

threshold, denoted by case 2, the points are considered to be part of the ground. 
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Conversely, if the angle is larger than the threshold, denoted by case 1, the points are 

considered to be part of a standing object. This method is applied to all successive 

points in a column for ground labeling. Here, the computational load for feature 

extraction is reduced as only planar features need to be found for ground-labeled 

points.  

Next, range image-based segmentation [46] is carried out to obtain robustness 

in noisy environments. The segmentation process clusters and labels points from the 

LiDAR point cloud according to the object that they belong to. By limiting the 

minimum number of points in a cluster to 30, sufficient for extracting valid features, 

noisy point clouds can be rejected. The segmentation method is visualized in Figure 

6. Here, 𝑂𝐴̅̅ ̅̅  indicates the straight-line path connecting the sensor (𝑂) with point 

𝐴 and 𝐴𝐵̅̅ ̅̅  indicates the line connecting point 𝐴 with a nearby point B. If the angle 

𝛼  formed by 𝑂𝐴̅̅ ̅̅   and 𝐴𝐵̅̅ ̅̅   is below a certain threshold, the two points are 

considered to be from the same object. The segmentation method is applied 

recursively for adjacent points over all available points.  

 

2.2.2. Feature Extraction 

The features, edge and planar, used in estimating LiDAR odometry for LeGO-

LOAM are identical to that of LOAM [41]. However, as previously mentioned in 

sections 1.2.2.2 and 2.2.1, edge and planar features are extracted from segmented 

points and ground-labeled points respectively. As a metric for determining features 

from a raw point cloud, a measure for smoothness, 𝑐, is used. The smoothness for a 

center point, 𝑝𝑖, of a set of neighboring points, 𝑆, within a single row of a range 
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image is calculated as equation (6). 

 

In equation (6), |𝑆| indicates the total number of points neighboring 𝑝𝑖, while 

𝑟 refers to the distance between the point and the sensor. If the smoothness of point 

𝑝𝑖 is beneath a certain threshold, 𝑝𝑖 is taken to be a planar point. Conversely, if the 

smoothness is higher than the threshold, the point is considered to be an edge feature. 

LeGO-LOAM defines a unit for feature extraction to be a row of a sub-image. Here, 

a sub-image refers to horizontally split portions of the full range image. Additionally, 

there is a limit set for the number of features that can be extracted from one unit. For 

a given unit, let 𝐹𝑒 and 𝐹𝑝 represent edge features with maximum 𝑐 and planar 

features with minimum 𝑐 respectively. Let 𝔽𝑒 and 𝔽𝑝 represent a set of features, 

containing 𝐹𝑒 and 𝐹𝑝, with reduced sharpness and reduced flatness respectively. In 

this paper, values for 𝐹𝑒, 𝐹𝑝, 𝔽𝑒, and 𝔽𝑝 has been set to 2, 4, 20, and 40. As a 

sidenote, 𝔽𝑒 and 𝔽𝑝 are also stored within a KD-tree to be used in scan-matching.  

 

 

 

 

 

𝑐 =
1

|𝑆| ∙ ‖𝑟𝑖‖
‖ ∑ (𝑟𝑗 − 𝑟𝑖)

𝑗∈𝑆,𝑗≠𝑖

‖ (6) 
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Figure 4. Total algorithm overview of LeGO-LOAM. 

 

 

(a) Front view of range image                   (b) Side view of range image 

Figure 5. Column-wise ground labeling. 

 

 

(a) Front view of range image                  (b) Top view of range image 

Figure 6. Range image-based segmentation. 
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2.2.3. LiDAR Odometry and Mapping 

LeGO-LOAM is a feature-based LiDAR SLAM that matches features extracted 

from two consecutive LiDAR scans to estimate odometry. For scan matching, 

features that correspond to the two consecutive scans need to be found. Features in 

the current step that are included in 𝐹𝑒
𝑡  and 𝐹𝑝

𝑡  are matched with the closest 

features included in 𝔽𝑒
𝑡−1  and 𝔽𝑝

𝑡−1 . Here, points contained in all 4 sets are 

compensated through linear interpolation to the timestep corresponding to the instant 

where the input scan ends. Then, the 3 features in 𝔽𝑝
𝑡−1 closest to a planar point in 

𝐹𝑝
𝑡 are found, following which the distance from a patch, formed by these 3 points, 

to the current planar point is calculated. The calculation method is adopted from [41]. 

On the other hand, for edge features, the 2 closest features are found. Again, the 

distance between the prior edge line and the current edge point in 𝐹𝑒
𝑡 is calculated. 

The distances obtained through the calculations can be expressed as a non-linear 

function based on the 6-DOF transformation up to the current time 𝑡 . Since all 

feature points are compensated to a certain timestep, the transformation can be 

estimated through an optimization process that minimizes the calculated distances 

toward zero. LeGO-LOAM utilizes the L-M method for this process, which has been 

altered into a two-step process to improve estimation performance; residuals 

acquired from planar features are optimized for the estimation of 𝑡𝑧 , 𝜃𝑟𝑜𝑙𝑙 , and 

𝜃𝑝𝑖𝑡𝑐ℎ in the local coordinates, whereas the edge features are utilized to estimate 𝑡𝑥, 

𝑡𝑦, and 𝜃𝑦𝑎𝑤. The local coordinates for LeGO-LOAM are depicted in Figure 7. 

After LiDAR odometry, LiDAR mapping is conducted to refine transformation 

at a lower operating rate in multi-thread. LeGO-LOAM saves only extracted features, 
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not entire point clouds. In LeGO-LOAM, only extracted features, not entire point 

clouds, are saved and managed with a KD-tree. A global LiDAR map is obtained by 

choosing appropriate feature sets within a specified range from the current position 

of the LiDAR. Finally, the transformation refinement is done by carrying out another 

L-M optimization over the computed distances between corresponding points of the 

obtained LiDAR map and the current feature set {𝔽𝑝
𝑡 , 𝔽𝑒

𝑡 } . For scenarios where 

locations that have been traversed once are revisited, loop-closure is conducted and 

new constraints are defined through the ICP method.  

 

 

Figure 7. Local coordinates of LeGO-LOAM. 
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2.2.4. LiDAR SLAM with Static Point Cloud 

 In the proposed algorithm, GMFA and LeGO-LOAM work in conjunction to 

estimate LiDAR odometry from a LiDAR point cloud of a static environment. As 

shown by the overview of the entire algorithm in Figure 1, with the interaction 

between STOM and GMFA, cluster points that correspond to moving objects and the 

state values, inclusive of the average position, can be obtained from the moving 

object detection module. Then, the bounding box that envelops the moving object in 

the ego-vehicle’s local coordinates can be obtained. Following this, points in the raw 

LiDAR point cloud that correspond to the bounding box can be removed, resulting 

in the formation of a static point cloud. However, the comparatively slow cycle rate 

of GMFA may be a bottleneck slowing down the overall system. GMFA is capable 

of providing information regarding a moving object up to a rate of 15Hz. On the 

other hand, the cycle rate for the input LiDAR point cloud into the system was set to 

20Hz. The frequency for pose estimation was set to 20Hz as well to guarantee safe 

maneuvers from the motion planning module of an autonomous vehicle. I.e. a delay 

exists for the state information of moving objects detected by GMFA. To overcome 

this issue, LeGO-LOAM and the moving object detection module were designed to 

run in parallel. Furthermore, compensation for the difference in time between the 

moving objects and the raw LiDAR point cloud was added to ensure that detected 

targets were accurately removed. The time compensation was implemented through 

a point mass model utilizing the position, velocity, and angular velocity, all included 

in the state of a moving object with the assumption of constant velocity. Points 

included in the compensated bounding box were removed to obtain the static point 
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cloud, which was given as input to LeGO-LOAM, finally achieving the estimated 6-

DOF pose of an autonomous vehicle.  
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 Experiments 

 

3.1. Experimental Setup 

The test vehicle, equipped sensors, and specifications of the sensors used for 

validation are depicted and summarized in Figure 8 and Table 1. The KIA Motors 

Carnival was selected as the test vehicle, equipped with a 32 Channel Velodyne Ultra 

Puck LiDAR on the top of the vehicle. The aforementioned LiDAR is of a rotary 

type which operates with 360 degrees of range with a horizontal resolution of 0.1 to 

0.4 degrees. The sampling time for the LiDAR can be set to any value between 5 to 

20Hz, where 20Hz was chosen for the experiment. Additionally, a Septentrio AsteRx 

SBi was used as an RTK GPS to obtain the ground truth of the ego-vehicle as a 

reference. To ensure accurate comparisons, a 6-DOF transformation was performed 

to standardize measurements for the LiDAR and RTK GPS measurements to the 

center of the rear axle. The sensors and algorithms shown in Figure 1 were all 

implanted in ROS and C++ under Ubuntu Linux. Experiments for this study were 

conducted in urban environments where multiple moving vehicles were present to 

check if moving objects were effectively removed on LiDAR SLAM. Three 

scenarios were planned. Scenario 1 describes a situation where the ego-vehicle 

drives in a straight line for 250m at 30km/h with multiple vehicles traveling in the 

same direction. Scenario 2 describes a situation where the ego-vehicle remains 

stationary for 50 seconds while multiple vehicles are traveling in both directions of 

a lane. Finally, scenario 3 describes a situation in which the ego-vehicle drives in a 

straight line for 300m at 50kph in a static environment without moving objects.  



 

 

31 

 

 

 

Figure 8. Sensor placement on experimental vehicle. 

 

Table 1. Specifications of experimental components. 

Component/Model Specification 

Test Car/ 

KIA Carnival 

- Type: Recreational Vehicle (RV) 

- Length: 5,155mm 

- Width: 1,995mm 

- Height: 1,775mm 

LiDAR/ 

Velodyne Ultra-Puck 32Ch 

- Channels: 32 

- Update rate: 5-20Hz 

- Horizontal resolution: 0.1-0.4deg 

- Vertical resolution: 0.33deg 

Computer/ 

Neousys Technology 

Nuvo-8108GC 

- CPU: Intel Xeon E-2278GE(8C, 16T, 16M, 3.3GHz) 

- VGA: EVGA NVIDIA RTK 3070 8GB 

RTK GPS/ 

Septentrio AsteRx SBi 

- Tracking signals: GPS (L1, L2), GLONASS (L1, L2), Galileo 

(E1, E5b), BeiDou (B1, B2), QZSS (L1, L2) 

- Horizontal position accuracy: 0.6cm + 0.5ppm (RTK-INS) 

- Vertical position accuracy: 1cm + 1ppm (RTK-INS) 

- Heading accuracy: 0.15deg (RTK-Dual antenna) 
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3.2. Error Metrics 

Once the pose is acquired from the LiDAR odometry estimation process, it is 

aligned to the coordinates of the first synchronized GPS. The first GPS pose obtained 

is set as the origin of the global coordinates. The 6-DOF targets to be compared are 

shown in equation (7), where 𝑅  represents the 3-axis rotation matrix and ∠(𝑅) 

represents a vector obtained through the conversion of the rotation matrix to the 

corresponding axis values. Then, error metrics are calculated for each component of 

the vehicle state through comparisons made with the RTK GPS measurements. 

 

Figure 9. Pose error in local coordinates and global coordinates. 

 

𝕩 = [𝑥 𝑦 𝑧 𝜃𝑥 𝜃𝑦 𝜃𝑧] 

    = [𝑝𝑇 ∠(𝑅)𝑇] 

𝑝 = [𝑥 𝑦 𝑧]𝑇 and ∠(𝑅) = [𝜃𝑥 𝜃𝑦 𝜃𝑧]
𝑇

 
 

(7) 
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The estimation error can be represented as the difference in pose to the 

synchronized pose of the RTK GPS. This difference, between estimated rotation (�̂�𝑖) 

and ground truth (𝑅𝑖), can be represented as follows: 

On the other hand, translation error is computed for 2 coordinates, one in the 

global coordinates (𝑂𝑥𝑦𝑧𝑔) and another in the local coordinates of 𝑖-th ground truth 

pose (𝑂𝑥𝑦𝑧𝑖
𝑙 ), visualized in Figure 9. The corresponding global (∆𝑝𝒊

𝑔
 ) and local 

translation error (∆𝑝𝒊
𝑙) are defined in equation (9) and (10) below. 

Furthermore, there exists another metric for quantifying a trajectory, most 

commonly referred to as the absolute trajectory error (ATE), widely used for its 

calculation simplicity [53]. ATE utilizes root mean square error values in its 

calculations, shown in equation (11). 

∆𝑅𝑖 = �̂�𝑖(𝑅𝑖)
𝑇 (8) 

∆𝑝𝒊
𝑔
= [∆𝑥𝑖

𝑔
 ∆𝑦𝑖

𝑔
 ∆𝑧𝑖

𝑔
]
𝑇

 

∆𝑥𝑖
𝑔
= 𝑥𝑖

𝑔
− 𝑥𝑖

𝑔
 

∆𝑦𝑖
𝑔
= �̂�𝑖

𝑔
− 𝑦𝑖

𝑔
 

∆𝑧𝑖
𝑔
= �̂�𝑖

𝑔
− 𝑧𝑖

𝑔
 

(9) 

∆𝑝𝒊
𝑙 = [∆𝑥𝑖

𝑙  ∆𝑦𝑖
𝑙 ∆𝑧𝑖

𝑙]
𝑇
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𝑁−1

𝑖=0

)

1/2
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(a) Front view image 

    

(b) Raw point cloud         (c) After moving object rejection 

Figure 10. Result of moving object detection and rejection. 
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Figure 11. Front view of ego-vehicle in scenario 1. 

 

 

Figure 12. Global trajectory of scenario 1. 
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3.3. LiDAR SLAM using Static Point Cloud 

Figure 10 depicts the results for the detection and rejection of moving objects. 

The object detection carried out by the simultaneous implementation of GMFA and 

STOM not only provides information on whether an obstacle is present or not, but 

also estimations on the speed of these objects allowing the algorithm to differentiate 

between moving and stationary vehicles. Hence, valid features can be extracted from 

static objects while rejecting outlier features from moving objects. Figure 10 shows 

a moving vehicle, a red truck, being differentiated and removed through the GMFA 

method.  

As shown by Figure 11, the only static objects where valid features can be 

extracted are generally trees planted on the left side. Hence, in a single LiDAR scan, 

feature points extracted from moving vehicles are usually dominant over that of 

stationary objects, which has been known to cause performance degradation in 

LiDAR odometry estimations A comparison was made between the proposed method 

and LeGO-LOAM, the results of which have been quantitatively analyzed and 

summarized in Figure 12, Table 2, and Table 3. Results for a raw LiDAR point cloud 

input into LeGO-LOAM showed that the estimated odometry in the driving direction 

of the vehicle was less than the ground truth values. The reduction in odometry can 

be explained by feature points moving at a similar speed to the ego vehicle, resulting 

in the false estimation of sensor motion, where the sensor is perceived to be 

stationary. Consequently, the final translation errors of the 𝑥 and 𝑦-axis in local 

coordinates are -111.23m and -9.96m, respectively. In addition, the final yaw (𝑧-axis) 

error, one of the most influential factors for autonomous driving, is -17.62deg. On 
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the other hand, the proposed algorithm, which uses a static point cloud, was able to 

reduce estimation error in the longitudinal direction by up to 5m.  

 

Table 2. Final and mean translation errors in scenario 1. 

Metric Method ∆𝒙𝒈  ∆𝒚𝒈  ∆𝒛𝒈  ∆𝒙𝒍  ∆𝒚𝒍  ∆𝒛𝒍  

Final 

[m] 

LeGO-LOAM -94.02 60.25 1.52 -111.23 -9.96 1.21 

Proposed method -8.00 -1.79 -0.73 -5.22 -6.33 -0.66 

Mean 

[m] 

LeGO-LOAM -27.17 17.62 0.11 -32.23 -3.19 0.16 

Proposed method -2.84 -0.84 -0.19 -1.70 -2.43 -0.16 

 

Table 3. Final and mean rotation errors in scenario 1. 

Metric Method ∆𝜽𝒙  ∆𝜽𝒚  ∆𝜽𝒛  

Final 

[°] 

LeGO-LOAM -1.99 -2.58 -17.62 

Proposed method -0.46 0.32 -0.92 

Mean 

[°] 

LeGO-LOAM -0.79 -1.15 -5.88 

Proposed method -0.69 0.32 -2.75 
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Figure 13. Front view of ego-vehicle in scenario 2. 

 

 

 

    

Figure 14. Global trajectory in scenario 2. 
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Validation results for scenario 2 provided evidence that feature points extracted 

from moving vehicles result in a degradation of odometry estimation performance 

for LeGO-LOAM, leading to an erroneous final trajectory. In this scenario, 

dominance was observed for feature points extracted from vehicles moving in the 

direction of the ego-vehicle’s heading. Thus, LeGO-LOAM estimated the pose of 

the ego-vehicle as though the vehicle was reversing. On the contrary, the proposed 

method was able to reject most feature points from moving vehicles. Through this 

exclusion, estimation faults arising from moving feature points could be prevented 

in a situation where the ego-vehicle is stationary. Quantitative comparisons for 

scenario 2 are shown in Figure 14, Table 4, and Table 5. 

 

Table 4. Final and mean translation errors in scenario 2. 

Metric Method ∆𝒙𝒈  ∆𝒚𝒈  ∆𝒛𝒈  ∆𝒙𝒍  ∆𝒚𝒍  ∆𝒛𝒍  

Final 

[m] 

LeGO-LOAM -34.23 44.46 1.34 -54.38 13.78 1.67 

Proposed method -0.32 0.24 -0.04 -0.45 0.06 -0.02 

Mean 

[m] 

LeGO-LOAM -13.03 12.69 0.25 -18.08 1.95 0.31 

Proposed method -0.10 0.07 -0.09 -0.27 -0.13 0.08 

 

Table 5. Final and mean rotation errors in scenario 2. 

Metric Method ∆𝜽𝒙  ∆𝜽𝒚  ∆𝜽𝒛  

Final 

[°] 

LeGO-LOAM 0.40 1.94 -33.95 

Proposed method -1.42 0.10 -0.49 

Mean 

[°] 

LeGO-LOAM 0.12 0.39 -6.26 

Proposed method 1.14 -0.36 0.16 
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Figure 15. Front view of ego-vehicle in scenario 3. 

 

 

 

Figure 16. Global trajectory in scenario 3. 
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Table 6. Final and mean translation errors in scenario 3. 

Metric Method ∆𝒙𝒈  ∆𝒚𝒈  ∆𝒛𝒈  ∆𝒙𝒍  ∆𝒚𝒍  ∆𝒛𝒍  

Final 

[m] 

LeGO-LOAM -1.14 -2.15 -2.84 -0.35 2.33 -2.91 

Proposed method -1.24 -1.80 -1.92 -0.07 2.13 -1.98 

Mean 

[m] 

LeGO-LOAM -0.29 -0.88 -0.91 -0.32 0.85 -0.93 

Proposed method -0.38 -0.71 -0.83 -0.14 0.77 -0.85 

 

Table 7. Final and mean rotation errors in scenario 3. 

Metric Method ∆𝜽𝒙  ∆𝜽𝒚  ∆𝜽𝒛  

Final 

[°] 

LeGO-LOAM -1.21 0.54 1.20 

Proposed method 0.23 -0.39 1.37 

Mean 

[°] 

LeGO-LOAM -0.93 1.18 0.77 

Proposed method 0.21 -0.20 0.89 

 

Finally, for scenario 3, the ego-vehicle was operated in a completely static 

environment. Accordingly, faults in pose estimations were not observed for this 

scenario, as shown in Figure 16, Table 6, and Table 7. Computation results for the 

error metrics have shown no noticeable difference between the two methods, 

demonstrating that a parallel structure with GMFA does not have a negative effect 

on the LiDAR odometry estimation performance. Furthermore, the final ∆𝑥𝑙 of the 

proposed method in scenario 3 was computed to be -0.07m, much smaller than that 

of scenarios 1 and 2 (-5.22m and -5.63m respectively). This implies that the features 

of the dynamic objects within the environment were not completely rejected, and 

similar results can be observed for absolute trajectory errors (Table 7) as well. 

Despite the fact that values for 𝐴𝑇𝐸𝑝𝑜𝑠 and 𝐴𝑇𝐸𝑟𝑜𝑡 of the proposed method were 

considerably reduced in scenarios 1 and 2, these values were still larger than those 
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of LeGO-LOAM in scenario 3, a completely static environment. In other words, a 

residual degradation can be observed. This can be attributed to a limitation in system 

structure, where GMFA has been simply implemented as an additional module, and 

insufficient feature points arising from the occupancy of the moving objects.  

 

Table 8. Absolute trajectory errors in total scenarios. 

Metric Method Scenario 1 Scenario 2 Scenario 3 

𝐴𝑇𝐸𝑝𝑜𝑠 

[m] 

LeGO-LOAM 5.71 4.27 1.13 

Proposed method 
1.59 

(-72.1%) 

1.55 

(-63.7%) 

1.10 

(-2.6%) 

𝐴𝑇𝐸𝑟𝑜𝑡 
[°] 

LeGO-LOAM 20.22 19.61 8.13 

Proposed method 
9.34 

(-53.8%) 

8.95 

(-54.3%) 

7.96 

(-2.09%) 

 

In addition, a serial processing system, in which LiDAR SLAM waits for the 

output of GMFA to receive a static LiDAR point cloud, has a limitation in the 

operating frequency of the entire system at the frequency of GMFA. In this paper, 

the output frequency of the LiDAR was set to 20Hz, whereas the operating frequency 

of GMFA was limited to 15Hz. This issue was handled by running LeGO-LOAM 

and GMFA in parallel threads. This solution does have its downsides with regard to 

computation speed, where sharing computational resources may potentially slow 

down the processing speed for pose estimation. Hence, to observe whether the real-

time operation was possible, the computation time taken for a single LiDAR SCAN 

in each module was measured and summarized in Table 9. Here, no significant 

difference in computation time can be observed between LeGO-LOAM and the 

proposed method. Therefore, real-time operation for pose estimation can be 

guaranteed, despite the implementation of an additional perception module.  
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Table 9. Mean of computation time in each module for one LiDAR scan. 

Scenario Method Segmentation Extraction Odometry Mapping 

1 

[ms] 

LeGO-LOAM 3.45 0.26 0.26 53.38 

Proposed method 3.77 0.23 0.23 50.12 

2 

[ms] 

LeGO-LOAM 3.27 0.24 0.24 46.86 

Proposed method 3.47 0.22 0.21 36.66 

3 

[ms] 

LeGO-LOAM 3.61 0.26 0.26 55.58 

Proposed method 3.67 0.24 0.24 56.88 
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 Conclusion 

 

In this paper, a parallel architecture consisting of moving object detection and 

LiDAR SLAM techniques was proposed with the objective of improving estimation 

performance against moving objects within a LiDAR point cloud. Vehicle 

experiments carried out in congested urban scenarios have proven that dynamic 

objects in the vicinity of the ego-vehicle may result in erroneous estimation results 

from feature-based LiDAR SLAM techniques which generally require a static 

environment. Through the proposed algorithm, estimation errors in environments 

with multiple dynamic objects were significantly reduced. Furthermore, process 

delay issues for LiDAR SLAM arising from the additional perception module could 

be avoided by operating the modules in parallel threads. 

However, the proposed method still shows room for improvement. Firstly, 

GMFA utilized for detecting moving objects is not complementary to LiDAR SLAM. 

GMFA requires the longitudinal speed and yaw rate of the ego-vehicle, which are 

information obtained from vehicle chassis sensors, not LiDAR SLAM. Consequently, 

the operation of GMFA as an independent module does not fully utilize all available 

outputs. Secondly, GMFA does not fully utilize all data available from LiDAR points, 

but rather only the two-dimensional positions by projecting the 3D points to the 

ground. Thus, static objects located on top of detected objects are likely to be rejected. 

To overcome these limitations, an integrated LiDAR SLAM system is required, 

which will be a closed-loop system that utilizes 3D point cloud information along 

with the estimated odometry to form a static environment.  
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초    록 

도심도로에서 자율주행차량의 라이다 기반 강건한 

위치 및 자세 추정 

 

본 연구는 복잡한 도심 환경에서 라이다 기반 동시적 위치 추정 및 

맵핑(Simultaneous localization and mapping, SLAM)의 이동량 추정 오류를 

방지하는 방법론을 제안한다. 대부분의 SLAM은 이전 스텝과 현재 

스텝의 센서 측정치를 비교하여 자차량의 이동량을 추정한다. 따라서 

SLAM에는 정적인 환경이 필수적이다. 그러나 센서는 도심환경에서 

동적인 물체에 쉽게 노출되고 동적 물체로부터 출력되는 라이다 

점군들은 이동량 추정 성능을 저하시킬 수 있다. 이에, 본 연구는 동적인 

도심환경에서 정적인 점군을 기반한 3차원 라이다 SLAM 시스템을 

제안하였다. 제안된 방법론은 이동 물체 인지와 3차원 라이다 SLAM을 

통한 위치 및 자세 추정으로 구성된다. 우선, 기하학적 모델 프리 

접근법과 정지 장애물 맵의 상호 보완적인 관계에 기반한 참고된 

알고리즘을 이용해 자차량 주변의 이동 물체의 동적 상태를 실시간으로 

추정한다. 그 후, 추정된 이동 물체가 차지하는 경계선을 이용하여 동적 

물체에 해당하는 점들을 기존 라이다 점군에서 제거하고, 결과로 얻은 

정적인 라이다 점군은 라이다 SLAM에 입력된다. 다음으로, 제안된 

방법론은 라이다 SLAM을 통해 자차량의 위치 및 자세를 추정한다. 
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이를 위해 본 연구는 라이다 SLAM의 프레임워크인 LeGO-LOAM을 

채택하였다. 특징점 기반 SLAM인 LeGO-LOAM은 라이다 점군을 거리 

기반 이미지로 변환시켜 특징점인 모서리 점과 평면 점을 추출한다. 

또한 거리 기반 이미지를 사용한 전처리 과정을 통해 계산 효율을 

높인다. 추출된 현재 스텝의 특징점과 이에 대응되는 이전 스텝의 

특징점으로 이루어진 기하학적 구조와의 거리를 잔차로 설정하여 6 

자유도 변환식에 대한 모델 방정식을 얻을 수 있다. 참고한 LeGO-

LOAM은 해당 방정식을 Levenberg-Marquardt 방법을 통해 최적화를 

수행한다. 또한, 본 연구는 참고된 인지 모듈의 처리 지연 문제를 

보완하기 위해 이동 물체 인지 모듈과 LeGO-LOAM의 병렬 처리 구조를 

고안하였다. 실험은 도심환경에서 32채널 3차원 라이다와 고정밀 GPS를 

장착한 실험차량으로 진행되었다. 성능 검증 결과, 제안된 방법은 목표 

출력 속도를 보장하면서 움직이는 특징점으로 인한 추정 오차를 

유의미하게 줄일 수 있었다. 

 

주요어: 측위, 자율주행차량, 이동 물체, 이동량, 정적 환경, 병렬 

처리, 라이다 
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