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Abstract

Spectrum-guided GAN: A Reliable
Signal Generation Approach for Fault
Diagnosis of Rotating Machinery with

Limited Data

Taehun Kim

Department of Mechanical Engineering
The Graduate School

Seoul National University

Generative adversarial network (GAN)-based data generation has been widely
investigated in the field of fault diagnosis to solve a class-imbalance problem which is
caused by lack of fault data in the real industry. Although much of the works have
validated that GAN is effective to handle the class-imbalance problem for fault
diagnosis, several critical limitations still remain. First, GAN requires sufficient amount
of data for training, despite it should leverage only small amount of data to improve the
classifier. Moreover, GAN trained with only small amount of time-series data tends to
generate identical data that is similar process with oversampling. Second, randomness
exists while sampling the latent vectors from prior distribution. Hence, inappropriately

extracted latent vectors rather lower performance of a classifier. Therefore, in this paper,



we propose the spectrum-guided GAN which generates magnitude and phase spectra
in frequency domain instead of producing time-series signal. In addition, a new
sampling method based on density of features inside generator via principal component
analysis (PCA) is introduced to replace a conventional random sampling. The proposed
method is validated with GE Bently Nevada RK4 rotor kit and Signallink rotor-testbed
(KAMP-Rotor) dataset. The results show that the proposed method outperforms the
conventional GAN and the density-based sampling method enhances the reliability of

the sampling process.

Keywords: Fault diagnosis
Rotating Machinery
Class-imbalance
Generative adversarial network (GAN)

Principal component analysis (PCA)
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Chapter 1

Introduction

1.1 Motivation

Deep-learning-based fault diagnosis for rotating machinery has been wid
ely investigated in light of its high performance and shown considerable pro
gresses in recent years. Fault detection is one of application whose purpose
is early detecting the anomaly state of the mechanical systems. Ko et al. su
ggested a new dynamic threshold based on joint distribution of the residual
and output of auto-encoder [1]. Furthermore, deep-learning-based fault classifi
cation is also widely investigated by making the models recognize different
patterns in the data for each state [2, 3]. Most of the deep-learning-based di
agnosis models assume that the amount of data is fully enough for training
and the data of each health state is balanced each other. However, acquiring
the fault data in the real industry is challenging compared to collecting the
normal data, because faulty machine should be immediately stopped to preve
nt further losses. And the scarcity of fault data increases the disparity of the

data size between the normal and fault states. This issue is called class-im

balance. It lowers the model’s performance because the decision boundary of



the classifier is biased to a majority class as illustrated in Figure. 1-1. Zha
ng et al. summarized several approaches to handle the class-imbalance data-,
feature-, and classifier-level [4]. And it can be roughly divided into two typ
es: model-level approach and data-level approach. Model-level approach inclu
des cost-sensitive learning. Transfer learning (TL) and domain adaptation (D
A) are also one of candidate to solve the class-imbalance issue, because clas
s-balanced testbed data can be fully utilized as a source dataset to correctly

classify the class-imbalanced industrial target data [5, 6]. Lee et al. presente
d class-conditional domain adaptation model which extracts not only shared f
eatures of both source and target dataset, but also distinguishable features de
pending on each health state [6]. However, TL and DA usually focus on ins
ufficient labeled data issue rather than the class-imbalance problem. Moreove
r, lots of research related to TL and DA assume the class-balance situation t
o relieve the instability of training process. Cost-sensitive technique is defini
ng different weights to each health state to consider the different amount of

data. Geng et al. validated the usage of weighted cross-entropy as loss funct
ion to relieve the effect of class-imbalance dataset [7]. In the data-level appr
oaches, deep-learning-based generative models are widely investigated such a
s variational autoencoder (VAE), and generative adversarial network (GAN).

And much of the work showed GAN’s high quality than the blurry outputs

of VAE. Hence, GAN-based data generation approaches to handle the class-i
mbalance problem in the fault diagnosis are devised by many researchers [8,

9.
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Figure 1-1 The effect of class-imbalanced dataset on the decision boundary

Though the previous research presented the availability of GAN in the f
ield of fault diagnosis under the class-imbalance problem, several limitations
still remain that should be improved. First, GAN requires another sufficient
data for training the model successfully. For example, if discriminator of GA
N only focuses on data distribution which is constructed by few available d
ata, not the corresponding characteristics to each health state, then only smal
I change of the data can confuse the discriminator due to inaccurate data di
stribution. In a nutshell, the discriminator distinguishes the real and fake dat
a with a criterion whether the data belongs to the training dataset or not ins
tead of considering the distinct properties of the data. Especially, if GAN is
trained with small amount of data, the generator will try to produce the ide
ntical data with the training dataset to deceive the discriminator. The second
challenge of the conventional GAN is about randomness during the sampling

of latent vectors. As shown in Figure 1-2, the input of the generator is cal
led latent vectors which are sampled from prior distribution. Though the out
put of the generator is only dependent on the latent vectors, controlling the
m is difficult because they are randomly sampled from the prior distribution.
Figure 1-3 describes the examples generated by incorrectly sampled latent v

ectors that need to be prevented in advance.
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Figure 1-2 The architecture of conventional GAN

To manage these limitations, spectrum-guided GAN with a density-based
new sampling method is proposed in this paper. Spectrum-guided GAN utili
zes limited data for training by forcing the generator to learn the fault-relate
d characteristics. Then, a density-based sampling method via PCA is also int
roduced to prevent the inappropriate latent vectors. The proposed method is
validated with the two kinds of rotor-testbed: 1) GE Bently Nevada RK4 rot
or rig and 2) Signallink rotor-testbed. The results show that the proposed m
ethod outperforms the conventional GAN and density-based sampling method
increases the reliability of the sampling process. The main contributions of

this work are summarized as follows.

Low quality  High quality Low diversity  High diversity

Figure 1-3 Signals generated by inappropriate latent vectors

4 . _H 1 1_'_]'| ©

ke =9

1 11



1) A novel spectrum-guided GAN is newly proposed to alleviate the cla
ss-imbalance problem by making the generator learn characteristics of each h
ealth state with the help of fully utilizing the frequency spectrum, not just r
aw data. And limited amount of data is utilized to validate the spectrum-gui

ded GAN and reflect practical scenarios.

2) A new density-based sampling method is presented to prevent inappr
opriate latent vectors. The feature tensors in a certain layer of the generator
are analyzed using principal component analysis (PCA). Then, the density fu
nction of the feature tensors is estimated and the sampling is processed base
d on the density function. The latent vectors that are sampled from density-
based sampling method is validated with pre-trained model which is trained

with balanced-dataset.

1.2 Dissertation Layout

The Master’s thesis is organized with five parts including this section. Chapter 2
introduces the background knowledge for the proposed method focusing on the
generative adversarial network and its interpretability. Chapter 3 demonstrates the
proposed spectrum-guided GAN and density-based sampling technique based on the
statistical approach. Chapter 4 presents both the qualitative and quantitative results
for the two case studies, and also suggests comparative results. Chapter 5
summarizes the Master’s thesis and introduces future works which are related to the

current research.



Chapter 2

Theoretical Backgrounds

2.1 Wasserstein GAN-Gradient Penalty (WGAN-GP)

GAN is one of the deep-learning-based generative models using adversa
rial learning between the generator and discriminator [10]. One of the critica
I challenges of conventional GAN is training stability due to the adversarial
learning. Arjovsky et al. improved the stability of GAN by utilizing Wassers
tein distance which is shown in Eg. (2.1). The new objective function using
Wasserstein distance is written in Eq. (2.2) and it prevented gradient vanishi
ng problem of the discriminator and enabled further training of GAN [11].
However, weights in discriminator of pre-trained Wasserstein GAN (WGAN)
are gathered to the certain values due to weight clipping which is applied to

WGAN to satisfy Lipschitz constraint. Therefore, Gulrajani et al. applied re
gularization to the gradients of the discriminator to prevent the weights distri
bution dispersed [12]. Due to the additional gradient penalty term as describ
ed in Eqg. (2.3), WGAN-GP achieved further improvement in terms of the tr

aining stability.
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2.2 Controllable approaches of GAN

Two approaches exist for analyzing the generator of GAN: Explicit and implicit
approach. Explicit method is manipulating the conventional model by adding extra
latent vectors to the original set of latent vectors. Chen et al. suggested the idea that
additional categorical latent vectors can affect to the change in class. And they
performed unsupervised learning which can be controlled by additional latent
vectors [13]. Shoshan et al. also introduced additional latent vectors which are
assigned to each attribute and they are separately converted through the each encoder.
And they showed that the additional latent vectors can be utilized for controlling
GAN [14]. On the other hand, implicit method is decomposing the generator after
the training is finished. Though the outputs of the generator cannot be manipulated
directly by the latent vectors, the feature tensors in each layer of the generator is
arranged in the certain direction depending on the properties of the dataset. Harkénen
et al. presented that GAN can be decomposed by applying PCA to feature tensors of

the generator and achieved the latent vectors can be controlled through the method



[15].

2.3 Principal component analysis (PCA)

Dimensionality reduction method is an efficient tool to analyze high dimension.
According to the manifold hypothesis, the data can be explained in much lower
dimension than the original dimension [16]. PCA is one of the dimensionality
reduction methods by calculating eigenvectors of covariance matrix of high
dimensional features. These eigenvectors describe the principal components on

which most of the data lies [17].

2.4 Kernel density estimation (KDE)

KDE is one of a non-parametric estimation method using the kernel function
K to estimate the underlying distribution of a random variable x with bandwidth
w . It improves the limitation of histogram which has discrete by using the kernel
function. There are several kernel functions including gaussian, uniform, and
Epanechnikov. Eq. (2.4) describes the KDE of random variable x and gaussian

kernel function is chosen in this work for the ease of use and computation.

fw(x)ziiK( ij (2.4)



Chapter 3

Proposed Method

3.1 Spectrum-guided GAN

The structure of the proposed spectrum-guided GAN is shown in Figure 3-1
Previous research about GAN in the field of fault diagnosis utilizes time-series signal
with conventional objective function including Wasserstein distance which
calculates the difference of feature distributions and does not consider the
characteristics of the signal. Hence, the discriminator only trained with various and
enough data can implicitly learn the properties of the train dataset. On the other hand,
if the available dataset is not sufficient to train GAN, the discriminator cannot learn
appropriate properties of the dataset, rather the generator will just copy the train
dataset that is same process with oversampling. In order to avoid this problem, the

spectrum-guided GAN generates frequency spectrum including magnitude and

Latent space
f e

N Fake spectrum Fake signal
.o Ny M Generator ot N J N F‘—J
— . Discriminator | — Fake
Real signal (D)
Fake phase ;‘:"ﬁ — Real
Figure 3-1 The architecture of spectrum-guided GAN
9 ] . © ]



phase information to guide both the generator and discriminator to learn the
characteristics of the input signal. Therefore, the proposed spectrum-guided GAN

can prevent the generator from overfitting to training data.

The objective function of spectrum-guided GAN follows the conventional
WGAN-GP as discussed in Chapter II-1. The only difference between loss function
of generator of WGAN-GP and proposed spectrum-guided GAN is additional L1
regularization term. This term helps reduce the magnitude of frequencies which are
unrelated to the target health state. The loss functions of the discriminator and the
generator are shown in Eq. (3.1)-(3.2). And the fake signal should be constructed
from the generated frequency spectrum using inverse Fourier transform as described
in Eq. (3.3), because the generator does not generate the time-series signal and
instead, it produces frequency spectrum with two channels: the first channel is
assumed to the magnitude spectrum and the second channel is considered of the

phase spectrum.

Dius = E [D()]- E [D(]+2 E [("V*D(k)nz _1)2] (3.1)
Gloss = _E[D()A()]+/1L12|WG| (3-2)
. 13 j2rk
x(n) = sz::; X (f)exp(JT“j (3.3)
10 ¥, 3 _._'_':



X (f)=Aexp( j0) (3.4)

3.2 Density-based Sampling via PCA

The concept of a new sampling method is adopted from the research of an

interpretability of GAN [8]. And the flowchart of density-based sampling method is

described in 27! Hx 22 S

A

F S1&LICt.. Before delving into the

flowchart, it is assumed that the more frequent the feature tensors are sampled, the

higher the quality of the output signals are, because they will experience more

updates. First, to consider almost all possible cases, 20k latent vectors are sampled

from prior distribution that is chosen as

normal distribution and injected to the

Step 1. Spectrum-guided GAN

1. Train Spectrum-guided GAN
[ Sample latent vectors (z~N{0,1})

I

‘ Inject latent vectors with target label to generator ([4.8] = G(z.c)) ‘
Construct fake signal (:? m)= % TE-LR()e! )
and inject to discriminator with real signal
Pre-trained generator (G)

Zmicn
w

2-1. Calculate relationship bAw feature subspace and latent space

Sample 20k latent vectors (z,. Wg)
and extract features in n™ layer (Ryaox = G (Z1:20x)))

Step 2. Density-based sampling via PCA

2.2. sample in direction of greatest variance under feasible region

Estimate density of hi'..), via KDE™ and define feasible region

(R = p(hZ728)/Max (p(4723) = Threshotd)

Sort h¥, in direction of 1¢! principal component
and sample sequentially as many as pre-defined size (N,.,) in R

Convert hf;i'jmto corresponding latent vectors using U
and generate signal by injecting these latent vectors

prej
hy oy

)|

n ‘ Apply PCA" 10 h,..; and express them in subspace (|

I

‘ Calculate mapping matrix [/ between h!

proj

ya0i 8N Zy0k

PCA": Principal component analysis
KDE™ Kemnel density estimation

Figure 3-2 Flowchart of spectrum-guided GAN with density-based sampling
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Figure 3-3 Density-based sampling and mapping to latent vectors

generator. Then, the projected feature

tensors are obtained by applying the PCA to the second to the last layer, and the
mapping matrix between the projected feature tensors and the input latent vectors is
calculated via least square method. The reason that the second to the last layer is
chosen is that it is easier to predict which feature tensors are sampled more than the
others. After arranging the projected feature tensors in the 1% principal component
which has highest variance, the arranged projected feature tensors are sampled as
much as the target generation size. The final latent vectors which will generate the
diverse signals are obtained after multiplying the mapping matrix to the sampled

feature tensors. The final latent vectors are utilized as an input of the generator.

12 1] ©



Chapter 4

Experimental Validation

4.1 Case 1: Signallink Rotor-testbed (KAMP-Rotor)

4.1.1 Model and Data Description

The architectures of spectrum-guided GAN and classifier is constructed as
illustrated in Figure 4-1. The overall architectures are same with case 2. The
hyperparameters of each model is presented in Table 4-1. The KAMP-Rotor testbed
is illustrated in Figure 4-2. The data type of KAMP-Rotor testbed is acceleration.
The rotating speed of the test rig is 1,500 rpm (= 25 Hz) and the sampling frequency
is 1,000 Hz. Therefore, the data length for each sample is set as a multiple of 40
(=1000/25). In this case study, the data length is 240 which includes six
wavelengths. The split ratio of train/valid/test for the classification task is 0.6, 0.2,
and 0.2 each. And only the train dataset of classification task is utilized in the
generation task, because completely identical dataset should be used for training the
classifier and generative model. The testbed consists of 4 health states: normal,
unbalance, mechanical looseness, and compound fault that is combined with
unbalance and mechanical looseness. For the signal generation, only three fault states
are utilized due to the abundancy of normal data in the industry. And for

classification of the health states, four classes including the normal state are used.

13 :'..:



The number of the fault state samples is fixed to 10 for both the classification and
the generation task. And the number of the normal state samples is adjusted

depending on the imbalance ratio in the range of 5 to 20.

Generator Discriminator Classifier

Figure 4-1 The architecture of GAN and classifier

) 2 A&



Table 4-1 Hyperparameters setting of GAN and classifier for case 1

Task Generation Classification
Model Generator Discriminator Classifier
Kernel [5,5,5,5,5] [16, 8, 4, 4] [8, 8, 8]

Channel [128, 128, 64, 64,2] | [16, 64, 64, 128] [16, 16, 16]
Dilation [1,2,4,8,16] / [1,2, 4]

Stride / [2,2,2,1] [2,2,2]

Padding [0,0,1,1, 1] / /
Output padding [0,0,0,0,1] / /

4.1.2 Time- and Frequency-domain Representation

Time-and frequency-domain representation validate the spectrum-guided GAN

in qualitative way. For the case 2 dataset, time- and frequency-domain is presented

in Figure 4-3. The fundamental frequency which corresponds to rotating speed (25

Hz) is described as 1x and the harmonics of the fundamental frequency are expressed

as multiples of it: 2x, 3x, 4x, .... All of the health states have components of

fundamental frequency and its harmonics, though the relative magnitude of them is

different each other. As illustrated in Figure 4-3, the time- and frequency-domain of

generated signals correspond to those of real signals despite the proposed model is

@ Controller module
@ BLDC motor

Figure 4-2 Signallink rotor-testbed (KAMP-Rotor)

15
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Figure 4-3 Time- and frequency-domain representation for KAMP-Rotor

trained with limited data.

4.1.3 Comparative Study
Comparative study is performed to validate the performance of the proposed model in

quantitative way. For the comparative validation, three comparative models are chosen.

Baseline model means the vanilla CNN model which is trained with class-imbalanced dataset.

Class-weight represents the vanilla CNN model with class weighting to compensate the
imbalance between the classes. And this model is also trained with class-imbalanced dataset.
WGAN-GP is conventional WGAN-GP model which has same structure with the proposed
method except for the hyperparameters (e.g., learning rate, kernel size, ...) the number of
output channels. Each trial consist of 100 epochs and the results of each model are calculated
with the average of five trials. As shown in Figure 4-4 which shows the classification result
with imbalance ratio 10, the accuracy of the baseline and the class-weight model is much
lower with higher variances. On the other hand, WGAN-GP and proposed spectrum-guided

GAN achieves about 80% accuracy. The accuracy and fl-score show similar results for

16 <



WGAN-
Table 4-2 Accuracy and f1-score for KAMP-Rotor under imbalance ratio of 10

Baseline Class-weight | WGAN-GP Proposed
Accuracy | 49.19+9.88 57.79+6.44 60.31+6.31 66.04+5.29
Fl-score 042+0.11 0.56+0.064 0.57+0.059 0.63+0.054

EERENNN
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Baseline Class-weight WGAN-GP Proposed Baseline Class-weigh WGAN-GP Proposed
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Figure 4-4 Accuracy and f1-score for KAMP-Rotor under imbalance ratio of 10

GP and proposed model in KAMP-Rotor. However, the proposed model presents higher
accuracy with less variance which means less sensitive to the different weight initialization

of model.

4.1.4 Result of Density-based Sampling

The results of the proposed sampling technique is presented in Figure 4-5. Each axis
represents the relative density in the feature distribution and the corresponding average
probability for the misalignment and the rubbing state. The average probability means that
the softmax value calculated by a pre-trained CNN model which is trained with balanced
dataset. Therefore, the higher the average accuracy is, the higher the quality of output signals
are. In conclusion, the Figure 4-5 shows that the latent vectors sampled from the proposed
sampling method can be more efficient, because the latent vectors with high quality are

sampled and utilized to compensate the imbalanced dataset.
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Figure 4-5 Average probability in accordance with the threshold

4.2 Case 2: GE Bently Nevada RK4 rotor kit

4.2.1 Model and Data Description

The hyperparameters for case 2 dataset are described in  The RK4 rotor Kit is
illustrated in Figure 4-6. The data type of RK4 rotor kit is displacement. The rotating
speed of the testbed is 3,600 rpm (= 60 Hz) and the sampling frequency is 8,500 Hz.
Therefore, the data length for each sample is set as a multiple of 142 (~ 8,500/60 ).
The data length for each sample is set as a multiple of 142 and chosen as 568 in this
case study. The split ratio of a whole dataset is same as in the case 1. The testbed
consists of 5 health states: normal, misalignment, oil whirl, rubbing, unbalance. And
the normal state is only used for the classification task under the class-imbalance
condition and not used for the generation task. The number of the fault state samples

and the normal state samples, and the imbalance ratio is same with those of case 1.
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Table 4-3 Hyperparameters setting of GAN and classifier for case 2

Task Generation Classification
Model Generator Discriminator Classifier
Kernel [4,4,4,4,6,6] [16, 8, 4, 4] [8, 8, 8]

Channel [128, 12812]64’ 64, 16, [16, 64, 64, 128] [16, 16, 16]
Dilation [1,2,4,8,16,32] / [1,2, 4]
Stride / [2,2,2,1] [2,2,2]
Padding [0,0,0,0,0,1] / /
Output padding / / /

4.2.2 Time- and Frequency-domain Representation

For the case 1 dataset, time- and frequency-domain is presented in Figure 4-7. The

fundamental frequency which corresponds to the rotating speed (60 Hz) is described as 1x

and the harmonics of the fundamental frequency are expressed as multiples of it: 2x, 3x, 4x,

.... Except oil whirl, all of the health states have components of fundamental frequency and

its harmonics, though the relative magnitude of them is different each other. In the oil whirl’s

case, sub-harmonic component exists instead of the harmonics due to the oil whirl’s different

mechanism which is affected by lubricant in the journal bearing. The sub-harmonic frequency

MA Installer

g

Proximity
Sensor

Bearing | Rubbing screw J| Bearing

Figure 4-6 GE Bently Nevada RK4 rotor kit
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Figure 4-7 Time- and frequency-domain representation for RK4 rotor kit

is described as 0.5x. As illustrated in Figure 4-7, the time- and frequency-domain of

generated signals correspond to those of real signals despite the proposed model is trained

with limited data.

4.2.3 Comparative Study

For the comparative validation, the same three comparative models are utilized:

baseline, class-weight, and WGAN-GP. Figure 4-8 presents the classification result

with imbalance ratio 10. The result of the proposed model shows considerable

discrepancy compared with the comparative models.
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Table 4-4 Accuracy and f1-score for RK4 rotor kit under imbalance ratio of 10

fest_accuracy

Baseline Class-weight | WGAN-GP Proposed
Accuracy | 49.19+9.88 57.79+6.44 60.31+6.31 66.04+5.29
Fl-score 0.42+0.11 0.56+0.064 0.57+0.059 0.63+0.054
40 I :;' 0.44 1
20 I l; 024
i
0 Baseline Class-weight WGAN-GP Proposed oo Baseline Class-weight WGAN-GP Proposed

Figure 4-8 Accuracy and f1-score for RK4 rotor kit under imbalance ratio of 10

4.2.4 Result of Density-based Sampling

The results of the proposed sampling technique is presented in Figure 4-9. Each

axis represents the relative density in the feature distribution and the corresponding

average probability for the misalignment and the rubbing state. The average

probability means that the softmax value calculated by a pre-trained CNN model

which is trained with balanced dataset. Therefore, the higher the average accuracy

is, the higher the quality of output signals are. In conclusion, the Figure 4-9. shows

that the latent vectors sampled from the proposed sampling method can be more

efficient, because the latent vectors with high quality are sampled and utilized to

compensate the imbalanced dataset.
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Chapter 5

Conclusion

In this paper, a new signal generation approach is proposed under the limited data
available through the spectrum-guided GAN and the density-based sampling method.
The proposed method is validated with two rotor-testbeds: Signallink rotor-testbed
and GE Bently Nevada RK4 rotor kit. The results even outperformed the
conventional WGAN-GP for both cases. It is expected to be utilized and developed
in the filed of the fault diagnosis for various kinds of rotating machinery with few
amounts of data available. Furthermore, distinguishing the quality of the generated
signals is proposed via density-based sampling method. For future works, the
generative model for non-stationary signals will be investigated and a new
guantitative metric for evaluating the quality of signals also will be explored to

enhance the density-based sampling method by defining appropriate threshold.
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