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Abstract

A Study on Diagnosis of Bearings in Incipient Fault
Stage Considering Vibration Generation Mechanisms

Keunsu Kim

Department of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

The failure of rolling element bearings is a common fault in rotating machines. These
failures can have catastrophic consequences, including fatal injuries and significant
financial losses. To mitigate these risks, researchers have explored various ways to
detect and prevent bearing failures as early as possible. One promising approach is
the use of condition monitoring data; in this approach, vibration data has been found
to be particularly effective for identifying and preventing potential failures. However,
the use of vibration signals to diagnose bearings at the incipient fault stage is a
challenging task, in part due to the gap between the controlled conditions under
which research data is often generated and the actual field conditions in which these
bearings operate. In particular, fault-related signals are weak and nonstationary;
further, they are usually obscured by noise that arises from environmental factors.
Additionally, these signals may be complicated or modulated, making them difficult
to discern. To properly address these research issues, this dissertation aims at

advancing two research thrusts focused on developing techniques for modeling and



analyzing vibration signals based on physical phenomena.

In Research Thrust 1, a quasi-periodic impulse train model with an impact force
function is suggested to brtidge the gap between theory and reality. In this research,
a pseudo second-order cyclostationary signal is modeled using the quasi-periodic
impulse train model. In order to simulate the dynamic response of a system,
considering the physical behaviors in bearings, the impact force function that reflects
the change in contact stress is used. Finally, the proposed model is validated by
performing signal processing on the synthesized signal, including simulation of the
proposed model. The result confirm that an appropriate preprocessing process is
essential to diagnose bearing failure at the incipient failure stage, further, that finding
the frequency band that contains the failure information is essential for performance

improvement.

In Research Thrust 2, a new feature extraction method is proposed for bearing
diagnosis using vibration signals, namely the linear power normalized cepstral
coefficients (LPNCC). The proposed approach is designed to enhance the bearing
signal, which is buried in noise that arises from environmental effects, and which
contains mechanical phenomena. The proposed method consists of two sequentially
executed steps: 1) extraction of the LPNCC and 2) demodulation analysis that is
performed by examining the squared envelope spectra (SES). Combined, this
approach is called LPNCC-SES. The performance of the proposed method is
examined by applying it to both simulation data and experimental cases. The results
show a high level of accuracy and robustness in the diagnostic capabilities of the

method, making it suitable for use in maintenance and diagnostic routines.
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Introduction

1.1 Motivation

Rolling element bearings (REBs) are critical components of an engineering system;
REBs, support loads and reduce the friction between moving parts. The failure of
any individual bearing can be a significant contributor to the decline in the
performance of the system and can even lead to a complete breakdown. To enhance
the safety of system operation and prevent a system’s performance from
deteriorating and/or failing due to a bearing defect, it is necessary to monitor the
degradation process of bearings in a timely and effective manner. Also, early and
accurate warning of bearing failure conditions is important to determine a desired
maintenance strategy, even if the duration of any particular anomaly states can range
from a few hours to several months depending on various sources, i.e., applications,

operating conditions, and failure threshold [1-3].

Based on prior research, condition monitoring (CM) techniques have been
applied to measure defects and track the degradation of REBs in various ways.
Among various condition monitoring techniques, vibration-based approaches have

been widely adopted due to their effectiveness in detecting abnormal vibrations that



can indicate underlying physical phenomena. These techniques have become a
common choice for identifying potential issues and maintaining the operational
efficiency of various systems [4-9]. For this reason, numerous technologies related
to bearing failure diagnosis and prognosis using vibration signals have been
developed and related papers have been published [5,9-14]. However, for several
reasons, the use of vibration signals for CM remains a difficult task. First, bearing
vibration signals are nonstationary, with statistical properties that are periodically
time-varying; this implies second-order cyclostationarity [15]. Second, a fault signal
is typically weak in its early stages, and fault information is usually masked by strong
background noise [16]. In general, an operational noise is assumed to be a random
white noise with a broadband spectrum [17]. Further, fault signals are often masked
by discrete frequency noises from external components, (e.g., gears, shafts, and
motors) [5]. In addition, vibration signals may show characteristics of amplitude
modulation (AM), where the natural frequency of a bearing defect is linked to the
resonant frequency of the system structure. For accurate monitoring, the optimal
bandwidth must also be chosen to demodulate the high frequency resonant responses
associated with the envelope analysis [5]. Consequently, it is necessary to thoroughly
understand and address these many kinds of characteristics of fault signals of REBs

for effective diagnosis at the incipient fault stage.



1.2 Research Scope and Overview

This doctoral dissertation aims to create a comprehensive approach to modeling and
analyzing vibration signals for effective diagnosis of incipient faults in REBs. To
achieve this goal, two research thrusts were identified as the focus of this dissertation
research: (1) the development of a practical signal model to accurately describe the
physical behaviors of nonstationary bearing signals, and (2) the extraction and
demodulation of fault-related features using cepstral coefficients to enhance the
diagnostic information available in the raw signal. These research thrusts are

described in detail below.

Research Thrust 1: Construction a practical signal model to explain physical

behaviors

The first research thrust explores a signal model that combines the advantages of
both an analytical signal model and a dynamic model. Since signals acquired in
actual field settings are complex and the signals originating from various sources are
combined, simulations that reproduce these inherent mechanisms through signal
models have been often used in prior research [18-21]. From a signal processing
point of view, analytic signal models are preferred over full dynamic simulations
because, despite their approximation, the analytical results can directly interpret the
influence of stochastic parameters on the bearing signal [22]. However, existing
analytical models have a problem in that simulation results and actual measurement

data do not match because the impulse function is modeled in a simple manner,



without considering the dynamic behavior at the time of impact. Thus in this study,
the impact excitation mechanism based on Hertzian contact theory is implemented
to reduce the gap between the simulated signal and the real signal. In this research
thrust, preprocessing analysis is presented for a simulated bearing signal that is
synthesized with other sources (i.e., a deterministic signal from a gear, a sinusoidal
inference from a rotating shaft and white noise) to validate characteristics of the

simulated results.

Research Thrust 2: Feature extraction and demodulation analysis by enhancing

the fault-related information through cepstral coefficients

In practice, many sounds and vibrations are masked by background signals in nature;
this reflects the operating conditions and environmental effects of the signal’s source.
In order to solve this limitation, Kim et al. [23] presented a new feature extraction
algorithm called the power normalized cepstral coefficients (PNCC) approach; this
method offers auditory physiological modeling for robust speech recognition in
noisy environments. Inspired by this idea, this dissertation describes a new feature
extraction method for REB diagnosis using vibration signals, namely the linear
power normalized cepstral coefficients (LPNCC) approach. The proposed approach
intends to enhance the REB signal, which is buried in noise that arises from
environmental effects and contains some mechanical phenomena (e.g., mechanical
looseness, misalignment). LPNCC can be used for analysis as a reconstructed time
signal with the cyclic spectral component emphasized. Therefore, in this study,

LPNCC of each channel is regarded as a filtered time signal. Then, demodulation



analysis can be perfomed by examining the squared envelope spectrum (SES);
together, this overall procedure provides the LPNCC-SES. Through the LPNCC-
SES, it is possible to see as a whole whether each channel divided by the filterbank

and the cyclic frequency in the frequency domain is well represented

1.3 Dissertation Layout

This dissertation is organized as follows. Chapter 2 provides the technical
background and literature reviews related to vibration-based REB diagnosis. In
Chapter 3, a quasi-periodic impulse train model with an impact force function is
derived. To validate proposed signal model, a representative study is presented.
Chapter 4 introduces the proposed feature extraction method, which is called linear
power-normalized cepstral coefficients (LPNCC); this chapter also presents the
proposed fault diagnosis method by implementing LPNCC to the squared envelope
spectrum (SES), for both simulation data and experimental data. Finally, Chapter 5
summarizes the dissertation and presents the conclusions, along with suggestions for

future research.



Technical Background
and Literature Review

This chapter provides an overview of vibration-based diagnosis for rolling element
bearings (REBS), including the basic knowledge of REBs, the characteristics of
bearing vibration signals, and the various techniques used for REB diagnosis. As
there have been numerous studies on bearing diagnosis using vibration analysis
techniques, the purpose of this chapter is to provide a brief overview of the relevant

literature.

2.1 Vibration Signals of Bearing Faults

2.1.1 Rolling Element Bearings

Rolling element bearings (REBS) are a type of mechanical component that utilize
rolling elements, such as balls or rollers, to reduce friction and enable motion
between two bodies. This allows for smooth and efficient movement with minimal
wear and tear on the bearing itself. REBs are used in a wide range of applications

and are available in various designs to suit different needs [24]. There are several



types of REBs, each designed and used for a specific application and load, with
specific advantages and disadvantages. In general, REBs consist of the following
basic elements, which are the inner/outer races, the rolling elements, and the cage

(or retainer) as shown in Figure 2-1.

2.1.2 Failure of Rolling Element Bearings

Bearings failures can be classified according to the severity of the failure, with
categories including local, extended, and distributed failures [25-27]. It is common
for multiple mechanisms to contribute to rolling bearing failure in practice. If the
fault is not found early and the bearing is extensively damaged, the evidence is lost
and this makes it challenging to identify the root cause. Analysis of the cause of
failure is essential for repair and prevention of serious failures in the future. For this
reason, industry and academia have standardized failures according to failure modes
and mechanisms of rolling bearing [28]. Material fatigue is the most common failure
mode for a REB that has been properly installed and operated [29], specifically
rolling contact fatigue (RCF) from repeated Hertzian contact pressure between
rolling elements and race way. For well-lubricated and properly manufactured
bearings, the surface of the metal used in the bearing is strong enough to withstand
friction and impact. Therefore, by repeated shear stress rather than tensile force
applied to the surface, cracks are formed in an elasto-plastic zone which locate below
the surface [24,30]. Once an incipient fault is generated by material fatigue, rolling

contact wear is the most frequently seen phenomenon [29].



2.1.3 Bearing Fault Signature and Its Frequencies

During the performance degradation due to wear evolves, the dynamic responses of
a surface are generated by topographical changes [31-34]. Thus, we can regard
features from vibration measurement as a dynamic response which is bearing health-
related index. Consequently, we can make a scenario of whole life of REBs as shown
in Figure 2-2 [35]. At the normal state, condition monitored indexes are settled down
to flat region after the running-in stage. This steady state takes up most of the lifetime
and CM indexes begin to rise sharply when initial defects occur. Anomaly state can
be regarded from the point when CM indexes rising can be detected until it reaches

to the predetermined failure threshold.

When a rolling element comes across a defect, it may result in a shock that
triggers high-frequency vibrations in the structure [36—-38]. These resonances can be
detected through vibration analysis and used to identify potential issues with the
bearing. Monitoring the vibration characteristics of a system can help to identify
changes that may indicate the presence of a defect or other issue. More specifically,
the state can be classified into four stages according to the surface state and the
resulting vibration characteristics, which can be more clearly classified through
frequency analysis. The four basic bearing characteristic frequencies (BCFs) and
their calculation shown in Figure 2-3. The BCFs of a bearing are determined by
factors including the shape and dimensions of the bearing, the location of any faults,
and the operating conditions. Many bearing fault diagnosis techniques aim at
detecting these frequencies from measured vibration signals. Figure 2-4 shows the
relationship between bearing vibration signal spectrum and characteristic frequency

according to the degree of failure. A detailed explanation of each stage is as follows:



Stage I: This stage is considered normal state, even small pits or surface impurities
of the bearing race appears. During this phase, low frequency rotational frequencies
are predominantly observed in Zone 1. Peaks due to fine cracks or impurities on the
surface are observed in the ultrasonic range above 10 kHz (Zone 4), but most of them
are considered normal. A physical examination of the bearing at this point may not

reveal any visible flaws or defects.

Stage Il: Stage II begins as the bearing defect starts to “ring” the bearing part,
producing a signal related to the natural resonant frequency which regarded as
“carrier frequency”. Noticeable increases in zone 3 and 4 regional signals are
associated with this stage. Success in diagnosing bearing defects in inciepient stage
depends on finding the frequency band including the natural frequency of zone 3 and
detecting the demodulated bearing characteristic frequency through the envelope

method.

Stage I11: The size of the defect has grown to a level that can be confirmed with the
naked eye after disassembly. The spectrum of the linear scale clearly shows the BCFs
in zone 2 and its harmonics and sidebands, and the noise level of the vibration

spectrum has increased significantly.

Stage 1V: At this stage, immediate bearing replacement is required. Abnormal sound
and vibration can be detected without additional measuring equipment. The defects
are distributed on the inner/outer race and rolling elements, and the spectral level

increases in a wide range.



2.2 Vibration Techniques for Bearing Incipient Fault
Diagnosis

2.2.1  Overview of Vibration Techniques for Bearings

As a key component in engineering systems, REBs play a crucial role in supporting
loads and mitigating friction between moving parts. For the centuries, engineers have
considerably taken care of designing, installing, and operating REB to make
engineering system performs well. Especially in operation, condition monitoring
(CM) techniques have been widely applied to measure the defects and trail the
degradation of REB in various ways, i.e., vibration, acoustic emission, temperature,
and wear debris analysis. Thanks to its physical meaning and ease of use, the
vibration-based approach is the most popularly utilized method among these
techniques [4]. A number of admirable review articles are possible that have
addressed the state-of-the-art of the related techniques, among which some
representative ones are given in [6,10,12-14,26,39-42]. In particular, a systematic
framework of fault diagnosis and prognosis has been presented for mechanical
systems in [1,39,42-44]. Through this, the structure of vibration-based fault
diagnosis for REBs in incipient stage can be organized by key techniques include
vibration modeling, preprocessing, feature extraction, and fault diagnosis, as

depicted in Figure 2-5.

Vibration Modeling

Modeling the vibration signals of normal and faulty bearings can provide valuable
insights for diagnosis and is often used to develop and evaluate diagnostic techniques.
Simulating faulty bearing signals can also help to better understand the mechanisms

by which they are generated, particularly in cases where the response exhibits non-

10



linearity. The development of models for bearing defect signals has been the subject
of extensive research, as these models can be used to assess the performance of
various diagnostic approaches. Overall, the ability to accurately model faulty bearing
signals can be a valuable resource for improving the effectiveness of bearing
diagnosis. Bearing signal models for the incipient fault stage can be classified into
these categories; periodic/quasi-periodic impulse-train models [19,21,22,45-47],
nonlinear multi-body dynamic models [26,36,48-52], and finite element models

[18,53-57].

Preprocessing

In the initial stage of a defect, weak bearing signals are frequently concealed by
background noises. Also, bearing vibration signals are basically blinded in that all
the various components that make up the signal, i.e. the different sources and
different transmission paths from each signal starting point to the measurement point
[58]. Therefore, it is necessary to increase the signal-to-noise ratio (SNR) of the
defect signal signatures of bearing by removing noise and separating/enhancing the
bearing related signal from raw signals. One of the most famous and widely used
method is wavelet denoising developed by Donoho [59]. However, wavelet
denoising is difficult to isolate a stochastic bearing signal when there is a
deterministic periodic vibration source such as a gear or shaft. Furthermore, the
stochastic nature of the bearing signal brings about it harsh to detect a fault-related
signature from signals in incipient bearing fault stage. Therefore, signal separation
methods such as autoregressive filtering (AR), self-adaptive noise reduction (SANC),
time-synchronous averaging (TSA), or discrete/via random separation (DRS) can be

applied here [5]. Recently, cepstrum-based methods have gained popularity because

11



they are simple to use, do not need any extra input parameters or adjustments, and

work well in real-world situation. [60,61].

Feature Extraction & Fault Diagnosis

An fault diagnosis of bearings is composed of feature extraction and fault diagnosis
(identification, classification) or their combination. Broadly, methods are classified
into model-based techniques including statistical analysis and signal processing, and

data-driven techniques encompassing machine learning techniques [1,13,43,62].

By the advantages of vibration analysis, various feature extracting techniques
have been developed for several decades. There is no one definitive way to classify
feature extraction methods used for diagnosis and prognosis, but Yan, Qiu, and lyer
[63] proposed a taxonomy of vibration-based feature extraction method. Recently,
H. Zhou et al. [64] categorized feature extracting techniques into three categories:
statistical parameter-based, signal processing-based, and machine learning-based.

Additionally, some studies have utilized a combination or hybrid of these approaches.

Basically, most bearing fault diagnostic methods aim to detect fault
characteristic frequencies. This means finding the BCFs in the spectrum
corresponding to the fault position (inner/outer race, rolling elements, cage).
Traditional frequency analysis methods are difficult to extract BCFs accurately.
However, demodulation analysis allows the extraction of time-domain signal
waveforms envelope traces [5,37]. It is possible to extract envelope signals
containing only fault characteristic frequency components that carry high-frequency
intrinsic vibration. It is possible to perform a detailed spectral analysis of the

envelope signal.
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Furthermore, failure detection and identification of data-driven approaches are
classification algorithms based on clustering algorithms. Often, this process includes
both feature extraction and diagnosis. Common classification algorithms include, the
Support Vector Machine (SVM) [65-67], the fuzzy—logic [68-70], the Artificial
Neural Network (ANN) [71], and the K-Nearest Neighbor Algorithm (KNN) [72].
Among these techniques, SVMs and ANNs are the most widely used in the field of
incipient fault diagnosis. In the last few years, deep learning approaches have gained
popularity for their superior performance compared to SVMs, ANNSs, and other

shallow intelligent models [1,39,73,74].

2.2.2  Cepstrum-Based Fault Diagnosis Techniques

One promising approach to separate the bearing signal from the original signal and
to enhance fault-related harmonics or sidebands with consideration of
cyclostationarity is to use the cepstrum. The envelope analysis can then be applied
to the signal processed through cepstrum analysis to determine the bearing
characteristic frequency. Randall [75] presented applicability of the cepstrum in
mechanical problems. Two main areas of applicability were introduced, 1) detecting
families of harmonics and sidebands and 2) blind separation of the source and
transfer function effects. Peeters et al. [60] compared two cepstral editing methods,
specifically, an automated cepstrum editing procedure (ACEP) and cepstrum pre-
whitening (CPW). It was determined that the ACEP outperforms the CPW for low
signal-to-noise ratio (SNR) values with additive white Gaussian noises, while the
CPW outperforms the ACEP for low SNR values with additional noise resonance.

Moshrefzadeh et al.[61] proposed the generalized CPW by adjusting the magnitude

13



order in the CPW, so called spectral amplitude modulation (SAM). The SAM was
found to show good performances by giving different weights to different frequency
components. Recently, Kim et al. [76] proposed the cepstrum-assisted empirical
wavelet transform (CEWT) method, which improves the boundary selection of the
empirical wavelet filters to include sideband clusters around gear mesh harmonics

based on the spectrum.

14 Al =T



Outer race

Cage (retainer)
Inner race

Rolling element

Figure 2-1 Rolling element bearing components

15 o A



[
L

o Failure
Incipient

fault
diagnosis

N

Condition monitoring index

A J

Stage | Stage | Stage lli Stage IV

Running-inand  Damage Damage Failure
steady-state initiation propagation

@ @ ® @

N— Surface defect Crack Growth Spalling (local fault) Spalling(extended fault

(— Subsurface defect

Figure 2-2 A descriptive four-stage degradation model for REBs.

1 s A& st



(@)

High-frequency signal

High-frequency signal

1
BPFO

JUUUUULL

High-frequency signal

Envelope Signal Envelope Signal
A
?
C !
P o fimer(1+Dy/ D), c05(00)
BPFI 2
Pitel f nbﬁt!r:ez'(l'Db/Dp COS((X))
itch =
Simner diameter BPFO 2
Shaft - D,
f;'nner( 1 _Db/Dp COS(O())
Jrr =
2
f _ f;'tllle;' Db/Dp( 1 '(Db/Dp COS(Q))Z)
7;, : number of rolling element D, JBSF 2
Ball diameter

Figure 2-3 (a) Typical vibration signals generated by local faults [77] (b) bearing

characteristic frequencies [78]

17 % xﬂ 3 1_'_” '{J} T



Zonel Zone 2 Zone 3 Zoned

Stage | - Normal

‘z
(Y]
ol &=
2] x&=
H— —'X&
el
q m
| |I||||| o
Frequency [Hz]
AE
(Y]
z|zz ]
2| 2%z £ %
= —
el % S
< o ‘
| ol b .
Stage Il — Extended N Frequency [Hz]
s —— -
2.1 mm = vyl e
3 % =R &&E&&
3 Xm MO O M X
= e © NP
= X pd A Il ++
= AR B0 pE mm
< ” N | S| &EE
| m | I I | || ||| 1 1
Frequency [Hz]
Az
(Y]
=l =
£l x&=
Ell=z
[=% X od
1] x
L

Frequency [Hz]

Figure 2-4 Four stages of the vibration spectrum depending on bearing fault

growth

O
18 r -":rx—\| 'l' 1__



Vibration Signal

D,

Pre-processing

Pro +
ement

ing, signal sep

Wavelet denoising, Cepstral pre-whitening, Discrete/random separation,
Adaptive noise cancellation

T Primary Input
0 “.\‘_. (Bewring+Gex) + Output
iy (Bearing)
—
gt
Loun 25 ypgee

Vibration models Experimental

Quasi-periodic impuise-train models data
Noriinear mui-body dynarmic models
ey
o O
hit) Simulated
—,.L, data

d() - hity
ol g

Figure 2-5

Feature Extraction

Fault Diagnosis

ﬂnodel-based \

Statistical feature, Short-ime: Fourier ransform
Emypirical mode decomposition,
Cepstral analysis , Spectral kurlosis

Wavelettransform
Time ':Dq:j: %::uem‘-y
domain domain

Data-driven
Support vector machine
Principal component analysis
Domain adaptation

Input |

Vibration

Image

Al
Methods

ﬂlodel-based

\

Squared envelope spectrum
Spectral coherence
Cycic companent analysis

Bearing defect
frequency

Pre-defined
Threshold

Magnitude

Frequency [Hz]

Data-driven
Support vector data description
‘Convolution neural network
Generative adversarial network

19

Overview of vibration analysis techniques for bearing diagnosis



Quasi Periodic Impulse Train
Model with Impact Force Function

This section presents a quasi-periodic impulse train model with impact force function
to better understand the complex, non-stationary vibration signals emitted by rolling
element bearings with incipient fault. This model aims to bridge the gap between
theoretical models and real-world data, providing a useful reference signal for
diagnosis and analysis. The pseudo second-order cyclostationary signal is modeled
using the quasi-periodic impulse train model, which aims to simulate the dynamic
response of a system concerning the size of the defect and operating conditions by
incorporating the impact force function, which reflects the change in contact stress.
Finally, the proposed model is verified by performing signal processing of the

synthesized signal including the simulation of the above model.
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3.1 Vibration Modelling of Bearing Fault

3.1.1 General Mathematical Model

If a defect occurs in the bearing, it can cause a periodic impulse that can be observed
using a vibration transducer. This impulse signal is carried by the resonant frequency
which is determined by both the bearing and the machine [19] as shown as a
schematic diagram in Figure 3-2. The displacement response x(t) measured by the
transducer can be derived by convolution with the impulse response and the impulse
response function h(t). Further, the impulse response is expressed as the product of

the impulse function d(t) and excitation force function f(t) as follows mathematically;

X(t) =[d(t) f (O] *h(t) (3.1)

The impulse function d(t) with amplitude do and impulse period Tg is

represented mathematically by the equation
dt)=dy Y, 5(t-kT,) (3.2)

As previously stated, the impulse response function h(t) is determined
according to the position of the transducer and the transmission path of the signal.
Theoretically, the signal can be modeled as above, but in an actual mechanical
system, especially a rotating body system, the equation must be changed in
consideration of the physical behavior. The characteristics to be considered and the

corresponding formulas will be explained in detail below.
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3.1.2  Quasi-periodic Model with Cyclostationary

Vibration signals can be broadly categorized as deterministic and random
(stochastic). To be more specific, deterministic signals can be divided into periodic
and non-periodic, while random signals can be categorized as stationary or non-
stationary. Especially, non-stationary signals that show some cyclical behavior,
despite not necessarily being periodic, are referred to as cyclostationary signals.

These signals are often produced by hidden periodic mechanisms. [79-81].

In the presence of incipient fault such as pit or spall, vibration signals from
REBs exhibit pseudo second-order cyclostationarity due to the uncertainties of REBS’
nature such as slippage of the rolling elements/cage, speed fluctuations, variations
of the directional load ratio and waviness of contact surface [22] as shown in Figure
3-1. This characteristic is highly indicative when the initial defect occurs and can be

used for diagnostic purposes [15].

Attempts proposing to treat the bearing signals as cyclostationary have been fully
agreed upon with the cyclostationary model effectively accounting for the need for
envelope analysis [16,22,79,81-83]. Especially, Randall et al. [81] discovered that
imprecise time interval of the bearing pulses, also known as "jitter," can disrupt the
periodicity of the signal which makes bearing signals appear blurry in the signal
spectrum. As a result, the cyclostationary model has become a popular choice for
developing new diagnostic techniques for bearings. The cyclostationary model takes
into account the non-stationary nature of REB’s signal and this model can effectively
capture the cyclical behavior that may be obscured by jitter [79], as well as being
used extensively as a reference to bring existing bearing fault indicators into the

framework of cyclostationary. Following these studies, Borghesani et al. [22]
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recently organized the existing cyclostationary models for bearing failure, proposed
a mixed model, and analyzed the effects. Thus, Equation 3.2 above can be modeled

stochastically as
dt)= "> dyo(t—kT, - 7,) (3.3)

k=—0

As shown in Figure 3, the jitter that causes cyclostationary can be modeled as a
Gaussian distribution or time delay T, and pseudo cyclostationarity is implemented
by modeling the interval between impulses AT, due to the delay of the entire cage

as a Gaussian distribution As a result, by combining the two models, a more realistic

bearing signal can be simulated through the mixed model.

3.1.3 Excitation Force Function in Dynamic Models

As mentioned earlier in this chapter, excitation due to a defect can be modeled by
Equation (3.1 as the product of the impulse function d(t) and excitation force
function f(t). Depending on how the excitation force function is designed, the results
of the vibration response also appear different. Therefore, Tandon and Choudhury
[4] suggested that the shape of the pulse affects the spectrum by modeling the
excitation force function in different pulse formats. Also, Behzad et al. proposed a
stochastic model that assumes the randomness of the contact surface between the
rolling elements and races makes the vibration excitation [46]. With the evidence
that the excitation force function is caused by the change in contact stress around the
defect, the excitation force function can be modeled as Hertzian contact force

function. However, the above models describe the characteristics of the vibration
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signature of the faulty bearing but does not incorporate the system's physical

properties dynamically into the given model.

In studies of dynamic models, the vibration response has been calculated by
equations of motion according to the change in Hertzian contact stress. The
displacement can be calculated according to the following governing equations [84]
(Figure 3-3). Assuming that the inner and outer races are firmly fixed, each can be
regarded rigid. The motion of inner (shaft) and outer race (housing) are modeled as
a 2-DOF system with translational motion in x and y directions. Then, the equations

of motion of inner race can be denoted as

M., +C.x, + KX, =—F, (3.4)

Msys+csys+Ksys:_Fy_Msg (35)

and, in a similar way , the equations of motion of outer race can be presented as

M, X, +C. %, + Kyx, = F, (3.6)

M, ¥, +C. ¥, + Ky, =F, —M,g (3.7

where My and Ms are mass of the housing with outer race (pedestal mass) and the
shaft with inner race, C and Cs are damping coefficients and Ky and K; are stiffness
constant of the housing and the shaft, respectively. x» and y» are x and y displacements
of outer race center of mass (also geometric center), xs and ys are x and y
displacements of inner race center of mass and g is acceleration due to gravity. Fx
and Fy is Hertzian contact forces [24] of each x and y directions (Figure 3-3) are

defined as
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z n

F = szj:lﬁjaj cos ¢, (3.8)
z n o

F = szj:1)“15j sing, (3.9)

where Ky is contact stiffness coefficient and A is load distribution factor with a value
of 0 or 1, Z is the number of rolling elements, ¢; is the angle of j-th rolling
element’s position, and n is load-deformation exponent constant. Deformation of

surfaces due to the Hertzian contact between the j-th ball and race defined as

;= (X —x,)cosg; +(y, —y,)sing; +cl/2 (3.10)
where cl is clearance of bearing.

If a defect occurs, the rolling path of ball will differ from the normal path as it
rolls into and out of the defective area, as shown in Figure 3-4. For the purpose of
accurate modeling the rolling path and the effect of the defect depth (H) on the
displacement, the defect depth must be included in the model. This helps to better
understand the physical processes involved and improve the realism of the model.
As a result, Eq. (3.8) can be modified with time-varying displacement impulse H(t)

which represents the displacement change by the defect as follows.

S; = (X —X,)cosg; + (Y, — y,)sing; +cl/ 2+ H(t) (3.11)

However, since the most dynamic models of interest is the change in contact
stiffness and contact stress according to mechanical and kinematic characteristics,
signal processing and diagnosis have yet to be focused on. Therefore, in this study,
the contact stress function is implemented to the impulse model proposed to facilitate

the signal processing technique. More details are provided in the next chapter.
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3.2 Quasi Period Impulse Model with Impact Function

3.2.1  Overall Process of Proposed Model

The proposed vibration model is based on a stochastic model of the quasi-periodic
impulse time and an excitation force function of the Hertzian contact theory around
the defect. The stochastic model was set up as a psuedo second order cyclostationary
according to [22,47]. The modeling of the Excitation force function followed the
study of [85,86] considering the rolling body rolling and impact around the defect.

As shown in Figure 3-5, a brief description of its formulation is given here.

The proposed model is delivered by modifying each function in Equation 3.1.
First, the excitation force function, f(t), is constructed in the contact area between
rolling elements and races around the defect as a function from the Hertzian contact
theory. Derivation of the excitation force function is covered in more detail in the
section below. Second, the transfer function h(t) is modelled as 1-DOF damped

model with excitation derived as

X(t) + 260, X(t) + @,7 = my " f (t) (3.12)

and its transfer function is

1 . o, 3
h(t) = wn(l_gz)sm[Zn (1—§Z)tjeXp( o t) (3.13)

where merr, C, cn are, respectively, the effective mass, damping and natural frequency

coefficients.
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3.2.2 Modeling the Excitation Force

The determination of the excitation force is primarily based on the shape of the defect
and the speed of the rolling element. As the rolling element moves, the area of
contact moves along with it. If a defect is present, no matter its size, it disrupts the
normal movement of the contact area, resulting in stimuli to the bearings and

surrounding systems in various forms.

The excitation force function is derived mathematically by making the
following assumptions [85]: (a) Rolling elements experience pure rolling motion, (b)
bearing components are rigid with the exception of the contact area, (c) deformation
of the edges occurs according to the Hertzian contact theory, (d) effect of the
lubricating film is ignored, (e) interaction between components of bearing is ignored,
and (f) size of the defect is smaller than the width and diameter of the rolling element,

preventing contact between the rolling element surface and the defect base surface.

As shown in Figure 3-6, the motion of a rolling body around a fault can be
divided into three phases. It can be divided into just before entering the fault (1), i.e.
at the leading edge of the fault, entering the fault (11) and exiting the fault (111). Then,
the periodic force pulse train f(t) with periodic time T4 may be expressed in Fourier

series as follows [85],

f(t) =a, + Y [a, cos2zne;t +b, cosnwt] (3.14)

and the coefficients here are defined as
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p1 p3 pl p3 pl p3
=F.(1- )y R-2op, -2 +R(l-2—p, -2
aO s( p2 2)+ c( 2 p2 2)+ |( 2 pZ 2)

-
(F-F) (cos2znp, 1) + M(COS 27n(p, + p,) —C0s27Np,)
L 1 27np, 27np,
" |  (F-F)
+Tnpl{(cos 27n(py + P, + Py) —cos2zn(p, + p,)} (3.15)
=B gin 2np, + 5= (sin 2:n(p, + p,) —sin 2:mp,)
A 1 27np, 27np,
"ozn F-F), . .
+%{(S|n 2zn(p, + p, + py) —sin2zn(p, + p,)}
znp,

where the meaning of the notations used is as follows: Fs is the force before entry
into the defect; F. is reduced contact force onto the ball in the defect area; Fi is the
impact force height; pi=TTI/Tq, p2=ti/Tq, and ps=to/Tq; TTI is time to impact; t; is the
impact duration; tp is the time to restress; Tq is the time period for BCFs. The

parameters for each step are defined in more detail below.

(D) Entry Event: Destressing Phase (1)

In this event, distress occurs as losing contact while the ball moves from point A to
point B and changes in time and force at this moment are as follows. Duration

between the entry and the exit of spall te: is modeled as [87]

2D,

Lo =mddef =TT+t +1, (3.16)

where the notations are defined as dqet is the width of the defect, dy is the ball diameter,
D, is the pitch diameter, and f. is rotational frequency. Assuming the rolling

elementss are evenly spaced in the cage and move identically, the TTI can be
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approximated as:

1
TTI~ Etexh (3.17)

and the amount of change in contact deformation is Ah in Figure 3-6 can be

approximated by the above assumption (e) as follows;
Ah _ ddzef
approx 4db (318)
At this time, the amount of maximum destress force F, is determined as follows

by referring to Eqg. (3.8) and Eg. (3.9).

F =K,5.%% =K, (5, + Ah

)3/2

(3.19)

approx

(2) Impact Event (11-11")

The effect on bearing components during impact relies on the external load and the
relative speed of the balls and races. The process of impact from point B to point C
is represented in Figure 3-6, and additional deformation occurs due to collision
during impact as shown in Figure 3-7. In this process, the impact time t; and the

impact force Fi can be inferred through the maximum displacement Jm.

The change in energy due to the collision between two objects in the collision

process is as follows [88]:
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1

AEimpa\ct = E Mest (1_ Cr2)5'(—)2 (320)
5‘(+)
c, = =) (3.21)

where ¢ is the coefficient of restitution 0 < ¢ <1, 67 =v —v7 is relative
approach velocity. Then, the collision time and maximum deformation are defined

as follows [89]

i:j‘;md—.‘g, { = On Beta[ 1 'l), n=3/2 (for point contact)  (3-22)
° o 59 (n+1) n+1'2
el _ m(n+1)(8)? _c,m(n +1)(59)?
" - S
of 4 Hl=c) 267 2k
2c60 3
N+l _ m(n +l)(cr5(’))2 ~ Crm(n+l)(5(—))2 (323)
" - O 2k
o[ _3k@-c) 26
2¢,0” 3

Through the above result, ti and Fi can be approximated as follows

i exit 'r

f
F— F _ F . r \(6/5)
= (F-F)- (D) (3.25)

3 Exit Event: Restressing Phase (I11)

In the restressing phase, the rolling element is again in contact with the non-defective

part of the raceway (Point C to Point D). During this phase, the center of rotation is
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assumed to be fixed as the rolling element is assumed to roll out from the compressed
trailing edge of the defect. To determine the duration of the restressing phase for the

rolling element, time tp is determined by

th =t —TTI- (3.26)
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3.3 Numerical Results and Discussion

To validate the adequacy of the proposed signal model, this dissertation used a
synthesized signal by combining signals generated from other sources, as shown in
Figure 3-8. The signal composes of four parts: the psuedo second-order
cyclostationary component x., the deterministic feature pulses xq, the sinusoidal
interference due to shaft xs, and the white Gaussian noise X,. Consequently, the

synthetic formula of the simulation xsyn is as follows.
Xsyn = Xc + Xd + Xs + n(t) (327)

X, =A - d (1) *h(t)
d, ()= st -KT, —7,) (3.28)

Xy = Aj 'dd (t)*hd (t)
dg (t) = 5(t—KT,) (3.29)

X, = Asin(27 f,t) (3.30)

where A¢, Aq and As are amplitude coefficient of cyclostationary signal, deterministic
signal and sinusoidal interference, respectively. The transfer function hc(t) and hq(t)
of cyclostationary and deterministic component are modelled as 1-DOF damped
model refer to Eq. (3.13) with rotational frequency f, = 25 Hz. As parameter settings
for the bearing signal, the bearing frequency f. = 158 Hz (=1/T.) with the carrier
frequency ¢ = 3500 Hz, and for the deterministic signal, fs = 60 Hz (=1/Tq4) with the

carrier frequency wq= 3000 Hz.

Also, the single unit impulse dc(t), is modeled quasi-periodically by reflecting
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random motion by the stochastic model in Eq. (3.3). Here, the jitter interval t, and
the delay time interval AT, due to the slip of the ball including the cage are modelled
as independent identically distributed Gauss distribution, respectively,
T ~N(0,62), o, =1%x T, (jitter) and AT, ~N(up02), wa=Te, 0p =
1% x T, (cage slip). There is no solid reference or theoretical background for each
jitter and delay interval. However, this value to 1% of defect time interval, AT, is

recognized within a reasonable range [81].

The results of analysis in the freqeuncy domain and envelope spectrum of the
synthesized signal are shown in Figure 3-9. In the case of the results in the power
spectral density (PSD), it shows a peak at the carrier frequency of 3500 Hz, but the
sidebands are smeared while the sideband of fq harmonics (e.g., Gear Mesh
Frequencies, GMFs) appears neatly around the carrier frequency of 3000Hz in the
PSD in the deterministic signal case. Through this, the signal characteristics of
cyclostationary can be well explained. However, as mentioned above, looking at the
results of envelope analysis, it is noted that BCF and harmonic components are
detected. In the case of the synthesized signal, the BCF componens are not well seen
in the PSD result because the relatively strong GMFs hide them. However, BCF
components are detected even among strong GMF components in the envelope
spectrum. For this reason, pre-processing and signal separation techniques are

essential to detect bearing defect signals.
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3.3.1 Necessity of Choosing an Appropriate Preprocessing Method

Conventional denoising methods often rely on the assumption of white noise, which
is not applicable in this simulation due to the presence of cyclostationary random
signal interference. In this chapter, this effect was compared and considered by
applying the following two methods. First, the wavelet denoising method [59], which
has excellent performance in removing white noise, was applied. In addition, the
cepstral pre-whitening (CPW) method [90], which shows excellent performance in
separating the deterministic signal and the bearing signal, was applied. The results
of each preprocessed signal were compared through the envelope spectrum and
bandpassed results were compared in the bandwidth (3000-4000 Hz) with the
bearing carrier frequency of 3500 Hz as the centeral frequency. The time interval of
each sample was 10 seconds with a sample rate of 10000 Hz. Coefficient values used
in generating each signal of the synthetic signal are summarized in Table 3-1. To
compare the results according to the energy of the bearing signal, simulation and

analysis were performed for the two cases.

First, it was analyzed at the bearing signal intensity level where the bearing
defect frequency was detected even without applying a band pass. The signal-to-
noise ratio (SNR) was adopted to represent the intensity of energy of each signal and

it is defined as follows

SNR /P

noise (331)

target Ptarget

In this case, the SNR of the deterministic component was set to SNRqy=-12 dB,
and the SNR of the sinusoidal inference signal was set to SNRs=-17.5 dB, and for

the bearing signal, the level of SNR. was set to —13.70 dB. As shown in Figure 3-10,
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when bandpass without any preprocessing, harmonics of f. still appears clearly, but
it can be seen that the amplitude of harmonics of f. are relatively increased compared
to before bandpass. On the other hand, in the case of wavelet denoising, hamonics
of fq appears, but the bearing signal does not appear unless band pass is applied, and
even performance is lower than before denoising is applied. Also, it can be seen that
only harmonic components of the rotation frequency are detected. In the case of
CPW, harmonics of f. are clearly separated, as shown in the left-bottom part of

Figure 3-10.

In order to assume a case where the bearing signal is weaker, that is, the size of
the defect is smaller than the above case, each technique was applied when the power
of the bearing signal was reduced (SNR. = —15.85 dB) while the power of the other
signals is the same. As shown in the envelope spectrum of the original signal in the
Figure 3-11, 1X of the BCF is detected finely, and harmonics are also seen in the
case of band pass, but the relative peak size is clearly reduced compared to the
previous case. In the case of wavelet processing, BCFs were not detected regardless
of whether a band pass was applied or not. In the case of CPW processing, it is
difficult to detect BCFs when the band pass is not performed, but when the band pass
is performed, it can be confirmed that BCFs appear relatively well compared to other

results.

From this result, it can be seen that an appropriate preprocessing process is
essential to diagnose bearing failure in the incipient failure stage and that effectively
finding the frequency band containing failure information is essential for

performance improvement.
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Table 3-1 Summary of coefficients for the signal generation

Coefficients Values
Bearing carrier frequency, w. 3500 Hz
Bearing defect frequency, f. (=1/T¢) 158 Hz
Deterministic carrier frequency, wq 3000 Hz
Deterministic period frequency, fz (=1/T;) 60 Hz
Amplitude of deterministic signal, 44 2000
Shaft modulation frequency, f- 25 Hz
Amplitude of shaft modulation, 4 0.1
Amplitude of noise 0.5
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Figure 3-3 Diagram of the multi-body nonlinear dynamic model and Hertzian

contact deformation model

. : ,H *: 1_-_]'| '@} o



. ® Contact point
_rolling element

0) @ O ®
)
\ — Nacovey T

i

H(t) N ®

Honax

7

@ ®

Figure 3-4 Time-varying displacement function H(7) with the defect

' B

1



Force function, fi7)

Entry Exit

N

0.028 0.03 0.0320.034 0.036 0.038
Time [s]

4

Displacement, x(¢)

—

0.028 0.03 0.0320.034 0.036 0.038
Time (s)

Acceleration, a(t) = d°x (¢)/dr’

-

0.028 0.03 0.0320.034 0.036 0.038

Time (s)
<107 Deterministic qx107
4t H H H
N i
0 * F * L *- 05 I“
-2t ] : : : ! 0 all }h
058 | 059 : 0% i 061 0 2000 4000 6000
x10° i Jitter H «10°% Jitter
4 ! ]
2 : 5
g L
'§ 2 o
£ 058 | 059 | 0p 1061 :E 0 2000 4000 6000
2 ; PsuedoCS = X 107 PsuedoCS
<001 : =
05
0 11 l i
0 2000 4000 6000
4 x107 Mixed
05 ‘
-0.01 H 1 | M H 0
058 0.59 06 061 0 2000 4000 6000
Time [s] Frequency [Hz]

Figure 3-5 Overall process of proposed signal model

“ 25 A=t



Figure 3-6 Representation of events of roller-raceway contact relationship and
42

time-dependant force excitation model
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Speech Recognition-Inspired
Feature Engineering for Bearing
Fault Diagnosis

One of the most critical challenges in rolling bearing diagnosis is dealing with weak
fault signals that are buried in noises arising from environmental effects. To
overcome this problem, the feature extraction method described in this section aims
to develop a noise-robust feature extraction method, namely linear power-
normalized cepstral coefficients (LPNCC), inspired by speech recognition based on
auditory physiology. In this approach, for the cepstra from a feature extraction
process, the squared envelope spectrum (SES) are computed to find bearing
characteristic frequencies. The performance of the proposed method is examined by
studying simulation data and experimental data. It can be concluded from the results
that the proposed method has the potential to be utilized for robust bearing diagnosis

in various noisy environments.
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4.1 Review of Power-Normalized Cepstral Coefficients
(PNCC)

4.1.1 Basic Definition of Cepstrum

The term “cepstrum” is a term derived from the word “spectrum”. This term is often
used to describe the spectrum of a spectrum. Other terms, such as “quefrency”,
“rahmonics”, and “lifter”, are also modified versions of related terms, such as
“frequency”, “harmonics”, and “filter”, and are used to emphasize their connection
to the cepstrum. These terms continue to be widely used in the literature to
distinguish their reference to the cepstrum rather than the original spectrum or time

signal [75].

For discrete-time signals, the original definition of the (power) cepstrum c[n]
of a signal x[n] is the inverse discrete-time Fourier transform (IDTFT) of the log-

magnitude of the discrete-time Fourier transform (DTFT), which is as follows [91]:

c[n] =% j log| X (¢**)

ej(unda) (41)

where the DTFT of x[n] is defined as:

X(e”)=Y xnje " 42)

N=—w0

where j is the imaginary unit, o depicts the normalized radian frequency and n is a

time sample number, known as the “quefrency.”
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4.1.2 Characteristics of cepstrum in mechanical vibrations

As shown in Figure 2-3 (a), one of the characteristics of a bearing signal is amplitude
modulation; in this phenomenon, a high-frequency carrier signal is varied by a low-
frequency modulating signal that is mainly produced by the fundamental frequency
of the shaft rotation [92]. A vibration signal with amplitude modulation can be

represented as [19,92]:

x(t) = i(rmdm (1)q, (r)a, (r)e " cos(2z f_(t - 7)) dr) +Asin@2zf(t)+6,) (4.3)

where the first summation term describes the vibrations of the defect components
and the second sinusoidal term defines the modulation that is due to shaft rotation.
In the first term of Eq.(4.3), md is the number of defects in the bearing, which is
typically 1 for a single-component defect condition, dm(t) depicts the defect impulse
train of the contact and is modulating signal that repetitively occurs with the bearing
characteristics frequency (BCF), gm(t) describes the dimension information of defect
and the sensitivity of the striking energy, am(t) is a characteristic function of the
transmission path, and ¢ and f. represent the decaying (damping effect) rate and the
carrier frequency, respectively. In the other term, As is the amplitude of the
modulating signal, fs and &5 depict, respectively, the fundamental frequency and the

initial angle of the modulating signal.

In a bearing system, the impulse caused by a defect of a bearing could be
represented by bursts of exponentially decaying vibration in the time domain (Figure
4-1 (a)) and by sidebands in the vicinity of the carrier signal in the frequency domain,

as shown in Figure 4-1 (b). The carrier signal, which can be found as shown in Figure
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4-1 (b), can be a combination of the resonant frequencies of the bearing or even of
the overall mechanical system. Furthermore, when logarithmic transformation is
applied to the spectrum of the signal, the defect frequencies that are due to bearing

defects can be enhanced (Figure 4-1 (c)).

It should be noted that one property of cepstrum is that low quefrencies
correspond to slowly varying (in frequency) components in the log-magnitude
spectrum, while high quefrencies correspond to rapidly varying components of the
log-magnitude spectrum [91]. By applying inverse Fourier transform to the upper
log-magnitude spectrum in Figure 4-1 (c) to extract the rahmonic peaks (first
rahmonic peak at 6.67 ms = 150 Hz), periodic impulses related to the BCF are found,
as shown in Figure 4-1 (d). Accordingly, cepstrum analysis has been used in
mechanics and acoustics to detect and quantify families of periodically spaced
spectral components; this will not only detect families of harmonics, but also equally

spaced modulation sidebands [75].
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4.1.3 Power-Normalized Cepstral Coefficients (PNCC)

Since the structure of PNCC is based on that of MFCC, to briefly describe the MFCC
extraction process, first, the power spectrum of the input signal is integrated using
mel-scale frequency integration. Then, the short-term power spectrum for each filter

bank is obtained as defined as:

P[m,u%ilxm[k]H.[k]lz, I=1..L (4.4
k=4,

where Xn[K] is a discrete Fourier transform (DFT) result for the mth frame and Hi[k]
is the weighting function for the Ith channel, ranging from DFT index L, to U,, and
A is a normalizing factor for the Ith mel-filter, which is defined as:
Y,
A= E,'H'[k]r (4.5)

So, the nth MFCC for the mth frame is computed by a discrete cosine transform of

the logarithmic function of the Ith filter output P[m,I] as defined as:

MFCC [m, n] =%ilog[P[m,l]]cos[%(l 1/ 2)n}, n=1..Nycc (46)

where the number of cepstrum coefficients, Nwvrcc, is less than the number of mel-

filters, L.

The PNCC introduces an algorithm called the suppression of slowly-varying
component and falling edge (SSF) [23,93], which improves the spectral function for
robust speech recognition, especially in reverberant environments. Therefore, the

frequency spectrum P[m,I] is subjected to the SSF process to reduce noise and
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emphasize the fault-related signals. Because typical fault-related features from a
bearing are modulated by a slowly-varying vibration signals from rotating
components of the system, PNCC can be employed for fault diagnosis of bearing.
This processing mimics aspects of both the precedence effect and spectrum
modulation. The transfer function S[m,|] modulates the original spectrum signal as

follows:

T[m,11=P[m,1]1S[m,I] (4.7)
The details of the transfer function process can be found in Ref. [23].

In the case of the PNCC processing, the response of the processing is affected
by the change in the absolute power, and this effect can be reduced by the mean

power normalization, as defined below [23]:

ulm]=2, pu[m-1]+

1-1 L
= IZ:O:T[m,l] (4.8)

where u[m] is the mean power estimate of the mth frame with the value of 0.999
for the forgetting factor 4,, and L is the number of filters, as used in Eq. (4.7).
Consequently, the normalized power U[m,I] is obtained by dividing the incoming
power T[m,I] by a running average of the overall power ux[m], with the arbitrary
constant k, as follows.

T[m,1]
pm]

Um,1]=k (4.9)

As a result, a power-law nonlinearity spectrum V[m,I] is calculated as:
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VIm,I1=U[m,IT" (4.10)

where n, is the power-law coefficient and U[m,I] is the normalized power. Finally,
the structure of PNCC is obtained by replacing the logarithmic function of the filter

output P[m,I] with the power-law function of the filter output V[m,I] as follows:

PNCC[m,n]:%ilog[\/[m,l]]cos{%(l ~1/ 2)n] n=1..,Noe (4.11)

Although the PNCC is effective to show signal characteristics in the time and
frequency domains in the presence of noise, however, the PNCC has not been applied
much for mechanical systems because it was originally developed for voice
recognition, by modeling the auditory mechanism. The proposed method
incorporates the PNCC to enable noise-robust feature extraction for REB diagnosis

by considering characteristics of vibration signals measured in fields.
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4.2 Proposed Feature Extraction Method: Linear Power-
Normalized Cepstral Coefficients (LPNCC)

Based on Kim and Stern’s work [23], we adopt and revise the power normalized
cepstral coefficients (PNCC) algorithm to diagnose a mechanical system by
considering the characteristics of the vibration signal measured in a rolling element

bearing, as shown in Figure 4-2.

In the case of PNCC, the filterbank is designed to take into account a model of
human sound perception performed in the inner ear [91]. As shown in Figure 4-3, as
the gammatone filter goes from the high to low frequencies, the frequency band it
covers becomes denser because the human voice information is concentrated in the
low frequency band. However, unlike a voice signal, the information of a bearing
vibration signal is concentrated in the carrier frequency, which is arbitrary placed
due to the system configurations. For this reason, Sousa et al. [94] proposed a linear
frequency cepstral coefficients (LFCC) which replace the mel-filter of MFCC with
a linear filter for anomaly detection in bearings. With reference to this, in this study,
we replaced the gammatone filter of PNCC with a linear filter to weight equally for

all filterbanks as shown in Figure 4-3.

The method of calculating the spectral power is similar to that shown in Eq.
(4.4) to (4.11); however, it is calculated by using a linear-scaled weight function,
instead of a nonlinear-scaled weight function. The spectral power P'[m, 1] using the

summation of the linear triangular filters by virtue of Wojcicki [95], as below:
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(K/2)-1

Pm1= 3 XM, &% TH e, () (4.12)
where m and | represent the frame and channel indices, respectively. The response
of the Ith linear filter channel at frequency w; is Hineari(e/%), and w; is the
dimensionless discrete-time frequency 2zk/K, where K is the DFT size. Each analysis
band weights the magnitude-squared STFT outputs of positive frequencies by the
frequency response associated with L-channel linear filterbank whose center

frequencies are uniformly spaced.

With a linear filtered spectral power P’[m, ] instead of P[m, I], the rest of the
process proceeds similarly to Egs. (4.7) to (4.11). Also, we consider the value of the
power law coefficient, n, to be 1/5, which provides better performance for white

noise [23] . Finally, the nth LPNCC for the mth frame is computed as follows:

LPNCC[m,n] = %ilog[\/ Im, I]]cos[%(l -1/ 2)n}, N=1..,Npwe (4.13)

The LPNCC is a useful feature for bearing diagnosis, which does not only
contain both time and frequency information of a signal, but is also more robust to

noisy environments than traditional MFCC.
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4.3 Fault Diagnosis by Implementing LPNCC

Based on the PNCC algorithm, in this study, the LPNCC algorithm is developed to
extract fault-related features for REB diagnosis, which is robust to noisy
environments. The primary advantage of the LPNCC is that it enhances a REB signal,
which is buried in noises that arise from environmental effects and contain
mechanical phenomena (e.g., mechanical looseness and misalignment). Figure 4-4
shows the overall procedure for calculating the LPNCC. As shown in Figure 4-4 (b)
— LPNCC Extraction, the extracted LPNCC for each channel can be considered as a
filtered signal. Then demodulation analysis is performed by examining the squared
envelope spectra (SES) of each filtered signal as shown in Figure 4-4 (c) —
Demodulation Analysis, where envelope spectrum results at specific channels are
represented. Consequently, this procedure gives the LPNCC-SES as shown in Figure
4-4 (d) — Output: Fault Diagnostics. Finally, faults can be discriminated from the
selected channel, which is the band containing the carrier frequency. The detailed

procedures of the proposed method are described in the following subsection.

4.3.1 Fault Diagnosis Method using LPNCC and Squared Envelope Spe

ctrum (LPNCC-SES)

The LPNCC of each channel extracted through Section 4.2 can be used for analysis
as a reconstructed time signal with the cyclic spectral component emphasized. In
classical envelope methods, a frequency band including a carrier can be extracted
through a pass-filter, and then demodulation is performed on the filtered time signal

[15]; usually, demodulation is done by Hilbert transformation. Therefore, in this
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study, as shown in the demodulation part of Figure 4-4, cepstral coefficients of each
channel are regarded as a filtered time signal. Through the LPNCC-SES, it is
possible to see as a whole whether each channel divided by the filterbank and the

cyclic frequency in the frequency domain are well represented.

In the final step, fault diagnosis is performed by selecting the channel with the
high energy and finding the bearing characteristic frequency of the spectrum. It is
thus required to determine whether the peak of the defect frequencies is statistically
significant in the spectra of the cyclic spectrum extracted by LPNCC-SES. To define
the threshold, Leys et al. [96] presented the moving median absolute deviation
(MAD) instead of thresholding by the 3-sigma rule. Depending on the stringency of
the user’s criteria, highly conservative detection of statistically relevant peaks in the
spectra is based on three times the moving Median Absolute Deviation (MAD) of

each spectrum, defined as described in Eq. (4.13) [97]

MAD =1.4826 x m[| x —m(x) ] (4.14)

where m(x) is the median of signal x. Because thresholds are not as sensitive to
outliers as standard deviations, MAD is a powerful for outlier detection in
probabilistic studies. Therefore, any value above the threshold can be considered
statistically relevant candidates for frequency detection. Then, fault-related
components can be more easily selected from the detected candidates in frequency

domain.
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43.2 Effect of Linear Filter and Power-normalization

To check the effectiveness of the LPNCC, actual bearing outer ring failure data were
compared with linear frequency cepstral coefficients (LFCC) without power-

normalization and PNCC with gammatone filter applied.

Figure 4-5 shows the cepstrogram of cepstral coefficients according to each
method application and the spectrogram applied with SES. First, in the case of the
the results of LFCC, the background noise is not sufficiently removed in each
channel, so the effect of the rotation frequency compared to the hidden bearing and
other periodic signals is large in about channel 5. Moreover, in the result of the
PNCC case, the energy is concentrated in the low-numbered channels (up to channel
10) because the filter band is densely formed in the low-frequency band in a non-
linear manner as shown in Figure 4-3. However, since there is no bearing-related
resonant frequency in this area, BPFO due to the intended outer ring failure is not
seen, and instead, BPFI, which is thought to be caused by modulation due to radial
load, is seen in a channel with a lower number. In the case of the LPNCC-SES,
energy is concentrated by focusing on bearing-related information in the vicinity of
channel 11, and it can be confirmed that the peak of BPFO due to outer race failure

is also well observed.
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4.4 Experimental Application and Results

In this section, the applicability of the proposed study is studied through a numerical
simulation and by examining three case studies. In Section 4.4.1, data description is
presented including simulation data with white Gaussian noise and real world data
from Case Western Reserve University’s (CWRU) bearing data set [98]. In Section
4.4.1.1, the effect of LPNCC is demonstrated at various SNR levels by adding white
Gaussian noise (WGN) to the mechanical vibration model defined in Section 4.1.2.
Then, three experiments cases are selected from CWRU bearing data set and
discussed with comparison of Randall’s benchmark study [99]. First, the capability
of the proposed method in the presence of impulsive noise is discussed in Section 0.
In Section 4.4.2.1.3, the improvement of diagnostic performance is shown with low
SNR. In the last case, the potential applicability of the proposed method for use in

situations multiple defects is considered, as outlined in Section 4.4.2.1.4

Usually, the characteristic frequency of the inner and outer ring defects appears
at about 1 to 5 times the rotation frequency; thus, in this study, the window size is
set to observe the range of below 500 Hz using Hamming windows of duration 2 ms
with a 0.5 ms frame period, using a DFT size of 1024. Each test case is set up to

show the effectiveness of the proposed method in a specific situation.
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4.4.1 Case Study with Simulation Model

4.4.1.1. Simulation Data with White Gaussian Noise

In order to demonstrate the proposed method’s validity and robustness to noise, we
studied a numerical simulation example. Recall that in Eq.(4.3) in Section 4.1.2, a
theoretical bearing vibration signal with white Gaussian noise is simply modeled, as

follows:

x®)=[ Aet?cos(2rf,(t-7) dz+Asin@zf, () +6) +WGN  (4.15)

The coefficients and their values used to generate the signal are summarized in
Table 4-1. The length of the simulated signal is 3 s, with a sample rate 12000 Hz.
The defective frequency that represents the bearing characteristic frequency (BCF)
is set to 160 Hz to simulate outer race faults without consideration of impulse
modulation from load distribution, which occurs in cases of inner race faults and ball
faults. According to Peeters et. al. [60], neither the CPW or ACEP technique detect
bearing failure for SNR values below -16 dB. In the case of the ACEP method,
bearing failure detection was possible for SNR values above -16 dB, and in the case
of CPW, failure detection was possible when SNR values exceed -11 dB. In this case,
referring to Peeters’ work, the SNR level of white noise was set to range from 5 dB

to -15 dB.

For the raw signal in the time domain, the value of SNR ranges from 5 dB to -
15 dB and the results of envelope analysis for the full bandwidth are shown in Figure
4-6. In the case of an SNR at the 5 dB level, the impulse is clearly visible, even in

the raw signal of the time domain. Further, when looking at the results of envelope
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analysis, BCF and its sidebands are clearly visible, as shown in Figure 4-6 (a). As
the influence of the noise component on the original signal increases, it becomes
difficult to observe the impulse in the time domain signal. However, in the frequency
domain, as can be seen from the right side of Figure 4-6 (b), the peaks at the BCF
are able to be distinguished at the level of -5 dB. However, when the value of the
SNR reaches -10 dB, it is difficult to observe distinct peaks, even though the
disturbed peak can be seen at 163 Hz near the 1 X BCF, as depicted in Figure 4-6
(c). the BCF are barely identified in the frequency domain by the conventional

envelope analysis approach as depicted in Figure 4-6 (d)

4.4.1.2. Denoising Under Gaussian Noise

In Figure 4-7, the LPNCC cepstrogram, which provides a short-time cepstrum
computation similar to a spectrogram, is presented for the simulated signal. For the
purpose of processing signals with a sample rate of 12000 Hz, a 20-channel linear
filterbank whose center frequencies are uniformly spaced between 0 Hz and 6000
Hz was used. As shown in Figure 4-7 (a), strong periodicity is seen in the ninth
channel, which means a band of 2400 Hz to 2700 Hz, which is a reasonable result
considering that the carrier frequency, f. is 2500 Hz. Further, impulses seen in this
band appear with a quefrency interval of 6.25 ms, corresponding to the defect
frequency, 160 Hz. As mentioned in the previous paragraph, in the case of an SNR
of -5 dB, a peak in the BCF can be seen in the case of the frequency analysis.
Although it is somewhat smeared, periodicity can be observed in Figure 4-7 (b).
However, as shown in Figure 4-7 (c) and Figure 4-7 (d), it is still difficult to visually

distinguish the periodicity at the SNR levels of -10 dB and -15 dB in the feature
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extraction stage. Therefore, in later in this section, fault diagnosis is performed
through an LPNCC-based square envelope spectrogram for the cases of -10 dB and

-15 dB.

As was mentioned in Section 4.3.1, each LPNCC of the uniformly distributed
channel is demodulated through SES technique. The result of the SNR -10 dB case
is illustrated with a three-dimensional graph of normalization of LPNCC-SES, as
shown in Figure 4-8 (a), where the X, y and z axes represent cyclic frequency, channel
from the uniformly distributed frequency filterbank, and normalized amplitude,
respectively. A high-energy section, which was not seen well in the cepstrogram,
was observed around the 9th channel, and a peak value was observed at a defect

frequency of 160 Hz in the 9th channel.

In Figure 4-8 (b), a view of Figure 4-8 (a) from above, the cyclic frequency can
be effectively observed. A strong peak at 160 Hz corresponding to 1 X BCF and a
peak at 320 Hz of 2 X BCF, which is a harmonic component, is revealed in the 9th

channel, which contains the carrier frequency and the nearby channels.

Although the failure has already been sufficiently asserted through the
spectrogram, the signal can be more deeply analyzed by examining the spectrum of
a specific channel in more detail. By examining the spectrum corresponding to the
ninth channel, as shown in Figure 4-8 (c), it is possible to make more confident
decisions about fault diagnosis. Here, it can be seen that the diagnosis result is
statistically significant by using the 6-MAD, as mentioned in Section 4.3.1, as a
criterion for the outlier selection. Also, compared with the result of Figure 4-6(c),

the normalized amplitude at 1 X BCF (~163Hz by disturbed result) is 1, where the
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MAD value has a value of 0.434. On the other hand, in Figure 4-8 (c), the normalized
amplitude of 1 X BCF is the same as 1, but the MAD value is 0.245; this implies

that the influence of ambient noise was significantly reduced.

For the SNR of the -15 dB case, which is the most severe noise condition, the
above feature extraction process was performed, as shown in Figure 4-9 (a) and (b).
In contrast to the case described above, it can be seen the defective frequency
information is not clearly visible in the spectrum as the influence of noise increases;
further, the prominent peak value is not seen. The only information available from
the SES in Figure 4-9 (a) and (b) is that the spectral energy is concentrated in the 7th
to 11th channels. As mentioned above, we already know that the carrier frequency
value is 2500 Hz for the 9th channel; however, in practice it is difficult to know this

information.

Under the assumption that there is no prior information about the carrier
frequency, a detailed spectrum of the 7th to 11th channels are sequentially illustrated
in Figure 4-10. For the 7th, 8th, and 9th channels, the fault frequency harmonics
corresponding to the dotted lines were slightly larger than the 6-MAD threshold, as
shown in Figure 4-10 (a-c); however, we cannot confidently say that a fault is
diagnosable, even though the most prominent fault-related signals were detected at
the BCF harmonics in the 9th channel for the former weaker noise cases. Looking at
Figure 4-10 (d) and Figure 4-10 (e), it can be seen that the 1 X BCF component in
the 10th and 11th channels are relatively remarkable, compared to the other channels;
however, it still does not show a noticeable value in the whole spectrum. Furthermore,
there are no components other than the rotation frequency, carrier frequency, and

fault frequency; thus, it can be determined that the peak above the threshold that does
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not correspond to the BCF harmonics is caused randomly by white noise.

In order to solve a situation to get a clear diagnosis result in a specific channel
due to the influence of noise, it is possible to reduce the influence of random noise
and to improve the information of the periodic signals associated with faults by
averaging the above spectra, as represented in Figure 4-11. In the individual
spectrum, the defect frequencies did not appear predominantly because they are
buried by noise; however, the 1 X BCF could be clearly identified here, and the
subharmonic value of the rotation frequency due to signal disturbance was also found
to be around 20 Hz. The peak value at 1 X BCF is 0.458 with the MAD value is
0.400 in Figure 4-11, whereas the BCF are barely identified in the frequency domain
by the conventional envelope analysis approach as depicted in Figure 4-6 (d). The
results in Figure 4-11 assure that the proposed method successfully extracts fault-
related features while mitigating the effect of operational noises. Because the
deterministic fault-related features remain in all channels while the noise are
randomly distributed in frequency domain, environmental noises also could be
diminished by considering spectrum of SES-LPNCC from all channels. In addition,
it can be found that the fault-related features with arbitrary carrier frequency could
be successfully extracted without loss of information by the proposed linear

filterbank.
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4.4.1.3. Reseults Under Non-gaussian Noise

In order to verify the effect in a situation where deterministic signals are mixed, the
method proposed in Chapter. 3.3 was applied to the synthesized signal. In Figure
4-12, the deterministic signal (e.g., gear) and cyclostationary signal (bearing) each
show peaks through the spectrum of LPNCCSES above. The natural frequency of
the deterministic signal was set to 3000 Hz and the bearing signal to 3500 Hz, and
each of them has peaks in channels 30 and 35, so the signals can be separated and
observed well. The spectrum of the 35th channel for more detailed analysis of the
result is shown in Figure 4-12 below. Through this, it can be confirmed that only the

bearing signal clearly appears beyond the MAD threshold.
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4.4.2 Case Study with Experiment Data

4.4.2.1. Experimental Data: Case Western Reserve University Dataset

Over the past decade, CWRU data has been utilized countless times as a standard reference
in fields of the bearing diagnosis and prognosis. The experimental setup, as depicted in Figure
4-13, comprises a Reliance Electric motor with 2 hp that rotates a shaft equipped with a
torque transducer and an encoder. The shaft is subjected to torque by means of a
dynamometer and an electronic control system. To find out the effect of defect size, faults
were seeded separately on the ball, the inner race and the outer race of fan-end (FE) bearing
and drive-end (DE) bearing, respectively, ranging from 0.007 to 0.040 inches in diameter.

Vibration data was obtainedwith a sampling rate of 12000 Hz and 48000 Hz.

44211 Compared Methods

Smith and Randall [99] presented an essential benchmark in which three diagnostic
methods were studied for the CWRU data set, specifically: envelope analysis of the
raw signal (M1), cepstrum pre-whitening (CPW) (M2), and discrete/random
separation (DRS) followed by spectral kurtosis (SK) (M3). As a result,
diagnosability of all CWRU data could be categorized into six classes, as detailed
and shown in Table 4 2. After Smith and Randall’s study established benchmarks,
several studies considering the mechanical properties of CWRU data have been
conducted to deal with potentially diagnosable (P) or non-diagnosable (N) datasets

[61,100-103].
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4.4.2.1.2. Case 1: Impusive Noise

The record 275 DE of CWRU is classified as P1 by M1 and M2, N1 by M3 [99].
This data was measured from the drive-end (DE) position in the condition of an
inner-ring defect with a size of 0.014 inch of a 12k fan-end (FE) bearing operated
under motor load 1 hp at 1772 RPM. As the transducer acquires acceleration at the
drive-end position, the transmitted signal is attenuated through the device, making it
difficult to use the signal to investigate the fault signature. In addition, the
unexpected ball-pass frequency of the inner race for the drive-end (BPFI-DE), along
with its sidebands, are also present in the SES. This might be related to misalignment
of the drive-end bearing and not to a defect of the bearing [61]. Correspondingly, as
shown in Figure 4-14, it can be seen that lots of impulsive noises are combined in

the original signal.

Figure 4-15 displays the results of the LPNCC-SES for this case. By using the
normalized amplitude of the LPNCC-SES calculated through the proposed method,
the concentration of the spectral energy in the vicinity of the 10th channel could be
revealed, as shown in Figure 4-15 (a) and (b). Accordingly, it is determined that the
frequency band corresponding to the 10th channel, which has the highest spectral
energy density, contains a lot of defect-related information. Therefore, in Figure 4-15
(c), the spectrum corresponding to 10th channel was analyzed to perform fault

diagnosis.

The shaft frequency, and its harmonic component indicated by the dotted line,
are well observed, and the 4/3 component of the rotation component is also observed

in the vicinity of 40 Hz, which is major a characteristic of misalignment.
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According to the information provided by the CWRU data center [98], the
failure frequency due to an inner race fault of the fan-end bearing is 146.1 Hz, which
is very close to 4 X fs (=147.7 Hz); thus, there is a possibility of misdiagnosis.
However, the fspr of the fan-end bearing indicated by dashed lines was exactly the
same, and verification was possible with sufficient resolution. Furthermore, as can
be seen more clearly in the vicinity of 290 Hz, the frequency difference between 10
X fs (=295.3 Hz) and 2 X fapr1 (= 292.2 Hz) is larger, and it can be seen that a peak

of 2 X fepr1 exactly matches at 292.2 Hz.

Otherwise, as mentioned above, the characteristic frequency (BPFI-DE) of the
inner race of the drive-end that is observed at 160 Hz and the amplitude of 1 X BPFI-
DE is higher than the amplitude of 1 X BPFI-FE.

4.4.2.1.3. Case 2: Low Signal-to-noise Ratio (SNR)

In this case, 204 FE records from the CWRU dataset were chosen to examine the
difficulty of extracting defect features in noisy environments, that is, in situations
with a low SNR value (SNR = — 6.3229). This record contains the case of an 0.014
in. outer race fault at the drive-end with a 3 hp motor load, 48k sampling rate, and
the shaft speed set to 1730 rpm. Also, as in the previous case, the transmitted signal
is attenuated because it was measured at the fan-end location, away from the drive-
end with the faulty bearing. In particular, there is no method to diagnose this record
in the benchmark paper [99], such as evaluating N2, N1, and N1 by M1, M2, and

M3, respectively.

The LPNCC-SES spectrogram of this case is depicted in Figure 4-16. The
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normalized amplitude in Figure 4-16 (a) appears in large peaks in the 1st channel,
and it can be seen that the trend of energy density is high in the 8th -14th channels.
The cyclic frequencies that appear strongly in Figure 4-16 (b) are confirmed to be
caused by the shaft frequency (fs = 28.8 Hz) and its harmonics; however, it is
difficult to specify cyclic frequencies corresponding to the fault characteristic

frequency (BPFO-DE = 103.4 Hz) of the outer race fault of the drive-end bearing.

As described in Figure 4-17, it is also difficult to find defect information
through spectral analysis in a low-SNR environment. In Figure 4-17 (a), while high
amplitude appears in the rotation frequency and harmonic component, it is difficult
to observe the peak related to fepro. It seems that there is a peak in the vicinity of the
2 X fepr (= 206.8 Hz) frequency; however, the peak’s value (204.9 Hz) has a
considerable difference, as shown in the zoomed figure. From the results of
averaging the spectrum of the 8th - 14th channels in Figure 4-17 (b), only a few shaft

frequency harmonics can be seen.

The low SNR is also a cause of this result, but this is because the rotation
frequency component strongly affects the whole frequency, so the algorithm mainly
responds to the shaft frequency. Therefore, LPNCC was analyzed by channel-wise
normalizing in order to consider the influence of the failure-related components
within each decomposed filter bank. As represented in Figure 4-18 (a), it can be seen
that the shaft frequency dominates all channels except for channels 8-12, which have
been influenced as much by other cyclic components, such as shaft frequency. This

result is more evident in channels 9, 10, and 11, as shown in Figure 4-18 (b).

Figure 4-19 shows that fspro can be detected through the channel-wise
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normalized spectrum analysis results of channels 9-11, extracted from the above
channel-wise normalized LPNCC-SES. In the case of 9th channel, the amplitude of
the normalized value of 1 X fgpro is 1, which shows that it appears clearly compared
to other signals, as shown in Figure 4-19 (a). In Figure 4-19 (c), fepro and its
harmonic components are detected in the 11th channel; however, they are slightly

masked due to their inherent weakness.

4.4.2.1.4. Case 3: Multiple Defective Signals

To validate the performance of the proposed method in the presence of multiple
defects, record 222 DE of the CWRU dataset is used in this case. This record was
originally created for diagnosing when a failure has occurred on a rolling element in
a 12k drive-end bearing. According to Smith and Randall [99], results for this data
record were classified as P1/Y2/Y?2 by three benchmark methods M1, M2, and M3.
However, the failure diagnosis result should be recognized additionally for an inner
ring failure, which is presumed to be brinelling, which neither M2 nor M3 are able

to diagnose [99].

The LPNCC-SES is plotted in Figure 4-20, where the highest spectral energy
clearly appears at the 11th channel. Furthermore, we are able to determine a detailed
result by examining the spectrum of LPNCC-SES in channel 11, as shown in Figure
4-21 Ball failure, which is originally intended, was diagnosed with the ball spin
frequency (fssr = 141.1 Hz) marked with an asterisk. In addition, an unintended fault
in the inner race was spelled out by fger (162.1 Hz) with square marks and 2X fgpri
with circle marks; further, their sidebands spaced at shaft speed (fs = 29.9 Hz) are

clearly seen.
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4.4.2.2. Experimental Data: Naturally Degradation Data

It can be challenging to analyze a set of data taken from the accelerated life test in
SNU-SHRM laboratory [104]. Detecting naturally occurring defects with
accelerated life testing is more difficult than detecting artificially-seeded defects
because of the increased uncertainty. If it is carried out successfully, it will be
possible to develope a failure prognosis technique in the future through quantitative

analysis results with continuously degradation data.

Test-bed setup is shown in Figure 4-22. An angular contact ball bearing (NSK
7202A) is used for accelerated life test with supported by two ball bearings (NSK
7205A) and two roller bearings (NSK NF207). The vibration of bearing is measured
on bearing housing using a tri-axial accelerometer (PCB, Model 356A15). The
temperature of test bearing is sensed by the thermocouple equipped on the bearing
outer race. The measured vibration signals were sampled at 10 kHz with 15 seconds
interval. At the end of the experiment, spall occurred on the inner-race. In each case,
the length and width measured by the laser microscope as shown in Figure 4-23.
Four tests were conducted under the same operating conditions, all of which stopped
due to spall on the inner ring, and each defect information and life information are

summarized in Table 4-3.

Even though tests were conducted under the same conditions, the size and life
of the samples showed a significant difference. Also, the size of spalls and lifespan
were not proportional, as shown in Table 4-3 and Figure 4-24. However, data
utilization was intended for early diagnosis of defects, so 100 observation points
were targeted in each case before the inspection was stopped. The results of

statistical features for 100 samples prior to the end of the test are depicted in Figure
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4-25. In all indicators except the crest factor, a sharp rise in amplitude was observed
as it got closer to the endpoint. However, in each case, a simple increase in energy
cannot be identified as a bearing failure, and it is challenging to set an alarm point
unless a threshold value is determined in advance. Therefore, as shown in Figure
4-26, by observing the amplitude of each frequency component over time through
the envelope spectrum, it is possible to track the deterioration of the bearing by
checking the growth of energy at the BCFs. However, it is still difficult to distinguish

the point that failure begins clearly.

Therefore, to confirm the point of the incipient fault appears, it is helpful to
normalize the envelope spectrum at the observed point in time to determine which
frequency components has energy concentrated over the entire frequency band. The
detection of bearing frequency by tracking the dominant frequency sequence change
over time can be physically explained as the initiation of cracks, spalls, or other
surface defects within the bearing that cause it to oscilate at a new natural frequency
and mode [105]. To confirm this, the envelope spectrum obtained through LPNCC-
SES for the second test was normalized, and the frequency components
corresponding to the peak points at each measurement point are shown in the Figure
4-27. The black dot marked the maximum 5 points, the blue circle marked the
maximum 3 points, and the last point with the most energy was marked with a red
asterisk. Through the trend analysis in the time domain of Figure 4-25, the dominant
frequency trend at the 60th point before stopping is concentrated in the harmonics of
the BCF, while a preset threshold is required to select the anomaly point. Through
this, it is possible to select a defect detection point that can be more physically

explained through a frequency change of the normalized envelope spectrum. The
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results of the normalized envelope spectrum of the proposed method and other signal

preprocessing techniques is discussed in more detail below.

The envelope spectrum was normalized with respect to the amplitude of the
frequency domain better to see the influence of the BCF. As a result, the dominant
frequency component at each sample point changes according to the lifetime. The
results of the envelope spectrum without preprocessing, the preprocessing with
wavelet denoising and CPW, and the spectrum extracted with LPNCC-SES were
compared (Figure 4-28 to Figure 4-31). In the case of LPNCCSES, since it is difficult
to extract the spectrum of a specific channel for each sample, the average spectrum

value of all channels except for the low-frequency channel was used.

Consequntly, the anomaly detection point could be seen more quickly and
clearly by LPNCCSES, especillay for bearing 4 (Figure 4-31). Furthermore, it is
robust against outliers from the result of the other method at sample point 42 of
bearing 2, an unintended horizontal line is seen due to outliers as shown in Figure
4-29. In all cases, wavelet denoising did not works well relatively for detecting
anomalies since other periodic components, i.e. deterministic component, making it
difficult to observe the BPFIs. As discussed in the previous chapter 3.3, it was
confirmed that the performance of wavelet denoising was lower than that of the case
without preprocessing. In the case of preprocssing by CPW, overall performance was
good in all cases. In particular, in the case of bearing No. 3 (Figure 4-29), the clearest
BPFI 1x (157 Hz) component separation compared to other methods can be observed.
However, while BPFI was clearly observed, sideband components were not observed
well. However, in the LPNCCSES results, sideband components were also observed

at the anormaly detection point around 40 points.
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Table 4-1 Summary of coefficients used in the numerical simulation.

Coefficients Values
Carrier frequency, fc 2500 Hz
Defect frequency, 1/t 160 Hz
Amplitude of carrier signal, 4. 5
Amplitude of shaft modulation, A 1

Shaft modulation frequency, f; 30 Hz
Initial angle of shaft frequency shift, 6, 0’
Damping coeftficient, ¢ 0.05

75



Table 4-2 Categorization of diagnosis outcomes [99]

Diagnosis Diagnosis Explanation

category  success

Y1 Yes Data clearly diagnosable and showing classic characteristics
for the given bearing fault in both the time and frequency
domains

Y2 Yes Data clearly diagnosable but showing non-classic
characteristics in either or both of the time and frequency
domains

P1 Partial Data probably diagnosable; e.g., envelope spectrum shows
discrete components at the expected fault frequencies;
however, they are not dominant in the spectrum

P2 Partial Data potentially diagnosable; e.g., envelope spectrum shows
smeared components that appear to coincide with the expected
fault frequencies

N1 No Data not diagnosable for the specified bearing fault; however,
other problems are identifiable (e.g., looseness)

N2 No Data not diagnosable and virtually indistinguishable from

noise, with the possible exception of shaft harmonics in the
envelope spectrum
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Table 4-3 Summary of SNU test results and defect size information

Life Time Defect Profile (um)
(Samples) L:length; W:width; D:depth

1 3,183 412
731
66
616
503
44
600
715
80
831
551
106

Test No.

2 1,536

3 3,634

4 1,873

UsrUsr-us-gsr
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Figure 4-1 Response of a simulated signal with resonance frequency, fc =2000
Hz, fundamental frequency fs = 30 Hz, damping ratio, ¢ = 0.05, characteristic
frequency (impulse) = 150 Hz, sampling rate = 12000 Hz. (a) raw signal, (b) DTFT,

(c) log-magnitude of DTFT, and (d) cepstrum
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Figure 4-22 Configuration of SNU accelerated life test rig
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Figure 4-23

Micrograph of spall on the inner ring surface
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Conclusions

5.1 Summary of Dissertation

This chapter presents a summary of the contents of this doctoral dissertation. To
effectively diagnose in the incipient fault stage of rolling element bearings (REBS),
with consideration of the vibration generation mechanism, two main research areas

were proposed: signal generation and feature extraction with a demodulation method.

In the first chapter, the motivation for this dissertation and the corresponding
research topics were introduced. Chapter 2 provides an overview of vibration-based
diagnosis, including an overview of the required he basic knowledge of REBs, the
characteristics of REB vibration, and various previously proposed vibration-based

diagnosis techniques.

Chapter 3 proposes a quasi-periodic impulse train model with impact force
function that can simulate a signal similar to the signal obtained during the incipient
fault stage of REBs in practical settings. First, the stochastic nature of REBs’ signal
was modeled as a pseudo second-order cyclostationary signal using the quasi-
periodic impulse train model. Second, the changes of Hertzian contact stress between

the rolling element and the races were modeled using the impact force function.
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Third, a synthetic signal was generated, including a pseudo second-order
cyclostationary signal (bearing), a deterministic signal (gear), a sinuous inference
signal (rotating shaft), and Gaussian white noise. Next, the characteristics of
proposed signal model were discussed, along with various signal preprocessing
methods. Finally, a signal model was proposed; the proposed model is well-suited
for simulating the vibration characteristics of REBs during the incipient fault stage
with numerical results. Further, through the research conducted, it was concluded
that an appropriate preprocessing technique, such as cepstral prewhitening (CPW),

is needed to accurately diagnose REB faults in the incipient stages.

Chapter 4 introduces a novel feature extraction method called linear power-
normalized cepstral coefficients (LPNCC) and also presents a new fault diagnosis
method by implementing LPNCC on the squared envelope spectrum (SES). This
approach was inspired by a speech recognition technique that is based on auditory
physiology. The process of this speech recognition technique is similar to the
vibration signal processing technique, which is based on the vibration generation
mechanism of REBs. The performance of the proposed LPNCC-SES method is
thoroughly validated and examined in this research through its application to both
simulation and real-world data. Of particular note, the proposed method was shown
to be successful in diagnosing REBs under low-SNR and various noise conditions,
where existing methods have failed. Additionally, using degradation data, the
LPNCC-SES approach was demonstrated to be effective for early diagnosis of
failures. These results confirm the promise of the LPNCC-SES method for the
diagnosis of bearings under noisy operating conditions in the incipient fault stage,

and expand the potential of cepstrum coefficients in this context.
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5.2 Contributions and Significance

Timely prediction of bearing faults is of great importance to efforts to minimize
unscheduled machine downtime in real-world settings. For successive diagnostics of
REBs, it is necessary to achieve deeper understanding of their physics and to find
more effective features in the measured data. This doctoral dissertation highlights
the possibility of improving diagnosis by proposing a signal model and feature
extraction and diagnosis techniques. This doctoral research offers the following

potential contributions:

Contribution 1: Reduction of the gap between the theoretical signals and the

actual signals of REBs

In this study, we examined the use of transient vibrations in rolling bearings as a
means of detecting incipient faults. We found that the signals generated by these
vibrations are non-stationary in nature; further, we determind that the signals are
characterized by cyclostationary and shock impulses that result from changes in the
contact stress of the rolling elements and inner/outer races around the defect. To
model these physical phenomena effectively, we attempted to combine the strengths
of the impulse train model and the dynamic model, two representative existing
methods of studying the bearing signal generation model. We derived a quasi-
periodic impulse train model with an impact force function to bridge the gap between
theory and reality. Simulation of faulty bearing signals was useful for evaluating new

diagnostic algorithms that were designed to identify specific features that may only
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appear under certain conditions. By using this approach, we were able to improve
our understanding of how fault symptoms are produced, particularly when non-linear
interactions are present. We validated our signal model by testing it with processing
synthesized signals using a signal preprocessing method and a bandpass filter, which
helped to further our understanding of bearing signals and explore the potential of
using them as reference signals. Overall, these simulations were valuable for
improving our understanding of faulty bearing signals and developing effective

diagnostic approaches.

Contribution 2: Development of a robust feature extractor that effectively

detects weak nonstationary bearing signals

As discussed in Chapter 3, the weak vibration signal emitted by bearings during the
incipient fault stage is often masked by background signals, resulting in limitations
to traditional denoising methods due to their inability to accommodate the
nonstationary nature of the signal. As a result of a comparison of wavelet denoising,
cepstral prewhitening, and the proposed LPNCC method utilizing actual data as
outlined in Chapter 4, it has been confirmed that the proposed method demonstrates
exceptional performance in the diagnosis of early defects in weak, non-stationary
rolling bearings. Specifically, for the CWRU dataset cases, the diagnostic potential
of the proposed method was demonstrated in instances where the compared
techniques have proven ineffective The effectiveness of the proposed approach for

incipient fault diagnosis within the SNU degradation dataset was also confirmed.
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Contribution 3: In-depth study of bearing defect diagnosis as a bridge between

physical behavior and observation

This dissertation presents a novel approach to signal generation and fault diagnosis
in rolling bearings, based on a deep understanding of the bearing vibration generation
mechanism. The proposed approach is designed to address the challenges posed by
the nonlinear relationship between the physical status and monitoring data, as well
as the uncertainties inherent in the simple but complex structure of these bearings.
Through the development of physics-based and data-driven techniques outlined in
Chapters 3and 4, this research demonstrates how an understanding of the physical
behavior and monitored data can inform the development of a suitable diagnosis
method. The proposed methods represent a significant advancement in the field of

bearing failure diagnosis, offering a valuable example for future research in this area.

112 = L



5.3 Suggestions for Future Research

This doctoral dissertation presents technical advances that have effectively
addressed some of the challenges in vibration-based fault diagnosis for rolling
element bearings (REBS) in the incipient fault stage. However, there are still several
research topics that require further investigation and development to fully realize the
potential of the proposed method. These areas of study include further improving the
accuracy and robustness of the proposed diagnostic approach, expanding its
applicability to different types of bearings and fault modes, and developing new
techniques for extracting and interpreting diagnostic information from vibration

signals.

Suggestion 1: Utilization of reference models for signal processing and machine

learning techniques

The proposed signal model is a valuable tool for the diagnosis of defects in rolling
element bearings. These bearings play a critical role in various industries and their
proper functioning is essential for the smooth operation of equipment and machinery.
However, detecting defects in these bearings can be challenging due to the
complexity of their structure and the non-stationary nature of the signals they
generate. The proposed signal model addresses these challenges by generating
signals with well-defined characteristics that can be used to train data-driven models
for accurate diagnosis and prognosis of defects during their incipient stage. This is

particularly valuable in light of the large amounts of data typically required for
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training these networks; this requirement makes it challenging to experience the
necessary number of defects needed to perform effective training. Thus, further
research and development of the proposed signal model has the potential to bring
about significant improvements in the efficiency and effectiveness of bearing

diagnosis and prognosis.

Suggestion 2: Foundation for constructing a digital twin

The ultimate goal of a digital twin is to optimize the operation of a physical model
by utilizing the full potential of engineering simulation technology [106-108]. This
requires accurately representing the dynamic response of the system and addressing
the inherent stochasticity and nonlinearity of real-world signals. By implementing
bi-directional data feedback between the model and the actual system, the model's
accuracy can be countinuously improved and the gap between theory and practice
can be reduced. However, since there are many difficulties in building an accurate
physical model of an actual system, building an appropriate equivalent model can be
the immediate goal. It is expected that some of these difficulties can be solved by
improving the signal model proposed in this study to better simulate the response of
the target system. The result will be a physical model that combines practicality with
state-of-the-art simulations, enabling optimal performance and maximizing the
benefits of the underlying technology. By continuously adapting the model to reflect
real-world conditions, a digital twin can serve as a powerful tool for optimizing the
operation of complex systems in a variety of industries, from manufacturing and

logistics to energy
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Suggestion 3: Automated and quantified optimal parameter selection

The proposed LPNCC-SES approach is a promising method for bearing diagnosis
under noisy operating conditions. It should be noted that the performance of the
proposed method depends on the setting of parameters of the LPNCC extraction
process, such as the power-law coefficient; thus, parameters should be optimized in
advance. In actual engineering applications, optimal parameter values can be set
empirically, otherwise, the initial values can be preset against white Gaussian noise
in general. In particular, the diagnosis of the proposed approach was found to be
successful in the case of low-SNR and various noisy environments two situations in
which the prior methods were found to have difficulty with accurate diagnosis. In
addition, the proposed approach was shown to be effective for early failure diagnosis
when applied to degradation data. However, it is needed for the proposed method
must manually capture the presence of the fault-related signature. For this reason, an
automated detection method that uses a quantitative metric should be incorporated

into the proposed method in future work.
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