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Abstract 

 

Spectrum-guided GAN: A Reliable 

Signal Generation Approach for Fault 

Diagnosis of Rotating Machinery with 

Limited Data 
 

Taehun Kim 

Department of Mechanical Engineering 

The Graduate School 

Seoul National University 

 

Generative adversarial network (GAN)-based data generation has been widely 

investigated in the field of fault diagnosis to solve a class-imbalance problem which is 

caused by lack of fault data in the real industry. Although much of the works have 

validated that GAN is effective to handle the class-imbalance problem for fault 

diagnosis, several critical limitations still remain. First, GAN requires sufficient amount 

of data for training, despite it should leverage only small amount of data to improve the 

classifier. Moreover, GAN trained with only small amount of time-series data tends to 

generate identical data that is similar process with oversampling. Second, randomness 

exists while sampling the latent vectors from prior distribution. Hence, inappropriately 

extracted latent vectors rather lower performance of a classifier. Therefore, in this paper, 
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we propose the spectrum-guided GAN which generates magnitude and phase spectra 

in frequency domain instead of producing time-series signal. In addition, a new 

sampling method based on density of features inside generator via principal component 

analysis (PCA) is introduced to replace a conventional random sampling. The proposed 

method is validated with GE Bently Nevada RK4 rotor kit and Signallink rotor-testbed 

(KAMP-Rotor) dataset. The results show that the proposed method outperforms the 

conventional GAN and the density-based sampling method enhances the reliability of 

the sampling process. 

 

Keywords:  Fault diagnosis 

Rotating Machinery 

Class-imbalance 

Generative adversarial network (GAN) 

Principal component analysis (PCA) 
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Chapter 1 Introduction 

 

Introduction 

 

1.1 Motivation 

Deep-learning-based fault diagnosis for rotating machinery has been wid

ely investigated in light of its high performance and shown considerable pro

gresses in recent years. Fault detection is one of application whose purpose 

is early detecting the anomaly state of the mechanical systems. Ko et al. su

ggested a new dynamic threshold based on joint distribution of the residual 

and output of auto-encoder [1]. Furthermore, deep-learning-based fault classifi

cation is also widely investigated by making the models recognize different 

patterns in the data for each state [2, 3]. Most of the deep-learning-based di

agnosis models assume that the amount of data is fully enough for training 

and the data of each health state is balanced each other. However, acquiring 

the fault data in the real industry is challenging compared to collecting the 

normal data, because faulty machine should be immediately stopped to preve

nt further losses. And the scarcity of fault data increases the disparity of the

 data size between the normal and fault states. This issue is called class-im

balance. It lowers the model’s performance because the decision boundary of
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 the classifier is biased to a majority class as illustrated in Figure. 1-1. Zha

ng et al. summarized several approaches to handle the class-imbalance data-, 

feature-, and classifier-level [4]. And it can be roughly divided into two typ

es: model-level approach and data-level approach. Model-level approach inclu

des cost-sensitive learning. Transfer learning (TL) and domain adaptation (D

A) are also one of candidate to solve the class-imbalance issue, because clas

s-balanced testbed data can be fully utilized as a source dataset to correctly 

classify the class-imbalanced industrial target data [5, 6]. Lee et al. presente

d class-conditional domain adaptation model which extracts not only shared f

eatures of both source and target dataset, but also distinguishable features de

pending on each health state [6]. However, TL and DA usually focus on ins

ufficient labeled data issue rather than the class-imbalance problem. Moreove

r, lots of research related to TL and DA assume the class-balance situation t

o relieve the instability of training process. Cost-sensitive technique is defini

ng different weights to each health state to consider the different amount of 

data. Geng et al. validated the usage of weighted cross-entropy as loss funct

ion to relieve the effect of class-imbalance dataset [7]. In the data-level appr

oaches, deep-learning-based generative models are widely investigated such a

s variational autoencoder (VAE), and generative adversarial network (GAN). 

And much of the work showed GAN’s high quality than the blurry outputs 

of VAE. Hence, GAN-based data generation approaches to handle the class-i

mbalance problem in the fault diagnosis are devised by many researchers [8,

 9]. 
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Though the previous research presented the availability of GAN in the f

ield of fault diagnosis under the class-imbalance problem, several limitations 

still remain that should be improved. First, GAN requires another sufficient 

data for training the model successfully. For example, if discriminator of GA

N only focuses on data distribution which is constructed by few available d

ata, not the corresponding characteristics to each health state, then only smal

l change of the data can confuse the discriminator due to inaccurate data di

stribution. In a nutshell, the discriminator distinguishes the real and fake dat

a with a criterion whether the data belongs to the training dataset or not ins

tead of considering the distinct properties of the data. Especially, if GAN is 

trained with small amount of data, the generator will try to produce the ide

ntical data with the training dataset to deceive the discriminator. The second 

challenge of the conventional GAN is about randomness during the sampling

 of latent vectors. As shown in Figure 1-2, the input of the generator is cal

led latent vectors which are sampled from prior distribution. Though the out

put of the generator is only dependent on the latent vectors, controlling the

m is difficult because they are randomly sampled from the prior distribution.

 Figure 1-3 describes the examples generated by incorrectly sampled latent v

ectors that need to be prevented in advance. 

 
Figure 1-1 The effect of class-imbalanced dataset on the decision boundary 
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To manage these limitations, spectrum-guided GAN with a density-based

 new sampling method is proposed in this paper. Spectrum-guided GAN utili

zes limited data for training by forcing the generator to learn the fault-relate

d characteristics. Then, a density-based sampling method via PCA is also int

roduced to prevent the inappropriate latent vectors. The proposed method is 

validated with the two kinds of rotor-testbed: 1) GE Bently Nevada RK4 rot

or rig and 2) Signallink rotor-testbed. The results show that the proposed m

ethod outperforms the conventional GAN and density-based sampling method

 increases the reliability of the sampling process. The main contributions of 

this work are summarized as follows. 

 

 

Figure 1-2 The architecture of conventional GAN 

Figure 1-3 Signals generated by inappropriate latent vectors 



5 

 

 

1) A novel spectrum-guided GAN is newly proposed to alleviate the cla

ss-imbalance problem by making the generator learn characteristics of each h

ealth state with the help of fully utilizing the frequency spectrum, not just r

aw data. And limited amount of data is utilized to validate the spectrum-gui

ded GAN and reflect practical scenarios. 

2) A new density-based sampling method is presented to prevent inappr

opriate latent vectors. The feature tensors in a certain layer of the generator 

are analyzed using principal component analysis (PCA). Then, the density fu

nction of the feature tensors is estimated and the sampling is processed base

d on the density function. The latent vectors that are sampled from density-

based sampling method is validated with pre-trained model which is trained 

with balanced-dataset.  

 

1.2 Dissertation Layout 

The Master’s thesis is organized with five parts including this section. Chapter 2 

introduces the background knowledge for the proposed method focusing on the 

generative adversarial network and its interpretability. Chapter 3 demonstrates the 

proposed spectrum-guided GAN and density-based sampling technique based on the 

statistical approach. Chapter 4 presents both the qualitative and quantitative results 

for the two case studies, and also suggests comparative results. Chapter 5 

summarizes the Master’s thesis and introduces future works which are related to the 

current research.  
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Chapter 2  

 

 Theoretical Backgrounds 

 

2.1 Wasserstein GAN-Gradient Penalty (WGAN-GP) 

GAN is one of the deep-learning-based generative models using adversa

rial learning between the generator and discriminator [10]. One of the critica

l challenges of conventional GAN is training stability due to the adversarial 

learning. Arjovsky et al. improved the stability of GAN by utilizing Wassers

tein distance which is shown in Eq. (2.1). The new objective function using 

Wasserstein distance is written in Eq. (2.2) and it prevented gradient vanishi

ng problem of the discriminator and enabled further training of GAN [11]. 

However, weights in discriminator of pre-trained Wasserstein GAN (WGAN) 

are gathered to the certain values due to weight clipping which is applied to

 WGAN to satisfy Lipschitz constraint. Therefore, Gulrajani et al. applied re

gularization to the gradients of the discriminator to prevent the weights distri

bution dispersed [12]. Due to the additional gradient penalty term as describ

ed in Eq. (2.3), WGAN-GP achieved further improvement in terms of the tr

aining stability. 
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2.2 Controllable approaches of GAN 

Two approaches exist for analyzing the generator of GAN: Explicit and implicit 

approach. Explicit method is manipulating the conventional model by adding extra 

latent vectors to the original set of latent vectors. Chen et al. suggested the idea that 

additional categorical latent vectors can affect to the change in class. And they 

performed unsupervised learning which can be controlled by additional latent 

vectors [13]. Shoshan et al. also introduced additional latent vectors which are 

assigned to each attribute and they are separately converted through the each encoder. 

And they showed that the additional latent vectors can be utilized for controlling 

GAN [14]. On the other hand, implicit method is decomposing the generator after 

the training is finished. Though the outputs of the generator cannot be manipulated 

directly by the latent vectors, the feature tensors in each layer of the generator is 

arranged in the certain direction depending on the properties of the dataset. Härkönen 

et al. presented that GAN can be decomposed by applying PCA to feature tensors of 

the generator and achieved the latent vectors can be controlled through the method 
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[15]. 

 

2.3 Principal component analysis (PCA) 

Dimensionality reduction method is an efficient tool to analyze high dimension. 

According to the manifold hypothesis, the data can be explained in much lower 

dimension than the original dimension [16]. PCA is one of the dimensionality 

reduction methods by calculating eigenvectors of covariance matrix of high 

dimensional features. These eigenvectors describe the principal components on 

which most of the data lies [17]. 

 

2.4 Kernel density estimation (KDE) 

KDE is one of a non-parametric estimation method using the kernel function 

K to estimate the underlying distribution of a random variable x  with bandwidth 

w . It improves the limitation of histogram which has discrete by using the kernel 

function. There are several kernel functions including gaussian, uniform, and 

Epanechnikov. Eq. (2.4) describes the KDE of random variable x  and gaussian 

kernel function is chosen in this work for the ease of use and computation. 

 ( )
1

1ˆ
N

i

w

i

x x
f x K

Nw w=

− 
=  

 
  (2.4) 
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Chapter 3  

 

Proposed Method 

 

3.1 Spectrum-guided GAN 

The structure of the proposed spectrum-guided GAN is shown in Figure 3-1 

Previous research about GAN in the field of fault diagnosis utilizes time-series signal 

with conventional objective function including Wasserstein distance which 

calculates the difference of feature distributions and does not consider the 

characteristics of the signal. Hence, the discriminator only trained with various and 

enough data can implicitly learn the properties of the train dataset. On the other hand, 

if the available dataset is not sufficient to train GAN, the discriminator cannot learn 

appropriate properties of the dataset, rather the generator will just copy the train 

dataset that is same process with oversampling. In order to avoid this problem, the 

spectrum-guided GAN generates frequency spectrum including magnitude and 

 

Figure 3-1 The architecture of spectrum-guided GAN 
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phase information to guide both the generator and discriminator to learn the 

characteristics of the input signal. Therefore, the proposed spectrum-guided GAN 

can prevent the generator from overfitting to training data. 

 

The objective function of spectrum-guided GAN follows the conventional 

WGAN-GP as discussed in Chapter II-1. The only difference between loss function 

of generator of WGAN-GP and proposed spectrum-guided GAN is additional L1 

regularization term. This term helps reduce the magnitude of frequencies which are 

unrelated to the target health state. The loss functions of the discriminator and the 

generator are shown in Eq. (3.1)-(3.2). And the fake signal should be constructed 

from the generated frequency spectrum using inverse Fourier transform as described 

in Eq. (3.3), because the generator does not generate the time-series signal and 

instead, it produces frequency spectrum with two channels: the first channel is 

assumed to the magnitude spectrum and the second channel is considered of the 

phase spectrum. 

     ( )
2

ˆ 2ˆ ˆ~ ~ ~
ˆ ˆ( ) ( ) ( ) 1

g r g
loss x

x x x
D D x D x D x

  

 =  −  +   −
  

 (3.1) 

   1
ˆ( )loss L GG D x w= − +   (3.2) 

 
1

0
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N

k
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x n X f

N N

−

=

 
=  

 
  (3.3) 
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 ( )ˆ ˆˆ ( ) expX f A j=  (3.4) 

 

3.2 Density-based Sampling via PCA 

The concept of a new sampling method is adopted from the research of an 

interpretability of GAN [8]. And the flowchart of density-based sampling method is 

described in 오류! 참조 원본을 찾을 수 없습니다.. Before delving into the 

flowchart, it is assumed that the more frequent the feature tensors are sampled, the 

higher the quality of the output signals are, because they will experience more 

updates. First, to consider almost all possible cases, 20k latent vectors are sampled 

from prior distribution that is chosen as normal distribution and injected to the 

 

Figure 3-2 Flowchart of spectrum-guided GAN with density-based sampling 
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generator. Then, the projected feature  

tensors are obtained by applying the PCA to the second to the last layer, and the 

mapping matrix between the projected feature tensors and the input latent vectors is 

calculated via least square method. The reason that the second to the last layer is 

chosen is that it is easier to predict which feature tensors are sampled more than the 

others. After arranging the projected feature tensors in the 1st principal component 

which has highest variance, the arranged projected feature tensors are sampled as 

much as the target generation size. The final latent vectors which will generate the 

diverse signals are obtained after multiplying the mapping matrix to the sampled 

feature tensors. The final latent vectors are utilized as an input of the generator. 

 

  

 

Figure 3-3 Density-based sampling and mapping to latent vectors 
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Chapter 4  

 

Experimental Validation 

 

4.1 Case 1: Signallink Rotor-testbed (KAMP-Rotor) 

 

4.1.1 Model and Data Description 

The architectures of spectrum-guided GAN and classifier is constructed as 

illustrated in Figure 4-1. The overall architectures are same with case 2. The 

hyperparameters of each model is presented in Table 4-1. The KAMP-Rotor testbed 

is illustrated in Figure 4-2. The data type of KAMP-Rotor testbed is acceleration. 

The rotating speed of the test rig is 1,500 rpm (= 25 Hz) and the sampling frequency 

is 1,000 Hz. Therefore, the data length for each sample is set as a multiple of 40 

( 1,000 / 25= ). In this case study, the data length is 240 which includes six 

wavelengths. The split ratio of train/valid/test for the classification task is 0.6, 0.2, 

and 0.2 each. And only the train dataset of classification task is utilized in the 

generation task, because completely identical dataset should be used for training the 

classifier and generative model. The testbed consists of 4 health states: normal, 

unbalance, mechanical looseness, and compound fault that is combined with 

unbalance and mechanical looseness. For the signal generation, only three fault states 

are utilized due to the abundancy of normal data in the industry. And for 

classification of the health states, four classes including the normal state are used. 
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The number of the fault state samples is fixed to 10 for both the classification and 

the generation task. And the number of the normal state samples is adjusted 

depending on the imbalance ratio in the range of 5 to 20. 

  

 

Figure 4-1 The architecture of GAN and classifier 
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4.1.2 Time- and Frequency-domain Representation 

Time-and frequency-domain representation validate the spectrum-guided GAN 

in qualitative way. For the case 2 dataset, time- and frequency-domain is presented 

in Figure 4-3. The fundamental frequency which corresponds to rotating speed (25 

Hz) is described as 1x and the harmonics of the fundamental frequency are expressed 

as multiples of it: 2x, 3x, 4x, …. All of the health states have components of 

fundamental frequency and its harmonics, though the relative magnitude of them is 

different each other. As illustrated in Figure 4-3, the time- and frequency-domain of 

generated signals correspond to those of real signals despite the proposed model is 

 

Table 4-1 Hyperparameters setting of GAN and classifier for case 1 

Task Generation Classification 

Model Generator Discriminator Classifier 

Kernel [5, 5, 5, 5, 5] [16, 8, 4, 4] [8, 8, 8] 

Channel [128, 128, 64, 64, 2] [16, 64, 64, 128] [16, 16, 16] 

Dilation [1, 2, 4, 8, 16] / [1, 2, 4] 

Stride / [2, 2, 2, 1] [2, 2, 2] 

Padding [0, 0, 1, 1, 1] / / 

Output padding [0, 0, 0, 0, 1] / / 
 

 

Figure 4-2 Signallink rotor-testbed (KAMP-Rotor) 
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trained with limited data. 

 

4.1.3 Comparative Study 

Comparative study is performed to validate the performance of the proposed model in 

quantitative way. For the comparative validation, three comparative models are chosen. 

Baseline model means the vanilla CNN model which is trained with class-imbalanced dataset. 

Class-weight represents the vanilla CNN model with class weighting to compensate the 

imbalance between the classes. And this model is also trained with class-imbalanced dataset. 

WGAN-GP is conventional WGAN-GP model which has same structure with the proposed 

method except for the hyperparameters (e.g., learning rate, kernel size, …) the number of 

output channels. Each trial consist of 100 epochs and the results of each model are calculated 

with the average of five trials. As shown in Figure 4-4 which shows the classification result 

with imbalance ratio 10, the accuracy of the baseline and the class-weight model is much 

lower with higher variances. On the other hand, WGAN-GP and proposed spectrum-guided 

GAN achieves about 80% accuracy. The accuracy and f1-score show similar results for 

 

Figure 4-3 Time- and frequency-domain representation for KAMP-Rotor 
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WGAN- 

GP and proposed model in KAMP-Rotor. However, the proposed model presents higher 

accuracy with less variance which means less sensitive to the different weight initialization 

of model. 

 

4.1.4 Result of Density-based Sampling 

The results of the proposed sampling technique is presented in Figure 4-5. Each axis 

represents the relative density in the feature distribution and the corresponding average 

probability for the misalignment and the rubbing state. The average probability means that 

the softmax value calculated by a pre-trained CNN model which is trained with balanced 

dataset. Therefore, the higher the average accuracy is, the higher the quality of output signals 

are. In conclusion, the Figure 4-5 shows that the latent vectors sampled from the proposed 

sampling method can be more efficient, because the latent vectors with high quality are 

sampled and utilized to compensate the imbalanced dataset. 

Table 4-2 Accuracy and f1-score for KAMP-Rotor under imbalance ratio of 10 

 Baseline Class-weight WGAN-GP Proposed 

Accuracy 49.19 9.88  57.79 6.44  60.31 6.31  66.04 5.29  

F1-score 0.42 0.11  0.56 0.064  0.57 0.059  0.63 0.054  
 

 

Figure 4-4 Accuracy and f1-score for KAMP-Rotor under imbalance ratio of 10 
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4.2 Case 2: GE Bently Nevada RK4 rotor kit 

4.2.1 Model and Data Description 

The hyperparameters for case 2 dataset are described in  The RK4 rotor kit is 

illustrated in Figure 4-6. The data type of RK4 rotor kit is displacement. The rotating 

speed of the testbed is 3,600 rpm (= 60 Hz) and the sampling frequency is 8,500 Hz. 

Therefore, the data length for each sample is set as a multiple of 142 ( 8,500 / 60 ). 

The data length for each sample is set as a multiple of 142 and chosen as 568 in this 

case study. The split ratio of a whole dataset is same as in the case 1. The testbed 

consists of 5 health states: normal, misalignment, oil whirl, rubbing, unbalance. And 

the normal state is only used for the classification task under the class-imbalance 

condition and not used for the generation task. The number of the fault state samples 

and the normal state samples, and the imbalance ratio is same with those of case 1. 

  

Figure 4-5 Average probability in accordance with the threshold 
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4.2.2 Time- and Frequency-domain Representation 

For the case 1 dataset, time- and frequency-domain is presented in Figure 4-7. The 

fundamental frequency which corresponds to the rotating speed (60 Hz) is described as 1x 

and the harmonics of the fundamental frequency are expressed as multiples of it: 2x, 3x, 4x, 

…. Except oil whirl, all of the health states have components of fundamental frequency and 

its harmonics, though the relative magnitude of them is different each other. In the oil whirl’s 

case, sub-harmonic component exists instead of the harmonics due to the oil whirl’s different 

mechanism which is affected by lubricant in the journal bearing. The sub-harmonic frequency  

 

Table 4-3 Hyperparameters setting of GAN and classifier for case 2 

Task Generation Classification 

Model Generator Discriminator Classifier 

Kernel [4, 4, 4, 4, 6, 6] [16, 8, 4, 4] [8, 8, 8] 

Channel 
[128, 128, 64, 64, 16, 

2] 
[16, 64, 64, 128] [16, 16, 16] 

Dilation [1, 2, 4, 8, 16, 32] / [1, 2, 4] 

Stride / [2, 2, 2, 1] [2, 2, 2] 

Padding [0, 0, 0, 0, 0, 1] / / 

Output padding / / / 
 

 

Figure 4-6 GE Bently Nevada RK4 rotor kit 
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is described as 0.5x. As illustrated in Figure 4-7, the time- and frequency-domain of 

generated signals correspond to those of real signals despite the proposed model is trained 

with limited data. 

 

4.2.3 Comparative Study 

For the comparative validation, the same three comparative models are utilized: 

baseline, class-weight, and WGAN-GP. Figure 4-8 presents the classification result 

with imbalance ratio 10. The result of the proposed model shows considerable 

discrepancy compared with the comparative models. 

  

Figure 4-7 Time- and frequency-domain representation for RK4 rotor kit 
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4.2.4 Result of Density-based Sampling 

The results of the proposed sampling technique is presented in Figure 4-9. Each 

axis represents the relative density in the feature distribution and the corresponding 

average probability for the misalignment and the rubbing state. The average 

probability means that the softmax value calculated by a pre-trained CNN model 

which is trained with balanced dataset. Therefore, the higher the average accuracy 

is, the higher the quality of output signals are. In conclusion, the Figure 4-9. shows 

that the latent vectors sampled from the proposed sampling method can be more 

efficient, because the latent vectors with high quality are sampled and utilized to 

compensate the imbalanced dataset. 

  

Table 4-4 Accuracy and f1-score for RK4 rotor kit under imbalance ratio of 10 

 Baseline Class-weight WGAN-GP Proposed 

Accuracy 49.19 9.88  57.79 6.44  60.31 6.31  66.04 5.29  

F1-score 0.42 0.11  0.56 0.064  0.57 0.059  0.63 0.054  
 

Figure 4-8 Accuracy and f1-score for RK4 rotor kit under imbalance ratio of 10 
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Figure 4-9 Average probability in accordance with the threshold 
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Chapter 5  

 

Conclusion 

 

In this paper, a new signal generation approach is proposed under the limited data 

available through the spectrum-guided GAN and the density-based sampling method. 

The proposed method is validated with two rotor-testbeds: Signallink rotor-testbed 

and GE Bently Nevada RK4 rotor kit. The results even outperformed the 

conventional WGAN-GP for both cases. It is expected to be utilized and developed 

in the filed of the fault diagnosis for various kinds of rotating machinery with few 

amounts of data available. Furthermore, distinguishing the quality of the generated 

signals is proposed via density-based sampling method. For future works, the 

generative model for non-stationary signals will be investigated and a new 

quantitative metric for evaluating the quality of signals also will be explored to 

enhance the density-based sampling method by defining appropriate threshold. 
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국문 초록 

 

제한된 데이터 조건 하에서 회전체 

시스템의 고장 진단을 위한 스펙트럼 

지도 적대적 생성 네트워크 기반의 

신호 생성 기법 
 

서울대학교 대학원 

기계공학부 

김 태 훈 

 

실 산업에서 고장 신호 데이터 부족으로 발생하는 클래스 불균형을 

해결하기 위해 적대적 생성 네트워크 기반의 신호 생성 연구가 활발히 

주목받고 있다. 클래스 불균형 상황에서 고장 진단을 해결하기 위해 

다수의 논문에서 적대적 생성 네트워크가 효과적임을 입증했음에도 

불구하고, 몇 가지 치명적인 한계들이 존재한다. 첫 번째로, 클래스 

불균형 조건의 고장 진단에서 적대적 생성 네트워크가 분류 모델의 

성능을 개선할 수 있으나, 적대적 생성 모델을 학습하기 위한 데이터가 

충분히 많이 필요하다는 문제점이 존재한다. 게다가 적은 양의 데이터로 

학습된 적대적 생성 네트워크는 오버샘플링과 같이 학습 데이터와 

동일한 데이터를 생성하는, 모드 붕괴 현상을 야기할 수 있다. 두 
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번째로, 신호를 생성하기 위한 적대적 생성 네트워크의 잠재 벡터 

샘플링 과정에서 무작위성이 존재한다. 일반적인 적대적 생성 

네트워크의 샘플링은 사전 분포로부터 무작위로 추출하기에, 부적절한 

잠재 벡터로부터 생성된 신호들이 오히려 분류 모델의 성능을 악화시킬 

수 있다. 따라서, 본 학위논문에서는 (1) 적은 데이터로 다양한 신호를 

생성하기 위해 신호의 특성인 주파수 스펙트럼을 활용한 스펙트럼 지도 

적대적 생성 네트워크를 제안하며, (2) 기존 샘플링 방식의 

무작위성으로 인한 부적절한 신호 생성을 방지하기 위해 주성분 분석 

기반 고차원 특성 공간의 매니폴드 분석으로 새로운 샘플링 기법을 

제안한다. 

 

주요어:  고장 진단 

 회전체 

 클래스 불균형 

 적대적 생성 네트워크 

 주성분 분석 

 

학  번:  2021-20322 
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