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Abstract

Improved Probabilistic Design Process
for Advanced Air Mobility with

Technology Portfolio Assessment

Daejin Lim
School of Mechanical and Aerospace Engineering
The Graduate School

Seoul National University

Within the last several decades, breakthroughs in multiple disciplines of aircraft
technology and design have paved the way to the advent of a novel aircraft system
that is collectively referred to as advanced air mobility these days. Specifically, the
increasing maturity of electrified propulsion technologies is one of the most powerful
drivers for various configurations for advanced air mobility and its possible
operation in urban areas.

The novelty of advanced air mobility makes it difficult to use historical data

accumulated during over half of a century in the earlier design phase where



numerous iterative processes are carried out to derive design requirements and initial
sizing layout and information as a starting point of the design. Therefore, a physics-
based design approach is necessary for the initial sizing of advanced air mobility and
the conceptual design has become more significant. In efforts to derive a more
reliable and credible design for advanced air mobility, the improvements in two
primary tasks in the conceptual design phase were achieved with the use of the
statistical and probabilistic methodology in this study.

The first task is “technology assessment” to list up available technologies and
decide which technology portfolio could bring the success of aircraft development
with the maximum effectiveness and the minimum cost increasement. Presented is
an uncertainty-based technology portfolio assessment framework based on
mathematical formulations that are more realistic and practical in addition to taking
into account the interaction between technologies and uncertainties associated with
the impact of technologies and the surrogate model itself. This method possibly
enables elevating the level of knowledge in the conceptual design phase, which
eventually leads to a reduction of the number of iterative design feedbacks and
committed cost for the life cycle of the advanced air mobility.

The second task is “sizing” to obtain overall dimension and weight distribution
for the further design phases. Not only was presented a deterministic sizing
framework for advanced air mobility firstly, but uncertainties from physical
geometric parameters and simplified mathematical analysis modules were also

identified and imposed into the sizing framework with Monte Carlo simulation. The



expansion to uncertainty-incorporated sizing allows securing a proper buffer or
margin in sizing result, and allows understanding the system response to the
uncertainties in the earlier design phase, which makes decision-makers prepare for
the next design phase.

Both improved frameworks were demonstrated on a hypothetical advanced air
mobility of vertical take-off and landing configuration with full electric propulsion
system, respectively. The demonstrations showed the validity of the presented
frameworks providing ways for utilization and interpretation of their application
consequences. Both uncertainty-based frameworks for technology portfolio
assessment and sizing of advanced air mobility are platform-agnostic frameworks
that are applicable to various aircraft development programs. Hence, the base

philosophy of the frameworks can be shared broadly.

Keywords: Advanced air mobility, eVTOL, Conceptual design phase, Sizing method,
Multidisciplinary analysis, Technology portfolio assessment, Uncertainty-based
design, Uncertainty quantification, Model uncertainty

Student Number: 2017-27961

i N =



Table of Contents

ADSTFACT ... |
Table OF CONTENTS .....c.ooviiiiiiie e v
NOMENCIATUNE. ... VII
LIST OF FIQUIES ... XV
LISt OF TADIES ... XIX
Chapter 1 INtrodUCTION.........ccocii e e e 1
1.1. Background of the RESEArCh ........cccocveiiiiiiii i 1
1.1.1. Brief review Of & deSign PrOCESS ........ccoverrerierieieieinise st 4
1.1.2. Importance of conceptual design Phase...........cccceoeivriinireneneneieieeees 7
1.1.3. Primary tasks in the conceptual design phase ............ccoovvveneieicienen, 9

1.2. Previous studies concerning the primary tasks..........cccocovvvvveieiieiicsieciiennns 13
1.3. Motivation and 0DJECHIVES .........cceiiiiiiicece e 17
1.4. Outline of the diSSErtation ...........c.coirireiineeee e 18
Chapter 2 Formulation of Assessment and Design Framework....................... 19
2.1. Technology Portfolio ASSESSMENT.........ccciiveiiiiiie e 19
2.1.1. OVETall PrOCESS. .....ccueiiiiiieieeie et 19
2.1.2. Impact of Technologies in System Level ..........cccoovviivvineniniiceenn, 22
2.1.3. Technology Compatibility & Interaction ............cccocvvvvvivninineiccnnn, 25
2.1.4. Technology Portfolio Effect............ccooiiiiiiiiiiie e 29
2.1.5. Evaluation by Surrogate Model...........cccocoioiiiiiiiiiiiiee e 32
2.1.6. Selection by EffeCHIVENESS .........ccvviiiriiiieee e 34

2.2. Sizing Framework for Advanced Air Mobility ..........ccccccooveviiiiiiiincen, 37



2.2.1. Overall Process and DesSCHpLioN .........ccccvvvivevieiniiee e se e 38

2.2.2. Rotor Aerodynamic MOdEL..........cocooiiiiiniiecin e 41
2.2.3. Wing and Fuselage Aerodynamic Model...........ccccoovvviininencncicnnn, 45
2.2.4. Electric Propulsion System Sizing Model............cccoovvveviiviiiniee, 48
2.2.5. Weight Estimation Model ...........ccccoveieiiiiieice e 56
2.2.6. Cost Estimation Model............coooiiiiiiiiicee e 60
2.2.7. NOISE MOUEL ... 67
Chapter 3 Uncertainty ENVIFONMENT...........cccoveiiiiiiicie s 71
3.1, Types Of UNCEIAINTIES .....ccveiviiiciiie e 71
3.1.1. Aleatory UNCErtaiNty .........cceieieeieieeicsie ettt 72
3.1.2. EPiStemiC UNCEIAINTY .......ccveieiiiiriiiie s 73
3.1.3. Other UNCErtaiNties ..........ccceveieiiiiisesieneeseeeees s 74
3.1.4. Effect Of UNCEItaINtIES .........occoviviiiriiiieiieeeesee s 75
3.2. Uncertainties in Technology Portfolio Assessment Process........c..ccceveuee. 76
3.2.1. Uncertainty in technology impact and interaction factor ...................... 76
3.2.2. Uncertainty in surrogate model ............ccocoreiiiiiniiiininee e 82
3.3. Uncertainties in Conceptual Design FrameworK............cccocoveveeieie e, 85
3.3.1. Uncertainty in physical parameter variant.............ccoccoceverirecnnnneennnn 85
3.3.2. Uncertainty in simplified analysis Models ............cccccovvvnininiicicnnnn, 86
3.4. Uncertainty Propagation: Monte Carlo Simulation............c.ccccovevveveivennnne 93
Chapter 4 Method Implementation .............ocooeiiiiienie e 97
4.1. Uncertainty-based Technology Portfolio Assessment for eVTOL .............. 97
4.1.1. TeSt BEd BVTOL ..ottt e 98
4.1.2. Technology 1dentification ..........c.cccccvvevevieiiiciieir e 101
4.1.3. Technology IMPacCt.........cccveiiiiiieiecece e 103



4.1.4. Generation of Technology Portfolio Candidates..............cccccevevrennnne. 106

4.1.5. Technology Portfolio EFfeCt..........c.coviiieiiiiiiicceec 108
4.1.6. Surrogate Model CONSLIUCTION ........covveirerieieisiseee e 109
4.1.7. Evaluation With MCS ...........ccooiiiiiii s 114
4.1.8. Selection by EffeCtiVENESS ......ccccvevvieiieiececce e 116

4.2. Sizing of eVTOL under uncertainties in conceptual design....................... 135
4.2.1. TeSt BEA EVTOL ..ot 135
4.2.2. Uncertainty 1dentification...........c.cccccoveveiiiiiiiiiie e 135
4.2.3. MICS PIOCESS ...veeivieeeirieiiieeesireesiaeesteeessteesteessteeesnbeeesaaeesnaeesbeeesnbeesnees 138
4.2.4, SENSITIVILY STUAY ..c.vocvvcicie e e s 139
4.2.5. Hover Performance ANAIYSIS........cccooriieieiieiiiininise e 151
4.2.6. Sizing for Mission FIgt...........ccooiiiiiiiieee 163
Chapter 5 CoNCIUSION .......ccooieiiiecc e s 174
5.1 SUMIMAIY ittt et e e srae e snte e st e e snreeennes 174
5.2. Originality and ContribULION .............cooiiiiiiiiicc e 177
5.3. Future Work Recommendation ............ccoceoereieeiniiinenese e 180
RETEIEINCES ...t 183
T T s 197

VI 2] r



Symbols

a

Alt

AR

Nomenclature

element of TIM

speed of sound

rotor disk area

alternative candidate

aspect ratio

element of TCIM

chord length

cost parameter

battery capacity

3D drag coefficient

2D drag coefficient

3D lift coefficient

3D lift coefficient curve slope
2D lift coefficient

2D lift coefficient curve slope
coefficient for equivalent plat plate area
power coefficient

thrust coefficient

yearly operational days

Vil



fﬁd

aw

Lrod

element of TPEM

Oswald factor

expectation operator

battery energy capacity

Prandtl’s tip loss factor

equivalent flat plate area

adjustment factor

gross weight

current

correction coefficient for zero lift drag influence
correction coefficient for Mach number influence
correction coefficient for fuselage influence
rod length

usable discharge cycle of battery

effective lift to drag ratio

Mach number

the number of rods

the number of rotors

the number of samples

the number of tilt actuators

load factor

the number of blades

Vi



me

me

Rrod

RTOL’OT’

Sref

SEbat
S1

SP

root mean squared sound pressure for loading noise
root mean squared sound pressure for thickness noise
power

rotor torque

nondimensional spanwise location of rotor blade
system response of interest

supporting rod radius

rotor radius

system attribute

reference area

wing area

specific energy of battery

sensitivity index

specific power

element of TPM

supporting rod thickness

technology symbol

maximum airfoil thickness ratio

rotor thrust

rotor blade twist variant

freestream speed

rotor tip speed



Greek letters

a

Attt

aWinc

weight factor for effectiveness calculation
weight

guantity of interest

relaxation factor for gross weight convergence
scale parameter for Weibull distribution

tilt angle

wing incidence angle

rotor twist angle

Prandtl-Glauert parameter

shape parameter for Weibull distribution
battery discharge C-rate

interaction factor

efficiency coefficient

ratio of 2D lift curve slope to 2r

correction factor for technology improvement
taper ratio

rotor inflow velocity ratio

sweepback angle

mean or expectation

skewness coefficient



Qrotor rotational speed of rotor

[0} induced angle of attack
I1 product operator

Pair air density

DProd rod material density

o standard deviation

o2 variance

OR rotor solidity

> summation operator

0 collective pitch angle
6 model uncertainty parameter
Subscripts

avionics avionics system

bat battery

BL baseline

ht horizontal tail

inv inverter

max maximum

mot motor

out output

rotor rotor

Xl



unit

vt

Abbreviations

ANOVA

BEMT

BET

CDF

Ccov

DOC

DoD

DOE

EASA

EE

EIS

EP

EPS

eVTOL

FAA

FH

FM

unit
vertical tail

wing

Analysis of variance

Blade element momentum theory
Blade element theory

Cumulative distribution function
Coefficient of variation

Direct operating cost

Depth of discharge

Design of experiment

European union aviation safety agency
Economic effectiveness

Entry into service

Economic parameter

Electric propulsion system

electric vertical take-off and landing
Federal aviation administration
Flight hour

Figure of merit

Xl



GW Gross weight

LHS Latin hypercube sampling

MCS Monte Carlo simulation

MLP Multilayer perceptron

NPP Normal probability plot

OASPL Overall sound pressure level

PDF Probability density function

PE Performance effectiveness

PP Performance parameter

RDT&E Research, development, test, and evaluation

RISPECT+ Rotorcraft initial sizing and performance estimation code and
toolkit plus

RPM Rotational per minute

RSM Response surface method

SE System effectiveness

SoC State of charge

SPL Sound pressure level

TCIM Technology compatibility and interaction matrix

TCM Technology compatibility matrix

TIM Technology impact matrix

TMS Thermal management system

TPEM Technology portfolio effect matrix

X1l A =T}



TPEV

TPM

TPV

TRL

VLM

Technology portfolio effect vector
Technology portfolio matrix
Technology portfolio vector
Technology readiness level

Vortex lattice method

XV



Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig
Fig
Fig
Fig
Fig

Fig

List of Figures

1.1. the electric VTOL wheel of fortune (Modified and updated from Ref. [1])2
1.2. Representative aircraft development process (reproduced from Ref. [2].
Courtesy of J.LH. MCMASLETS [6]) ..eoveerveeriieiieiiieiie e eieesiee st 4
1.3. Cumulative percent of life cycle cost by the development phase [9].......... 8
1.4. Objective and three pillars of the conceptual design phase .............ccceeunene 9
2.1. Overall technology portfolio assessment Process .........c.ocevveriveriveereenenn. 21
2.2. Notional technology impact MatriX.........ccecererieeierieeninesie e 24
2.3. Notional technology compatibility and interaction matrix ...........cc..ceeuee. 26
2.4. Schematic diagram for interactional effect between technologies............ 28
2.5. Notional technology portfolio effect matrix .........ccccevvvevieiiiieniienienn, 31
2.6. Process of building the surrogate model.............cocooveniiiiiiniinciie 33
2.7. Notional plot of effectiveness and investment cost (Modified from Ref.
[10T) ettt 36
2.8. Design process of RISPECT+ (Modified from Ref. [19]).......cccccvveinnenen. 40
. 2.9. Rotor blade parametrization for blade element theory............c.ccccoevvennene 41
. 2.10. Comparison of XV-15 rotor in hover (Reproduced from Ref. [19])....... 44

. 2.11. Comparison of XV-15 rotor in tilt mode (Reproduced from Ref. [19])..44
. 2.12. Equivalent flat plate area trend history (Reproduced from Ref. [57])....46
. 2.13. Comparison of lithium batteries depending on chemistry [64]............... 51

. 2.14. Vehicle cost estimation in AC? (Modified from Ref. [47]) ccccovvveeernnans 64

v 2] 1



Fig. 2.15. Schematic diagram for rotational noise (Modified from Ref. [48])........ 68

Fig. 2.16. A-weighting response function [48]......ccccccvveiirririeninienie e 70

Fig. 3.1. Notional probability density function (left), and cumulative density
TUNCLION (TIZNE) ..+ 72

Fig. 3.2. Uncertainty effects on an output quantity of interest (Modified from Ref.

34 et 75
Fig. 3.3. Uncertainty forecast (reproduced from Ref. [10]) ....covvvviiiiniiiniiiinnnnnnn 78
Fig. 3.4. Variability of impact factor depending on TRL (Positive impact)............. 80
Fig. 3.5. Variability of impact factor depending on TRL (Negative impact) .......... 80
Fig. 3.6. Schematic of surrogate model and its uncertainty ..........c.ccoeevreeervrnereene 83
Fig. 3.7. Model uncertainty parameter calculation [91]........cccvviiiiiiiiiniciininnnn 87
Fig. 3.8. Model uncertainty parameter in BEMT method (hover mode)................. 89
Fig. 3.9. Model uncertainty parameter in BET method (tilt mode)..............cc........ 89

Fig. 3.10. Representation of LHS probable intervals for parameter input space

SAMPLING [27] 1ottt 94
Fig. 3.11. Schematic diagram of MCS ..........cccoiiiiiiiinic e 95
Fig. 4.1. Baseline eVTOL concept (left: VTOL mode, right: cruise mode)............ 99
Fig. 4.2. Mission profile schematic used for the baseline eVTOL sizing ............... 99
Fig. 4.3. Technology impact matrix with theoretical limit.........c..cccoovrivervninneennn. 105
Fig. 4.4. Technology compatibility and interaction matrix (TCIM)............cocee.e. 107
Fig. 4.5. Technology portfolio matrix (TPM)........ccovriveriniiniiinereeene e 107
Fig. 4.6. Technology portfolio effect Matrix .........cccoveveiiviiinieesie s 108

3§ 53 17
XVI AT g LH



Fig. 4.7. MLP model architeCture............ccoveiieiiiiieiieieceeeeeesee e 110

Fig. 4.8. Schematic diagram of MC dropout [115] ....c.ccooviviiiiinienneeenecee, 111
Fig. 4.9. Cross validation of MLP surrogate model with confidence interval by MC

ATOPOUL ... ne 113
Fig. 4.10. Monte Carlo simulation process for technology portfolio assessment . 115
Fig. 4.11. 3D scatter plot of the PE, EE and RDT&E cost........ccccevinviiciinienns 118
Fig. 4.12. Overview of EE-PE plot ......cccoiiiiiiiiie e 119
Fig. 4.13. Desirable-quadrant-enlarged EE-PE plot...........ccccoiiiiiniiiiiiiiennns 120
Fig. 4.14. MCS scatter of EE-PE plot.......cccoooiiiiiiiiiiieeeie e 122
Fig. 4.15. Overview of RDT&E-PE plot.......ccccvviiiiiniiiineee e 123
Fig. 4.16. Desirable-quadrant-enlarged RDT&E-PE plot.........ccooeviiviiiiinnenn. 124
Fig. 4.17. MCS scatter of RDT&E-PE plot without model uncertainty................ 126
Fig. 4.18. MCS scatter of RDT&E-PE plot with model uncertainty..................... 126
Fig. 4.19. Overview of RDT&E-EE plOt.......cccccvoiiiiiiiiiiii e 127
Fig. 4.20. Desirable-quadrant-enlarged RDT&E-EE plot..........ccoceeiiviiiiinnnn. 128
Fig. 4.21. MCS scatter of RDT&E-EE plot without model uncertainty ............... 129
Fig. 4.22. MCS scatter of RDT&E-EE plot with model uncertainty .................... 129
Fig. 4.23. Desirable-quadrant-enlarged RDT&E-SE plot.......ccccooveviiieiinennene. 130
Fig. 4.24. MCS scatter of RDT&E-SE plot with model uncertainty. .................... 131
Fig. 4.25. Monte Carlo simulation process for SIZing ..........c.cccoevrveereriernnenieenne. 138
Fig. 4.26. Sample number test results: eXpectation...........oevvvevrvreereneerenenieennes 140
Fig. 4.27. Sample number test results: standard deviation............c.ccevcvvrerviieennnns 140

XVII A 2]



Fig. 4.28. Correlation between 2,ot0rs tWrotors @A Protor ceemeeemeemivemimesinaneens 143
Fig. 4.29. Sensitivity study result of DoDy;, by rotor parameters ..............c...... 144
Fig. 4.30. Sensitivity study result of DoDy;;, by electric propulsion parameters 146
Fig. 4.31. Sensitivity study of OASPL,q, by rotor parameters..........cccvvereene. 149

Fig. 4.32. Distribution of performance indices with the parametric uncertainty in 10

minutes hover flIght ..o 154
Fig. 4.33. NPP of output quantities of interest ...........cccecerrerreeneeniinnieniesieenene 158
Fig. 4.34. COV variation by forward propagation of uncertainties...............c....... 159

Fig. 4.35. Probability box of performance indices with the parametric and model

uncertainty in 10 minutes hover flight..........cccoccooeiiiiiiiis 162
Fig. 4.36. Transportation mission profile ...........cccoccriiriiiiiniiiinienie e 163
Fig. 4.37. Required power and energy during the miSSion...........cccevrerivernseennens 167
Fig. 4.38. Weight breakdown and histogram of sized eVTOL.............cccccvrvrnnn. 170
Fig. 4.39. Histogram of parametric uncertainties by gross weight variation ........ 173

7 e |
XV Al =-TH



Table 2.1. Specification of electric motors for aviation application..............c.coc.... 53
Table 2.2. Key parameter values used in vehicle cost estimation ...............ccceveenee. 63
Table 2.3. Key parameter values used in operating cost estimation..............c........ 66
Table 2.4. Symbols for rotational n0iSe eqUALIONS ........ccceveerierieriiiieie e 68
Table 3.1. SAIC Modified TRL description [10] .....cccoeveeviiniinniniiiiieiieeieesiee e 77
Table 3.2. Expectation and interval of 6, ey and Opy per cvvvevervvennniinns 88
Table 3.3. Expectation and interval of chawing ..................................................... 90
Table 3.4. HCLawing for different wing configurations (data from Ref. [55]) ........ 91
Table 4.1. SiZing aSSUMPLIONS ....cc.vervirieiieriieiestesee et eneenne s 100
Table 4.2. Baseline eVTOL design SUMMArY ...........ccooverereeiernineenenene e 100
Table 4.3. Identified technology list.........ccceviiiiiiiiiieee e 102
Table 4.4. System 1eSponses Of INLETESt........ccvvvvreeriieeieneeeese e 110
Table 4.5. Parameters for effectiveness calculation for the project............c.cceuee 117
Table 4.6. Summary of the desirable solutions from the various effectiveness plots
............................................................................................................. 133
Table 4.7. List of parametric uncertainty of eVTOL and fixed parameters........... 137
Table 4.8. Parametric uncertainty of the base eVTOL in hover flight................... 141
Table 4.9. Sensitivity study result of DoDfip vevvvreinnnnniiiinsns 147
Table 4.10. Sensitivity study result Of OASPL gy oveieeeiiieiiieaiinesiiesieesiesieeneens 150
XIX A 2]

List of Tables



Table 4.11. Hover flight condition ............ccoovriieiieiie i 151

Table 4.12. Statistical values of the performance indices in 10 minutes hover flight

........................................................................................................... 155

Table 4.13. Parametric uncertainty of the base eVTOL in mission flight............. 164

Table 4.14. Required power and energy during the mission ...........cccoceerevrriveenneene 166
5 by

XX A=



Chapter 1

Introduction

1.1. Background of the Research

Aircraft design is a sophisticated, complicated, and iterative process in nature
from concept sketches to a complex integrated system. It is a distinct discipline in
aerospace engineering such as aerodynamics, aeroacoustics, structures, propulsions,
controls, and weight and balance. Aircraft design involves all these disciplines
together communicating with each other to reach a common goal for a designed
aircraft. As the aircraft system itself has become more complex, which is a
consequence of desiring higher and better performance, the design process has also
become systematically well organized. Nowadays, the organized design process has
been continuously evolving to accommodate evolutionary or revolutionary aircraft.

Within the last several decades, breakthroughs in many disciplines pave the way
for the advent of a novel aircraft system that is collectively referred to as advanced
air mobility these days. Among the breakthroughs, the electrified propulsion system
using electric motors is one of the most powerful drivers to result in various
configurations for advanced air mobility and possible operation in urban areas. Some
examples of the exclusive configurations of advanced air mobility are shown in Fig.
1.1 [1] where multiple vertical rotors and wing systems for the electric vertical take-
off and landing (eVTOL) can be seen. Their own operational characteristics include

relatively lower flight altitude, shorter flight range, flying over crowded residential



area, and a greater number of vehicles in restricted airspace compared to

conventional aircraft.
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Fig. 1.1. the electric VTOL wheel of fortune

(Modified and updated from Ref. [1])



The representative design process for the aircraft starts with settlement of system
requirements, concept study, and conceptual design for the targeted aircraft. There
are several difficulties in designing advanced air mobility. Firstly, to bring future
aircraft system into reality, technological drivers are needed to be identified
satisfying target performance and requirements. Another difficulty is a design of
advanced air mobility itself. Since available design knowledges and information are
little in the earlier design phase, empirical methods based on historical data and
experience are usually used for the tasks. However, it is a little bit difficult and
sometimes impractical to apply historical data accumulated over half a century to the
design of advanced air mobility due to its exclusive configurations and unique
operational characteristics. Hence, a physics-based design approach is necessary for
the initial sizing of advanced air mobility, and the conceptual design phase has
become crucial to designing credible advanced air mobility from a given set of
design requirements. In addition to them, during the procedure, it is also necessary
to identify uncertainties in the system and process, to analyze and understand their
effect on the tasks since there is little information on the system response as
mentioned before. From a brief review of the conventional design process and
descriptions of the primary tasks in the conceptual design phase, primary tasks-

related studies for advanced air mobility and their limitations follow.



1.1.1. Brief review of a design process

The representative aircraft development process is shown in Fig. 1.2 [2] where
major steps and their relationship are presented. The complete process can be divided
three processes: requirements draw, system design, and manufacturing and testing.
The system design process is usually broken into the conceptual design phase,
preliminary design phase, and detail design phase. The level of complexity, maturity,
and information of the system keeps increasing as the design phases progress.
Among the three design phases, this paper focuses on the conceptual design phase
and brief reviews of each step are described in the following sections. Details of the

design process can be found in several design materials [2—5].

* Research
* Market/Operations Analysis
» Customer Requirements

I >|  SPECIFICATION
Configuration |
Development CONCEPTUAL DESIGN
f >| PRELIMINARY DESIGN
. SALES
Detal Q EFFORTS
Design DETAIL DESIGN
I FLIGHT TEST
Product I
Support OPERATIONS |
I
GROWTH VERSIONS J

Fig. 1.2. Representative aircraft development process
(reproduced from Ref. [2]. Courtesy of J.H. McMasters [6])
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System requirements (Pre-conceptual design)

As part of the aircraft design process, the very first step is to draw and confirm
the top-level requirements, which will act as guidelines, objectives, and constraints
during the design phase. The sources of requirements are diverse including market
customers, aircraft operators, governments, and airworthiness regulations. The
mission profile, performance capability, and the restriction of dimension are three
examples that can be obtained by conducting market research, interviewing potential
customers, and researching technology development. Sometimes, this phase is
merged in the early stage of the conceptual design phase because the adequacy and
properness of some of the requirements can only be evaluated by objective numbers

obtained through a quick drawing, trade-off study, and initial sizing.

Conceptual design phase

Based on the established design requirements, the conceptual design phase is
initiated. The ultimate goal of this phase is to generate a baseline design that meets
and outdoes the requirements. The baseline design encompasses a proof of concept,
overall dimension, geometry and arrangement of major components, weight
distribution, flight performance, cost information, or a list of applied technologies.
The most critical aspect of the conceptual design phase is to reflect the interactions
between as many components as possible and across all disciplines, rather than to
result in detailed information for a certain component. The baseline design does not

need to be optimized, but it would be better to optimize it at the conceptual design



phase. As a result of the conceptual design phase, some of the design characteristics
and arrangement of the aircraft are set to be frozen after a successful system design
review process. Since the obtained baseline information is the starting point of
further design phases, it is necessary to incorporate technical risks and evaluate the

possibility of failure as much as possible during all the tasks in this phase.

Preliminary design phase

In the preliminary design phase, attention is shifted away from the top system
level (the aircraft itself) to the subsystem level in different disciplines, while
pursuing higher-level details and sophistication. It is the goal of this phase to
elaborate on the component design prior to moving on to the detail design phase.
Validation of the sophisticated design is conducted at this stage before reflecting
“real-world” aspects such as attachment parts, gap sealing, and joint connections

which are considered in the detail design phase.

Detail design phase

In the detail design phase, the actual component design with the highest level of
detail is carried out. The components are prepared for manufacturing, assembly of
subsystems, and building of the aircraft as a whole. Tests are conducted in real
compartments. After the detailed design phase, production of the aircraft begins with
making production tooling and the aircraft is delivered to customers after completing

flying tests and getting certification from related regulatory authorities.



1.1.2. Importance of conceptual design phase

Complex aeronautical systems are typically developed with a long timeframe
from concept study to entry into service (EIS), followed by a long operational life
cycle. They usually are some years in the design and manufacturing process, several
years in the certification process, and a couple of decades in operations before getting
disposed of. For example, UH-60 Blackhawk took 9 years and AH-64 Apache took
14 years from the initiation of the program to its first deployment, respectively [7].
The averaged timeframe of Airbus and Boeing airliners is 6.5 years [8]. This implies
that the conceptual design phase precedes much earlier before the date of EIS.

Though all of the phases in the design process are important, the conceptual
design phase is particularly significant since it is the first step of aircraft design in
which a blueprint layout of the target aircraft configuration is determined. This then
serves as the basis for the rest of the process. Quantitatively, the importance of the
conceptual design phase is usually presented by the impact on the life cycle cost of
the aircraft. Fig. 1.3 shows a well-known relationship in system engineering:
cumulative percent of the life cycle cost according to the development phase [9].
There are three lines in the figure: a solid line for “Cost committed”, a solid bold line
for “Cost expended”, and a dashed line for “Ease of change”. As can be seen in the
figure, almost 80% of life cycle cost have been committed before the end of the
design and development phase with a very small amount of expended cost. 70% of
the life cycle cost is even committed at the first development phase where

conceptualization, or conceptual design, is conducted. Since the level of “ease of



change” decreases exponentially as the development progresses, the cost of change
for faulted design drastically increases like the butterfly effect. Suppose that flaws
are discovered in the later design phase, manufacturing or test phase. The later flaws
are discovered, the larger amount of expended endeavors, labors, and budgets
become meaningless. Moreover, similar processes are reduplicated again to fix the
flaws or redesign. These tragic situations must lead to an unexpected rise in research,
development, test, and evaluation (RDT&E) cost, an increase of the acquisition cost
of the aircraft, and a delay of the date of EIS. A development program failure may
also be the result. This phenomenon is shown with the centered arrow line displaying
exponential increases in cost to fix problems. In short, decisions made in the early
stage have a significant impact on the future output, so that the conceptual design

phase is relatively much more important than others.
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1.1.3. Primary tasks in the conceptual design phase

As mentioned earlier, the ultimate goal of the conceptual design phase is to
generate a baseline concept including overall dimension, layout and weight
distribution. To this end, there are two traditional tasks and an emerging task. The
two traditional tasks are “technology assessment” and “sizing”. A task that has
emerged during the past several decades is to incorporate the uncertainty effect into
traditional tasks in order to reduce the likelihood of failure occurring in the later
design phases and the number of design feedbacks for fixing defects or flaws. They
are three pillars for the conceptual design as shown in Fig. 1.4.

Diameter Req.

Baseline concept
with overall layout
and weight distribution
to meet the top-level requirements

Component

Technology portfolio Aircraft Encompassing
assessment sizing uncertainty effect
Traditional Task Emerging task

Fig. 1.4. Objective and three pillars of the conceptual design phase
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Technology assessment

One of the most challenging works in the conceptual design phase is to list up
technologies available and decide which technologies will be selected for the aircraft
system development to meet the top-level requirements. Technologies in the shortlist
should be assessed with respect to performance improvement, economic benefits,
safety augmentation, reliability, operational aspect, environment compatibility, etc.
The goal of this task is to identify and select technologies that could derive the most
effective solution. As mentioned earlier, the conceptual design precedes much earlier
before the aircraft appears and aviates in the real world. At the time point when the
aircraft shows up, the customer requirements and expectations for aircraft
performance, also referred to as voice of customer, are usually higher than
performance that could be achieved by up-to-date fully mature technologies at the
time point when the conceptual and preliminary design phase is progressing. As a
result of not reaching the target performance indices, the aircraft has no choice but
to become obsolete faster than its competitors in the market. Therefore, if a design
is to be built in the distant future, an assessment of all possible technologies including
emerging and immature ones should be conducted to satisfy system requirements
from customers, or feedback to the system requirements phase for relaxation of

design requirements.
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Sizing and layout determination

Sizing is the most important task in the conceptual design phase. It could be said
that sizing is “Alpha and Omega” of the conceptual design. From Ref. [3], sizing is
described as follows.

“Sizing literally determines the size of the aircraft, specifically the weight that

the aircraft must be designed to so that it can perform its intended mission

carrying its intended payload [3].”

As results of sizing process, the designer can reach the answer to the question of
how big and heavy aircraft should be designed for conducting the required mission
profile. The answer to “how big” is the overall layout and dimensions of components
and the answer to “how heavy” is the weight distribution of the targeted concept
configuration. These questions can be answered by simply looking at historical data
or by analysis through physics-based methodologies in different disciplines. In the
case of advanced air mobility, however, the second approach is more appropriate
because the revolutionary design concept makes some parts of the historical data less
applicable. Hence, the candidate design concept configuration is sized iteratively
with consideration of the interaction between multiple disciplines such as
aerodynamics, propulsion, stability and control, and weight engineering. Used
design tools and analysis techniques are usually semi-empirical data or simplified
mathematical models that have low or middle fidelity to enable quick and fast trade-
off studies. Their prediction errors are typically around 5~10% when compared to

data from high-fidelity tools, wind tunnel tests, or flight tests. [2].
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Encompassing uncertainty effect

In addition to the two traditional primary tasks, another emerging important task
is examining the effect of uncertainty on the results of the conceptual design phase.
As can be seen in Fig. 1.3, decisions made in the conceptual design have a significant
impact on the life cycle cost and the following procedures, so that a proper margin
or bumper is needed. Traditionally, a constant factor that is usually referred to as a
safety factor or safety margin is applied to secure the bumper area in the design space.
However, the traditional method has limitations in the determination of the safety
factor for which how much it should be, and therefore, the possibility of “over-design”
or “under-design” owing to the inappropriate safety factors. Historical data is not
often appropriate for the design of advanced air mobility since the configuration and
system architectures are significantly different from conventional aircraft. The
uncertainty quantification process in the conceptual design is an aspect of growing
concern with regard to deciding on appropriate safety factors. The advancement in
computational analysis speed and probabilistic methods enable uncertainty
quantification that requires demanding computational resources and time. Through
the uncertainty quantification process in the conceptual design phase, it could be
achieved a reduction of the number of iterative processes within the conceptual
design and between later design phases, and finally increase in the possibility of the

success of the aircraft development program.

-l -.-
12 N =



1.2. Previous studies concerning the primary tasks
Focusing on the primary tasks of the conceptual design phase, many previous
studies have been conducted. They are presented here as well as briefly summarized,

along with their values and limitations.

Technology assessment

The several frameworks for helping to investigate technology impact have been
developed through decades with similar objectives [10-18]. Research teams from
Georgia Tech browsed available technology portfolios and evaluated their impacts
on various aerospace systems [10-12]. Recent research from other institutes
proposed a framework for technology portfolio selection with their own philosophy
[13—16], or assessed a specific technology impact on the aircraft systems [17,18].
They all have paved the way to assessing single technology or technology portfolios,
but also have limitations in the perspective of realistic validity.

To the authors’ best knowledge, the previous studies calculated an accumulated
effect of multiple technologies with an additive approach by linear algebra using a
matrix inner product. Although the additive approach provides easy and fast
calculation during the process of collecting multiple technology effects, one of the
issues with the simple summation is that unrealistic situations might occur with the
violation of physical limits. Suppose two technologies are independent of each other
and are expected to reduce component weight by over 50%, respectively. The

additive approach results in a reduction of component weight by over 100%, giving
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a zero-mass or negative-mass situation. The further issue is that the non-linear
interaction effect between technologies could not be reflected in the additive
calculation. When comparable technologies that have an effect on the same system
attributes are applied simultaneously, the resultant effect could be amplified or
undermined when compared to a single technology-applied scenario. One of the
previous studies [11] presented an improved calculation method by adopting
correction factors named as technology synergy matrices, but the fundamental was
still based on the additive approach.

In the perspective of uncertainties, the previous studies assumed the precise
impact of technologies on aircraft system [11] or adopted probabilistic approaches
only for the impact of technologies considering their own uncertainties [10,12—18].
Nevertheless, in reality, the uncertain parameters prevail in the other sections such
as aircraft geometry, operational conditions, physics-based design tools, and even
surrogate mathematical models. The analysis and design tools that are used in the
earlier design phase have more uncertainties than those used in the detail design
phase because of the compromise between their calculation time and analysis
fidelity. In particular, surrogate mathematical models that are usually used for the
propagation of uncertainties are an inevitable source of uncertainty during the
process. However, the uncertainty from the surrogate mathematical models was

excluded in the previous studies.
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Sizing for advanced air mobility

After the advent of the advanced air mobility concept enabled by rapid
improvement in electrified propulsion technology and concerns for environmental
issues and sustainability of transportation systems, a lot of studies for the sizing of
future aircraft with different electric propulsion systems have been conducted [19—
30]. However, most of them specifically focused on integrating electrified propulsion
systems into a conventional fixed-wing layout without considering various
configurations and architectures. In addition to that, only few studies considered and
analyzed the uncertainty effect on the performance of the aircraft, and most of them
presented deterministic evaluation and sizing methods, so that sizing results were
provided by scalar values for a fixed set of input parameters: for instance, gross
weight of 5600 pounds., the rotational speed of the rotor of 1300 rotation per minute
(RPM), and required battery energy of 120 kWh.

The first limitation that constrained applicability of the method depending on the
configuration and propulsion architecture of the advanced air mobility was resolved
by Ref. [19-21] where a generic conceptual design methodology that is applicable
to various types of the advanced air mobility was developed by presenting four
essential analysis modules.

However, the second limitation that the deterministic sizing methods were used
is not addressed relatively much in the perspective of system responses, especially
in the sizing of advanced air mobility. It’s hard to find uncertainty quantification

studies on the sizing of the advanced air mobility in the conceptual design phase.
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Many uncertainty-related studies for the aircraft dealt with uncertainties in a specific
discipline such as operational situations [31], computational aecrodynamic analysis
[32,33], acoustics [34,35], tracking and localization [36,37], emissions [27], and
structural responses [38,39]. Although they are also necessary studies and milestones
for the success of advanced air mobility, uncertainty quantification in the perspective
of flight performance and sizing is required for a reliability-based design. Moreover,
similar to the situation in the technology assessment category, uncertainties from

simplified analysis models used in the conceptual design phase should be considered.
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1.3. Motivation and objectives

Reviewing previous studies and the importance of technology portfolio
assessment and sizing for advanced air mobility, it is evident that the assessment of
a technology portfolio with an improved mathematical formulation and
incorporation of diverse uncertainties is worth pursuing. They are needed to avoid
unphysical simulation situations and to obtain the most probabilistically promising
technology portfolio. Furthermore, when conducting the sizing process, it is
imperative to consider the uncertainty effect to achieve reliability-based sizing and
design. Since one of the most promising applications and uses of advanced air
mobility is a transportation service in urban areas where the ramifications of
accidents during operation are far more serious, the reliability of advanced air
mobility is a substantially essential factor.

Thus, this study attempts to present improved methodologies for technology
portfolio assessment and sizing of advanced air mobility under the uncertainty
environments. To this end, improvement in the deterministic formulation of
methodology for technology portfolio assessment and sizing framework is suggested
firstly, and then, a stochastic method is combined with them for the uncertainty
quantification after identifying uncertain parameters. Using the constructed
frameworks, pilot projects are conducted to demonstrate the application and efficacy

of the suggested methodology, respectively.
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1.4. Outline of the dissertation

The remaining parts of this dissertation are organized as follow.

Chapter 2 mainly describes the two frameworks under deterministic environment.
One is for the technology portfolio assessment in Section 2.1 where the process of
technology portfolio assessment is presented step by step. The other is a
multidisciplinary conceptual sizing framework for the advanced air mobility in
Section 2.2 where primary modules of the sizing framework are described.

Chapter 3 provides information of various uncertainties underlying in the process
of the technology portfolio assessment and the conceptual sizing framework, which
expanding the deterministic environment into probabilistic environment. After
briefly describing source of uncertainties and their classification, certain
uncertainties interested in this study are identified including those in geometric
parameters and simplified analysis modules. Then, specific methods for modeling,
handling, and propagation of the uncertainties are presented.

In Chapter 4, the proposed methods are applied and demonstrated by using a
hypothetical advanced air mobility aircraft. The improved probabilistic process for
technology portfolio assessment shows how to select the most reliable and affordable
technology combinations. The uncertainty quantification in the aircraft performance
presents some insights and guidelines of understanding the characteristics of the
uncertainties and handling them in the conceptual design phase.

Finally, the summarization, conclusion of the dissertation, and future works are

provided in Chapter 5
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Chapter 2

Formulation of Assessment and Design Framework

Chapter 2 mainly describes the main building blocks of two frameworks under a
deterministic environment to present their fundamental concepts. One is for the
technology portfolio assessment in the pre-conceptual design phase in Section 2.1
where the process of technology portfolio assessment is presented step by step. The
other is a multidisciplinary sizing framework for advanced air mobility in Section

2.2 where major modules of the sizing framework are described.

2.1. Technology Portfolio Assessment
2.1.1. Overall Process

An overall process of the proposed technology portfolio assessment method is
shown in Fig. 2.1. The process consists of three main building blocks. The
“Technology portfolio” block starts with identifying and listing “N” technology
candidates and then investigating their maturity levels. After three processes of 1)
investigating compatibility and interaction between technologies, 2) identifying
related system attributes, and 3) compiling possible technology portfolios, matrices
that contain each information are generated. Through the combination of the three
matrixes, the final resultant matrix is obtained for simulating the effects of
technology infusion. The “Surrogate model” block proceeds parallel to the first block
and it produces a mathematical substitute for the analysis and design tools.
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Uncertainty in the surrogate model is estimated if necessary. Assessment of the
technology portfolios is conducted in the “Computation and Post-Processing” block,
taking into account the results obtained thus far. In this third step, the decision
makers could gather valuable information, including the most advantageous
portfolio of technologies and the anticipated benefits in terms of economics or
performance quantities of interest. During the overall process, several uncertainties
can be incorporated and uncertainty-related subprocesses are highlighted, which is
described in Section 3.2 after detailing the deterministic-based process first. The

three processes and key matrices are described step by step.
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2.1.2. Impact of Technologies in System Level

The very first step of the technology portfolio assessment process is a generation
of the portfolios. From the “N” technologies, technology portfolios vector (TPV) can
be obtained by choosing to include each technology, T;, in the portfolio or not. A
single TPV acts as a possible solution for an alternative design candidate, Alt,. The

elements of TPV are defined as follows:

t; =1, ifTisselected

Tlaw, = (t1,t2, -, ty) {ti =0, ifT;isnotselected (2.1)

where p is the index of an alternative design candidate. The maximum index of the
alternative design candidates is equal to 2V if all “N” technology candidates are
compatible to each other. The cluster of TPV constructs technology portfolio matrix
(TPM). The TPM has “p” rows and “N” columns, shaping a “p” times “N’’ matrix.
In a conceptual design environment, it is difficult to embed, simulate, and assess
future technologies due to the relatively low fidelity of the sizing and analysis tools
that usually rely on historical data and simplified mathematical models. Thus,
physical changes in fundamental level by the innovative technologies could not be
considered directly in the earlier design phase. In order to mimic the situation where
advanced technologies are applied to the aircraft system, the impact of each
technology on aircraft system attributes was modeled as a single factor by previous
studies [10—12]. The concept of impact factor is leveraged and this impact factor is
defined by Eq. (2.2) in terms of percentage according to the variation direction of a
system attribute, s;, by a technology infusion. The system attributes can be any

parameters of interest including component weight, specific energy of energy
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sources, aerodynamic coefficients, component unit cost, and available operating
days. For example, when carbon composite wing structure is applied (T;), it can be
given -10% of figure for an impact factor on weight reduction of wing (a;, =
—10%), which implies 10% reduction in the wing weight (s;). Meanwhile, RDT&E
cost (s,) is expected to increase by 5% with the same technology, giving 5% as an
impact factor on RDT&E cost (a,; = 5%). Figures for not affected system
attributes are given as zero. Using this factor allows both favorable effects and
adverse effects of a technology to be incorporated in the earlier sizing and analysis

environment.

—, if s;isnot af fected by T;
a;j=1< 0, if s;isdecreased by T; (2.2)
>0, if s;isincreased by T;

Multiple numbers for the impact factor constitute a vector for a single technology,
and then a technology impact matrix (TIM) is built by concatenating the vectors
according to the number of identified technologies [10—12]. Similar matrices were
also presented by other studies [13—16]. TIM is directly mapping the impact of “N”
technologies to “M” system attributes. The elements of TIM can be quantified in
various ways, such as literature reviews, high-fidelity physics-based computations,
direct experiments, the Delphi technique, which relies on experts’ opinions, and a
possibility-theory-based method [18]. A notional TIM is shown in Fig. 2.2 which is

an “M” by “N” matrix.
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Fig. 2.2. Notional technology impact matrix
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2.1.3. Technology Compatibility & Interaction
In order to reduce the size of the problem by filtering out incompatible technology
combinations in the TPM, a so-called technology compatibility matrix (TCM) was
usually used [10,11,13—16] before. In this study, typical TCM was expanded to be
able to incorporate additional information of the interactions between “N” listed
technologies, and then renamed as technology compatibility and interaction matrix
(TCIM). The elements of TCIM are determined by the following rules:
(0, if T; and T; are not compatible
! <1, if T; gets uncooperative influence by T;

1, if T; and Tj are not influencing each other
l> 1, if T; gets cooperative influence by T;

The element of 1.05, for instance, means that a 5% additional favorable effect is
obtained when compared to the situation where two technologies are independent. A
typical TCM is a symmetric matrix since technology compatibility is most likely to
be bidirectionally identical. If “A” technology is incompatible with “B” technology,
the opposite should also be true.

It is possible, however, that some of the technology combinations may have
asymmetrical relationships in terms of interaction between technologies, and their
interaction effect might different which attributes are investigated. Let us suppose
that the truss-braced wing technology and the carbon composite wing technology are
selected in a TPV. The expected weight reduction impact by the carbon composite
could be degraded because the junction of the wing and brace strut needs to be

additionally reinforced or other metallic materials should be used to avoid tear of the
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carbon. On the other hand, the expected aerodynamic performance increase by
applying a truce-braced wing is not influenced by carbon materials. Another example
could be a combination of a technology for anti-icing coating on the wing and a
technology for flow control over the wing. Although the performance of the anti-
icing coating may not deteriorate, the performance of the flow control technology
might be degraded owing to roughness change by the surface coating.

In order to consider these kinds of situations TCIM in this study has an
asymmetric structure. It is difficult to determine the figures for TCIM elements since
many of the technologies of interest are so new that some of their characteristics are
not completely understood as yet. Literature reviews, the Delphi method using
expertise from the experts, and a possibility-theory-based method [18] could help to

determine the TCIM like TIM. A notional TCIM is presented in Fig. 2.3.
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Based on the elements of TCIM, interaction factor for i™ technology, 4;, can be

calculated by Eq. (2.4).

N
{(bi'j - 1) : titleltp + 1} , for performance attributes
=1

Ailaie, =

, (2.9)
Ji
1 , for cost attributes

The first basic assumption about the interaction factor is that the interaction factor
has an influence only on performance-related aircraft characteristic parameters. For
cost-related aircraft characteristic parameters, the interaction factor is negated. This
is because that it is more usual that the situation where a certain amount of financial
asset is consumed for the infusion of multiple technologies, but the resultant gain in
system attributes might be bigger or smaller than expected.

The second assumption in the definition of Eq. (2.4) is that only pairwise
interactional effects are considered, ignoring higher orders of interactional layer
more than 2™ order relationship between multiple technologies. In other words, “A”
technology which has an effect on “B” technology and “C” technology respectively
will have the same magnitude of effect on “B” and “C” technologies individually
although “A” technology might have different interactional magnitude with “B+C”
combination. The schematic of pairwise interactional effect is graphically described
in Fig. 2.4. Let me suppose again that the truss-braced wing technology and the
carbon composite wing technology are selected in a TPV. In the event that a hybrid
laminar flow control technology is additionally incorporated into the TPV, the

expected outcome might be different due to structural or spatial issues in the wing in
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which the two technologies are already infused. Nevertheless, since pairwise
interactions are able to represent primary interactions among technologies, and an
examination of all higher-order interactions would be practically irrational, this study
presents the most practical solution as Eq. (2.4).

As a result, the TCIM and the interaction factor not only contribute to reducing
the exploration area by eliminating the incompatible technology portfolios (reducing

the dimension of TPM), but they also help to simulate the interactions between

technologies.
Technology Technology Technology
A Neglected / J
Pairwise interaction high order ,'
considered |nteract|on

v v ; ¢ _'___

B C BT
system with | system with | system with
technology B technology C technology B, C

Fig. 2.4. Schematic diagram for interactional effect between technologies
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2.1.4. Technology Portfolio Effect

At last, using the elements of the three matrices, TPM, TCIM, and TIM, a
compounded impact on the system attributes by the infused technologies, e;, is
calculated by Eq. (2.5), and this forms a technology portfolio effect vector (TPEV)
for an alternative design, €| Aty The system attributes after technology infusion,
Sitech» are calculated by Eq. (2.6) where S; pqseiine means the system attributes of

baseline with no technology infusion.

N

€laie, = (er, €2, ,em), eilair, = 1_[ (1 + 4l are, " ai tleltp) -1 (2.9)
j=1

Sitech = Sibaseline (1 + ei) (2-6)

The key difference to other studies [10-16] in the realization of multiple
technologies’ effect is that the calculation of ¢;| Alty» is based on a multiplicative
calculation, not an additive approach. The multiplicative calculation is a more
reasonable approach than the additive approach for several reasons. It is first noted
that the elements of TIM are presented in percentage form, which implies that the
variation of the system attributes by technology infusion is represented as
multiplication against a certain baseline value; recall the definition of a percent.
Another consideration is that the variation of the single attribute resulting from
multiple technologies undergoes a series of overlapped effects, based on the

technologies involved. Moreover, one of the issues with the simple summation is that
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the unrealistic situations might occur with the violation of physical limits as
explained in Section 1.2.; recall the zero-mass or negative-mass situation example.
The further issue is that the non-linear interaction effect between technologies could
not be reflected in the simple additive calculation.

As a consequence of this fundamental shift from addition to multiplication, it is
possible to avoid in itself unphysical results, such as the zero or negative-mass
situation. The product of Eq. (2.5) with a negative impact factor (decreasing impact)
never reaches exactly zero value. Note that the interaction factor is multiplied in front
of the elements of TIM and TPM on the inside of the permutation brackets in Eq.
(2.5).

By compiling TPEVs for all possible alternative candidates, the technology
portfolio effect matrix (TPEM) is obtained. The notional TPEM is shown in Fig. 2.5.
The number of columns of TPEM is equal to “AM” system attributes of the aircraft,
and the number of rows of TPEM is equal to “p”, all possible alternative candidates
from “N” technologies after compatibility consideration. TPEM is the final resultant
matrix in the “Technology portfolio” building block before feeding itself to the

design tools or surrogate models for evaluation of the technology portfolio effect.
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Fig. 2.5. Notional technology portfolio effect matrix

31



2.1.5. Evaluation by Surrogate Model

Using TPEM and Eq. (2.6), the evaluation of the technology portfolio can be
directly conducted with the design and analysis tools by feeding the elements of
TPEM into the simulation environment. However, most of the physics-based
simulations require expensive computational resources and time, which makes the
direct-evaluation method an impractical approach. Since the number of possible
technology portfolios follows the power of 2, it would reach over a million in the
case of that 20 technologies that are all compatible with each other (22°). In this
situation, the adoption of the surrogate models is an inevitable choice in terms of the
computational resources and time management. More advantages of using the
surrogate models are well described in Ref. [40] with aspects of proprietary
protection from “reverse engineering” and connectivity between separated models
from different operating environments. Various types of surrogate models are
available depending on the specific problems of interest. The examples include
regression-based models such as response surface method (RSM) [41,42],
interpolation-based methods such as Gaussian process or Kriging [43], and neural
network methods such as multilayer perceptron (MLP) [44].

Regardless of the specifically chosen method for the surrogate models, the
primary function of the surrogate models here is mapping the vector of the
compounded impact of technologies, €, (input) with the vector of system responses
of interest from the tools, ﬁ, (output). In order to efficiently build the surrogate

models, design of experiment (DOE) supported by sampling methods is frequently
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used for selecting e; subsets by exploring the multidimensional e; space. The limit
of e; space can be informed from the range of e; variations in each column of
TPEM. It is important to know this limit because the result obtained with variables
out of the range cannot be ensured to be meaningful. As a consequence of the DOE
process, adequate sets of e; combinations are derived for an input table of the
surrogate models, and then the corresponding system responses for an output table
of the models are obtained through the physics-based analysis tools. The two tables
constitute the final knowledge table to build the surrogate models. After building the
reliable surrogate models, the evaluation of technology portfolios progresses on the
surrogate model environment using TPEM. Fig. 2.6 shows the above-mentioned

process for constructing the surrogate model graphically.

DOE Subset of Run physics-
TPEM e; | with sampling e; based tools
Input
"table Output A 4
Surrogate table
modeling System
R=fG@ responses

Fig. 2.6. Process of building the surrogate model
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2.1.6. Selection by Effectiveness

The variations of the system responses of interest caused by the infused
technologies are traced to evaluate the efficacy of the technology portfolios.
Although they can be presented individually [15,16], the number of system responses
of interest is typically more than 2, so that it could be difficult to figure out which
technology portfolio shows better improvement with respect to the overall system at
once. One of the methods that were previously suggested in Ref. [10] for evaluating
and lining up the portfolios is adopted in this study with minor modifications. The
efficacy of each technology portfolio is measured by effectiveness metrics which are
defined as the weighted sum of normalized figures where the system-response
quantities of interest are divided by those of the baseline configuration. The
effectiveness metrics are maximum-desirable indices and they can be categorized
and calculated typically with respect to performance and economics perspective. The
performance quantities include any metric related to all disciplines at the system
level as well as at the subsystem level. The representative examples at the system
level are gross weight, energy capacity, lift to drag ratio, and maximum noise level
of the aircraft. Structural safety margin, load factor, powertrain efficiency, and
component weights are subsystem-level examples. The economics quantities include
primarily cost-related parameters such as vehicle acquisition cost, operating cost,
and RDT&E cost. The performance effectiveness, PE, and economic effectiveness,
EE, are calculated by Eq. (2.7) and Eq. (2.8), respectively where “n” is the number

of performance parameters, PP, and “m” is the number of economics parameters, EP.

¥ 3
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The w; is a weight factor for each parameter that the subjectivity of the decision
makers is reflected in. The exponent of the parenthesis, d;, indicates a desirable
changing direction of the quantity compared to that of the baseline; “1” denotes a
maximization-seeking quantity such as powertrain efficiency and operable days
whereas “-1” denotes a minimization-seeking quantity such as gross weight and
vehicle cost. These notations allow the effectiveness metrics to naturally be the
maximum-desirable indices, which is well matched to the meaning of
“effectiveness”. Equation (2.9) calculates system effectiveness, SE, which is a
weighted sum of performance -effectiveness and economic effectiveness,

representing a single score for technology infusion.

n PP'lAlt di d 1 f .. .
B (Phila, i =—1 for minimize
PE = ;WPPi < PP, ) where {di =1 for maximize 2.7)
m EP'lAlt di d 1 f .. .
B (ERila, i =—1 for minimize
EE = ;WEPL- ( EP;|g; ) where {di =1 for maximize (2:8)
SE = WPE " PE + (1 - WPE) " EE (29)

With the aid of these effectiveness metrics, the efficacy of the technology
portfolios can be presented by a single aggregated figure that provides an easily
understandable way to investigate the most favorable technology combinations. This

eventually leads to reasonable decision-making.
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The effectiveness indices are usually plotted with RDT&E cost simultaneously.
RDT&E cost is a kind of counterpart of effectiveness because technology infusion
would increase the RDT&E cost of the aircraft to mature and incorporate the
technology [10]. In Ref. [10], the plot of effectiveness with RDT&E cost is called as
technology frontier and it provides a Pareto front which shows non-dominated
solutions with respect to the effectiveness and cost. A notional technology frontier
plot is shown in Fig. 2.7, which is modified from Ref. [10]. Among the solutions that
satisfy threshold line, three best solutions can be chosen from the Pareto front: best

effectiveness solution, best investment solution, and best compromise solution.

N
7

Ideal

i “Best”
Solution

/ Effectiveness Solution

K “Best”
Compromise Solution

(¢]
\ “BeSt”

)
Investment Solution Threshold

Effectiveness Index

@ Each Technology Portfolio Pareto front

~
7

Investment Cost

Fig. 2.7. Notional plot of effectiveness and investment cost

(Modified from Ref. [10])
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2.2. Sizing Framework for Advanced Air Mobility

The conceptual sizing framework, named as Rotorcraft Initial Sizing and
Performance Estimation Code and Toolkit+ (RISPECT+), is developed with
colleagues to size advanced air mobility equipped with diverse propulsion systems
[19]. The electrified propulsion systems that are modeled in RISPECT+ include
series hybrid, parallel hybrid, series-parallel hybrid, and full-electric system. From
geometric, aerodynamics, propulsion data, and specific mission requirements, the
overall dimension, weight breakdown, and primary subsystem specification are
obtained for the sized advanced air mobility meeting the mission requirements. The
information of the sized aircraft includes energy capacity, maximum power of
motors, lift to drag ratio, disk loading, and wing loading. In this section, primary
modules that are constructing RISPECT+ structure are explained with focus on
battery-based vertical take-off and landing aircraft. The detailed descriptions can be
found in Ref. [19,20,45,46]. This sizing framework provides the aircraft modeling

environment throughout this study.
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2.2.1. Overall Process and Description

The overall design process of RISPECT+ is shown in Fig. 2.8 which is modified

from Ref. [19] with the incorporation of technology factors and additional analysis

modules: cost analysis and noise analysis. The sizing process is as follows.

1.

With initial assumptions for gross weight and battery capacity, design
variables, and parameters, the geometry of advanced air mobility is generated.
Then, the sizing of the propulsion system in advanced air mobility is
conducted based on a given mission profile. The propulsion system is sized
to meet the most demanding flight condition in the mission profile.

Energy usage during the mission is calculated by Mission-analysis module,
and then it is used for the weight calculation of the energy source. Except for
the weight of the energy source, weights of other components such as
structure compartments and systems are estimated in Weight-estimation
module, producing empty weight.

By comparing the calculated empty weight, energy source weight with

initially assumed gross weight, available payload, Wpaytoad 4, »
calculated by Eq. (2.10) where Weppey is empty weight, Wy, is battery
weight, and W, is fuel weight. Superscript of ‘new’ is used to mean a

newly calculated value.

Wpayloadavail = GWinit - ( enrreL‘;thy + anaetw + Wfrtlteevlv) (2-10)
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4. This process is iterated until the available payload becomes equal to the
required payload by updating gross weight with Eq. (2.11) where « is a

relaxation factor to control convergence characteristics.
GWne" = a (Waeh, + Wi + WHEY + Woaytoad, ) + (1 — @)GW' (2.11)

5. After convergence of gross weight, Cost analysis and Noise analysis are
conducted separately based on the geometry of the sized advanced air
mobility. Cost analysis produces vehicle cost and operating cost [47]. Noise
analysis produces the maximum noise level index for hovering condition [48].
During the sizing process, the technology factors that are infused as input
data are used in each related analysis module. The sizing process is
terminated at this stage unless an optimizer is wrapped.

6. If the optimizer wraps the sizing module, optimization is carried out based
on the user-customized problem. The optimal design of advanced air mobility
is derived through optimization by changing design variables until design
termination criteria such as the maximum number of evaluations or

convergence tolerance are satisfied.
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Input data: Design variables, Constraints, * VTOL aircraft sizing : Sizing module only
Mission profile, Technology factors, - ** Design optimization : Sizing module with optimizer wrapper

Construct / modify
Design variables

— - Sizing for HEPS-powered VTOL aircraft (*,**)
Initial value assumption:
GW, battery capacity, -+

Change

HEPS-sizing

Optimizer (**)

Initial value

Mission-analysis

e i Cost Analvsis Sizing results
[ - Calculate Tef;?ﬁ:ﬂon 4 Gross weight
! ) Available payload Condition : ; Empty weight
V\_Ielgh_t Noise Analysis Performance, -
Estimation
No
No Satisfy Calculate Yes Constraint

Change

Design variables

Termination
Condition

Fitness value Check

Optimal design

Fig. 2.8. Design process of RISPECT+ (Modified from Ref. [19])
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2.2.2. Rotor Aerodynamic Model

A rotor blade is simply parametrized as shown in Fig. 2.9 for the aerodynamic
analysis of a single rotor based on blade element theory (BET) [49,50]. r is
nondimensionalized spanwise sectional location, c¢ is chord length, £ is twist
angle, A is local taper ratio, and tw is local twist variant. The number of split

segments can be freely determined.

B()

c
1 1. =L
To - /1
Cro & Ay
-1
\
CTO Crl Cri_l /
| :
‘—P
I
To 7
> Ti—1
RTOtOTJ

!

Fig. 2.9. Rotor blade parametrization for blade element theory
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Rotor thrust, Tyotor, and power Pro.or 1s calculated by Eqgs. (2.12) and (2.13),

respectively.

Trotor = Np f(dLb cos ¢pp —dDy, - sin ¢y)

1 e oo @212
tip .
To
Protor = Ny - f(dLb - sin ¢y + dDy,  cos ¢b) Drorory
(2.13)

Tti

’ or TNA2 +712-(C - A+ Cqyr)dr

3 1
zpair'A'Vtip'E

To

Pair 18 air density, N}, is the number of rotor blades, ¢ is the induced angle of
attack, A is the disk area, Vi, is the rotor blade tip speed, oy is the solidity, 4 is
the inflow velocity ratio, C;, is the lift coefficient, and Cgy, is the drag coefficient
of blade airfoil. In axial flow conditions, A is calculated using the blade element
momentum theory (BEMT) with 3D stall-delay model [49—51]. If the inflow is much
smaller than the tangential velocity of blade element (4 << r), A can be calculated

by Eq. (2.14).

O'R'Cl AC 2 O'R'Cl O'R'Cl /1(: 2
A(r, 1) = <_“__) a.g. _(_a__) (2.14)
(r.2c) \/ er 2) TTer U7\ TteF 2

where (;, is the slope of the 2D lift coefficient curve of blade airfoil, F is the

Prandtl’s tip loss factor, @ is the collective pitch angle, 4. is the climbing velocity

1 O
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ratio. In non-axial flow conditions, the rotor aerodynamic analysis is carried out
based on the blade element theory with the linear inflow model [49].
Thrust coefficient C; and power coefficient Cp are defined as Egs. (2.15) and

(2.16), respectively.

Trotor
Cr=—""%" 2.15
r Pair " A~ Vtzip ( )
Protor
F Pair A Vt?zp ( )

Figure of merit, an index of hover efficiency, is calculated using Eq. (2.17)

1.5
— CPideal _ CT

FM =
CP \/ECP

(2.17)

Rotor aerodynamic model is validated for XV-15 rotor geometry by comparing
the calculation result with wind-tunnel data and CFD analyses. The geometry
information and reference data are collected from Ref. [52—54]. The comparison

result for hover mode is shown in Fig. 2.10, and for tilt mode is shown in Fig. 2.11.
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Fig. 2.10. Comparison of XV-15 rotor in hover (Reproduced from Ref. [19])
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Fig. 2.11. Comparison of XV-15 rotor in tilt mode (Reproduced from Ref. [19])
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2.2.3. Wing and Fuselage Aerodynamic Model

Wing aerodynamic analysis is carried out using an aecrodynamic coefficient of 2D
airfoil, wing geometry, and Oswald factor. 3D lift curve slope for an arbitrary wing,
Cy,» 1s obtained by Eq. (2.18) [3,55]. AR is aspect ratio, B is Prandtl-Glauert
parameter which is equal to (1 — M2)%°> where M is Mach number, k is ratio of

2D lift coefficient curve slope to 2m, and Ay 5. is sweepback angle of mid-chord.

C 2m- AR
CL = la ~

a Cla ~ 5
1+ —p+1) Z_I_\/(AR-,[)’) (1+tan/10.5c)+4 (2.18)

K B?
Drag coefficient, Cp, is expressed by Eq. (2.19) where C; is lift coefficient, and

e is Oswald factor which accounts for deviation from an ideal elliptical lift

distribution.

2

Ci
= = S E— 2.19
Co = Coy + o, = Coy g (2.19)

Oswald factor in this study is calculated following Ref. [56] and expressed by Eq.
(2.20) [56] where etpe, is a theoretical Oswald factor, k,p is a correction
coefficient for fuselage influence, k. p, is a correction coefficient for zero lift drag

influence, and k, ), is a correction coefficient for Mach number influence.
e = €theo ke ke,DO “kem (2.20)

Using Egs. (2.18), (2.19), and (2.20), aerodynamic analysis of wing component

such as main wing and horizontal wing is carried out.
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Aerodynamic analysis of other components such as a fuselage, landing gear, hub,
and etc. is focused on drag force using the concept of equivalent flat plat area, f,

defined as production of drag coefficient and reference area, Syor (Eq. (2.21)).

Drag

S = o Sret = 08 e V2

(2.21)

The equivalent flat plate area can be obtained by computational fluid dynamics
analysis or empirical formula. The empirical formula is the function of gross weight
(Eqg. (2.22)) and is shown in Fig. 2.12 [57]. Coy is coefficient depending on the

aircraft category. A similar approach is also presented in Ref. [49].
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Fig. 2.12. Equivalent flat plate area trend history (Reproduced from Ref. [57])
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If advanced air mobility has tilting systems, the additional drag from the tilting
nacelle should be added. In Ref. [58], the mathematical equation for tilt nacelle drag
is used for conversion mode in phase 1 of development in XV-15, which is shown in
Eq. (2.23). In order to apply the equation to advanced air mobility sizing, a correction
factor, K;ecp, 1s adopted. The value of 0.5 was assumed to be used for the correction
factor in this study with consideration of highly improved compactness of nacelle in
advanced air mobility compared to the conventional tilt rotor, XV-15. a;;;¢ is the
tilt angle of the nacelle in radians of which the value of 0 is for horizontally fully

tilted and the value of m/2 is for vertical position.

T
fnacette = (1 — Keecn) * (1 +13.5 - cos® (E - atilt)) (2.23)
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2.2.4. Electric Propulsion System Sizing Model

The descriptions for the electric propulsion system (EPS) sizing module are
focused on the full-electric propulsion system architecture where the battery, electric
motor, inverter, and thermal management system (TMS) constitute the overall
propulsion system. Descriptions of additional components for other electrified
propulsion architectures such as turbo-electric, series hybrid, parallel hybrid, and
series-parallel hybrid systems can be found in Ref. [19,20,45].

The analysis fidelity of the electric propulsion system in RISPECT+ is stratified
into two levels. The low-level-fidelity method is based on using constant efficiency
for each electric component during a flight mission [19]. The battery is modeled as
a black box containing energy, so called as “energy in a box”. This method is the
simplest and quickest way to incorporate electric propulsion into advanced air
mobility sizing in the conceptual design phase. It enables to size an advanced air
mobility system under the minimum data environment which is the common
situation in conceptual design.

The higher fidelity method is based on linear approximation in characteristics of
battery [59] and equivalent circuits for electric motors [60] and inverters [61].
Reference [21] described the second method incorporated in RISEPCT+ in detail.
Although this method enables more sophisticated analysis in the electric propulsion
system, more specific data and assumptions are required to model the electric
components and calculation time is increased, which is a kind of counterpart for

pursuing higher fidelity.
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In this study, the efficiencies of the electric components are treated as a constant
(low-fidelity model) to focus on a demonstration for application of the proposed
portfolio assessment process and uncertainty assessment with manageable
computational time. Thus, the following paragraphs are presenting the low-fidelity

model.

Battery

As a container of electric energy for energy sources in advanced air mobility,
rechargeable batteries or secondary batteries are usually used. There are a lot of
battery chemical compositions for them, lithium-based batteries called as lithium-
ion batteries are the most commonly selected type for them. Depending on materials
for cathode in lithium battery cells, the characteristics of lithium battery such as
nominal cell voltage, discharge profile trend, specific power and specific energy are
totally different.

In the method of “energy in a box”, the required parameters for battery sizing are
the efficiency coefficient, maximum depth of discharge (DoD), maximum discharge
C-rate, and specific energy of the battery. Battery efficiency is usually in the range
of 91~97% depending on operating conditions [21,29,62]. The DoD indicates the
percent of battery used energy relative to the rated energy of the battery; 0.2 of DoD
means 20% of battery energy is used and 80% of energy is remaining. The DoD has
a relation with state of charge (SoC) as Eq. (2.24). Usually, the maximum DoD,

DoD,,,, is constrained as 0.8 for battery life-cycle and operation safety.
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DoD =1 - SoC (2.24)

Discharge C-rate is a rate of discharge in battery cells, which expresses the
discharge current relative to the current required to discharge the cell in one hour
[63]. This is mathematized as Eq. (2.25) where xpq; is discharge C-rate, Pyqr .

is output power from battery, 1y, is battery efficiency, and Ep,; is battery energy.

Ivae ~ Ppat  Pratoys
Capapat  Epat  Mpat " Ebat

Xbat = (2.25)

The required battery energy is determined by comparing two values that are
calculated using maximum DoD and discharge C-rate, respectively. The first
criterion is calculated on the basis of maximum DoD by Eq. (2.26) where the
accumulated battery usage required for the mission, equal to the production of power
and time At, is divided by maximum DoD. If battery efficiency is not constant, it
should be calculated inside of Sigma notation.

Z Ebati _ Z Pbatout At

_ (2.26)
DoDyax  NMpat * DODpax

Epatlpop =

The second criterion is obtained by the basis of the maximum C-rate by Eq. (2.27)
where the maximum output power of the battery is divided by maximum C-rate. This

criterion determines the minimum battery energy satisfying the C-rate constraint.

Pbat outmax

Epaely = (2.27)

Mbat * Xbatmax



The final battery energy is the bigger value between the two criteria (Eq. (2.28))

Epat = max(EbatlDoDr Ebatl)()

(2.28)

After obtaining battery energy, battery weight is calculated by Eq. (2.29) where

Whyae 1s battery energy and SE,,. is specific energy. SEj,c of lithium-series

batteries have variability depending on their chemistry composition (Fig. 2.13 [64]).

For advanced air mobility sizing, specific energy in the range of 180 ~ 500 Wh/kg is

usually used [19,26,29,59,62,63,65].

(2.29)
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Fig. 2.13. Comparison of lithium batteries depending on chemistry [64]
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Electric Motor

For the electric propulsion system, electric motors drive a shaft of the propulsor
(rotor, and propeller) to generate the required thrust for aviation by changing electric
power to mechanical power. Target mechanical power is calculated by Eq. (2.13).
One of the most significant characteristics required for electric motors for aviation
is higher specific power than ever. Among various types of electric motors,
permanent-magnet synchronous motors have got the spotlight for an available
solution [66,67]. They show high efficiency, specific power, robustness, and ease of
maintenance. In many studies for advanced air mobility sizing, constant efficiency
is usually set around 95% or over in the case of future aircraft [26,29,62,63,65].

The specific power of electric motors, defined as maximum power per weight, is
a representative performance index of electric motors. The range of specific power
of electric motors that are currently under development or were developed for
aviation applications is shown in Table 2.1. The data were collected from
presentation material [68], manufacturer’s websites, and official documents [69]. In
the studies of future aircraft, much higher values of specific power that is near to the

goal of roadmaps are used [29,62]
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Table 2.1. Specification of electric motors for aviation application

Manufacturer Model Efficiency Specific power [kW/kg]
SP2000D - 7.6 (target)
Siemens [68]
SP260D-0 0.95 5.2
Magni350 >0.93 3.14
MagniX®
Magni650 >0.93 3.2
EMRAX 188 0.92~0.98 4.0
EMRAX 208 0.92~0.98 4.4
EMRAX'
EMRAX 268 0.92~0.98 5.27
EMRAX 348 0.92~0.98 5.0
Pipistrel [69] E-811 - 2.17

Electric motor weight is obtained using the efficiency and specific power of

electric motors as Eq. (2.30) where W, is motor weight, P,

ot outmax 18

maximum output power from motors, 7,,,: is motor efficiency, and SP,,,; is the

specific power of electric motors.

Winot =

* . .
https://www.magnix.aero/services

T https://emrax.com/e-motors/

motoutmax

Nmot * SPmot
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Inverter and controller

Inverters provide alternating current to electric motors by converting direct
current from batteries to operate the electric motors in the required power and torque
condition. For the class of advanced air mobility, IGBT inverters are usually used
[63]. They control the rotational speed of the electric motors by various modulation
schemes such as space vector pulse-width modulation. In general, inverters during
typical operation show 95% of efficiency due to power losses caused by switching
between the blocking state and conducting state, and by heat [29,63,70]. With
advanced control modulation schemes, materials, and cooling systems, the losses can
be significantly diminished, so that an efficiency over 95%, up to 98~99% is applied
for sizing of advanced air mobility in many different studies [26,29,62,63,70,71].
The specific power of inverters, defined as maximum power per weight, is in the
range of around 3-11 kW/kg [63] and values over 12 kW/kg was often used for
advanced air mobility sizing [29,62].

Inverter weight is obtained using efficiency and specific power of inverters as Eq.

(2.31) where W;,,, isinverter weight, P; is maximum output power from

MV outmax

inverters, 7;,,, is inverter efficiency, and SP;y,, is specific power of inverters.

Pinv t
W = %Wmax (2.31)
e Ninv * SPiny



Thermal Management System

Thermal management system (TMS) herein indicates a kind of compound system
to handle heat generated from the battery, electric motors, and inverters without
explicitly distinguishing their own cooling mechanisms. To this end, it is assumed
that all power losses occurring from each component are converted to heat and TMS
capacity is equal to them. Thus, the maximum power of TMS, Pryg ., is defined
as the sum the maximum power losses of the electric components (Eq. (2.32)). The
weight of TMS, Wrys, is obtained as Pryg, ~ divided by the specific power of

TMS, SPrys. (Eq. (2.33)).

PTMSmax = Z{(l - ncomp) ) Pcompmax} (232)

PTMSmax

= 2.33
Wrus SPrass ( )
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2.2.5. Weight Estimation Model

Weight estimation model for advanced air mobility in RISPECT+ is based on
semi-empirical methods that were constructed with geometry and performance
indices.

The structure group comprises of the rotor, propeller, fuselage, wing,
empennages, supporting rod, tilting actuator, and landing gear. Most equations are
given by Raymer [3], US army report [72], and NDARC [73] that are presented as
follows. The application of the weight equations is dependent on a configuration of
advanced air mobility. For instance, tilting actuator weight is added only for a

vectored thrust configuration. The equations are based on English unit system.

Rotor (Propeller)
Weight of a rotor, W,.,;,, is obtained by Eq. (2.34) where T,,,, iS maximum

thrust, A is disk area, and K¢,y 1s correction factor for advanced technologies.

Wiotor = (1 - Ktech) - 0.08094 - Tr}igfzw ' (Tmax/A)_O'O7821 (2-34)

Fuselage
Weight of a fuselage, Wg,se, is obtained by Eq. (2.35) where N, is load factor,

GW is gross weight, R,,¢or 1S rotor radius, and Ny, is the number of rotors.

N 0.654
Wiuse = (1= Kygen) - 002665 - (N - GO - (Rygppr - —2%0) - (2.35)
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Wing
Weight of a main wing, W4, is obtained by Eq. (2.36) where S, is wing area,

A, 1s taper ratio, AR, is aspect ratio, and t/c is maximum airfoil thickness.

AR, \%°

Wiing = (1= Kpecr) - 0.032 - S3758 - 20,0 - (N, - GW)049 - (‘coszmw)

(=mp

If the configuration of advanced air mobility is vectored thrust (tilt rotor), weight

(2.36)

-03

equation for the main wing is changed by Eq. (2.37) [74]. Note that SI unit should

be used for Eq. (2.37).

0.52
0.4 W 1.22

Wiing = (1 = Kyoen) * 0.0288 - (1 +0.12 - 704) - (NZ =) Sy

w

0.4 1.\ 0-695 (2.37)

- AR - ((t/ic)) : (1.1 + 7“”)

Empennage
Empennages are for a horizontal tail and vertical tail. Their weight is obtained by

Egs. (2.38) and (2.39), respectively. S is area, and AR is aspect ratio.

Horizontal tail Wit = (1 — Kgeen) - 0.7176 - SE2 - ARD3? (2.38)

Vertical tail Wye = (1 — Kpeen) - 1.046 - S97* - ARYS® (2.39)
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Supporting rod
Weight of supporting rods, W,.,4, is obtained by Eq. (2.40) where N,y is the
number of rods, p,,q is rod material density, L,,4 is rod length, R,,; is rod

radius, and t,,q4 is rod thickness.

Wroa = Nroa * Prod " Lroa 'T[(Rzod - (Rrod - trod)z) (2-40)

Tilting actuator
Weight of tilting actuators, W;;;, is obtained by Eq. (2.41) that is derived from

XV-15 and MV-22 data [75]. N is the number of tilting actuators.

Landing gear
Weight of a landing gear, W, is obtained by Eqgs. (2.42) and (2.43) depending

on the type of landing gear.

Skid type W = 0.44 - (GW)0-63 (2.42)

Wheel type landing gear W, = 0.038-GW (2.43)
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The propulsion group comprises of battery, electric motors, inverters, TMS, extra
circuit protection, and wiring. The weight of the battery, electric motors, inverters,
and TMS are obtained by Egs. (2.29), (2.30), (2.31), and (2.33), respectively.
Weights of extra circuit protection and wiring are assumed to be proportional to the

weight of the total electric propulsion system as Egs. (2.44) and (2.45), respectively.

Wi ircuit = 0.0084 - Weps (2.44)

Wiiring = 0.1361 - Weps (2.45)

For the weight of other systems such as flight control systems and furnishing
equipment are calculated by equations presented in Ref. [3,72,73] or customized
values can be imposed.

The technology correction factors k.., in several equations is assumed
following Ref. [76]. The validation results of the weight estimation model are
presented in Ref. [19] for XV-15 data [77] and a hypothetical lift-plus-cruise type

eVTOL [76].
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2.2.6. Cost Estimation Model

Cost estimation model was coupled with RISPECT+ in order to analyze
economics of advanced air mobility, which is especially necessary to address the
infusion of new technologies in Section 2.1. The costs of aircraft can be divided into
two categories: vehicle cost (Acquisition cost), and operating cost. They are
estimated by an in-house tool called as Aircraft Cost Analysis Code (AC?) [47]. AC?
was developed with colleagues to estimate economic quantities for generalized
advanced air mobility focusing on wing-borne configurations. As of now, this cost
estimation model is restricted to wing-borne configurations: vectored thrust and lift-
plus-cruise. Additional cares should be taken to use AC? for wingless configurations.
A detailed description for acquisition cost estimation method can be found in Ref.

[47].

Vehicle Cost (Acquisition Cost)

In AC?, vehicle cost, which is also referred to as acquisition cost, is estimated by
using a top-down and bottom-up hybrid approaches. The overall structure of vehicle
cost estimation is shown in Fig. 2.14 [47]. A wing-borne configuration of advanced
air mobility can be decomposed into three compartments: the base structure,
additional airframe, and subpart component.

The base structure stands for a typical aircraft structure in which a single fuselage,
a single main wing, empennages, and landing gear constitute the structure. The base

structure cost, Cp e, i estimated based on DAPCA IV method [78] which is mainly
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based on the top-down approach using functions of gross weight, number of
prototypes, and learning curve. Since most advanced air mobility under currently
development have size and dimension similar with general aviation aircraft, DAPCA
IV method can be applied. DAPCA IV produces base structure cost that includes
RDT&E cost.

The additional airframe stands for auxiliary body components such as the
secondary wing in Kitty Hawk Heaviside, and rotor supporting rod in Wisk Cora or
Beta Technology Alia 250. The cost of an additional airframe, Cquqq frame, 18
estimated using equations presented in Ref. [79] where the aircraft is decomposed
into 17 parts and the cost of each part was estimated separately. For consideration of
more complex configuration of advanced air mobility than general aviation, the
adjustment factor, f,4, is derived using data from the tables and figures in Ref. [80].
The adjustment factor depends on the type of aircraft configuration (vectored thrust,
and lift-plus-cruise). Due to more complexity, such as a vectoring system, the
adjustment factor for vectored thrust configuration is greater than that for lift-plus-
cruise configuration. The adjustment factor is multiplied to the base structure cost
and additional airframe cost.

The subpart component basically stands for the other components except for the
airframe structures. It includes the propulsion system including the rotor, propeller,
battery, electric motor, inverter, and so on. For the cost of the propulsion system, a
method presented previously is leveraged in this study. Finger et al. [81] presented a

cost estimation method for hybrid electric general aviation aircraft. In the method,
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they estimated the cost of electric propulsion using unit cost per component power
for the motor (Eq. (2.46)) and inverter (Eq. (2.47)) or unit cost per energy for battery
(Eq. (2.48)). Rotor cost is estimated by Eq. (2.49), a function of the rotor dimension

and power capability. Avionics cost is simply estimated by Eq. (2.50).

Cimot = Niot * Cmotum't ’ Pmotmax (2.46)
Ciny = Niny Cinvunit ’ Pinvmax (2.47)
Cpat = Cbatum't "Epat (2.48)
P 0.12
rotor
Crotor = Nrotor * Crotorunit ) (ZRrotor)Z ) < R max> (2.49)
rotor
Cavionics = Cavionicsum-t ' Wavionics (2-50)

The approach in the calculation of the additional airframe cost and subpart cost
is a kind of bottom-up approach from the component to the aircraft system. By
summing up the three compartments’ costs after the application of the adjustment
factor, the final vehicle cost of advanced air mobility, C,epicie, 1S Obtained as Eq.

2.51).
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The key parameter values used for vehicle cost estimation in this study are given

in Table 2.2. The number of prototypes and the number of production quantities in 5

years are the input parameters for the calculation of the base structure cost.

Coenicle = [ ad(Cbase + Cadd.frame) + Z Csubparts (2.51)
Table 2.2. Key parameter values used in vehicle cost estimation
Parameter Value
Number of prototypes 5
Number of production quantities in 5 years 250
Adjustment factors for vectored thrust | lift-plus-cruise 330 | 1.85
Rotor cost coefficient per unit $210
Electric motor cost per unit power $63 per hp
Inverter cost per unit power $44 per hp
Battery cost per unit energy capacity $300 per kWh
Avionics cost per unit weight $6,000 per 1b
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Direct operating Cost

Direct operating cost (DOC) is subdivided into several elements including
maintenance, depreciation, finance, insurance, battery replacement, charging cost,
and pilot [82]. The information of them is obtained from historical data, technical
factors, and assumptions used in presentations from eVTOL manufacturers ™. For
the maintenance cost of advanced air mobility, the near-term goal for helicopter
maintenance cost presented in Ref. [57] is modified as Eq. (2.52) considering the
exclusion of the engine. The correction factors, 0.7767 and 0.4893, are derived from

the data of two different helicopters: the S-55 and the S-61 [57].

0.78+0.3+0.1

Co0¢ e = Coocigy * 07767 - [0.0017 - (Wempey) | for Labor

C. . . 1068
+0.4893 - 34 - [%] for Parts (2.52)
Cvehicle . . . .
+ 18- (W) for Major Periodic Maint.
Battery replacement cost is estimated by Eq. (2.53) [82].
Cbat _

Chatrepiace = LCyu Xbat (2.53)

" Joby Aviation, Analyst Day presentation, https://ir.jobyaviation.com/about-
us/presentations (accessed at 2021.10.)

T- Lilium, Capital Markets Day presentation, https://ir.lilium.com/news-and-events/events-
and-presentations (accessed at 2021.10.)

! Vertical Aerospace, Analyst presentation, https:/investor.vertical-acrospace.com/events-

and-presentations/presentations/default.aspx (accessed at 2021.11.)
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Xpar 1S averaged battery discharge C-rate and LCy,; is battery usable discharge

cycle calculated by Eq. (2.54) [82].

LCpqr = (—152 - logjpaer + 533.54) - (1.3 - DoD;%195 (2.54)

The key parameter values used for operating cost estimation in this study are

given in Table 2.3.

Table 2.3. Key parameter values used in operating cost estimation

Parameter Value
Number of flights per a day 54
Pilot rate $114 per FH
Finance and insurance rate per vehicle cost 4% and 3.115%
Landing fee $35 per landing
Parking rate $1.5 per FH
Weather and communication service $2.26 per FH

The specifications of the vehicle such as component weight and energy capacity

required for AC? were fed from RISPECT+.
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2.2.7. Noise Model

Simplified vehicle noise model for rotorcraft is coupled with RISPECT+. The
coupled noise model was developed by Ref. [48], and it focuses on rotor noise in
axial flight in which an order of higher thrust is required than in wing-borne flight.
This noise model enables to quickly incorporate noise performance in system-level
conceptual design and to present direction of major design properties. This section
describes the main equations for the noise model. The details can be found in Ref.

[48] including assumptions and limitations of the noise model.

Rotational Noise

One of the two components of rotor noise without blade slap is rotational noise
which is also referred to as harmonic noise. Rotational noise can be divided into two
categories: loading noise, caused by thrust generation; and thickness noise, caused
by finite blade thickness. The root mean square sound pressure for loading noise,
Pm, > and thickness noise, pp,,., can be modeled by the Gutin and Deming formula
[83]. They are simplified using equivalent-radius R, as Eqs (2.55) and (2.56),

respectively. The resultant sound pressure level (SPL) is obtained by Eq. (2.57).

= —Nb 1 60— Q —]] (—b R,si 9) (2 55)
1% cos sin .
my 2 ,—2 ( S) t QReZ mB e
pair(”leﬂ)zB (”““b~(2 , )
p = cptpR ——R_sinb 2.56
mr 3 ,—2 ( 5) b'b e]mB e ( )
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2 42
M)] (2.57)

SPL =10log4, [Nrotor ( 2
pref

In the equations, variables are defined as Table 2.4. The definitions of AS and

0 are given in Fig. 2.15.

Table 2.4. Symbols for rotational noise equations

Symbol Description Symbol Description
a Speed of sound Q Rotor torque
Cp Blade chord ty Blade maximum thickness
Bessel function Distance between
] mB AS
of order mB the rotor and the observer
m Harmonic number 0 Rotor angular velocity
Nyotor Number of rotors 0 Observer azimuthal angle
Rotor(s) 0
\
\
7 \ AS
\
\
\
\\ y

v

Fig. 2.15. Schematic diagram for rotational noise (Modified from Ref. [48])
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Vortex Noise
The other component of rotor noise is vortex noise and SPL by vortex noise is
calculated by Eq. (2.58) [48] where Tyot0r-/A is the disk loading, K, is a constant,

equal to 1.206 x 1072 s3/ft3, and V4, is blade tip speed.

Vi N, T. T.
SPL = 2010gy | K, tip rotor rotor( rotor) (2.58)
Pair (4S) OR A

Equation (2.58) reflects the major parameters related to rotor noise such as tip
speed, solidity, and disk loading of the rotor. For example, lowering tip speed results
in low SPL, and higher disk loading results in high SPL. Equation (2.58) was
validated in Ref. [48] based on data from Ref. [84] for two different helicopter rotors:

the CH-3C and the CH-53A within a 3 dB difference compared to the test data.

A-Weighting Correction

Among various decibel weighting corrections by human responses at frequencies,
A-weighting correction has been widely used. It is usually used for a regulatory
guide such as in Uber Elevate [85] and representative index in noise comparison.
The A-weighting response function, A(f) as a function of frequency is plotted in
Fig. 2.16 [48]. Although vortex noise is broadband noise, the frequency spectrum of
vortex noise also can be modeled by Ref. [48,86], and A-weighting correction is
carried out. The A-weighting response plot for vortex noise is also shown in Fig.

2.16.
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Fig. 2.16. A-weighting response function [48]
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Chapter 3

Uncertainty Environment

The uncertainties occurring in the technology portfolio assessment and the sizing
framework are diverse. The types of uncertainties and their source are described first,
and specific uncertainties in the process are identified and modeled using various
techniques. The categorization of uncertainties and terminology in this study is

largely based on the method from Ref. [87].

3.1. Types of Uncertainties

A large number of researches have dealt with identifying and categorizing types
of uncertainties that occur in science and engineering with computational modeling
and analyses. The uncertainties change a deterministic problem in original to a non-
deterministic problem resulting in that interpreting the outcomes becomes more
complex and difficult. In order to efficiently handle the uncertainties and interpret
the outcomes, the most effective categorizing method of uncertainties was developed
by the risk assessment community. The method distinguishes uncertainties based on
the fundamental nature of uncertainties.: aleatory and epistemic uncertainty [87].
This division increases the ease of interpretation of analysis results and helps to make
strategies to handle uncertainties by decision-makers. Distinguishing uncertainties
into aleatory and epistemic is widely used across a variety of research [16,27,39,88—
92].
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3.1.1. Aleatory Uncertainty

Aleatory uncertainty is defined as uncertainty due to inherent physical
randomness in nature or a system. This type of uncertainty is also referred to as
stochastic uncertainty, variability, and irreducible uncertainty because it is attributed
to inherent variability in nature or system randomness that cannot be removed. The
representative examples of this type of uncertainty include physical variations in
product specification due to manufacturing tolerance, in material properties due to
environmental circumstances, and in performance indices of subsystems (efficiency
of powertrain). The computational parameters such as initial conditions and
boundary conditions are also can be aleatory uncertainty.

This uncertainty is usually mathematically modeled using probability density
functions (PDFs) and cumulative distribution functions (CDFs) based on numerous
samples with an assumption about the shape of PDFs (Gaussian, uniform, Weibull,

etc.) [88]. Notional PDF and CDF graphs are shown in Fig. 3.1.

Probability density function Cumulative distribution function
3.00 1.00
2.50 - 080 |
2.00 -
0.60 -
1.50 A
0.40 -
1.00 A
0.20 -
00 Area \\
0.00 0.00
X X

Fig. 3.1. Notional probability density function (left),

and cumulative density function (right)
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3.1.2. Epistemic Uncertainty

The other uncertainty, epistemic uncertainty, deals with the uncertainties arising
from a “lack of knowledge”. “Lack of knowledge” can be caused by insufficient or
incomplete data, assumptions in physics, and simplified mathematics model in
computations. Since these uncertainties can be reduced with supplementary data and
advancements in computational models, epistemic uncertainty is considered as
reducible uncertainty. Although epistemic uncertainty is divided further into
“recognized uncertainty” and “blind uncertainty”, the further division is not applied
in this study.

As epistemic uncertainty is induced by the lack of knowledge related to
computational modeling and mathematical modeling, the terminology of “model
uncertainty” is simultaneously used in this study. Epistemic uncertainty should be
considered especially in earlier design phases such as the pre-conceptual, and
conceptual design phases where many mathematical models used in the analyses are
simplified and have relatively lower accuracy. Thus, it is important to present
outcomes obtained by probability-based analysis due to reducing the possibility of
design failure or re-design attempts in the more mature design phases.

In order to embed the effect of epistemic uncertainty in system responses, it is
ideal to know the exact distribution of the model uncertainty. However, it is usually
an impractical situation because the number of available experimental data is usually
limited owing to the limit of budget or timeframe. In that situation, unthoughtful use

of PDFs with assumptions may lead to inaccurate predictions in the amount of
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uncertainty in the system [87-90]. Thus, epistemic uncertainty is usually considered
using intervals. The intervals can be obtained through various ways. One is a
comparison with data from computational methods with higher accuracy or
experimental data. If data from higher fidelity methods are not available, expertise

from experts can help to set the intervals.

3.1.3. Other Uncertainties

In addition to both types of uncertainties, numerical errors arise during the
computation process in science computing. The error is defined as a deviation from
the true value of a quantity. In Ref. [87], the error is strictly different from the
uncertainty and its usefulness of the concept of error is highly dependent on the level
of'accuracy of the true value. The concept of error is useful in the circumstance where
the accuracy of the true value is known, which is not a usual situation though. In that
case, it would be a more appropriate approach to characterize the accuracy of the
computation as epistemically uncertain [87]. Thus, in this study, the numerical error

is considered blindly in the model uncertainty
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3.1.4. Effect of Uncertainties

The effects of the two types of uncertainties on an output quantity of interest are
shown in Fig. 3.2. In an ideal case where there is no uncertainty with precise
knowledge and no variability, a scalar quantity of interest is obtained. The sole
aleatory uncertainty results in a distribution, producing a single CDF curve. The sole
epistemic uncertainty makes a scalar value shifted, which produces a pure interval.
When the two types of uncertainties are mixed together, the multiple CDF curves are
generated, and probability area, referred to as a probability box or “p-box”, is

generated eventually.

Precise knowledge

Pure scalar Distribution
1.0p— = 1.0F === e
a 0
O O >
D
e =
+ 00 i i 0.0 d _ o
c Quantity of interest Quantity of interest <
E > 5
a 8
a S
Pure interval P-box =4
<
i R 1.0 -
LL —> LL
) @)
O O
0.0 0.0
Quantity of interest v Quantity of interest

Epistemic uncertainty

Fig. 3.2. Uncertainty effects on an output quantity of interest

(Modified from Ref. 34)
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3.2. Uncertainties in Technology Portfolio Assessment Process
The uncertainties existing in the technology portfolio are identified and treated

by following the classification of uncertainties described in Section 3.1.

3.2.1. Uncertainty in technology impact and interaction factor

One of the most major uncertainties is the magnitude of the impact of each
technology on system attributes, and elements of TIM. As described earlier in
Section 2.1.2, the impact factors for TIM can be quantified through various ways,
such as literature reviews, physics-based computations, direct experiments, and the
Delphi technique which relies on experts’ opinions. Although uncertainties are
attributed to each source, in particular, Delphi technique that depends on experts’
opinions is one of the main sources of uncertainty. The subjectivity of the experts
based on their own experience and confined knowledges only in their disciplines
have significant contributions to the uncertainty for the impact factor. Thus, the
impact of technologies has inherent variations that can be handled by aleatoric ways.

Additional concerns related to the uncertainty should be focused on the level of
technology maturity. There is a high possibility that the enlisted technologies which
are selected to meet the design requirements are still in an immature status for
integration. The maturity level of technologies is usually measured quantitatively by
technology readiness level (TRL) [94,95]. The original definitions of TRL are based
on the component level, not the system level. Thus, it is limited to applying the

concept of TRL to system response analysis. In order to overcome this limitation,
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other indices for considering integration in the perspective of systems were presented
[15,16,96-98]. The new readiness level indices could resolve the limitation of the
original TRLs, but they make the engineering problem more complex requiring more
data collection and scrutinization. To minimize the complexity, the modified
definition of TRL presented in Science Applications International Corporation
(SAIC) report [99] is used in this study following Ref. [10], instead of incorporating
other readiness level indices. The modified definitions of TRL are tabulated in Table
3.1. They are less focused on the component level.

Table 3.1. SAIC Modified TRL description [10]

Description  Level Qualifier or Development Hurdle
Basic . Basic scientific/engineering principles observed and
Research reported
Feasibility 5 Technology concept, application, and potential benefits
Research formulated (candidate system selected)
Feasibility 3 Analytic and/or experimental proof-of-concept completed
Research (proof of critical function or characteristic)
Technology A System concept observed in laboratory environment
Development (breadboard test)
Technology 5 System concept tested and potential benefits substantiated
Development in a controlled relevant environment

System . Prototype of system concept is demonstrated in a relevant
Development environment

System System prototype is tested and potential benefits
Development 7 substantiated more broadly in a relevant environment
Operational . Actual system constructed and demonstrated, and benefits
Verification substantiated in a relevant environment
Operational Operational use of actual system tested, and benefits
Verification ? proven
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Under the TRL assumption, the uncertainty of technology impact on a system is
estimated. The immature technology with low TRL is hard to predict its impact on
the system owing to a lack of data and knowledge on the technology, which implies
the level of epistemic uncertainty is high a lot. As the technology development is
progressing, the problem of “lack of knowledge” is resolved by accumulated data
and information, which means epistemic uncertainty is reduced. Under this rationale,
the expected technology impact distribution when a technology is fully developed
reaching TRL of 9 is dependent on the current TRL of technologies. This analogy
was presented by Ref. [10] in which the expected impact distributions of
technologies were displayed depending on TRL as shown in Fig. 3.3 [10]. The

detailed analogy can be found in Ref. [10]

A D
Desired
Capability Limit of probability
of forecasted impact c
b
B

Performance T—~a

Improvement

Limit of probability
of forecasted impact

Present Day X Assumed impact trend

Capability

(o 1
A\

TRL

Fig. 3.3. Uncertainty forecast (reproduced from Ref. [10])
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In order to handle both aleatory and epistemic uncertainty in the impact of
technologies and mathematically reproduce a distribution of it, PDF determined by
TRL is adopted for its distribution in this study [10]. Following Ref. [10], Weibull
distribution is chosen of which shape parameter, 5, and scale parameter, a, are
modeled as a function of TRL (Eq. (3.1) [10]). a; ; is the impact factor of defined
in Eq. (2.2).

|30%ai,j| — |5%aw|)

- (3.1)

alrya,p=2 = [30%ay;| - (TRLy, — 1) (

The PDF curves for Weibull distribution of the two impact factors with different
TRL are shown in Fig. 3.4 and Fig. 3.5, respectively. The theoretical limit is marked
with a solid blue line. The nominal value (average) of the expected impact of the
technology in immature status (low TRL) is far from the theoretical limit value. The
variation of the distribution is much broader. On the other way, the nominal value of
the expected impact of the technology in mature status (high TRL) is near to the
theoretical value, and the distribution shows a narrower variation. The diminishment
of variance by increasing TRL is linked to the reduction of epistemic uncertainty by
resolving the lack of knowledge. It is noted that, even at TRL of 9, the magnitude of
the impact factor cannot reach the theoretical limit and has a variability. This is due
to the fact that aleatory uncertainty is irreducible and the theoretical limit is the ideal
value. Other distribution functions such as triangular distribution and gamma
distribution can also be applied depending on the circumstance of data collection,

data characteristics, and decision makers’ priority [15,16].
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In addition to uncertainties in the impact of technologies, the elements of TCIM
and interaction factors that are obtained by Eq. (2.4) have also both aleatory and
epistemic uncertainty for their figures because the elements of TCIM are determined
by the similar to the approach for TIM case. They can be modeled using PDFs in the
same way. However, this uncertainty was neglected in this study since the variability
induced by interaction factors could be mixed and diluted by the variability in the
expected impact of the technologies. The limit values of both ends resultant
distribution for the variability of the element of TPEM could be different if extreme
values from TCIM and TIM are sampled. Nevertheless, the possibility of the
situation happening is highly low, resulting in little difference in the resultant
elements of TPEM. Meanwhile, the advantage of reducing the computational burden
and dimensional curse is significant by ignoring the variability of interaction factors.

Another uncertainty source is TRL of technology by itself. Since TRL is defined
qualitatively as in Table 3.1 (also in the original definition), determining the exact
number for specific technology is always controversial and subjective. In this
dissertation, it is assumed that TRLs of technologies are determined as one value for
each technology by averaging information from literature surveys and expertise from

experts.
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3.2.2. Uncertainty in surrogate model

Another major uncertainty in the process stems from the mathematical surrogate
models that replace physics-based design tools. As mentioned earlier in Section
2.1.5, the use of surrogate models such as RSM, Gaussian process, and neural
networks is usually an inevitable choice to relieve extremely high computational cost
and time issues. This is because of the fact that, even in the deterministic process for
technology portfolio assessment, the shortlist of the technology portfolios is
extended following 2 to the power of the number of listed technologies (2"). In
building the surrogate models, the input space is usually explored through DOE
process with efficient sampling methods such as Latin Hypercube Sampling (LHS)
[100], D-optimal [101], and Sobol’s sequence [102]. Unlike to the full-factorial
method, these sampling methods are not fully cover the input space dimension, so
that the surrogate model built with the sampled points should have uncertainty from
missing space. The uncertainty is not vanished completely even if the full-factorial
sampling is used.

In uncertainty quantification problems, therefore, incorporating the uncertainty
from the surrogate models into the results is necessary to provide accurate
information leading to appropriate decisions and risk management, but it was
neglected in the previous studies [10,15,16] where the surrogate models were only
used deterministically after their validation showed errors. The uncertainty from the
surrogate models can be classified as an epistemic uncertainty. The schematic figure

of the surrogate model and its epistemic uncertainty is shown in Fig. 3.6.
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Fig. 3.6. Schematic of surrogate model and its uncertainty

The specific methods for quantifying this epistemic uncertainty depend on the
type of surrogate model chosen to be used for individual projects. For example, in
the case of the methods that provide variance information by themselves such as
Kriging method [43] and Bayesian neural network [103], the variance information
can be directly used to estimate the confidence interval that is interpreted as the
epistemic uncertainty from the surrogate models. On the other hand, the
deterministic surrogate methods such as the conventional RSM [41,42] and MLP
neural network [44] do not provide variance information by themselves, so that
additional techniques are needed for estimating variance from the model. One of the
available techniques for the RSM is to use a prediction interval with probabilistic
algorithms for estimating confidence intervals [104,105]. This technique can be

applied to any other surrogate models since a prediction interval is always a
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calculable feature. In the case of the conventional MLP model, the MC dropout
technique [106] could aid to estimate uncertainty by mimicking the Bayesian neural
network.

After obtaining variance information according to the chosen surrogate model
and interval estimating technique, the total variance of a system response, o7, is
calculated by Eq. (3.2) in which o7 is equal to the sum of variances by aleatory
uncertainty, o2, and by epistemic uncertainty, o2, with an assumption that the two

aleatory and epistemic uncertainty sources are independent of each other.

of = 02 + d? (3.2
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3.3. Uncertainties in Conceptual Design Framework
The uncertainties existing in the conceptual design framework were identified
and treated by following the classification of the uncertainties described in Section

3.1.

3.3.1. Uncertainty in physical parameter variant

There are a lot of physical parameters used as input variables for the sizing
program such as rotor radius, wing span, battery specifications, wind condition,
altitude profile, and flight speed. These parameters have inherent randomness in
natural environment, which can be handled by the aleatoric way using PDF or CDF
curves as described in Section 3.1.1. Although the shape of PDF curve is dependent
on collected data or circumstance, Gaussian distribution or normal distribution is the
most common type of distribution used to model variation in the physical parameters.
A coefficient of variation (COV), a ratio of standard deviation o and mean u,
defined as Eq. (3.3) is usually used for presenting how much data are scattered with
respect to the mean value. With assumptions for the type of distribution and COV
for each physical parameter, the variation in the physical parameter can be modeled.
The exact parameter considered in uncertainty quantification was presented in
Section 4.2. The terminology of parametric uncertainty was interchangeable with

aleatory uncertainty or input uncertainty in this dissertation.

cov = % x 100 [%] (3.3)
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3.3.2. Uncertainty in simplified analysis models

Uncertainties induced by simplified analysis models in RISPECT+ are classified
as epistemic uncertainty. In this study, this type of uncertainty is referred to as model
uncertainty considering the origination of the uncertainty.

Uncertainties in the two analysis modules in RISPECT, rotor aerodynamics and
wing aerodynamics analysis, were considered because these two modules mainly
determine the performance of advanced air mobility. Since the electric propulsion
system analyses are based on constant efficiency herein those models were excluded.
Through comparing analysis results with experimental data or higher fidelity
analysis results, the modules not only were validated, but also parameters that
quantify the model uncertainty are obtained for each analysis module. The model
uncertainty parameter 6 is defined by Eq. (3.4), where yp,eq is the output quantity
of interest calculated by RISPECT+ and y,. is the reference value that can be
obtained from experiments or datasheets from manufacturers, or higher fidelity

solvers.

_ Vtrue

0; i for analysis model (3.4)

ypred

It is assumed that the obtained V.. is genuinely true value. Uncertainties that
might arise in the data-obtaining process such as measurement or post-processing
are neglected herein since those kinds of uncertainties are not. In Fig. 3.7, the method

for the calculation of the model uncertainty parameter is shown schematically.
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Fig. 3.7. Model uncertainty parameter calculation [91]

Uncertainty in the rotor aerodynamic module was considered in terms of the
power of a rotor P, Which was calculated by the BEMT and BET method
[49,50]. The model uncertainty parameter 6y, ggyr for the BEMT method and
Opw,per for the BET method are defined as Eq. (3.5), respectively. The equations
are defined as the power coefficient over rotor solidity in order to directly use data

from Fig. 2.10 and Fig. 2.11.

Cp/ Or true Cp/ OR true

o = 0 =
pw,BEMT Cp R i ’ pw,BET Cp /on
predlpeyT

(3.5)

pred BET

The calculated model uncertainty parameters for each rotor aerodynamics
analysis method are presented in Fig. 3.8 and Fig. 3.9, respectively.

Seeing Fig. 3.8 for BEMT method in hover mode, 6, pgmr are scattered almost
randomly. After blade loading Cr/or of approximately 0.11, it might be determined

that there is a trend between Cr/og and 6, ppyr. However, the number of points
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used for comparison is not sufficient to induce a certain trend, and the missing area
could be generated where the trend would not match well. Hence, an interval
covering all data is presented instead of adopting a trend hastily. The 6, pgyr has
the expectation of 1.0122, which means the BEMT method in RISPECT+
underestimates the rotor power in hover mode. The interval is from 0.9638 to 1.0582,
a range of within 6% difference.

As can be seen in Fig. 3.9, the model uncertainty parameters for the BET method
Opw,per are scattered more randomly in this time, so that the same approach using
interval was applied for the BET method in tilt mode flight. The 6,,,, ggr has the
expectation of 0.9541, which means the BET method in RISPECT+ overestimates
the rotor power in tilt mode. The interval is from 0.8246 to 1.0441, a range of within
6% difference.

Table 3.2 presents the expectation and interval of the two model uncertainty
parameters. It is assumed that the two parameters 6, ppmr, and Opy, ppr are
identically applied to other flight conditions where different rotational speeds or
advance ratios were encountered during the sizing process.

Table 3.2. Expectation and interval of 0, pgyt, and 6y, pr

Parameter Expectation Interval
Opw,BEMT 1.0122 [0.9638, 1.0582]
Opw,BET 0.9541 [0.8246, 1.0441]
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Fig. 3.8. Model uncertainty parameter in BEMT method (hover mode)
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Fig. 3.9. Model uncertainty parameter in BET method (tilt mode)
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The same analysis was conducted for the wing aerodynamic analysis. In

RISPECTH+, the 3D lift coefficient curve slope €, was obtained by Eq. (2.18). The

model uncertainty parameter for the lift coefficient curve slope bc,, is defined
wing

by Eq. (3.6).

Latrye (3. 6)

CLayima
wing CLapred

In Ref. [55], Cp, per radian calculated by Eq. (2.18) and vortex lattice method
(VLM) were presented for various wing planform designs. The data and BcLa

wing

is tabulated in Table 3.4. In this time, C}, trrge VS settled by VLM data.

Table 3.3 presents the expectation and interval of the GcLa . Although the
wing

expectation is nearly equal to one, there is an uneven deviation in the interval. The

maximum GCLq 18 1.0273, which implies the empirical equation underestimated
wing

the lift coefficient curve slope by approximately 3%, and the minimum 6, is
Awing

0.9623, which implies that the empirical equation could overestimate the lift

coefficient curve slope by approximately 4%.

Table 3.3. Expectation and interval of 6.,
Awing

Parameter Expectation Interval

1.0061 [0.9623, 1.0273]

CLa'wing
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Table 3.4. O, for different wing configurations (data from Ref. [55])

Awing

Calculated

Wing planform Clayying
Eq. (2.18) VLM

Elliptical, straight half chord 4.90 5.02 1.0245
Elliptical, straight LE” 4.87 4.99 1.0246
Elliptical, straight TE" 4.87 4.99 1.0246
Schuemann 4.88 4.99 1.0225
Semi-straight taper 4.90 4.98 1.0163

Straight taper, straight half chord 4.90 4.96 1.0122
Straight taper, straight LE 4.89 4.95 1.0123
Straight taper, straight TE 4.89 4.95 1.0123
Compound taper 4.90 4.88 0.9959
Rectangular 4.90 4.82 0.9837

Crescent 4.59 4.60 1.0022

Swept back, TR*=0.5, LE sweep 30° 4.40 4.52 1.0273
Swept forward, TR=0.5, LE sweep 30° 4.24 4.32 1.0189
Swept back, TR=1.0, LE sweep 30° 4.35 4.29 0.9862
Delta 2.51 2.44 0.9721

Double delta 2.39 2.30 0.9623

Disk 1.83 1.84 1.0055

* LE: leading edge, TE: trailing edge, TR: taper ratio
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The obtained intervals of the model uncertainty parameters for rotor
aerodynamics and wing aerodynamics analysis were used in the uncertainty

quantification of the flight performance of advanced air mobility in Section 4.2.
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3.4. Uncertainty Propagation: Monte Carlo Simulation

One of the various popular methods for the forward propagation of uncertainties
to the system responses is Monte Carlo Simulation (MCS). MCS is based on a
number of repetitive deterministic calculations with sampled input parameters
following the law of large numbers. MCS has been widely implemented for various
uncertainty quantification studies [10,15-18,27,39,40,91,107,108] due to the solver-
independent characteristics of MCS which encloses the solvers or governing
equations outside and does not require additional modifications of them. Although
MCS requires excessive computation time, MCS is used in this study, and other
probabilistic methods for uncertainty quantification such as polynomial chaos
expansion [109], stochastic collocation, and Gaussian quadrature [33] were ruled out
mainly owing to the following reasons. The first reason is the relatively large number
of random variables in the technology portfolio assessment process (the number of
elements in TIM) and a large number of alternative design candidates (the number
of rows in TPM). Stochastic expansion methods based on full tensor product
quadrature are not effective in this situation [16]. The second reason for applying
MCS is to evade additional uncertainties produced when functions of interest
(system responses) are approximated by approximation-based methods.
Additionally, the fact that a single analysis of RISPECT+ can be executed within
several seconds alleviating the time issue is the supplementary reason.

In the technology portfolio assessment process, MCS loop wraps the surrogate

model that is constructed for system responses by technology impact. It is a kind of
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in-direct MCS environment. On the other hands, in the uncertainty quantification of
RISPECT+, MCS loop wraps the conceptual sizing framework, constructing a direct
MCS environment.

Although both MCS environments were set with the appropriate assumptions and
circumstances, the original MCS coupled with a purely random sampling method
typically requires too many sample points, nearly 100,000 size for them, for securing
the convergence of response [39,108,110]. To reduce the MCS problem to the more
manageable quantification problem, LHS method instead of the random sampling is
coupled for MCS, which shows much faster converged results with almost 10 times
smaller sample size [27,91,108]. The LHS from multiple PDFs in the uncertainty

quantification problem is well described schematically in Fig. 3.10 [27].
7\
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Fig. 3.10. Representation of LHS probable intervals

for parameter input space sampling [27]
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The schematic diagram of entire MCS process is shown in Fig. 3.11 where

uncertain inputs and outputs are shown with PDF curves.

Input X; Input X, Input X5

v

...............................................................................................................

Monte Carlo Simulation

Latin Sampled
Hypercube input
Sampling parameters

Deterministic

model / tool

Simple random
Descriptive random
Sobol sequence

................................................................................................................

Output R4 Output R,
yi+15% Reliability = 0.81

Fig. 3.11. Schematic diagram of MCS
Probabilistic outcomes are obtained as results of MCS. The statistical moments
such as expectation (mean), standard deviation, and skewness coefficient can be
obtained by Egs. (3.7), (3.8), and (3.9), respectively. In the equations, N, is the
number of samples, R; is a system response of interest, g is an expectation, ¢ is
a standard deviation, fi; is a skewness coefficient, and E[-] is the operator for

expectation.
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Using a prescribed value, the reliability can be calculated. The PDF curve of
output quantities obtained after MCS can be drawn by kernel density estimator with
Gaussian basis function [111] (Eq. (3.10)). The detailed process for MSC process
will be presented in the examples of method implementation in the following

Chapter 4.

A 1O, X —x . . . .
fnlx) = %Z K ( ) where K is kernel with Gaussian basis  (3.10)
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Chapter 4

Method Implementation

The methodologies presented through Chapter 2 and Chapter 3 are implemented
to pilot programs for a hypothetical advanced air mobility eVTOL for transportation
in urban areas as an exemplary demonstration. The eVTOL aircraft is considered a
suitable testbed for the method implementation because various eVTOL aircraft
designs have been proposed and developed for future air mobility with a lot of
attention received. Section 4.1 demonstrates the process of technology portfolio
assessment, and Section 4.2 describes uncertainty quantification in the conceptual

sizing of the hypothetical advanced air mobility eVTOL.

4.1. Uncertainty-based Technology Portfolio Assessment for eVTOL

The uncertainty-based technology portfolio assessment for eVTOL was
conducted following the steps described in Section 2.1. For a test bed of the process,
one of the representative configurations of eVTOL aircraft was used, which was
optimally sized before with RISPECT+. In the sizing process after applying the
impact of technologies, the optimizer step in Fig. 2.8 was excluded. The elements of
TPEV, €, was fed into RISPECT+ with input data, and correspond parameters were

modified by following Eq. (2.6) during the sizing process.

o7 2] 1



4.1.1. Test Bed eVTOL

The baseline of a hypothetical eVTOL aircraft configuration is displayed in Fig.
4.1 which is similar to Joby S4 configuration, one of the prevalent vectored thrust
type eVTOL designs. It has six tilting rotors and T-shaped empennage system. The
baseline was sized by RISPECT+ for a typical mission profile where maximum flight
range is 100 km with a payload of 500 kg (1102.31 1b), which is shown in Fig. 4.2.
The mission profile comprises of vertical take-off, climb, cruise, descent, and
vertical landing segments with ground taxiing of 50 m. The numbers for each
segment are presented in the figure.

The sizing assumptions such as efficiency coefficients and specific power of
electric propulsion components were tabulated in Table 4.1 and the summary for
specification of the optimally sized baseline eVTOL aircraft and constraint are
presented in Table 4.2. The gross weight was approximately 2409 kg (5311 Ib) for
carrying the payload of 500 kg (1102.31 1b). The mounted battery energy capacity
was estimated as 122 kWh with assumption that specific energy of the battery was
given as 205 Wh/kg. The maximum noise level presented by overall sound pressure
level (OASPL) with A-weighting was 67.5 dBA, and the effective lift-to-drag ratio
was obtained as to be approximately 9.05. The economics quantities of the baseline
included vehicle cost, DOC, and RDT&E cost that were analyzed by the equations
from Section 2.2.6. Given the assumed constraint values, there were multiple

violations in the gross weight, noise level, and direct operating cost.
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Fig. 4.1. Baseline eVTOL concept (left: VTOL mode, right: cruise mode)

Altitude [m] Required payload
4 Cruise 88 km at 250 km/h 1500 kg (1102.31 1b)

R 1

ROC™ at 18 km/h Descent at 18 km/h

288 ‘
N 5 Transition from 1.2Vqy
Transition to 1.2Vqn with 12.5% gradient
with 12.5% gradient |
30 — i VL"at 7.4 km/h 50 m taxii
VTO" at 9 km/h (500 fpm) . (400 fpm) m taxiing
(

50 m taxiing” é 94 100 Range [km]

*VTO: Vertical Take off ROC: Rate of climb  VL: Vertical Landing

Fig. 4.2. Mission profile schematic used for the baseline eVTOL sizing
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Table 4.1. Sizing assumptions

Component Parameter Value
Battery Specific energy 205 Wh/kg
Maximum DoD 0.80
Maximum discharge C-rate 10C
Efficiency 0.93
Electric motor Specific power 4.1 kW/kg
Efficiency 0.96
Inverter Specific power 13 kW/kg
Efficiency 0.98
TMS Specific power 0.68 kW/kg

Table 4.2. Baseline eVTOL design summary

Parameter Value Constraint / Target
Gross weight 5310.914 1b (2409.01 kg) < 5000 Ib
Payload 1103.42 1b (500.50 kg)
Battery energy 122.617 kWh Minimize
Max. OASPL @ hover 67.521 dBA < 65dBA
Effective lift to drag ratio 9.054 = 9.0
Vehicle cost 1.87M USD Minimize
Direct operating cost 796.01 USD/FH < 750 USD/FH

RDT&E cost 162.55M USD Minimize
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4.1.2. Technology Identification

As shown in Table 4.2, there were multiple violations of constraints in the
performance and economics specification. These violations were kinds of show-
stoppers in the development program. For example, the operation permit could be
restricted based on the maximum noise level by the regulatory administration such
as Federal Aviation Administration (FAA) and European Union Aviation Safety
Agency (EASA) of which proposal of noise regulation had been discussed to be
presented under 65 dBA. Gross weight of which the constraint was set as 5,000 1b
also should be reduced over 8% more to satisfy the constraint. Direct operating cost
was one of the most important parameters that should be paid attention for the
sustainability of the business. Consequently, technologies that have an effect on
noise performance, gross weight, and operating cost should be considered and
identified.

In this project, seventeen technologies from various disciplines such as
aerodynamics, electric propulsion, and manufacturing were identified and their TRL
figures were obtained from literature reviews and expertise [112—114]. The identified
technologies are listed in Table 4.3 where the TRLs are averaged values. The
technologies were directly or indirectly related with the performance and economics
specification of the test bed eVTOL. For instance, lithium-sulfur battery cells and
fuel cell propulsion technology were connected to gross weight since they
determined the energy density of the energy reservoir. Rotor planform and active

control technologies had an effect on acrodynamic and aero-acoustic performance.
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De/anti-icing technologies could extend operational days per year securing all
weather capability for the eVTOL, which eventually led to the reduction in direct
operating cost.

Table 4.3. Identified technology list

Technology TRL
T, Lithium-sulfur battery cell 5
T, Fuel cell propulsion 5
T3 Carbon composite wing structure 7
T, Carbon composite fuselage structure 7
Ts Carbon composite rotor structure 6
Te Truss-braced wing 4
T, Battery package integration 5
Tg Laminar flow control 5
Ty Electric ducted fan 8
Tqo High power electric motor 6
T4 Rotor airfoil/planform for aero performance 5
Tio Rotor phase control for low noise and vibration 6
Ty3 Rotor airfoil/planform for low noise 5
Tya Rotor active twist control for low noise and vibration 5
Tys Heat coil/mat for de/anti-icing 6
Ti6 Surface coating for anti-icing 7
Ty Fast production technology 5
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4.1.3. Technology Impact

The next step was to construct TIM. Among eVTOL aircraft system attributes, 23
parameters that were highly related to subsystems such as powertrain, rotor-blade
system, structural system, operating system, and manufacturing technique were
selected. They included subsystem weights, aggregated efficiency of the propulsion
system, RDT&E cost, and unit cost of parts. The elements of TIM are mainly
determined by literature surveys and Delphi approach.

In the process, the increment of RDT&E cost was corrected depending on the
nature of the technologies and their TRLs. If a technology is related to components
of the aircraft itself that are usually developed by an aviation company, the figure of
the impact on RDT&E cost (s1¢) is relatively high. On the other hand, “off-the-shelf”
technology from ally companies, such as battery and electric motor, has a lower
magnitude in RDT&E cost only for the integration aspect. Instead, these kinds of
technologies induce the increment in unit cost of the related parts. The technologies
with low TRL also are assumed to tend to have a relatively high impact on RDT&E
cost. This is because that the distributions of impact factor are determined on the
basis of the assumption that the all technologies reach TRL of 8 or 9 successfully
when the target system is ready to production in the future. In this assumption, it can
be inferred that relatively more RDT&E fund is need to catch up belated technology
readiness. With this analogy, RDT&E correction is applied when constructing TIM

in spite of a little subjectivity.
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The constructed TIM at the deterministic assessment with theoretical limits is
shown in Fig. 4.3. Based on these figures in the deterministic TIM, when
probabilistic approach is applied, the distributions of the elements of TIM is modeled
as shown in Fig. 3.4 and Fig. 3.5.

The TRLs of each technology are presented in the first row. The last two right
columns are the limit ends of the element of TIM without consideration of the
compatibility of the technologies. These limit ends guide the range of the input space

for a surrogate model.
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Ty | To | Ta | Ta | Ts | T | T7 | Ts | To | Tio | Tox | Tz | Tus | Tais | Tus | Tis | Tap | Min Max
System attributes TRL| § 5 7 7 6 4 5 5 8 6 6 5 5 6 7 5
Efficiency of rotor 53 0.07 0.05 |-0.02|-0.04|-0.02 -0.078 0.124
Efficiency of powertrain (Motor, inverter, battery) sa] 0.05 -0.05 -0.050 0.050
Energy source (Battery, fuel cell) Specific energy sz| 0.30 | 0.20 0.05 0.000 0.638
Total wing lift coefficient 54 0.05 0.05 | 0.03 -0.02 -0.020 0.136
Total parasite drag coefficient 53 0.03 |-0.02|-0.10| 0.05 0.02 | 0.01 -0.118 0.114
Main wing system weight Sg -0.15 0.06 0.03 | 0.02 0.02 -0.150 0.136
Fuselage weight s -0.20 0.10 -0.05 -0.240 0.100
Rotor system weight (incl. hub, duct) Sg -0.05 0.10 0.02 | 0.05 | 0.05 | 0.10 | 0.01 -0.050 0.374
Electric motor weight Sg -0.03 -0.030 0.000
RDT&E fund $10] 0.08 | 0.10 | 0.15 | 0.15 | 0.15 | 0.20 0.20| 0.03 | 0.08 | 0.15 | 0.08 | 0.15 | 0.15 | 0.10 | 0.05 | 0.20 0.000 5918
Energy source unit cost s11] 0.50 | 0.30 5 0.000 1048
Elelctric motor unit cost $12 0.30 0.000 0.300
Rotor system unit cost 513 0.05 0.10 0.05| 0.10 | 0.12 | 0.15 0.000 0.804
Airframe unit cost S14 0.08 | 0.08 0.10 0.05 s -0.05] -0.050 0.415
Battery life cycle s15|-0.15|-0.05 0.05 -0.193 0.050
Noise level (pressure) S1s -0.15 0.05 | -0.08(-0.05|-0.12 -0.346 0.050
Aircraft production rate S17 -0.05 | -0.05 -0.15 -0.15|-0.05|-0.10| -0.15 0.50 | -0.526 0.500
Operating days per year 518 -0.05 -0.05 0.20 | 0.10 -0.098 0.320
Number of flight per day s19| 0.05 | 0.20 0.10 0.15| 0.10 | 0.15 | 0.10 | 0.05 0.000 1.329
Total operating year Sap 0.05 | 0.05 -0.05 0.05 | 0.02 | 0.10 -0.10| -0.145 0.299
Avionics system unit cost 521 0.05 0.05 0.05 0.08 | 0.10 0.000 0375
Maintenance unit cost $22| 0.05 ] 0.10 | 0.08 | 0.08 | 0.10 | 0.08 |-0.05| 0.15 | 0.10 | 0.01 | 0.05 | 0.08 | 0.05 | 0.20 | 0.10 | 0.12 -0.050 2.600
Idle power consumption §23 0.02 0.05 0.08 | 0.20 0.000 0.388

Fig. 4.3. Technology impact matrix with theoretical limit
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4.1.4. Generation of Technology Portfolio Candidates

The relationships between the identified technologies constructed TCIM element

shown in Fig. 4.4 following the definition of the element of TCIM (Eq. (2.3)). Note

that most of elements in the lower triangular area are symmetric to those in the upper

triangular area, but some of them are asymmetric relationship. The numbers in Fig.

4.4 was obtained based on literature reviews, and expert opinions.

Some of the representative relationships are described below.

1.

T, < T,: competing technologies for energy source.

T, < Ty;: lithium-sulfur battery has no influence on rotor aero-performance,
but high aero-efficient rotor aero-performance technology requires power
from energy source, degrading lithium-based battery technology.

T; < T;;: carbon composite structure needs heat, pressure and vacuum to
made, which makes hard to mass production.

T3 < Tg: truss-braced wing degrades the benefit of carbon composite
structure for wing (low weight) since joint between brace and wing needs to
be reinforced by metallic materials (element below of 1). On the other hand,
effect of truss-braced wing rarely get impact from carbon composite structure
for wing.

T,;, < Ty3: rotor planform for aerodynamic performance and for noise

performance could not be compatible.
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Fig. 4.4. Technology compatibility and interaction matrix (TCIM)

The resultant TPM considering the compatibility between technologies was

obtained. The number of technology portfolios was reduced approximately by half

from 131,072 to 6,456. In Fig. 4.5, 6,456 technology portfolios are listed including

the baseline; all elements of TPV for the baseline are zero.

Tl T2 T3 T4 TS TG T? T8 T9 TlO Tll TlZ T13 Tl4 T15 T16 T17
Baseline | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Aty [oflofoflofofofofjojojojJo]Jo|lo|o|lo|o]f1
Altyoes | 2| OO ] O|JO|2]OfOo]2|2]0f0o]o|o]1|0]oO
Altgyss | 1o |1 |1 2|2]1fo]Jofl21]21f2]oflo]ofl1]o
Fig. 4.5. Technology portfolio matrix (TPM)
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4.1.5. Technology Portfolio Effect

Finally, the resultant TPEM was constructed by Eq. (2.5) in accordance with
TPM, TIM, and interaction factor. In the deterministic analysis, a single TPEM of
[6,456] x [23] shape. When the probabilistic approach was used, Ny sampled
TIM from the distribution by Eq. (3.1) were selected, and then a single TPEM was
extended to the 3-dimensional array. In this study, 10,000 samples were drawn by
LHS making the resultant TPEM of [10,000] X [6,456] X [23] shaped array that

is shown in Fig. 4.6.
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Fig. 4.6. Technology portfolio effect matrix
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4.1.6. Surrogate Model construction

As mentioned in Section 2.1.5, although the assessment of technology portfolios
could be conducted using the design tool, herein RISPECT+, the direct calculation
through the design tool requires burdensome computational resources and time.
Even in the deterministic environment, the required number of evaluations is equal
to 6,456 (the number of rows in TPEM). The number of evaluations has increased
by 10,000 times, approximately 65 million, when the MCS environment was set. For
a rapid MCS implementation with reduced computational resources, MLP model
[44], one of artificial neural networks, was adopted to replace the design tool in this
study. The MLP model was chosen since it is more suitable for the non-linear system
with a large number of in-output parameters than other models like RSM and Kriging
model. If the problem is reduced with less in-output parameters, Kriging model or
other methods also can be used. The architecture of MLP model is shown in Fig. 4.7
where input parameters are the elements of TPEV (e;), and output parameters are in
total 12 performance and economics quantities including gross weight, maximum
noise level, and vehicle cost. The 12 response quantities are tabulated in Table 4.4.

The maximum noise level is presented as the overall sound pressure level in dBA.
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Fig. 4.7. MLP model architecture
Table 4.4. System responses of interest
Performance system response Economic system response
Name Symbol Name Symbol
Gross weight GW RDT&E cost CrpraE
Maximum noise level ~ OASPL 4y Vehicle cost Cyenicle
Battery energy capacity Epat Direct operating cost Cpoc
Effective lift to drag ratio LtoD, Yearly operational days Dayoper
Maximum motor power  Prmotor gy Battery life cycle LCpat
Maintenance cost Cpocme
Battery replacement cost Cbatreplace
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As described at Section 3.2.2, epistemic uncertainty that occurs by adopting the
surrogate model should be considered. In order to capture the epistemic uncertainty
of MLP model, MC dropout was carried out. MC dropout is a renowned method for
representing model uncertainty in the deep learning section as approximate Bayesian
inference [106]. The schematic diagram for the concept of MC dropout is presented
in Fig. 4.8 [115]. By randomly breaking links between layers of the MLP model
repetitively, the output parameters estimated by the MLP model can be presented
using expectation value with standard deviation. The calculated standard deviation
represents the model uncertainty of the MLP model. A detailed descriptions about
MC dropout can be found in Ref. [106]. The number of dropout executions in this
study was 1,000 that is enough to capture the epistemic uncertainty in the MLP

model.

Fig. 4.8. Schematic diagram of MC dropout [115]
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The reliability of the MLP model was validated by cross-validation shown in Fig.
4.9 where the plots of the 12 output quantities are collocated. The scattered symbols
show expectation value, and error bar lines show 3 times of standard deviation
meaning a 99.7% confidence interval. The expectation value and standard deviation
were obtained by MC dropout at the tested point with 1,000 random samples. The
error bar line in the plot for gross weight is enlarged to apparently show area near
the diagonal line.

As can be seen in the figure, the scattered symbols are well aligned with the
diagonal line, which means the predicted values by the surrogate model are well
matched to the actual values of test data. The R-squared values of all output
quantities are above 0.988 when calculated based on the expectation values, which
implies that the constructed MLP model is accurate enough to replace the design

tool.
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4.1.7. Evaluation with MCS

The MCS process that can be divided three steps shown in Fig. 4.10 is as follows.

1. By LHS, “N;” number of samples are selected following the designated PDF
shape for impact factors in TIM. Herein, 10,000 number of sampled were
chosen for each technology portfolio vector. Then, corresponding
deterministic TPEM was constructed by Eq. (2.5). The resultant TPEM for
the probabilistic simulation was extended to a 3-dimensional array of
[10,000] x [6,456] x [23] shape.

2. The deterministic TPEM was fed to the surrogate model (MLP) With the
surrogate model [10,000 x 6,456] number of cases were evaluated
deterministically, resulting in approximately 65 million of raw data for the
system responses of interest.

3. The effectiveness indices defined by Eq. (2.7), and (2.8) were calculated for
each case and grouped again by alternative design candidates. At certain
groups that were expected to be the most favorable technology portfolio, the
epistemic uncertainty from the surrogate model was incorporated using Eq.
(3.2) if necessary. The statistical moments including expectation, standard
deviation, and Pearson’s moment skewness coefficient of a system response
of interest were calculated by Eg. (3.7), (3.8), and (3.9), respectively.
Graphical probabilistic representations such as empirical PDF and CDF

could be presented.
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Step 1

1. Choose N samples for TIM by LHS
2. Obtain TPEM accordingly

MCS loop Sampled TPEM -
[Ns] x [p] x [M] -

| = (81,62,"',61\4)
Altp

Step 2] : i

Deterministic ‘ AW
calculation by R

the surrogate

= iE model

Resultant system responses i
Ex.) GW, LtoD,, Cyenicie, DOC i

Herein, i
Ns = 10,000 !

____________________________________________________________

Herein, p = 6,456

Step 3
1. Effectiveness calculation with raw data
2. Reflecting the model uncertainty
3. Statistics evaluation and graphical representation

End

+1]

Fig. 4.10. Monte Carlo simulation process for technology portfolio assessment
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4.1.8. Selection by Effectiveness

Through MCS with the 6,456 technology portfolios for which 10,000 samples
were selected, approximately 65 million cases were evaluated. Using Egs. (2.7), and
(2.8) the result of the MCS was represented by the effectiveness indices for easier
determination. The four performance parameters and economics parameters were
selected for the PE and EE calculation, respectively. They are tabulated in Table 4.5
with threshold values and the equations are presented as Eq. (4.1) and (4.2). The SE
was calculated by Eq. (4.3) with the weight factor on EE is 0.65.

The two effectiveness indices except for SE and RDT&E cost of all alternative
design candidates are presented using a three-dimensional scatter plot as shown in
Fig. 4.11. The scattered symbols show mean values obtained by averaging MCS
results and they were classified by the number of selected technologies in each
technology portfolio. Red dash-dot lines indicate a threshold line for each axis that
would be determined by the project managers or targeted performance criteria. The
ideal point, or desirable point, is a combination of the minimum RDT&E, maximum
EE, and maximum PE among the all possible solutions. It is guided by

supplementary grey-dashed lines for clear visualization in the figure.

b i 211
116 "J“"i ety I



Table 4.5. Parameters for effectiveness calculation for the project

Parameter Symbol Weight Threshold value
Gross weight GW 0.35 5000 [1b]
Maximum
. OASPL 4y 0.25 65 [dBA]
noise level
Performance o
Effective lift
parameter ] LtoD, 0.25 9.0
to drag ratio
Battery ener
y ) w Epat 0.15 120 [kwh]
capacity
Vehicle cost Cyenicle 0.25 2.5M [USD]
Direct
] DocC 0.55 750 [USD/FH]
) operating cost
Economics
Yearly
parameter )
operational Dayoper 0.10 250 [days]
days
Battery cycle LCpqt 0.10 650 [times]
-1 -1
PE. = 0.35 - (GwlAltp> ] <0ASPLmax|Altp> 4025
P GW gy OASPLyaxlpL ' 1)
LtoDe| i, ' Epatlaie, -
|—] +015:( ———
LtoD, |y, EpatlsL
B — 025 <Cvehicle|Altp>_1 055 (DOClAltp>_1
P . Cvehicle |BL . DOC'BL
) 1 (4.2)
DayoperlAltp LCbatlAltp
+010(————) 4010 | —
DayoperlBL LCbatlBL
SE, =035 PE, + 0.65 - EE, (4.3)
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Fig. 4.11. 3D scatter plot of the PE, EE and RDT&E cost
From the 3D scatter plot, three 2D scatter plots can be obtained by projection to

each pane: 1) EE-PE plot, 2) RDT&E-PE plot, and 3) RDT&E-EE plot.

EE-PE plot

The first EE-PE plot is shown in Fig. 4.12. This plot shows the effectiveness of
the technology portfolios only from the perspective of the possible benefit without
consideration of RDT&E cost. The clustered points are surrounded by a convex hull
line showing the edge of the result. Since the higher effectiveness implies the
resultant effect of technology infusion is beneficial in the system level, (max-max)
quadrant is a desirable space in the EE-PE plot. Based on the threshold values in
Table 4.5, the threshold lines are drawn for each effectiveness, and the number of

desirable solutions is only 60. Note that a solution that did not satisfy the single
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threshold value for system response was ruled out even if the calculated effectiveness

would exceed the threshold line.

Mean value

Number of MC samples: 10,000

1.2500

1.1783

1.1067 1

Performance Effectiveness

Desirable solutions: 60

1.0350 T
v 1 Tech
4: A 2Techs
1 < 3 Techs
0.9633 | S
i m 5 Techs
: o> 6 Techs
I i + 7 Techs
! ® 8 Techs
|
| Threshold & 9 Techs
i 1.0261 o 10 Techs
0.8200 ; . I _ '
0.6800 0.7633 0.8467 0.9300 1.0133 1.0967 1.1800

Economic Effectiveness

Fig. 4.12. Overview of EE-PE plot

In order to focus on the desirable solutions, the (max-max) quadrant was enlarged

and additional information was marked that is shown in Fig. 4.13. Among the 60

desirable solutions, 9 Pareto solutions could be obtained based on the ideal point that

is a combination of the maximum EE and maximum PE. These Pareto solutions are

non-dominated solutions that were derived by changing the weight for each

effectiveness. The three solutions from the Pareto front for which technology

combination was noted could be representative solutions that draw interest of the

project manager. It is noted that the notations of technologies were joined with cross

mark to emphasize the method of TPEV calculation is based on the product-based

approach. Two of the representative solutions are one-sided objective-oriented
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solutions: solutions for maximum EE, and maximum PE. For the maximum EE, the
combination of “T, X T, X T;;” is the best solution, and the combination of
“Ty X T; X Tg X Tyg X Ty is the best solution for the maximum PE. The last
solution of the final candidates is so called “the best compromise solution” which is
the nearest point from the ideal value. The combination of “T, X T, X Tg X T;;”
shows the shortest distance from the ideal point in EE-PE plot.

These three solutions were chosen by averaged mean values of MCS output
because the mean values can show the direction of the response change by impact of
the technology portfolios. Although the mean-value-presenting plot is not that
different to the deterministic approach of decision-making from the perspective of
that users checked only a single point value, it has a primary role as the first step of

filtering out unnecessary information from millions of MCS calculation results.

Mean value Number of MC samples: 10,000
1.1900 T
i Desirable solutions: 60
i Pareto solutions: 9
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Desirable soiuliou 2
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17
Q
5 1.1200 -
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=
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D H a > < R
PV e e [V Bl SR B Su Désiable SolidianiL m 5 Techs
: T2xT7xTI7 6 Techs
1.0150 i + 7 Techs
| # 8 Techs
| =
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| 1.0261 o 10 Techs
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0.9800 1.0050 1.0300 1.0550 1.0800 1.1050 1.1300

Economic Effectiveness

Fig. 4.13. Desirable-quadrant-enlarged EE-PE plot
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In addition to the mean-value-based EE-PE plot, a scatter plot to help the
probabilistic approach of decision-making was drawn using raw data of MSC results.
The MCS scatter of EE-PE plot is shown in Fig. 4.14. There are clustered points
around the centered symbol. The centered symbols indicate the mean value used in
Fig. 4.13, and clustered small dots are every single evaluation of MCS for each
technology portfolio. For clarity, only points of the Pareto solutions were added.
There are two elliptical dashed lines in Fig. 4.14 to show the confidence ellipse
indicating 3 times of standard deviation (3-sigma or 3-0) area that encircles 98.89%
of the raw data points in 2-dimensional distribution [116]. The horizontally long
ellipse lines imply that the variance in EE is more significant than that in PE.

The inner grey dashed line was obtained without incorporating the model
uncertainty in the MLP model. It shows a pure aleatory uncertainty effect from the
distribution of TIM values. The outer green dashed line was obtained with the
addition of the model uncertainty in the MLP model. Thus, this line shows the total
variance including the epistemic uncertainty, which was calculated by Eq. (3.2). It
can be seen that the area covered by the confidence ellipse slightly increased when
the model uncertainty was incorporated. The magnitude of increase of area,
indicating the effect of the model uncertainty, is different depending on the
technology portfolio since the constructed surrogate model has different confidence
according to the input values.

The solutions of which the confidence ellipses crossed the threshold are displayed

faintly with assuming a situation where a decision-maker wants to secure solutions
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satisfying the 3-sigma confidence. In that situation, 5 solutions in the desirable
quadrant were ruled out, and one of the three desirable solutions determined by mean
value were changed: the PE-oriented solution. In the analysis based on mean value,
the PE-oriented solution was “T; X T; X Tg X Ty5 X T;;” combination. However,
the original PE-oriented solution has a possibility for violating the EE threshold of
approximately 35%, equal to area over the EE threshold line. The EE-oriented
solution maintained unchanged due to less variation in PE distribution.

From the MCS scatter, the project manager is able to graphically check the
variation of the expected effectiveness by the technologies, then make decisions with
visual aids. Depending on the project manager’s tendency of risk-taking, the final

solution can be changed to anyone in the Pareto front with smaller confidence ellipse.
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Fig. 4.14. MCS scatter of EE-PE plot
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RDT&E-PE plot and RDT&E-EE plot. These RDT&E cost-related plots might draw

The same visualization approach was applied to the other projection plots:

more interest since budget issues are inevitable and substantially important.

RDT&E-PE plot

technologies were selected in the portfolio, the higher RDT&E cost was required,

Firstly, RDT&E-PE plot is shown in Fig. 4.15. As can be seen, the more

which is quite natural since more technologies need more effort for development and

integration. On the other hand, there was no clear dependency between PE and the

number of technologies, implying that more technologies do not always produce a

better effective solution. In the RDT&E-PE plot, a desirable space is (min-max)

quadrant, and 766 solutions satisfied the two threshold lines.

Performance Effectiveness
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Fig. 4.15. Overview of RDT&E-PE plot
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The enlarged desirable quadrant of RDT&E-PE plot is shown in Fig. 4.16 where
the mean-value-based solutions are presented. Among in total 766 solutions, 16
Pareto solutions were obtained. The RDT&E-oriented solution is “T,”, PE-oriented
solution is “Ty X Ty X T; X Tg X Ty X Ty5” combination, and best compromise
solution is “T; X T;g X Ty,

As mentioned earlier, since more technologies tend to induce the increase of
RDT&E cost, the number of technologies in the portfolio for RDT&E cost-oriented
solution is only one, T,. It implies the T, was the most influential technology
among the portfolios that lay in the desirable quadrant. Meanwhile, the PE-oriented
solution has a combination of six technologies, and the compromise solution has a
combination of three technologies. In the Pareto solutions, there was a tendency for

higher PE with increasing the number of technologies.
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Fig. 4.16. Desirable-quadrant-enlarged RDT&E-PE plot
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Two MCS plots for RDT&E-PE distributions are drawn in Fig. 4.17 and Fig. 4.18
according to the application of the model uncertainty. In Fig. 4.17, the confidence
ellipse without the model uncertainty is drawn solely. When the pure effect of the
aleatory uncertainty was considered, the RDT&E-oriented solution was changed
from “T,” to “T; X Ty,” combination since the distribution of the original solution
violated the PE threshold slightly due to the variability. The PE-oriented solution
was maintained.

However, when the model uncertainty from the surrogate model was added, the
PE-oriented solution was changed to another combination of “T; X T, X T; X Tg X
Tio” to secure the 98.89% confidence interval lay in the desirable quadrant perfectly.
The original PE-oriented solution showed the violation of the RDT&E threshold with
the line crossed. This alternation of the solution showed the reason why the model
uncertainty from the surrogate model should be incorporated in the process of

technology portfolio assessment.

¥ P 211 |
125 -':lx"i -7 -1 !- (=]



Performance Effectiveness

Performance Effectiveness
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Fig. 4.17. MCS scatter of RDT&E-PE plot without model uncertainty
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Fig. 4.18. MCS scatter of RDT&E-PE plot with model uncertainty
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RDT&E-EE plot

The overview of the RDT&E-EE plot is presented in Fig. 4.19 where the

relationship between the two axis values and the number of technologies in a

portfolio is apparently shown. A directional arrow heading right-bottom could be

obtained by the number of technologies. As the number of technologies in a portfolio

increased, EE shows a decreasing trend displaying that the band of EE is going down.

Meanwhile, RDT&E cost shows an increasing trend with the increasing number of

technologies. The desirable area is the (min-max) quadrant where 60 solutions lay in

the area. This number is only 7.8% of the number of solutions in the RDT&E-PE

plot, which implies that it is much more difficult to achieve economic benefit than

performance benefit even though the target value of the threshold line is lower than

that of the PE; 1.0261 for EE and 1.0367 for PE.

Economic Effectiveness
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Fig. 4.19. Overview of RDT&E-EE plot
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Three desirable solutions from 4 Pareto solutions were obtained and they are

shown in Fig. 4.20. The number of technologies in the portfolios for the desirable

solution did not exceed three. This is because the increase of RDT&E cost according

to technology infusion was reflected in the vehicle cost, which diminished the EE.

When the MSC plots for RDT&E-EE distributions are displayed in Fig. 4.21 and

Fig. 4.22, different and similar situations observed in the RDT&E-PE plots occurred

simultaneously. The different situation is that the three desirable solutions were not

changed when the pure effect of the aleatory uncertainty was considered. The

RDT&E-oriented solution has low variability, so that the solutions were maintained

in Fig. 4.21. Nevertheless, when the model uncertainty was applied, the desirable

solution was changed from “T; X T;s” to “T;,” since the original RDT&E-oriented

solution barely satisfied the EE threshold.
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Fig. 4.20. Desirable-quadrant-enlarged RDT&E-EE plot
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Economic Effectiveness

Economic Effectiveness
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Fig. 4.21. MCS scatter of RDT&E-EE plot without model uncertainty
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Fig. 4.22. MCS scatter of RDT&E-EE plot with model uncertainty
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RDT&E-SE plot

Lastly, system effectiveness, SE, obtained by Eq. (4.3) was plotted with RDT&E
cost. For brevity enlarged quadrant plot and MCS plot with model uncertainty are
displayed in Fig. 4.23 and Fig. 4.24, respectively. The desirable solutions were
changed when the criteria were based on the uncertainty-based analysis.

The three desirable solutions partially share the selected technologies with those
obtained from the RDT&E-PE plot and RDT&E-EE plot. Since the more weight of
0.65 was imposed on EE, the desirable solutions had T, or T;, in their portfolio
which were arose in the analysis of the RDT&E-EE plot. If the weight factor moved

to the PE in Eq. (4.3), the solutions would follow the trend in the RDT&E-PE plot.

Mean value Number of MC samples: 10,000
1.1200 T
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Fig. 4.23. Desirable-quadrant-enlarged RDT&E-SE plot
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Number of MC samples: 10,000

1.1200 - :
MCS scatter for 7 Pareto solutions C220 30 w/o model uncertainty
w/ model uncertainty 2.0 30 w/ model uncertainty
i
1.0967 :
Ideal i
. ble solution 2 I
_____ T7xT17 I
2 10733 !
£ i
@ |
> H
= |
4 i
& 1.0500 A |
; : v 1Tech
g i A 2Techs
§ | e L L s
& 1.0267 o Threshold i » 4 Techs
1.0298 i m 5 Techs
: 5> 6 Techs
1.0033 i + 7 Techs
i = 8 Techs
|
Threshold | ¢ Slcde
243.14 | e 10 Techs
0.9800 T T T T T -
124.66 146.11 167.56 189.00 210.45 231.90 253.35

RDT&E cost [$M, 2022FY]

Fig. 4.24. MCS scatter of RDT&E-SE plot with model uncertainty.

As seen so far, the desirable solutions were different in terms of effectiveness

indices and incorporation of the uncertainties. The desirable solutions that could be

possibly selected technology portfolios in terms of each effectiveness perspective are

tabulated in Table 4.6. The solutions that were determined based on the mean value

and the 3-sigma rule without or with the model uncertainty are presented

simultaneously. The compromise solutions are presented only once since there was

no change for them depending on the model uncertainty. It is noted that the

determined technology portfolio has a different technology combination in some

cases; they are colored differently for legibility.
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Additionally, the final shortlist of technology portfolios for each effectiveness
index tend to have certain technologies in common. In terms of the performance
effectiveness, T; of lithium-sulfur battery cell is always included in the final
shortlist of technology portfolios. Since this fact implies that T; is one of the most
influential technologies on the performance effectiveness, the project managers
should contain this technology in the project technology roadmap if they choose to
achieve high performance effectiveness. Similarly, when seeing the shortlist of
technology portfolios in the economic effectiveness, the three technologies appeared
alternately; T,-battery package integration, T;s-surface coating for anti-icing, and
T,, -fast production technology. These technologies were selected due to cost-
lowering characteristics; reducing the maintenance cost (T;) or increasing operable
days (T;4), or decreasing vehicle acquisition cost (T;7). Using this information, the
project managers could plan the technology roadmap for the success of development
program with their own philosophy and objectives, which is the development

purpose of the technology portfolio assessment framework.
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Table 4.6. Summary of the desirable solutions from the various effectiveness plots

EE-PE plot

RDT&E-PE plot

RDT&E-EE plot

RDT&E-SE plot

Ideal point

(1.0931, 1.1545)

(141.6586, 1.1545)

(141.6586, 1.0931)

(141.6586, 1.0842)

Desirable solution 1

(by avg.)

Desirable solution 1

(by pure aleatory)

Desirable solution 1

(by total variability)

(1.0761, 1.0506)

by T,, T;, Tyy

(1.0761, 1.0506)

by T,, T;, Tyy

(1.0761, 1.0506)

by T,, T;, Tyy

(152.2119, 1.0441)

by T,

(153.0405, 1.0576)

by Ty, Ty,

(153.0405 , 1.0576)

by Ty, Ty,

(154.4596, 1.0319)

by T;, Tie

(154.4596, 1.0319)

by T;, Tie

(168.5097, 1.0642)

by Ty7

(163.9885, 1.0301)

by Ty, T7, Tio

(168.5097, 1.0449)

by Ty,

(168.5097, 1.0449)

by Ty,
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Desirable solution 2

(by avg.)

Desirable solution 2

(by pure aleatory)

Desirable solution 2

(by total variability)

(1.0305, 1.1180)

by Ty, T;, Ty, Tys, Ti7

(1.0639, 1.0898)

by T, T;, To, Ti7

(1.0639, 1.0898)

by T, T;, To, Ti7

(231.5764, 1.1429)

by Ty, Tay T7, To, Tyo, Tis

(231.5764, 1.1429)

by Ty, Ty Ty, To, Tro, Tis

(223.0341, 1.1372)

by Ty, Ty T7, To, Tio

(178.8044, 1.0787)

by T;, Tie: Ti7

(178.8044, 1.0787)

by T;, Tie: Ti7

(178.8044, 1.0787)

by T;, Tie: Ti7

(236.8373, 1.0688)

by T,, Ty, Tiy

(201.9673, 1.0672)

by T,, T;, Tyy

(201.9673, 1.0672)

by T,, T;, Tyy

Compromise solution

(by avg.)

(1.0639, 1.0898)

by TZ! T71 T9’ T17

(174.1401 , 1.0874)

by Ty, Tio, Tiz

(171.8250, 1.0713)

by T,, Ty;

(171.8250, 1.0525)

by T;, Ty;
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4.2. Sizing of eVTOL under uncertainties in conceptual design

In this section, eVTOL sizing with uncertainties in the conceptual design phase
was conducted considering the various uncertainties described in Section 3.3. The
variance in performance and weight of the eVTOL by physical variation in
components and analysis modules were quantified under two flight conditions:
single hover and a generic mission profile. The details of uncertainty quantification

conditions were presented in each related section, respectively.

4.2.1. Test Bed eVTOL

The baseline of a hypothetical eVTOL aircraft configuration is identical to the
reference vehicle described in Section 4.1.1 earlier; vectored thrust configuration
with six tilting rotors and a T-shaped empennage system (Fig. 4.1). Meanwhile, the
exact numbers for the geometric specification and the mission profile are a little bit

different and modified. They are presented in each related section.

4.2.2. Uncertainty Identification

Based on the categorization of uncertainties described in Section 3.3, aleatory and
epistemic uncertainties were identified.

For the aleatory uncertainty, physical variation of geometric parameters in major
components of the eVTOL was selected as in Table 4.7. There are eleven parameters
related to the rotor design, wing position, and electric propulsion system. In the rotor-

related parameters, rotor radius, blade chord length, rotational speed, and blade twist
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were selected. In the wing-related parameter, the wing incidence angle was selected
as parametric uncertainty. In the electric propulsion components, efficiency
coefficients for the electric motor, inverter, and battery were selected as the
parametric uncertainty. In addition to them, the variations of specific power for the
electric motor, inverter, and specific energy were selected as the parametric
uncertainty in order to replicate the situation where the representative performance
indices were not obtained with a given fixed weight for each component.

These eleven parameters have an inherent variance of the value due to various
reasons. For instance, manufacturing tolerance, local flight condition variation, and
physical damages and weathering could result in variance in the rotor-related
geometric parameters. Accuracy and tolerance of control mechanism and algorithm,
electromagnetic interference, weathering, erosion in wiring, and aging effect could
result in variance in the electric parameters. All parametric uncertainties were
modeled using Gaussian distribution in this study because it is natural to assume that
manufacturers try to make the components to have a specific value. The COVs,
defined as Eq. (3.3), for each parameter were assigned based on literature surveys
[39,117,118] and knowledge of experts. Depending on the problem definition of

uncertainty quantification, the parametric uncertainties were considered or not.

I .
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Table 4.7. List of parametric uncertainty of eVTOL and fixed parameters

Component Variable Distribution type Nominal value COV [%)]
Rrotor [ft] Gaussian 4.421 0.1
Crotor [ft] Gaussian 0.8320 0.2
Rotor
Qrotor [RPM] Gaussian 1020 2.0
tWyotor [deg] Gaussian -40.112 0.5
Wing Awine  [deg] Gaussian 2.68 2.0
Nmot Gaussian 0.96 0.6
Ninv Gaussian 0.98 0.4
Electric Npat Gaussian 0.97 0.7
Propulsion SPp,: [kW/kg] Gaussian 4.932 2.0
SPi,  [kW/kg] Gaussian 13.00 2.0
SEpq:  [Whikg] Gaussian 205.0 2.0
Fixed gross weight Fixed battery weight

4965.914 1b (2252.50 kg)

1596.660 1b (724.233 kg)

The epistemic uncertainty in the conceptual design module was modeled by

adopting the model uncertainty parameter defined and obtained in Section 3.3.2 with

Egs. (3.5) and (3.6). As with the aleatory uncertainty, the application of the model

uncertainty parameters depends on the definition of the following uncertainty

quantification problems.

137



4.2.3. MCS process

The MCS process is shown in Fig. 4.25 where four steps are presented. Iterative
deterministic calculations are conducted using sampled input parameters. During
MCS, the optimization process of RISPECT+ was excluded and the sizing process
was only executed. The statistical outcomes by Eqgs. (3.7), (3.8), (3.9), and (3.10) are
the final result of the MCS process

Step 1

Assume distribution of uncertain variables

EX.) x1~N(ty,, oxiz), Xx,~U(min, max)

Step 2 | :
Generate uncertain input set
by Latin Hypercube Sampling

= MCS loop |
i Sampled N's set oop

'
1
X1 ={x11,%21,7 Xn1} :
1
|

Ang = {xl,NS; X2,Ng» """ xn,NS}

l

Sizing results
EX-) GW: Pratorv Pmotv Ebat

Step 3 | |
Deterministic i

! sizing by - _m
| RISPECT+ == |
E i=i+1 | : L =] |
: CET— ;

Statistics evaluation and representation:
Wi, 0y, fiz; PDF, CDF for Y;, reliability

End

Fig. 4.25. Monte Carlo simulation process for sizing
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4.2.4. Sensitivity Study
Sample number test

In order to determine the appropriate number of samples for MCS, a sample
number test was conducted with six different numbers of samples: 100, 300, 500,
1,000, 10,000, and 100,000. According to each number of samples, the expectation
and standard deviation were calculated in terms of five performance parameters:
final depth of discharge DoDy;,, mechanical power of a rotor Prytor, battery
discharge C-rate ypq:, maximum overall sound pressure level with A-weighting
OASPLyyqay, and system efficiency 7g,,s. The 75,s was calculated by multiplying
all efficiency coefficients of the propulsion components (the rotor, motor, inverter,
and battery). Geometric input parameters are the same as Table 4.7 and 10 min
hovering flight at altitude of 200 m was imposed. The convergence trends are shown
in Fig. 4.26 and Fig. 4.27 in terms of the expectation and standard deviation. They
are presented as relative differences from the value obtained with 100,000 samples,
assuming that results with 100,000 samples are true values. Convergence criterion
was set as deviation of 1%. As can be seen, the MCS result with 10,000 samples
satisfies the criterion sufficiently in both the expectation and standard deviation of
the five performance indices. Hence, the following MCS results were obtained with

the simulation of 10,000 samples.
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Expectation
0.008

DODfin

0.006 Protor

Xbat
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Nsys
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-0.004

Relative rate estimated by MCS [%]
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Fig. 4.26. Sample number test results: expectation

Standard deviation
1.000

0.000 _’g_?g_ |

S
(7p]
O
2 1.000
> - WUU resdasalasnsnnnnnmaisnnngifunnnnnnnguunnnnnnsnnnnnnnnnnnny
g \ 1% Criterion
[¢B]
g -2.000
§ O DODfin
= -3.000
E D PT'OtOT
; < Xbpat
= 4000 ¢ OASPL, 4y
o
<= nsys
-5.000 T T T T
100 1,000 10,000 100,000

Number of samples

Fig. 4.27. Sample number test results: standard deviation
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Sensitivity study

In order to investigate the single effect of each parametric uncertainty on the
performance and filter out less influential uncertain parameters, the sensitivity of the
uncertain geometric parameters was studied firstly. The sensitivity study was
conducted under 10 minutes of hovering flight. The input condition is presented in
Table 4.8. The sensitivity of the uncertainties was measured using sensitivity index
SI defined by Eq. (4.4) where x; is an uncertain variable in the input set, and y;
is output performance parameters. y;|x; means that the conditional output

parameter of y; when an uncertain input parameter is x;.

Sl = cov Of yj|xi _ (O-/:u)yjlxi
YTocovofx T (o/wy

(4.4)

Table 4.8. Parametric uncertainty of the base eVTOL in hover flight

Component Variable Distribution type Nominal value COV [%]
Rrotor [ft] Gaussian 4.421 0.1
Crotor [ft] Gaussian 0.8320 0.2

Rotor

Qrotor [RPM] Gaussian 1020 2.0
tWyotor |deg] Gaussian -40.112 0.5
Nmot . Gaussian 0.96 0.6
Electric Ninv : Gaussian 0.98 0.4
Propulsion  71pq¢ . Gaussian 0.97 0.7
SEyqa:  [Whikg] Gaussian 205 2.0
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At first, the sensitivities of the eight input parameters were measured in terms of
DoDyy after 10 minutes of hovering flight. DoDy;,, was selected as a benchmark
since the remaining battery energy is the resultant outcome at last when equipped
battery energy and hovering time are settled. Hence, the sensitivity rank based on
DoDfin, Sly;pop fin WETE obtained for the eight input parameters. The graphical
results are presented in Fig. 4.29 and Fig. 4.30 where histogram with PDF curve and
normal probability plots (NPP) with skewness coefficient are displayed. The NPP is
a graphical technique to show the deviation of a distribution of data from the ideal
normal distribution [119]. If data follow the normal distribution, the samples are
aligned with the diagonal line. The offset from the diagonal line indicates that the
data follow a skewed distribution. A left-skewed distribution has a concave
downward curve (C-shape), and a right-skewed distribution has a concave upward
curve (inverted C shape). The S-shape curve indicates that the data follow a long-
tailed distribution.

The histograms and NPPs by rotor-related parameters are shown in Fig. 4.29.
Except for {rotor and twperor cases, the distributions of DoDy;, were normally
distributed by following input normal distributions. A rough histogram by tw,.o¢or
was due to the numerical convergence criterion in the BEMT analysis. In the case
when the (2.4t Was the uncertain parameter, the distribution of DoDy;, showed
right skewness. This is because the relationship between (2.4t and DoDy;, had
a positive correlation following 3™ order polynomial equation. Following the Eq.

(2.13), rotor power P,,:, Was proportional to the third power of £2,,¢0r, SO the
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used battery energy had the same relation when the efficiency coefficients were
constant. The distribution of the third power of normal distribution has slightly right
skewness in natural. In the tw,,;, case, the relationship between tw, ;o and
Protor had weak positive correlation. Therefore, the resultant skewness of DoDy;;,

was smaller. The correlations of Q2,pt0r, tWrotor, and Propor Were presented in

Fig. 4.28.
94.500 92.690
92.685 -
94.000 -
s 92.680 -
S 93500 - S 92675 |
= = 92,670 -
&£ 93.000 - o
3 S 92.665 |
~ ~
A 92,500 A 92,660 |
92.655 -
92.000 -
92.650 -
91.500 — 92.645 ‘ ‘ ‘ ‘ ‘ ‘
925 950 975 1000 1025 1050 1075 1100 1125 -41.0 -40.8 -40.5 -40.3 -40.0 -39.8 -39.5 -39.3
QT’OCOT [RPM] tWTOfOT [deg]

Fig. 4.28. Correlation between 2,01 tWyotor, and Proeor

143 ) H "i 1”



Sampled
histogram

DODfin

Histogram

NPP of
DODfin

RTOtOT [ft] cTOtOT [ft] QTOtOT [RPM] tWT'OtOT [deg]

500 500
£ 2
3 3
(@] (@]
0 0
4.4049 4.4379 0.8259 0.8384 946 1098

4

500 500
= g
3 3 3
o = 0.00053 o = 0.00187 a = 0.00003
0 __...||I||IIIIIII [T IIIIIIIIIIIII“lIl-...__ 0 - 0 et I [T e
0.6912 0.6952 0.6929 0.6935 0.6882 0.7022
0.6952 7 06935/ 7 0.7022[ 7~ 040918 ;, Ky 0.6934( 7. — 0.08033 -7
2 2 Q2 | 2 |
o o o o
g | g | 1S IS
35 551 353 |
0 | n n | n
. Slightl
Normal | Normal |7 Right Skewed , Right Skg é/
0.6912 , 0.6929 , 0.6882 7 0.6931 5 19 ewe

0.6912  Theoretical 0.6952 0.6929  Theoretical 0.6935 0.6882  Theoretical 0.7022 0.6931  Theoretical 0.6934

Fig. 4.29. Sensitivity study result of DoDg;;, by rotor parameters
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The histograms and NPPs by electric components-related parameters are shown
in Fig. 4.30. At this time, except for SEj . case, the distributions of DoDy;, were
normally distributed by following the input normal distributions. In the case when
the SEj,: was the uncertain parameter, the distribution of DoDy;, showed slightly
right skewness. This is because the relationship between SEj,: and DoDy;;, had
an inverse correlation as shown in Eq. (4.5). The distribution of reciprocal of normal
distribution has slightly right skewness. Although the other electric efficiency
coefficients also have inverse correlations with the electric power (see Egs. (2.26),
(2.30), and (2.31)), their impact was negligible, producing nearly normal distribution
of DoDy;y, since the absolute variability of the efficiency coefficients were small.
Therefore, the skewness coefficients iz were positive but lower than 0.1, a criterion

of the skewness in this study.

1 1
X — X
Ebat SEbat

DODfin (45)

The numerical data are tabulated in Table 4.9. Based on the sensitivity indices
sensitivity ranks were obtained. The electric propulsion components-related
parameters were in high rank, and rotor-related parameters were in low rank. The
tWyotor had the lowest impact, which corresponds well with the results in Ref. [91]
where rotor pitch has the lowest impact on the flight time of a small unmanned aerial

vehicle.
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Fig. 4.30. Sensitivity study result of DoDy;;, by electric propulsion parameters
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Table 4.9. Sensitivity study result of DoDy;;,

Uncertain
Rrotor Crotor Qrotor tWrotor Nmot Ninv Nbat SEbat
parameter, Xx;
COV of
0.1 0.2 2.0 0.5 0.6 04 0.7 2.0
sampled x;
I'l in
bobs 0.69321 0.69321 0.69333 0.69321 0.69323 0.69322 0.69324 0.69348
(mean)
o )
PoDrin 0.00053 0.00007 0.00187 0.00003 0.00410 0.00273 0.00485 0.01388
(std. dev.)
B3 pop .
Dobiin 0.01783 0.00832 0.40918 0.08033 0.03596 0.02385 0.04234 0.11988
(skewness)
Median of
0.69321 0.69321 0.69321 0.69321 0.69321 0.69321 0.69321 0.69321
DODfiTL
COV of
0.07618 0.01099 0.26925 0.00511 0.59162 0.39436 0.69958 2.00096
DODfiTL
Slxi,Donin 0.76244 0.05501 0.13473 0.01023 0.98675 0.98669 1.00015 1.00120
Sensitivity
5 7 6 8 3 4 2 1
rank

147 H 2} &



A similar analysis was conducted for one of the other output results OASPL 4.
Since the OASPL,,q, was affected only by the rotor-related parameters, four
histograms and NPPs were obtained. The graphical results and numerical results are
presented in Fig. 4.31 and Table 4.10, respectively. As can be seen in Fig. 4.31, when
£ otor had the normal distribution, the distribution of OASPL,,,, had slight left
skewness, showing a concave downward curve in NPP and a negative skewness
coefficient. This is the non-linear correlation by the logarithm function in Eq. (2.57).
The distribution of the logarithm of a normal distribution has slightly left skewness
in naturally.

The variance of OASPL,,,, had the biggest value in £,,:, case because the
absolute variation in the distributions of the geometric parameters (R, otor> Crotors
and tWyopor ) were small. The sensitivity indices based on OASPLpqy »
Sly; 0 ASPLy gy » Nad the same ranks with the sequence of the variance. The influential
parameters were in the sequence of Q,ot0r» Rrotors Crotor>and tWyotor. The result
that Q,ot0r and Ry,tor are the two most influential parameters corresponded well

with the result in Ref. [120].
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Fig. 4.31. Sensitivity study of OASPL,,,, by rotor parameters
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Table 4.10. Sensitivity study result of OASPL,,,,

Uncertain
RT'OtOT CT'OtOT' ‘QT'OtOT tWTOtOT
parameter, Xx;
COV of
0.1 02 2.0 0.5
sampled x;
U
0ASPLmax 62.61493 62.61495 62.61056 62.61494
(mean)
g,
0ASPLmaz 0.013808 0.013376 0.310781 0.00108
(std. dev.)
i3
0ASPLyax .0.00514 0.004186 -0.08345 -0.01494
(skewness)
Median of
62.61494 62.61494 62.61494 62.61494
OASPL, .
COV of
0.022052 0.021362 0.496371 0.001725
OASPL, .
Sy, 0aSPLyx 0.220699 0.106892 0.248380 0.00345
Sensitivity
2 3 | 4
rank
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4.2.5. Hover Performance Analysis

In order to investigate the mixed parametric uncertainty effect on the performance
output indices, MCS was conducted for 10-minute hover flight with the eight
parametric uncertainties as before. The flight condition was assigned as in Table 4.11.
As mentioned earlier, the battery weight was settled as a constant to simulate battery
energy capacity variation depending on the variation of the specific energy of the
battery. With given gross weight, battery weight, and flight time, the final depth of
discharge DoDy;, was obtained after 10-minute hover flight.

Table 4.11. Hover flight condition

Hover altitude Gross weight Battery weight Flight time
656.2 ft 4965.914 1b 1596.660 1b
10 min.
200 m 2252.50 kg 724.233 kg

Aleatory uncertainty (parametric uncertainty)

Under the designated hover flight condition, statistical moments and distributions
were obtained by MCS. The outcome quantities of interest were 9 performance
quantities in total: rotor power P,.,¢or, Noise index OASPL,, 4., figure of merit FM,
motor power P, inverter power P;,,,, battery power Py, battery discharge C-
rate y, overall system efficiency 7;,,s, and final depth of discharge DoDy;y,. For the
nine quantities of interest, histograms, empirical PDF curves, and CDF curves are
overlaid together in Fig. 4.32, and numerical data including statistical moments are

presented in Table 4.12. The empirical PDF curves drawn with a red dashed line were
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obtained by kernel density estimator with Gaussian basis function [111] (Eq. (3.10)).
The CDF curves were plotted with a solid blue line, and short black tips indicated
the 95% confidence interval of the distribution. The yellow glowing dotted line
showed the nominal values that were obtained by deterministic analysis, which was
nearly same with, but clearly different to the mean values. The deviation between
the interval boundaries and the nominal value was presented in percentage units.

The first row in Fig. 4.32 shows the output quantities that were influenced only
by the rotor-related parameters. The second row is for the power-related output
quantities that were influenced by the efficiency coefficients. The output quantities
that are positioned in the last row are kinds of the final outcomes after considering
all effects of the uncertainty parameters. This downward stratification implies the
calculation direction in the conceptual design tool.

Analysis of variance (ANOVA) results for each outcome quantity were presented
using sunburst chart where the most influential input parameter and its impact was
given. Blue-based colors are for the rotor-related input parameters, and green-based
colors are for electric-components-related input parameters. As can be expected by
the sensitivity results, the electric-component-related parameters have emerged to be
influential as the calculation has proceeded. The most influential parameter in rotor-
related outcome quantities was {2,.,¢o and its impact was overwhelming the other
variables. After applying the efficiency coefficient for the electric power in motor
and inverter, 7,,o,¢ had the most significant impact. When the battery-related

outcome quantities (Pyqt, X, DoDfip, and 7g,,s) were analyzed, npq; and SEpqe
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were the influential factors on them. SEj,; had over the half of proportion in the
quantified impact especially when the battery energy was used to calculate y;,;
and DoDyy; recall the Egs. (2.25) and (2.26)).

From the magnitude of the deviations between the nominal values and the 95%
confidence intervals, three major characteristics or phenomena could be drawn;
skewness, dilution effect, and forward propagation of uncertainties.

The first feature was a skewness relationship in which the inequality of the
deviations toward both ends implies that there was a skewness in the distribution.
The skewness of the distribution was getting bigger as the magnitude of inequality
increased. The distributions in the first row, for P,top, OASPLpygy, and FM, were
taken as an example. In the distribution of P, the deviation between the nominal
value and interval ends had a difference of 0.14% point and the value in the right-
hand side was bigger. These characteristics indicated that the distribution of Py
had right skewness. On the other hand, the distribution of FM showed the opposite
situation where the difference in the two values of deviation was equal to 0.14%
point, but the left-hand side value was bigger. Therefore, the distribution of FM had
a left skewness. In the distribution of OASPL,,,, the magnitude of the difference
became smaller to 0.05% point, so that the skewness was mitigated. However, the
sign of the skewness coefficient was not exactly matched due to small value of the
skewness. It can be concluded that the skewness coefficient under 0.1 was not that
meaningful. These results could be confirmed numerically in Table 4.12 where the

skewness coefficients of the distributions are presented.
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Table 4.12. Statistical values of the performance indices in 10 minutes hover flight

Nominal value ) Top 4 influential parameters
Output o U COV [%] i3 95% interval
(deterministic) 1 2nd 3 4t
‘QTOtOT RTOtOT CTOtOT tWTOtOT
Protor [KW] 89.33056 89.34765 0.28313 0.37212 [88.8902, 89.8937]
74.85% 19.62% 2.88% 1.07%
‘QTOtOT RTOtOT CTOtOT tWTOtOT
OASPLpa, [dBA]  62.61494 62.61056 0.49741 -0.08793 [62.0904, 63.1172]
93.40% 4.35% 2.22% 1.24%
‘QTOtOT RTOtOT CTOtOT tWTOtOT
FM 0.83740 0.83725 0.27417 -0.39520 [0.8324, 0.8413]
86.60% 6.98% 3.35% 1.24%
ant ‘QTOtOT RTOtOT CTOtOT
Prot (kW] 93.05266 93.07377 0.66537 0.04059 [91.8935, 94.2858]
60.74% 29.40% 7.71% 1.13%
Nmot Ninv -Qrotor Rrotor
Piny [kKW] 94.95170 94.97472 0.77382 0.04729 [93.5767, 96.4287]

42.99% 29.23% 20.81% 5.46%

Continued to next page
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Nbat Nmot Ninv -Qrotor
Ppar [kW] 595.57738 595.74906 1.03706 0.04979 [583.9763, 607.9937]
31.66% 29.38% 19.97% 14.22%
SEbat Nbat Nmot Ninv
Xpat [1/hour] 4.01150 4.01426 2.24946 0.10167 [3.8407, 4.1957]
50.93% 15.55% 14.42% 9.81%
Nbat Nmot Ninv Drotor
Nsys 0.764192 0.76405 1.04253 0.01559 [0.7484, 0.7795]
32.23% 30.31% 20.62% 14.60%
SEpat Nbat Nmot Ninv
DoDyiy 0.66858 0.66904 2.24946 0.10167 [0.6401, 0.6993]
50.93% 15.55% 14.42% 9.81%
3 1T ==
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The second feature was the effect of overlapped uncertainties on the output
quantities, referred to as a dilution effect here and in Ref. [91], which means the
skewness of the output quantities is decreasing as the uncertainty propagates. In
order to graphically check the skewness of the outcomes’ distributions multiple NPPs
are plotted in Fig. 4.33. The P,,tor and FM have remarkable skewness in their
distribution. This skewness is induced from the uncertainties in the rotor geometry
and rotational speed. When the rotor thrust T,,.,. is fixed, the Py, has
proportional relationship with rotor geometric parameters shown in Eq. (4.6). The
equation in the right parenthesis have a natural right skewness when each parameter
is normally distributed. As FM is proportional to a reciprocal of Pry:0r (Eq.

(2.17)), it has naturally left skewness in its distribution.

1
Protor = Pair " A" Vt?;p Cp x (E +c-R*: ngtor) (4.6)

As mentioned earlier at the sensitivity study in Section 4.2.4, the distribution of
power in the electric components Ppr, Piny, and Py, should follow the
distribution of Py, Wwith the first order linear correlation. Nevertheless, the
skewness originated from the distribution of Py, was diluted a lot and the
skewness were not be recognized in the Pp,,¢, Piny, and Py, distribution. Their
NPPs show well aligned scatter plots at the diagonal line. This is because the normal
distribution of the efficiency coefficient 1,0, Ninw»> and 14 had larger effect on

the each-related power indices, mitigating the skewness from the Ppy¢or-- As shown
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in ANOVA analysis, the electric efficiency coefficients emerged on the top ranks and

their normal distribution diluted the impact of the rotor parameters.
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Fig. 4.33. NPP of output quantities of interest

The last feature that could be observed was a forward propagation of the
uncertainties. In Fig. 4.32, the magnitude of deviation was getting bigger as the
calculation of the outcome quantities proceeded. This trend also can be confirmed
the increase of COV in Table 4.12, which is graphically presented in Fig. 4.34. The
x-axis of Fig. 4.34 is sequenced according to the calculation process, and the y-axis

was the COV in percentage units. As can be seen, the COV of the outcome quantities
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kept increasing when the uncertainty in each calculation step was infused, and the
magnitude of the increment was nearly proportional to the magnitude of the COV of
the infused uncertainties. Since y times by flight time, herein fixed 10 minutes, is
equal to DoDyy, the COV, skewness, and the result of ANOVA were identical to

each other.
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2.00 1 cov
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Fig. 4.34. COYV variation by forward propagation of uncertainties
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With epistemic uncertainty (model uncertainty)

As an imperative milestone before conducting uncertainty quantification in a
mission profile, the model uncertainty parameter defined in Section 3.3.2 was used
to analyze the effect of the simplified model. Since the performance indices were
calculated in the hover flight condition, the model uncertainty parameter for rotor
power, 8, gemT, Was only used among the three model uncertainty parameters.

Resultant probability boxes (p-box) for the nine performance parameters were
generated as shown in Fig. 4.35. In the figure, there are three CDF curves and
boundary edges. The boundary edges were obtained using the interval of the
Opw,semr for the best and worst situations. The blue line is the CDF curve when the
only parametric uncertainties was considered with the expectation of 6, pgmr-
This blue line was equal to CDF curve in Fig. 4.32. As can be seen, except for
OASPLypqay , the p-box was generated according to 6Opy ppmr Since Opy pEmr
corrected the calculated rotor power Pptor and the effect of O, ppyr was
propagated sequentially. The difference between the blue CDF curve and boundary
with respect to median values of the three curves was presented in percentage units.
The magnitude of difference to the both sides was not equal to each other since there
was a shift in the interval of 6, ggyr in Fig. 3.8. Meanwhile, the magnitudes of
difference in the outcome quantities were almost same since the only one model
uncertainty parameter, herein 6y, ggyr, Was used in the hover flight condition.

As described earlier in Section 3.1.4, CDF curves can lie anywhere in the p-box

unless crossing the boundaries that were obtained by the end values of the interval
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of Opw pemr - In order to demonstrate the effect of the hasty application of
distribution to the model uncertainty parameter, two cases with different distribution
of O,wpemr Wwere added in Fig. 4.35: normal distribution of 6, ggyr, and
uniform distribution of 6,,, ggmr. Each distribution was constructed using the
numbers in Table 3.2. The standard deviation of the normal distribution was set to
able to enclose the interval of 6y, pgyr With 99% confidence. It was decided that
the boundary values required for uniform distribution were the same as the end value
of Opy pemr interval.

In Fig. 4.35, the black dashed CDF curve was obtained with the normal
distribution for 6,,, gy, and the red dash-dotted CDF curve was obtained with the
uniform distribution for 6, gpyr. Depending on the type of distribution the
resultant CDFs had different shape although they were in the p-box area. These
results underpin that an unthoughtful assumption and hasty application of
distribution for the model uncertainty could lead to inaccurate predictions of the

outcome quantities of interest.
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4.2.6. Sizing for Mission Flight

Lastly, the sizing of eVTOL for a generic transportation mission was conducted
under an uncertain sizing environment using RISPECT+. The transportation mission
consisted of eleven segments as shown in Fig. 4.36 where specific numbers such as
flight speed, altitude, and flight distance in each segment are provided. The reference
vehicle aviates out 100 km on an altitude of 500 m with a passenger payload of 500
kg. The total flight time was approximately 28 minutes and it was assumed that there
was no external wind disturbance during the flight. The maximum DoDy;, was set
to be 0.8, which meant 80% of nominal energy could be used. The uncertain input
parameters and the specification of the reference vehicle were the same as in the
hovering case adding the wing incidence angle a,,, ., specific power of motor,
SPpot, and inverter, SP;,,,, which are shown in Table 4.13. The all variables were

assumed again to be follow Gaussian distribution. The three model uncertainty

parameters, 0, gemr, Opw,per> and O¢, were settled as the biggest values to
! ’ aQwing

obtain the most conservative design result with simplicity.

Altitude [m] Accelerate Cruise 80 km  Decelerate Required payload
4 to 250 km/h  at 250 km/h  to 220 km/h - 500 kg (1102.31 Ib)
R ‘
L ROC” Descent
T at 18 km/h at 18 km/h

1000— ;
. ! Transition from 1.2V,
. Transition to 1.2Vsq with 12.5% gradient —
50 — with 12.5% gradient 3
- VL"at5.5 km/h 50 "
VTO™ at 9 km/h (500 fpm) . (300 fpm) m taxiing
= T ( L >
50 m taxiing g é 9‘4 1‘50 Range [km]

*VTO: Vertical Take off ROC: Rate of climb  VL: Vertical Landing

Fig. 4.36. Transportation mission profile
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Table 4.13. Parametric uncertainty of the base eVTOL in mission flight

Component Variable Distribution type Nominal value COV [%]
Rrotor [ft] Gaussian 4.421 0.1
Crotor [ft] Gaussian 0.8320 0.2

Rotor

Qrotor [RPM] Gaussian 1020 2.0
tWyotor deg] Gaussian -40.112 0.5
Wing Awine  [deg] Gaussian 2.68 2.0
Nmot : Gaussian 0.96 0.6
Ninv . Gaussian 0.98 0.4
Electric Npat : Gaussian 0.97 0.7
Propulsion SP,,; [kW/kg] Gaussian 4.932 2.0
SPiny,  [kW/kg] Gaussian 13.00 2.0
SEpa:  [Whikg] Gaussian 205.0 2.0

Under the given uncertain geometry parameters, the iterative sizing process was
conducted until the available payload became equal to required payload weight
following RISPECT+ sizing process (Fig. 2.8) through MCS. The flight performance
variation under the uncertainty is displayed in Fig. 4.37 where the required power at
the battery and the required energy with respect to the mission segments are
presented with 95% interval. The line plot is for the required power in kilowatt units.
The dashed line shows the averaged value of the required power and the shaded area

indicates the 95% interval that is approximately equal to 2-sigma area. The
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maximum power was obtained in the vertical flight: vertical take-off and vertical
landing. From the transition-out segment to the transition-in segment, the eVTOL
flight in the wing-borne configuration that required less power during flight. The
distributions of rotor power and battery power for the three segments (vertical take-
off, cruise, and vertical landing) were added in the top of the figure with their NPP
figures. In the fully vertical flights, the distribution of the required powers had right
skewness, which corresponded with the results from hover flight in Section 4.2.5 due
to the distribution of (2,,:,,. Meanwhile, the magnitude of skewness was almost
twice as large as that in hover flight. This was because of the fact that required thrust,
proportional to the sized gross weight, varied according to the input variables, which
was a different situation to the hover case where the gross weight was fixed at a
certain value. The skewness was mitigated in the cruise segment since the parasite
power during the cruise segment was nearly constant due to a fixed equivalent flat
plate area of the aircraft. The magnitude of variation presented with COV also
underpinned those results.

Bar plot in Fig. 4.37 shows the required energy in kilowatt-hour units with respect
to the mission segment, which was obtained by multiplying the required power and
segment time. The error bar indicates the 95% interval, which is approximately equal
to 2-sigma area. During 28-minutes flight, the cruise segment occupied
approximately 67.8% of flight time, 19 minutes, so that the required energy in the
cruise segment was incomparable to the other segments although the required power

in the cruise segment was not that demanding. In the same line, the required energy
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in the vertical landing was bigger than that of the vertical take-off due to the longer
segment time. The magnitude of COVs of the required energy in the vertical take-
off and cruise segments was both bigger than those of the required power due to
uncertainty in the variance of the efficiency coefficients of the electric propulsion
components. The distribution plots of the required energy were omitted because their
shapes were identical to those of the required power distribution. Table 4.14 shows
the numerical results with the mean values and 95% intervals.

Table 4.14. Required power and energy during the mission

Req. battery power [kW] Req. energy [kWh]
Segment
mean 95% interval mean 95% interval
Taxiing in 9.294 [9.096, 8.507] 0.044 [0.043, 0.044]
VTO 551.962  [511.842, 604.734] 6.224 [5.778, 6.810]
Transition out  271.166  [251.269, 297.362] 4.658 [4.325, 5.096]
Climb 264.371 [247.863, 286.265] 6.058 [5.690, 6.545]
Acceleration  169.951 [161.453,180.033] 2971 [2.828, 3.140]
Cruise 183.895  [175.158, 194.078] 60.339 [57.622, 63.488]
Deceleration  169.951 [161.453,180.033] 2.971 [2.828, 3.140]
Descent 68.574 [62.419, 77.607] 2.901 [2.668, 3.245]
Transitionin  249.170  [230.325, 273.917] 4.291 [3.977,4.705]
VL 523.552  [485.079, 574.251] 9.668 [8.966, 10.590]
Taxiing in 9.294 [9.096, 9.499] 0.044 [0.043, 0.044]
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2. Cruise segment
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The weight breakdown and some of the weight histograms are shown in Fig. 4.38.
The left bar plot in Fig. 4.38 shows the weight information of each component with
each fraction in empty weight and the right histograms show distributions of some
components. The nominal values are for the averaged value of MCS samples and
error bars show 95% interval. The weight axis is presented by both imperial unit
system and SI unit system. The mean gross weight was 4994.88 1b (2265.64 kg) and
its COV was calculated as 2.438. The payload weight was almost fixed to 1102.31
Ib (500 kg) since the sizing process was conducted iteratively by changing the gross
weight until the available payload was equal to the given target payload, herein
1102.31 Ib. Hence, there was little variance in the payload given convergence error
was ignored. The histogram of gross weight had a little freaky shape showing highly
frequent data samples in a certain area. This situation was related to the sizing
process of RISPECT+. As described in Section 2.2.1, the sizing process was initiated
with an assumption of gross weight for calculating component weights that were
functions of gross weight. Thus, the sizing process would be terminated immediately
if the initial value was appropriate by chance. Since the converged payload was
almost same with the given target value, the distribution of empty weight also had
similar shape.

The major components that composed the empty weight were classified by
structure group, electric propulsion group, and system group. The blue series color
bars are for the structure group: fuselage, rotor, and wing system. They accounted

for from 33.80% to 38.10% of empty weight.
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The green series color bars are for the electric propulsion group: battery, motors,
inverters, and TMS with wiring. The battery is the single heaviest component in the
eVTOL of which weight fraction accounted for 32.67~36.36% of the empty weight
alone. The distribution of the battery weight shows a right skewness induced from
the right-skewed distribution of the required power and energy. The distributions of
electric motors and TMS with wiring have similar aspects to that of battery. Note
that the COV of TMS with wiring weight became much bigger than any other
components’ weight. That was because TMS and wiring were sized based on a
summation of parameters induced from every electric component. TMS was sized
using a summation of power losses from the battery, motors, and inverters (Eq.
(2.32)), which implies that the summed power losses got effect from all three
components’ power distributions. A similar situation was observed in the wiring
weight that was proportional to the entire weight of the electric propulsion system
(Eq. (2.45)). That was why the COV of TMS with wiring weight was much bigger
than others.

The system group was for flight control systems and given avionics equipment.
Its variance was negligible due to the fact that a custom value was imposed on

avionics equipment without variance.
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Weight breakdown

(mean value with 95% interval)

Gross weight 1 Mean: 4994.88 Ib (2265.64 kg) with COV of 2.438 1
| ) 1102.31 Ib
Payload Almost fixed to the target value 500 kg

Empty weight

Fuselage &

Landing gear 11.37 ~ 12.16% of W,

mpty

Rotor system 12.99 ~ 14.89% of Wempiy

Wing system ' 9.44 ~ 11.05% of Wempty

Battery 32.67 ~ 36.36% Of Wempty

Electric motors

7.93 ~ 9.42% of Woppiy

Inverters 3.09 ~ 3.67% of Wermpty

TMS + Wiring 4,61 ~ 8.78% Of Wopmpey
Flight C%mml & Almost fixed at the given value
ystems

- &

COV [%]
2.337

1.587

1.249

4.169

4.772

4.744

10.211

Weight
histogram [Ib]

y

4630.93

uﬂ“” Hﬂ]ﬂh

3527.23

GW

5699.83

Empty

weight

4597.48

Nominal value

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Weight [1b]

0 250 500 750 1000 1250 1500 1750 2000 2250

Weight [kg]

Fig. 4.38. Weight breakdown and histograms of sized eVTOL
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When scrutinizing the gross weight distribution of the MCS samples, it can be
recognized at a glance that approximately 53% of the samples had heavier gross
weight than the nominal value that was obtained by the deterministic way. The
heavier gross weight implied that more energy was required to conduct the target
mission. In this circumstance, the probability of the mission success under
deterministic input condition was lower than half (47%). This value indicated a high
risk of eVTOL designed under the deterministic environment.

In order to investigate which combination of the geometric uncertainties brought
about the higher gross weight, the histograms of the input geometric uncertainties
are shown in Fig. 4.39 with discrete two levels by the weight index that was
determined by the gross weight obtained by the deterministic approach. The blue-
colored histograms were flagged with a lighter gross weight, which implied
sufficiency of mission fulfillment. The orange-colored histograms were flagged with
a heavier gross weight, which implied insufficiency of mission fulfillment. The
straight lines indicate the mean value of each category. In comparison, there was a
shift in the mean lines in the histogram according to the category. From the lighter
gross weight to heavier gross weight, the notable changes in the mean values were
as follows; larger Q,or0r, smaller Npae, SEpat> Nmot> SPmot> MNinv> and SPipy,
induced the heavier gross weight. The shift in the other variables can be neglected.
All shifts in the mean values resulted in the higher required power and resultant
energy during the mission. The high rotational speed generated higher power and

lower efficiency (Figure of merit) in the rotor aerodynamics. The decrease in the
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efficiency coefficients was the immediate cause of energy increment, and the
decreases in the specific energy of the battery and specific power of the motor and
inverter directly induced the increases in electric propulsion components’ weight.
The magnitude of shift implied the impact of the variables; the battery was the most
influential component as it occupied at most 36.36% of empty weight. The electric
motors and inverters followed sequentially. From the result, designers recognized
and confirmed the significance of the electric propulsion system from the quantified
data, so that they should plan by priority to develop electric propulsion components
with high robustness showing little variance in the performance for designing a

highly reliable eVTOL aircratft.
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Chapter 5

Conclusion

5.1. Summary

In efforts to derive more practical designs for advanced air mobility, improved
design frameworks for the two primary tasks that should be carried out in the
conceptual design phase were developed and their validities were demonstrated with
the pilot projects in this study. Not only suggested better mathematical formulations
were, but also various uncertainties were considered with the use of the combination
of the surrogate model, MCS, and LHS method for their propagation.

The most important improvement in the technology portfolio assessment
framework was that the calculation method for an amalgamated effect of multiple
technologies was based on a multiplicative approach rather than an additive approach.
In addition, the interaction factor which was defined from TCIM elements enabled
to consider the non-linear relationship and interactional effects between technologies.
Both improvements could result in more rational and practical situations in
technology infusion.

In terms of uncertainties, epistemic uncertainties from surrogate models that were
usually excluded before were incorporated using MLP model with MC dropout. The
alternative method of using prediction intervals as confidence intervals of a surrogate
model could be used similarly depending on the surrogate model [105]. The
inclusion of the epistemic uncertainty provided more information to help decision-
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makers to make more reasonable and reliable decisions. It would result in a reduction
in the number of design feedbacks, the possibility of development cost increases, and
eventually the risk of program failure. In the demonstration project, different
desirable technology portfolios were selected based on the consideration of
epistemic uncertainty.

In the sizing process, with uncertainties from physical geometric parameters and
simplified mathematical analysis modules, the sizing process was expanded, and
then uncertainty propagation on flight performance and sizing results was carried out
throughout various flight conditions in the conceptual design phase. The
uncertainties were identified and classified based on their origins. Variations in the
representative geometric parameters were modeled using Gaussian distribution, and
model uncertainties in the simplified analysis modules were quantified by comparing
analysis results with experimental data or higher fidelity analysis. The quantified
uncertainties were considered by adopting model uncertainty parameters.

For the single hovering flight, skewed distributions for performance outcomes
were observed as the responses to the normally distributed geometry input, which
implied non-linear characteristics in the aircraft system. Another point that drew
interest was the dilution effect showing that specific uncertainties overwhelmed
other uncertainties, which helped to prioritize the significance of the uncertainties.

For the generic transportation mission, over half of the cases with geometric
variations were sized to have a heavier gross weight than that obtained by the

deterministic sizing method. The heavier gross weight was induced by higher
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required power and energy that are result in heavier electric propulsion component
weight. This situation implied that deterministically sized aircraft had a high
possibility of mission failure and low reliability of successful transportation in the
conceptual design phase. There is a chance that fault design problems can be
captured and fixed during the later design phases, but that situation means there will
be an increase in cost and a delay in the project schedule. The use of uncertainty-
based sizing processes could prevent these consequences from occurring by ensuring
that a proper design margin or bumper has been established during the conceptual

design phase.
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5.2. Originality and Contribution
The ultimate objective and contribution of this dissertation focuses on to derive
more realistic, reliable, rational, and reasonable outcomes in the conceptual design
phase. The originality and major contributions of this dissertation can be summarized
as follows.
¢ An improved mathematical formulation is developed and presented to realize
more plausible and realistic situations where multiple technologies are infused
simultaneously. The newly developed formulation is based on the
multiplicative approach instead of the previous additive approach. The
multiplicative approach makes it able to spontaneously avoid unphysical
situations such as zero-mass or negative mass as a result of technology

infusion as mentioned in Section 2.1.4.

o Interaction between technologies are simulated by adopting TCIM and an
interaction factor. The original TCM was expanded to incorporate additional
information of interactions or interference between technologies with the
assumptions that only pairwise relationship is considered. The interaction
information embedded in TCIM is based on asymmetric relationships between
technologies as shown in Section 2.1.3.. Using the elements of TCIM, an
interaction factor that is also defined by the multiplicative approach is
calculated and used for a net change of system attributes by technologies. The
use of TCIM and interaction factor also leads to more realistic and plausible

results during technology portfolio assessment.
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“Model uncertainty” from the surrogate models, which has been generally
neglected before, is considered and included when evaluating technology
infusion results in the surrogate-model-based environment. It was shown that
the selected technology portfolios could be different depending on the
inclusion of the model uncertainty from the surrogate model (Section 4.1.8).
The inclusion of this uncertainty would lead to more reliable and less risky
determination for the technology portfolio assessment in the conceptual

design phase.

The developed framework for technology portfolio assessment has the
platform-agnostic feature. Though it has been applied to advanced air mobility
to demonstrate its methodology and validity, the framework can be applied to
a wide range of system or subsystem development projects to decide which
technologies to prioritize. In addition to that, eco-systems of future aviation
such as operation of advanced air mobility can be subject to the framework if
related technologies and their impacts are identified. The framework is also

able to help develop roadmaps for future technologies.

Uncertainty-based sizing framework for advanced air mobility is developed
to analyze the uncertainty effect on the performance and sizing results, and to
present reliable sizing result in the conceptual design phase for the first time.
To this end, a deterministic sizing tool and a cost estimation tool for advanced
air mobility were firstly developed by co-working with colleagues, and then

they are expanded to the uncertainty-based frameworks. The works done using
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this uncertainty-based framework is a kind of prerequisite for the reliability-
based design optimization. Presenting the uncertainty-based sizing result
could reduce the number of design feedbacks and iterations from the further
design phases, which resulting in successful advanced air mobility

development program.

“Model uncertainty” from the simplified analysis models, one of the epistemic
uncertainties, is quantified by adopting model uncertainty parameter that is
defined as a ratio between a quantity of interest obtained by the used analysis
method and that obtained by higher fidelity method. This epistemic
uncertainty should be considered especially in the conceptual design phase
where most analysis methods used have relatively low fidelity. With the model
uncertainty parameters, the confidence interval induced by the used analysis

methods can be modeled and presented in the sizing results.

Model uncertainty parameter, the method used in this dissertation for
incorporating uncertainty effects from less reliable analysis methods, is the
generalized formulation. They can be applied to a variety of other aircraft
sizing and analysis frameworks or analysis tools for disciplines with the same

approach.
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5.3. Future Work Recommendation

The recommendations for future work for the technology portfolio assessment
method and uncertainty-based sizing method presented in this dissertation can be
summarized as follows.

An approach to modeling the impact of technology on a system can be improved.
The definition of TRL applied in the current study was slightly modified by SAIC
[99] from the perspective of the system level since the original definition of TRL
was defined at the component technology level. In lieu of this approach, some of the
previous studies [15,16] presented other indices for the readiness level such as the
integration readiness level, and system readiness level. Adopting these readiness
levels may be an effective method for taking a systematic approach, but at the same
time, it might complicate the problem. In terms of TRL and the shape of
technological uncertainty, the shape function of technology impact is assumed to be
a function of the TRL of each technology. If more practical data are obtained from
the reality, better assumptions could be developed to lead to more practically
meaningful results [ 10]. Nevertheless, this assumption results in high dependency of
the impact factor distribution on the TRL itself, which makes it another uncertainty
source to determine which number is appropriate for TRL of a certain technology.
Although, in this dissertation, the averaged TRL values obtained from the literature
surveys were used in the exemplary application project, handling this aspect could

lead to more practical and reasonable results for technology selection.
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Second, the timeframe of each technology development speed is assumed that the
technology will be sufficiently developed to reach high TRL when production of
advanced air mobility starts. However, the development speed of each technology is
different from each other in nature. In this dissertation, it was assumed that the
parameter for RDT&E cost increase was much larger for low TRL technologies to
compensate for the lag in development when compared to high TRL technologies.
Developing a more quantitative formulation to address the timeframe issue may be
one of the greatest steps toward achieving more meaningful and practical results.

Third, from the perspective of uncertainty-based sizing, it is worth applying the
method to more sophisticated and comprehensive analysis modules in order to
capture the system response by physical parameter variation in the component level.
For example, the implementation of advanced modeling methods for electric motors,
inverters, and batteries based on their physical characteristics could result in more
abundant materials to help understand the entire system.

As well, reliability-based design optimization by changing the design variables
with uncertainties could also be a promising step forward. The direct uncertainty-
based sizing process conducted in this dissertation requires substantial
computational resources comparable to computational fluid dynamics analysis, from
many hours to several days, which makes it difficult to carry out direct design
optimization with uncertainties. Instead, for efficient optimization, the surrogate
model-based design optimization method can be applied by estimating the mean and

standard deviation that are obtained from the sizing with uncertainties.
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Finally, the integration of the two processes, namely the assessment of the
technology portfolio as well as sizing with uncertainties or optimization, should also
be considered. Currently, the two frameworks were not coupled since the
computational resource problem. The expected computational time in total is
approximately over 50 days under personal desktop environment for constructing a
surrogate model; 1000 cases for DOE of surrogate model, 5 seconds of averaged
RISPECT+ runtime, and 1000 samples for MCS of each case. There is a possibility
that the requirements and proper technology combinations may vary depending on
the design variables, the geometry of the vehicle, and the uncertainties in the
variables. They might be not independent of one another. The uncertainty effect on
performance and weight could also be different depending on the design space and
used technologies. To this end, a sophisticated mathematical formulation that
connects the two processes is required, but the formulation should be both time- and
resource-efficient in order to conduct iterative calculations within the available
computational resources. This improvement eventually leads to reliable and practical

design results in the conceptual design phase.
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