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ABSTRACT

A Study of Flame Emission Spectroscopy 
for Fast Time-Resolved and High Accuracy

Combustion Diagnostics 

Taekeun Yoon

Department of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

Remarkable combustion techniques have been developed to deal with 

environmental issues while maintaining the efficiency, stability, and performance of 

combustion. To operate recent combustors optimally, the gas properties in the 

reaction zones should be monitored quickly and accurately as well as instantaneously 

controlled. Flame emission spectroscopy (FES) is one of the candidate solutions for 

providing accurate gas properties measurements in real-time. This is because FES is 

a non-intrusive optical method that uses spontaneous and instantaneous emission 

spectra to estimate gas properties with the simplest experimental setup utilizing only 

detector systems. However, as the exposure time is reduced to increase the data 

acquisition rate, the signal-to-noise ratio (SNR) of the flame emission spectrum 
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decreases as well reducing the accuracy of the FES measurements. On the other hand, 

even if it is possible to collect signals with a high SNR, it is challenging to predict 

gas properties directly from the signals because of the requirement for complete 

chemical reaction path modeling of chemiluminescence. Therefore, predicting gas 

properties from emission spectra is achieved by a calibration process that correlates

flame emission with gas properties. Conventional methods utilize one-to-one 

calibration functions by extracting local spectral features, such as band intensity ratio, 

and matching the features to gas properties. Nevertheless, the variations of spectral 

features are not always monotonic which makes the calibration process not 

straightforward.

This study mainly discusses the framework for improving the temporal resolution 

and accuracy of FES for predicting gas properties. A data-driven calibration 

framework that combines 1) deep learning-based denoising based on the 

convolutional neural network (CNN) architecture as a signal preprocessor, and 2) 

data-driven calibration technique using a reduced order model (ROM) consisting of 

proper orthogonal decomposition (POD) and Kriging model is proposed. A deep 

learning neural network supervised on data pairs of noisy and clean signals with a 

loss function that utilizes POD of the spectrum can enhance the SNR of the short-

gated spectra with minimal information loss. Then, the POD method with a Kriging 

model mapping flame emission spectrum to the target gas properties predicts the gas 

properties from the processed spectra. To sum up, the proposed calibration method 
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can improve prediction accuracy of gas properties such as equivalence ratio and 

pressure using short-gated noisy signals.

The proposed combustion diagnosis method was applied to actual spontaneous 

flame emission spectra in high-pressure conditions. The gas property predictions of 

the proposed method were compared with experimental values measured by high-

precision and high-accuracy sensors to estimate the accuracy and precision of the 

proposed method. The prediction accuracy and precision of the proposed method

were evaluated using the average relative errors of prediction (REP) and the average 

relative standard deviation (RSD) of the gas predictions from the test spectrum data 

(not used for model training). The proposed method was investigated under 

combustion conditions in broad test ranges of equivalence ratio (0.8 – 1.2) and 

pressure (1 – 10 bar) of methane-air flame, taking a short-gated (0.05, 0.2, and 0.4 s) 

flame emission spectrum with low SNR as input. It was confirmed that the proposed 

framework enables flame emission spectroscopy to achieve high accuracy and fast 

temporal resolution.

Keywords: Combustion Diagnostics, Chemiluminescence, Flame Emission 

Spectroscopy, Convolutional Neural Network, Proper Orthogonal Decomposition

Student Number: 2017-26386
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CHAPTER 1. INTRODUCTION

1.1 Background and Motivation 

Modern civilization has heavily relied on combustion-based energy infrastructures. 

Up until very recently, combustion was the main source of energy conversion in the 

world. According to the International Energy Agency (IEA), 90% of the total energy 

supply (TES) is based on combustion, including the use of biofuels and fossil fuels 

such as coal, natural gas, and oil in over 170 countries and regions, as shown in 

Figure 1.1 [1]. Given the difficulty of developing renewable energy and the current 

proportion of renewable energy in TES, combustion will remain the primary energy 

source for power generation and transportation in the near future.

On the other hand, the combustion of fossil fuels and biofuels inevitably produces 

pollutants including NOx, CO, particulate matter, and greenhouse gases such as CO2.

These by-products of combustion have negative effects on the environment, e.g., 

smog caused by CO and particulates, acid rain caused by NOx, and global warming 

mainly caused by greenhouse gases. Countries around the world have addressed 

these issues by signing agreements such as the Kyoto Protocol (1997) and the Paris 

Agreement (2015) [2]. In particular for greenhouse gas emissions, the 

intergovernmental panel on climate change (IPCC) reported the importance of 
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achieving net-zero CO2 emissions by 2050 in order to limit the increase in average 

global temperature by 1.5℃ before 2100 (IPCC, Incheon 2018). As a result, there 

has been a rapid increase in the number of governments making commitments to 

reduce carbon emissions to net-zero, as shown in Figure 1.2 reported by the IEA. In 

addition, these governments have set targets for reducing pollution and greenhouse 

gas emissions and have strictly regulated those emissions.

Figure 1.1 Total energy supply (TES) by source in the world 1990-2019 [1]
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Figure 1.2 The number of national net zero pledges and share of global CO2

emissions covered [3]

Therefore, recent advancements in combustion technology have been primarily 

driven by environmental concerns while maintaining combustion systems' efficiency 

and output power. As a solution to alleviate NOx production, it is known that the 

production of NOx is effectively reduced by lowering the combustion temperature. 

For instance, a rich-quench-lean (RQL) combustor serially combines fuel-rich and 

fuel-lean combustion stages, enabling low-temperature but high-power combustor 

operation [4, 5], and a flue gas recirculation (FGR) system recirculates a portion of 

high-temperature combustion products for sustaining low fuel-concentration 

combustion, which reduces the peak combustion temperature [6]. 

Alternatively, high-pressure combustion enables high-efficiency and high-power 

output engine operation, which leads to the reduction of pollutants and carbon 

dioxide emissions per unit of power output [7]. Recent gas turbines operate at above 
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supercritical pressures of carbon dioxide and water, which are the major combustion 

product species. For instance, a high-efficiency combustor was operated at 300 bar, 

combined with a carbon capture and storage (CCS) system to minimize CO2

emissions [8, 9]. Supercritical fluids have the characteristics of low viscosity and 

high diffusivity. These characteristics reduce pressure loss and promote mixing, 

thereby increasing combustion efficiency and reducing pollutant emissions [10]. 

There are challenges in operating these environment-driven technologies

optimally since sophisticated control is required. For example, minimizing NO 

emissions requires low-temperature flame conditions in which CO emissions 

increase. Also, combustion at low temperatures suffers from lean-flame instability.

On the other hand, when the combustion pressure is high, the rate of heat transfer to 

the wall increases, and the temperature of the exhaust gas rises due to the combustion 

heat; therefore, the risk of premature failure of turbine blades exists. To prevent 

combustion failure due to flame instability and high temperatures, it is essential to 

monitor and control gas properties at the flame location, e.g., local fuel/diluent 

concentration and combustion temperature, since these properties determine 

combustion temperature, flame stability, pollutant generation, and failure.

Optical measurement methods, such as flame emission spectroscopy (FES), have 

been proposed to monitor gas properties in the combustion reaction zone [11-19].

FES, which utilizes instantaneous flame emission, is one candidate solution that can 

accurately measure gas properties in real-time. This is because FES measures gas 
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properties without disturbing the flow of the combustors and uses only photon 

detection systems. Given the high sampling rate (up to 10MHz [20]) of recently 

developed high-speed cameras, FES has the potential to achieve high temporal 

resolution. When measuring rapidly evolving combustion environments, a high 

sampling rate is desirable given that the sampling rate of the detection system should 

match the characteristic time scale of the flame. For example, the frequencies of 

large-scale eddies and precessing vortex cores of swirl flames are several kilohertz 

(kHz) [21-23]. Furthermore, the typical integral time scale and Kolmogorov scale of 

flames are tens and hundreds of kHz, respectively [24]. Also, FES utilizes a single 

optical access without an auxiliary light source, which is preferable in practical 

combustors.

In previous FES studies, it has been known that spontaneous emissions are 

generated from excited intermediate and product species during drastic chemical 

reactions in flame. Some characteristic local spectral features, e.g., atomic emission 

line strength and width, molecular emission band strength, broadband spectrum 

profiles, etc., are highly sensitive to gas properties. However, predicting gas 

properties directly from the emission spectra is challenging. This is because 

complete modeling of the chemical reaction pathway to analyze light emission from 

radical and molecular bands is demanding. Variations in gas properties such as 

pressure and concentration and species of fuel and diluent affect the chemical paths, 

resulting in the change of the dominant features of the emission spectra. Accordingly, 
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in previous studies, calibration experiments were conducted to provide a calibration 

function between the flame emission spectra captured under various flame 

conditions and the corresponding accurately measured properties. The calibration 

function is based on the monotonic correlation between a local spectral feature and 

a gas property, which provides a property indicator for calibrating measurements.

Especially, the band intensity profiles generated by the excited radical or product 

species are used to predict fuel-air ratio (ϕ) [11-14, 25], combustion temperature (T)

[15], pressure (P) [16, 17], species concentration (χ) [18], and heat release rate [19].

There are two issues with applying FES to monitor the aforementioned advanced 

environment-friendly combustion technologies. Firstly, variations in gas properties

are interconnected and affect the chemical pathway, leading to changes in the 

emission spectrum. Specifically, depending on the components of fuel and oxidizer, 

as well as ambient pressure and temperature, the dominant emission lines become 

stronger or weaker or even vanish, which requires modification of the calibration 

indicator. Therefore, to calibrate various parameters, such as ϕ, diluent concentration, 

and temperature simultaneously, it is necessary to select a spectrum interval in which 

lines do not overlap and strongly appear to have a high signal-to-noise ratio (SNR)

under all flame conditions. However, it is tedious and difficult to determine 

calibration parameters that work well for the overall range of combustion conditions.

For example, increased combustor pressure suppresses the light emission of excited 

molecules resulting from the collisional quenching process, causing broadband 
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continuum emission rides over the emission bands. Consequently, spectrum analyses 

for quantitative property measurements become more difficult in advanced 

environment-friendly combustion technology.

Secondly, the shorter exposure time to achieve fast-time resolution of FES 

produces a lower SNR of spectral signals, with its consequent degradation of 

accuracy and precision. FES utilizes instantaneous combustion chemiluminescence 

spectra for estimating gas properties, and the sampling rate and exposure time for 

capturing the chemiluminescence spectra determine the time resolution of FES. 

However, the SNR of a detector is typically proportional to the square root of the 

exposure time assuming negligible readout noise. This is a limitation of the fast time-

resolved FES because calculating the intensity of emission lines corrupted by noise 

has a large deviation, and thereby predicting the gas properties in the target flame 

shows a large error. Furthermore, the distinct emission lines are overlapped by noise

in low SNR of signal and could disappear even if the noise floor is higher than the 

intensity of the emission lines, which makes it impossible to predict target properties.

As a result, instantaneous control using FES is more difficult when a high acquisition 

rate measurement of quantitative properties is required.

This dissertation proposes a novel framework for FES to overcome the 

limitations of the traditional FES method. The proposed framework provides fast 

time-resolved and high accuracy combustion diagnostics by combining the data-

driven calibration process and deep learning-based denoising method. The data-
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driven calibration process is based on a reduced order model (ROM) employing 

proper orthogonal decomposition (POD) to reduce the dimensionality of spectral 

signals and the Kriging method to correlate the entire emission spectrum profile. 

Furthermore, the state-of-the-art deep learning-based denoising method is tuned for 

denoising and reconstructing low SNR flame emission spectra by employing novel 

neural network architecture and loss function. Consequently, the integration of deep 

learning-based denoising and the POD/Kriging method improves the accuracy of 

FES using low-SNR flame emission spectra with a short exposure time as inputs.

1.2 Previous studies 

1.2.1 Mechanism of flame emission

Flame emission including information about the properties of the target flame 

comes from two mechanisms: 1) thermal radiation and 2) chemiluminescence. Every 

physical body spontaneously and continuously emits thermal radiation. Thermal 

radiation can be approximated by black-body radiation, which is thermal radiation 

from an idealized opaque non-reflective body in thermal equilibrium. Black-body 

radiation follows the Stefan-Boltzmann law, which states that the total radiant heat 

energy of thermal radiation is proportional only to the fourth power of the absolute 

temperature.
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� = ��� (1.1)

where �, �, and T stand for the radiant thermal energy from a unit area per unit 

time, Stefan-Boltzmann constant, and absolute temperature, respectively. The 

spectrum of the black-body radiation curve is continuous over a wide range of 

wavelengths. Planck’s radiation law describes the relationship between temperature 

and energy spectral density.

�(�, �) =
2ℎ��

��

1

exp �
ℎ�
��

� − 1
(1.2)

where � , � , � , ℎ , � , and �  are respectively the spectral radiance, emission 

frequency, absolute temperature, Planck constant, speed of light, and Boltzmann 

constant, respectively. Figure 1.3 presents the spectral radiance of blackbody 

radiation at varying temperatures. The wavelength of the spectral peak gets shorter 

and the total area also increases as the absolute temperature rises. In the flame under 

fuel-rich conditions, soot is formed, which causes black-body continuum radiation, 

depending on the flame temperature [26]. Therefore, spectral pyrometry can measure 

the temperature of the reacting gas flow by collecting radiation from soot and coal 

particles [27, 28].
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Figure 1.3 Spectral radiance of black-body radiation

Chemiluminescence, the spontaneous emission of light resulting from chemical 

reactions, is another primary mechanism of flame emission. Especially, hydrocarbon 

flames are characterized by their visible and ultraviolet wavelength ranges. The band 

structures of OH*, CH*, C2*, and CO2* are distinct from 250nm to 600nm 

wavelength; the asterisk symbol (*) denotes the excitation state of an atom or 

molecule. The reaction zone appears blue by spectral emission bands of excited CH 

radicals with an excess of air, and the reaction zone turns blue-green under fuel-rich 

conditions due to C2 radicals. OH radicals are prominent characteristic features, and 

CO2* contributes broad range continuum emission overlapping other spectral band 
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features. Also, to a lesser degree, continuous emission comes from HCO*, and 

CH2O* [25, 29, 30].

The states of excited molecules from chemical reactions determine the structure 

of the bands and lines of flame emission [31]. Specifically, excited diatomic 

molecules emit photons as they transition from the upper rotational, vibrational, and 

electronic energy state to the lower rotational, vibrational energy, and electronic state. 

The wavelength of light emission is determined by the energy gap between the upper 

and lower states. The rovibrational energy state follows the selection rules that the 

quantum number changes only by 1 in transition according to quantum mechanical 

restrictions on the allowable changes. Therefore, the transition in the rovibrational 

energy state leads to branches and bands which are the groups of the line spectra. 

Furthermore, the electronic transitions occur between different potential energy 

wells, which is a higher energy gap, and a group of vibrational bands in the same 

electronic transition comprises an electronic system. In the following, the emission 

systems from the excited molecules in the combustion process and the chemical 

reactions that produce the excited molecules are introduced. Two numbers in 

parentheses with a comma mean the oscillation quantum numbers of the upper state 

and the lower state in turn. Two OH* bands are dominant in the UV region (280 –

315 nm). OH* (1, 0) is at 281.1 nm and OH* (0, 0) appears prominently at 306.4 nm,

which are produced by the reactions H + O (+ M) → OH* (+ M) (M is the third 

body molecule), and CH + O2 → OH* + CO [32]. In addition, CH* (0, 0) is at 431.4
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nm and CH*(2, 2) is at 432.3 nm, which are mainly formed from C2 + OH → CH*

+ CO, C2H + O → CH* + CO, and C2H + O2 → CH* + CO2 [33]. Three C2 swan

bands (1, 0) (0, 0) (0, 1) are located at 473, 513, and 563 nm respectively, which are

from CH2 + C → C2* + H2, and C3 + O → C2* + CO [34]. The CO2* emission is

generated by the reaction from CO + O (+ M) → CO2* (+ M) [18].

The intensity of a molecular band and broadband is proportional to the 

concentration of the excited species. The reaction and emission intensity equation 

are as follows [14, 33].

�∗ → � + ℎ� (1.3)

I�
∗ = �[�∗] (1.4)

where X stands for the radical species including OH, CH, and C2, h is the Planck 

constant and υ is the frequency of chemiluminescence, I is the photon emission rate, 

and A is the Einstein coefficient for spontaneous emission of transition. The 

concentrations of the radical species are very small because of low production rates 

and rapid removal by fast quenching rates [33]. Therefore, the radicals can be 

assumed to be in quasi-steady condition, which means that the concentrations of 

excited radicals are determined by the production rate and quenching rate. Therefore, 

the lines or broadband intensities of radicals can be physically interpreted as the 
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balance between the production rate and quenching rate. As a result, if the formation 

reaction and their rates of excited radicals are known, the intensity of 

chemiluminescence can be simulated. For example, as shown in Figure 1.4, 

assuming the formation reaction of CH* is only governed by C2 + OH → CH* + CO, 

C2H + O → CH* + CO, and C2H + O2 → CH* + CO2 and the reaction rate constants 

are ��, ��, and �� for the corresponding reactions. In addition, the quenching rate 

constant for CH* by species j is ��,� , A is the Einstein coefficient for CH* transition. 

The photon emission rate (���∗) can be simulated as follows.

Figure 1.4 Chemiluminescent reaction path and light emission process of CH*

[CH∗] =  
��[C�][OH]  + ��[C�H][O] + ��[C�H][O�]

∑ ��,����� + �
(1.5)

���∗ = A[CH∗] (1.6)
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The spectral line shapes are determined by broadening mechanisms such as natural 

broadening, collisional (pressure) broadening, Doppler broadening, stark broadening, 

and instrumental broadening [31]. Primary sources of flame emission broadening 

include collisional broadening, Doppler broadening, and instrumental broadening. 

Collisional broadening occurs due to changes in the transition energy gap of excited 

molecules resulting from interaction during molecular collisions. Collisional 

broadening is a function of pressure and molar concentration and the shape follows 

the Lorentzian distribution. Doppler broadening is caused by the Doppler shift 

resulting from the random velocity distribution of molecules. Given the Maxwell-

Boltzmann distribution law, the random velocity distribution is a function of 

temperature and molecular mass. Therefore, Doppler broadening is determined by 

temperature and molecular mass and the line shape is a Gaussian function. 

Instrument broadening can result from how a measurement is conducted, e.g., the 

resolution of a spectrometer.

As a result, characteristics of the intensity and spectral shape of distinct radical 

emission band is highly sensitive to the properties such as temperature, pressure, and 

the species and concentration of unburned gas. Figure 1.5 shows the spectrum 

measured at the equivalence ratio 0.8 and 1.1 of methane flame by changing the 

diluent gas with N2 and CO2 in the oxidizer. As mentioned, OH* appeared 

prominently in all of the flame conditions, and CH* and C2* appeared in the rich 

flame. With CO2-enriched conditions, the broadband background emission gets more 
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dominant, and OH*, CH*, and C2* were weaker than the spectrum of N2-diluted 

flame even in the rich region. This is because the concentrations of the intermediates 

decrease by changes in chemical reaction paths which are sensitive to the species 

and concentration of diluent [35]. The chemiluminescence in this example is highly 

dependent on gas properties such as species and concentration of diluent, 

equivalence ratio, flame temperature, and ambient pressure.

Figure 1.5 Chemiluminescence spectra of lean (equivalence ratio º ϕ = 0.8) 

and rich (ϕ = 1.1) methane-air flames diluted by CO2 or N2
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1.2.2 Calibration process of flame emission spectroscopy (FES)

The most common technique for calibrating spectra to the gas property in FES is 

to derive a monotonic correlation between a local spectral feature and a target gas 

property while all other properties are constant. For example, Higgins proposed that 

the intensity of the OH* emission band can indicate the equivalency ratio of the gas 

mixture while the flow rate and pressure of the air (or mixture), which also affect the

emission intensity, are kept constant [11]. Likewise, it is known that the characteristic 

variation of some regional spectral features like emission bands of CH*, C2*, CN*, 

NH*, and CO2* and their intensity ratios (e.g., OH*/CH*, CH*/C2* and OH*/C2*) 

have been studied in numerous prior research to measure gas properties, such as the 

equivalence ratio [12-14, 17, 18, 36-39], pressure [17, 37], species concentration [18, 

38, 39], and heat release rate [19]. However, these manually selected local spectral 

features are unable to reveal all the varying gas properties because the interconnected 

nature of the gas properties makes variations in flame emission non-monotonic.

Furthermore, FES measurements are made more difficult due to the use of advanced 

environmentally-friendly combustion technologies. For example, a high-pressure 

environment causes the local spectra to be indistinct because it quenches the excited 

species while enhancing CO2 emission bands.

Data-driven calibration methods, e.g. partial least-squares regression (PLS-R),

artificial neural networks (ANN), and POD / Kriging have been used to overcome

the drawbacks of the manually selected one-to-one calibration methods [40-44].
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Tripathi et al. [40, 41] demonstrated that PLS-R based on the PLS method and

multiple linear regression (MLR) offers improved performance on ϕ-predictions in 

a wider fuel concentration range compared to the accuracy of calibrated OH*/CH* 

because of the low-intensity spectral peak of CH* in fuel-lean flame conditions. 

However, only ϕ was calibrated and predicted at atmospheric pressure without 

sensitivity analyses. Paulo et al. [42] utilized the same method, PLS-R, to measure 

the octane number in gasoline fuels from flame emission. Also, only the octane 

number was calibrated and predicted. In addition, Ballester et al. [43] used an ANN

to calibrate pollutant concentrations (CO and NOx) and chemiluminescence spectra. 

ANN worked well as a non-linear regression tool from spectra to pollutant

concentration, but ANN often requires a lot of data to train the neural network and 

also is a "black box" because interpreting how all the neurons work together to get 

the final output is not clear to the user. Moreover, Yoon et al. proposed that a 

calibration process utilizing a ROM based on POD extracts spectral features highly 

sensitive to diluent concentration, equivalence ratio, and temperature to accurately 

predict the properties from spectral signals [44].

1.2.3 Deep learning-based denoising

In the raw spectral signals, noise from the image sensors, circuits of the digital 

camera, and in-camera processing pipelines causes unwanted modifications to 

signals. In general, noise does not include useful information and is rather random. 
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Hence, in most cases, noise is desirable to be reduced while recovering the original 

signal, i.e., a high SNR signal. In signal processing, filters such as a Gaussian, 

median, low-pass, and Savitzky-Golay filter are commonly used to selectively 

attenuate noise and to recover the original signal. For example, a Gaussian 

smoothing filter can enhance SNR by selectively attenuating high-frequency noise 

[45]. However, these filters will inevitably remove information in the high-frequency 

range including peaks and band structures which are important indicators of the gas 

properties in FES, resulting in inaccurate measurements as shown in Figure 1.6. 

Figure 1.6 Comparison of spectral signals processed with various filters



19

The noise removal ability of state-of-the-art machine learning techniques based 

on deep layers has achieved remarkable performance for digital image denoising. 

The recent development of neural network architecture and regularization methods

such as Rectified Linear Units (ReLU) [46], Batch Normalization (BN) [47], and 

residual learning [48] helps to overcome the drawbacks of the deep architecture, e.g. 

vanishing gradients, the high computational cost of activation functions such as 

sigmoid and hyperbolic tangent, and the hardware platform [49]. The deep neural 

network architectures for CNN, e.g. AlexNet (2012) [46], VGG (2014) [50], and 

GoogLeNet (2015) [51] were successfully applied to classify the image dataset, 

which utilizes multiple kernels (filters). These multiple kernels explicitly exploit 

local features and impose translation invariance, which enables CNN to take 

advantage of the spatial features in the image dataset. In this context, deep CNNs 

have been employed in restoring and denoising images since 2015 and have 

performed well on a wide range of denoising tasks [52].

Recently, convolutional neural networks (CNN) have been most widely applied to 

restore and denoise images [49, 53-60]. The denoising CNN (DnCNN) improved 

denoising performance and increased training speed by using plain CNN architecture 

combining the convolutional layer, BN, and ReLU without pooling and skipping 

connections, and residual learning as regularizing methods [54]. The fast and flexible 

denoising CNN (FFDNet) reduced running time and memory usage for the denoising 

task and the noise level range by using down-sampled sub-images and an explicit 
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noise level map without residual learning [55]. The down-sampled sub-images in 

FFDNet effectively increase the receptive field (RF) which is the number of input 

pixels involved to produce one output pixel, resulting in exploiting global context 

information. However, these methods are based on data augmentation by adding 

noise so noise modeling, i.e. probability distribution and the noise level, is required, 

which is challenging to apply the methods to real-world noisy images. In training the 

denoising CNN structure, pairing real noisy and high-quality clean datasets without 

using noise modeling can handle real noise and perform better than conventional 

noise modeling [56, 57].

The use of noisy data to train the denoising ability in studies such as Noise2Noise, 

Noise2Self, and Noise2Void was presented to avoid noise modeling and to apply the 

denoising method where high-quality data is not available [58-60]. Noise2Noise 

needs independent pairs of noisy data but this requirement is not necessary for 

Noise2Self and Noise2Void due to being trained by self-supervision. This can be 

achieved by assuming the noise is conditional independent pixel by pixel and the 

expectation of noise is zero. These denoising methods perform well when acquiring 

clean data is limited, but they suffer performance degradation when the noise violates 

assumptions, e.g., structured noise. In addition, when dealing with data with 

extremely high noise levels, the overall performance is diminished compared to that 

of the methods supervised by clean data [60].

The state-of-the-art of these machine learning approaches mainly focuses on 
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general images rather than quantitative scientific image analyses [49, 53-60]. The 

adaptation of machine learning-based denoising to spectroscopic analyses for optical 

diagnosis is promising for the measurement of various quantities. Recently, several

studies of the denoising method on spectroscopic analyses have been investigated, 

including Rayleigh and Raman scattering spectroscopy, laser absorption 

spectroscopy, electron spectroscopy, and angle-resolved photoemission 

spectroscopy [61-64]. Machine learning techniques have been demonstrated to 

increase the accuracy of quantitative measurements of target properties. It is also 

notable that CNN was adopted in optical combustion diagnosis as a nonlinear 

regression method. Barwey et al. carried out mapping a series of OH planar laser-

induced fluorescence images into three component planar velocity fields with the 

combination of CNN structures [65]. Rodriguez et al. presented the CNN method for 

estimating soot volume fraction distribution from integrated light extinction by soot 

particles, resulting in accurate measurements that are not sensitive to random noise 

and regularization parameters [66]. Wan et al. proposed a gradient-free regime 

identification approach to construct a combustion regime based on CNN. Yoon et al. 

demonstrated that CNN architecture with a wide receptive field and with a modified 

loss function can significantly reduce noise in spectral signals and achieve fast time 

resolution of FES [67].
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1.3 Outline of the Dissertation

The dissertation includes studies on the characteristics of flame emission, the 

development of the FES method that provides accurate and fast time-resolved 

measurements of multi-properties for combustion diagnostics, and its application to 

flame emission in high-pressure environments. Following is an outline of the 

remaining chapters of this dissertation.

Chapter 2 presents experimental results investigating the characteristics of flame 

emission from high-pressure methane-air combustion. The experimental setup for 

the combustor and detection system is described in this chapter. Furthermore, the 

variations of prominent molecular emission bands are investigated as indicators of 

gas properties following conventional calibration methods.

Chapter 3 demonstrates the development of a data-driven calibration process using 

ROM. The strategy of ROM is composed of POD as a dimension reduction method 

and the Kriging model as a regression model. Moreover, to validate and analyze the 

ROM, cross-validation and global sensitivity analysis (GSA) are introduced, and the 

result of the method in the calibration process is discussed.

Chapter 4 describes the development of deep learning-based denoising for flame 

emission spectra. A deep learning architecture is proposed that combines reversible 

down- and up-sampling (DU) operators with plain CNN. The training of the neural 

network is regularized by the loss function that consists of the mean square error 
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(MSE) and squared L2 norm of the POD coefficients. This chapter discusses how 

the proposed methodologies efficiently and accurately preserve information in flame 

spectra using a deep learning-based denoiser.

Chapter 5 proposes a framework for fast time-resolved and high-accuracy FES 

utilizing the data-driven calibration process and the deep learning-based denoising 

technique. The framework is applied to the flame emission from high-pressure 

methane-air combustion. Additionally, this chapter discusses the effect of exposure 

time on the prediction accuracy of measurements.

Chapter 6 presents the conclusions of the research and suggests further research.
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1.4 Contributions

The main contribution of this dissertation is the development of a data-driven 

calibration process and deep learning-based denoising method to achieve fast time-

resolved and high-accuracy FES. Moreover, the performance of the proposed method 

of FES has been validated using actual flame spectra from the combustion 

experiments in the high-pressure combustion environment. Below are the detailed 

contributions.

1. This dissertation proposes a novel data-driven calibration process utilizing 

ROM including POD and a Kriging model. In contrast to the traditional one-

to-one calibration method of FES using distinctive local spectral features, the 

proposed data-driven calibration process results in accurate measurements 

and can be applied to multiple properties in high-pressure conditions. The 

POD extracts feature at a wide range of wavelengths and regression using the 

Kriging model correlates the POD coefficients with the target gas properties. 

In Chapter 3, the details are discussed.

2. This dissertation proposes a novel denoising deep learning architecture and 

loss function designed specifically for flame emission spectra. Using the

proposed method, it is possible to obtain high temporal resolution 

measurements of gas properties using short exposure time signals. A neural 

network using a DU operator and plain CNN effectively expands the receptive 
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field and regularizes training by the squared L2 norm of the POD coefficients 

that include features in a broad wavelength range. This method effectively 

overcomes the problem of measuring gas properties with low SNR signals by 

enhancing SNR utilizing both pixel-wise global and local contextual 

information. In Chapter 4, the details are discussed.

3. This dissertation proposes a framework for FES combining the data-driven 

calibration process and deep learning-based denoising method to achieve fast 

time-resolved and high-accuracy combustion diagnostics. The framework is 

applied to actual flame spectra from high-pressure combustion for 

demonstration, and successfully predicts gas properties with low SNR signals 

that represent FES from unstable and unsteady flames where fast temporal 

resolution is desirable. Furthermore, the effect of exposure time on the 

accuracy of gas property prediction including noise analysis of the spectral 

signal is discussed. In Chapter 5, the details are discussed.

4. In summary, the proposed framework has a significant contribution in that it 

is a novel concept that addresses the limitations of conventional FES. This 

dissertation shows that the proposed framework remarkably improves the 

accuracy, precision, and temporal resolution of FES to measure multiple gas 

properties by combining the advantages of each method.
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CHAPTER 2. EXPERIMENTAL RESULT OF 

FLAME EMISSION

2.1 Flame emission measurement

Spectral signals from high-pressure methane-air combustion are investigated to 

understand the characteristics of flame emission and calibrate gas properties of flame 

conditions. A high-pressure methane-air flame is supposed to be a laboratory-scale 

combustor of a modern gas turbine. Methane, which is the main component of 

natural gas, has significant environmental advantages over fossil fuels such as coal 

and gasoline. Since they produce more heat and energy per unit of mass, they cause 

far less smog and air pollution, as well as carbon dioxide. Moreover, if methane is 

produced from non-fossil sources, e.g., food industries such as rice and corn, landfills, 

and biomass burning, the combustion of methane can be more environmentally-

friendly [68].

2.1.1 Experimental setup

A steady state methane-air flame with equivalence ratio, ϕ (= 
����/���

�����/���
�

�����

) of 

0.8 – 1.2 and pressure, P of 1 – 10 bar is produced by a custom-built McKenna burner

in a high-pressure chamber with four separate viewports. The experimental setup for 

operating a high-pressure burner consists of three systems; flow control, burner, and 
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laser ignition system, as shown in Figure 2.1. The flow control system including a 

compressor, dehumidifier, buffer tank, and mass flow bench regulates and maintains 

constant mass flow rates of fuel and methane to be provided to the burner. Thermal-

type mass flow controllers (Bronkhorst, EL-FLOW, F-211AV for methane, and F-

211AC & F-002AV for air) accurately regulate the fuel and air flows to control ϕ. 

The burner system consists of a high-pressure chamber, flat flame burner, heat 

exchanger, and back pressure regulator, which is designed to sustain a high-pressure 

flame environment. The air and fuel from the flow control system are fully mixed 

before being fed to the burner, and the burner composed of a low porosity sintered 

brass plate (porosity = 0.365 and diameter = 60.5 mm) provides a uniform flow field 

above the exit plane. The flow rates of air and fuel are controlled by considering the 

corresponding ϕ and laminar flame speed calculated by ANSYS Chemkin-Pro using

GRI-Mech 3.0 under given flame conditions. The flow speed on the exit plane was 

kept higher (2–6%) than the laminar flame speed to sustain and stabilize the flat 

flame about 1 mm above the outlet plane. The temperature of unburned premixed 

gas is precisely controlled at 298K by water cooling with a cooling coil in the metal 

plate, presumably the same as the reactant temperature. The speed of air shielding 

from the outer sintered brass ring is matched with the speed of the burned gas after 

considering thermal expansion, and this shielding stabilizes the outward edge of the 

flame. The air shielding also helps to keep the total fuel concentration in the chamber 

below the lean flammability limit for safety reasons. A back pressure regulator 

(Equilibar, GSD4SNT5-NSBP300T300I8KK) precisely controls the ambient 
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pressure in the high-pressure chamber by opening up the right amount to maintain 

the appropriate pressure, and a static pressure sensor (TIVAL, TST-10.0, ± 0.25% of 

the full scale (40 bar)) measures the pressure. The back pressure regulator is made 

up of a metal body and diaphragm whose operating temperature is up to 300℃, and

therefore, the temperature of burned gas is lowered to under 300℃ by using a heat 

exchanger composed of brass tubes for passing the burned gas and a water tank for 

circulating cool water. The laser ignition system includes a high-power laser, mirror, 

and focusing lens. The second harmonic laser beam (wavelength = 532 nm) from Nd 

YAG laser (Spectra-physics, Quanta-Ray LAB150) is focused by a plano-convex 

lens (Thorlabs, LA1979-A, A-coated, focal length = 200 mm). The energy per pulse 

of the laser was about 100mJ and the pulse width was 6 ns which is enough to provide 

the spark to ignite the premixed gas. 

The flame emission spectra are collected by a UV-camera lens (Nikon, UV-Nikkor, 

f = 105 mm) from the perpendicular plane of the flame front from an optical access 

on the high-pressure chamber. The collected emission appears as a flame image at 

the focusing location, and this image is placed at the entrance of an optical fiber 

(Ocean optics, QP600-2-SR-BX) that transmits light in the wavelength range 200 to 

1100 nm. The other end of the fiber is directly connected to a portable spectrometer 

(Ocean optics USB 2000+, 600 grooves/mm grating for 0.5 nm spectral resolution), 

and the spectrum of flame emission is analyzed in a broad spectral range from 250 

to 850 nm. The distances between the flame and the lens and between the lens and 
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fiber were 370 mm and 145 mm, respectively, which magnified the flame image by 

a factor of 0.4. Since the thickness of the flame is approximately 1 mm and the 

diameter of the fiber core is 500 μm, the entire image of the flame plane is fed 

through the fiber. 2 s exposure is sufficient to record high-SNR spectrum signals. To 

investigate the effect of exposure time on spectral signals and the accuracy of gas 

property prediction, various exposure (gate) times (0.05, 0.2, and 2 s) are used to 

acquire the spectra.

In summary, systems of mass flow control, burner, laser ignition, and optical 

diagnostics are built to operate a high-pressure flat flame burner precisely and collect 

a spectral dataset of the flame emission at given flame conditions as illustrated in 

Figure 2.2.
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Figure 2.1 Experimental setup for high-pressure flat flame McKenna burner
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Figure 2.2 Schematic of the experimental setup and spectral signals
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2.1.2 Uncertainty quantification of experimental measurement

The uncertainty of experimental measurements is estimated by evaluating 

component level uncertainty and its propagation to the target properties [69]. In this 

study, the uncertainty of the equivalence ratio is quantified by a linearly 

parameterized model assuming that each component is independent and the first 

derivative terms are dominant. For example, if the uncertainties of each flow 

controller are known, the uncertainty of the equivalence ratio can be estimated using

the equation below (Eq. (2.1)). 

σ�
� = ���̇�
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��̇�
�

�

+ ���̇�

��

���̇�

�

�

(2.1)

where �̇� , and �̇�  are mass flow rate of air and fuel, and �� , ��̇�
 , and ��̇�

indicate the uncertainty of each variable. The mass flows of fuel and air were 

regulated by thermal-type mass flow controllers (Bronkhorst, EL-FLOW, F-211AV

for methane, and F-211AC & F-002AV for air). According to the technical 

specifications of Bronkhorst, the accuracy uncertainty of EL-FLOW select F-211AV

is the sum of ± 0.5% of reading digit(s) and ± 0.1% of the full scale (20 slpm), and 

the accuracy uncertainty of EL-FLOW select F-211AC & F-002AV is the sum of ± 

0.5% of reading digit(s) and ± 0.1% of the full scale (250 slpm). The estimated

uncertainty of ϕ considering technical specification and propagation is between 0.89% 

and 1.68% and the numbers are listed in Table 2.1. In addition, the uncertainty of 
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pressure measurement in the combustion chamber was 0.1 bar estimated by the 

specification of a static pressure sensor, TIVAL TST-10.0, which has ± 0.25% of the 

full scale (40 bar) uncertainty. 

Table 2.1 Estimated uncertainty of equivalence ratio 

Unit: % Equivalence ratio (ϕ)

P (bar) 0.8 0.9 1.0 1.1 1.2

1.2 1.68 1.43 1.31 1.29 1.37

2 1.42 1.23 1.14 1.13 1.20

3 1.27 1.12 1.05 1.04 1.12

4 1.19 1.06 1.00 0.99 1.07

5 1.14 1.02 0.96 0.96 1.04

6 1.10 0.99 0.94 0.94 1.01

7 1.07 0.97 0.92 0.92 0.99

8 1.05 0.95 0.91 0.90 0.97

9 1.03 0.93 0.89 0.90 0.96

10 1.01 0.92 0.89 0.90 0.94
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2.1.3 Noise analysis of spectral signal

The application of FES to monitor the rapidly evolving combustion environment 

requires the exposure time and sampling rate of the detection system to be matched 

with the characteristic time scale of the flame. For example, the time scale of large-

scale eddies and precessing vortex core of swirl flames are several microseconds 

[21-23]. Furthermore, the integral time scale and Kolmogorov scale of flames are 

hundreds and tens of microseconds [24]. However, the short exposure time causes 

noise-corrupted signals as presented in Figure 2.3. To determine the correlation 

between the SNR and exposure time, the noise level of spectrum is quantitatively 

estimated by calculating the three primary noise sources of the charge-coupled 

device (CCD) sensor in the spectrometer: 1) photon noise, 2) dark noise, and 3) read 

noise [70]. 1) The photon noise is caused by the stochastic arrival of photons on the 

charge-coupled device (CCD). The number of photons that reach the CCD follows a 

Poisson distribution, and the square of the error is inversely proportional to this 

amount. 2) Dark noise is the spontaneously produced current even when no photons 

are incident on the CCD. It also follows the Poisson distribution and the square of 

the dark noise equals the number of dark electrons. 3) The readout noise is produced 

by the conversion of the charge-voltage and digitization processes and it depends on 

the sampling frequency and tends to rise as the sampling rate increases [71].
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Figure 2.3 Typical chemiluminescence signals with three different exposure 

times (0.05, 0.2, and 0.4 s)

Both the photon noise and dark noise follow the Poisson distribution which can 

be approximated to the Normal distribution. This is because the central limit theorem 

is satisfied when the exposure time is long enough. As each noise source is 

independent, the total noise equals the root sum square of its components. As a result, 

the SNR of a spectrum signal can be estimated via the equation below, Eq. (2.2), 

��� =
���������

��������
� + �����

� + �����
�

=
����

����� + ������ + ��
� (2.2)

where, ���������  , �������  , ����� , ����� , �� , � , � , �����  , and ��  denote for 

the number of counted electrons, photon noise, dark noise, readout noise, photon flux 
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at the CCD, quantum efficiency, exposure time, dark current, and the number of 

thermal electrons, respectively. A monotonic decrease in SNR is predicted with 

reduced exposure time according to the estimation of SNR (Eq. (2.2)).

In this study, the spectrometer was Ocean optics USB 2000+, which utilizes a 

CCD image sensor (Sony, ILX551, 2048-pixel CCD Linear image sensor). 

According to a report about the comparison of line array sensors including ILX551B 

[72], the dark current slope fit at 25 ℃ is measured as 0.0363 digital count/ms and 

0.011 mV/ms, and the root mean square of readout noise at 500kHz is measured as 

2.1159 digital counts and 0.63mV. The SNRs of the OH* peak at 308 nm at P = 10 

bar and ϕ = 1 are quantitatively evaluated and each noise component is converted to 

digital counts, mV, and electron, as listed in Table 2.2. The SNRs of the 

chemiluminescence signals monotonically decrease with decreasing exposure time; 

the average SNR of OH* at 308nm is 4.3, 14, and 22 for 0.05, 0.2, and 0.4 s exposure 

time, respectively.

Table 2.2 Noise analysis of OH* peak (308 nm) at P = 10 bar and ϕ = 1

Exposure time (s)

0.05 0.2 0.4
e- DC mV e- DC mV e- DC mV

Counted Signal 115 9.97 2.99 463 40.2 12.0 934 81.2 24.3

������� 10.7 0.93 0.28 21.5 1.87 0.56 30.6 2.66 0.80

����� 4.56 0.40 0.12 9.14 0.79 0.24 12.9 1.12 0.34

����� 24.3 2.12 0.63 24.3 2.12 0.63 24.3 2.12 0.63

SNR 4.3 14 22
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2.2 Computational simulation of flame properties

Laminar flame speed and burned gas speed on the burner at the given condition, 

i.e., ϕ, P, and reactant temperature conditions need to be estimated to operate the 

high-pressure flat flame McKenna burner. Moreover, adiabatic flame temperature

and pollutants such as CO and NOx are used as gas properties to be calibrated with 

spectral signals, as will be discussed in section 3.4.3. Therefore, modeling and 

simulating chemical reactions of the gas phase are carried out by ANSYS Chemkin-

pro 2020 R1 with GRI-Mech 3.0. Computational simulation using GRI-Mech 3.0 is 

a detailed kinetic mechanism developed for methane-air flame and is validated by 

experimental data in high-pressure conditions up to 20 atm [73]. 1D laminar flame 

was assumed for the simulation and the grid parameters were 0.1 and 0.5 for adaptive 

grid control based on solution gradient and curvature respectively to obtain grid-

independent results. The results of flame speed, adiabatic flame temperature, and the 

pollutant such as CO and NOx with varied ϕ and P are illustrated in Figure 2.4 and 

listed in table A.1 in Appendix A.
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Figure 2.4 Simulation result of flat flame using Chemkin-pro (a) ���, (b) 

����
(c) ����

, (d) ���, (e) ���, and (f) Flame speed
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2.3 Characteristics of flame emission

In this section, spectral signals with varying gas properties, ϕ and P, are presented, 

and the variations of the spectral signals are quantified by conventional indicators, 

e.g. the intensity and ratio of bands of each radical. The signals which are measured 

by an optical spectrometer, are 10 signal-averaged with 2 s exposure time to get high-

SNR flame emissions, and are adjusted to account for the dark spectra that are 

acquired without flame. As presented in Figure 2.5, the spectral signals consist of 

peaks and bands overlapping with broadband features spontaneously emitted from 

excited radicals and molecules. The band structures of OH*, CH*, and C2* are 

observed, which is consistent with previous experimentally measured results [12, 16]. 

In particular, OH* (1, 0) is at 281.1 nm, and OH* (0, 0) appears prominently at 306.4

nm. CH* (0, 0) is at 431.4 nm, and CH* (2, 2) is at 432.3 nm. In addition, three C2

swan bands (1, 0), (0, 0), and (0, 1) are located at 473, 513, and 563 nm, respectively. 

The band emissions from H2O* consist of the dominant feature in the range of 690 

– 850 nm. Blackbody radiation is hardly observed in the signals because the 

production of soot and particles is limited because of the nature of the premixed 

methane-air flame. Each distinct radical band is also displayed in the zoomed plot as 

presented in Figure 2.5. It clearly shows that the emission from radicals related to 

carbon decreases with fuel-lean conditions, and the band intensities are reduced as 

ambient pressure increases by accelerated collisional quenching effects.
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Figure 2.5 Spectral signals of methane-air flame with varying ϕ and P
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Some dominant local features from radical emissions are selected for further 

analysis as presented in Figure 2.6 (a). As shown in the figure, the spectral signals 

are decomposed by the distinct features, i.e., OH* (306 – 338 nm), CH* (420 – 443 

nm), and C2* (498 – 522 nm), H2O* (713 – 791 nm), and broadband (BB, 270 – 650 

nm) mainly from CO2*. To calculate the intensity of each band structure, broadband 

curve fitting is obtained by interpolating the data points avoiding distinct emission 

bands of radicals as shown in Figure 2.6 (b). The interpolation is constructed by the 

modified Akima function to avoid excessive local oscillation of the broadband signal

[74].

The variations of spectral local features from radical emissions are presented in 

Figure 2.7. As P rises with fixed ϕ (Figure 2.7 (a), (c), and (e)), the emission bands

of radicals (OH*, CH*, and C2*) decrease because of collisional quenching, while

the broadband increases and then is about constant at higher pressures. The trends in 

emission bands (OH*, CH*, and C2*) show monotonic behavior in fuel-lean 

conditions (ϕ ≤ 1) but the trends change monotonically in fuel-rich (ϕ = 1.2) and low-

pressure conditions (P < 2) as shown in Figure 2.7 (e). Therefore, these variations 

can be used as indicators of pressure only under fuel-lean conditions, not fuel-rich 

conditions. Otherwise, in all equivalence ratio conditions, H2O* increases linearly 

proportional to pressure so these monotonic changes in H2O* can be calibrated to 

pressure. Figure 2.7 (b), (d), and (f) show the changes in emission intensity (OH*, 

CH*, C2*, H2O*, and BB) with fixed P. The OH* and CH* emission bands increase 
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until ϕ reaches unity because of increasing the flame temperature. Under fuel-rich 

conditions (ϕ > 1), the radical emissions weaken with increasing ϕ while fuel 

concentration, which can be a source of carbon and hydrogen atoms, continues to 

rise. This is because the flame temperature decreases as ϕ increases above the 

stoichiometric ratio. However, the trend of band intensity changes with higher 

pressure so that the maximum values of OH* and CH* are closer to the 

stoichiometric ratio. This is because the pressure and equivalence ratio interconnect 

with flame temperature which affects the chemical reaction path of spontaneous 

emission. Otherwise, C2* monotonically increases with the equivalence ratio, and 

thereby, the intensity of C2* can be calibrated to the equivalence ratio in all pressure 

conditions.
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Figure 2.6 (a) Selected distinct local spectral features and (b) broadband curve 

fit to extract local features 
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Figure 2.7 Band intensity variations of local features with variable ϕ and P 
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In the previous study, the band intensity ratio (BIR) which compensates for the 

nonmonotonic behavior of the local spectral features has been utilized to calibrate 

the gas properties. Therefore, obtaining one-to-one calibration functions between 

ratios and gas properties within certain property ranges is possible. The main purpose 

of normalizing the radical band intensity using another band intensity is to remove 

the impact of nonmonotonic temperature variation, allowing a normalized band 

intensity to only indicate the given fuel concentration. Figure 2.8 (a), (c), and (e) 

show that BIR between radicals, i.e., CH*/OH*, C2*/OH*, and C2*/CH*. As shown 

in Figure 2.8 (a), all the BIRs of radicals monotonically increase with ϕ between 0.8

and 1.2, which provides one-to-one calibration functions even though the slope of 

the functions, the sensitivity of the indicators, is flat in fuel-lean conditions, which 

implies low accuracy in measurement. However, Figure 2.8 (c) demonstrates that 

these monotonic trends of BIR change to nonmonotonic in lean conditions, and 

thereby, the indicators do not work under ϕ = 1 in high pressure. This is because the 

BIR of radicals does not take into account the effect of pressure that affects the 

emission spectrum, as shown in Figure 2.8 (e). A normalization factor such as BB 

can also be used to exclude or reduce the influence of gas properties since BB is 

strongly affected by ambient pressure and temperature. As shown in Figure 2.8 (b) 

and (d), CH*/BB can be an indicator of equivalence ratio in low-pressure conditions 

but also it does not work well in high-pressure conditions. Otherwise, Figure 2.8 (f) 

shows that H2O*/BB is linearly proportional to pressure, resulting in a reasonable 

pressure indicator.
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Figure 2.8 Band intensity ratio (BIR) versus ϕ and P in methane-air flame
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CHAPTER 3. DEVELOPMENT OF DATA-DRIVEN 

CALIBRATION PROCESS

3.1 Overview of data-driven calibration process

It is evident that there is a strong correlation between the intensity of each distinct 

radical emission band and the chemical reaction paths. These reactions are affected 

by properties such as e.g., equivalence ratio (ϕ), component concentration (χ), 

temperature (T), and ambient pressure (P). For example, the band intensity area and 

its ratios of excited species are presented in section 2.3 and the relations between gas 

properties are discussed. Although some indicators can be calibrated to gas 

properties, it is difficult to manually find indicators with a high sensitivity to the 

target property over a wide range of pressure and equivalence ratios. Furthermore, 

an indicator, for example, the integrated OH* intensity (band intensity), cannot fully 

exploit spectral variation on the high-dimensional OH* profile affected by gas 

properties since the band structure of OH* in the range of 306 – 338 nm includes 

branches such as (0, 0) R, (0, 0) Q, (1,1) R, and (1,1) Q which can also be changed 

by chemical reactions that affect the relative population of the rot-vibrational levels

[12]. In the presence of these detailed band structures from each radical in a wide 

wavelength range, finding indicators such as band intensity and its ratio is a tedious 

and repetitive process. To overcome these limitations, a data-driven calibration 
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approach can allow the extraction of variations in features based on spectral datasets 

to produce a calibration function. As long as the dataset contains sufficient 

information to represent the characteristics, a data-driven approach can benefit from 

the estimation of nonlinear trends of spectral variation to map target properties.

Moreover, the data-driven calibration well adapts to any form of spectrum data, 

regardless of the wavelength range and resolution, requiring no pre- or post-

processing, and to various flame properties, including equivalence ratio, pressure, 

temperature, and diluent concentration.

In this chapter, a data-driven calibration method based on ROM is presented. 

ROM has been widely applied in many engineering disciplines, e.g. computational 

fluid/structure dynamics [75, 76], dynamic control [77], and design optimization 

[78-80] since ROM reduces the computational complexity and storage requirements 

of a computer model while maintaining the desired fidelity. The ROM of the 

calibration process includes the high-dimensional non-linear system from the 

spectral domain (the number of CCD pixels) to the gas properties (P and ϕ). With 

this approximate model, gas properties can be estimated within predictable error 

without additional data from electrical sensors or chemical reaction simulation.



49

3.2 Calibration framework based on data-driven approach

A framework of the data-driven calibration method based on ROM is presented in 

Figure 3.1. The high dimensional spectral decomposed by selected POD bases and 

the variation of these bases mapped with the Kriging model also called Gaussian 

process regression. Moreover, to validate and analyze the ROM, leave-one-out cross-

validation (LOOCV) and global sensitivity analysis (GSA) are introduced. Adetailed 

explanation is given below.

In the case of spectral data, the snapshot matrix subject to POD consists of ��

samples of �� which represents a raw spectrum vector with � components; e.g.,

a spectral vector having the dimension (�) of 2,000 emission intensities at 2,000 

wavelength pixels from the CCD sensor. It is difficult to correlate the �� directly 

with the gas properties of interest, e.g., ϕ, χ, T, and P, due to its high dimension. By 

extracting and selecting the number (N�) of principal vectors (�� , the basis of the 

��-space), POD can reduce the dimension of ��. These bases (��) span the entire 

spectrum vector space used for calibration and define the fundamental directions that 

represent the spectral variations by gas properties. As a result, the POD coefficient, 

which is the projection of ��  on each basis (��,�  , contribution of ��   in �� ), 

becomes highly sensitive to the properties of the gas. This means that a vector of 

POD coefficient is a low-dimensional (N�) representation of the original spectrum 

data. A Kriging model, capable of handling nonlinear systems, can then be used to 

correlate the vector of the POD coefficient (N� ≪ � ) to the gas properties of 
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interest. A GSA quantifies the contributions of each POD basis on determining the 

output of the model, i.e., the properties of the gas.
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Figure 3.1 Framework of data-driven calibration process using POD, Kriging model, and GSA
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3.2.1 Training and test dataset

The flame emission spectra from a stable methane-air flat flame are collected. The 

details of the experimental setup were discussed in Chapter 2. The exposure time 

was selected as 2 seconds due to the sufficiently high SNR of the signals. Raw signals

are processed by subtracting the dark spectra collected without flame. The subtracted 

signals are then normalized by the intensity of the averaged OH* bands from 306 –

313 nm because OH* shows distinct features of the overall gas property conditions

examined in this work. As shown in Figure 3.2, data from 80 flame conditions were 

used to train and test the ROM with varying ϕ (0.8 – 1.2) and pressures (1 – 10 bar). 

The training data, indicated by the green squares, is sampled based on a full factorial 

design of 50 different gas conditions to cover combinations of target properties. The 

training data is used to train and validate the ROM calibration process, which is 

supposed to be a calibration dataset collected prior to arbitrary measurements. After 

the ROM model is constructed, the prediction accuracy of the training data is 

evaluated by REC which will be discussed later in section 3.2.5. The test data, 

indicated by black circles, is randomly sampled based on Latin hypercube sampling

of 30 gas conditions [81]. The test data represents FES from arbitrary flame 

conditions. The accuracy and precision of prediction using test data are evaluated by 

REP and RSD respectively, which will also be discussed in section 3.2.5. For each 

case, 10 chemiluminescence signals are collected to analyze the statistical deviation 

of signal and uncertainty in measurement.



53

Figure 3.2 Experimental data matrix

3.2.2 Proper orthogonal decomposition (POD)

POD, known as the Karhunen-Loeve decomposition or Principle Component 

Analysis, is a dimension reduction method that projects high-dimensional data into 

a low-dimensional linear space as shown in Figure 3.3. Snapshots of spectral data 

are stacked in terms of column vectors, �� = ��� − ��, … , ���
− �� � ∈ ℝ�×��

with the average �� ∈ ℝ�� value removed. The POD method selects the optimal 

basis of low-dimensional linear space to maximize the variance of projections of 

high-dimensional data [82].
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where �� ∈ ℝ�� , ��′, ��,�, (∙,∙), and 〈∙〉 represent ��� POD basis, i�� snapshot 

vector, Kronecker delta, inner product, and averaging operation, respectively. It is 

known that this optimization problem can be determined by the eigenvalue problem

that finds the eigenvectors and eigenvalues of the covariance matrix, � = 
�

�
�����

. 

As the number of data cases is smaller than the size of the spectral component 

(� ≫ ��) in the calibration process, the size of the covariance matrix (� × �) is 

so large that the computational cost for finding eigenfunctions becomes practically 

difficult. Therefore, the snapshot POD method which yields the same decomposed 

basis with a smaller sized covariance matrix � = 
�

��
���

�� (�� × ��) is utilized 

[83]. The energy content (��), representing the contribution of the eigenvector (��)

to spectral variation, is proportional to the eigenvalue (�� ) of the corresponding 

eigenvector.

Several dominant bases contain most of the energy, so N� bases can be selected. 

The remaining minor bases can be ignored as truncation errors, which significantly 

reduces the snapshot's dimensions and excludes random noise that is irrelevant to the 

max
�

〈�(��′, ��)��〉

(�� , ��)
=

〈�(��′, ��)��〉

(�� , ��)
, subject to ���, ��� = ��,� (3.1)

�� = �� � ��

��

���

� (3.2)
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change in gas properties [84]. Then each snapshot (��), the spectrum vector, can be 

expressed with minimal dimension (N�) as eq. (3.3).

where ��,�  is the vector of POD coefficients that is the projection of the spectral 

vector ��′ on the eigenvector �� .

Figure 3.3 Dimension reduction process using POD analysis

�� ≈ � ��,���

��

���

+ ��, �� ≪ � (3.3)
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3.2.3 Kriging model

A surrogate model is constructed using the POD coefficients of the spectrum 

vector as input, and the gas properties of interest as output. The Kriging model, also 

known as Gaussian process regression, is chosen as a surrogate model because of its 

high flexibility in handling nonlinear problems and its statistical nature to compute 

empirical confidence intervals [78, 85]. Figure 3.4 illustrates the Kriging model as 

an approximate model of a real function, which was constructed from a small number 

of observations.

Figure 3.4 Illustration of the Kriging model in one dimension

A Kriging model constructs an approximation model of an unknown function of 

interest (y(�)) using a global approximation function (�) and a stochastic process 
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with zero-mean (�(�)) as eq. (3.4).

�(�) = � + �(�) (3.4)

In this study, ordinary Kriging assuming constant value β was used and the stochastic 

process is modeled as a Gaussian and stationary random process with zero mean. 

The covariance of the stochastic process is presented as eq. (3.5) 

Cov������, ������ = ���[�(�� , ��)] (3.5)

���� , ��� = exp �− � ��

�

���

���
� − ��

� �
�

� (3.6)

where �� is the process variance and ���� , ��� is a correlation function assumed 

to depend on the Euclidean distance to reduce complexity. In eq. (3.6), �  is the 

number of design variables, and �� are correlation parameters that control the range 

of influence of nearby points, thereby affecting the smoothness. The correlation 

parameter (�� ) of the Gaussian function was optimized with a genetic algorithm 

optimizer to fit the model to the observed samples by maximizing the log-likelihood 

function, called maximum likelihood estimation (MLE).

If ��  (number of samples) observations of input (� = {��, ��, … , ��� }� ) and 

output ( � = ���, ��, … , ��� �
�
 ) data pairs are given, an estimation of the new 

prediction �� at � can be made using the linear predictor, ��(�) = ��(�)�, where 
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� is a weight matrix, as illustrated in Figure 3.5. Likewise, the predictor of the 

Kriging model is defined as eq. (3.7).

��(�) = �� + ��(�)���(� − ���) (3.7)

where �� , � ∈ ℝ�� , � ∈ ℝ��×�� , � ∈ ℝ��  are the constant trend calculated �� =

(������)�������� , a vector of ones, correlation of all observed data, and 

correlation vector between new prediction and observed data, respectively. 

Figure 3.5 Illustration of Kriging predictor
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3.2.4 Global sensitivity analysis (GSA): Sobol sensitivity indices

The Sobol sensitivity analysis is a variance-based GSA method that is used to rank

the contribution of input parameters (e.g., ��,� extracted from the input spectrum 

vector) to predicting output (e.g., ϕ, χ, T, and P). If the surrogate model (�) is an 

integrable function, the function can be represented as a summation of orthogonal 

functions as eq. (3.8) [86].

� = �� + �[�� + �[�
��

+ � ����� + ������� + ⋯ + �1⋯��
�

���

�

������

]]
�

(3.8)

� ���,��,⋯,��
����

, �� , ⋯ , �������

�

�

= 0 (3.9)

where � = �(�) is the square-integrable function defined over the input parameter

(� = [�� , ⋯ , ���
]), and the elements are orthogonal decomposed functions of each 

combination of the input variables, i.e., �� = ��(��), ��� = ������ , ���. Then, from eq. 

(3.8) and (3.9), the decomposed function can be expressed as below for any �� =

��, ��, ⋯ , ��, where 1 ≤ �� < �� < ⋯ < �� ≤ ��,

�� = � �(�)�� (3.10)

�� = � �(�) � ���

���

− �� (3.11)
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��,� = � �(�) � ���

���,�

− �� − �� − �� (3.12)

If �  is the square-integrable function, all decomposed functions ���,��,⋯,��
  are 

square integrable. By squaring both sides of eq. 3.8 and applying the orthogonality 

condition, the decomposed variance equation (eq. 3.13) is valid. The variance (V) of 

the output induced by the change in an input parameter is decomposed as the sum of 

the average (��) and variance of each input parameter (��) and their coupled effects

(���, ��(���), …, ����, …).

A Sobol sensitivity indices are calculated as the ratio of the partial variance in 

response to the change in the input parameters (main effect or coupled effect) relative 

to the total variance:

Main Effect Sensitivity Index: �� =
��

�

Coupled Effect Sensitivity Index: ��� =
���

�

(3.14)

The summation of the main effect and coupled effect sensitivity index equals one, 

and the larger the �� indicates the more significant response of the output by the kth

input parameter. A Python library for sensitivity analysis, SALib[87], was used to 

calculate Sobol indices with the Saltelli sampling method [88].

V = �� + �[�� + �[��� + � ����� + � ������ + ⋯ + ��…��
�

���

�

���

]
���

]

��

���

(3.13)
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3.2.5 Evaluation of accuracy and precision of calibration process

The accuracy and precision of the calibration methods are estimated quantitatively 

by three measures: the average relative error of the calibration data (REC), model 

prediction (REP), and relative standard deviation of the model prediction (RSD) [89]. 

The different calibration methods are compared using REC, REP, and RSD which 

indicate calibration accuracy, prediction accuracy, and prediction precision, 

respectively.

1) REC (%): the average relative error of the calibration (%) to assess the 

accuracy of calibration (training data in Figure 3.2)

��� (%) =
100

������
� �

1

��,����
� �

���,� − ��,�

��,�
�

��,����

���

�

������

���

(3.15)

where ������, ��,���� , ���,� , and ��,� are the number of training cases in the 

different conditions, the number of spectral shots in the ith condition, estimated 

gas property, and true gas properties measured by the sensors (considered as 

ground truth), respectively.
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2) REP (%): the average relative error of the prediction (%) to assess the 

accuracy of prediction (test data in Figure 3.2)

��� (%) =
100

�����
� �

1

��,����
� �

���,� − ��,�

��,�
�

��,����

���

�

�����

���

(3.16)

where ����� is the number of test cases in different conditions.

3) RSD (%): the average relative standard deviation of the prediction to assess 

the precision of prediction (test data in Figure 3.2) 

��� (%) =
100

�����
�

���

��

�����

���

���ℎ ���
�

= �
����,� − ��,��

�

����� − 1

�����

���

(3.17)

where �� is the true gas properties of each test case.
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3.3 Validation of data-driven calibration process

3.3.1 POD of flame emission spectra 

The POD analysis is conducted on the 10-shot averaged high SNR dataset 

normalized by the intensity of the OH*band. Figure 3.6 shows the ten spectral bases 

in order of their contribution (energy content), and Figure 3.7 shows the energy 

content and cumulative energy of each basis. A total of 99.7% of the energy was 

accounted for by the five dominant bases which contain most of the gas property-

sensitive spectral features. Basis 1 consists of dominant H2O* bands and the 

broadband baseline profile from which radical emission bands are subtracted. As 

discussed in Figure 2.7 (b), (c), and (d), the variation of the spectral dataset with 

increasing pressure shows a diminishing radical emission band while increasing the 

broadband and H2O* bands emission. Therefore, Basis 1 is expected to be highly 

sensitive to pressure variation. Basis 2 contains the distinct carbon-related radical 

emission bands which are also sensitive to the equivalence ratio as presented in 

Figure 2.7 (e) and (f). Basis 3 is also highly sensitive to pressure variation because 

it consists of H2O* bands emission and negative radical emission band. Basis 4 – 6 

primarily indicate the cross-correlations of the emission bands and bases 7 – 10 are 

dominated by noise signals that should be removed from the signals to improve the 

signal quality. Excluding these bases can help to reduce signals unrelated to changes

in gas properties.
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Figure 3.6 Ten dominant POD bases of spectrum data
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Figure 3.7 Energy contents of the POD bases

An emission spectrum (��) can be decomposed by projection on the dominant 

bases (��) and the corresponding POD coefficients (��,�) as explained in Eq. (3.3). 

The variations of ��,�   of three dominant bases are shown in Figure 3.8. As 

mentioned, Basis 1 has P-sensitive features such as broadband and H2O* with 

subtracted radical emission. Figure 3.8 (a) shows that POD coefficients of Basis1 

(��,�) monotonically rise with increase of pressure in all equivalence ratio conditions. 

Moreover, POD coefficients of Basis2 (��,�) monotonically rise with increase of ϕ

in all equivalence ratio conditions except 0.8 – 0.9 of ϕ at the highest pressure. In 

other words, the coefficients of each POD basis can be an indicator of gas properties, 

instead of each emission intensity and its ratio.
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Figure 3.8 POD coefficient distributions projected on (a) �-��,� (ϕ = 0.9, 1, 

and 1.2) and (b) ϕ-��,� (P = 2, 5, 10 bar) planes
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The reference raw spectra and the reconstructed spectra using only the five 

dominant spectrum bases (99.7% of energy content) and the corresponding POD 

coefficients are compared to investigate whether the POD basis can represent the 

raw spectra. Figure 3.9 shows the reference and reconstructed spectra of selected gas 

properties conditions in the wide wavelength range, illustrating the local features of 

band emission. The reconstructions of representative properties-sensitive spectral 

features such as the broadband baseline profiles and the emission bands of OH*,

CH*, C2*, and H2O* are in good agreement with raw spectra. Thus, the POD space 

with the five variables, ��,�, ��,�, ��,�, ��,�, and ��,�, is capable of fully spanning 

the entire spectral data with varied gas properties. The result is consistent with the

hypothesis that information about gas properties survives the POD decomposition 

process through the five dominant bases, which results in a significant reduction of 

the dimensionality of variation for spectra data. In other words, the POD coefficients 

can effectively represent the entire information about gas properties contained in the 

emission spectrum.
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Figure 3.9 Data reconstruction results using the coefficients of five bases

3.3.2 Parametric study using Global sensitivity analysis (GSA)

The Sobol sensitivity indices of dominant bases for P and ϕ from the Kriging 

model constructed using the ten POD bases are shown in Figure 3.10 (a) and (b), 

respectively. As shown in Figure 3.10 (a), Basis 1 and 3 have the dominant 
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contribution to the pressure with Sobel indices 0.71 and 0.21, respectively. The 

radical bands are subtracted from the broadband baseline in Basis 1. Recall, as the 

pressure increases, the broadband and H2O* bands (Bases 1 and 3) increased while 

the radical bands weakened. Figure 3.10 (b) shows that Basis 2 is the main 

contributor to ϕ-sensitivity in the Kriging model. The high ϕ-sensitivity of Basis 2 is 

intuitive because the basis has the distinct characteristics of carbon-related radical 

bands, specifically the CH* and C2* bands that are directly related to fuel 

concentration. It is noteworthy that the ϕ-sensitivity of Basis 1 is significantly low

(0.10) given its high energy content (84.6%), implying that the broadband baseline 

with subtracted radical emission bands is nearly insensitive to ϕ variation. This is 

because the influence of temperature on the broadband baseline was diminished by 

normalizing the spectra dataset using the OH* band intensity before calibration. The 

remaining dominant bases correspond to the cross-correlations of the distinct

emission bands which have non-negligible impacts on the ϕ-sensitivity of the model, 

that is, the ϕ-sensitivity indices for Bases 3, 4, and 5 are 0.12, 0.09, and 0.09, 

respectively.

It is clear that the five dominant bases (1 – 5) as well as their coupled effects 

determine the outputs of gas properties from the Kriging model. Hence, POD 

coefficient vectors (��,�, ��,�, ��,�, ��,�, and ��,�) including both the separate and 

coupled effects of the five bases are sufficient as the input to predict the gas 

properties in the calibration process. As mentioned in the previous section, the basis 
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vectors were chosen based on their contribution (energy contents) to the variations 

in the spectrum dataset, whereas the sensitivity indices of indicating how the 

variation of each gas property related to the POD bases. Consequently, the 

numbering of the bases in Figure 3.7 based on contained energy does not indicate 

the order of sensitivity indices for gas properties in Figure 3.10.

Figure 3.10 Sobol sensitivity indices of P and ϕ: bold label indicates total effect 

(main + coupling effect) and the shaded label indicates main effect
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3.3.3 Validation of Kriging model

A Kriging model is constructed to correlate the vector consisting of POD 

coefficients of the five bases with P and ϕ so that the ROM can predict the gas 

properties with an unknown flame emission spectrum as input. The coefficients are

calibrated using a training dataset of 50 (10 P and 5 ϕ levels) full factorial data points, 

1 bar P-interval between 1 and 5 bars, and 0.1 ϕ-interval between 0.8 and 1.2. The

LOOCV method is used to validate the Kriging model. LOOCV is a cross-validation 

method that leaves out one value, predicts the data sample by the rest of the observed 

value, and continues with next point value. Figure 3.11 illustrates the results of 

LOOCV as symbols that represent the predicted vs. sensor-measured (used as ground 

truth) values, along with a line representing the matched values. R-squared values 

quantifying the prediction accuracy of the model are 0.9986 and 0.975 for P and ϕ, 

respectively. It is noteworthy that the majority of prediction errors come from data 

points near the upper and lower limits. These results could suggest more data points 

to train the model near the upper and lower limits, although the prediction accuracy

of P and ϕ are still acceptably high.
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Figure 3.11 Leave-one-out cross-validation (LOOCV) of the Kriging model
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3.4 Results of data-driven calibration process 

3.4.1 Calibration result on experimental data

The proposed calibration process is applied to arbitrary flame emission to predict 

the gas properties of the combustion region. Recall that the full factorial dataset 

(green squares in Figure 3.2) was used to train the calibration ROM and to validate 

itself, and flame emission spectra at 30 different experimental conditions (black dots 

in Figure 3.2) were randomly selected using the Latin hypercube sampling method 

to evaluate and justify the accuracy of the gas property prediction model. Figure 3.12

and Figure 3.13 show the results of the prediction of P and ϕ using various calibration 

techniques as inputs on the 2 s exposure time dataset. The marker and error bar 

indicate average values and standard deviation of 10 shots of prediction at the same 

conditions, respectively. The proposed calibration model referred to as POD + 

Kriging is compared with other methods, including conventional regression methods 

that utilize band intensities (BI) and the data-driven PLS-R approach. For the 

conventional regression methods, local spectral characteristics were selected 

empirically based on sensitivity to P and ϕ: OH* (306–338 nm), CH* (420 – 443 

nm), C2* (498 – 521 nm), H2O* (713 – 791 nm), and BB (270 – 650 nm) emission 

bands. Vectors of BI values are correlated with gas properties using MLR, which is 

a widely used statistical technique based on the linear relationship between 

independent parameters and response variables. The following sets of property 

indicators are selected to build three different MLR models: 1) BI5 for OH*, CH*, 
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C2*, H2O*, 2) BI3 for OH*, CH*, and C2*, and 3) BI2 for BB and H2O*. For the 

PLS-R model, five components are chosen, which are the same number of POD 

bases.

The predictions of the data-driven model, i.e. PLS-R and POD/Kriging, have 

higher prediction accuracy and precision within the total range of P and ϕ compared 

to the BI + regression methods. It is evident that the data-driven feature extraction 

methods are more accurate and precise than the method using manually selected

local features as gas property indicators. Furthermore, the proposed POD/Kriging 

method shows significant improvement in prediction accuracy compared to that of

PLS-R. This is mainly because the Kriging method can handle nonlinear and 

multimodal correlations, whereas the PLS-R method is based on linear regression. 

Also, it is noteworthy that MLR with BI5 provides better prediction accuracy of ϕ

and P than MLR with BI3 of OH*, CH*, and C2* which are the three most ϕ-sensitive 

local spectral features, and with BI2 of H2O* and BB which are the two most P-

sensitive local spectral features. BI3/MLR has low accuracy of P-prediction due to 

the lack of information regarding spectral features, i.e. BB and H2O*, that are 

sensitive to P. Likewise, BI2/MLR does not contain radical spectral features that are 

sensitive to ϕ, resulting in very low accuracy of ϕ-prediction. To improve the 

accuracy of each gas property using a manually selected indicator, it is very 

important to choose appropriate features.

REC, REP, and RSD are calculated to determine calibration accuracy, prediction 
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accuracy, and prediction precision, respectively, which are used to compare 

quantitatively the performance of different calibration methods. Table 3.1 

summarizes the accuracy and precision results from the calibration techniques. REPs 

obtained using the POD/Kriging method are 1.71% and 0.55% for the pressure and 

equivalence ratio. RSDs are 1.37% and 0.54% for the pressure and equivalence ratio, 

respectively.

Figure 3.12 Prediction of P and ϕ using (a) POD/Kriging (Proposed method)

and (b) PLS-R
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Figure 3.13 Prediction of P and ϕ using (a) BI5 (OH*, CH*, C2*, BB, H2O*) / 

MLR (b) BI3 (OH*, CH*, C2*) / MLR, and (c) BI2 (BB, H2O*) / MLR
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Table 3.1 Comparison of quantitative performance parameters for calibration 

techniques: POD/Kriging (Proposed method), PLS-R, BI5/MLR, BI3/MLR, 

and BI2/MLR

Unit: %

POD/Kriging PLS-R

REC REP RSD REC REP RSD

P 1.52 1.71 1.37 10.5 7.04 1.8

ϕ 0.62 0.55 0.54 1.41 1.23 0.56

Unit: %
BI5/MLR BI3/MLR BI2/MLR

REC REP RSD REC REP RSD REC REP RSD
P 16.8 10.7 11.1 22.5 17.8 7.55 11.7 11.4 3.30
ϕ 4.50 3.87 2.35 4.45 3.83 1.96 12.0 9.93 0.70

*REC: average relative error of calibration data, REP: 
average relative error of model prediction, RSD: average 
relative standard deviation of predicted gas properties.
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3.4.2 Wavelength range effect on calibration accuracy

There is a strong correlation between flame spectra and flame properties such as 

pressure and equivalence ratio. Even so, the wavelength regions sensitive to gas 

properties are spread across a wide range of wavelengths while each band emission 

is correlated with the other. Therefore, the selection of an appropriate wavelength 

range in which gas characteristic information is included is expected to be critical.

Figure 3.14 and Table 3.2 show the wavelength range effect on the accuracy and 

precision of prediction with two wavelength ranges: 270 – 650 nm where OH*, CH*, 

C2*, and BB are observed and 650 – 850 nm where H2O* is contained. The accuracy 

of P prediction is significantly degraded using 270 – 650 nm compared to that of 270 

– 850 nm while the REP of ϕ only increased by 0.2%. Moreover, using only H2O* 

in a relatively narrow wavelength range (650 – 850 nm) has relatively good accuracy 

(4% of REP), whereas the accuracy of ϕ deteriorates greatly to 11.2%. This is 

because H2O* band emission is sensitive to pressure variation but insensitive to ϕ

variation. In summary, for higher accuracy and precision in data-driven calibration, 

it is important to select a wavelength range with sufficient gas characteristic 

information.
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Figure 3.14 Prediction of P and ϕ using POD/Kriging from the dataset in the 

wavelength ranges (a) 270 – 650 nm and (b) 650 – 850 nm

Table 3.2 Comparison of quantitative performance parameters for 

POD/Kriging with varied wavelength ranges

Unit: %
Total (270 – 850 nm) 270 – 650 nm 650 – 850 nm
REC REP RSD REC REP RSD REC REP RSD

P 1.52 1.71 1.37 4.01 4.58 3.97 5.03 4.00 3.83
ϕ 0.62 0.55 0.54 0.59 0.71 0.56 14.7 11.2 11.6
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3.4.3 Calibration result on simulation data

The proposed calibration process is applied to predict simulation data such as 

adiabatic flame temperature (Tad), flame speed (Sl), and concentration of NO, NO2, 

CO, and CO2. This section demonstrates the potential of the proposed calibration 

process for applications to predict pollutant gas emissions, which is important for 

combustion diagnostics. These properties are determined by sensor-measured ϕ and 

P using 1D chemical reaction simulation with GRI-Mech 3.0 as presented in section 

2.2. The calibration target is a laminar flat flame burner so the simulation data can 

follow the qualitative trends of the actual variation of gas properties such as 

temperature and concentration. If flame emissions have sufficient sensitivity to 

variation of gas properties, prediction of these properties can be possible. Six POD 

bases are chosen to construct the Kriging model based on the GSA, and the 

prediction of Tad, Sl, χ��, χ���
, χ��, and χ���

are shown in Figure 3.15 and Table 

3.3. The results show reasonable predictions of gas properties within the total range 

of each gas property, even though those are simulation results rather than 

experimental measurements. The REPs of Tad, Sl, χ���
, and χ���

obtained using 

the POD/Kriging method are less than 5 %. This shows that the flame emission 

spectra have enough sensitivity to the gas properties. However, the REPs of χ��

and χ�� , are 17.7% and 52.1%, respectively. Prediction accuracy of χ��  is 

degraded due to large deviations in data for the low-value range, and the prediction 

of χ�� is inaccurate for the entire range. 
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Figure 3.15 Predictions of adiabatic temperature (���), flame speed (��) and 

concentration of NO, NO2, CO, and CO2 using POD/Kriging method
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Table 3.3 Quantitative performance parameters for prediction accuracy and 

precision using POD/Kriging method

REC REP RSD
Adiabatic temperature (T��) 0.38 0.48 0.40

Flame speed (��) 1.20 1.27 1.24
NO concentration (���) 5.27 17.7 6.43

NO2 concentration (����
) 5.23 4.25 3.76

CO concentration (���) 112 52.1 52.8
CO2 concentration (����

) 0.35 1.73 0.54
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CHAPTER 4. DEVELOPMENT OF DEEP 

LEARNING-BASED DENOISING

4.1 Overview of fast time-resolved FES 

FES uses instantaneous flame emission so that it can provide measurements of gas 

properties in real-time. Also, a high acquisition rate of FES is achievable considering 

that the recent detection system has a high sampling rate (up to 10MHz) [20]. 

However, as discussed in section 2.1.3, a shorter exposure time with a higher 

sampling rate provides lower SNR signals, resulting in a degradation of accuracy 

and precision for predicting gas properties. Figure 4.1 illustrates the signal corrupted 

by noise due to short exposure times (0.05, 0.2, and 0.4 s) and its results of 

equivalence ratio prediction using the POD/Kriging calibration process. Since the 

distinct radical emission bands, which are sensitive to equivalence ratio, e.g. CH*, 

are overlapped by noise in low SNR signals, it can be difficult to predict the target 

properties. As a result, FES can be limited in its ability to achieve fast temporal 

resolution. The limitation can be avoided by applying an intensifier with a highly 

sensitive photon-detecting device. However, in practice, high-spec equipment can be 

expensive, bulky, and susceptible to vibration. Alternatively, pre-processing of the 

raw spectral data can suppress noise and restore information to achieve fast time-

resolved FES. Particularly, the recent data-driven pre-processing methods can reduce 
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noise by utilizing global and local information in the dataset so long as the signal 

contains sufficient information to represent the characteristics.

In this chapter, a state-of-the-art deep learning-based denoising technique is 

developed specialized for denoising spectral signals to achieve fast time resolution 

in FES. In non-scientific fields, deep learning-based denoising has been developed 

for qualitative image processing [49, 53-60]. The use of denoising neural network 

architectures to perform quantitative reconstructions of a spectrum dataset requires 

an understanding of spectrum on both a global and local domain. A novel neural 

network architecture and regularization function are proposed to selectively 

eliminate the noise in spectral signals that increases with decreasing exposure time.

To be more specific, a neural network architecture combining a reversible DU 

operator, along with deep CNN layers is introduced and this architecture is guided 

by a new loss function based on POD coefficients. Moreover, the demonstration of 

the proposed method on actual flame spectra is presented using a pair of low-SNR 

(LS) and high-SNR (HS) spectra, which are captured with short and long exposure 

times.
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Figure 4.1 An illustration of degradation of prediction accuracy and precision with short exposure times
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4.2 Deep learning-based denoising process

4.2.1 Training and test dataset

A data-driven machine learning model requires plenty of qualified and informative 

data to function efficiently and accurately. In this study, supervised learning using 

pairs of the actual noisy and clean datasets without noise modeling is selected since 

it provides high performance for handling the actual noise. The flame emission from 

a stable methane-air flat flame is used as the input (short exposure)-label (long 

exposure) pair (��; ��)���
� for training the neural network model. The �� and ��

values correspond to short-gated (0.2 s) and long-gated (2 s) spectrum data, 

respectively. The combination of input-label at the same gas property condition 

makes a large amount of paired data so that there are 80,000 data pairs used in the 

training and test neural network models: the combination of 100 low-SNR spectra 

and 10 high-SNR spectra for each of 80 different flame conditions in the range of ϕ

(0.8 – 1.2) and pressure (1 – 10 bar). As indicated in Figure 3.2, the training data for 

50 gas conditions are selected based on a full factorial design, and the test data for

30 gas conditions are sampled by the Latin hypercube sampling method. Therefore, 

the number of training and test data is 50,000 and 30,000, respectively.

As preprocessing, signals of flame emission are subtracted from dark spectra 

collected without flame, and then the signal is normalized by the average intensity 

of OH* bands between 306 and 313 nm, which is distinct in the overall gas property 
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range. Moreover, data augmentation is applied by the intensity of the signals of

inputs, and labels which are randomly re-adjusted between 0.8× and 1.2× of the 

original signal intensity. Data augmentation improves the generalizability of the 

trained network and the performance of CNN [46, 64, 90]. Adjusting the signal 

intensity for data augmentation is only applied because flipping, rotating, and 

shearing the image can distort the information in the signal. Also, this random 

adjustment of signal intensity imposes the neural network a scale-invariance over a 

certain intensity range which can handle random fluctuations of total intensity in the 

dataset.
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4.2.2 Neural network architecture

In this section, a neural network architecture for denoising the short-gated low-

SNR spectra is proposed combining reversible DU operators and a plain CNN 

structure without residual learning or skip connection (see Figure 4.2). The low-SNR

signal (LS) with a short exposure time is used as input to the neural network and the 

high-SNR signal (HS) with a long exposure time is used as label for supervision. The 

reversible down-sampling operator, also known as the sub-pixel convolution or pixel 

unshuffle, is used to improve the efficiency and receptive field of neural network 

models by reshaping the input signal vector of � × 1 into a sub-signal tensor of 

�/�� × �� [55]. Here, � and �� denote for the number of pixels in the input 

signal and the down-sampling parameter determining the number of sub-signals, 

respectively. The down-sampled sub-signals are then fed into the plain CNN. Each 

layer of the CNN is composed of three types of operations: Convolution (Conv), 

Batch Normalization (BN) [47], and Rectified Linear Units (ReLU) [46]. 

Specifically, the first layer consists of Conv + ReLU, the middle layers combine

Conv + BN + ReLU, and the last layer is only Conv. According to reference 

denoising architectures [54, 55], 1) the number of channels (��) and kernel size of 

the filters (��) are the same for all layers, 2) the stride (filter movement) is one 

without pooling layers to minimize data loss, and 3) zero padding is implemented on

the tensor before each CNN layer to maintain the component size of data. Then, the 

denoised sub-signals are operated to reconstruct the output signal which has the same 
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size as the input signal by the reversible up-sampling operator, which is the inverse 

operation of the down-sampling operator. As a result, the total neural network 

architecture is characterized by four hyperparameters: the down-sampling parameter

(��), the depth of layer (��), the number of channels (��), and the kernel (filter) size 

(�� ). A combination of ��  = 1, ��  = 7, ��  = 32, and ��  =15 are chosen 

empirically as a baseline model for minimal complexity with acceptable 

performance. Finally, a loss function based on mean square error and POD 

coefficient error is calculated by comparing the output signal with the high-SNR 

signal (long-gated spectrum) which is paired with the input signal, i.e. captured under

the same flame condition. The weight and bias parameters of the CNN architecture 

are optimized to minimize this loss function. A detailed description of the loss 

function is in section 4.2.3.

In the optimization process, the Adam optimizer [91] is used to train the neural 

network model for 100 epochs with a batch size of 128 samples. A linear warmup 

cosine annealing learning rate scheduler is used to prevent divergence and oscillation 

and accelerate the convergence rate. The parameters for the scheduler, the cycle step

size (��), cycle step magnification (�����), max learning rate (����), linear warmup

step size (���), and decrease rate of max learning rate by cycle (γ), are 50, 1, 0.005, 

10, and 0.1, respectively [92]. The validation data is randomly selected from 10% of 

the training data (5000 data pairs in 5 cases) to check the overfitting of the model.
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Figure 4.2 A schematic diagram of the proposed denoising neural network 

architecture
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The DU operator is illustrated in Figure 4.3 by comparing a plain CNN and the 

proposed architecture combining plain CNN and DU operator, which is denoted as 

DU + CNN. The role of the DU operator is to expand the receptive field and to reduce 

the number of convolution operations and memory usage [55]. The receptive field is 

defined as the number of input pixels involved in generating one output pixel, which 

indicates how wide a range of information is used to reconstruct one data point in 

the output data. Utilizing information from a wide range of input signals with a wide 

receptive field offers significant advantages for denoising and reconstructing signals 

with strong noise. Below is an equation for the receptive field of the proposed CNN 

architecture:

Receptive field = �� × (�� × (�� − 1 ) + 1) (4.1)

The receptive field can be widened by increasing ��, ��, and �� with the same 

order of magnitude, whereas �� does not affect the receptive field. 
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Figure 4.3 An illustration of the receptive fields of neural network architectures and the data size of each layer



93

4.2.3 Loss function

To enhance the accuracy of the calibration process and prevent data overfitting, 

we propose a loss function that combines the MSE loss and a regularization term 

defined as the squared L2 norm of POD coefficients, called the POD loss. The 

formulation of the loss function is given below (equation 4.2):

� =
1

�
�[(1 − �)‖��� − ��‖�

� + �‖���(���) − ���(��)‖�
�]

�

���

(4.2)

where �, N, �, ��� , ��, ���(���), and ���(��) are the loss function, the number 

of total data pairs, a blending parameter (set to be 0.1 here), an output signal, the 

corresponding label spectrum (high-SNR spectrum), and min-max normalized POD

coefficients of ��� and ��, respectively. The first term is MSE loss commonly used 

in the image denoising process and the second term is POD loss defined as the 

squared L2 norm of the POD coefficient difference. The POD loss is calculated using 

five POD bases from averaged label data in each gas properties condition (50 cases), 

considering total energy content (99.7%) and sensitivity to gas properties based on

GSA in Chapter 3. Moreover, the five POD coefficients are normalized by the min-

max of each coefficient to set the same weight on each basis in the loss function. 

This is because the variance of each POD coefficient rapidly decreases with 

increasing basis order, whereas the sensitivity to each gas property does not directly 

follow the basis order (energy contents), as shown in Figure 3.7. The POD can extract 
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property-sensitive and high-dimensional spectrums (the same dimension as the input 

spectrum). POD coefficients represent the weight of each POD basis that composes 

the spectrum (e.g., ��� and ��); the dot product between the POD coefficients and 

the POD bases results in the reconstruction of the spectrum. Therefore, the L2 norm 

of POD coefficients indicates global similarity, particularly regarding the property-

sensitive parts of the spectrum, which is important for improving the performance of 

the denoising CNN.

4.3 Results of data processing 

4.3.1 Denoising with the proposed CNN

Figure 4.4 illustrates the denoising capability comparison of conventional filters 

(low-pass filter and Gaussian filter) and deep learning-based denoising with low and 

high SNR signals. The chemiluminescence spectra acquired for the two exposure 

times (0.2 and 2 s), were denoted as LS and HS, respectively, as shown in Figure 4.4

(a) and (f). The presented spectra of LS and HS were obtained from the test dataset 

that was not used to train the model so the spectra are supposed to be unknown flame 

emission signals in arbitrary gas conditions. There are distinct spectral features in 

the HS spectrum that are characteristic of excited molecules including OH* at 306.4 

nm, CH* at 431.4 nm, C2* swan bands at 517 nm, and H2O* at 700 – 850 nm. The 

intensity and shape of the spectral features are highly dependent upon the gas
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properties in the combustion reaction zone. For example, CH* and C2* increase in 

fuel-rich flame conditions, and H2O* is elevated under high-pressure conditions. 

Therefore, some relatively weak characteristic spectral features barely appear in LS 

signals, such as CH* and C2* at lean conditions and H2O* at low-pressure conditions. 

Figure 4.4 (b) and (c) present the processed signal by the conventional filtering

method, i.e., low-pass filter and Gaussian filter. The conventional filtering method 

considers a high-frequency signal as noise and selectively attenuates the high-

frequency signal. Therefore, if the parameters of these conventional filters are not 

sufficient to suppress the noise floor, denoising preprocessing is not sufficient to 

improve the SNR. Or in the opposite case, if the filters excessively suppress the high-

frequency signal, the peak signals are blurred. Moreover, The filters not only 

suppress relatively weak characteristic spectral features but also obscure high-

intensity peak signals.

Figure 4.4 (d) and (e) present the outputs of a plain CNN (�� = 7, �� = 32, and 

�� = 15) without DU operator trained with MSE loss and the proposed DU + CNN

(�� = 7, �� = 32, �� = 15, and �� = 16) trained using the combination of MSE 

and POD loss, which are denoted as plain CNN and DU + CNN / POD loss, 

respectively. Spectra used for training and validation were the same for both models.

A comparison of both signals processed by CNN architectures and filtered signals 

by low-pass and Gaussian filters clearly demonstrates that CNN architectures are

more capable of significantly reducing the noise level in the spectra than the low-
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pass and Gaussian filters. Nevertheless, the relatively weak characteristic spectral 

features, such as CH* at lean conditions and H2O* emission bands, denoised by the 

plain CNN model differ from those of the corresponding HS spectra that are close to 

the ground truth signal. Therefore, the gas property prediction would be inaccurate

using denoised LS with the plain CNN model because the CH* and C2* bands are 

highly sensitive to the fuel concentration (ϕ) and the H2O* bands are the most 

prominent pressure indicator. The spectra denoised by the DU + CNN / POD loss, 

however, show good agreement with the HS spectra in most details. The noise from 

the input LS spectra could be successfully suppressed without sacrificing critical 

spectral features under various gas properties regardless of the noise level. We 

conjecture that this is due to proper down-sampling, which results in a larger 

receptive field, the number of input pixels involved in producing a given output pixel, 

and the regularization of the CNN architecture through POD loss. Thus, each pixel 

in the output signal is denoised and reconstructed based on the global spectral 

features of the input signal with a wide receptive field and the POD coefficients of 

each basis mode. In this regard, the successful denoising process is enabled by 

decoupling the property-sensitive spectral features from the low SNR signals even 

though the noise level changes with the randomly re-adjusted overall signal intensity. 

This will be further discussed in more detail in Section 4.3.2. 
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Figure 4.4 Comparison of flame emission spectra captured for 0.2 s (Low-SNR, LS) and 2 s (High-SNR, HS) exposures, 

and the LS spectra processed by low-pass filter, Gaussian filter, plain CNN and DU + CNN / POD loss
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Figure 4.5 shows the power spectrum analysis of (a) LS and (f) HS signals and the 

processed LS signal using (b) low-pass filter, (c) Gaussian filter, and (d)(e) two 

neural networks. The power spectrum is calculated by the Fourier transform of the 

spectrum signals and the magnitude of the power spectrum represents the intensity 

of the periodic wavelength spatial frequency. As shown in Figure 4.5 (b) and (c), the 

conventional filters, i.e. low-pass filter and Gaussian filter, exhibit suppression of 

signal magnitude in the wavelength spatial high-frequency region, indicating 

information loss at a high frequency based on the power spectrum of corresponding 

HS signals. Since the sharp peak signals, which are sensitive indicators of gas 

properties, are also in the wavelength spatial high-frequency range, the accuracy of 

gas characteristics prediction can be compromised. On the other hand, as shown in 

Figure 4.5 (d) and (e), the neural network denoising preserves sharp peak signals by 

selectively reducing noise and reconstructing signals, rather than simply suppressing 

the magnitude at high frequencies in the power spectrum. Therefore, the neural 

network denoiser suppresses noise while preventing information loss in peak signals 

such as OH*, CH*, and H2O* which are sensitive indicators of the target gas 

properties.
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Figure 4.5 Comparison of flame emission spectra and power spectrum captured for 0.2 s (Low-SNR, LS) and 2 s (High-

SNR, HS) exposures, and the LS spectra processed by low-pass filter, Gaussian filter, plain CNN, and DU + CNN / POD 

loss



100

4.3.2 Neural network architecture and loss function

Figure 4.4 (d) and (e) show the importance of deep learning-based denoising 

architecture and the regularization method because the architecture and the 

regularization method determine the capacity and performance of the model. The 

architecture is specified by the hyperparameter setting and the regularization method 

is determined by the configuration of the loss function. The neural network with sixty

different architectures based on hyperparameter pairs which are the combinations of 

�� (3, 7, 15, 25, and 45) and �� (1, 16), and �� (2, 3, 5, 7, 11, and 15). When ��

equals one, the DU operator is an identity operation so the architecture is the plain 

CNN. These sixty architectures are trained with different loss functions, i.e. MSE 

loss and MSE + POD loss. To compare the different neural network models 

combined with each of the two loss functions, the performance measures of 

denoising results are estimated quantitatively by the average relative error of the area 

(REA) defined as the following equation:

����∗ (%)

=
100

�����
� �

1

��,����
� �

����(�∗ �� ���,�) − ����(�∗ �� ��,�)

����(�∗ �� ��,�)
�

��,����

���

�

�����

���

(4.3)

Where M*, �����, ��,����, ���,� , ��,� , and ����(�∗ �� ���,�) is one of the excited 

molecules emitting local spectral features, the total number of test cases in the 

different conditions, the number of spectral shots in the ith condition, denoised low 
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SNR spectra, high SNR spectra, and spectral area of M* in ���,� calculated in the 

same way presented in section 2.3, respectively. M* is chosen as OH* (306 – 338 

nm), CH* (420 – 443 nm), and C2* (498 – 522 nm), H2O* (713 – 791 nm), and

broadband (BB, 270 – 650 nm) by following section 2.3. Additionally, 

����(�∗ �� ���,�)  is calculated using the POD coefficient vector of the ���,�

multiplied by the area of �∗  in each POD basis and the average spectra of all 

snapshots.

In this study, as long as the neural network is trainable, it is observed that the 

denoising performance improvs as ��, ��, and ��, increase, resulting in a wider 

receptive field. Therefore, one critical parameter that determines the performance of 

deep learning architectures is the receptive field of neural networks. Figure 4.6 (a) 

and (b) describe the trends of each denoising performance parameter, REA of OH*, 

CH*, C2*, H2O*, and BB as functions of the receptive field with different neural 

network architecture regularized by MSE loss. As shown in Figure 4.6 (a), REAs of 

OH*, CH*, and BB are nearly constant with the receptive field under 100 but rapidly 

decrease until the receptive field reaches the pixel number of the input spectrum (W, 

1696 × 1), and both the three REA indicators approach the minima at around 2 × W.

Implementing the DU operator increases the receptive field by ��  times, so the 

performances of DU + CNNs outperform those of plain CNNs. Notably, each output 

pixel is constructed by observing all the input pixels when the receptive field is 2 × 

W; therefore, further increase in the receptive field beyond 2 × W does not have 
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much benefit in improving model performance. The error trend in Figure 4.6 (b) for 

C2* and H2O* is similar in that the error decreases as the receptive field increases, 

but the magnitude of the error is large because these local spectral features are very 

weak under certain conditions; C2* disappears under lean fuel conditions and H2O* 

cannot exist under low pressures. In conclusion, the receptive field of neural network 

architectures should be set between W and 2 × W to maximize denoising 

performance, or close to W to reduce model complexity with acceptable performance.

According to previous studies on denoising CNN architectures for general 2D 

images, the optimal receptive field size has been discussed between 35 x 35 and 61 

x 61 in reference [55]. The flame emission spectrum, however, has an important 

characteristic that distinguishes it from typical 2D images: all pixels are closely 

related, not just those closest to each other, but also those far apart. This is because 

the entire range of spectra is affected by variations in gas properties. For example, 1)

Increasing fuel concentration will prompt multiple molecular bands that are far 

separated in the spectrum at the same time such as OH*, CH*, C2*, and BB. 2) As P 

increases, the molecular emission band broadens and the peak intensity diminishes.

3) Broadband background emissions become stronger with increasing gas density 

and CO2 concentration. In summary, expanding the receptive field to exploit the 

global contextual information of the emission spectrum can improve the denoising 

performance while keeping it below 2 × W, because the pixels in the emission 

spectrum are all related (unlike typical 2D images).
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Figure 4.7 presents the denoising performance of neural network architecture with 

two different loss functions: MSE loss and MSE + POD loss. As shown in Figure 4.7

(a) and (b), the REAs of OH*, CH*, BB, C2*, and H2O* for neural network 

architecture with MSE + POD loss have similar trends to the REAs with MSE loss. 

It is observed that denoising performance improves as the receptive field increases 

regardless of the configuration of the loss functions. Furthermore, the neural 

networks trained with MSE + POD loss show better performance for reconstructing 

the area of OH*, CH*, BB, C2*, and H2O* compared to the models regulated by 

MSE loss. For example, when training neural networks with MSE + POD loss, the 

band area of CH*, which is sensitive to the equivalence ratio, shows a maximum 

error reduction of 30% depending on the neural network architecture, and the 

minimum error with MSE + POD loss decreased by 7% compared to the error with 

MSE loss. Recall that POD decomposes spectral data into dominant bases in the 

entire spectral space correlated with gas properties. Therefore, the loss function, 

including the POD loss, can preserve global features of the LS signal by decoupling 

random noise from signals sensitive to gas properties. In contrast, the conventional 

loss function simply considers the mean square error of the spectra, regardless of the 

sensitivity of the spectral profile to the properties of interest. All REAs of each 

molecular band emission for the combination of different neural network 

architectures and loss functions are summarized in Figure 4.8, and the table is shown 

in tables A.2 and A.3 in Appendix A.2 and A.3.
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Figure 4.6 REA of each band emission versus the receptive fields of plain CNN

(�� = 1) and DU + CNN (�� = 16) trained by MSE loss
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Figure 4.7 REA of each band emission versus the receptive fields of plain CNN

(�� = 1) and DU + CNN (�� = 16) trained by MSE and POD loss
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Figure 4.8 REA for each local emission feature versus the receptive fields trained by MSE loss and POD loss
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4.3.3 Computational Efficiency

The computational efficiency of a deep learning-based method is one of the critical 

aspects that is required for the real-time denoising process of fast measurements. The 

performance of the deep learning-based denoising method can be improved by 

increasing the receptive field as summarized in Figure 4.8; however, increasing ��

and �� to obtain a large receptive field introduces neural network computational 

complexity, increasing forward calculation time (running time shown in Figure 4.9) 

and limiting real-time gas property measurements. In contrast, implementing the DU 

operator to increase the receptive field by a factor of �� accelerates the running and 

training of a neural network model. This is because using the DU operator makes the 

data size of the extracted features decrease, resulting in reducing the number of 

convolution operations and memory usage [55].

Figure 4.9 and Figure 4.10 present the computation time of the proposed CNN 

model in a Python environment. These results were obtained on a personal computer 

with NVIDIA GeForce RTX 3090, AMD Ryzen 5 2600X, and 32GB of RAM. The 

running time in Figure 4.9 is calculated by averaging the time using 5,000 inputs 

with a batch size of 1. And the training time in Figure 4.10 is evaluated by the time 

used to train a model for 100 iterations. The DU operator accelerates computations 

under a given receptive field as shown in Figure 4.9 and Figure 4.10. Given that the 

same order of expanding receptive field results from raising �� , ��  or ��

(Equation 4.1), increasing �� to widen the receptive field of a neural network is 
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much more cost-effective than increasing ��  or �� . This is because the DU 

operator (�� > 1) reconstructs the input pixels into sub-signals which in turn reduces 

the convolution operation range and thus the computation time. Furthermore, the 

number of training weights and bias parameters (��) calculated by Equation 4.4 is

always smaller for increasing ��  than for increasing ��  or ��  for a given 

receptive field.

# �� �������� (��) =

(�� − 2) × (��
��� + ��) + 2������ + (�� + ��)

(4.4)

�� increases with all three parameters: ��, ��, and ��. However, �� and ��  

increments �� by ��
� (>> ��). So �� has less impact on the computational cost 

than �� and �� as presented in Figure 4.11.
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Figure 4.9 Running time versus the receptive field with increasing three 
parameters (��, ��, and ��)

Figure 4.10 Training time versus the receptive field with increasing three 
parameters (��, ��, and ��)
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Figure 4.11 The number of trainable parameters versus the receptive field
with increasing three parameters (��, ��, and ��)
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CHAPTER 5. FRAMEWORK FOR FAST TIME-

RESOLVED AND HIGH ACCURACY FES

5.1 Overview of proposed framework

The proposed fast time-resolved and high-accuracy FES combining the data-

driven calibration process and deep learning-based denoising method are 

summarized in Figure 5.1. The proposed FES consists of a calibration process for 

training and validating a model and a prediction procedure for the trained model to 

estimate gas properties from an arbitrary spectrum. The calibration process is divided 

into three stages: 1) Acquire training data, 2) Map data, and 3) Train CNN. Then, the 

prediction procedure achieves measurements under arbitrary conditions: 4) Test data 

acquisition. The following is a detailed description of each of the four parts.

1) Pairs of high-SNR (long exposure) and low-SNR (short exposure) spectra are 

collected in steady-state calibration experiments to train and validate the model. 2) 

The averaged high-SNR spectra are used to map the high-SNR spectrum data to the 

gas properties of interest, e.g., pressure (P) and equivalence ratio (ϕ). Any calibration 

techniques, e.g., the conventional one-to-one calibration functions of emission band 

intensity ratios, PLS-R[40], and ANN [43], can be used. In this study, a ROM based 

on POD and the Kriging model is adopted because of its high accuracy and precision 

as presented in Chapter 3. The ROM is capable of accurately predicting multiple gas 
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properties using property-sensitive spectrum features decomposed by POD bases. In 

the next stage, 3) a denoising CNN is trained on the high-SNR (label) and low-SNR 

(input) spectrum pairs to produce a denoised spectrum output generated from a short-

gated spectrum of low-SNR (input). The spectral datasets are divided into training 

data and validation data for checking the under-fitting or over-fitting of the 

calibration model. Lastly, 4) arbitrary short-gated flame emission spectrum data is 

collected to predict multiple gas properties with fast time-resolution and high 

accuracy using trained CNN and ROM. Figure 5.2 presents details on prediction 

procedures of the fast time-resolved and high accuracy FES. A low SNR short-gated

spectrum from the target flame is processed with denoising and the corresponding 

gas properties are predicted by mapping function (Kriging model in this study) from 

the POD coefficient vector of the processed spectrum.
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Figure 5.1 A flowchart for (a) calibration process and (b) prediction procedure
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Figure 5.2 An illustration of fast time-resolved and high-accuracy FES for gas property prediction
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5.2 Fast time-resolved and high accuracy FES

5.2.1 Calibration and prediction of gas properties 

The proposed FES method is applied to the spectral dataset. As shown in Figure 

5.3 (a), (b), and (c), to evaluate the performance of the proposed framework 

quantitatively, gas properties (P and ϕ) are predicted by calibrating 1) raw LS 

spectrum signals (without denoising), and the emission spectra denoised-

reconstructed by 2) a plain CNN (�� = 7, �� = 32, �� = 15, and � = 0), and 3) a 

DU + CNN / POD loss architectures (�� = 7, �� = 32, �� = 15, �� = 16, and �

= 0.1), respectively. The x-axis in Figure 5.3. is ground truth values measured by 

high-accuracy sensors, whereas the y-axis represents predictions based on three sets 

of spectra: (a) LS without denoising, (b) denoised LS by the plain CNN, and (c) 

denoised LS by the DU + CNN / POD loss. The error bars present standard deviations

of the gas property predictions obtained from 100 short-gated LS signals. The 

uncertainty bands of sensor-measured P and ϕ are also shown (gray dotted lines)

which are calculated considering uncertainty propagation based on Taylor series 

expansions, as presented in section 2.1.2.

Given that the plain CNN effectively removed noise in the LS spectrum signals as 

shown in Figure 4.4, the accuracy of the gas property prediction using the 

preprocessed signals from the plain CNN (Figure 5.3 (b)) is not significantly 

improved compared to the prediction using the LS signals without the denoising 
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CNN process (Figure 5.3 (a)). In contrast, the DU + CNN / POD loss model 

impressively improves the accuracy and precision of the property prediction, P and 

ϕ in Figure 5.3 (c). This is because DU + CNN / POD loss can effectively suppress 

the noise from the LS spectrum signals with minimal information loss of local 

characteristic features resulting from utilizing the DU operator and POD loss, as 

confirmed in Figure 4.4. In other words, multiple molecular bands (OH*, CH*, C2*, 

and H2O*) distributed over a wide range are interconnected with varied gas 

properties. With the wider receptive field of down-sampled signals and regularized 

training by adding POD loss, these global molecular band features can be preserved, 

improving the accuracy of gas property prediction. In comparison, the receptive field

of the DU + CNN is 16 times larger than that of the plain CNN.

Table 5.1 presents the performance of gas property prediction based on LS, plain 

CNN, and DU + CNN / POD loss. The REC, REP, and RSD of P and ϕ are tabulated, 

which are measures to evaluate the calibration accuracy of training data, the 

prediction accuracy of test data, and the prediction precision of test data, respectively. 

The accuracy and precision of gas properties prediction using DU + CNN / POD loss 

outperform LS and plain CNN. Particularly, the accuracy (REP) and precision (RSD) 

of the ϕ-prediction are 1.5% and 1.6%, respectively, which are comparable to the 

sensor measurement uncertainty. 
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Figure 5.3 Prediction of P and ϕ using (a) Low SNR signal (without 

denoising), (b) Plain CNN, and (c) DU + CNN /POD loss (Proposed method)
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Table 5.1 Comparison of quantitative performance parameters

Error
Unit: %

LS Plain CNN DU + CNN / POD loss

REC REP RSD REC REP RSD REC REP RSD

P 14 12 14 10 9.9 12 2.2 5.7 6.4
ϕ 4.8 4.1 5.0 3.6 4.2 5.0 0.56 1.5 1.6

*LS: low-SNR, REC: average relative error of training 
data in calibration, REP: average relative error of test data 
in prediction, RSD: average relative standard deviation of 
test data in prediction.

5.2.2 Neural network architecture and loss function

As discussed in sections 4.3.2 and 4.3.3, hyperparameters of a neural network 

architecture and a loss function determine denoising capacity, efficiency, and 

performance. Denoised and reconstructed spectral features by the trained neural 

network model outputs are used to predict gas properties. Consequently, prediction 

accuracy and precision of gas properties using the model are determined by the 

neural network architecture and loss function. Figure 5.4 shows the prediction 

accuracy of P and ϕ depending on the selection of hyperparameters and loss function 

configurations; the REP, prediction error of P and ϕ, represents the performance of 

the CNN architecture to predict the gas properties of interest. The prediction 

accuracy improves as the marker approaches the origin of the graph in Figure 5.4, 

which means zero prediction error. The blue markers represent the prediction 

accuracy of the novel proposed loss function that combines MSE and POD losses, 

whereas the green markers indicate the prediction accuracy of the conventional loss 

function, MSE losses. The shape of the marker indicates six different combinations

of ��  (3, 15, and 25) and ��  (1 and 16), and the brightness of the markers
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indicates ��, which increases from 2 to 15 as it gets darker. Generally, prediction 

errors decrease as �� increases due to model capacity. In addition, it is evident that 

the DU operator (�� = 16) and the new loss function (MSE + POD) significantly 

reduce REP. On the other hand, the prediction errors of some cases using the plain 

CNN with MSE loss are even greater than those of the calibration process using raw 

LS spectra without denoising. In this case, the denoising CNN can misinterpret the 

properties contained in the raw spectrum data when misguided by the MSE loss 

function.

Recall that POD decomposes spectra into dominant bases spanning the entire 

spectrum space, and the POD coefficients (the weight of basis) correlate with gas 

properties. Therefore, the denoising architecture regulated by adding POD losses can 

preserve and reconstruct property-sensitive spectral features in the spectrum to 

improve REP of gas properties, whereas the conventional loss function simply 

considers the mean square errors (MSE) of the spectra regardless of the sensitivity 

of the spectrum profile to the properties of interest.
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Figure 5.4 REP of P and ϕ with different combinations of two loss functions, 

six pairs of �� (3, 15, and 25) and �� (1 and 16), and six �� (2, 3, 5, 7, 11, 

and 15).
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Moreover, as discussed in section 4.3.2, it is observed that the receptive field of 

neural networks determines its denoising performance; therefore, the receptive field 

would be critical to prediction accuracy. Figure 5.5 describes the trends of REP and 

RSD with respect to the receptive field. The hyperparameters �� (2 – 15), �� (3 –

45), and �� (1 – 32) vary to represent the effect of the receptive field on model 

performance. �� is 1 for ‘plain CNN’ and varies from 2 to 32 for ‘DU + CNN’. 

Both neural network architectures are regularized by MSE + POD loss for a fair 

comparison of their receptive fields. The trends of REP and RSD are similar to those 

of the denoising performance parameter (REA) in Figure 4.6; the REP and RSD are 

nearly constant for the receptive fields below 100, but rapidly decline until the 

receptive field reaches the number of components of the input spectrum (W, 1696 × 

1), and both the performance indicators (REP and RSD) approach their minimums

at around 2 × W. As mentioned in section 4.3.2, each output pixel is constructed 

using all the input pixels when the receptive field is 2 × W (consider the endpoints 

on each side). Therefore, further increasing the receptive field beyond 2 × W does

not significantly affect model performance. In conclusion, the receptive field of CNN 

should be set between W and 2 × W to minimize REP and RSD, and near W to reduce 

model complexity with acceptable prediction accuracy and precision.
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Figure 5.5 (a) REP and (b) RSD of P and ϕ versus the receptive fields of plain 

CNN (�� = 1) and DU + CNN (�� = 2 – 32) trained by MSE loss
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5.2.3 Hyperparameter search

Neural network architecture and regularization method are controlled by the 

hyperparameters chosen by the experimenter. To obtain the best neural network 

model, the experimenter needs to tune the hyperparameters. The hyperparameters of 

the proposed neural network architecture are the depth of the layer (��), the number 

of channels (��), the kernel (filter) size (��), and the down-sampling parameter (��). 

Also, the hyperparameter for the loss function is the blending parameter (α). A 

baseline model of plain CNN without POD loss (�� = 7, �� = 32, �� = 15, �� = 

1, and � = 0) and a baseline model of DU+CNN with POD loss (�� = 7, �� = 32, 

�� = 15, �� = 16, and � = 0.1) are chosen to show the impact of the proposed 

CNN architecture and loss function. These are examples of parameter sets from the 

parametric study. The effect of ��, ��, and �� were analyzed in Figure 5.4 and 

the critical parameters influencing the performance of the model were revealed, i.e., 

the receptive field calculated in Eq. 4.1 and discussed in Figure 4.6 and Figure 5.5. 

Furthermore, ��  is fixed as 32 because the effect of the variation of ��  is 

negligible if �� is a sufficiently large number (greater than 16 in our dataset), as 

shown in Figure 5.6. � is set to 0.1 to account for the magnitude of each loss term 

to be matched because the loss function consists of the summation of the two terms: 

MSE loss and POD loss.
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Figure 5.6 Performance variation according to the number of channels of

neural networks.
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In general, the best hyperparameter of a neural network model can be determined 

by the process called hyperparameter search (which is also known as hyperparameter 

optimization or hyperparameter tuning) and the best hyperparameter set can be 

validated using a dataset that is not used in the training process [93]. Figure 5.7

presents the results of the hyperparameter search for neural network models. Here, 

the average relative error of validation data (REV) is introduced. The REV is 

calculated by the same equation as REC but uses the validation data that is included 

in training data but not used in the training process. The REVs of P and ϕ are used 

as objective functions in this optimization process. This is because the test data is 

not available during the calibration process. The objective function (REV) should be 

minimized and it reaches its optimum point as the marker approaches the origin of 

the graph in Figure 5.7. Therefore, the result of the hyperparameter search provides 

a Pareto front that indicates potential sets of optimized hyperparameters. Three sets 

of optimized hyperparameters in the Pareto front are selected and investigated: OPT1 

(�� = 3,  �� = 45, and �� = 16), OPT2 (�� = 5,  �� = 45, and �� = 16), and 

OPT3 (�� = 15,  �� = 45, and �� = 16). The gas property prediction results of 

OPT1, OPT2, and OPT2 with POD/Kriging are shown in Figure 5.8 and Table 5.2. 

REPs of both gas properties using OPT1 and OPT2 are improved compared to 

DU+CNN/POD loss architecture. However, OPT3 degraded prediction performance 

(REP) despite improved REV and REC of both gas properties. This is because the 

denoising process using OPT3 overfits the training data with a receptive field of 

10560, which is too large for the component size of the spectral data.
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Figure 5.7 Hyperparameter search using REV as optimization function

Table 5.2 Comparison of quantitative performance parameters for OPT1, 

OPT2, and OPT3 with POD/Kriging 

Error
Unit: %

OPT1 OPT2 OPT3

REC REP RSD REC REP RSD REC REP RSD

P 2.9 4.9 5.6 1.9 4.7 5.2 2.1 5.2 5.1
ϕ 0.83 1.4 1.7 0.35 1.4 1.4 0.29 2.3 1.9

*LS: low-SNR, REC: average relative error of calibration 
data, REP: average relative error of test data in prediction, 
RSD: average relative standard deviation of test data in 
prediction.
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Figure 5.8 Prediction of P and ϕ using signals processed by (a) OPT1, (b) 

OPT2, and (c) OPT3
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5.2.4 Noise level sensitivity analysis

In practical applications, the noise level of spectral signals can suffer from drift 

depending on the detection system. For example, variation in sensor temperature 

causes the fluctuation of dark current noise. Therefore, with varying different input 

noise levels, the performance of a neural network denoiser trained on a spectral 

dataset is evaluated in this section. 

Different levels of noise are imposed by data augmentation that changes the 

intensity of the signals of inputs during training neural networks. Therefore, trained 

neural networks should be able to handle different noise levels. Moreover, As shown 

in Figure 5.9, the noise level of our dataset inherently varies with the flame 

conditions in the target system since the fuel volume flow rate depends on the flame 

speed to operate the flat flame burner. The SNR of each spectrum is estimated using 

the peak signal-to-noise ratio (PSNR) defined below:

���� = 10 log��

����
�

���
(5.1)

Where ���� is the maximum possible value and ��� is the mean squared error. 

The ground truth signals for PSNR analysis are the 10-shot averaged high SNR 

dataset. The denoising neural networks are trained using the dataset with the variable 

noise level of PSNR from 13 to 29.
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Figure 5.9 PSNR variations of flame emission with 0.2 s exposure time 

To check the noise sensitivity of the trained neural network, the noise is 

approximated as white Gaussian noise. In white Gaussian noise, the level of noise 

can be controlled by adjusting the variation parameter. The examples of signals with 

various noise and noise sensitivity curves using signals with 5 flame conditions are 

shown in Figure 5.10. For the five flame conditions, the PSNR of signals remains 

almost constant until the noise level reaches 0.02 and then decreases. 

The prediction results using the denoised signal with various noise levels are 

shown in Figure 5.11. The prediction results are quantified using REP and RSD of P 

and ϕ. The prediction results of P and ϕ show rapid degradation of accuracy and 

precision over noise levels 0.02 and 0.1, respectively.
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Figure 5.10 Typical signals with different noise levels and PSNR variations of 

denoised flame emissions

Figure 5.11 Accuracy and precision performance using inputs with different 

noise levels. 
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5.2.5 Exposure time

In order to monitor gas properties in rapidly evolving combustion, it is important 

to match the sampling rate and exposure time to the characteristic time scale. For 

example, the characteristic time for swirl flames with a processing vortex core is 

several milliseconds (ms) [23, 94]. Moreover, the time scales of turbulent flame 

dynamics are the integral time scale and Kolmogorov time scale, which are hundreds 

and tens of microseconds (μs), respectively [24, 95]. According to section 2.1.3, a

monotonic decrease in SNR is estimated with reduced exposure time. The 

experimental results support the analysis, as presented in Figure 2.3. Therefore, as 

the exposure time decreases, the accuracy of gas prediction decreases. In this section, 

the effect of reduced exposure time on the performance of the calibration models is 

evaluated by repeating the experiments with varying exposure times (0.05, 0.2, and 

0.4 s). As shown in Figure 5.12 (a) and (b), REP was compared between BI3/MLR 

(section 3.4.1), PLS-R (section 3.4.1), and POD/Kriging with and without deep 

learning-based denoising. The prediction error of P and ϕ using every calibration 

method increases by reducing the exposure time. Furthermore, the REP of the 

POD/Kriging method with denoising outperformed REP of the method without 

denoising although OPT3 architecture showed a higher value of error when the 

exposure time is 400 ms, which is resulting from overfitting to the calibration dataset 

(see Figure 5.8 (c)).



132

Figure 5.12 REP of (a) P and (b) ϕ versus exposure time.
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CHAPTER 6. CONCLUSIONS

This dissertation proposes a framework of FES combining the data-driven 

calibration process and deep learning-based denoising method to achieve fast time-

resolved and high-accuracy combustion diagnostics. The data-driven calibration 

process consists of mapping the emission spectra from a high-dimensional non-linear 

dimension to gas properties (P and ϕ) by using the emission dataset from high-

pressure methane-air combustion. As a result of this calibration model, gas properties 

can be evaluated without any additional information from electrical sensors or 

chemical reaction simulations. Moreover, pre-processing of the raw spectral data 

using deep learning-based denoising methods can suppress noise and restore 

information to achieve accurate measurement from fast time-resolved low SNR 

spectral data. With these strategies, it would be possible to utilize the potential of a

fast time-resolved FES, given that modern detection systems have high sampling 

rates.

A data-driven calibration method based on ROM consists of the POD and Kriging 

model trained using only high SNR data from the training dataset. The dimension of 

the data can be significantly reduced by extracting POD basis vectors that span the 

entire space of the spectrum. Then the variations of the weight of the POD basis 
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(POD coefficient) are correlated with gas properties using the Kriging model to 

predict gas properties using unknown spectra in arbitrary flame conditions. 

Moreover, LOOCV and GSA validate and analyze the ROM trained by the training 

dataset so that it can be used to predict gas properties. It is confirmed that the POD 

defines the directions most sensitive to gas properties and extracts gas property 

indicators over a wide spectral region. Moreover, the gas properties, the outputs of 

the Kriging model, can be accurately predicted using a POD coefficient vector, 

which is a projection of an unknown flame emission spectrum (test data) onto the 

POD bases. The prediction accuracy of the gas properties is significantly improved 

within a few percent.

The deep learning-based denoising method utilizes an architecture consisting of a 

DU operator and deep plain CNN layers. The architecture is trained by pairs of low 

and high SNR spectra, i.e. captured at short and long exposure times, respectively.

This training is regularized by a loss function in which the MSE loss and POD loss 

are combined. The POD loss is the L2 norm for POD coefficient difference, which 

indicates the error of property-sensitive components in the emission spectrum. The 

proposed neural network architecture successfully suppresses noise in the LS 

spectral signals while maintaining the characteristic spectral characteristics of the 

spectra. Moreover, the selection of hyperparameters for neural network architecture 

is investigated. It is revealed that the size of the receptive field calculated by the 

combination of �� , �� , and ��  is critical to improving the performance of the 
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neural network model.

Then, the trained ROM and deep learning-based denoising method are combined 

so that the gas properties are predicted from the short-gated low SNR spectrum from 

an unknown flame condition. With the proposed framework of FES, the prediction 

errors of the P and ϕ improved to approximately 5.7% and 1.5% at 0.2 s exposure 

time (11% and 4% using the POD and Kriging model without denoising), and to 18% 

and 5% at 0.05 s exposure time (from 43% and 16% without denoising), respectively. 

It is clear that the proposed calibration method can further improve the temporal 

resolution and accuracy to fully exploit the potential of FES. Also, the method is 

straightforward to apply to data from other detection systems. Therefore, when using 

a more sensitive and faster detection system, such as a high-speed kHz frame camera 

with a signal intensifier with devices currently available on the market, accurate 

monitoring of gas properties at sampling rates of several hundred kHz is possible.

Furthermore, the proposed calibration method is applicable to turbulent flames, 

given that previous FES studies on turbulent flames also utilized a calibration 

process that collected flame emissions from the entire flame region.

Moreover, the proposed combined framework of denoising and ROM technique 

can also be used for other types of multi-dimensional data such as 2D/3D images 

due to the nature of the data-driven technique. Therefore, this new calibration method 

can significantly improve the measurement accuracy of various other optical 
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methods including laser absorption spectroscopy (LAS), laser-induced breakdown 

spectroscopy (LIBS), Raleigh and Raman scattering spectroscopy, and electron 

spectroscopy. In future works, the application of the proposed method to various 

optical measurement methods will be investigated.
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APPENDIX A

A.1 Result of computational simulation 

Table A.1 presents the simulation results to operate a high-pressure combustor.

Table A.1 Simulation result of flame properties

case
#

ϕ
P 

(bar)
χ��

(× 10��)

χ���

(× 10��)

χ��
(× 10��)

χ���

(× 10��)

���

(�)

Flame 
speed
(cm/s)

A1 0.8 1.2 2.1 1.7 0.5 7.6 1996 25.1

A2 0.9 1.2 6.0 2.8 2.2 8.3 2135 31.6

A3 1 1.2 9.9 2.1 8.9 8.5 2225 35.7

A4 1.1 1.2 7.6 0.4 26.3 7.4 2204 36.0

A5 1.2 1.2 7.1 0.1 45.4 6.1 2129 31.3

B1 0.8 2 2.4 2.5 0.4 7.6 1996 20.0

B2 0.9 2 7.8 4.7 1.6 8.4 2139 25.5

B3 1 2 13.4 3.4 7.2 8.7 2239 29.0

B4 1.1 2 8.2 0.5 25.6 7.5 2213 29.2

B5 1.2 2 8.0 0.1 45.3 6.2 2134 24.5

C1 0.8 3 2.9 3.7 0.3 7.6 1997 16.4

C2 0.9 3 10.4 7.7 1.4 8.4 2141 21.1

C3 1 3 17.9 5.3 6.4 8.7 2247 24.3

C4 1.1 3 8.9 0.5 25.2 7.6 2217 24.4

C5 1.2 3 8.5 0.1 45.2 6.2 2134 19.4

D1 0.8 4 3.4 5.0 0.3 7.7 1997 14.2

D2 0.9 4 12.9 11.0 1.2 8.4 2142 18.4

D3 1 4 22.4 7.4 5.9 8.8 2251 21.1

D4 1.1 4 9.5 0.5 25.1 7.6 2219 21.1

D5 1.2 4 8.6 0.1 45.1 6.2 2134 16.3



138

Table A.1 Simulation result of flame properties (Continued)

case
#

ϕ
P 

(bar)
χ��

(× 10��)

χ���

(× 10��)

χ��
(× 10��)

χ���

(× 10��)

���

(�)

Flame 
speed
(cm/s)

E1 0.8 5 3.9 6.5 0.2 7.7 1997 12.6

E2 0.9 5 15.8 15.0 1.1 8.4 2144 16.5

E3 1 5 27.1 9.7 5.5 8.8 2254 18.9

E4 1.1 5 10.0 0.6 24.9 7.6 2220 18.7

E5 1.2 5 8.4 0.1 45.0 6.2 2136 14.2

F1 0.8 6 4.4 8.1 0.2 7.7 1998 11.5

F2 0.9 6 18.6 19.3 1.0 8.4 2144 15.0

F3 1 6 31.8 12.3 5.2 8.9 2256 17.3

F4 1.1 6 10.3 0.6 24.9 7.6 2220 17.0

F5 1.2 6 8.0 0.1 45.1 6.2 2135 12.7

G1 0.8 7 5.1 9.9 0.2 7.7 1998 10.5

G2 0.9 7 21.3 24.0 0.9 8.4 2145 13.9

G3 1 7 36.3 14.8 5.0 8.9 2258 16.0

G4 1.1 7 10.6 0.6 24.8 7.6 2221 15.7

G5 1.2 7 7.5 0.1 45.0 6.2 2136 11.6

H1 0.8 8 5.6 11.9 0.2 7.7 1999 9.8

H2 0.9 8 24.2 29.0 0.9 8.4 2145 13.0

H3 1 8 40.7 17.4 4.8 8.9 2260 14.9

H4 1.1 8 10.8 0.6 24.7 7.6 2221 14.6

H5 1.2 8 6.9 0.1 45.0 6.2 2136 10.8

I1 0.8 9 6.2 13.8 0.2 7.7 1998 9.2

I2 0.9 9 27.0 34.3 0.8 8.5 2146 12.2

I3 1 9 45.1 20.1 4.6 8.9 2261 14.0

I4 1.1 9 10.9 0.6 24.7 7.6 2222 13.8

I5 1.2 9 6.4 0.1 45.0 6.2 2136 10.2

J1 0.8 10 6.7 15.9 0.2 7.7 1998 8.7

J2 0.9 10 29.9 40.0 0.8 8.5 2146 11.6

J3 1 10 49.4 22.9 4.5 8.9 2262 13.3

J4 1.1 10 11.0 0.6 24.7 7.6 2222 13.0

J5 1.2 10 5.9 0.1 45.0 6.2 2137 9.7
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Table A.1 Simulation result of flame properties (Concluded)

case
#

ϕ
P 

(bar)
χ��

(× 10��)

χ���

(× 10��)

χ��
(× 10��)

χ���

(× 10��)

���

(�)

Flame 
speed
(cm/s)

K1 1.1 1.36 7.8 0.4 26.1 7.5 2208 34.4

K2 1.18 1.59 7.4 0.2 41.7 6.4 2149 28.9

K3 0.85 1.84 4.3 3.4 0.8 8.0 2070 23.8

K4 0.97 2.33 14.4 5.4 4.3 8.7 2220 26.5

K5 1.11 2.53 8.3 0.4 27.4 7.4 2209 26.2

K6 0.8 2.76 2.7 3.4 0.3 7.6 1997 17.1

K7 0.99 3 18.1 6.1 5.4 8.7 2240 24.1

K8 0.82 3.5 4.2 5.3 0.4 7.8 2028 16.1

K9 1 3.83 21.6 7.0 6.0 8.8 2250 21.6

K10 1.16 3.93 8.6 0.2 37.6 6.7 2168 18.9

K11 1.02 4.15 20.3 4.8 8.4 8.7 2259 21.0

K12 0.95 4.65 23.2 14.6 2.4 8.7 2206 18.5

K13 0.85 4.99 8.2 10.6 0.5 8.0 2073 14.7

K14 0.93 5.25 22.3 17.5 1.7 8.6 2183 16.9

K15 1.09 5.43 10.8 0.7 22.7 7.8 2228 18.1

K16 1.05 5.68 16.9 2.4 13.6 8.4 2257 18.1

K17 1.15 6.14 8.8 0.3 35.4 6.9 2178 15.1

K18 1.13 6.28 9.2 0.3 31.2 7.1 2196 15.8

K19 0.89 6.49 17.7 20.4 0.8 8.4 2131 14.1

K20 1.14 6.98 9.0 0.3 33.3 7.0 2187 14.5

K21 0.97 7.17 38.3 24.0 2.8 8.9 2232 15.3

K22 1.08 7.47 12.7 1.0 20.2 7.9 2238 15.5

K23 0.87 7.84 16.1 23.1 0.5 8.2 2103 12.2

K24 1.06 8.03 16.8 2.0 15.6 8.3 2253 15.1

K25 0.83 8.28 9.4 17.2 0.3 7.9 2044 10.6

K26 0.92 8.76 32.9 35.8 1.1 8.6 2173 12.9

K27 1.04 8.89 24.7 4.5 11.2 8.6 2265 14.4

K28 0.9 9.33 28.0 36.2 0.8 8.5 2146 12.0

K29 1.19 9.54 6.6 0.1 43.2 6.3 2145 10.3

K30 0.94 9.72 43.5 42.3 1.5 8.7 2199 12.6
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A.2 Denoising performance of neural networks with MSE loss 

Table A.2 presents the REA of each local characteristic feature with different 

neural network architectures trained by MSE loss.

Table A.2 REA of neural networks trained with MSE loss

�� �� �� �� RF
REA (%)

OH* CH* C2* H2O* BB

2 3 32 1 5 1.99 10.33 36.33 87.77 3.29 

2 3 32 16 80 2.10 10.23 45.30 34.52 3.25 

2 7 32 1 13 2.12 11.60 39.38 49.95 3.15 

2 7 32 16 208 2.13 9.23 38.14 29.00 3.23 

2 15 32 1 29 2.19 11.34 42.79 38.22 3.22 

2 15 32 16 464 1.96 7.57 28.18 22.79 2.89 

2 25 32 1 49 2.22 11.25 46.22 35.68 3.31 

2 25 32 16 784 1.82 6.65 24.28 22.45 2.52 

2 45 32 1 89 2.17 11.26 45.23 32.81 3.26 

2 45 32 16 1424 1.72 7.79 28.20 21.84 2.35 

3 3 32 1 7 1.96 9.90 37.55 80.10 3.42 

3 3 32 16 112 2.08 7.76 30.96 29.34 3.17 

3 7 32 1 19 2.20 8.43 35.38 43.77 3.33 

3 7 32 16 304 1.95 7.36 26.86 24.91 2.94 

3 15 32 1 43 2.24 8.58 39.20 36.49 3.51 

3 15 32 16 688 1.61 5.67 24.75 19.94 2.52 

3 25 32 1 73 2.09 9.00 37.31 35.53 3.18 

3 25 32 16 1168 1.46 6.18 18.31 20.46 2.79 

3 45 32 1 133 2.31 7.99 33.70 29.02 3.40 

3 45 32 16 2128 1.27 5.26 13.10 18.10 2.68 

5 3 32 1 11 1.96 8.54 37.15 57.38 3.17 

5 3 32 16 176 2.66 7.28 31.14 32.23 4.45 

5 7 32 1 31 2.12 8.29 37.99 40.47 3.33 
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Table A.2 REA of neural networks trained with MSE loss (Continued)

�� �� �� �� RF
REA (%)

OH* CH* C2* H2O* BB

5 15 32 1 71 2.18 8.59 36.40 29.20 3.37 

5 15 32 16 1136 1.27 4.81 17.10 19.88 2.50 

5 25 32 1 121 2.12 9.12 36.73 30.19 3.08 

5 25 32 16 1936 1.25 5.00 12.18 13.98 2.80 

5 45 32 1 221 2.01 7.95 32.56 26.17 2.97 

5 45 32 16 3536 1.22 5.17 11.37 14.60 2.87 

7 3 32 1 15 2.02 8.40 36.67 43.40 3.15 

7 3 32 16 240 1.96 6.87 28.91 21.18 2.99 

7 7 32 1 43 2.06 9.22 36.15 36.06 3.18 

7 7 32 16 688 1.48 5.82 20.32 21.68 2.64 

7 15 32 1 99 2.10 8.43 34.87 28.51 3.20 

7 15 32 16 1584 1.34 4.95 12.42 17.63 3.20 

7 25 32 1 169 2.13 9.07 35.59 25.58 3.43 

7 25 32 16 2704 1.20 5.24 13.05 17.59 3.12 

7 45 32 1 309 2.04 7.95 31.01 22.89 3.04 

7 45 32 16 4944 1.43 5.97 11.94 9.81 3.89 

11 3 32 1 23 2.04 8.55 36.02 47.21 3.18 

11 3 32 16 368 1.80 5.94 25.26 22.35 2.92 

11 7 32 1 67 2.15 8.65 36.66 30.43 3.19 

11 7 32 16 1072 1.54 5.28 17.52 19.85 3.31 

11 15 32 1 155 2.47 9.68 36.58 26.31 4.40 

11 15 32 16 2480 1.66 5.53 12.88 16.91 3.95 

11 25 32 1 265 2.10 9.09 34.97 26.64 2.99 

11 25 32 16 4240 1.01 6.40 16.46 9.39 2.41 

11 45 32 1 485 2.04 6.95 29.13 22.89 3.25 

11 45 32 16 7760 1.76 7.53 17.07 10.53 4.39 

15 3 32 1 31 2.08 8.83 37.47 30.43 3.17 

15 3 32 16 496 1.67 6.43 22.70 20.80 2.77 

15 7 32 1 91 2.14 9.55 36.99 27.95 3.46 

15 7 32 16 1456 1.86 5.33 12.66 18.68 4.26 
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Table A.2 REA of neural networks trained with MSE loss (Concluded)

�� �� �� �� RF
REA (%)

OH* CH* C2* H2O* BB

15 15 32 1 211 2.22 9.58 39.57 26.36 3.14 

15 15 32 16 3376 1.16 6.36 16.28 13.64 2.69 

15 25 32 1 361 2.30 7.82 32.80 24.36 3.43 

15 25 32 16 5776 1.35 6.33 14.03 9.79 3.38 

15 45 32 1 661 1.91 7.94 22.58 22.47 3.54 

15 45 32 16 10576 1.48 7.10 18.32 13.04 3.81 
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A.3 Denoising performance of neural networks with MSE and 

POD loss 

Table A.3 presents the REA of each local characteristic feature with different 

neural network architectures trained by combined MSE loss and POD loss.

Table A.3 REA of neural networks trained with MSE+POD loss

�� �� �� �� RF
REA (%)

OH* CH* C2* H2O* BB

2 3 32 1 5 2.04 7.81 34.74 45.62 3.32 

2 3 32 16 80 2.08 7.92 35.93 39.06 3.32 

2 7 32 1 13 2.01 8.26 38.05 40.85 3.25 

2 7 32 16 208 1.98 7.32 30.29 31.68 3.13 

2 15 32 1 29 2.01 8.47 39.36 37.06 3.21 

2 15 32 16 464 1.85 6.68 25.45 31.81 2.96 

2 25 32 1 49 2.02 8.49 40.66 35.97 3.20 

2 25 32 16 784 1.67 5.87 23.12 27.13 2.65 

2 45 32 1 89 2.02 8.25 37.80 34.70 3.14 

2 45 32 16 1424 1.66 6.47 23.72 30.33 2.79 

3 3 32 1 7 2.01 7.63 34.95 41.56 3.23 

3 3 32 16 112 1.99 7.20 30.01 32.45 3.12 

3 7 32 1 19 2.03 7.78 36.29 35.50 3.20 

3 7 32 16 304 1.80 6.66 25.90 28.07 2.92 

3 15 32 1 43 2.04 8.16 37.66 36.28 3.16 

3 15 32 16 688 1.46 5.69 21.21 23.85 2.46 

3 25 32 1 73 2.04 7.73 36.02 34.68 3.14 

3 25 32 16 1168 1.28 4.86 15.93 21.60 2.24 

3 45 32 1 133 2.01 7.82 32.45 29.99 3.15 

3 45 32 16 2128 1.03 4.49 13.81 15.38 2.11 

5 3 32 1 11 2.01 7.70 34.85 36.57 3.20 

5 3 32 16 176 1.98 6.85 28.84 28.50 3.08 

5 7 32 1 31 2.04 8.26 35.37 34.29 3.16 



144

Table A.3 REA of neural networks trained with MSE+POD loss (Continued)

�� �� �� �� RF
REA (%)

OH* CH* C2* H2O* BB

5 15 32 1 71 2.08 8.04 35.35 32.60 3.19 

5 15 32 16 1136 1.37 5.21 17.80 22.69 2.43 

5 25 32 1 121 1.99 8.08 32.51 29.99 3.09 

5 25 32 16 1936 1.12 4.84 13.55 16.10 2.53 

5 45 32 1 221 1.93 7.79 29.82 27.49 2.98 

5 45 32 16 3536 1.07 4.84 12.90 11.00 2.32 

7 3 32 1 15 2.03 8.11 35.33 35.84 3.19 

7 3 32 16 240 1.83 6.71 26.91 27.25 2.91 

7 7 32 1 43 2.06 8.42 37.29 33.14 3.15 

7 7 32 16 688 1.40 5.29 19.52 20.68 2.47 

7 15 32 1 99 2.04 8.55 34.59 31.58 3.14 

7 15 32 16 1584 1.18 5.25 16.30 18.34 2.78 

7 25 32 1 169 1.99 8.31 32.82 27.64 3.08 

7 25 32 16 2704 1.08 5.20 12.94 14.41 2.54 

7 45 32 1 309 1.73 6.58 24.88 25.89 2.82 

7 45 32 16 4944 1.25 6.16 14.28 8.67 2.83 

11 3 32 1 23 2.06 8.57 36.02 33.21 3.17 

11 3 32 16 368 1.73 6.10 23.54 24.22 2.74 

11 7 32 1 67 2.11 9.10 38.31 33.20 3.15 

11 7 32 16 1072 1.38 5.04 17.71 19.68 2.83 

11 15 32 1 155 2.02 8.57 32.74 28.56 3.10 

11 15 32 16 2480 1.29 6.39 15.38 13.63 3.28 

11 25 32 1 265 1.89 7.45 28.41 24.91 2.92 

11 25 32 16 4240 1.10 5.24 17.09 15.32 2.09 

11 45 32 1 485 1.73 6.04 23.12 27.72 2.86 

11 45 32 16 7760 1.37 6.50 15.70 9.10 3.28 

15 3 32 1 31 2.07 8.68 37.18 33.43 3.16 

15 3 32 16 496 1.62 6.08 22.81 22.77 2.78 

15 7 32 1 91 2.12 9.49 39.49 31.84 3.17 

15 7 32 16 1456 1.40 5.44 13.99 19.37 3.23 
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Table A.3 REA of neural networks trained with MSE+POD loss

(Concluded)

�� �� �� �� RF
REA (%)

OH* CH* C2* H2O* BB

15 15 32 1 211 2.14 8.97 35.97 28.14 3.17 

15 15 32 16 3376 1.07 5.37 14.05 24.59 2.37 

15 25 32 1 361 1.89 7.36 26.44 25.54 2.93 

15 25 32 16 5776 1.56 7.49 17.39 13.27 3.90 

15 45 32 1 661 1.63 6.04 20.38 22.88 2.68 

15 45 32 16 10576 1.22 7.28 18.51 8.51 2.80 
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A.4 Calibration and prediction performance of neural 

network architecture trained by MSE and POD loss 

Table A.4 presents the REC, REP, and RSD of P and ϕ with different neural 

network architectures trained by combined MSE loss and POD loss.

Table A.4 REC, REP, and RSD of neural networks 

trained with MSE+POD loss

�� �� �� �� RF
P ϕ

REC REP RSD REC RSD REP

2 3 32 1 4 12.26 10.42 11.45 4.30 3.69 4.37 

2 3 32 2 8 12.41 10.56 11.69 4.32 3.75 4.42 

2 3 32 4 16 12.11 10.48 11.80 4.36 3.84 4.39 

2 3 32 8 32 11.88 10.39 11.67 4.34 3.82 4.33 

2 3 32 16 64 11.60 10.27 11.62 4.17 3.80 4.36 

2 3 32 32 128 10.40 9.21 10.81 3.59 3.47 4.10 

2 7 32 1 12 11.87 10.32 11.75 4.31 3.76 4.41 

2 7 32 2 24 11.97 10.39 11.82 4.36 3.84 4.38 

2 7 32 4 48 11.84 10.25 11.66 4.37 3.90 4.38 

2 7 32 8 96 11.29 10.00 11.66 4.10 3.74 4.27 

2 7 32 16 192 10.04 9.02 10.67 3.45 3.39 3.98 

2 7 32 32 384 8.39 8.00 9.40 2.60 2.96 3.51 

2 15 32 1 28 11.69 10.23 11.71 4.30 3.81 4.38 

2 15 32 2 56 11.57 10.09 11.63 4.42 3.95 4.38 

2 15 32 4 112 11.12 9.69 11.30 4.09 3.69 4.20 

2 15 32 8 224 9.55 8.80 10.59 3.39 3.21 3.78 

2 15 32 16 448 7.97 7.86 9.27 2.60 2.96 3.56 

2 15 32 32 896 5.70 7.29 8.42 1.83 2.51 2.99 

2 25 32 1 48 11.61 10.14 11.69 4.36 3.87 4.41 

2 25 32 2 96 11.25 9.91 11.59 4.31 3.88 4.28 

2 25 32 4 192 10.09 8.84 10.45 3.69 3.46 3.97 

2 25 32 8 384 8.79 8.44 10.02 2.86 3.05 3.60 
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Table A.4 REC, REP, and RSD of neural networks 

trained with MSE+POD loss (Continued)

�� �� �� �� RF
P ϕ

REC REP RSD REC RSD REP

2 25 32 16 768 6.60 7.21 8.53 2.03 2.65 3.23 

2 25 32 32 1536 7.82 7.39 8.20 2.51 2.58 2.86 

2 45 32 1 88 11.26 9.86 11.41 4.27 3.80 4.28 

2 45 32 2 176 10.15 9.05 10.83 3.79 3.45 3.95 

2 45 32 4 352 8.74 8.16 9.81 3.05 3.04 3.53 

2 45 32 8 704 13.19 11.69 11.89 4.28 3.78 3.95 

2 45 32 16 1408 8.19 7.75 8.96 2.50 2.77 3.28 

2 45 32 32 2816 5.15 7.00 7.90 1.75 2.33 2.57 

3 3 32 1 6 11.85 10.27 11.53 4.27 3.71 4.39 

3 3 32 2 12 11.59 10.25 11.79 4.11 3.71 4.43 

3 3 32 4 24 11.32 10.16 11.80 4.03 3.81 4.46 

3 3 32 8 48 11.18 10.10 11.77 3.88 3.72 4.42 

3 3 32 16 96 10.24 9.40 11.23 3.56 3.53 4.19 

3 3 32 32 192 8.49 8.25 9.75 2.88 3.12 3.77 

3 7 32 1 18 11.38 10.16 11.77 4.01 3.75 4.42 

3 7 32 2 36 11.19 10.13 11.73 3.86 3.82 4.46 

3 7 32 4 72 10.58 9.75 11.47 3.65 3.74 4.35 

3 7 32 8 144 9.43 8.94 10.65 3.12 3.38 3.98 

3 7 32 16 288 8.11 7.75 9.03 2.45 2.86 3.45 

3 7 32 32 576 6.09 6.79 7.77 1.86 2.49 2.98 

3 15 32 1 42 11.04 10.08 11.82 3.63 3.86 4.51 

3 15 32 2 84 10.34 9.82 11.60 3.11 3.71 4.43 

3 15 32 4 168 8.82 8.61 10.28 2.73 3.30 3.96 

3 15 32 8 336 7.55 7.58 8.75 2.25 2.94 3.50 

3 15 32 16 672 5.66 6.47 7.46 1.56 2.19 2.66 

3 15 32 32 1344 3.60 5.47 6.42 1.07 1.81 2.10 

3 25 32 1 72 10.36 9.84 11.66 3.12 3.72 4.42 

3 25 32 2 144 9.01 9.03 10.64 2.69 3.46 4.13 

3 25 32 4 288 7.53 7.78 9.06 2.16 3.01 3.64 
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Table A.4 REC, REP, and RSD of neural networks 

trained with MSE+POD loss (Continued)

�� �� �� �� RF
P ϕ

REC REP RSD REC RSD REP

3 25 32 8 576 6.01 6.62 7.59 1.79 2.39 2.89 

3 25 32 16 1152 4.21 5.75 6.65 1.18 1.77 2.13 

3 25 32 32 2304 2.52 5.44 5.90 0.74 1.54 1.80 

3 45 32 1 132 8.88 9.28 11.01 2.35 3.69 4.45 

3 45 32 2 264 7.61 7.72 9.00 2.22 3.03 3.59 

3 45 32 4 528 6.27 6.60 7.53 1.90 2.36 2.78 

3 45 32 8 1056 4.40 5.93 6.79 1.22 1.72 2.04 

3 45 32 16 2112 2.90 4.91 5.64 0.83 1.43 1.69 

3 45 32 32 4224 2.13 4.16 4.94 0.64 1.66 1.92 

5 3 32 1 10 11.34 10.14 11.62 4.07 3.73 4.42 

5 3 32 2 20 11.31 10.14 11.70 3.83 3.75 4.47 

5 3 32 4 40 10.79 10.06 11.72 3.60 3.81 4.47 

5 3 32 8 80 9.91 9.50 11.30 3.26 3.56 4.24 

5 3 32 16 160 8.74 8.59 10.17 2.63 3.17 3.83 

5 3 32 32 320 7.42 7.53 8.68 2.01 2.65 3.20 

5 7 32 1 30 10.81 10.01 11.66 3.52 3.84 4.55 

5 7 32 2 60 10.08 9.73 11.52 3.13 3.82 4.52 

5 7 32 4 120 9.21 9.20 10.89 2.68 3.59 4.26 

5 7 32 8 240 7.63 7.91 9.11 2.06 3.01 3.62 

5 7 32 16 480 5.99 6.79 7.75 1.57 2.50 3.05 

5 7 32 32 960 4.09 5.98 6.87 1.04 1.78 2.09 

5 15 32 1 70 10.00 9.78 11.67 2.82 3.81 4.57 

5 15 32 2 140 8.35 9.05 10.76 2.07 3.65 4.39 

5 15 32 4 280 7.02 7.63 8.80 1.75 3.10 3.73 

5 15 32 8 560 5.73 6.47 7.24 1.43 2.37 2.77 

5 15 32 16 1120 5.32 6.33 7.32 1.79 1.92 2.27 

5 15 32 32 2240 2.11 5.29 6.03 0.45 1.37 1.41 

5 25 32 1 120 8.83 9.08 10.85 2.11 3.70 4.46 

5 25 32 2 240 7.25 7.87 9.04 1.66 3.24 3.89 
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Table A.4 REC, REP, and RSD of neural networks 

trained with MSE+POD loss (Continued)

�� �� �� �� RF
P ϕ

REC REP RSD REC RSD REP

5 25 32 4 480 5.71 6.51 7.43 1.35 2.48 2.92 

5 25 32 8 960 4.18 6.04 6.73 0.99 1.74 2.04 

5 25 32 16 1920 2.45 5.05 5.83 0.56 1.43 1.47 

5 25 32 32 3840 1.57 4.69 5.17 0.31 1.34 1.43 

5 45 32 1 220 7.49 8.26 9.38 1.81 3.31 3.97 

5 45 32 2 440 6.06 6.98 7.75 1.47 2.60 3.00 

5 45 32 4 880 4.59 6.08 6.72 1.13 1.63 1.87 

5 45 32 8 1760 2.69 5.08 5.89 0.62 1.46 1.47 

5 45 32 16 3520 1.90 4.65 5.18 0.35 1.38 1.39 

5 45 32 32 7040 1.37 4.74 5.18 0.31 1.74 1.91 

7 3 32 1 14 11.21 10.16 11.76 3.84 3.76 4.47 

7 3 32 2 28 10.90 10.13 11.75 3.49 3.87 4.59 

7 3 32 4 56 10.24 9.89 11.73 3.16 3.91 4.63 

7 3 32 8 112 9.21 9.11 10.80 2.63 3.53 4.22 

7 3 32 16 224 7.54 7.81 9.14 1.99 3.00 3.52 

7 3 32 32 448 5.96 6.80 7.57 1.57 2.30 2.76 

7 7 32 1 42 10.33 10.04 11.87 2.99 3.96 4.74 

7 7 32 2 84 9.53 9.75 11.60 2.43 3.92 4.71 

7 7 32 4 168 7.82 8.80 10.32 1.90 3.61 4.35 

7 7 32 8 336 6.54 7.42 8.65 1.50 2.82 3.38 

7 7 32 16 672 4.58 6.37 7.19 1.13 2.19 2.57 

7 7 32 32 1344 2.82 5.62 6.38 0.67 1.52 1.63 

7 15 32 1 98 8.94 9.41 11.13 2.16 3.95 4.73 

7 15 32 2 196 6.87 8.63 10.19 1.47 3.81 4.62 

7 15 32 4 392 5.85 7.46 8.56 1.25 2.92 3.51 

7 15 32 8 784 4.14 6.24 7.03 0.90 2.13 2.50 

7 15 32 16 1568 2.21 5.65 6.43 0.56 1.52 1.63 

7 15 32 32 3136 1.53 5.19 5.57 0.30 1.40 1.30 

7 25 32 1 168 7.53 8.62 10.29 1.66 3.70 4.45 
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Table A.4 REC, REP, and RSD of neural networks 

trained with MSE+POD loss (Continued)

�� �� �� �� RF
P ϕ

REC REP RSD REC RSD REP

7 25 32 2 336 5.96 7.62 8.81 1.24 3.05 3.66 

7 25 32 4 672 4.61 6.56 7.31 1.20 2.32 2.65 

7 25 32 8 1344 2.71 5.90 6.67 0.69 1.56 1.56 

7 25 32 16 2688 1.71 5.43 5.81 0.34 1.51 1.36 

7 25 32 32 5376 1.34 5.35 4.94 0.26 1.59 1.49 

7 45 32 1 308 7.40 7.47 8.45 2.06 2.64 2.99 

7 45 32 2 616 8.59 7.06 8.19 2.95 2.52 2.83 

7 45 32 4 1232 4.91 5.47 6.09 1.34 1.47 1.66 

7 45 32 8 2464 2.22 5.47 5.86 0.40 1.58 1.38 

7 45 32 16 4928 1.81 5.08 4.97 0.30 1.79 1.46 

7 45 32 32 9856 1.41 5.44 5.11 0.26 1.87 1.74 

11 3 32 1 22 10.57 10.18 11.90 3.08 3.91 4.73 

11 3 32 2 44 10.21 10.05 11.90 2.74 4.07 4.86 

11 3 32 4 88 9.10 9.77 11.67 2.39 3.79 4.59 

11 3 32 8 176 7.69 8.58 10.28 1.90 3.43 4.15 

11 3 32 16 352 6.15 7.50 8.49 1.45 2.62 3.08 

11 3 32 32 704 4.47 6.45 7.10 1.11 2.12 2.47 

11 7 32 1 66 8.87 10.02 11.96 1.85 4.19 5.11 

11 7 32 2 132 7.35 9.59 11.51 1.51 4.01 4.88 

11 7 32 4 264 5.89 8.29 9.82 1.24 3.60 4.42 

11 7 32 8 528 4.43 6.88 7.83 1.01 2.86 3.38 

11 7 32 16 1056 2.96 6.25 6.89 0.72 1.88 2.17 

11 7 32 32 2112 1.69 6.13 6.28 0.35 1.76 1.48 

11 15 32 1 154 6.77 9.10 10.91 1.58 4.05 4.86 

11 15 32 2 308 5.41 8.07 9.50 1.14 3.47 4.19 

11 15 32 4 616 3.82 7.02 7.80 0.92 2.84 3.37 

11 15 32 8 1232 2.33 6.36 6.78 0.56 1.76 1.97 

11 15 32 16 2464 1.52 6.18 6.18 0.32 1.77 1.44 

11 15 32 32 4928 1.45 6.06 4.95 0.30 1.85 1.43 
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Table A.4 REC, REP, and RSD of neural networks 

trained with MSE+POD loss (Continued)

�� �� �� �� RF
P ϕ

REC REP RSD REC RSD REP

11 25 32 1 264 6.07 7.73 9.01 1.46 3.29 3.91 

11 25 32 2 528 4.90 7.06 8.07 1.11 2.98 3.49 

11 25 32 4 1056 3.19 6.76 7.08 0.74 1.94 2.21 

11 25 32 8 2112 2.09 6.06 6.48 0.56 1.54 1.51 

11 25 32 16 4224 5.08 5.17 5.62 1.26 1.60 1.86 

11 25 32 32 8448 2.94 5.00 5.37 0.74 1.99 2.16 

11 45 32 1 484 8.42 7.89 8.74 2.55 2.56 2.81 

11 45 32 2 968 6.33 6.23 6.92 1.68 1.75 1.84 

11 45 32 4 1936 2.47 6.27 6.34 0.62 1.58 1.50 

11 45 32 8 3872 1.67 6.24 5.88 0.31 1.81 1.20 

11 45 32 16 7744 1.66 5.91 5.57 0.27 1.98 1.81 

11 45 32 32 15488 1.66 6.57 4.95 0.23 2.36 2.11 

15 3 32 1 30 10.10 10.18 11.93 2.72 3.96 4.78 

15 3 32 2 60 9.36 9.98 12.00 2.24 4.22 5.12 

15 3 32 4 120 8.17 9.59 11.42 2.01 3.89 4.70 

15 3 32 8 240 6.87 8.19 9.73 1.63 3.40 4.10 

15 3 32 16 480 5.07 7.20 7.95 1.31 2.65 3.12 

15 3 32 32 960 3.52 6.35 6.77 0.85 2.02 2.20 

15 7 32 1 90 7.67 9.97 12.12 1.42 4.36 5.23 

15 7 32 2 180 6.59 9.28 11.14 1.29 4.21 5.11 

15 7 32 4 360 7.13 7.72 9.02 1.81 2.87 3.32 

15 7 32 8 720 3.47 6.95 7.54 0.83 2.89 3.41 

15 7 32 16 1440 2.10 6.43 6.58 0.58 1.78 1.69 

15 7 32 32 2880 1.57 6.45 6.15 0.33 1.96 1.53 

15 15 32 1 210 4.77 9.41 11.30 0.99 4.32 5.28 

15 15 32 2 420 4.38 7.93 9.24 0.92 3.51 4.21 

15 15 32 4 840 2.92 6.98 7.45 0.75 2.71 3.06 

15 15 32 8 1680 2.85 6.55 6.45 0.57 1.70 1.69 

15 15 32 16 3360 3.68 5.12 5.59 0.69 1.50 1.53 
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Table A.4 REC, REP, and RSD of neural networks 

trained with MSE+POD loss (Concluded)

�� �� �� �� RF
P ϕ

REC REP RSD REC RSD REP

15 15 32 32 6720 1.85 6.17 5.43 0.38 1.74 1.82 

15 25 32 1 360 5.41 8.01 9.34 1.17 3.33 3.94 

15 25 32 2 720 3.14 7.40 7.96 0.80 3.21 3.67 

15 25 32 4 1440 4.56 6.02 6.43 1.23 1.44 1.64 

15 25 32 8 2880 2.04 6.69 6.24 0.39 1.84 1.47 

15 25 32 16 5760 1.77 6.36 5.32 0.26 2.20 1.52 

15 25 32 32 11520 1.95 7.18 5.58 0.28 2.37 2.02 

15 45 32 1 660 5.43 6.71 7.60 1.37 2.51 2.80 

15 45 32 2 1320 2.92 6.50 6.87 0.84 1.79 1.88 

15 45 32 4 2640 4.53 5.60 6.03 1.39 1.86 1.73 

15 45 32 8 5280 1.67 6.92 6.33 0.26 2.57 1.99 

15 45 32 16 10560 2.09 5.16 5.15 0.29 2.27 1.94 

15 45 32 32 21120 1.90 5.89 5.21 0.23 2.55 2.29 

28 15 32 1 392 7.35 8.51 9.60 1.93 3.57 4.18 

28 29 32 1 784 7.48 7.98 7.80 2.23 2.51 2.83 

28 45 32 1 1232 10.22 8.21 9.62 3.81 3.48 3.45 

28 57 32 1 1568 3.04 6.85 6.63 0.83 2.10 2.07 

28 115 32 1 3192 5.70 5.42 5.71 1.12 1.55 1.64 

56 15 32 1 784 8.53 7.94 8.75 3.31 3.00 3.36 

56 29 32 1 1568 10.28 9.00 9.26 2.80 2.95 3.14 

56 45 32 1 2464 11.23 8.78 8.16 3.19 2.88 3.24 

56 57 32 1 3136 11.04 9.00 6.80 2.27 2.11 2.19 

56 115 32 1 6384 23.11 15.86 7.55 11.28 9.24 2.43 

14 15 32 1 196 5.80 8.99 10.63 1.31 3.92 4.80 

7 29 32 1 196 7.03 8.71 10.12 1.63 3.65 4.32 

7 57 32 1 392 7.98 7.51 8.54 2.51 2.53 2.86 

7 113 32 1 784 6.58 6.20 6.61 1.98 2.00 1.92 

7 225 32 1 1568 6.15 5.60 5.54 1.44 1.53 1.59 

7 449 32 1 3136 4.04 4.15 4.42 0.64 1.24 1.13 
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ABSTRACT (KOREAN)

연소환경 진단을 위한 고속 및 고정확도

화염 자발광 분광법에 관한 연구

윤 태 근

서울대학교 대학원

기계항공공학부

최근 연소의 효율성, 안정성 및 성능을 유지하면서 환경 문제에 대응

하기 위해 많은 연소 기술이 개발되었다. 이러한 기술이 적용된 연소기

를 최적으로 작동하기 위해 연소기 내부 화학 반응 영역의 가스 특성은

빠르고 정확하게 감시되고 즉각적으로 제어되어야 한다. 가스 특성을 측

정하기 위해 화염 자발광 분광신호를 사용하는 화염 방출 분광법(FES, 

Flame Emission Spectroscopy)은 실시간으로 정확한 가스 특성 측정을 제공

할 수 있는 기법의 하나다. 이는 화염 방출 분광법이 자발광을 이용한

비침입식 광학 측정으로 정확도가 높으며 광 검출 장비만을 사용하는 실

험 특성으로 인해 고속 측정이 가능하기 때문이다. 그러나 정보 수집 속

도를 높이기 위해 광 검출 장치의 노출 시간이 짧아짐에 따라, 화염의
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자발광 분광신호의 신호 대 잡음비(SNR, Signal to Noise Ratio)가 낮아지고

FES 측정의 정확도가 감소한다. 그 뿐만 아니라 신호 대 잡음비가 높은

신호 수집이 가능하여도, 자발광으로 가스 특성을 직접 예측하는 것은

화학 발광의 완전한 화학 반응 경로 모델링이 요구되어 어렵다. 이에 따

라 분광 신호로부터 가스 특성을 예측하는 것은 자발광과 가스 특성을

상호 연관시키는 보정 절차(Calibration process)에 의해 달성된다. 기존의

방법은 들뜬 상태인 화학종의 분광신호 면적 비율과 같은 국부적인 분광

신호 특징을 추출하고, 이 특징의 변화를 가스 특성과 연관 지어 일대일

보정 곡선을 이용한다. 그렇지만 분광신호 특징의 변화가 항상 단조로운

것은 아니므로 보정 프로세스가 간단하지 않다.

본 논문에서는 화염 방출 분광법을 이용한 가스 특성 예측의 시간 분

해능과 정확도를 개선하기 위한 체계를 제안하였다. 1) 합성곱 신경망

(CNN, Convolutional Neural Network) 구조에 기반한 신호 처리와 2) 적합

직교 분해(POD, Proper Orthogonal Decomposition) 및 크리깅 기법(Kriging 

Method)을 포함한 차수 축소 모델(ROM, Reduced Order Model) 보정을 결

합한 데이터 기반 보정 체계 기법이다. 분광신호의 적합 직교 분해 기저

를 포함한 손실 함수 및 잡음이 있는 데이터와 깨끗한 신호의 데이터 쌍

으로 학습되는 딥 러닝 신경망은 정보 손실을 최소화하면서 신호 대 잡

음비를 향상할 수 있다. 처리된 화염 분광신호를 가스 특성에 높은 연관
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성을 가지는 분광신호의 직교 적합 분해 기저의 계수로 차수를 축소하고, 

이 계수로 크리깅 모델을 활용하여 가스 특성 예측을 하였다. 결과적으

로 제안된 보정 체계는 짧은 노출 시간을 가지는 신호를 사용하여 압력

및 연료 당량비 같은 다중 가스 특성의 예측 정확도를 향상할 수 있다.

제안된 새로운 기법을 실제 고압 메탄-공기 화염 신호에 적용하여, 고

정확도 감지기로 측정된 실험값과 비교 및 제안된 기법의 정확도 및 정

밀도를 분석하였다. 압력 및 연료 당량비의 특성 예측 정확도 및 정밀도

는 임의의 실시간 측정을 나타내는 평가 분광 데이터(보정 체계 학습에

사용되지 않음)의 가스 특성 예측 평균 상대 오차(REP, average Relative 

Errors of Prediction) 및 평균 상대 표준 편차(RSD, average Relative Standard 

deviation)를 사용하여 정량화되었다. 제안된 방법은 메탄-공기 화염의 당

량비(0.8 – 1.2)와 압력(1 – 10 bar)의 넓은 시험 범위에서 짧은 노출 시간

(0.05, 0.2, 0.4 초)의 화염 자발광 신호를 이용하여 연소 조건의 가스 특성

을 정확하게 예측하였다. 이를 통해 제안된 체계가 높은 정확도와 높은

시간 분해능의 화염 방출 분광법을 가능하게 할 수 있음을 확인하였다.

주요어: 연소환경 진단, 화염자발광, 화염 방출 분광법, 합성곱 신경망, 적

합 직교 분해
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