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Abstract 
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Technology Portfolio Assessment 

 

Daejin Lim 

School of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

 

 

Within the last several decades, breakthroughs in multiple disciplines of aircraft 

technology and design have paved the way to the advent of a novel aircraft system 

that is collectively referred to as advanced air mobility these days. Specifically, the 

increasing maturity of electrified propulsion technologies is one of the most powerful 

drivers for various configurations for advanced air mobility and its possible 

operation in urban areas. 

The novelty of advanced air mobility makes it difficult to use historical data 

accumulated during over half of a century in the earlier design phase where 
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numerous iterative processes are carried out to derive design requirements and initial 

sizing layout and information as a starting point of the design. Therefore, a physics-

based design approach is necessary for the initial sizing of advanced air mobility and 

the conceptual design has become more significant. In efforts to derive a more 

reliable and credible design for advanced air mobility, the improvements in two 

primary tasks in the conceptual design phase were achieved with the use of the 

statistical and probabilistic methodology in this study. 

The first task is “technology assessment” to list up available technologies and 

decide which technology portfolio could bring the success of aircraft development 

with the maximum effectiveness and the minimum cost increasement. Presented is 

an uncertainty-based technology portfolio assessment framework based on 

mathematical formulations that are more realistic and practical in addition to taking 

into account the interaction between technologies and uncertainties associated with 

the impact of technologies and the surrogate model itself. This method possibly 

enables elevating the level of knowledge in the conceptual design phase, which 

eventually leads to a reduction of the number of iterative design feedbacks and 

committed cost for the life cycle of the advanced air mobility. 

The second task is “sizing” to obtain overall dimension and weight distribution 

for the further design phases. Not only was presented a deterministic sizing 

framework for advanced air mobility firstly, but uncertainties from physical 

geometric parameters and simplified mathematical analysis modules were also 

identified and imposed into the sizing framework with Monte Carlo simulation. The 
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expansion to uncertainty-incorporated sizing allows securing a proper buffer or 

margin in sizing result, and allows understanding the system response to the 

uncertainties in the earlier design phase, which makes decision-makers prepare for 

the next design phase. 

Both improved frameworks were demonstrated on a hypothetical advanced air 

mobility of vertical take-off and landing configuration with full electric propulsion 

system, respectively. The demonstrations showed the validity of the presented 

frameworks providing ways for utilization and interpretation of their application 

consequences. Both uncertainty-based frameworks for technology portfolio 

assessment and sizing of advanced air mobility are platform-agnostic frameworks 

that are applicable to various aircraft development programs. Hence, the base 

philosophy of the frameworks can be shared broadly. 
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Chapter 1  

Introduction 

 

1.1. Background of the Research 

Aircraft design is a sophisticated, complicated, and iterative process in nature 

from concept sketches to a complex integrated system. It is a distinct discipline in 

aerospace engineering such as aerodynamics, aeroacoustics, structures, propulsions, 

controls, and weight and balance. Aircraft design involves all these disciplines 

together communicating with each other to reach a common goal for a designed 

aircraft. As the aircraft system itself has become more complex, which is a 

consequence of desiring higher and better performance, the design process has also 

become systematically well organized. Nowadays, the organized design process has 

been continuously evolving to accommodate evolutionary or revolutionary aircraft. 

Within the last several decades, breakthroughs in many disciplines pave the way 

for the advent of a novel aircraft system that is collectively referred to as advanced 

air mobility these days. Among the breakthroughs, the electrified propulsion system 

using electric motors is one of the most powerful drivers to result in various 

configurations for advanced air mobility and possible operation in urban areas. Some 

examples of the exclusive configurations of advanced air mobility are shown in Fig. 

1.1 [1] where multiple vertical rotors and wing systems for the electric vertical take-

off and landing (eVTOL) can be seen. Their own operational characteristics include 

relatively lower flight altitude, shorter flight range, flying over crowded residential 
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area, and a greater number of vehicles in restricted airspace compared to 

conventional aircraft. 

 

 

Fig. 1.1. the electric VTOL wheel of fortune 

(Modified and updated from Ref. [1]) 
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The representative design process for the aircraft starts with settlement of system 

requirements, concept study, and conceptual design for the targeted aircraft. There 

are several difficulties in designing advanced air mobility. Firstly, to bring future 

aircraft system into reality, technological drivers are needed to be identified 

satisfying target performance and requirements. Another difficulty is a design of 

advanced air mobility itself. Since available design knowledges and information are 

little in the earlier design phase, empirical methods based on historical data and 

experience are usually used for the tasks. However, it is a little bit difficult and 

sometimes impractical to apply historical data accumulated over half a century to the 

design of advanced air mobility due to its exclusive configurations and unique 

operational characteristics. Hence, a physics-based design approach is necessary for 

the initial sizing of advanced air mobility, and the conceptual design phase has 

become crucial to designing credible advanced air mobility from a given set of 

design requirements. In addition to them, during the procedure, it is also necessary 

to identify uncertainties in the system and process, to analyze and understand their 

effect on the tasks since there is little information on the system response as 

mentioned before. From a brief review of the conventional design process and 

descriptions of the primary tasks in the conceptual design phase, primary tasks-

related studies for advanced air mobility and their limitations follow.  
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1.1.1. Brief review of a design process 

The representative aircraft development process is shown in Fig. 1.2 [2] where 

major steps and their relationship are presented. The complete process can be divided 

three processes: requirements draw, system design, and manufacturing and testing. 

The system design process is usually broken into the conceptual design phase, 

preliminary design phase, and detail design phase. The level of complexity, maturity, 

and information of the system keeps increasing as the design phases progress. 

Among the three design phases, this paper focuses on the conceptual design phase 

and brief reviews of each step are described in the following sections. Details of the 

design process can be found in several design materials [2–5]. 

 

Fig. 1.2. Representative aircraft development process 

(reproduced from Ref. [2]. Courtesy of J.H. McMasters [6])  
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System requirements (Pre-conceptual design) 

As part of the aircraft design process, the very first step is to draw and confirm 

the top-level requirements, which will act as guidelines, objectives, and constraints 

during the design phase. The sources of requirements are diverse including market 

customers, aircraft operators, governments, and airworthiness regulations. The 

mission profile, performance capability, and the restriction of dimension are three 

examples that can be obtained by conducting market research, interviewing potential 

customers, and researching technology development. Sometimes, this phase is 

merged in the early stage of the conceptual design phase because the adequacy and 

properness of some of the requirements can only be evaluated by objective numbers 

obtained through a quick drawing, trade-off study, and initial sizing. 

 

Conceptual design phase 

Based on the established design requirements, the conceptual design phase is 

initiated. The ultimate goal of this phase is to generate a baseline design that meets 

and outdoes the requirements. The baseline design encompasses a proof of concept, 

overall dimension, geometry and arrangement of major components, weight 

distribution, flight performance, cost information, or a list of applied technologies. 

The most critical aspect of the conceptual design phase is to reflect the interactions 

between as many components as possible and across all disciplines, rather than to 

result in detailed information for a certain component. The baseline design does not 

need to be optimized, but it would be better to optimize it at the conceptual design 
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phase. As a result of the conceptual design phase, some of the design characteristics 

and arrangement of the aircraft are set to be frozen after a successful system design 

review process. Since the obtained baseline information is the starting point of 

further design phases, it is necessary to incorporate technical risks and evaluate the 

possibility of failure as much as possible during all the tasks in this phase. 

 

Preliminary design phase 

In the preliminary design phase, attention is shifted away from the top system 

level (the aircraft itself) to the subsystem level in different disciplines, while 

pursuing higher-level details and sophistication. It is the goal of this phase to 

elaborate on the component design prior to moving on to the detail design phase. 

Validation of the sophisticated design is conducted at this stage before reflecting 

“real-world” aspects such as attachment parts, gap sealing, and joint connections 

which are considered in the detail design phase. 

 

Detail design phase 

In the detail design phase, the actual component design with the highest level of 

detail is carried out. The components are prepared for manufacturing, assembly of 

subsystems, and building of the aircraft as a whole. Tests are conducted in real 

compartments. After the detailed design phase, production of the aircraft begins with 

making production tooling and the aircraft is delivered to customers after completing 

flying tests and getting certification from related regulatory authorities.  
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1.1.2. Importance of conceptual design phase 

Complex aeronautical systems are typically developed with a long timeframe 

from concept study to entry into service (EIS), followed by a long operational life 

cycle. They usually are some years in the design and manufacturing process, several 

years in the certification process, and a couple of decades in operations before getting 

disposed of. For example, UH-60 Blackhawk took 9 years and AH-64 Apache took 

14 years from the initiation of the program to its first deployment, respectively [7]. 

The averaged timeframe of Airbus and Boeing airliners is 6.5 years [8]. This implies 

that the conceptual design phase precedes much earlier before the date of EIS. 

Though all of the phases in the design process are important, the conceptual 

design phase is particularly significant since it is the first step of aircraft design in 

which a blueprint layout of the target aircraft configuration is determined. This then 

serves as the basis for the rest of the process. Quantitatively, the importance of the 

conceptual design phase is usually presented by the impact on the life cycle cost of 

the aircraft. Fig. 1.3 shows a well-known relationship in system engineering: 

cumulative percent of the life cycle cost according to the development phase [9]. 

There are three lines in the figure: a solid line for “Cost committed”, a solid bold line 

for “Cost expended”, and a dashed line for “Ease of change”. As can be seen in the 

figure, almost 80% of life cycle cost have been committed before the end of the 

design and development phase with a very small amount of expended cost. 70% of 

the life cycle cost is even committed at the first development phase where 

conceptualization, or conceptual design, is conducted. Since the level of “ease of 
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change” decreases exponentially as the development progresses, the cost of change 

for faulted design drastically increases like the butterfly effect. Suppose that flaws 

are discovered in the later design phase, manufacturing or test phase. The later flaws 

are discovered, the larger amount of expended endeavors, labors, and budgets 

become meaningless. Moreover, similar processes are reduplicated again to fix the 

flaws or redesign. These tragic situations must lead to an unexpected rise in research, 

development, test, and evaluation (RDT&E) cost, an increase of the acquisition cost 

of the aircraft, and a delay of the date of EIS. A development program failure may 

also be the result. This phenomenon is shown with the centered arrow line displaying 

exponential increases in cost to fix problems. In short, decisions made in the early 

stage have a significant impact on the future output, so that the conceptual design 

phase is relatively much more important than others. 

 

Fig. 1.3. Cumulative percent of life cycle cost by the development phase [9]  
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1.1.3. Primary tasks in the conceptual design phase 

As mentioned earlier, the ultimate goal of the conceptual design phase is to 

generate a baseline concept including overall dimension, layout and weight 

distribution. To this end, there are two traditional tasks and an emerging task. The 

two traditional tasks are “technology assessment” and “sizing”. A task that has 

emerged during the past several decades is to incorporate the uncertainty effect into 

traditional tasks in order to reduce the likelihood of failure occurring in the later 

design phases and the number of design feedbacks for fixing defects or flaws. They 

are three pillars for the conceptual design as shown in Fig. 1.4. 

 

Fig. 1.4. Objective and three pillars of the conceptual design phase 
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Technology assessment 

One of the most challenging works in the conceptual design phase is to list up 

technologies available and decide which technologies will be selected for the aircraft 

system development to meet the top-level requirements. Technologies in the shortlist 

should be assessed with respect to performance improvement, economic benefits, 

safety augmentation, reliability, operational aspect, environment compatibility, etc. 

The goal of this task is to identify and select technologies that could derive the most 

effective solution. As mentioned earlier, the conceptual design precedes much earlier 

before the aircraft appears and aviates in the real world. At the time point when the 

aircraft shows up, the customer requirements and expectations for aircraft 

performance, also referred to as voice of customer, are usually higher than 

performance that could be achieved by up-to-date fully mature technologies at the 

time point when the conceptual and preliminary design phase is progressing. As a 

result of not reaching the target performance indices, the aircraft has no choice but 

to become obsolete faster than its competitors in the market. Therefore, if a design 

is to be built in the distant future, an assessment of all possible technologies including 

emerging and immature ones should be conducted to satisfy system requirements 

from customers, or feedback to the system requirements phase for relaxation of 

design requirements. 
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Sizing and layout determination 

Sizing is the most important task in the conceptual design phase. It could be said 

that sizing is “Alpha and Omega” of the conceptual design. From Ref. [3], sizing is 

described as follows. 

“Sizing literally determines the size of the aircraft, specifically the weight that 

the aircraft must be designed to so that it can perform its intended mission 

carrying its intended payload [3].” 

As results of sizing process, the designer can reach the answer to the question of 

how big and heavy aircraft should be designed for conducting the required mission 

profile. The answer to “how big” is the overall layout and dimensions of components 

and the answer to “how heavy” is the weight distribution of the targeted concept 

configuration. These questions can be answered by simply looking at historical data 

or by analysis through physics-based methodologies in different disciplines. In the 

case of advanced air mobility, however, the second approach is more appropriate 

because the revolutionary design concept makes some parts of the historical data less 

applicable. Hence, the candidate design concept configuration is sized iteratively 

with consideration of the interaction between multiple disciplines such as 

aerodynamics, propulsion, stability and control, and weight engineering. Used 

design tools and analysis techniques are usually semi-empirical data or simplified 

mathematical models that have low or middle fidelity to enable quick and fast trade-

off studies. Their prediction errors are typically around 5~10% when compared to 

data from high-fidelity tools, wind tunnel tests, or flight tests. [2]. 
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Encompassing uncertainty effect 

In addition to the two traditional primary tasks, another emerging important task 

is examining the effect of uncertainty on the results of the conceptual design phase. 

As can be seen in Fig. 1.3, decisions made in the conceptual design have a significant 

impact on the life cycle cost and the following procedures, so that a proper margin 

or bumper is needed. Traditionally, a constant factor that is usually referred to as a 

safety factor or safety margin is applied to secure the bumper area in the design space. 

However, the traditional method has limitations in the determination of the safety 

factor for which how much it should be, and therefore, the possibility of “over-design” 

or “under-design” owing to the inappropriate safety factors. Historical data is not 

often appropriate for the design of advanced air mobility since the configuration and 

system architectures are significantly different from conventional aircraft. The 

uncertainty quantification process in the conceptual design is an aspect of growing 

concern with regard to deciding on appropriate safety factors. The advancement in 

computational analysis speed and probabilistic methods enable uncertainty 

quantification that requires demanding computational resources and time. Through 

the uncertainty quantification process in the conceptual design phase, it could be 

achieved a reduction of the number of iterative processes within the conceptual 

design and between later design phases, and finally increase in the possibility of the 

success of the aircraft development program. 
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1.2. Previous studies concerning the primary tasks 

Focusing on the primary tasks of the conceptual design phase, many previous 

studies have been conducted. They are presented here as well as briefly summarized, 

along with their values and limitations. 

 

Technology assessment 

The several frameworks for helping to investigate technology impact have been 

developed through decades with similar objectives [10–18]. Research teams from 

Georgia Tech browsed available technology portfolios and evaluated their impacts 

on various aerospace systems [10–12]. Recent research from other institutes 

proposed a framework for technology portfolio selection with their own philosophy 

[13–16], or assessed a specific technology impact on the aircraft systems [17,18]. 

They all have paved the way to assessing single technology or technology portfolios, 

but also have limitations in the perspective of realistic validity. 

To the authors’ best knowledge, the previous studies calculated an accumulated 

effect of multiple technologies with an additive approach by linear algebra using a 

matrix inner product. Although the additive approach provides easy and fast 

calculation during the process of collecting multiple technology effects, one of the 

issues with the simple summation is that unrealistic situations might occur with the 

violation of physical limits. Suppose two technologies are independent of each other 

and are expected to reduce component weight by over 50%, respectively. The 

additive approach results in a reduction of component weight by over 100%, giving 
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a zero-mass or negative-mass situation. The further issue is that the non-linear 

interaction effect between technologies could not be reflected in the additive 

calculation. When comparable technologies that have an effect on the same system 

attributes are applied simultaneously, the resultant effect could be amplified or 

undermined when compared to a single technology-applied scenario. One of the 

previous studies [11] presented an improved calculation method by adopting 

correction factors named as technology synergy matrices, but the fundamental was 

still based on the additive approach. 

In the perspective of uncertainties, the previous studies assumed the precise 

impact of technologies on aircraft system [11] or adopted probabilistic approaches 

only for the impact of technologies considering their own uncertainties [10,12–18]. 

Nevertheless, in reality, the uncertain parameters prevail in the other sections such 

as aircraft geometry, operational conditions, physics-based design tools, and even 

surrogate mathematical models. The analysis and design tools that are used in the 

earlier design phase have more uncertainties than those used in the detail design 

phase because of the compromise between their calculation time and analysis 

fidelity. In particular, surrogate mathematical models that are usually used for the 

propagation of uncertainties are an inevitable source of uncertainty during the 

process. However, the uncertainty from the surrogate mathematical models was 

excluded in the previous studies. 

 

 



 

15 

Sizing for advanced air mobility 

After the advent of the advanced air mobility concept enabled by rapid 

improvement in electrified propulsion technology and concerns for environmental 

issues and sustainability of transportation systems, a lot of studies for the sizing of 

future aircraft with different electric propulsion systems have been conducted [19–

30]. However, most of them specifically focused on integrating electrified propulsion 

systems into a conventional fixed-wing layout without considering various 

configurations and architectures. In addition to that, only few studies considered and 

analyzed the uncertainty effect on the performance of the aircraft, and most of them 

presented deterministic evaluation and sizing methods, so that sizing results were 

provided by scalar values for a fixed set of input parameters: for instance, gross 

weight of 5600 pounds., the rotational speed of the rotor of 1300 rotation per minute 

(RPM), and required battery energy of 120 kWh. 

The first limitation that constrained applicability of the method depending on the 

configuration and propulsion architecture of the advanced air mobility was resolved 

by Ref. [19–21] where a generic conceptual design methodology that is applicable 

to various types of the advanced air mobility was developed by presenting four 

essential analysis modules. 

However, the second limitation that the deterministic sizing methods were used 

is not addressed relatively much in the perspective of system responses, especially 

in the sizing of advanced air mobility. It’s hard to find uncertainty quantification 

studies on the sizing of the advanced air mobility in the conceptual design phase. 
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Many uncertainty-related studies for the aircraft dealt with uncertainties in a specific 

discipline such as operational situations [31], computational aerodynamic analysis 

[32,33], acoustics [34,35], tracking and localization [36,37], emissions [27], and 

structural responses [38,39]. Although they are also necessary studies and milestones 

for the success of advanced air mobility, uncertainty quantification in the perspective 

of flight performance and sizing is required for a reliability-based design. Moreover, 

similar to the situation in the technology assessment category, uncertainties from 

simplified analysis models used in the conceptual design phase should be considered. 
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1.3. Motivation and objectives 

Reviewing previous studies and the importance of technology portfolio 

assessment and sizing for advanced air mobility, it is evident that the assessment of 

a technology portfolio with an improved mathematical formulation and 

incorporation of diverse uncertainties is worth pursuing. They are needed to avoid 

unphysical simulation situations and to obtain the most probabilistically promising 

technology portfolio. Furthermore, when conducting the sizing process, it is 

imperative to consider the uncertainty effect to achieve reliability-based sizing and 

design. Since one of the most promising applications and uses of advanced air 

mobility is a transportation service in urban areas where the ramifications of 

accidents during operation are far more serious, the reliability of advanced air 

mobility is a substantially essential factor. 

Thus, this study attempts to present improved methodologies for technology 

portfolio assessment and sizing of advanced air mobility under the uncertainty 

environments. To this end, improvement in the deterministic formulation of 

methodology for technology portfolio assessment and sizing framework is suggested 

firstly, and then, a stochastic method is combined with them for the uncertainty 

quantification after identifying uncertain parameters. Using the constructed 

frameworks, pilot projects are conducted to demonstrate the application and efficacy 

of the suggested methodology, respectively. 
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1.4. Outline of the dissertation 

The remaining parts of this dissertation are organized as follow. 

Chapter 2 mainly describes the two frameworks under deterministic environment. 

One is for the technology portfolio assessment in Section 2.1 where the process of 

technology portfolio assessment is presented step by step. The other is a 

multidisciplinary conceptual sizing framework for the advanced air mobility in 

Section 2.2 where primary modules of the sizing framework are described. 

Chapter 3 provides information of various uncertainties underlying in the process 

of the technology portfolio assessment and the conceptual sizing framework, which 

expanding the deterministic environment into probabilistic environment. After 

briefly describing source of uncertainties and their classification, certain 

uncertainties interested in this study are identified including those in geometric 

parameters and simplified analysis modules. Then, specific methods for modeling, 

handling, and propagation of the uncertainties are presented. 

In Chapter 4, the proposed methods are applied and demonstrated by using a 

hypothetical advanced air mobility aircraft. The improved probabilistic process for 

technology portfolio assessment shows how to select the most reliable and affordable 

technology combinations. The uncertainty quantification in the aircraft performance 

presents some insights and guidelines of understanding the characteristics of the 

uncertainties and handling them in the conceptual design phase. 

Finally, the summarization, conclusion of the dissertation, and future works are 

provided in Chapter 5  
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Chapter 2  

Formulation of Assessment and Design Framework 

 

Chapter 2 mainly describes the main building blocks of two frameworks under a 

deterministic environment to present their fundamental concepts. One is for the 

technology portfolio assessment in the pre-conceptual design phase in Section 2.1 

where the process of technology portfolio assessment is presented step by step. The 

other is a multidisciplinary sizing framework for advanced air mobility in Section 

2.2 where major modules of the sizing framework are described. 

 

2.1. Technology Portfolio Assessment 

2.1.1. Overall Process 

An overall process of the proposed technology portfolio assessment method is 

shown in Fig. 2.1. The process consists of three main building blocks. The 

“Technology portfolio” block starts with identifying and listing “N” technology 

candidates and then investigating their maturity levels. After three processes of 1) 

investigating compatibility and interaction between technologies, 2) identifying 

related system attributes, and 3) compiling possible technology portfolios, matrices 

that contain each information are generated. Through the combination of the three 

matrixes, the final resultant matrix is obtained for simulating the effects of 

technology infusion. The “Surrogate model” block proceeds parallel to the first block 

and it produces a mathematical substitute for the analysis and design tools. 
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Uncertainty in the surrogate model is estimated if necessary. Assessment of the 

technology portfolios is conducted in the “Computation and Post-Processing” block, 

taking into account the results obtained thus far. In this third step, the decision 

makers could gather valuable information, including the most advantageous 

portfolio of technologies and the anticipated benefits in terms of economics or 

performance quantities of interest. During the overall process, several uncertainties 

can be incorporated and uncertainty-related subprocesses are highlighted, which is 

described in Section 3.2 after detailing the deterministic-based process first. The 

three processes and key matrices are described step by step. 
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Fig. 2.1. Overall technology portfolio assessment process 
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2.1.2. Impact of Technologies in System Level 

The very first step of the technology portfolio assessment process is a generation 

of the portfolios. From the “N” technologies, technology portfolios vector (TPV) can 

be obtained by choosing to include each technology, 𝑇𝑖, in the portfolio or not. A 

single TPV acts as a possible solution for an alternative design candidate, 𝐴𝑙𝑡𝑝. The 

elements of TPV are defined as follows: 

𝑇⃗ |𝐴𝑙𝑡𝑝
  𝑡1, 𝑡2, ⋯ , 𝑡𝑁      {

𝑡𝑖  1,      𝑖𝑓 𝑇𝑖 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑        
𝑡𝑖  0,      𝑖𝑓 𝑇𝑖  𝑖𝑠 𝑛𝑜𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑

 (2.1) 

where 𝑝 is the index of an alternative design candidate. The maximum index of the 

alternative design candidates is equal to 2N if all “N” technology candidates are 

compatible to each other. The cluster of TPV constructs technology portfolio matrix 

(TPM). The TPM has “p” rows and “N” columns, shaping a “p” times “N” matrix. 

In a conceptual design environment, it is difficult to embed, simulate, and assess 

future technologies due to the relatively low fidelity of the sizing and analysis tools 

that usually rely on historical data and simplified mathematical models. Thus, 

physical changes in fundamental level by the innovative technologies could not be 

considered directly in the earlier design phase. In order to mimic the situation where 

advanced technologies are applied to the aircraft system, the impact of each 

technology on aircraft system attributes was modeled as a single factor by previous 

studies [10–12]. The concept of impact factor is leveraged and this impact factor is 

defined by Eq. (2.2) in terms of percentage according to the variation direction of a 

system attribute, 𝑠𝑖 , by a technology infusion. The system attributes can be any 

parameters of interest including component weight, specific energy of energy 
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sources, aerodynamic coefficients, component unit cost, and available operating 

days. For example, when carbon composite wing structure is applied (𝑇1), it can be 

given -10% of figure for an impact factor on weight reduction of wing (𝑎1,1  

−10%), which implies 10% reduction in the wing weight (𝑠1). Meanwhile, RDT&E 

cost (𝑠2) is expected to increase by 5% with the same technology, giving 5% as an 

impact factor on RDT&E cost ( 𝑎2,1  5% ). Figures for not affected system 

attributes are given as zero. Using this factor allows both favorable effects and 

adverse effects of a technology to be incorporated in the earlier sizing and analysis 

environment. 

𝑎𝑖,𝑗  {

−,   𝑖𝑓 𝑠𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 𝑏𝑦 𝑇𝑗

< 0,   𝑖𝑓 𝑠𝑖 𝑖𝑠 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑑 𝑏𝑦 𝑇𝑗         

> 0,   𝑖𝑓 𝑠𝑖 𝑖𝑠 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑑 𝑏𝑦 𝑇𝑗          

 (2.2) 

Multiple numbers for the impact factor constitute a vector for a single technology, 

and then a technology impact matrix (TIM) is built by concatenating the vectors 

according to the number of identified technologies [10–12]. Similar matrices were 

also presented by other studies [13–16]. TIM is directly mapping the impact of “N” 

technologies to “M” system attributes. The elements of TIM can be quantified in 

various ways, such as literature reviews, high-fidelity physics-based computations, 

direct experiments, the Delphi technique, which relies on experts’ opinions, and a 

possibility-theory-based method [18]. A notional TIM is shown in Fig. 2.2 which is 

an “M” by “N” matrix. 
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Fig. 2.2. Notional technology impact matrix 
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2.1.3. Technology Compatibility & Interaction 

In order to reduce the size of the problem by filtering out incompatible technology 

combinations in the TPM, a so-called technology compatibility matrix (TCM) was 

usually used [10,11,13–16] before. In this study, typical TCM was expanded to be 

able to incorporate additional information of the interactions between “N” listed 

technologies, and then renamed as technology compatibility and interaction matrix 

(TCIM). The elements of TCIM are determined by the following rules: 

𝑏𝑖,𝑗  

{
 
 

 
 0,   𝑖𝑓 𝑇𝑖  𝑎𝑛𝑑 𝑇𝑗 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑙𝑒                         

< 1,   𝑖𝑓 𝑇𝑖 𝑔𝑒𝑡𝑠 𝑢𝑛𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑏𝑦 𝑇𝑗           

1,   𝑖𝑓 𝑇𝑖  𝑎𝑛𝑑 𝑇𝑗 𝑎𝑟𝑒 𝑛𝑜𝑡 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑖𝑛𝑔 𝑒𝑎𝑐ℎ 𝑜𝑡ℎ𝑒𝑟

> 1,   𝑖𝑓 𝑇𝑖 𝑔𝑒𝑡𝑠 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑐𝑒 𝑏𝑦 𝑇𝑗                

 (2.3) 

The element of 1.05, for instance, means that a 5% additional favorable effect is 

obtained when compared to the situation where two technologies are independent. A 

typical TCM is a symmetric matrix since technology compatibility is most likely to 

be bidirectionally identical. If “A” technology is incompatible with “B” technology, 

the opposite should also be true.  

It is possible, however, that some of the technology combinations may have 

asymmetrical relationships in terms of interaction between technologies, and their 

interaction effect might different which attributes are investigated. Let us suppose 

that the truss-braced wing technology and the carbon composite wing technology are 

selected in a TPV. The expected weight reduction impact by the carbon composite 

could be degraded because the junction of the wing and brace strut needs to be 

additionally reinforced or other metallic materials should be used to avoid tear of the 
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carbon. On the other hand, the expected aerodynamic performance increase by 

applying a truce-braced wing is not influenced by carbon materials. Another example 

could be a combination of a technology for anti-icing coating on the wing and a 

technology for flow control over the wing. Although the performance of the anti-

icing coating may not deteriorate, the performance of the flow control technology 

might be degraded owing to roughness change by the surface coating. 

In order to consider these kinds of situations TCIM in this study has an 

asymmetric structure. It is difficult to determine the figures for TCIM elements since 

many of the technologies of interest are so new that some of their characteristics are 

not completely understood as yet. Literature reviews, the Delphi method using 

expertise from the experts, and a possibility-theory-based method [18] could help to 

determine the TCIM like TIM. A notional TCIM is presented in Fig. 2.3. 

 

Fig. 2.3. Notional technology compatibility and interaction matrix 

𝑇1 𝑇2 𝑇3 𝑇 ⋯ 𝑇𝑁

𝑇1 1 0 1.02 0.92 ⋯ 0

𝑇2 0 1 1.10 1 ⋯ 1

𝑇3 1.05 1 1 0 ⋯ 0

𝑇 0.92 1.12 0 1 ⋯ 0.9

⋮ ⋮ ⋮ ⋮ ⋮ 1 ⋮

𝑇𝑁 0 1 0 1 ⋯ 1
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Based on the elements of TCIM, interaction factor for ith technology, 𝛥𝑖, can be 

calculated by Eq. (2.4). 

𝛥𝑖|𝐴𝑙𝑡𝑝
≡ {

∏{(𝑏𝑖,𝑗 − 1) ∙ 𝑡𝑖𝑡𝑗|𝐴𝑙𝑡𝑝
+ 1}

𝑁

𝑗=1

 ,   𝑓𝑜𝑟 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

                           1                           ,   𝑓𝑜𝑟 𝑐𝑜𝑠𝑡 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠                    

 (2.4) 

The first basic assumption about the interaction factor is that the interaction factor 

has an influence only on performance-related aircraft characteristic parameters. For 

cost-related aircraft characteristic parameters, the interaction factor is negated. This 

is because that it is more usual that the situation where a certain amount of financial 

asset is consumed for the infusion of multiple technologies, but the resultant gain in 

system attributes might be bigger or smaller than expected. 

The second assumption in the definition of Eq. (2.4) is that only pairwise 

interactional effects are considered, ignoring higher orders of interactional layer 

more than 2nd order relationship between multiple technologies. In other words, “A” 

technology which has an effect on “B” technology and “C” technology respectively 

will have the same magnitude of effect on “B” and “C” technologies individually 

although “A” technology might have different interactional magnitude with “B+C” 

combination. The schematic of pairwise interactional effect is graphically described 

in Fig. 2.4. Let me suppose again that the truss-braced wing technology and the 

carbon composite wing technology are selected in a TPV. In the event that a hybrid 

laminar flow control technology is additionally incorporated into the TPV, the 

expected outcome might be different due to structural or spatial issues in the wing in 
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which the two technologies are already infused. Nevertheless, since pairwise 

interactions are able to represent primary interactions among technologies, and an 

examination of all higher-order interactions would be practically irrational, this study 

presents the most practical solution as Eq. (2.4). 

As a result, the TCIM and the interaction factor not only contribute to reducing 

the exploration area by eliminating the incompatible technology portfolios (reducing 

the dimension of TPM), but they also help to simulate the interactions between 

technologies. 

 

Fig. 2.4. Schematic diagram for interactional effect between technologies 

  

C

Technology

A

system with

technology C

B      C

Technology

A

system with

technology B, C

B

Technology

A

system with

technology B

Neglected

high order

interaction
Pairwise interaction

considered



 

29 

2.1.4. Technology Portfolio Effect 

At last, using the elements of the three matrices, TPM, TCIM, and TIM, a 

compounded impact on the system attributes by the infused technologies, 𝑒𝑖 , is 

calculated by Eq. (2.5), and this forms a technology portfolio effect vector (TPEV) 

for an alternative design, 𝑒 |𝐴𝑙𝑡𝑝
. The system attributes after technology infusion, 

𝑠𝑖,𝑡𝑒𝑐ℎ, are calculated by Eq. (2.6) where 𝑠𝑖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 means the system attributes of 

baseline with no technology infusion. 

𝑒 |𝐴𝑙𝑡𝑝
  𝑒1, 𝑒2,⋯ , 𝑒𝑀  ,   𝑒𝑖|𝐴𝑙𝑡𝑝

≡ ∏(1 + 𝛥𝑗|𝐴𝑙𝑡𝑝
∙ 𝑎𝑖,𝑗 ∙ 𝑡𝑗|𝐴𝑙𝑡𝑝

)

𝑁

𝑗=1

− 1 (2.5) 

𝑠𝑖,𝑡𝑒𝑐ℎ  𝑠𝑖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ∙  1 + 𝑒𝑖  (2.6) 

The key difference to other studies [10–16] in the realization of multiple 

technologies’ effect is that the calculation of 𝑒𝑖|𝐴𝑙𝑡𝑝
, is based on a multiplicative 

calculation, not an additive approach. The multiplicative calculation is a more 

reasonable approach than the additive approach for several reasons. It is first noted 

that the elements of TIM are presented in percentage form, which implies that the 

variation of the system attributes by technology infusion is represented as 

multiplication against a certain baseline value; recall the definition of a percent. 

Another consideration is that the variation of the single attribute resulting from 

multiple technologies undergoes a series of overlapped effects, based on the 

technologies involved. Moreover, one of the issues with the simple summation is that 
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the unrealistic situations might occur with the violation of physical limits as 

explained in Section 1.2.; recall the zero-mass or negative-mass situation example. 

The further issue is that the non-linear interaction effect between technologies could 

not be reflected in the simple additive calculation. 

As a consequence of this fundamental shift from addition to multiplication, it is 

possible to avoid in itself unphysical results, such as the zero or negative-mass 

situation. The product of Eq. (2.5) with a negative impact factor (decreasing impact) 

never reaches exactly zero value. Note that the interaction factor is multiplied in front 

of the elements of TIM and TPM on the inside of the permutation brackets in Eq. 

(2.5). 

By compiling TPEVs for all possible alternative candidates, the technology 

portfolio effect matrix (TPEM) is obtained. The notional TPEM is shown in Fig. 2.5. 

The number of columns of TPEM is equal to “M” system attributes of the aircraft, 

and the number of rows of TPEM is equal to “p”, all possible alternative candidates 

from “N” technologies after compatibility consideration. TPEM is the final resultant 

matrix in the “Technology portfolio” building block before feeding itself to the 

design tools or surrogate models for evaluation of the technology portfolio effect. 
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Fig. 2.5. Notional technology portfolio effect matrix 

  

𝑒1 𝑒2 𝑒3 𝑒 ⋯ 𝑒𝑀

𝐴𝑙𝑡1 0.00 0.00 0.00 0.00 ⋯ 0.00

𝐴𝑙𝑡2 0.015 0.021 -0.30 0.067 ⋯ 0.00

𝐴𝑙𝑡3 0.025 0.050 0.394 0.092 ⋯ 0.050

𝐴𝑙𝑡 0.073 0.001 -0.02 0.150 ⋯ -0.10

⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮

𝐴𝑙𝑡𝑝 -0.21 -0.05 0.152 -0.01 ⋯ 0.00

Aggregated impact factors

for  system attributes

 
al

te
rn

at
iv

e 
ca

n
d

id
at

es

TPEV



 

32 

2.1.5. Evaluation by Surrogate Model 

Using TPEM and Eq. (2.6), the evaluation of the technology portfolio can be 

directly conducted with the design and analysis tools by feeding the elements of 

TPEM into the simulation environment. However, most of the physics-based 

simulations require expensive computational resources and time, which makes the 

direct-evaluation method an impractical approach. Since the number of possible 

technology portfolios follows the power of 2, it would reach over a million in the 

case of that 20 technologies that are all compatible with each other (220). In this 

situation, the adoption of the surrogate models is an inevitable choice in terms of the 

computational resources and time management. More advantages of using the 

surrogate models are well described in Ref. [40] with aspects of proprietary 

protection from “reverse engineering” and connectivity between separated models 

from different operating environments. Various types of surrogate models are 

available depending on the specific problems of interest. The examples include 

regression-based models such as response surface method (RSM) [41,42], 

interpolation-based methods such as Gaussian process or Kriging [43], and neural 

network methods such as multilayer perceptron (MLP) [44]. 

Regardless of the specifically chosen method for the surrogate models, the 

primary function of the surrogate models here is mapping the vector of the 

compounded impact of technologies, 𝑒 , (input) with the vector of system responses 

of interest from the tools, 𝑅⃗  , (output). In order to efficiently build the surrogate 

models, design of experiment (DOE) supported by sampling methods is frequently 
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used for selecting 𝑒𝑖 subsets by exploring the multidimensional 𝑒𝑖 space. The limit 

of 𝑒𝑖  space can be informed from the range of 𝑒𝑖  variations in each column of 

TPEM. It is important to know this limit because the result obtained with variables 

out of the range cannot be ensured to be meaningful. As a consequence of the DOE 

process, adequate sets of 𝑒𝑖  combinations are derived for an input table of the 

surrogate models, and then the corresponding system responses for an output table 

of the models are obtained through the physics-based analysis tools. The two tables 

constitute the final knowledge table to build the surrogate models. After building the 

reliable surrogate models, the evaluation of technology portfolios progresses on the 

surrogate model environment using TPEM. Fig. 2.6 shows the above-mentioned 

process for constructing the surrogate model graphically. 

 

 

Fig. 2.6. Process of building the surrogate model 
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2.1.6. Selection by Effectiveness 

The variations of the system responses of interest caused by the infused 

technologies are traced to evaluate the efficacy of the technology portfolios. 

Although they can be presented individually [15,16], the number of system responses 

of interest is typically more than 2, so that it could be difficult to figure out which 

technology portfolio shows better improvement with respect to the overall system at 

once. One of the methods that were previously suggested in Ref. [10] for evaluating 

and lining up the portfolios is adopted in this study with minor modifications. The 

efficacy of each technology portfolio is measured by effectiveness metrics which are 

defined as the weighted sum of normalized figures where the system-response 

quantities of interest are divided by those of the baseline configuration. The 

effectiveness metrics are maximum-desirable indices and they can be categorized 

and calculated typically with respect to performance and economics perspective. The 

performance quantities include any metric related to all disciplines at the system 

level as well as at the subsystem level. The representative examples at the system 

level are gross weight, energy capacity, lift to drag ratio, and maximum noise level 

of the aircraft. Structural safety margin, load factor, powertrain efficiency, and 

component weights are subsystem-level examples. The economics quantities include 

primarily cost-related parameters such as vehicle acquisition cost, operating cost, 

and RDT&E cost. The performance effectiveness, PE, and economic effectiveness, 

EE, are calculated by Eq. (2.7) and Eq. (2.8), respectively where “n” is the number 

of performance parameters, PP, and “m” is the number of economics parameters, EP. 
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The 𝑤𝑖 is a weight factor for each parameter that the subjectivity of the decision 

makers is reflected in. The exponent of the parenthesis, 𝑑𝑖 , indicates a desirable 

changing direction of the quantity compared to that of the baseline; “1” denotes a 

maximization-seeking quantity such as powertrain efficiency and operable days 

whereas “-1” denotes a minimization-seeking quantity such as gross weight and 

vehicle cost. These notations allow the effectiveness metrics to naturally be the 

maximum-desirable indices, which is well matched to the meaning of 

“effectiveness”. Equation (2.9) calculates system effectiveness, SE, which is a 

weighted sum of performance effectiveness and economic effectiveness, 

representing a single score for technology infusion. 

𝑃𝐸  ∑𝑤𝑃𝑃𝑖
∙ (

𝑃𝑃𝑖|𝐴𝑙𝑡𝑝

𝑃𝑃𝑖|𝐵𝐿
)

𝑑𝑖𝑛

𝑖=1

    𝑤ℎ𝑒𝑟𝑒 {
𝑑𝑖  −1   𝑓𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒    
𝑑𝑖  1      𝑓𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒   

 (2.7) 

𝐸𝐸  ∑ 𝑤𝐸𝑃𝑖
∙ (

𝐸𝑃𝑖|𝐴𝑙𝑡𝑝

𝐸𝑃𝑖|𝐵𝐿
)

𝑑𝑖𝑚

𝑖=1

   𝑤ℎ𝑒𝑟𝑒 {
𝑑𝑖  −1   𝑓𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒    
𝑑𝑖  1      𝑓𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒   

 (2.8) 

𝑆𝐸  𝑤𝑃𝐸 ∙ 𝑃𝐸 +  1 − 𝑤𝑃𝐸 ∙ 𝐸𝐸 (2.9) 

With the aid of these effectiveness metrics, the efficacy of the technology 

portfolios can be presented by a single aggregated figure that provides an easily 

understandable way to investigate the most favorable technology combinations. This 

eventually leads to reasonable decision-making. 
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The effectiveness indices are usually plotted with RDT&E cost simultaneously. 

RDT&E cost is a kind of counterpart of effectiveness because technology infusion 

would increase the RDT&E cost of the aircraft to mature and incorporate the 

technology [10]. In Ref. [10], the plot of effectiveness with RDT&E cost is called as 

technology frontier and it provides a Pareto front which shows non-dominated 

solutions with respect to the effectiveness and cost. A notional technology frontier 

plot is shown in Fig. 2.7, which is modified from Ref. [10]. Among the solutions that 

satisfy threshold line, three best solutions can be chosen from the Pareto front: best 

effectiveness solution, best investment solution, and best compromise solution. 

 

Fig. 2.7. Notional plot of effectiveness and investment cost 

(Modified from Ref. [10])  
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2.2. Sizing Framework for Advanced Air Mobility 

The conceptual sizing framework, named as Rotorcraft Initial Sizing and 

Performance Estimation Code and Toolkit+ (RISPECT+), is developed with 

colleagues to size advanced air mobility equipped with diverse propulsion systems 

[19]. The electrified propulsion systems that are modeled in RISPECT+ include 

series hybrid, parallel hybrid, series-parallel hybrid, and full-electric system. From 

geometric, aerodynamics, propulsion data, and specific mission requirements, the 

overall dimension, weight breakdown, and primary subsystem specification are 

obtained for the sized advanced air mobility meeting the mission requirements. The 

information of the sized aircraft includes energy capacity, maximum power of 

motors, lift to drag ratio, disk loading, and wing loading. In this section, primary 

modules that are constructing RISPECT+ structure are explained with focus on 

battery-based vertical take-off and landing aircraft. The detailed descriptions can be 

found in Ref. [19,20,45,46]. This sizing framework provides the aircraft modeling 

environment throughout this study. 
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2.2.1. Overall Process and Description 

The overall design process of RISPECT+ is shown in Fig. 2.8 which is modified 

from Ref. [19] with the incorporation of technology factors and additional analysis 

modules: cost analysis and noise analysis. The sizing process is as follows. 

1. With initial assumptions for gross weight and battery capacity, design 

variables, and parameters, the geometry of advanced air mobility is generated. 

Then, the sizing of the propulsion system in advanced air mobility is 

conducted based on a given mission profile. The propulsion system is sized 

to meet the most demanding flight condition in the mission profile. 

2. Energy usage during the mission is calculated by Mission-analysis module, 

and then it is used for the weight calculation of the energy source. Except for 

the weight of the energy source, weights of other components such as 

structure compartments and systems are estimated in Weight-estimation 

module, producing empty weight. 

3. By comparing the calculated empty weight, energy source weight with 

initially assumed gross weight, available payload, 𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑎𝑣𝑎𝑖𝑙
, is 

calculated by Eq. (2.10) where 𝑊𝑒𝑚𝑝𝑡𝑦 is empty weight, 𝑊𝑏𝑎𝑡 is battery 

weight, and 𝑊𝑓𝑢𝑒𝑙 is fuel weight. Superscript of ‘new’ is used to mean a 

newly calculated value. 

𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑎𝑣𝑎𝑖𝑙
 𝐺𝑊𝑖𝑛𝑖𝑡 − (𝑊𝑒𝑚𝑝𝑡𝑦

𝑛𝑒𝑤 + 𝑊𝑏𝑎𝑡
𝑛𝑒𝑤 + 𝑊𝑓𝑢𝑒𝑙

𝑛𝑒𝑤) (2.10) 
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4. This process is iterated until the available payload becomes equal to the 

required payload by updating gross weight with Eq. (2.11) where 𝛼 is a 

relaxation factor to control convergence characteristics. 

𝐺𝑊𝑛𝑒𝑤  𝛼 (𝑊𝑒𝑚𝑝𝑡𝑦
𝑛𝑒𝑤 + 𝑊𝑏𝑎𝑡

𝑛𝑒𝑤 + 𝑊𝑓𝑢𝑒𝑙
𝑛𝑒𝑤 + 𝑊𝑝𝑎𝑦𝑙𝑜𝑎𝑑𝑟𝑒𝑞

) +  1 − 𝛼 𝐺𝑊𝑜𝑙𝑑 (2.11) 

5. After convergence of gross weight, Cost analysis and Noise analysis are 

conducted separately based on the geometry of the sized advanced air 

mobility. Cost analysis produces vehicle cost and operating cost [47]. Noise 

analysis produces the maximum noise level index for hovering condition [48]. 

During the sizing process, the technology factors that are infused as input 

data are used in each related analysis module. The sizing process is 

terminated at this stage unless an optimizer is wrapped. 

6. If the optimizer wraps the sizing module, optimization is carried out based 

on the user-customized problem. The optimal design of advanced air mobility 

is derived through optimization by changing design variables until design 

termination criteria such as the maximum number of evaluations or 

convergence tolerance are satisfied. 
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Fig. 2.8. Design process of RISPECT+ (Modified from Ref. [19])
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2.2.2. Rotor Aerodynamic Model 

A rotor blade is simply parametrized as shown in Fig. 2.9 for the aerodynamic 

analysis of a single rotor based on blade element theory (BET) [49,50]. 𝑟  is 

nondimensionalized spanwise sectional location, 𝑐  is chord length, 𝛽  is twist 

angle, 𝜆  is local taper ratio, and 𝑡𝑤  is local twist variant. The number of split 

segments can be freely determined. 

 

 

Fig. 2.9. Rotor blade parametrization for blade element theory 
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Rotor thrust, 𝑇𝑟𝑜𝑡𝑜𝑟, and power 𝑃𝑟𝑜𝑡𝑜𝑟 is calculated by Eqs. (2.12) and (2.13), 

respectively. 

𝑇𝑟𝑜𝑡𝑜𝑟  𝑁𝑏 ∙ ∫ 𝑑𝐿𝑏 ∙ 𝑐𝑜𝑠 𝜙𝑏 − 𝑑𝐷𝑏 ∙ 𝑠𝑖𝑛 𝜙𝑏                      

 𝜌𝑎𝑖𝑟 ∙ 𝐴 ∙ 𝑉𝑡𝑖𝑝
2 ∙

1

2
∫ 𝜎𝑅 ∙ 𝑟√𝜆2 + 𝑟2 ∙ (𝐶𝑙𝑏 −

𝐶𝑑𝑏
∙ 𝜆

𝑟
)𝑑𝑟

𝑟𝑡𝑖𝑝

𝑟0

 

(2.12) 

                 𝑃𝑟𝑜𝑡𝑜𝑟  𝑁𝑏 ∙ ∫ 𝑑𝐿𝑏 ∙ 𝑠𝑖𝑛 𝜙𝑏 + 𝑑𝐷𝑏 ∙ 𝑐𝑜𝑠 𝜙𝑏 ∙ 𝛺𝑟𝑜𝑡𝑜𝑟𝑦

 𝜌𝑎𝑖𝑟 ∙ 𝐴 ∙ 𝑉𝑡𝑖𝑝
3 ∙

1

2
∫ 𝜎𝑅 ∙ 𝑟√𝜆2 + 𝑟2 ∙ (𝐶𝑙𝑏 ∙ 𝜆 + 𝐶𝑑𝑏

𝑟)𝑑𝑟
𝑟𝑡𝑖𝑝

𝑟0

 

(2.13) 

𝜌𝑎𝑖𝑟 is air density, 𝑁b is the number of rotor blades, 𝜙 is the induced angle of 

attack, 𝐴 is the disk area, 𝑉tip is the rotor blade tip speed, 𝜎𝑅 is the solidity, 𝜆 is 

the inflow velocity ratio, 𝐶𝑙𝑏 is the lift coefficient, and 𝐶𝑑𝑏
 is the drag coefficient 

of blade airfoil. In axial flow conditions, 𝜆 is calculated using the blade element 

momentum theory (BEMT) with 3D stall-delay model [49–51]. If the inflow is much 

smaller than the tangential velocity of blade element  𝜆 ≪ 𝑟 , 𝜆 can be calculated 

by Eq. (2.14). 

𝜆 𝑟, 𝜆𝑐  √(
𝜎𝑅 ∙ 𝐶𝑙𝛼

16𝐹
−

𝜆𝑐

2
)

2

+
𝜎𝑅 ∙ 𝐶𝑙𝛼

8𝐹
∙ 𝜃 ∙ 𝑟 − (

𝜎𝑅 ∙ 𝐶𝑙𝛼

16𝐹
−

𝜆𝑐

2
) (2.14) 

where 𝐶𝑙𝛼  is the slope of the 2D lift coefficient curve of blade airfoil, 𝐹  is the 

Prandtl’s tip loss factor, 𝜃 is the collective pitch angle, 𝜆c is the climbing velocity 
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ratio. In non-axial flow conditions, the rotor aerodynamic analysis is carried out 

based on the blade element theory with the linear inflow model [49].  

Thrust coefficient 𝐶𝑇 and power coefficient 𝐶𝑃 are defined as Eqs. (2.15) and 

(2.16), respectively. 

𝐶𝑇  
𝑇𝑟𝑜𝑡𝑜𝑟

𝜌𝑎𝑖𝑟 ∙ 𝐴 ∙ 𝑉𝑡𝑖𝑝
2  (2.15) 

𝐶𝑃  
𝑃𝑟𝑜𝑡𝑜𝑟

𝜌𝑎𝑖𝑟 ∙ 𝐴 ∙ 𝑉𝑡𝑖𝑝
3  (2.16) 

Figure of merit, an index of hover efficiency, is calculated using Eq. (2.17) 

𝐹𝑀  
𝐶𝑃𝑖𝑑𝑒𝑎𝑙

𝐶𝑃
 

𝐶𝑇
1.5

√2 ∙ 𝐶𝑃

 (2.17) 

Rotor aerodynamic model is validated for XV-15 rotor geometry by comparing 

the calculation result with wind-tunnel data and CFD analyses. The geometry 

information and reference data are collected from Ref. [52–54]. The comparison 

result for hover mode is shown in Fig. 2.10, and for tilt mode is shown in Fig. 2.11. 
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Fig. 2.10. Comparison of XV-15 rotor in hover (Reproduced from Ref. [19]) 

 

 

Fig. 2.11. Comparison of XV-15 rotor in tilt mode (Reproduced from Ref. [19])  
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2.2.3. Wing and Fuselage Aerodynamic Model 

Wing aerodynamic analysis is carried out using an aerodynamic coefficient of 2D 

airfoil, wing geometry, and Oswald factor. 3D lift curve slope for an arbitrary wing, 

𝐶𝐿𝛼
 , is obtained by Eq. (2.18) [3,55]. 𝐴𝑅  is aspect ratio, 𝛽  is Prandtl-Glauert 

parameter which is equal to  1 − 𝑀2  .5 where 𝑀 is Mach number, 𝜅 is ratio of 

2D lift coefficient curve slope to 2𝜋, and 𝛬 .5𝑐 is sweepback angle of mid-chord. 

𝐶𝐿𝛼
 

𝐶𝑙𝛼

1 +
𝐶𝑙𝛼

𝜋 ∙ 𝐴𝑅  1 + 𝜏 

≈
2𝜋 ∙ 𝐴𝑅

2 + √(
𝐴𝑅 ∙ 𝛽

𝜅 )
2

(1 +
tan𝛬 .5𝑐

𝛽2 ) + 4

 

(2.18) 

Drag coefficient, 𝐶𝐷, is expressed by Eq. (2.19) where 𝐶𝐿 is lift coefficient, and 

𝑒  is Oswald factor which accounts for deviation from an ideal elliptical lift 

distribution. 

𝐶𝐷  𝐶𝐷0
+ 𝐶𝐷𝑖

 𝐶𝐷0
+

𝐶𝐿
2

𝜋 ∙ 𝑒 ∙ 𝐴𝑅𝑤
 (2.19) 

Oswald factor in this study is calculated following Ref. [56] and expressed by Eq. 

(2.20) [56] where 𝑒𝑡ℎ𝑒𝑜  is a theoretical Oswald factor, 𝑘𝑒,𝐹  is a correction 

coefficient for fuselage influence, 𝑘𝑒,𝐷0
 is a correction coefficient for zero lift drag 

influence, and 𝑘𝑒,𝑀 is a correction coefficient for Mach number influence. 

𝑒  𝑒𝑡ℎ𝑒𝑜 ∙ 𝑘𝑒,𝐹 ∙ 𝑘𝑒,𝐷0
∙ 𝑘𝑒,𝑀 (2.20) 

Using Eqs. (2.18), (2.19), and (2.20), aerodynamic analysis of wing component 

such as main wing and horizontal wing is carried out. 
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Aerodynamic analysis of other components such as a fuselage, landing gear, hub, 

and etc. is focused on drag force using the concept of equivalent flat plat area, 𝑓, 

defined as production of drag coefficient and reference area, 𝑆𝑟𝑒𝑓 (Eq. (2.21)). 

𝑓  𝐶𝐷 ∙ 𝑆𝑟𝑒𝑓  
𝐷𝑟𝑎𝑔

0.5 ∙ 𝜌𝑎𝑖𝑟 ∙ 𝑉∞
2 (2.21) 

The equivalent flat plate area can be obtained by computational fluid dynamics 

analysis or empirical formula. The empirical formula is the function of gross weight 

(Eq. (2.22)) and is shown in Fig. 2.12 [57]. 𝐶𝑜𝑓 is coefficient depending on the 

aircraft category. A similar approach is also presented in Ref. [49]. 

𝑓  𝐶𝑜𝑓 (
𝐺𝑊

1000
)

2/3

 [𝑓𝑡2] (2.22) 

 

Fig. 2.12. Equivalent flat plate area trend history (Reproduced from Ref. [57]) 
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If advanced air mobility has tilting systems, the additional drag from the tilting 

nacelle should be added. In Ref. [58], the mathematical equation for tilt nacelle drag 

is used for conversion mode in phase 1 of development in XV-15, which is shown in 

Eq. (2.23). In order to apply the equation to advanced air mobility sizing, a correction 

factor, 𝜅𝑡𝑒𝑐ℎ, is adopted. The value of 0.5 was assumed to be used for the correction 

factor in this study with consideration of highly improved compactness of nacelle in 

advanced air mobility compared to the conventional tilt rotor, XV-15. 𝛼𝑡𝑖𝑙𝑡 is the 

tilt angle of the nacelle in radians of which the value of 0 is for horizontally fully 

tilted and the value of 𝜋/2 is for vertical position. 

𝑓𝑛𝑎𝑐𝑒𝑙𝑙𝑒   1 − 𝜅𝑡𝑒𝑐ℎ ∙ (1 + 1 .5 ∙ 𝑐𝑜𝑠6 (
𝜋

2
− 𝛼𝑡𝑖𝑙𝑡)) (2.23) 
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2.2.4. Electric Propulsion System Sizing Model 

The descriptions for the electric propulsion system (EPS) sizing module are 

focused on the full-electric propulsion system architecture where the battery, electric 

motor, inverter, and thermal management system (TMS) constitute the overall 

propulsion system. Descriptions of additional components for other electrified 

propulsion architectures such as turbo-electric, series hybrid, parallel hybrid, and 

series-parallel hybrid systems can be found in Ref. [19,20,45]. 

The analysis fidelity of the electric propulsion system in RISPECT+ is stratified 

into two levels. The low-level-fidelity method is based on using constant efficiency 

for each electric component during a flight mission [19]. The battery is modeled as 

a black box containing energy, so called as “energy in a box”. This method is the 

simplest and quickest way to incorporate electric propulsion into advanced air 

mobility sizing in the conceptual design phase. It enables to size an advanced air 

mobility system under the minimum data environment which is the common 

situation in conceptual design. 

The higher fidelity method is based on linear approximation in characteristics of 

battery [59] and equivalent circuits for electric motors [60] and inverters [61]. 

Reference [21] described the second method incorporated in RISEPCT+ in detail. 

Although this method enables more sophisticated analysis in the electric propulsion 

system, more specific data and assumptions are required to model the electric 

components and calculation time is increased, which is a kind of counterpart for 

pursuing higher fidelity. 
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In this study, the efficiencies of the electric components are treated as a constant 

(low-fidelity model) to focus on a demonstration for application of the proposed 

portfolio assessment process and uncertainty assessment with manageable 

computational time. Thus, the following paragraphs are presenting the low-fidelity 

model. 

 

Battery 

As a container of electric energy for energy sources in advanced air mobility, 

rechargeable batteries or secondary batteries are usually used. There are a lot of 

battery chemical compositions for them, lithium-based batteries called as lithium-

ion batteries are the most commonly selected type for them. Depending on materials 

for cathode in lithium battery cells, the characteristics of lithium battery such as 

nominal cell voltage, discharge profile trend, specific power and specific energy are 

totally different. 

In the method of “energy in a box”, the required parameters for battery sizing are 

the efficiency coefficient, maximum depth of discharge (DoD), maximum discharge 

C-rate, and specific energy of the battery. Battery efficiency is usually in the range 

of 91~97% depending on operating conditions [21,29,62]. The DoD indicates the 

percent of battery used energy relative to the rated energy of the battery; 0.2 of DoD 

means 20% of battery energy is used and 80% of energy is remaining. The DoD has 

a relation with state of charge (SoC) as Eq. (2.24). Usually, the maximum DoD, 

𝐷𝑜𝐷𝑚𝑎𝑥 is constrained as 0.8 for battery life-cycle and operation safety. 
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𝐷𝑜𝐷  1 − 𝑆𝑜𝐶 (2.24) 

Discharge C-rate is a rate of discharge in battery cells, which expresses the 

discharge current relative to the current required to discharge the cell in one hour 

[63]. This is mathematized as Eq. (2.25) where 𝜒𝑏𝑎𝑡 is discharge C-rate, 𝑃𝑏𝑎𝑡out
 

is output power from battery, 𝜂𝑏𝑎𝑡 is battery efficiency, and 𝐸𝑏𝑎𝑡 is battery energy. 

𝜒𝑏𝑎𝑡  
𝐼𝑏𝑎𝑡

𝐶𝑎𝑝𝑎𝑏𝑎𝑡
 

𝑃𝑏𝑎𝑡

𝐸𝑏𝑎𝑡
 

𝑃𝑏𝑎𝑡𝑜𝑢𝑡

𝜂𝑏𝑎𝑡 ∙ 𝐸𝑏𝑎𝑡
 (2.25) 

The required battery energy is determined by comparing two values that are 

calculated using maximum DoD and discharge C-rate, respectively. The first 

criterion is calculated on the basis of maximum DoD by Eq. (2.26) where the 

accumulated battery usage required for the mission, equal to the production of power 

and time 𝛥𝑡, is divided by maximum DoD. If battery efficiency is not constant, it 

should be calculated inside of Sigma notation. 

𝐸𝑏𝑎𝑡|𝐷𝑜𝐷  
∑ 𝐸𝑏𝑎𝑡𝑖

𝐷𝑜𝐷𝑚𝑎𝑥
 

∑ 𝑃𝑏𝑎𝑡𝑜𝑢𝑡
∙ Δ𝑡

𝜂𝑏𝑎𝑡 ∙ 𝐷𝑜𝐷𝑚𝑎𝑥
 (2.26) 

The second criterion is obtained by the basis of the maximum C-rate by Eq. (2.27) 

where the maximum output power of the battery is divided by maximum C-rate. This 

criterion determines the minimum battery energy satisfying the C-rate constraint. 

𝐸𝑏𝑎𝑡|𝜒  
𝑃𝑏𝑎𝑡𝑜𝑢𝑡𝑚𝑎𝑥

𝜂𝑏𝑎𝑡 ∙ 𝜒𝑏𝑎𝑡𝑚𝑎𝑥

 (2.27) 
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The final battery energy is the bigger value between the two criteria (Eq. (2.28)) 

𝐸𝑏𝑎𝑡  𝑚𝑎𝑥(𝐸𝑏𝑎𝑡|𝐷𝑜𝐷,   𝐸𝑏𝑎𝑡|𝜒) (2.28) 

After obtaining battery energy, battery weight is calculated by Eq. (2.29) where 

𝑊𝑏𝑎𝑡  is battery energy and 𝑆𝐸𝑏𝑎𝑡  is specific energy. 𝑆𝐸𝑏𝑎𝑡  of lithium-series 

batteries have variability depending on their chemistry composition (Fig. 2.13 [64]). 

For advanced air mobility sizing, specific energy in the range of 180 ~ 500 Wh/kg is 

usually used [19,26,29,59,62,63,65]. 

𝑊𝑏𝑎𝑡  
𝐸𝑏𝑎𝑡

𝑆𝐸𝑏𝑎𝑡
 (2.29) 

 

 

Fig. 2.13. Comparison of lithium batteries depending on chemistry [64] 
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Electric Motor 

For the electric propulsion system, electric motors drive a shaft of the propulsor 

(rotor, and propeller) to generate the required thrust for aviation by changing electric 

power to mechanical power. Target mechanical power is calculated by Eq. (2.13). 

One of the most significant characteristics required for electric motors for aviation 

is higher specific power than ever. Among various types of electric motors, 

permanent-magnet synchronous motors have got the spotlight for an available 

solution [66,67]. They show high efficiency, specific power, robustness, and ease of 

maintenance. In many studies for advanced air mobility sizing, constant efficiency 

is usually set around 95% or over in the case of future aircraft [26,29,62,63,65]. 

The specific power of electric motors, defined as maximum power per weight, is 

a representative performance index of electric motors. The range of specific power 

of electric motors that are currently under development or were developed for 

aviation applications is shown in Table 2.1. The data were collected from 

presentation material [68], manufacturer’s websites, and official documents [69]. In 

the studies of future aircraft, much higher values of specific power that is near to the 

goal of roadmaps are used [29,62] 
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Table 2.1. Specification of electric motors for aviation application 

Manufacturer Model Efficiency Specific power [kW/kg] 

Siemens [68] 

SP2000D - 7.6 (target) 

SP260D-0 0.95 5.2 

MagniX* 

Magni350 > 0.93 3.14 

Magni650 > 0.93 3.2 

EMRAX† 

EMRAX 188 0.92~0.98 4.0 

EMRAX 208 0.92~0.98 4.4 

EMRAX 268 0.92~0.98 5.27 

EMRAX 348 0.92~0.98 5.0 

Pipistrel [69] E-811 - 2.17 

 

Electric motor weight is obtained using the efficiency and specific power of 

electric motors as Eq. (2.30) where 𝑊𝑚𝑜𝑡  is motor weight, 𝑃𝑚𝑜𝑡𝑜𝑢𝑡𝑚𝑎𝑥
  is 

maximum output power from motors, 𝜂𝑚𝑜𝑡 is motor efficiency, and 𝑆𝑃𝑚𝑜𝑡 is the 

specific power of electric motors. 

𝑊𝑚𝑜𝑡  
𝑃𝑚𝑜𝑡𝑜𝑢𝑡𝑚𝑎𝑥

𝜂𝑚𝑜𝑡 ∙ 𝑆𝑃𝑚𝑜𝑡
 (2.30) 

  

                                                      

* https://www.magnix.aero/services 

† https://emrax.com/e-motors/ 
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Inverter and controller 

Inverters provide alternating current to electric motors by converting direct 

current from batteries to operate the electric motors in the required power and torque 

condition. For the class of advanced air mobility, IGBT inverters are usually used 

[63]. They control the rotational speed of the electric motors by various modulation 

schemes such as space vector pulse-width modulation. In general, inverters during 

typical operation show 95% of efficiency due to power losses caused by switching 

between the blocking state and conducting state, and by heat [29,63,70]. With 

advanced control modulation schemes, materials, and cooling systems, the losses can 

be significantly diminished, so that an efficiency over 95%, up to 98~99% is applied 

for sizing of advanced air mobility in many different studies [26,29,62,63,70,71]. 

The specific power of inverters, defined as maximum power per weight, is in the 

range of around 3-11 kW/kg [63] and values over 12 kW/kg was often used for 

advanced air mobility sizing [29,62]. 

Inverter weight is obtained using efficiency and specific power of inverters as Eq. 

(2.31) where 𝑊𝑖𝑛𝑣 is inverter weight, 𝑃𝑖𝑛𝑣𝑜𝑢𝑡𝑚𝑎𝑥
 is maximum output power from 

inverters, 𝜂𝑖𝑛𝑣 is inverter efficiency, and 𝑆𝑃𝑖𝑛𝑣 is specific power of inverters. 

𝑊𝑖𝑛𝑣  
𝑃𝑖𝑛𝑣𝑜𝑢𝑡𝑚𝑎𝑥

𝜂𝑖𝑛𝑣 ∙ 𝑆𝑃𝑖𝑛𝑣
 (2.31) 
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Thermal Management System 

Thermal management system (TMS) herein indicates a kind of compound system 

to handle heat generated from the battery, electric motors, and inverters without 

explicitly distinguishing their own cooling mechanisms. To this end, it is assumed 

that all power losses occurring from each component are converted to heat and TMS 

capacity is equal to them. Thus, the maximum power of TMS, 𝑃𝑇𝑀𝑆𝑚𝑎𝑥 
, is defined 

as the sum the maximum power losses of the electric components (Eq. (2.32)). The 

weight of TMS, 𝑊𝑇𝑀𝑆, is obtained as 𝑃𝑇𝑀𝑆𝑚𝑎𝑥 
 divided by the specific power of 

TMS, 𝑆𝑃𝑇𝑀𝑆. (Eq. (2.33)). 

𝑃𝑇𝑀𝑆𝑚𝑎𝑥
 ∑{(1 − 𝜂𝑐𝑜𝑚𝑝) ∙ 𝑃𝑐𝑜𝑚𝑝𝑚𝑎𝑥

} (2.32) 

𝑊𝑇𝑀𝑆  
𝑃𝑇𝑀𝑆𝑚𝑎𝑥

𝑆𝑃𝑇𝑀𝑆
 (2.33) 

  



 

56 

2.2.5. Weight Estimation Model 

Weight estimation model for advanced air mobility in RISPECT+ is based on 

semi-empirical methods that were constructed with geometry and performance 

indices.  

The structure group comprises of the rotor, propeller, fuselage, wing, 

empennages, supporting rod, tilting actuator, and landing gear. Most equations are 

given by Raymer [3], US army report [72], and NDARC [73] that are presented as 

follows. The application of the weight equations is dependent on a configuration of 

advanced air mobility. For instance, tilting actuator weight is added only for a 

vectored thrust configuration. The equations are based on English unit system. 

 

Rotor (Propeller) 

Weight of a rotor, 𝑊𝑟𝑜𝑡𝑜𝑟, is obtained by Eq. (2.34) where 𝑇𝑚𝑎𝑥 is maximum 

thrust, 𝐴 is disk area, and 𝜅𝑡𝑒𝑐ℎ is correction factor for advanced technologies. 

𝑊𝑟𝑜𝑡𝑜𝑟   1 − 𝜅𝑡𝑒𝑐ℎ ∙ 0.080 4 ∙ 𝑇𝑚𝑎𝑥
1.  77 ∙  𝑇𝑚𝑎𝑥 𝐴⁄    . 7821 (2.34) 

 

Fuselage 

Weight of a fuselage, Wfuse, is obtained by Eq. (2.35) where 𝑁𝑧 is load factor, 

𝐺𝑊 is gross weight, 𝑅𝑟𝑜𝑡𝑜𝑟 is rotor radius, and 𝑁𝑟𝑜𝑡𝑜𝑟 is the number of rotors. 

𝑊𝑓𝑢𝑠𝑒   1 − 𝜅𝑡𝑒𝑐ℎ ∙ 0.02665 ∙  𝑁𝑧 ∙ 𝐺𝑊  .9 3 ∙ (𝑅𝑟𝑜𝑡𝑜𝑟 ∙
𝑁𝑟𝑜𝑡𝑜𝑟

2
)

 .65 

 (2.35) 
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Wing 

Weight of a main wing, 𝑊𝑤𝑖𝑛𝑔, is obtained by Eq. (2.36) where 𝑆𝑤 is wing area, 

𝜆𝑤 is taper ratio, 𝐴𝑅𝑤 is aspect ratio, and t/c  is maximum airfoil thickness. 

𝑊𝑤𝑖𝑛𝑔   1 − 𝜅𝑡𝑒𝑐ℎ ∙ 0.0 2 ∙ 𝑆𝑤
 .758 ∙ 𝜆𝑤

 .  ∙  𝑁𝑧 ∙ 𝐺𝑊  . 9 ∙ (
𝐴𝑅𝑤

𝑐𝑜𝑠2 𝛬𝑤 
)

 .6

∙ (
100

𝑐𝑜𝑠 𝛬𝑤 

𝑡

𝑐
)

  .3

 

(2.36) 

If the configuration of advanced air mobility is vectored thrust (tilt rotor), weight 

equation for the main wing is changed by Eq. (2.37) [74]. Note that SI unit should 

be used for Eq. (2.37). 

𝑊𝑤𝑖𝑛𝑔   1 − 𝜅𝑡𝑒𝑐ℎ ∙ 0.0288 ∙  1 + 0.12 ∙ 𝜏 .  ∙ (𝑁𝑧 ∙
𝐺𝑊

𝑆𝑤
)

 .52

∙ 𝑆𝑤
1.22

∙ 𝐴𝑅𝑤
 . 7 ∙ (

2

 𝑡/𝑐 
)

 . 

∙ (1.1 +
𝜆𝑤

2
)

 .695

 

(2.37) 

 

Empennage 

Empennages are for a horizontal tail and vertical tail. Their weight is obtained by 

Eqs. (2.38) and (2.39), respectively. 𝑆 is area, and 𝐴𝑅 is aspect ratio. 

Horizontal tail 𝑊ℎ𝑡   1 − 𝜅𝑡𝑒𝑐ℎ ∙ 0. 1 6 ∙ 𝑆ℎ𝑡
1.2 ∙ 𝐴𝑅ℎ𝑡

 .32 (2.38) 

Vertical tail 𝑊𝑣𝑡   1 − 𝜅𝑡𝑒𝑐ℎ ∙ 1.046 ∙ 𝑆𝑣𝑡
 .9 ∙ 𝐴𝑅𝑣𝑡

 .53 (2.39) 
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Supporting rod 

Weight of supporting rods, 𝑊𝑟𝑜𝑑, is obtained by Eq. (2.40) where 𝑁𝑟𝑜𝑑  is the 

number of rods, 𝜌𝑟𝑜𝑑  is rod material density, 𝐿𝑟𝑜𝑑  is rod length, 𝑅𝑟𝑜𝑑  is rod 

radius, and 𝑡𝑟𝑜𝑑 is rod thickness. 

𝑊𝑟𝑜𝑑  𝑁𝑟𝑜𝑑 ∙ 𝜌𝑟𝑜𝑑 ∙ 𝐿𝑟𝑜𝑑 ∙ 𝜋(𝑅𝑟𝑜𝑑
2 −  𝑅𝑟𝑜𝑑 − 𝑡𝑟𝑜𝑑 2) (2.40) 

 

Tilting actuator 

Weight of tilting actuators, 𝑊𝑡𝑖𝑙𝑡, is obtained by Eq. (2.41) that is derived from 

XV-15 and MV-22 data [75]. 𝑁𝑡𝑖𝑙𝑡 is the number of tilting actuators. 

𝑊𝑡𝑖𝑙𝑡  0.005 ∙ 𝐺𝑊 ∙ 𝑁𝑡𝑖𝑙𝑡 (2.41) 

 

Landing gear 

Weight of a landing gear, 𝑊𝐿𝐺, is obtained by Eqs. (2.42) and (2.43) depending 

on the type of landing gear. 

Skid type  𝑊𝐿𝐺  0.44 ∙  𝐺𝑊  .63 (2.42) 

Wheel type landing gear 𝑊𝐿𝐺  0.0 8 ∙ 𝐺𝑊 (2.43) 
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The propulsion group comprises of battery, electric motors, inverters, TMS, extra 

circuit protection, and wiring. The weight of the battery, electric motors, inverters, 

and TMS are obtained by Eqs. (2.29), (2.30), (2.31), and (2.33), respectively. 

Weights of extra circuit protection and wiring are assumed to be proportional to the 

weight of the total electric propulsion system as Eqs. (2.44) and (2.45), respectively. 

𝑊𝑐𝑖𝑟𝑐𝑢𝑖𝑡  0.0084 ∙ 𝑊𝐸𝑃𝑆 (2.44) 

𝑊𝑤𝑖𝑟𝑖𝑛𝑔  0.1 61 ∙ 𝑊𝐸𝑃𝑆 (2.45) 

For the weight of other systems such as flight control systems and furnishing 

equipment are calculated by equations presented in Ref. [3,72,73] or customized 

values can be imposed. 

The technology correction factors 𝜅𝑡𝑒𝑐ℎ  in several equations is assumed 

following Ref. [76]. The validation results of the weight estimation model are 

presented in Ref. [19] for XV-15 data [77] and a hypothetical lift-plus-cruise type 

eVTOL [76]. 
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2.2.6. Cost Estimation Model 

Cost estimation model was coupled with RISPECT+ in order to analyze 

economics of advanced air mobility, which is especially necessary to address the 

infusion of new technologies in Section 2.1. The costs of aircraft can be divided into 

two categories: vehicle cost (Acquisition cost), and operating cost. They are 

estimated by an in-house tool called as Aircraft Cost Analysis Code (AC2) [47]. AC2 

was developed with colleagues to estimate economic quantities for generalized 

advanced air mobility focusing on wing-borne configurations. As of now, this cost 

estimation model is restricted to wing-borne configurations: vectored thrust and lift-

plus-cruise. Additional cares should be taken to use AC2 for wingless configurations. 

A detailed description for acquisition cost estimation method can be found in Ref. 

[47]. 

 

Vehicle Cost (Acquisition Cost) 

In AC2, vehicle cost, which is also referred to as acquisition cost, is estimated by 

using a top-down and bottom-up hybrid approaches. The overall structure of vehicle 

cost estimation is shown in Fig. 2.14 [47]. A wing-borne configuration of advanced 

air mobility can be decomposed into three compartments: the base structure, 

additional airframe, and subpart component. 

The base structure stands for a typical aircraft structure in which a single fuselage, 

a single main wing, empennages, and landing gear constitute the structure. The base 

structure cost, 𝐶𝑏𝑎𝑠𝑒, is estimated based on DAPCA Ⅳ method [78] which is mainly 
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based on the top-down approach using functions of gross weight, number of 

prototypes, and learning curve. Since most advanced air mobility under currently 

development have size and dimension similar with general aviation aircraft, DAPCA 

Ⅳ method can be applied. DAPCA Ⅳ produces base structure cost that includes 

RDT&E cost. 

The additional airframe stands for auxiliary body components such as the 

secondary wing in Kitty Hawk Heaviside, and rotor supporting rod in Wisk Cora or 

Beta Technology Alia 250. The cost of an additional airframe, 𝐶𝑎𝑑𝑑.𝑓𝑟𝑎𝑚𝑒 , is 

estimated using equations presented in Ref. [79] where the aircraft is decomposed 

into 17 parts and the cost of each part was estimated separately. For consideration of 

more complex configuration of advanced air mobility than general aviation, the 

adjustment factor, 𝑓𝑎𝑑, is derived using data from the tables and figures in Ref. [80]. 

The adjustment factor depends on the type of aircraft configuration (vectored thrust, 

and lift-plus-cruise). Due to more complexity, such as a vectoring system, the 

adjustment factor for vectored thrust configuration is greater than that for lift-plus-

cruise configuration. The adjustment factor is multiplied to the base structure cost 

and additional airframe cost. 

The subpart component basically stands for the other components except for the 

airframe structures. It includes the propulsion system including the rotor, propeller, 

battery, electric motor, inverter, and so on. For the cost of the propulsion system, a 

method presented previously is leveraged in this study. Finger et al. [81] presented a 

cost estimation method for hybrid electric general aviation aircraft. In the method, 
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they estimated the cost of electric propulsion using unit cost per component power 

for the motor (Eq. (2.46)) and inverter (Eq. (2.47)) or unit cost per energy for battery 

(Eq. (2.48)). Rotor cost is estimated by Eq. (2.49), a function of the rotor dimension 

and power capability. Avionics cost is simply estimated by Eq. (2.50). 

𝐶𝑚𝑜𝑡  𝑁𝑚𝑜𝑡 ∙ 𝐶𝑚𝑜𝑡𝑢𝑛𝑖𝑡
∙ 𝑃𝑚𝑜𝑡𝑚𝑎𝑥

 (2.46) 

𝐶𝑖𝑛𝑣  𝑁𝑖𝑛𝑣 ∙ 𝐶𝑖𝑛𝑣𝑢𝑛𝑖𝑡
∙ 𝑃𝑖𝑛𝑣𝑚𝑎𝑥

 (2.47) 

𝐶𝑏𝑎𝑡  𝐶𝑏𝑎𝑡𝑢𝑛𝑖𝑡
∙ 𝐸𝑏𝑎𝑡 (2.48) 

𝐶𝑟𝑜𝑡𝑜𝑟  𝑁𝑟𝑜𝑡𝑜𝑟 ∙ 𝐶𝑟𝑜𝑡𝑜𝑟𝑢𝑛𝑖𝑡
∙  2𝑅𝑟𝑜𝑡𝑜𝑟 

2 ∙ (
𝑃𝑟𝑜𝑡𝑜𝑟𝑚𝑎𝑥

2𝑅𝑟𝑜𝑡𝑜𝑟
)

 .12

 (2.49) 

𝐶𝑎𝑣𝑖𝑜𝑛𝑖𝑐𝑠  𝐶𝑎𝑣𝑖𝑜𝑛𝑖𝑐𝑠𝑢𝑛𝑖𝑡
∙ 𝑊𝑎𝑣𝑖𝑜𝑛𝑖𝑐𝑠 (2.50) 

The approach in the calculation of the additional airframe cost and subpart cost 

is a kind of bottom-up approach from the component to the aircraft system. By 

summing up the three compartments’ costs after the application of the adjustment 

factor, the final vehicle cost of advanced air mobility, 𝐶𝑣𝑒ℎ𝑖𝑐𝑙𝑒, is obtained as Eq. 

(2.51). 
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The key parameter values used for vehicle cost estimation in this study are given 

in Table 2.2. The number of prototypes and the number of production quantities in 5 

years are the input parameters for the calculation of the base structure cost. 

𝐶𝑣𝑒ℎ𝑖𝑐𝑙𝑒  𝑓𝑎𝑑(𝐶𝑏𝑎𝑠𝑒 + 𝐶𝑎𝑑𝑑.𝑓𝑟𝑎𝑚𝑒) + ∑ 𝐶𝑠𝑢𝑏𝑝𝑎𝑟𝑡𝑠 (2.51) 

 

Table 2.2. Key parameter values used in vehicle cost estimation 

Parameter Value 

Number of prototypes 5 

Number of production quantities in 5 years 250 

Adjustment factors for vectored thrust | lift-plus-cruise 3.30  |  1.85 

Rotor cost coefficient per unit $210 

Electric motor cost per unit power $63 per hp 

Inverter cost per unit power $44 per hp 

Battery cost per unit energy capacity $300 per kWh 

Avionics cost per unit weight $6,000 per lb 
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Fig. 2.14. Vehicle cost estimation in AC2 (Modified from Ref. [47])
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Direct operating Cost 

Direct operating cost (DOC) is subdivided into several elements including 

maintenance, depreciation, finance, insurance, battery replacement, charging cost, 

and pilot [82]. The information of them is obtained from historical data, technical 

factors, and assumptions used in presentations from eVTOL manufacturers*,†,‡. For 

the maintenance cost of advanced air mobility, the near-term goal for helicopter 

maintenance cost presented in Ref. [57] is modified as Eq. (2.52) considering the 

exclusion of the engine. The correction factors, 0.7767 and 0.4893, are derived from 

the data of two different helicopters: the S-55 and the S-61 [57]. 

𝐶𝐷𝑂𝐶𝑚𝑛𝑡
 𝐶𝐷𝑂𝐶𝑙𝑎𝑏

∙ 0.  6 ∙ [0.001 ∙ (𝑊𝑒𝑚𝑝𝑡𝑦)
 .78+ .3+ .1

]  𝑓𝑜𝑟 𝐿𝑎𝑏𝑜𝑟

+ 0.48  ∙  4 ∙ [
𝐶𝑣𝑒ℎ𝑖𝑐𝑙𝑒

106 ]
 .68

                                    𝑓𝑜𝑟 𝑃𝑎𝑟𝑡𝑠

+ 18 ∙ (
𝐶𝑣𝑒ℎ𝑖𝑐𝑙𝑒

106
)                         𝑓𝑜𝑟 𝑀𝑎𝑗𝑜𝑟 𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐 𝑀𝑎𝑖𝑛𝑡. 

(2.52) 

Battery replacement cost is estimated by Eq. (2.53) [82].  

𝐶𝑏𝑎𝑡𝑟𝑒𝑝𝑙𝑎𝑐𝑒
 

𝐶𝑏𝑎𝑡

𝐿𝐶𝑏𝑎𝑡
∙ 𝜒̅𝑏𝑎𝑡 (2.53) 

                                                      

*. Joby Aviation, Analyst Day presentation, https://ir.jobyaviation.com/about-

us/presentations (accessed at 2021.10.) 

†. Lilium, Capital Markets Day presentation, https://ir.lilium.com/news-and-events/events-

and-presentations (accessed at 2021.10.) 

‡. Vertical Aerospace, Analyst presentation, https://investor.vertical-aerospace.com/events-

and-presentations/presentations/default.aspx (accessed at 2021.11.) 
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𝜒̅𝑏𝑎𝑡  is averaged battery discharge C-rate and 𝐿𝐶𝑏𝑎𝑡  is battery usable discharge 

cycle calculated by Eq. (2.54) [82]. 

𝐿𝐶𝑏𝑎𝑡   −152 ∙ 𝑙𝑜𝑔𝜒̅𝑏𝑎𝑡 + 5  .54 ∙  1. ∙ 𝐷𝑜𝐷𝑚𝑎𝑥
  .195   (2.54) 

The key parameter values used for operating cost estimation in this study are 

given in Table 2.3. 

 

Table 2.3. Key parameter values used in operating cost estimation 

Parameter Value 

Number of flights per a day 54 

Pilot rate $114 per FH 

Finance and insurance rate per vehicle cost 4% and 3.115% 

Landing fee $35 per landing 

Parking rate $1.5 per FH 

Weather and communication service $2.26 per FH 

 

The specifications of the vehicle such as component weight and energy capacity 

required for AC2 were fed from RISPECT+. 
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2.2.7. Noise Model 

Simplified vehicle noise model for rotorcraft is coupled with RISPECT+. The 

coupled noise model was developed by Ref. [48], and it focuses on rotor noise in 

axial flight in which an order of higher thrust is required than in wing-borne flight. 

This noise model enables to quickly incorporate noise performance in system-level 

conceptual design and to present direction of major design properties. This section 

describes the main equations for the noise model. The details can be found in Ref. 

[48] including assumptions and limitations of the noise model. 

 

Rotational Noise 

One of the two components of rotor noise without blade slap is rotational noise 

which is also referred to as harmonic noise. Rotational noise can be divided into two 

categories: loading noise, caused by thrust generation; and thickness noise, caused 

by finite blade thickness. The root mean square sound pressure for loading noise, 

𝑝𝑚𝐿
, and thickness noise, 𝑝𝑚𝑇

, can be modeled by the Gutin and Deming formula 

[83]. They are simplified using equivalent-radius 𝑅𝑒  as Eqs (2.55) and (2.56), 

respectively. The resultant sound pressure level (SPL) is obtained by Eq. (2.57). 

𝑝𝑚𝐿
 

𝑚𝑁𝑏𝛺

2√2𝜋𝑎 𝛥𝑆 
[𝑇𝑡𝑐𝑜𝑠𝜃 − 𝑄

𝑎

𝛺𝑅𝑒
2] 𝐽𝑚𝐵 (

𝑚𝑁𝑏𝛺

𝑎
𝑅𝑒𝑠𝑖𝑛𝜃) (2.55) 

𝑝𝑚𝑇
 

−𝜌𝑎𝑖𝑟 𝑚𝑁𝑏𝛺 2𝐵

 √2𝜋 𝛥𝑆 
𝑐𝑏𝑡𝑏𝑅𝑒𝐽𝑚𝐵 (

𝑚𝑁𝑏𝛺

𝑎
𝑅𝑒𝑠𝑖𝑛𝜃) (2.56) 
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𝑆𝑃𝐿  10 𝑙𝑜𝑔1 [𝑁𝑟𝑜𝑡𝑜𝑟 (
𝑝𝑚𝐿

2 + 𝑝𝑚𝑇
2

𝑝𝑟𝑒𝑓
2 )] (2.57) 

In the equations, variables are defined as Table 2.4. The definitions of 𝛥𝑆 and 

𝜃 are given in Fig. 2.15. 

 

Table 2.4. Symbols for rotational noise equations 

Symbol Description Symbol Description 

𝑎 Speed of sound 𝑄 Rotor torque 

𝑐𝑏 Blade chord 𝑡𝑏 Blade maximum thickness 

𝐽𝑚𝐵 
Bessel function 

of order 𝑚𝐵 
𝛥𝑆 

Distance between 

the rotor and the observer 

𝑚 Harmonic number 𝛺 Rotor angular velocity 

𝑁𝑟𝑜𝑡𝑜𝑟 Number of rotors 𝜃 Observer azimuthal angle 

 

 

Fig. 2.15. Schematic diagram for rotational noise (Modified from Ref. [48])  

z Δ𝑆

y

𝜃Rotor(s)

x

Ground observer



 

69 

Vortex Noise 

The other component of rotor noise is vortex noise and SPL by vortex noise is 

calculated by Eq. (2.58) [48] where 𝑇𝑟𝑜𝑡𝑜𝑟/𝐴 is the disk loading, 𝐾2 is a constant, 

equal to 1.206 𝑥 10 2 𝑠3/𝑓𝑡3, and 𝑉𝑡𝑖𝑝 is blade tip speed. 

𝑆𝑃𝐿  20 𝑙𝑜𝑔1 [𝐾2

𝑉𝑡𝑖𝑝

𝜌𝑎𝑖𝑟 𝛥𝑆 
√

𝑁𝑟𝑜𝑡𝑜𝑟𝑇𝑟𝑜𝑡𝑜𝑟

𝜎𝑅
(
𝑇𝑟𝑜𝑡𝑜𝑟

𝐴
)] (2.58) 

Equation (2.58) reflects the major parameters related to rotor noise such as tip 

speed, solidity, and disk loading of the rotor. For example, lowering tip speed results 

in low SPL, and higher disk loading results in high SPL. Equation (2.58) was 

validated in Ref. [48] based on data from Ref. [84] for two different helicopter rotors: 

the CH-3C and the CH-53A within a 3 dB difference compared to the test data. 

 

A-Weighting Correction 

Among various decibel weighting corrections by human responses at frequencies, 

A-weighting correction has been widely used. It is usually used for a regulatory 

guide such as in Uber Elevate [85] and representative index in noise comparison. 

The A-weighting response function, 𝐴 𝑓  as a function of frequency is plotted in 

Fig. 2.16 [48]. Although vortex noise is broadband noise, the frequency spectrum of 

vortex noise also can be modeled by Ref. [48,86], and A-weighting correction is 

carried out. The A-weighting response plot for vortex noise is also shown in Fig. 

2.16. 
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Fig. 2.16. A-weighting response function [48] 

A-Weighting Response

𝐴 𝑓 

𝐴 𝑓𝑝𝑒𝑎 , 𝑣𝑜𝑟𝑡𝑒𝑥 

R
el

at
iv

e 
re

sp
o

n
se

 (
d

B
)

0

-5

-10

-15

-20

Frequency (Hz)
102 103 104



 

71 

Chapter 3  

Uncertainty Environment 

 

The uncertainties occurring in the technology portfolio assessment and the sizing 

framework are diverse. The types of uncertainties and their source are described first, 

and specific uncertainties in the process are identified and modeled using various 

techniques. The categorization of uncertainties and terminology in this study is 

largely based on the method from Ref. [87]. 

 

3.1. Types of Uncertainties 

A large number of researches have dealt with identifying and categorizing types 

of uncertainties that occur in science and engineering with computational modeling 

and analyses. The uncertainties change a deterministic problem in original to a non-

deterministic problem resulting in that interpreting the outcomes becomes more 

complex and difficult. In order to efficiently handle the uncertainties and interpret 

the outcomes, the most effective categorizing method of uncertainties was developed 

by the risk assessment community. The method distinguishes uncertainties based on 

the fundamental nature of uncertainties.: aleatory and epistemic uncertainty [87]. 

This division increases the ease of interpretation of analysis results and helps to make 

strategies to handle uncertainties by decision-makers. Distinguishing uncertainties 

into aleatory and epistemic is widely used across a variety of research [16,27,39,88–

92].  
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3.1.1. Aleatory Uncertainty 

Aleatory uncertainty is defined as uncertainty due to inherent physical 

randomness in nature or a system. This type of uncertainty is also referred to as 

stochastic uncertainty, variability, and irreducible uncertainty because it is attributed 

to inherent variability in nature or system randomness that cannot be removed. The 

representative examples of this type of uncertainty include physical variations in 

product specification due to manufacturing tolerance, in material properties due to 

environmental circumstances, and in performance indices of subsystems (efficiency 

of powertrain). The computational parameters such as initial conditions and 

boundary conditions are also can be aleatory uncertainty. 

This uncertainty is usually mathematically modeled using probability density 

functions (PDFs) and cumulative distribution functions (CDFs) based on numerous 

samples with an assumption about the shape of PDFs (Gaussian, uniform, Weibull, 

etc.) [88]. Notional PDF and CDF graphs are shown in Fig. 3.1. 

 

Fig. 3.1. Notional probability density function (left), 

and cumulative density function (right)  
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3.1.2. Epistemic Uncertainty 

The other uncertainty, epistemic uncertainty, deals with the uncertainties arising 

from a “lack of knowledge”. “Lack of knowledge” can be caused by insufficient or 

incomplete data, assumptions in physics, and simplified mathematics model in 

computations. Since these uncertainties can be reduced with supplementary data and 

advancements in computational models, epistemic uncertainty is considered as 

reducible uncertainty. Although epistemic uncertainty is divided further into 

“recognized uncertainty” and “blind uncertainty”, the further division is not applied 

in this study. 

As epistemic uncertainty is induced by the lack of knowledge related to 

computational modeling and mathematical modeling, the terminology of “model 

uncertainty” is simultaneously used in this study. Epistemic uncertainty should be 

considered especially in earlier design phases such as the pre-conceptual, and 

conceptual design phases where many mathematical models used in the analyses are 

simplified and have relatively lower accuracy. Thus, it is important to present 

outcomes obtained by probability-based analysis due to reducing the possibility of 

design failure or re-design attempts in the more mature design phases. 

In order to embed the effect of epistemic uncertainty in system responses, it is 

ideal to know the exact distribution of the model uncertainty. However, it is usually 

an impractical situation because the number of available experimental data is usually 

limited owing to the limit of budget or timeframe. In that situation, unthoughtful use 

of PDFs with assumptions may lead to inaccurate predictions in the amount of 
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uncertainty in the system [87–90]. Thus, epistemic uncertainty is usually considered 

using intervals. The intervals can be obtained through various ways. One is a 

comparison with data from computational methods with higher accuracy or 

experimental data. If data from higher fidelity methods are not available, expertise 

from experts can help to set the intervals. 

 

3.1.3. Other Uncertainties 

In addition to both types of uncertainties, numerical errors arise during the 

computation process in science computing. The error is defined as a deviation from 

the true value of a quantity. In Ref. [87], the error is strictly different from the 

uncertainty and its usefulness of the concept of error is highly dependent on the level 

of accuracy of the true value. The concept of error is useful in the circumstance where 

the accuracy of the true value is known, which is not a usual situation though. In that 

case, it would be a more appropriate approach to characterize the accuracy of the 

computation as epistemically uncertain [87]. Thus, in this study, the numerical error 

is considered blindly in the model uncertainty  
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3.1.4. Effect of Uncertainties 

The effects of the two types of uncertainties on an output quantity of interest are 

shown in Fig. 3.2. In an ideal case where there is no uncertainty with precise 

knowledge and no variability, a scalar quantity of interest is obtained. The sole 

aleatory uncertainty results in a distribution, producing a single CDF curve. The sole 

epistemic uncertainty makes a scalar value shifted, which produces a pure interval. 

When the two types of uncertainties are mixed together, the multiple CDF curves are 

generated, and probability area, referred to as a probability box or “p-box”, is 

generated eventually. 

 

Fig. 3.2. Uncertainty effects on an output quantity of interest 

(Modified from Ref. 34)  
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3.2. Uncertainties in Technology Portfolio Assessment Process 

The uncertainties existing in the technology portfolio are identified and treated 

by following the classification of uncertainties described in Section 3.1. 

 

3.2.1. Uncertainty in technology impact and interaction factor 

One of the most major uncertainties is the magnitude of the impact of each 

technology on system attributes, and elements of TIM. As described earlier in 

Section 2.1.2, the impact factors for TIM can be quantified through various ways, 

such as literature reviews, physics-based computations, direct experiments, and the 

Delphi technique which relies on experts’ opinions. Although uncertainties are 

attributed to each source, in particular, Delphi technique that depends on experts’ 

opinions is one of the main sources of uncertainty. The subjectivity of the experts 

based on their own experience and confined knowledges only in their disciplines 

have significant contributions to the uncertainty for the impact factor. Thus, the 

impact of technologies has inherent variations that can be handled by aleatoric ways. 

Additional concerns related to the uncertainty should be focused on the level of 

technology maturity. There is a high possibility that the enlisted technologies which 

are selected to meet the design requirements are still in an immature status for 

integration. The maturity level of technologies is usually measured quantitatively by 

technology readiness level (TRL) [94,95]. The original definitions of TRL are based 

on the component level, not the system level. Thus, it is limited to applying the 

concept of TRL to system response analysis. In order to overcome this limitation, 
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other indices for considering integration in the perspective of systems were presented 

[15,16,96–98]. The new readiness level indices could resolve the limitation of the 

original TRLs, but they make the engineering problem more complex requiring more 

data collection and scrutinization. To minimize the complexity, the modified 

definition of TRL presented in Science Applications International Corporation 

(SAIC) report [99] is used in this study following Ref. [10], instead of incorporating 

other readiness level indices. The modified definitions of TRL are tabulated in Table 

3.1. They are less focused on the component level. 

Table 3.1. SAIC Modified TRL description [10] 

Description Level Qualifier or Development Hurdle 

Basic 

Research 
1 

Basic scientific/engineering principles observed and 

reported 

Feasibility 

Research 
2 

Technology concept, application, and potential benefits 

formulated (candidate system selected) 

Feasibility 

Research 
3 

Analytic and/or experimental proof-of-concept completed 

(proof of critical function or characteristic) 

Technology 

Development 
4 

System concept observed in laboratory environment 

(breadboard test) 

Technology 

Development 
5 

System concept tested and potential benefits substantiated 

in a controlled relevant environment 

System 

Development 
6 

Prototype of system concept is demonstrated in a relevant 

environment 

System 

Development 
7 

System prototype is tested and potential benefits 

substantiated more broadly in a relevant environment 

Operational 

Verification 
8 

Actual system constructed and demonstrated, and benefits 

substantiated in a relevant environment 

Operational 

Verification 
9 

Operational use of actual system tested, and benefits 

proven 
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Under the TRL assumption, the uncertainty of technology impact on a system is 

estimated. The immature technology with low TRL is hard to predict its impact on 

the system owing to a lack of data and knowledge on the technology, which implies 

the level of epistemic uncertainty is high a lot. As the technology development is 

progressing, the problem of “lack of knowledge” is resolved by accumulated data 

and information, which means epistemic uncertainty is reduced. Under this rationale, 

the expected technology impact distribution when a technology is fully developed 

reaching TRL of 9 is dependent on the current TRL of technologies. This analogy 

was presented by Ref. [10] in which the expected impact distributions of 

technologies were displayed depending on TRL as shown in Fig. 3.3 [10]. The 

detailed analogy can be found in Ref. [10] 

 

Fig. 3.3. Uncertainty forecast (reproduced from Ref. [10])  
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In order to handle both aleatory and epistemic uncertainty in the impact of 

technologies and mathematically reproduce a distribution of it, PDF determined by 

TRL is adopted for its distribution in this study [10]. Following Ref. [10], Weibull 

distribution is chosen of which shape parameter, 𝛽,  and scale parameter, 𝛼 , are 

modeled as a function of TRL (Eq. (3.1) [10]). 𝑎𝑖,𝑗 is the impact factor of defined 

in Eq. (2.2). 

𝛼|𝑇𝑖,𝑎𝑖,𝑗,𝛽=2  | 0%𝑎𝑖,𝑗| − (𝑇𝑅𝐿𝑇𝑖
− 1) ∙

(| 0%𝑎𝑖,𝑗| − |5%𝑎𝑖,𝑗|)

8
 (3.1) 

The PDF curves for Weibull distribution of the two impact factors with different 

TRL are shown in Fig. 3.4 and Fig. 3.5, respectively. The theoretical limit is marked 

with a solid blue line. The nominal value (average) of the expected impact of the 

technology in immature status (low TRL) is far from the theoretical limit value. The 

variation of the distribution is much broader. On the other way, the nominal value of 

the expected impact of the technology in mature status (high TRL) is near to the 

theoretical value, and the distribution shows a narrower variation. The diminishment 

of variance by increasing TRL is linked to the reduction of epistemic uncertainty by 

resolving the lack of knowledge. It is noted that, even at TRL of 9, the magnitude of 

the impact factor cannot reach the theoretical limit and has a variability. This is due 

to the fact that aleatory uncertainty is irreducible and the theoretical limit is the ideal 

value. Other distribution functions such as triangular distribution and gamma 

distribution can also be applied depending on the circumstance of data collection, 

data characteristics, and decision makers’ priority [15,16]. 
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Fig. 3.4. Variability of impact factor depending on TRL (Positive impact) 

 

Fig. 3.5. Variability of impact factor depending on TRL (Negative impact) 
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In addition to uncertainties in the impact of technologies, the elements of TCIM 

and interaction factors that are obtained by Eq. (2.4) have also both aleatory and 

epistemic uncertainty for their figures because the elements of TCIM are determined 

by the similar to the approach for TIM case. They can be modeled using PDFs in the 

same way. However, this uncertainty was neglected in this study since the variability 

induced by interaction factors could be mixed and diluted by the variability in the 

expected impact of the technologies. The limit values of both ends resultant 

distribution for the variability of the element of TPEM could be different if extreme 

values from TCIM and TIM are sampled. Nevertheless, the possibility of the 

situation happening is highly low, resulting in little difference in the resultant 

elements of TPEM. Meanwhile, the advantage of reducing the computational burden 

and dimensional curse is significant by ignoring the variability of interaction factors. 

Another uncertainty source is TRL of technology by itself. Since TRL is defined 

qualitatively as in Table 3.1 (also in the original definition), determining the exact 

number for specific technology is always controversial and subjective. In this 

dissertation, it is assumed that TRLs of technologies are determined as one value for 

each technology by averaging information from literature surveys and expertise from 

experts. 
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3.2.2. Uncertainty in surrogate model 

Another major uncertainty in the process stems from the mathematical surrogate 

models that replace physics-based design tools. As mentioned earlier in Section 

2.1.5, the use of surrogate models such as RSM, Gaussian process, and neural 

networks is usually an inevitable choice to relieve extremely high computational cost 

and time issues. This is because of the fact that, even in the deterministic process for 

technology portfolio assessment, the shortlist of the technology portfolios is 

extended following 2 to the power of the number of listed technologies (2N). In 

building the surrogate models, the input space is usually explored through DOE 

process with efficient sampling methods such as Latin Hypercube Sampling (LHS) 

[100], D-optimal [101], and Sobol’s sequence [102]. Unlike to the full-factorial 

method, these sampling methods are not fully cover the input space dimension, so 

that the surrogate model built with the sampled points should have uncertainty from 

missing space. The uncertainty is not vanished completely even if the full-factorial 

sampling is used. 

In uncertainty quantification problems, therefore, incorporating the uncertainty 

from the surrogate models into the results is necessary to provide accurate 

information leading to appropriate decisions and risk management, but it was 

neglected in the previous studies [10,15,16] where the surrogate models were only 

used deterministically after their validation showed errors. The uncertainty from the 

surrogate models can be classified as an epistemic uncertainty. The schematic figure 

of the surrogate model and its epistemic uncertainty is shown in Fig. 3.6. 
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Fig. 3.6. Schematic of surrogate model and its uncertainty 

 

The specific methods for quantifying this epistemic uncertainty depend on the 

type of surrogate model chosen to be used for individual projects. For example, in 

the case of the methods that provide variance information by themselves such as 

Kriging method [43] and Bayesian neural network [103], the variance information 

can be directly used to estimate the confidence interval that is interpreted as the 
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deterministic surrogate methods such as the conventional RSM [41,42] and MLP 

neural network [44] do not provide variance information by themselves, so that 

additional techniques are needed for estimating variance from the model. One of the 
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calculable feature. In the case of the conventional MLP model, the MC dropout 

technique [106] could aid to estimate uncertainty by mimicking the Bayesian neural 

network. 

After obtaining variance information according to the chosen surrogate model 

and interval estimating technique, the total variance of a system response, 𝜎𝑡
2, is 

calculated by Eq. (3.2) in which 𝜎𝑡
2 is equal to the sum of variances by aleatory 

uncertainty, 𝜎𝑎
2, and by epistemic uncertainty, 𝜎𝑒

2, with an assumption that the two 

aleatory and epistemic uncertainty sources are independent of each other. 

𝜎𝑡
2  𝜎𝑎

2 + 𝜎𝑒
2 (3.2) 
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3.3. Uncertainties in Conceptual Design Framework 

The uncertainties existing in the conceptual design framework were identified 

and treated by following the classification of the uncertainties described in Section 

3.1. 

 

3.3.1. Uncertainty in physical parameter variant 

There are a lot of physical parameters used as input variables for the sizing 

program such as rotor radius, wing span, battery specifications, wind condition, 

altitude profile, and flight speed. These parameters have inherent randomness in 

natural environment, which can be handled by the aleatoric way using PDF or CDF 

curves as described in Section 3.1.1. Although the shape of PDF curve is dependent 

on collected data or circumstance, Gaussian distribution or normal distribution is the 

most common type of distribution used to model variation in the physical parameters. 

A coefficient of variation (COV), a ratio of standard deviation 𝜎  and mean 𝜇 , 

defined as Eq. (3.3) is usually used for presenting how much data are scattered with 

respect to the mean value. With assumptions for the type of distribution and COV 

for each physical parameter, the variation in the physical parameter can be modeled. 

The exact parameter considered in uncertainty quantification was presented in 

Section 4.2. The terminology of parametric uncertainty was interchangeable with 

aleatory uncertainty or input uncertainty in this dissertation. 

𝐶𝑂𝑉  
𝜎

𝜇
× 100 [%] (3.3) 
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3.3.2. Uncertainty in simplified analysis models 

Uncertainties induced by simplified analysis models in RISPECT+ are classified 

as epistemic uncertainty. In this study, this type of uncertainty is referred to as model 

uncertainty considering the origination of the uncertainty. 

Uncertainties in the two analysis modules in RISPECT+, rotor aerodynamics and 

wing aerodynamics analysis, were considered because these two modules mainly 

determine the performance of advanced air mobility. Since the electric propulsion 

system analyses are based on constant efficiency herein those models were excluded. 

Through comparing analysis results with experimental data or higher fidelity 

analysis results, the modules not only were validated, but also parameters that 

quantify the model uncertainty are obtained for each analysis module. The model 

uncertainty parameter 𝜃 is defined by Eq. (3.4), where 𝑦𝑝𝑟𝑒𝑑 is the output quantity 

of interest calculated by RISPECT+ and 𝑦𝑡𝑟𝑢𝑒 is the reference value that can be 

obtained from experiments or datasheets from manufacturers, or higher fidelity 

solvers. 

𝜃𝑖  
𝑦𝑡𝑟𝑢𝑒

𝑦𝑝𝑟𝑒𝑑
     𝑖 𝑓𝑜𝑟 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑚𝑜𝑑𝑒𝑙 (3.4) 

It is assumed that the obtained 𝑦𝑡𝑟𝑢𝑒 is genuinely true value. Uncertainties that 

might arise in the data-obtaining process such as measurement or post-processing 

are neglected herein since those kinds of uncertainties are not. In Fig. 3.7, the method 

for the calculation of the model uncertainty parameter is shown schematically. 
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Fig. 3.7. Model uncertainty parameter calculation [91] 

Uncertainty in the rotor aerodynamic module was considered in terms of the 

power of a rotor 𝑃𝑟𝑜𝑡𝑜𝑟  which was calculated by the BEMT and BET method 

[49,50]. The model uncertainty parameter 𝜃𝑝𝑤,𝐵𝐸𝑀𝑇  for the BEMT method and 

𝜃𝑝𝑤,𝐵𝐸𝑇 for the BET method are defined as Eq. (3.5), respectively. The equations 

are defined as the power coefficient over rotor solidity in order to directly use data 

from Fig. 2.10 and Fig. 2.11. 
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|
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𝐶𝑝/𝜎𝑅𝑝𝑟𝑒𝑑

|

𝐵𝐸𝑇

 (3.5) 

The calculated model uncertainty parameters for each rotor aerodynamics 

analysis method are presented in Fig. 3.8 and Fig. 3.9, respectively.  

Seeing Fig. 3.8 for BEMT method in hover mode, 𝜃𝑝𝑤,𝐵𝐸𝑀𝑇 are scattered almost 

randomly. After blade loading 𝐶𝑇/𝜎𝑅 of approximately 0.11, it might be determined 
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used for comparison is not sufficient to induce a certain trend, and the missing area 

could be generated where the trend would not match well. Hence, an interval 

covering all data is presented instead of adopting a trend hastily. The 𝜃𝑝𝑤,𝐵𝐸𝑀𝑇 has 

the expectation of 1.0122, which means the BEMT method in RISPECT+ 

underestimates the rotor power in hover mode. The interval is from 0.9638 to 1.0582, 

a range of within 6% difference. 

As can be seen in Fig. 3.9, the model uncertainty parameters for the BET method 

𝜃𝑝𝑤,𝐵𝐸𝑇 are scattered more randomly in this time, so that the same approach using 

interval was applied for the BET method in tilt mode flight. The 𝜃𝑝𝑤,𝐵𝐸𝑇 has the 

expectation of 0.9541, which means the BET method in RISPECT+ overestimates 

the rotor power in tilt mode. The interval is from 0.8246 to 1.0441, a range of within 

6% difference. 

Table 3.2 presents the expectation and interval of the two model uncertainty 

parameters. It is assumed that the two parameters 𝜃𝑝𝑤,𝐵𝐸𝑀𝑇 , and 𝜃𝑝𝑤,𝐵𝐸𝑇  are 

identically applied to other flight conditions where different rotational speeds or 

advance ratios were encountered during the sizing process. 

Table 3.2. Expectation and interval of 𝜽 𝒘,𝑩𝑬 𝑻, and 𝜽 𝒘,𝑩𝑬𝑻 

Parameter Expectation Interval 

𝜃𝑝𝑤,𝐵𝐸𝑀𝑇 1.0122 [0.9638, 1.0582] 

𝜃𝑝𝑤,𝐵𝐸𝑇 0.9541 [0.8246, 1.0441] 
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Fig. 3.8. Model uncertainty parameter in BEMT method (hover mode) 

 

 

Fig. 3.9. Model uncertainty parameter in BET method (tilt mode)  
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The same analysis was conducted for the wing aerodynamic analysis. In 

RISPECT+, the 3D lift coefficient curve slope 𝐶𝐿𝛼 was obtained by Eq. (2.18). The 

model uncertainty parameter for the lift coefficient curve slope 𝜃𝐶𝐿𝛼𝑤𝑖𝑛𝑔
 is defined 

by Eq. (3.6). 

𝜃𝐶𝐿𝛼𝑤𝑖𝑛𝑔
 

𝐶𝐿𝛼𝑡𝑟𝑢𝑒

𝐶𝐿𝛼𝑝𝑟𝑒𝑑

 (3.6) 

In Ref. [55], 𝐶𝐿𝛼 per radian calculated by Eq. (2.18) and vortex lattice method 

(VLM) were presented for various wing planform designs. The data and 𝜃𝐶𝐿𝛼𝑤𝑖𝑛𝑔
 

is tabulated in Table 3.4. In this time, 𝐶𝐿𝛼𝑡𝑟𝑢𝑒
 was settled by VLM data.  

Table 3.3 presents the expectation and interval of the 𝜃𝐶𝐿𝛼𝑤𝑖𝑛𝑔
 . Although the 

expectation is nearly equal to one, there is an uneven deviation in the interval. The 

maximum 𝜃𝐶𝐿𝛼𝑤𝑖𝑛𝑔
 is 1.0273, which implies the empirical equation underestimated 

the lift coefficient curve slope by approximately 3%, and the minimum 𝜃𝐶𝐿𝛼𝑤𝑖𝑛𝑔
 is 

0.9623, which implies that the empirical equation could overestimate the lift 

coefficient curve slope by approximately 4%.  

Table 3.3. Expectation and interval of 𝜽𝑪𝑳𝜶𝒘 𝒏𝒈
 

Parameter Expectation Interval 

𝜃𝐶𝐿𝛼𝑤𝑖𝑛𝑔
 1.0061 [0.9623, 1.0273] 
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Table 3.4. 𝜽𝑪𝑳𝜶𝒘 𝒏𝒈
 for different wing configurations (data from Ref. [55]) 

Wing planform 

Calculated 𝐶𝐿𝛼
 

𝜃𝐶𝐿𝛼𝑤𝑖𝑛𝑔
 

Eq. (2.18) VLM 

Elliptical, straight half chord 4.90 5.02 1.0245 

Elliptical, straight LE* 4.87 4.99 1.0246 

Elliptical, straight TE* 4.87 4.99 1.0246 

Schuemann 4.88 4.99 1.0225 

Semi-straight taper 4.90 4.98 1.0163 

Straight taper, straight half chord 4.90 4.96 1.0122 

Straight taper, straight LE 4.89 4.95 1.0123 

Straight taper, straight TE 4.89 4.95 1.0123 

Compound taper 4.90 4.88 0.9959 

Rectangular 4.90 4.82 0.9837 

Crescent 4.59 4.60 1.0022 

Swept back, TR*=0.5, LE sweep 30° 4.40 4.52 1.0273 

Swept forward, TR=0.5, LE sweep 30° 4.24 4.32 1.0189 

Swept back, TR=1.0, LE sweep 30° 4.35 4.29 0.9862 

Delta 2.51 2.44 0.9721 

Double delta 2.39 2.30 0.9623 

Disk 1.83 1.84 1.0055 

* LE: leading edge, TE: trailing edge, TR: taper ratio  
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The obtained intervals of the model uncertainty parameters for rotor 

aerodynamics and wing aerodynamics analysis were used in the uncertainty 

quantification of the flight performance of advanced air mobility in Section 4.2. 
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3.4. Uncertainty Propagation: Monte Carlo Simulation 

One of the various popular methods for the forward propagation of uncertainties 

to the system responses is Monte Carlo Simulation (MCS). MCS is based on a 

number of repetitive deterministic calculations with sampled input parameters 

following the law of large numbers. MCS has been widely implemented for various 

uncertainty quantification studies [10,15–18,27,39,40,91,107,108] due to the solver-

independent characteristics of MCS which encloses the solvers or governing 

equations outside and does not require additional modifications of them. Although 

MCS requires excessive computation time, MCS is used in this study, and other 

probabilistic methods for uncertainty quantification such as polynomial chaos 

expansion [109], stochastic collocation, and Gaussian quadrature [33] were ruled out 

mainly owing to the following reasons. The first reason is the relatively large number 

of random variables in the technology portfolio assessment process (the number of 

elements in TIM) and a large number of alternative design candidates (the number 

of rows in TPM). Stochastic expansion methods based on full tensor product 

quadrature are not effective in this situation [16]. The second reason for applying 

MCS is to evade additional uncertainties produced when functions of interest 

(system responses) are approximated by approximation-based methods. 

Additionally, the fact that a single analysis of RISPECT+ can be executed within 

several seconds alleviating the time issue is the supplementary reason. 

In the technology portfolio assessment process, MCS loop wraps the surrogate 

model that is constructed for system responses by technology impact. It is a kind of 
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in-direct MCS environment. On the other hands, in the uncertainty quantification of 

RISPECT+, MCS loop wraps the conceptual sizing framework, constructing a direct 

MCS environment.  

Although both MCS environments were set with the appropriate assumptions and 

circumstances, the original MCS coupled with a purely random sampling method 

typically requires too many sample points, nearly 100,000 size for them, for securing 

the convergence of response [39,108,110]. To reduce the MCS problem to the more 

manageable quantification problem, LHS method instead of the random sampling is 

coupled for MCS, which shows much faster converged results with almost 10 times 

smaller sample size [27,91,108]. The LHS from multiple PDFs in the uncertainty 

quantification problem is well described schematically in Fig. 3.10 [27]. 

 

Fig. 3.10. Representation of LHS probable intervals 

for parameter input space sampling [27] 
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The schematic diagram of entire MCS process is shown in Fig. 3.11 where 

uncertain inputs and outputs are shown with PDF curves. 

 

Fig. 3.11. Schematic diagram of MCS 

Probabilistic outcomes are obtained as results of MCS. The statistical moments 

such as expectation (mean), standard deviation, and skewness coefficient can be 

obtained by Eqs. (3.7), (3.8), and (3.9), respectively. In the equations, 𝑁𝑠  is the 

number of samples, 𝑅𝑖 is a system response of interest, 𝜇 is an expectation, 𝜎 is 

a standard deviation, 𝜇̃3  is a skewness coefficient, and E[∙]  is the operator for 

expectation. 
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𝜇𝑅𝑖
 𝐸[𝑅𝑖]  

1

𝑁𝑠

∑ 𝑅𝑖, 

𝑁𝑠

 =1

 (3.7) 

𝜎𝑅𝑖
 √

1

𝑁𝑠

∑(𝑅𝑖, − 𝜇𝑖)
2

𝑁𝑠

 =1

 (3.8) 

𝜇̃3𝑅𝑖
 𝐸 [(

𝑅𝑖 − 𝜇𝑖

𝜎𝑖

)
3

] (3.9) 

Using a prescribed value, the reliability can be calculated. The PDF curve of 

output quantities obtained after MCS can be drawn by kernel density estimator with 

Gaussian basis function [111] (Eq. (3.10)). The detailed process for MSC process 

will be presented in the examples of method implementation in the following 

Chapter 4. 

𝑓ℎ 𝑥  
1

𝑛ℎ
∑ 𝐾 (

𝑥 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

 𝑤ℎ𝑒𝑟𝑒 𝐾 𝑖𝑠 𝑘𝑒𝑟𝑛𝑒𝑙 𝑤𝑖𝑡ℎ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑏𝑎𝑠𝑖𝑠 (3.10) 
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Chapter 4  

Method Implementation 

 

The methodologies presented through Chapter 2 and Chapter 3 are implemented 

to pilot programs for a hypothetical advanced air mobility eVTOL for transportation 

in urban areas as an exemplary demonstration. The eVTOL aircraft is considered a 

suitable testbed for the method implementation because various eVTOL aircraft 

designs have been proposed and developed for future air mobility with a lot of 

attention received. Section 4.1 demonstrates the process of technology portfolio 

assessment, and Section 4.2 describes uncertainty quantification in the conceptual 

sizing of the hypothetical advanced air mobility eVTOL.  

 

4.1. Uncertainty-based Technology Portfolio Assessment for eVTOL 

The uncertainty-based technology portfolio assessment for eVTOL was 

conducted following the steps described in Section 2.1. For a test bed of the process, 

one of the representative configurations of eVTOL aircraft was used, which was 

optimally sized before with RISPECT+. In the sizing process after applying the 

impact of technologies, the optimizer step in Fig. 2.8 was excluded. The elements of 

TPEV, 𝑒 , was fed into RISPECT+ with input data, and correspond parameters were 

modified by following Eq. (2.6) during the sizing process. 
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4.1.1. Test Bed eVTOL 

The baseline of a hypothetical eVTOL aircraft configuration is displayed in Fig. 

4.1 which is similar to Joby S4 configuration, one of the prevalent vectored thrust 

type eVTOL designs. It has six tilting rotors and T-shaped empennage system. The 

baseline was sized by RISPECT+ for a typical mission profile where maximum flight 

range is 100 km with a payload of 500 kg (1102.31 lb), which is shown in Fig. 4.2. 

The mission profile comprises of vertical take-off, climb, cruise, descent, and 

vertical landing segments with ground taxiing of 50 m. The numbers for each 

segment are presented in the figure. 

The sizing assumptions such as efficiency coefficients and specific power of 

electric propulsion components were tabulated in Table 4.1 and the summary for 

specification of the optimally sized baseline eVTOL aircraft and constraint are 

presented in Table 4.2. The gross weight was approximately 2409 kg (5311 lb) for 

carrying the payload of 500 kg (1102.31 lb). The mounted battery energy capacity 

was estimated as 122 kWh with assumption that specific energy of the battery was 

given as 205 Wh/kg. The maximum noise level presented by overall sound pressure 

level (OASPL) with A-weighting was 67.5 dBA, and the effective lift-to-drag ratio 

was obtained as to be approximately 9.05. The economics quantities of the baseline 

included vehicle cost, DOC, and RDT&E cost that were analyzed by the equations 

from Section 2.2.6. Given the assumed constraint values, there were multiple 

violations in the gross weight, noise level, and direct operating cost. 
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Fig. 4.1. Baseline eVTOL concept (left: VTOL mode, right: cruise mode) 

 

 

 

Fig. 4.2. Mission profile schematic used for the baseline eVTOL sizing 
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Table 4.1. Sizing assumptions  

Component Parameter Value 

Battery Specific energy 205 Wh/kg 

 Maximum DoD 0.80 

 Maximum discharge C-rate 10C 

 Efficiency 0.93 

Electric motor Specific power 4.1 kW/kg 

 Efficiency 0.96 

Inverter Specific power 13 kW/kg 

 Efficiency 0.98 

TMS Specific power 0.68 kW/kg 

 

Table 4.2. Baseline eVTOL design summary 

Parameter Value Constraint / Target 

Gross weight 5310.914 lb (2409.01 kg) ≤ 5000 lb 

Payload 1103.42 lb (500.50 kg) ∙ 

Battery energy 122.617 kWh Minimize 

Max. OASPL @ hover  67.521 dBA ≤ 65 dBA 

Effective lift to drag ratio 9.054 ≥ 9.0 

Vehicle cost 1.87M USD Minimize 

Direct operating cost 796.01 USD/FH ≤ 750 USD/FH 

RDT&E cost 162.55M USD Minimize 
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4.1.2. Technology Identification 

As shown in Table 4.2, there were multiple violations of constraints in the 

performance and economics specification. These violations were kinds of show-

stoppers in the development program. For example, the operation permit could be 

restricted based on the maximum noise level by the regulatory administration such 

as Federal Aviation Administration (FAA) and European Union Aviation Safety 

Agency (EASA) of which proposal of noise regulation had been discussed to be 

presented under 65 dBA. Gross weight of which the constraint was set as 5,000 lb 

also should be reduced over 8% more to satisfy the constraint. Direct operating cost 

was one of the most important parameters that should be paid attention for the 

sustainability of the business. Consequently, technologies that have an effect on 

noise performance, gross weight, and operating cost should be considered and 

identified. 

In this project, seventeen technologies from various disciplines such as 

aerodynamics, electric propulsion, and manufacturing were identified and their TRL 

figures were obtained from literature reviews and expertise [112–114]. The identified 

technologies are listed in Table 4.3 where the TRLs are averaged values. The 

technologies were directly or indirectly related with the performance and economics 

specification of the test bed eVTOL. For instance, lithium-sulfur battery cells and 

fuel cell propulsion technology were connected to gross weight since they 

determined the energy density of the energy reservoir. Rotor planform and active 

control technologies had an effect on aerodynamic and aero-acoustic performance. 
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De/anti-icing technologies could extend operational days per year securing all 

weather capability for the eVTOL, which eventually led to the reduction in direct 

operating cost. 

Table 4.3. Identified technology list 

 Technology TRL 

𝐓𝟏 Lithium-sulfur battery cell 5 

𝐓𝟐 Fuel cell propulsion 5 

𝐓  Carbon composite wing structure 7 

𝐓𝟒 Carbon composite fuselage structure 7 

𝐓𝟓 Carbon composite rotor structure 6 

𝐓𝟔 Truss-braced wing 4 

𝐓𝟕 Battery package integration 5 

𝐓𝟖 Laminar flow control 5 

𝐓𝟗 Electric ducted fan 8 

𝐓𝟏𝟎 High power electric motor 6 

𝐓𝟏𝟏 Rotor airfoil/planform for aero performance  5 

𝐓𝟏𝟐 Rotor phase control for low noise and vibration 6 

𝐓𝟏  Rotor airfoil/planform for low noise 5 

𝐓𝟏𝟒 Rotor active twist control for low noise and vibration 5 

𝐓𝟏𝟓 Heat coil/mat for de/anti-icing 6 

𝐓𝟏𝟔 Surface coating for anti-icing 7 

𝐓𝟏𝟕 Fast production technology 5 
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4.1.3. Technology Impact 

The next step was to construct TIM. Among eVTOL aircraft system attributes, 23 

parameters that were highly related to subsystems such as powertrain, rotor-blade 

system, structural system, operating system, and manufacturing technique were 

selected. They included subsystem weights, aggregated efficiency of the propulsion 

system, RDT&E cost, and unit cost of parts. The elements of TIM are mainly 

determined by literature surveys and Delphi approach. 

In the process, the increment of RDT&E cost was corrected depending on the 

nature of the technologies and their TRLs. If a technology is related to components 

of the aircraft itself that are usually developed by an aviation company, the figure of 

the impact on RDT&E cost (𝑠1 ) is relatively high. On the other hand, “off-the-shelf” 

technology from ally companies, such as battery and electric motor, has a lower 

magnitude in RDT&E cost only for the integration aspect. Instead, these kinds of 

technologies induce the increment in unit cost of the related parts. The technologies 

with low TRL also are assumed to tend to have a relatively high impact on RDT&E 

cost. This is because that the distributions of impact factor are determined on the 

basis of the assumption that the all technologies reach TRL of 8 or 9 successfully 

when the target system is ready to production in the future. In this assumption, it can 

be inferred that relatively more RDT&E fund is need to catch up belated technology 

readiness. With this analogy, RDT&E correction is applied when constructing TIM 

in spite of a little subjectivity. 
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The constructed TIM at the deterministic assessment with theoretical limits is 

shown in Fig. 4.3. Based on these figures in the deterministic TIM, when 

probabilistic approach is applied, the distributions of the elements of TIM is modeled 

as shown in Fig. 3.4 and Fig. 3.5. 

The TRLs of each technology are presented in the first row. The last two right 

columns are the limit ends of the element of TIM without consideration of the 

compatibility of the technologies. These limit ends guide the range of the input space 

for a surrogate model. 
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Fig. 4.3. Technology impact matrix with theoretical limit 
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4.1.4. Generation of Technology Portfolio Candidates 

The relationships between the identified technologies constructed TCIM element 

shown in Fig. 4.4 following the definition of the element of TCIM (Eq. (2.3)). Note 

that most of elements in the lower triangular area are symmetric to those in the upper 

triangular area, but some of them are asymmetric relationship. The numbers in Fig. 

4.4 was obtained based on literature reviews, and expert opinions.  

Some of the representative relationships are described below. 

1. T1 ↔ T2: competing technologies for energy source. 

2. T1 ↔ T11: lithium-sulfur battery has no influence on rotor aero-performance, 

but high aero-efficient rotor aero-performance technology requires power 

from energy source, degrading lithium-based battery technology. 

3. T3 ↔ T17: carbon composite structure needs heat, pressure and vacuum to 

made, which makes hard to mass production. 

4. T3  ↔ T6 : truss-braced wing degrades the benefit of carbon composite 

structure for wing (low weight) since joint between brace and wing needs to 

be reinforced by metallic materials (element below of 1). On the other hand, 

effect of truss-braced wing rarely get impact from carbon composite structure 

for wing. 

5. T11  ↔ T13 : rotor planform for aerodynamic performance and for noise 

performance could not be compatible. 
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Fig. 4.4. Technology compatibility and interaction matrix (TCIM) 

The resultant TPM considering the compatibility between technologies was 

obtained. The number of technology portfolios was reduced approximately by half 

from 131,072 to 6,456. In Fig. 4.5, 6,456 technology portfolios are listed including 

the baseline; all elements of TPV for the baseline are zero. 

 

Fig. 4.5. Technology portfolio matrix (TPM)  

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17

Baseline 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

   𝟏 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

                  

   𝟐𝟗𝟔𝟒 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0

                  

   𝟔𝟒𝟓𝟓 1 0 1 1 1 1 1 0 0 1 1 1 0 0 0 1 0
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4.1.5. Technology Portfolio Effect 

Finally, the resultant TPEM was constructed by Eq. (2.5) in accordance with 

TPM, TIM, and interaction factor. In the deterministic analysis, a single TPEM of 

[6,456] × [2 ]  shape. When the probabilistic approach was used, 𝑁𝑠  sampled 

TIM from the distribution by Eq. (3.1) were selected, and then a single TPEM was 

extended to the 3-dimensional array. In this study, 10,000 samples were drawn by 

LHS making the resultant TPEM of [10,000] × [6,456] × [2 ] shaped array that 

is shown in Fig. 4.6. 

 

 

Fig. 4.6. Technology portfolio effect matrix 
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4.1.6. Surrogate Model construction 

As mentioned in Section 2.1.5, although the assessment of technology portfolios 

could be conducted using the design tool, herein RISPECT+, the direct calculation 

through the design tool requires burdensome computational resources and time. 

Even in the deterministic environment, the required number of evaluations is equal 

to 6,456 (the number of rows in TPEM). The number of evaluations has increased 

by 10,000 times, approximately 65 million, when the MCS environment was set. For 

a rapid MCS implementation with reduced computational resources, MLP model 

[44], one of artificial neural networks, was adopted to replace the design tool in this 

study. The MLP model was chosen since it is more suitable for the non-linear system 

with a large number of in-output parameters than other models like RSM and Kriging 

model. If the problem is reduced with less in-output parameters, Kriging model or 

other methods also can be used. The architecture of MLP model is shown in Fig. 4.7 

where input parameters are the elements of TPEV (𝑒𝑖), and output parameters are in 

total 12 performance and economics quantities including gross weight, maximum 

noise level, and vehicle cost. The 12 response quantities are tabulated in Table 4.4. 

The maximum noise level is presented as the overall sound pressure level in dBA. 
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Fig. 4.7. MLP model architecture 

 

Table 4.4. System responses of interest 

Performance system response Economic system response 

Name Symbol Name Symbol 

Gross weight 𝐺𝑊 RDT&E cost 𝐶𝑅𝐷𝑇&𝐸 

Maximum noise level 𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥 Vehicle cost 𝐶𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

Battery energy capacity 𝐸𝑏𝑎𝑡 Direct operating cost 𝐶𝐷𝑂𝐶 

Effective lift to drag ratio 𝐿𝑡𝑜𝐷𝑒 Yearly operational days 𝐷𝑎𝑦𝑜𝑝𝑒𝑟 

Maximum motor power 𝑃𝑚𝑜𝑡𝑜𝑟𝑚𝑎𝑥
 Battery life cycle 𝐿𝐶𝑏𝑎𝑡 

  Maintenance cost 𝐶𝐷𝑂𝐶𝑚𝑛𝑡
 

  Battery replacement cost 𝐶𝑏𝑎𝑡𝑟𝑒𝑝𝑙𝑎𝑐𝑒
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As described at Section 3.2.2, epistemic uncertainty that occurs by adopting the 

surrogate model should be considered. In order to capture the epistemic uncertainty 

of MLP model, MC dropout was carried out. MC dropout is a renowned method for 

representing model uncertainty in the deep learning section as approximate Bayesian 

inference [106]. The schematic diagram for the concept of MC dropout is presented 

in Fig. 4.8 [115]. By randomly breaking links between layers of the MLP model 

repetitively, the output parameters estimated by the MLP model can be presented 

using expectation value with standard deviation. The calculated standard deviation 

represents the model uncertainty of the MLP model. A detailed descriptions about 

MC dropout can be found in Ref. [106]. The number of dropout executions in this 

study was 1,000 that is enough to capture the epistemic uncertainty in the MLP 

model. 

 

 

Fig. 4.8. Schematic diagram of MC dropout [115] 
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The reliability of the MLP model was validated by cross-validation shown in Fig. 

4.9 where the plots of the 12 output quantities are collocated. The scattered symbols 

show expectation value, and error bar lines show 3 times of standard deviation 

meaning a 99.7% confidence interval. The expectation value and standard deviation 

were obtained by MC dropout at the tested point with 1,000 random samples. The 

error bar line in the plot for gross weight is enlarged to apparently show area near 

the diagonal line. 

As can be seen in the figure, the scattered symbols are well aligned with the 

diagonal line, which means the predicted values by the surrogate model are well 

matched to the actual values of test data. The R-squared values of all output 

quantities are above 0.988 when calculated based on the expectation values, which 

implies that the constructed MLP model is accurate enough to replace the design 

tool. 
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Fig. 4.9. Cross validation of MLP surrogate model with confidence interval by MC dropout 
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4.1.7. Evaluation with MCS 

The MCS process that can be divided three steps shown in Fig. 4.10 is as follows. 

1. By LHS, “𝑁𝑠” number of samples are selected following the designated PDF 

shape for impact factors in TIM. Herein, 10,000 number of sampled were 

chosen for each technology portfolio vector. Then, corresponding 

deterministic TPEM was constructed by Eq. (2.5). The resultant TPEM for 

the probabilistic simulation was extended to a 3-dimensional array of 

[10,000] × [6,456] × [2 ] shape. 

2. The deterministic TPEM was fed to the surrogate model (MLP) With the 

surrogate model [10,000 × 6,456]  number of cases were evaluated 

deterministically, resulting in approximately 65 million of raw data for the 

system responses of interest. 

3. The effectiveness indices defined by Eq. (2.7), and (2.8) were calculated for 

each case and grouped again by alternative design candidates. At certain 

groups that were expected to be the most favorable technology portfolio, the 

epistemic uncertainty from the surrogate model was incorporated using Eq. 

(3.2) if necessary. The statistical moments including expectation, standard 

deviation, and Pearson’s moment skewness coefficient of a system response 

of interest were calculated by Eq. (3.7), (3.8), and (3.9), respectively. 

Graphical probabilistic representations such as empirical PDF and CDF 

could be presented. 
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Fig. 4.10. Monte Carlo simulation process for technology portfolio assessment 
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4.1.8. Selection by Effectiveness 

Through MCS with the 6,456 technology portfolios for which 10,000 samples 

were selected, approximately 65 million cases were evaluated. Using Eqs. (2.7), and 

(2.8) the result of the MCS was represented by the effectiveness indices for easier 

determination. The four performance parameters and economics parameters were 

selected for the PE and EE calculation, respectively. They are tabulated in Table 4.5 

with threshold values and the equations are presented as Eq. (4.1) and (4.2). The SE 

was calculated by Eq. (4.3) with the weight factor on EE is 0.65. 

The two effectiveness indices except for SE and RDT&E cost of all alternative 

design candidates are presented using a three-dimensional scatter plot as shown in 

Fig. 4.11. The scattered symbols show mean values obtained by averaging MCS 

results and they were classified by the number of selected technologies in each 

technology portfolio. Red dash-dot lines indicate a threshold line for each axis that 

would be determined by the project managers or targeted performance criteria. The 

ideal point, or desirable point, is a combination of the minimum RDT&E, maximum 

EE, and maximum PE among the all possible solutions. It is guided by 

supplementary grey-dashed lines for clear visualization in the figure. 
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Table 4.5. Parameters for effectiveness calculation for the project 

 Parameter Symbol Weight Threshold value 

Performance 

parameter 

Gross weight 𝐺𝑊 0.35 5000 [lb] 

Maximum 

noise level 
𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥 0.25 65 [dBA] 

Effective lift 

to drag ratio 
𝐿𝑡𝑜𝐷𝑒 0.25 9.0 ∙ 

Battery energy 

capacity 
𝐸𝑏𝑎𝑡 0.15 120 [kWh] 

Economics 

parameter 

Vehicle cost 𝐶𝑣𝑒ℎ𝑖𝑐𝑙𝑒 0.25 2.5M [USD] 

Direct 

operating cost 
𝐷𝑂𝐶 0.55 750 [USD/FH] 

Yearly 

operational 

days 

𝐷𝑎𝑦𝑜𝑝𝑒𝑟 0.10 250 [days] 

Battery cycle 𝐿𝐶𝑏𝑎𝑡 0.10 650 [times] 

𝑃𝐸𝑝  0. 5 ∙ (
𝐺𝑊|𝐴𝑙𝑡𝑝

𝐺𝑊|𝐵𝐿
)

 1

+ 0.25 ∙ (
𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥|𝐴𝑙𝑡𝑝

𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥|𝐵𝐿
)

 1

+ 0.25

∙ (
𝐿𝑡𝑜𝐷𝑒|𝐴𝑙𝑡𝑝

𝐿𝑡𝑜𝐷𝑒|𝐵𝐿
)

1

+ 0.15 ∙ (
𝐸𝑏𝑎𝑡|𝐴𝑙𝑡𝑝

𝐸𝑏𝑎𝑡|𝐵𝐿
)

 1

 

(4.1) 

𝐸𝐸𝑝  0.25 ∙ (
𝐶𝑣𝑒ℎ𝑖𝑐𝑙𝑒|𝐴𝑙𝑡𝑝

𝐶𝑣𝑒ℎ𝑖𝑐𝑙𝑒|𝐵𝐿
)

 1

+ 0.55 ∙ (
𝐷𝑂𝐶|𝐴𝑙𝑡𝑝

𝐷𝑂𝐶|𝐵𝐿
)

 1

+ 0.10 ∙ (
𝐷𝑎𝑦𝑜𝑝𝑒𝑟|𝐴𝑙𝑡𝑝

𝐷𝑎𝑦𝑜𝑝𝑒𝑟|𝐵𝐿
)

1

+ 0.10 ∙ (
𝐿𝐶𝑏𝑎𝑡|𝐴𝑙𝑡𝑝

𝐿𝐶𝑏𝑎𝑡|𝐵𝐿
)

1

 

(4.2) 

𝑆𝐸𝑝  0. 5 ∙ 𝑃𝐸𝑝 + 0.65 ∙ 𝐸𝐸𝑝 (4.3) 
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Fig. 4.11. 3D scatter plot of the PE, EE and RDT&E cost 

From the 3D scatter plot, three 2D scatter plots can be obtained by projection to 

each pane: 1) EE-PE plot, 2) RDT&E-PE plot, and 3) RDT&E-EE plot. 

 

EE-PE plot 

The first EE-PE plot is shown in Fig. 4.12. This plot shows the effectiveness of 

the technology portfolios only from the perspective of the possible benefit without 

consideration of RDT&E cost. The clustered points are surrounded by a convex hull 

line showing the edge of the result. Since the higher effectiveness implies the 

resultant effect of technology infusion is beneficial in the system level, (max-max) 

quadrant is a desirable space in the EE-PE plot. Based on the threshold values in 

Table 4.5, the threshold lines are drawn for each effectiveness, and the number of 

desirable solutions is only 60. Note that a solution that did not satisfy the single 

Desirable direction
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threshold value for system response was ruled out even if the calculated effectiveness 

would exceed the threshold line. 

 

Fig. 4.12. Overview of EE-PE plot 

In order to focus on the desirable solutions, the (max-max) quadrant was enlarged 

and additional information was marked that is shown in Fig. 4.13. Among the 60 

desirable solutions, 9 Pareto solutions could be obtained based on the ideal point that 

is a combination of the maximum EE and maximum PE. These Pareto solutions are 

non-dominated solutions that were derived by changing the weight for each 

effectiveness. The three solutions from the Pareto front for which technology 

combination was noted could be representative solutions that draw interest of the 

project manager. It is noted that the notations of technologies were joined with cross 

mark to emphasize the method of TPEV calculation is based on the product-based 

approach. Two of the representative solutions are one-sided objective-oriented 
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solutions: solutions for maximum EE, and maximum PE. For the maximum EE, the 

combination of “ T2 × T7 × T17 ” is the best solution, and the combination of 

“T1 × T7 × T9 × T15 × T17 ” is the best solution for the maximum PE. The last 

solution of the final candidates is so called “the best compromise solution” which is 

the nearest point from the ideal value. The combination of “T2 × T7 × T9 × T17 ” 

shows the shortest distance from the ideal point in EE-PE plot. 

These three solutions were chosen by averaged mean values of MCS output 

because the mean values can show the direction of the response change by impact of 

the technology portfolios. Although the mean-value-presenting plot is not that 

different to the deterministic approach of decision-making from the perspective of 

that users checked only a single point value, it has a primary role as the first step of 

filtering out unnecessary information from millions of MCS calculation results. 

 

Fig. 4.13. Desirable-quadrant-enlarged EE-PE plot 
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In addition to the mean-value-based EE-PE plot, a scatter plot to help the 

probabilistic approach of decision-making was drawn using raw data of MSC results. 

The MCS scatter of EE-PE plot is shown in Fig. 4.14. There are clustered points 

around the centered symbol. The centered symbols indicate the mean value used in 

Fig. 4.13, and clustered small dots are every single evaluation of MCS for each 

technology portfolio. For clarity, only points of the Pareto solutions were added. 

There are two elliptical dashed lines in Fig. 4.14 to show the confidence ellipse 

indicating 3 times of standard deviation (3-sigma or 3-𝜎) area that encircles 98.89% 

of the raw data points in 2-dimensional distribution [116]. The horizontally long 

ellipse lines imply that the variance in EE is more significant than that in PE. 

The inner grey dashed line was obtained without incorporating the model 

uncertainty in the MLP model. It shows a pure aleatory uncertainty effect from the 

distribution of TIM values. The outer green dashed line was obtained with the 

addition of the model uncertainty in the MLP model. Thus, this line shows the total 

variance including the epistemic uncertainty, which was calculated by Eq. (3.2). It 

can be seen that the area covered by the confidence ellipse slightly increased when 

the model uncertainty was incorporated. The magnitude of increase of area, 

indicating the effect of the model uncertainty, is different depending on the 

technology portfolio since the constructed surrogate model has different confidence 

according to the input values. 

The solutions of which the confidence ellipses crossed the threshold are displayed 

faintly with assuming a situation where a decision-maker wants to secure solutions 
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satisfying the 3-sigma confidence. In that situation, 5 solutions in the desirable 

quadrant were ruled out, and one of the three desirable solutions determined by mean 

value were changed: the PE-oriented solution. In the analysis based on mean value, 

the PE-oriented solution was “T1 × T7 × T9 × T15 × T17 ” combination. However, 

the original PE-oriented solution has a possibility for violating the EE threshold of 

approximately 35%, equal to area over the EE threshold line. The EE-oriented 

solution maintained unchanged due to less variation in PE distribution. 

From the MCS scatter, the project manager is able to graphically check the 

variation of the expected effectiveness by the technologies, then make decisions with 

visual aids. Depending on the project manager’s tendency of risk-taking, the final 

solution can be changed to anyone in the Pareto front with smaller confidence ellipse. 

 

 

Fig. 4.14. MCS scatter of EE-PE plot 
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The same visualization approach was applied to the other projection plots: 

RDT&E-PE plot and RDT&E-EE plot. These RDT&E cost-related plots might draw 

more interest since budget issues are inevitable and substantially important. 

 

RDT&E-PE plot 

Firstly, RDT&E-PE plot is shown in Fig. 4.15. As can be seen, the more 

technologies were selected in the portfolio, the higher RDT&E cost was required, 

which is quite natural since more technologies need more effort for development and 

integration. On the other hand, there was no clear dependency between PE and the 

number of technologies, implying that more technologies do not always produce a 

better effective solution. In the RDT&E-PE plot, a desirable space is (min-max) 

quadrant, and 766 solutions satisfied the two threshold lines. 

 

Fig. 4.15. Overview of RDT&E-PE plot 
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The enlarged desirable quadrant of RDT&E-PE plot is shown in Fig. 4.16 where 

the mean-value-based solutions are presented. Among in total 766 solutions, 16 

Pareto solutions were obtained. The RDT&E-oriented solution is “T2”, PE-oriented 

solution is “T1 × T × T7 × T9 × T1 × T15 ” combination, and best compromise 

solution is “T1 × T1 × T12”. 

As mentioned earlier, since more technologies tend to induce the increase of 

RDT&E cost, the number of technologies in the portfolio for RDT&E cost-oriented 

solution is only one, T2 . It implies the T2  was the most influential technology 

among the portfolios that lay in the desirable quadrant. Meanwhile, the PE-oriented 

solution has a combination of six technologies, and the compromise solution has a 

combination of three technologies. In the Pareto solutions, there was a tendency for 

higher PE with increasing the number of technologies. 

 

Fig. 4.16. Desirable-quadrant-enlarged RDT&E-PE plot 
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Two MCS plots for RDT&E-PE distributions are drawn in Fig. 4.17 and Fig. 4.18 

according to the application of the model uncertainty. In Fig. 4.17, the confidence 

ellipse without the model uncertainty is drawn solely. When the pure effect of the 

aleatory uncertainty was considered, the RDT&E-oriented solution was changed 

from “T2” to “T1 × T12” combination since the distribution of the original solution 

violated the PE threshold slightly due to the variability. The PE-oriented solution 

was maintained. 

However, when the model uncertainty from the surrogate model was added, the 

PE-oriented solution was changed to another combination of “T1 × T × T7 × T9 ×

T1 ” to secure the 98.89% confidence interval lay in the desirable quadrant perfectly. 

The original PE-oriented solution showed the violation of the RDT&E threshold with 

the line crossed. This alternation of the solution showed the reason why the model 

uncertainty from the surrogate model should be incorporated in the process of 

technology portfolio assessment. 
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Fig. 4.17. MCS scatter of RDT&E-PE plot without model uncertainty 

 

 

Fig. 4.18. MCS scatter of RDT&E-PE plot with model uncertainty  
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RDT&E-EE plot 

The overview of the RDT&E-EE plot is presented in Fig. 4.19 where the 

relationship between the two axis values and the number of technologies in a 

portfolio is apparently shown. A directional arrow heading right-bottom could be 

obtained by the number of technologies. As the number of technologies in a portfolio 

increased, EE shows a decreasing trend displaying that the band of EE is going down. 

Meanwhile, RDT&E cost shows an increasing trend with the increasing number of 

technologies. The desirable area is the (min-max) quadrant where 60 solutions lay in 

the area. This number is only 7.8% of the number of solutions in the RDT&E-PE 

plot, which implies that it is much more difficult to achieve economic benefit than 

performance benefit even though the target value of the threshold line is lower than 

that of the PE; 1.0261 for EE and 1.0367 for PE. 

 

Fig. 4.19. Overview of RDT&E-EE plot 
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Three desirable solutions from 4 Pareto solutions were obtained and they are 

shown in Fig. 4.20. The number of technologies in the portfolios for the desirable 

solution did not exceed three. This is because the increase of RDT&E cost according 

to technology infusion was reflected in the vehicle cost, which diminished the EE. 

When the MSC plots for RDT&E-EE distributions are displayed in Fig. 4.21 and 

Fig. 4.22, different and similar situations observed in the RDT&E-PE plots occurred 

simultaneously. The different situation is that the three desirable solutions were not 

changed when the pure effect of the aleatory uncertainty was considered. The 

RDT&E-oriented solution has low variability, so that the solutions were maintained 

in Fig. 4.21. Nevertheless, when the model uncertainty was applied, the desirable 

solution was changed from “T7 × T16” to “T17” since the original RDT&E-oriented 

solution barely satisfied the EE threshold. 

 

Fig. 4.20. Desirable-quadrant-enlarged RDT&E-EE plot 
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Fig. 4.21. MCS scatter of RDT&E-EE plot without model uncertainty 

 

 

Fig. 4.22. MCS scatter of RDT&E-EE plot with model uncertainty  
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RDT&E-SE plot 

Lastly, system effectiveness, SE, obtained by Eq. (4.3) was plotted with RDT&E 

cost. For brevity enlarged quadrant plot and MCS plot with model uncertainty are 

displayed in Fig. 4.23 and Fig. 4.24, respectively. The desirable solutions were 

changed when the criteria were based on the uncertainty-based analysis. 

The three desirable solutions partially share the selected technologies with those 

obtained from the RDT&E-PE plot and RDT&E-EE plot. Since the more weight of 

0.65 was imposed on EE, the desirable solutions had T7 or T17 in their portfolio 

which were arose in the analysis of the RDT&E-EE plot. If the weight factor moved 

to the PE in Eq. (4.3), the solutions would follow the trend in the RDT&E-PE plot. 

 

 

Fig. 4.23. Desirable-quadrant-enlarged RDT&E-SE plot 
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Fig. 4.24. MCS scatter of RDT&E-SE plot with model uncertainty. 

 

As seen so far, the desirable solutions were different in terms of effectiveness 

indices and incorporation of the uncertainties. The desirable solutions that could be 

possibly selected technology portfolios in terms of each effectiveness perspective are 

tabulated in Table 4.6. The solutions that were determined based on the mean value 

and the 3-sigma rule without or with the model uncertainty are presented 

simultaneously. The compromise solutions are presented only once since there was 

no change for them depending on the model uncertainty. It is noted that the 

determined technology portfolio has a different technology combination in some 

cases; they are colored differently for legibility. 
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Additionally, the final shortlist of technology portfolios for each effectiveness 

index tend to have certain technologies in common. In terms of the performance 

effectiveness, T1  of lithium-sulfur battery cell is always included in the final 

shortlist of technology portfolios. Since this fact implies that T1 is one of the most 

influential technologies on the performance effectiveness, the project managers 

should contain this technology in the project technology roadmap if they choose to 

achieve high performance effectiveness. Similarly, when seeing the shortlist of 

technology portfolios in the economic effectiveness, the three technologies appeared 

alternately; T7-battery package integration, T16-surface coating for anti-icing, and 

T17 -fast production technology. These technologies were selected due to cost-

lowering characteristics; reducing the maintenance cost (T7) or increasing operable 

days (T16), or decreasing vehicle acquisition cost (T17). Using this information, the 

project managers could plan the technology roadmap for the success of development 

program with their own philosophy and objectives, which is the development 

purpose of the technology portfolio assessment framework. 
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Table 4.6. Summary of the desirable solutions from the various effectiveness plots 

 EE-PE plot RDT&E-PE plot RDT&E-EE plot RDT&E-SE plot 

Ideal point (1.0931, 1.1545) (141.6586, 1.1545) (141.6586, 1.0931) (141.6586, 1.0842) 

Desirable solution 1 

(by avg.) 

(1.0761, 1.0506) 

by T2, T7, T17 

(152.2119, 1.0441) 

by T2 

(154.4596, 1.0319) 

by T7, T16 

(163.9885, 1.0301) 

by T , T7, T1  

Desirable solution 1 

(by pure aleatory) 

(1.0761, 1.0506) 

by T2, T7, T17 

(153.0405, 1.0576) 

by T1, T12 

(154.4596, 1.0319) 

by T7, T16 

(168.5097, 1.0449) 

by T17 

Desirable solution 1 

(by total variability) 

(1.0761, 1.0506) 

by T2, T7, T17 

(153.0405 , 1.0576) 

by T1, T12 

(168.5097, 1.0642) 

by T17 

(168.5097, 1.0449) 

by T17 
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Desirable solution 2 

(by avg.) 

(1.0305, 1.1180) 

by T1, T7, T9, T15, T17 

(231.5764, 1.1429) 

by T1, T , T7, T9, T1 , T15 

(178.8044, 1.0787) 

by T7, T16, T17 

(236.8373, 1.0688) 

by T2, T9, T17 

Desirable solution 2 

(by pure aleatory) 

(1.0639, 1.0898) 

by T2, T7, T9, T17 

(231.5764, 1.1429) 

by T1, T , T7, T9, T1 , T15 

(178.8044, 1.0787) 

by T7, T16, T17 

(201.9673, 1.0672) 

by T2, T7, T17 

Desirable solution 2 

(by total variability) 

(1.0639, 1.0898) 

by T2, T7, T9, T17 

(223.0341, 1.1372) 

by T1, T , T7, T9, T1  

(178.8044, 1.0787) 

by T7, T16, T17 

(201.9673, 1.0672) 

by T2, T7, T17 

Compromise solution 

(by avg.) 

(1.0639, 1.0898) 

by T2, T7, T9, T17 

(174.1401 , 1.0874) 

by T1, T1 , T12 

(171.8250, 1.0713) 

by T7, T17 

(171.8250, 1.0525) 

by T7, T17 
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4.2. Sizing of eVTOL under uncertainties in conceptual design 

In this section, eVTOL sizing with uncertainties in the conceptual design phase 

was conducted considering the various uncertainties described in Section 3.3. The 

variance in performance and weight of the eVTOL by physical variation in 

components and analysis modules were quantified under two flight conditions: 

single hover and a generic mission profile. The details of uncertainty quantification 

conditions were presented in each related section, respectively. 

 

4.2.1. Test Bed eVTOL 

The baseline of a hypothetical eVTOL aircraft configuration is identical to the 

reference vehicle described in Section 4.1.1 earlier; vectored thrust configuration 

with six tilting rotors and a T-shaped empennage system (Fig. 4.1). Meanwhile, the 

exact numbers for the geometric specification and the mission profile are a little bit 

different and modified. They are presented in each related section. 

 

4.2.2. Uncertainty Identification 

Based on the categorization of uncertainties described in Section 3.3, aleatory and 

epistemic uncertainties were identified. 

For the aleatory uncertainty, physical variation of geometric parameters in major 

components of the eVTOL was selected as in Table 4.7. There are eleven parameters 

related to the rotor design, wing position, and electric propulsion system. In the rotor-

related parameters, rotor radius, blade chord length, rotational speed, and blade twist 
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were selected. In the wing-related parameter, the wing incidence angle was selected 

as parametric uncertainty. In the electric propulsion components, efficiency 

coefficients for the electric motor, inverter, and battery were selected as the 

parametric uncertainty. In addition to them, the variations of specific power for the 

electric motor, inverter, and specific energy were selected as the parametric 

uncertainty in order to replicate the situation where the representative performance 

indices were not obtained with a given fixed weight for each component. 

These eleven parameters have an inherent variance of the value due to various 

reasons. For instance, manufacturing tolerance, local flight condition variation, and 

physical damages and weathering could result in variance in the rotor-related 

geometric parameters. Accuracy and tolerance of control mechanism and algorithm, 

electromagnetic interference, weathering, erosion in wiring, and aging effect could 

result in variance in the electric parameters. All parametric uncertainties were 

modeled using Gaussian distribution in this study because it is natural to assume that 

manufacturers try to make the components to have a specific value. The COVs, 

defined as Eq. (3.3), for each parameter were assigned based on literature surveys 

[39,117,118] and knowledge of experts. Depending on the problem definition of 

uncertainty quantification, the parametric uncertainties were considered or not. 
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Table 4.7. List of parametric uncertainty of eVTOL and fixed parameters 

Component Variable Distribution type Nominal value COV [%] 

Rotor 

𝑅𝑟𝑜𝑡𝑜𝑟 [ft] Gaussian 4.421 0.1 

𝑐𝑟𝑜𝑡𝑜𝑟 [ft] Gaussian 0.8320 0.2 

𝛺𝑟𝑜𝑡𝑜𝑟 [RPM] Gaussian 1020 2.0 

𝑡𝑤𝑟𝑜𝑡𝑜𝑟 [deg] Gaussian -40.112 0.5 

Wing 𝛼𝑤𝑖𝑛𝑐
 [deg] Gaussian 2.68 2.0 

Electric 

Propulsion 

𝜂𝑚𝑜𝑡 ∙ Gaussian 0.96 0.6 

𝜂𝑖𝑛𝑣 ∙ Gaussian 0.98 0.4 

𝜂𝑏𝑎𝑡 ∙ Gaussian 0.97 0.7 

𝑆𝑃𝑚𝑜𝑡 [kW/kg] Gaussian 4.932 2.0 

𝑆𝑃𝑖𝑛𝑣 [kW/kg] Gaussian 13.00 2.0 

𝑆𝐸𝑏𝑎𝑡 [Wh/kg] Gaussian 205.0 2.0 

Fixed gross weight Fixed battery weight 

4965.914 lb (2252.50 kg) 1596.660 lb (724.233 kg) 

 

The epistemic uncertainty in the conceptual design module was modeled by 

adopting the model uncertainty parameter defined and obtained in Section 3.3.2 with 

Eqs. (3.5) and (3.6). As with the aleatory uncertainty, the application of the model 

uncertainty parameters depends on the definition of the following uncertainty 

quantification problems.  
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4.2.3. MCS process 

The MCS process is shown in Fig. 4.25 where four steps are presented. Iterative 

deterministic calculations are conducted using sampled input parameters. During 

MCS, the optimization process of RISPECT+ was excluded and the sizing process 

was only executed. The statistical outcomes by Eqs. (3.7), (3.8), (3.9), and (3.10) are 

the final result of the MCS process 

 

Fig. 4.25. Monte Carlo simulation process for sizing  
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4.2.4. Sensitivity Study 

Sample number test 

In order to determine the appropriate number of samples for MCS, a sample 

number test was conducted with six different numbers of samples: 100, 300, 500, 

1,000, 10,000, and 100,000. According to each number of samples, the expectation 

and standard deviation were calculated in terms of five performance parameters: 

final depth of discharge 𝐷𝑜𝐷𝑓𝑖𝑛 , mechanical power of a rotor 𝑃𝑟𝑜𝑡𝑜𝑟 , battery 

discharge C-rate 𝜒𝑏𝑎𝑡 , maximum overall sound pressure level with A-weighting 

𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥, and system efficiency 𝜂𝑠𝑦𝑠. The 𝜂𝑠𝑦𝑠 was calculated by multiplying 

all efficiency coefficients of the propulsion components (the rotor, motor, inverter, 

and battery). Geometric input parameters are the same as Table 4.7 and 10 min 

hovering flight at altitude of 200 m was imposed. The convergence trends are shown 

in Fig. 4.26 and Fig. 4.27 in terms of the expectation and standard deviation. They 

are presented as relative differences from the value obtained with 100,000 samples, 

assuming that results with 100,000 samples are true values. Convergence criterion 

was set as deviation of 1%. As can be seen, the MCS result with 10,000 samples 

satisfies the criterion sufficiently in both the expectation and standard deviation of 

the five performance indices. Hence, the following MCS results were obtained with 

the simulation of 10,000 samples. 
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Fig. 4.26. Sample number test results: expectation 

 

 

Fig. 4.27. Sample number test results: standard deviation  

100 1,000 10,000 100,000

𝐷𝑜𝐷𝑓𝑖𝑛

𝑃𝑟𝑜𝑡𝑜𝑟

𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥

𝜒𝑏𝑎𝑡

𝜂𝑠𝑦𝑠

Number of samples

R
el

at
iv

e 
ra

te
 e

st
im

at
ed

 b
y
 M

C
S

 [
%

] 

Expectation

100 1,000 10,000 100,000

Number of samples

R
el

at
iv

e 
ra

te
 e

st
im

at
ed

 b
y
 M

C
S

 [
%

] 

Standard deviation

1% Criterion

𝐷𝑜𝐷𝑓𝑖𝑛

𝑃𝑟𝑜𝑡𝑜𝑟

𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥

𝜒𝑏𝑎𝑡

𝜂𝑠𝑦𝑠



 

141 

Sensitivity study 

In order to investigate the single effect of each parametric uncertainty on the 

performance and filter out less influential uncertain parameters, the sensitivity of the 

uncertain geometric parameters was studied firstly. The sensitivity study was 

conducted under 10 minutes of hovering flight. The input condition is presented in 

Table 4.8. The sensitivity of the uncertainties was measured using sensitivity index 

𝑆𝐼 defined by Eq. (4.4) where 𝑥𝑖 is an uncertain variable in the input set, and 𝑦𝑗 

is output performance parameters. 𝑦𝑗|𝑥𝑖  means that the conditional output 

parameter of 𝑦𝑖 when an uncertain input parameter is 𝑥𝑖. 

𝑆𝐼𝑖,𝑗  
𝐶𝑂𝑉 𝑜𝑓 𝑦𝑗|𝑥𝑖

𝐶𝑂𝑉 𝑜𝑓 𝑥𝑖

 
 𝜎/𝜇 𝑦𝑗|𝑥𝑖

 𝜎/𝜇 𝑥𝑖

 (4.4) 

 

Table 4.8. Parametric uncertainty of the base eVTOL in hover flight 

Component Variable Distribution type Nominal value COV [%] 

Rotor 

𝑅𝑟𝑜𝑡𝑜𝑟 [ft] Gaussian 4.421 0.1 

𝑐𝑟𝑜𝑡𝑜𝑟 [ft] Gaussian 0.8320 0.2 

𝛺𝑟𝑜𝑡𝑜𝑟 [RPM] Gaussian 1020 2.0 

𝑡𝑤𝑟𝑜𝑡𝑜𝑟 [deg] Gaussian -40.112 0.5 

Electric 

Propulsion 

𝜂𝑚𝑜𝑡 ∙ Gaussian 0.96 0.6 

𝜂𝑖𝑛𝑣 ∙ Gaussian 0.98 0.4 

𝜂𝑏𝑎𝑡 ∙ Gaussian 0.97 0.7 

𝑆𝐸𝑏𝑎𝑡 [Wh/kg] Gaussian 205 2.0 
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At first, the sensitivities of the eight input parameters were measured in terms of 

𝐷𝑜𝐷𝑓𝑖𝑛 after 10 minutes of hovering flight. 𝐷𝑜𝐷𝑓𝑖𝑛 was selected as a benchmark 

since the remaining battery energy is the resultant outcome at last when equipped 

battery energy and hovering time are settled. Hence, the sensitivity rank based on 

𝐷𝑜𝐷𝑓𝑖𝑛 , 𝑆𝐼𝑥𝑖,𝐷𝑜𝐷𝑓𝑖𝑛
 were obtained for the eight input parameters. The graphical 

results are presented in Fig. 4.29 and Fig. 4.30 where histogram with PDF curve and 

normal probability plots (NPP) with skewness coefficient are displayed. The NPP is 

a graphical technique to show the deviation of a distribution of data from the ideal 

normal distribution [119]. If data follow the normal distribution, the samples are 

aligned with the diagonal line. The offset from the diagonal line indicates that the 

data follow a skewed distribution. A left-skewed distribution has a concave 

downward curve (C-shape), and a right-skewed distribution has a concave upward 

curve (inverted C shape). The S-shape curve indicates that the data follow a long-

tailed distribution. 

The histograms and NPPs by rotor-related parameters are shown in Fig. 4.29. 

Except for 𝛺𝑟𝑜𝑡𝑜𝑟 and 𝑡𝑤𝑟𝑜𝑡𝑜𝑟 cases, the distributions of 𝐷𝑜𝐷𝑓𝑖𝑛 were normally 

distributed by following input normal distributions. A rough histogram by 𝑡𝑤𝑟𝑜𝑡𝑜𝑟 

was due to the numerical convergence criterion in the BEMT analysis. In the case 

when the 𝛺𝑟𝑜𝑡𝑜𝑟 was the uncertain parameter, the distribution of 𝐷𝑜𝐷𝑓𝑖𝑛 showed 

right skewness. This is because the relationship between 𝛺𝑟𝑜𝑡𝑜𝑟 and 𝐷𝑜𝐷𝑓𝑖𝑛 had 

a positive correlation following 3rd order polynomial equation. Following the Eq. 

(2.13), rotor power 𝑃𝑟𝑜𝑡𝑜𝑟 was proportional to the third power of 𝛺𝑟𝑜𝑡𝑜𝑟, so the 



 

143 

used battery energy had the same relation when the efficiency coefficients were 

constant. The distribution of the third power of normal distribution has slightly right 

skewness in natural. In the 𝑡𝑤𝑟𝑜𝑡𝑜𝑟  case, the relationship between 𝑡𝑤𝑟𝑜𝑡𝑜𝑟  and 

𝑃𝑟𝑜𝑡𝑜𝑟 had weak positive correlation. Therefore, the resultant skewness of 𝐷𝑜𝐷𝑓𝑖𝑛 

was smaller. The correlations of 𝛺𝑟𝑜𝑡𝑜𝑟 , 𝑡𝑤𝑟𝑜𝑡𝑜𝑟 , and 𝑃𝑟𝑜𝑡𝑜𝑟  were presented in 

Fig. 4.28. 

 

Fig. 4.28. Correlation between 𝜴𝒓𝒐 𝒐𝒓,  𝒘𝒓𝒐 𝒐𝒓, and 𝑷𝒓𝒐 𝒐𝒓 
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Fig. 4.29. Sensitivity study result of 𝑫𝒐𝑫  𝒏 by rotor parameters

𝛺𝑟𝑜𝑡𝑜𝑟 [RPM] 𝑡𝑤𝑟𝑜𝑡𝑜𝑟 [deg]𝑅𝑟𝑜𝑡𝑜𝑟 [ft] 𝑐𝑟𝑜𝑡𝑜𝑟 [ft]
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The histograms and NPPs by electric components-related parameters are shown 

in Fig. 4.30. At this time, except for 𝑆𝐸𝑏𝑎𝑡 case, the distributions of 𝐷𝑜𝐷𝑓𝑖𝑛 were 

normally distributed by following the input normal distributions. In the case when 

the 𝑆𝐸𝑏𝑎𝑡 was the uncertain parameter, the distribution of 𝐷𝑜𝐷𝑓𝑖𝑛 showed slightly 

right skewness. This is because the relationship between 𝑆𝐸𝑏𝑎𝑡 and 𝐷𝑜𝐷𝑓𝑖𝑛 had 

an inverse correlation as shown in Eq. (4.5). The distribution of reciprocal of normal 

distribution has slightly right skewness. Although the other electric efficiency 

coefficients also have inverse correlations with the electric power (see Eqs. (2.26), 

(2.30), and (2.31)), their impact was negligible, producing nearly normal distribution 

of 𝐷𝑜𝐷𝑓𝑖𝑛 since the absolute variability of the efficiency coefficients were small. 

Therefore, the skewness coefficients 𝜇̃3 were positive but lower than 0.1, a criterion 

of the skewness in this study. 

𝐷𝑜𝐷𝑓𝑖𝑛 ∝
1

𝐸𝑏𝑎𝑡
∝

1

𝑆𝐸𝑏𝑎𝑡
 (4.5) 

The numerical data are tabulated in Table 4.9. Based on the sensitivity indices 

sensitivity ranks were obtained. The electric propulsion components-related 

parameters were in high rank, and rotor-related parameters were in low rank. The 

𝑡𝑤𝑟𝑜𝑡𝑜𝑟 had the lowest impact, which corresponds well with the results in Ref. [91] 

where rotor pitch has the lowest impact on the flight time of a small unmanned aerial 

vehicle. 
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Fig. 4.30. Sensitivity study result of 𝑫𝒐𝑫  𝒏 by electric propulsion parameters 
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Table 4.9. Sensitivity study result of 𝑫𝒐𝑫  𝒏 

Uncertain 

parameter, 𝑥𝑖 
𝑅𝑟𝑜𝑡𝑜𝑟 𝑐𝑟𝑜𝑡𝑜𝑟 𝛺𝑟𝑜𝑡𝑜𝑟 𝑡𝑤𝑟𝑜𝑡𝑜𝑟 𝜂𝑚𝑜𝑡 𝜂𝑖𝑛𝑣 𝜂𝑏𝑎𝑡 𝑆𝐸𝑏𝑎𝑡 

COV of 

sampled 𝑥𝑖 
0.1 0.2 2.0 0.5 0.6 0.4 0.7 2.0 

𝜇𝐷𝑜𝐷𝑓𝑖𝑛
 

(mean) 
0.69321 0.69321 0.69333 0.69321 0.69323 0.69322 0.69324 0.69348 

𝜎𝐷𝑜𝐷𝑓𝑖𝑛
 

(std. dev.) 
0.00053 0.00007 0.00187 0.00003 0.00410 0.00273 0.00485 0.01388 

𝜇̃3𝐷𝑜𝐷𝑓𝑖𝑛
 

(skewness) 
0.01783 0.00832 0.40918 0.08033 0.03596 0.02385 0.04234 0.11988 

Median of 

𝐷𝑜𝐷𝑓𝑖𝑛 
0.69321 0.69321 0.69321 0.69321 0.69321 0.69321 0.69321 0.69321 

COV of  

𝐷𝑜𝐷𝑓𝑖𝑛 
0.07618 0.01099 0.26925 0.00511 0.59162 0.39436 0.69958 2.00096 

𝑆𝐼𝑥𝑖,𝐷𝑜𝐷𝑓𝑖𝑛
 0.76244 0.05501 0.13473 0.01023 0.98675 0.98669 1.00015 1.00120 

Sensitivity 

rank 
5 7 6 8 3 4 2 1 
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A similar analysis was conducted for one of the other output results 𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥. 

Since the 𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥  was affected only by the rotor-related parameters, four 

histograms and NPPs were obtained. The graphical results and numerical results are 

presented in Fig. 4.31 and Table 4.10, respectively. As can be seen in Fig. 4.31, when 

𝛺𝑟𝑜𝑡𝑜𝑟 had the normal distribution, the distribution of 𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥 had slight left 

skewness, showing a concave downward curve in NPP and a negative skewness 

coefficient. This is the non-linear correlation by the logarithm function in Eq. (2.57). 

The distribution of the logarithm of a normal distribution has slightly left skewness 

in naturally. 

The variance of 𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥 had the biggest value in 𝛺𝑟𝑜𝑡𝑜𝑟 case because the 

absolute variation in the distributions of the geometric parameters (𝑅𝑟𝑜𝑡𝑜𝑟, 𝑐𝑟𝑜𝑡𝑜𝑟, 

and 𝑡𝑤𝑟𝑜𝑡𝑜𝑟   were small. The sensitivity indices based on 𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥 , 

𝑆𝐼𝑥𝑖,𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥
, had the same ranks with the sequence of the variance. The influential 

parameters were in the sequence of 𝛺𝑟𝑜𝑡𝑜𝑟, 𝑅𝑟𝑜𝑡𝑜𝑟, 𝑐𝑟𝑜𝑡𝑜𝑟, and 𝑡𝑤𝑟𝑜𝑡𝑜𝑟. The result 

that 𝛺𝑟𝑜𝑡𝑜𝑟 and 𝑅𝑟𝑜𝑡𝑜𝑟 are the two most influential parameters corresponded well 

with the result in Ref. [120]. 
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Fig. 4.31. Sensitivity study of 𝑶 𝑺𝑷𝑳𝒎𝒂𝒙 by rotor parameters 

𝛺𝑟𝑜𝑡𝑜𝑟 [RPM] 𝑡𝑤𝑟𝑜𝑡𝑜𝑟 [deg]𝑅𝑟𝑜𝑡𝑜𝑟 [ft] 𝑐𝑟𝑜𝑡𝑜𝑟 [ft]
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Table 4.10. Sensitivity study result of 𝑶 𝑺𝑷𝑳𝒎𝒂𝒙 

Uncertain 

parameter, 𝑥𝑖 
𝑅𝑟𝑜𝑡𝑜𝑟 𝑐𝑟𝑜𝑡𝑜𝑟 𝛺𝑟𝑜𝑡𝑜𝑟 𝑡𝑤𝑟𝑜𝑡𝑜𝑟 

COV of 

sampled 𝑥𝑖 
0.1 0.2 2.0 0.5 

𝜇𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥
 

(mean) 
62.61493 62.61495 62.61056 62.61494 

𝜎𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥
 

(std. dev.) 
0.013808 0.013376 0.310781 0.00108 

𝜇̃3𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥
 

(skewness) 
-0.00514 0.004186 -0.08345 -0.01494 

Median of 

𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥 
62.61494 62.61494 62.61494 62.61494 

COV of  

𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥 
0.022052 0.021362 0.496371 0.001725 

𝑆𝐼𝑥𝑖,𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥
 0.220699 0.106892 0.248380 0.00345 

Sensitivity 

rank 
2 3 1 4 
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4.2.5. Hover Performance Analysis 

In order to investigate the mixed parametric uncertainty effect on the performance 

output indices, MCS was conducted for 10-minute hover flight with the eight 

parametric uncertainties as before. The flight condition was assigned as in Table 4.11. 

As mentioned earlier, the battery weight was settled as a constant to simulate battery 

energy capacity variation depending on the variation of the specific energy of the 

battery. With given gross weight, battery weight, and flight time, the final depth of 

discharge 𝐷𝑜𝐷𝑓𝑖𝑛 was obtained after 10-minute hover flight. 

Table 4.11. Hover flight condition 

Hover altitude Gross weight Battery weight Flight time 

656.2 ft 

200 m 

4965.914 lb 

2252.50 kg 

1596.660 lb 

724.233 kg 

10 min. 

 

Aleatory uncertainty (parametric uncertainty) 

Under the designated hover flight condition, statistical moments and distributions 

were obtained by MCS. The outcome quantities of interest were 9 performance 

quantities in total: rotor power 𝑃𝑟𝑜𝑡𝑜𝑟, noise index 𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥, figure of merit 𝐹𝑀, 

motor power 𝑃𝑚𝑜𝑡, inverter power 𝑃𝑖𝑛𝑣, battery power 𝑃𝑏𝑎𝑡, battery discharge C-

rate 𝜒, overall system efficiency 𝜂𝑠𝑦𝑠, and final depth of discharge 𝐷𝑜𝐷𝑓𝑖𝑛. For the 

nine quantities of interest, histograms, empirical PDF curves, and CDF curves are 

overlaid together in Fig. 4.32, and numerical data including statistical moments are 

presented in Table 4.12. The empirical PDF curves drawn with a red dashed line were 
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obtained by kernel density estimator with Gaussian basis function [111] (Eq. (3.10)). 

The CDF curves were plotted with a solid blue line, and short black tips indicated 

the 95% confidence interval of the distribution. The yellow glowing dotted line 

showed the nominal values that were obtained by deterministic analysis, which was 

nearly same with, but clearly different to the mean values. The deviation between 

the interval boundaries and the nominal value was presented in percentage units. 

The first row in Fig. 4.32 shows the output quantities that were influenced only 

by the rotor-related parameters. The second row is for the power-related output 

quantities that were influenced by the efficiency coefficients. The output quantities 

that are positioned in the last row are kinds of the final outcomes after considering 

all effects of the uncertainty parameters. This downward stratification implies the 

calculation direction in the conceptual design tool. 

Analysis of variance (ANOVA) results for each outcome quantity were presented 

using sunburst chart where the most influential input parameter and its impact was 

given. Blue-based colors are for the rotor-related input parameters, and green-based 

colors are for electric-components-related input parameters. As can be expected by 

the sensitivity results, the electric-component-related parameters have emerged to be 

influential as the calculation has proceeded. The most influential parameter in rotor-

related outcome quantities was 𝛺𝑟𝑜𝑡𝑜𝑟 and its impact was overwhelming the other 

variables. After applying the efficiency coefficient for the electric power in motor 

and inverter, 𝜂𝑚𝑜𝑡  had the most significant impact. When the battery-related 

outcome quantities (𝑃𝑏𝑎𝑡, 𝜒, 𝐷𝑜𝐷𝑓𝑖𝑛, and 𝜂𝑠𝑦𝑠) were analyzed, 𝜂𝑏𝑎𝑡 and 𝑆𝐸𝑏𝑎𝑡 
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were the influential factors on them. 𝑆𝐸𝑏𝑎𝑡 had over the half of proportion in the 

quantified impact especially when the battery energy was used to calculate 𝜒𝑏𝑎𝑡 

and 𝐷𝑜𝐷𝑓𝑖𝑛; recall the Eqs. (2.25) and (2.26)). 

From the magnitude of the deviations between the nominal values and the 95% 

confidence intervals, three major characteristics or phenomena could be drawn; 

skewness, dilution effect, and forward propagation of uncertainties. 

The first feature was a skewness relationship in which the inequality of the 

deviations toward both ends implies that there was a skewness in the distribution. 

The skewness of the distribution was getting bigger as the magnitude of inequality 

increased. The distributions in the first row, for 𝑃𝑟𝑜𝑡𝑜𝑟, 𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥, and 𝐹𝑀, were 

taken as an example. In the distribution of 𝑃𝑟𝑜𝑡𝑜𝑟, the deviation between the nominal 

value and interval ends had a difference of 0.14% point and the value in the right-

hand side was bigger. These characteristics indicated that the distribution of 𝑃𝑟𝑜𝑡𝑜𝑟 

had right skewness. On the other hand, the distribution of 𝐹𝑀 showed the opposite 

situation where the difference in the two values of deviation was equal to 0.14% 

point, but the left-hand side value was bigger. Therefore, the distribution of 𝐹𝑀 had 

a left skewness. In the distribution of 𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥 the magnitude of the difference 

became smaller to 0.05% point, so that the skewness was mitigated. However, the 

sign of the skewness coefficient was not exactly matched due to small value of the 

skewness. It can be concluded that the skewness coefficient under 0.1 was not that 

meaningful. These results could be confirmed numerically in Table 4.12 where the 

skewness coefficients of the distributions are presented. 
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Fig. 4.32. Distribution of performance indices with the parametric uncertainty in 10 minutes hover flight 
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Table 4.12. Statistical values of the performance indices in 10 minutes hover flight 

Output 
Nominal value 

(deterministic) 
𝜇 COV [%] 𝜇̃3 95% interval 

Top 4 influential parameters 

1st  2nd  3rd  4th 

𝑃𝑟𝑜𝑡𝑜𝑟 [kW] 89.33056 89.34765 0.28313 0.37212 [88.8902, 89.8937] 

𝛺𝑟𝑜𝑡𝑜𝑟 

74.85% 

𝑅𝑟𝑜𝑡𝑜𝑟 

19.62% 

𝑐𝑟𝑜𝑡𝑜𝑟 

2.88% 

𝑡𝑤𝑟𝑜𝑡𝑜𝑟 

1.07% 

𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥 [dBA] 62.61494 62.61056 0.49741 -0.08793 [62.0904, 63.1172] 

𝛺𝑟𝑜𝑡𝑜𝑟 

93.40% 

𝑅𝑟𝑜𝑡𝑜𝑟 

4.35% 

𝑐𝑟𝑜𝑡𝑜𝑟 

2.22% 

𝑡𝑤𝑟𝑜𝑡𝑜𝑟 

1.24% 

𝐹𝑀 0.83740 0.83725 0.27417 -0.39520 [0.8324, 0.8413] 

𝛺𝑟𝑜𝑡𝑜𝑟 

86.60% 

𝑅𝑟𝑜𝑡𝑜𝑟 

6.98% 

𝑐𝑟𝑜𝑡𝑜𝑟 

3.35% 

𝑡𝑤𝑟𝑜𝑡𝑜𝑟 

1.24% 

𝑃𝑚𝑜𝑡 [kW] 93.05266 93.07377 0.66537 0.04059 [91.8935, 94.2858] 

𝜂𝑚𝑜𝑡 

60.74% 

𝛺𝑟𝑜𝑡𝑜𝑟 

29.40% 

𝑅𝑟𝑜𝑡𝑜𝑟 

7.71% 

𝑐𝑟𝑜𝑡𝑜𝑟 

1.13% 

𝑃𝑖𝑛𝑣 [kW] 94.95170 94.97472 0.77382 0.04729 [93.5767, 96.4287] 

𝜂𝑚𝑜𝑡 

42.99% 

𝜂𝑖𝑛𝑣 

29.23% 

𝛺𝑟𝑜𝑡𝑜𝑟 

20.81% 

𝑅𝑟𝑜𝑡𝑜𝑟 

5.46% 

Continued to next page 
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𝑃𝑏𝑎𝑡 [kW] 595.57738 595.74906 1.03706 0.04979 [583.9763, 607.9937] 

𝜂𝑏𝑎𝑡 

31.66% 

𝜂𝑚𝑜𝑡 

29.38% 

𝜂𝑖𝑛𝑣 

19.97% 

𝛺𝑟𝑜𝑡𝑜𝑟 

14.22% 

𝜒𝑏𝑎𝑡 [1/hour] 4.01150 4.01426 2.24946 0.10167 [3.8407, 4.1957] 

𝑆𝐸𝑏𝑎𝑡 

50.93% 

𝜂𝑏𝑎𝑡 

15.55% 

𝜂𝑚𝑜𝑡 

14.42% 

𝜂𝑖𝑛𝑣 

9.81% 

𝜂𝑠𝑦𝑠 0.764192 0.76405 1.04253 0.01559 [0.7484, 0.7795] 

𝜂𝑏𝑎𝑡 

32.23% 

𝜂𝑚𝑜𝑡 

30.31% 

𝜂𝑖𝑛𝑣 

20.62% 

𝛺𝑟𝑜𝑡𝑜𝑟 

14.60% 

𝐷𝑜𝐷𝑓𝑖𝑛 0.66858 0.66904 2.24946 0.10167 [0.6401, 0.6993] 

𝑆𝐸𝑏𝑎𝑡 

50.93% 

𝜂𝑏𝑎𝑡 

15.55% 

𝜂𝑚𝑜𝑡 

14.42% 

𝜂𝑖𝑛𝑣 

9.81% 
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The second feature was the effect of overlapped uncertainties on the output 

quantities, referred to as a dilution effect here and in Ref. [91], which means the 

skewness of the output quantities is decreasing as the uncertainty propagates. In 

order to graphically check the skewness of the outcomes’ distributions multiple NPPs 

are plotted in Fig. 4.33. The 𝑃𝑟𝑜𝑡𝑜𝑟 and 𝐹𝑀 have remarkable skewness in their 

distribution. This skewness is induced from the uncertainties in the rotor geometry 

and rotational speed. When the rotor thrust 𝑇𝑟𝑜𝑡𝑜𝑟  is fixed, the 𝑃𝑟𝑜𝑡𝑜𝑟  has 

proportional relationship with rotor geometric parameters shown in Eq. (4.6). The 

equation in the right parenthesis have a natural right skewness when each parameter 

is normally distributed. As 𝐹𝑀  is proportional to a reciprocal of 𝑃𝑟𝑜𝑡𝑜𝑟  (Eq. 

(2.17)), it has naturally left skewness in its distribution.  

𝑃𝑟𝑜𝑡𝑜𝑟  𝜌𝑎𝑖𝑟 ∙ 𝐴 ∙ 𝑉𝑡𝑖𝑝
3 ∙ 𝐶𝑃 ∝ (

1

𝑅
+ 𝑐 ∙ 𝑅 ∙ 𝛺𝑟𝑜𝑡𝑜𝑟

3 ) (4.6) 

As mentioned earlier at the sensitivity study in Section 4.2.4, the distribution of 

power in the electric components 𝑃𝑚𝑜𝑡 , 𝑃𝑖𝑛𝑣 , and 𝑃𝑏𝑎𝑡  should follow the 

distribution of 𝑃𝑟𝑜𝑡𝑜𝑟  with the first order linear correlation. Nevertheless, the 

skewness originated from the distribution of 𝑃𝑟𝑜𝑡𝑜𝑟  was diluted a lot and the 

skewness were not be recognized in the 𝑃𝑚𝑜𝑡, 𝑃𝑖𝑛𝑣, and 𝑃𝑏𝑎𝑡 distribution. Their 

NPPs show well aligned scatter plots at the diagonal line. This is because the normal 

distribution of the efficiency coefficient 𝜂𝑚𝑜𝑡, 𝜂𝑖𝑛𝑣, and 𝜂𝑏𝑎𝑡 had larger effect on 

the each-related power indices, mitigating the skewness from the 𝑃𝑟𝑜𝑡𝑜𝑟. As shown 
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in ANOVA analysis, the electric efficiency coefficients emerged on the top ranks and 

their normal distribution diluted the impact of the rotor parameters. 

 

Fig. 4.33. NPP of output quantities of interest 
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kept increasing when the uncertainty in each calculation step was infused, and the 

magnitude of the increment was nearly proportional to the magnitude of the COV of 

the infused uncertainties. Since 𝜒 times by flight time, herein fixed 10 minutes, is 

equal to 𝐷𝑜𝐷𝑓𝑖𝑛, the COV, skewness, and the result of ANOVA were identical to 

each other. 

 

Fig. 4.34. COV variation by forward propagation of uncertainties 
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With epistemic uncertainty (model uncertainty) 

As an imperative milestone before conducting uncertainty quantification in a 

mission profile, the model uncertainty parameter defined in Section 3.3.2 was used 

to analyze the effect of the simplified model. Since the performance indices were 

calculated in the hover flight condition, the model uncertainty parameter for rotor 

power, 𝜃𝑝𝑤,𝐵𝐸𝑀𝑇, was only used among the three model uncertainty parameters.  

Resultant probability boxes (p-box) for the nine performance parameters were 

generated as shown in Fig. 4.35. In the figure, there are three CDF curves and 

boundary edges. The boundary edges were obtained using the interval of the 

𝜃𝑝𝑤,𝐵𝐸𝑀𝑇 for the best and worst situations. The blue line is the CDF curve when the 

only parametric uncertainties was considered with the expectation of 𝜃𝑝𝑤,𝐵𝐸𝑀𝑇 . 

This blue line was equal to CDF curve in Fig. 4.32. As can be seen, except for 

𝑂𝐴𝑆𝑃𝐿𝑚𝑎𝑥 , the p-box was generated according to 𝜃𝑝𝑤,𝐵𝐸𝑀𝑇  since 𝜃𝑝𝑤,𝐵𝐸𝑀𝑇 

corrected the calculated rotor power 𝑃𝑟𝑜𝑡𝑜𝑟  and the effect of 𝜃𝑝𝑤,𝐵𝐸𝑀𝑇  was 

propagated sequentially. The difference between the blue CDF curve and boundary 

with respect to median values of the three curves was presented in percentage units. 

The magnitude of difference to the both sides was not equal to each other since there 

was a shift in the interval of 𝜃𝑝𝑤,𝐵𝐸𝑀𝑇 in Fig. 3.8. Meanwhile, the magnitudes of 

difference in the outcome quantities were almost same since the only one model 

uncertainty parameter, herein 𝜃𝑝𝑤,𝐵𝐸𝑀𝑇, was used in the hover flight condition. 

As described earlier in Section 3.1.4, CDF curves can lie anywhere in the p-box 

unless crossing the boundaries that were obtained by the end values of the interval 
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of 𝜃𝑝𝑤,𝐵𝐸𝑀𝑇 . In order to demonstrate the effect of the hasty application of 

distribution to the model uncertainty parameter, two cases with different distribution 

of 𝜃𝑝𝑤,𝐵𝐸𝑀𝑇  were added in Fig. 4.35: normal distribution of 𝜃𝑝𝑤,𝐵𝐸𝑀𝑇 , and 

uniform distribution of 𝜃𝑝𝑤,𝐵𝐸𝑀𝑇 . Each distribution was constructed using the 

numbers in Table 3.2. The standard deviation of the normal distribution was set to 

able to enclose the interval of 𝜃𝑝𝑤,𝐵𝐸𝑀𝑇 with 99% confidence. It was decided that 

the boundary values required for uniform distribution were the same as the end value 

of 𝜃𝑝𝑤,𝐵𝐸𝑀𝑇 interval. 

In Fig. 4.35, the black dashed CDF curve was obtained with the normal 

distribution for 𝜃𝑝𝑤,𝐵𝐸𝑀𝑇, and the red dash-dotted CDF curve was obtained with the 

uniform distribution for 𝜃𝑝𝑤,𝐵𝐸𝑀𝑇 . Depending on the type of distribution the 

resultant CDFs had different shape although they were in the p-box area. These 

results underpin that an unthoughtful assumption and hasty application of 

distribution for the model uncertainty could lead to inaccurate predictions of the 

outcome quantities of interest. 
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Fig. 4.35. Probability box of performance indices with the parametric and model uncertainty in 10 minutes hover flight  
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4.2.6. Sizing for Mission Flight 

Lastly, the sizing of eVTOL for a generic transportation mission was conducted 

under an uncertain sizing environment using RISPECT+. The transportation mission 

consisted of eleven segments as shown in Fig. 4.36 where specific numbers such as 

flight speed, altitude, and flight distance in each segment are provided. The reference 

vehicle aviates out 100 km on an altitude of 500 m with a passenger payload of 500 

kg. The total flight time was approximately 28 minutes and it was assumed that there 

was no external wind disturbance during the flight. The maximum 𝐷𝑜𝐷𝑓𝑖𝑛 was set 

to be 0.8, which meant 80% of nominal energy could be used. The uncertain input 

parameters and the specification of the reference vehicle were the same as in the 

hovering case adding the wing incidence angle 𝛼𝑤𝑖𝑛𝑐
 , specific power of motor, 

𝑆𝑃𝑚𝑜𝑡, and inverter, 𝑆𝑃𝑖𝑛𝑣, which are shown in Table 4.13. The all variables were 

assumed again to be follow Gaussian distribution. The three model uncertainty 

parameters, 𝜃𝑝𝑤,𝐵𝐸𝑀𝑇, 𝜃𝑝𝑤,𝐵𝐸𝑇, and 𝜃𝐶𝐿𝛼𝑤𝑖𝑛𝑔
 were settled as the biggest values to 

obtain the most conservative design result with simplicity. 

 

Fig. 4.36. Transportation mission profile 
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Table 4.13. Parametric uncertainty of the base eVTOL in mission flight 

Component Variable Distribution type Nominal value COV [%] 

Rotor 

𝑅𝑟𝑜𝑡𝑜𝑟 [ft] Gaussian 4.421 0.1 

𝑐𝑟𝑜𝑡𝑜𝑟 [ft] Gaussian 0.8320 0.2 

𝛺𝑟𝑜𝑡𝑜𝑟 [RPM] Gaussian 1020 2.0 

𝑡𝑤𝑟𝑜𝑡𝑜𝑟 [deg] Gaussian -40.112 0.5 

Wing 𝛼𝑤𝑖𝑛𝑐
 [deg] Gaussian 2.68 2.0 

Electric 

Propulsion 

𝜂𝑚𝑜𝑡 ∙ Gaussian 0.96 0.6 

𝜂𝑖𝑛𝑣 ∙ Gaussian 0.98 0.4 

𝜂𝑏𝑎𝑡 ∙ Gaussian 0.97 0.7 

𝑆𝑃𝑚𝑜𝑡 [kW/kg] Gaussian 4.932 2.0 

𝑆𝑃𝑖𝑛𝑣 [kW/kg] Gaussian 13.00 2.0 

𝑆𝐸𝑏𝑎𝑡 [Wh/kg] Gaussian 205.0 2.0 

 

Under the given uncertain geometry parameters, the iterative sizing process was 

conducted until the available payload became equal to required payload weight 

following RISPECT+ sizing process (Fig. 2.8) through MCS. The flight performance 

variation under the uncertainty is displayed in Fig. 4.37 where the required power at 

the battery and the required energy with respect to the mission segments are 

presented with 95% interval. The line plot is for the required power in kilowatt units. 

The dashed line shows the averaged value of the required power and the shaded area 

indicates the 95% interval that is approximately equal to 2-sigma area. The 
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maximum power was obtained in the vertical flight: vertical take-off and vertical 

landing. From the transition-out segment to the transition-in segment, the eVTOL 

flight in the wing-borne configuration that required less power during flight. The 

distributions of rotor power and battery power for the three segments (vertical take-

off, cruise, and vertical landing) were added in the top of the figure with their NPP 

figures. In the fully vertical flights, the distribution of the required powers had right 

skewness, which corresponded with the results from hover flight in Section 4.2.5 due 

to the distribution of 𝛺𝑟𝑜𝑡𝑜𝑟. Meanwhile, the magnitude of skewness was almost 

twice as large as that in hover flight. This was because of the fact that required thrust, 

proportional to the sized gross weight, varied according to the input variables, which 

was a different situation to the hover case where the gross weight was fixed at a 

certain value. The skewness was mitigated in the cruise segment since the parasite 

power during the cruise segment was nearly constant due to a fixed equivalent flat 

plate area of the aircraft. The magnitude of variation presented with COV also 

underpinned those results. 

Bar plot in Fig. 4.37 shows the required energy in kilowatt-hour units with respect 

to the mission segment, which was obtained by multiplying the required power and 

segment time. The error bar indicates the 95% interval, which is approximately equal 

to 2-sigma area. During 28-minutes flight, the cruise segment occupied 

approximately 67.8% of flight time, 19 minutes, so that the required energy in the 

cruise segment was incomparable to the other segments although the required power 

in the cruise segment was not that demanding. In the same line, the required energy 
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in the vertical landing was bigger than that of the vertical take-off due to the longer 

segment time. The magnitude of COVs of the required energy in the vertical take-

off and cruise segments was both bigger than those of the required power due to 

uncertainty in the variance of the efficiency coefficients of the electric propulsion 

components. The distribution plots of the required energy were omitted because their 

shapes were identical to those of the required power distribution. Table 4.14 shows 

the numerical results with the mean values and 95% intervals. 

Table 4.14. Required power and energy during the mission 

Segment 

Req. battery power [kW] Req. energy [kWh] 

mean 95% interval mean 95% interval 

Taxiing in 9.294 [9.096, 8.507] 0.044 [0.043, 0.044] 

VTO 551.962 [511.842, 604.734] 6.224 [5.778, 6.810] 

Transition out 271.166 [251.269, 297.362] 4.658 [4.325, 5.096] 

Climb 264.371 [247.863, 286.265] 6.058 [5.690, 6.545] 

Acceleration 169.951 [161.453, 180.033] 2.971 [2.828, 3.140] 

Cruise 183.895 [175.158, 194.078] 60.339 [57.622, 63.488] 

Deceleration 169.951 [161.453, 180.033] 2.971 [2.828, 3.140] 

Descent 68.574 [62.419, 77.607] 2.901 [2.668, 3.245] 

Transition in 249.170 [230.325, 273.917] 4.291 [3.977, 4.705] 

VL 523.552 [485.079, 574.251] 9.668 [8.966, 10.590] 

Taxiing in 9.294 [9.096, 9.499] 0.044 [0.043, 0.044] 
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Fig. 4.37. Required power and energy during the mission 
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The weight breakdown and some of the weight histograms are shown in Fig. 4.38. 

The left bar plot in Fig. 4.38 shows the weight information of each component with 

each fraction in empty weight and the right histograms show distributions of some 

components. The nominal values are for the averaged value of MCS samples and 

error bars show 95% interval. The weight axis is presented by both imperial unit 

system and SI unit system. The mean gross weight was 4994.88 lb (2265.64 kg) and 

its COV was calculated as 2.438. The payload weight was almost fixed to 1102.31 

lb (500 kg) since the sizing process was conducted iteratively by changing the gross 

weight until the available payload was equal to the given target payload, herein 

1102.31 lb. Hence, there was little variance in the payload given convergence error 

was ignored. The histogram of gross weight had a little freaky shape showing highly 

frequent data samples in a certain area. This situation was related to the sizing 

process of RISPECT+. As described in Section 2.2.1, the sizing process was initiated 

with an assumption of gross weight for calculating component weights that were 

functions of gross weight. Thus, the sizing process would be terminated immediately 

if the initial value was appropriate by chance. Since the converged payload was 

almost same with the given target value, the distribution of empty weight also had 

similar shape. 

The major components that composed the empty weight were classified by 

structure group, electric propulsion group, and system group. The blue series color 

bars are for the structure group: fuselage, rotor, and wing system. They accounted 

for from 33.80% to 38.10% of empty weight.  
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The green series color bars are for the electric propulsion group: battery, motors, 

inverters, and TMS with wiring. The battery is the single heaviest component in the 

eVTOL of which weight fraction accounted for 32.67~36.36% of the empty weight 

alone. The distribution of the battery weight shows a right skewness induced from 

the right-skewed distribution of the required power and energy. The distributions of 

electric motors and TMS with wiring have similar aspects to that of battery. Note 

that the COV of TMS with wiring weight became much bigger than any other 

components’ weight. That was because TMS and wiring were sized based on a 

summation of parameters induced from every electric component. TMS was sized 

using a summation of power losses from the battery, motors, and inverters (Eq. 

(2.32)), which implies that the summed power losses got effect from all three 

components’ power distributions. A similar situation was observed in the wiring 

weight that was proportional to the entire weight of the electric propulsion system 

(Eq. (2.45)). That was why the COV of TMS with wiring weight was much bigger 

than others.  

The system group was for flight control systems and given avionics equipment. 

Its variance was negligible due to the fact that a custom value was imposed on 

avionics equipment without variance. 
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Fig. 4.38. Weight breakdown and histograms of sized eVTOL 
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When scrutinizing the gross weight distribution of the MCS samples, it can be 

recognized at a glance that approximately 53% of the samples had heavier gross 

weight than the nominal value that was obtained by the deterministic way. The 

heavier gross weight implied that more energy was required to conduct the target 

mission. In this circumstance, the probability of the mission success under 

deterministic input condition was lower than half (47%). This value indicated a high 

risk of eVTOL designed under the deterministic environment. 

In order to investigate which combination of the geometric uncertainties brought 

about the higher gross weight, the histograms of the input geometric uncertainties 

are shown in Fig. 4.39 with discrete two levels by the weight index that was 

determined by the gross weight obtained by the deterministic approach. The blue-

colored histograms were flagged with a lighter gross weight, which implied 

sufficiency of mission fulfillment. The orange-colored histograms were flagged with 

a heavier gross weight, which implied insufficiency of mission fulfillment. The 

straight lines indicate the mean value of each category. In comparison, there was a 

shift in the mean lines in the histogram according to the category. From the lighter 

gross weight to heavier gross weight, the notable changes in the mean values were 

as follows; larger 𝛺𝑟𝑜𝑡𝑜𝑟 , smaller 𝜂𝑏𝑎𝑡 , 𝑆𝐸𝑏𝑎𝑡 , 𝜂𝑚𝑜𝑡 , 𝑆𝑃𝑚𝑜𝑡 , 𝜂𝑖𝑛𝑣 , and 𝑆𝑃𝑖𝑛𝑣 

induced the heavier gross weight. The shift in the other variables can be neglected. 

All shifts in the mean values resulted in the higher required power and resultant 

energy during the mission. The high rotational speed generated higher power and 

lower efficiency (Figure of merit) in the rotor aerodynamics. The decrease in the 
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efficiency coefficients was the immediate cause of energy increment, and the 

decreases in the specific energy of the battery and specific power of the motor and 

inverter directly induced the increases in electric propulsion components’ weight. 

The magnitude of shift implied the impact of the variables; the battery was the most 

influential component as it occupied at most 36.36% of empty weight. The electric 

motors and inverters followed sequentially. From the result, designers recognized 

and confirmed the significance of the electric propulsion system from the quantified 

data, so that they should plan by priority to develop electric propulsion components 

with high robustness showing little variance in the performance for designing a 

highly reliable eVTOL aircraft. 

 



 

173 

 

 

Fig. 4.39. Histogram of parametric uncertainties by gross weight variation 
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Chapter 5  

Conclusion 

 

5.1. Summary 

In efforts to derive more practical designs for advanced air mobility, improved 

design frameworks for the two primary tasks that should be carried out in the 

conceptual design phase were developed and their validities were demonstrated with 

the pilot projects in this study. Not only suggested better mathematical formulations 

were, but also various uncertainties were considered with the use of the combination 

of the surrogate model, MCS, and LHS method for their propagation. 

The most important improvement in the technology portfolio assessment 

framework was that the calculation method for an amalgamated effect of multiple 

technologies was based on a multiplicative approach rather than an additive approach. 

In addition, the interaction factor which was defined from TCIM elements enabled 

to consider the non-linear relationship and interactional effects between technologies. 

Both improvements could result in more rational and practical situations in 

technology infusion. 

In terms of uncertainties, epistemic uncertainties from surrogate models that were 

usually excluded before were incorporated using MLP model with MC dropout. The 

alternative method of using prediction intervals as confidence intervals of a surrogate 

model could be used similarly depending on the surrogate model [105]. The 

inclusion of the epistemic uncertainty provided more information to help decision-
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makers to make more reasonable and reliable decisions. It would result in a reduction 

in the number of design feedbacks, the possibility of development cost increases, and 

eventually the risk of program failure. In the demonstration project, different 

desirable technology portfolios were selected based on the consideration of 

epistemic uncertainty. 

In the sizing process, with uncertainties from physical geometric parameters and 

simplified mathematical analysis modules, the sizing process was expanded, and 

then uncertainty propagation on flight performance and sizing results was carried out 

throughout various flight conditions in the conceptual design phase. The 

uncertainties were identified and classified based on their origins. Variations in the 

representative geometric parameters were modeled using Gaussian distribution, and 

model uncertainties in the simplified analysis modules were quantified by comparing 

analysis results with experimental data or higher fidelity analysis. The quantified 

uncertainties were considered by adopting model uncertainty parameters. 

For the single hovering flight, skewed distributions for performance outcomes 

were observed as the responses to the normally distributed geometry input, which 

implied non-linear characteristics in the aircraft system. Another point that drew 

interest was the dilution effect showing that specific uncertainties overwhelmed 

other uncertainties, which helped to prioritize the significance of the uncertainties. 

For the generic transportation mission, over half of the cases with geometric 

variations were sized to have a heavier gross weight than that obtained by the 

deterministic sizing method. The heavier gross weight was induced by higher 
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required power and energy that are result in heavier electric propulsion component 

weight. This situation implied that deterministically sized aircraft had a high 

possibility of mission failure and low reliability of successful transportation in the 

conceptual design phase. There is a chance that fault design problems can be 

captured and fixed during the later design phases, but that situation means there will 

be an increase in cost and a delay in the project schedule. The use of uncertainty-

based sizing processes could prevent these consequences from occurring by ensuring 

that a proper design margin or bumper has been established during the conceptual 

design phase. 
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5.2. Originality and Contribution 

The ultimate objective and contribution of this dissertation focuses on to derive 

more realistic, reliable, rational, and reasonable outcomes in the conceptual design 

phase. The originality and major contributions of this dissertation can be summarized 

as follows. 

• An improved mathematical formulation is developed and presented to realize 

more plausible and realistic situations where multiple technologies are infused 

simultaneously. The newly developed formulation is based on the 

multiplicative approach instead of the previous additive approach. The 

multiplicative approach makes it able to spontaneously avoid unphysical 

situations such as zero-mass or negative mass as a result of technology 

infusion as mentioned in Section 2.1.4. 

• Interaction between technologies are simulated by adopting TCIM and an 

interaction factor. The original TCM was expanded to incorporate additional 

information of interactions or interference between technologies with the 

assumptions that only pairwise relationship is considered. The interaction 

information embedded in TCIM is based on asymmetric relationships between 

technologies as shown in Section 2.1.3.. Using the elements of TCIM, an 

interaction factor that is also defined by the multiplicative approach is 

calculated and used for a net change of system attributes by technologies. The 

use of TCIM and interaction factor also leads to more realistic and plausible 

results during technology portfolio assessment. 
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• “Model uncertainty” from the surrogate models, which has been generally 

neglected before, is considered and included when evaluating technology 

infusion results in the surrogate-model-based environment. It was shown that 

the selected technology portfolios could be different depending on the 

inclusion of the model uncertainty from the surrogate model (Section 4.1.8). 

The inclusion of this uncertainty would lead to more reliable and less risky 

determination for the technology portfolio assessment in the conceptual 

design phase. 

• The developed framework for technology portfolio assessment has the 

platform-agnostic feature. Though it has been applied to advanced air mobility 

to demonstrate its methodology and validity, the framework can be applied to 

a wide range of system or subsystem development projects to decide which 

technologies to prioritize. In addition to that, eco-systems of future aviation 

such as operation of advanced air mobility can be subject to the framework if 

related technologies and their impacts are identified. The framework is also 

able to help develop roadmaps for future technologies. 

• Uncertainty-based sizing framework for advanced air mobility is developed 

to analyze the uncertainty effect on the performance and sizing results, and to 

present reliable sizing result in the conceptual design phase for the first time. 

To this end, a deterministic sizing tool and a cost estimation tool for advanced 

air mobility were firstly developed by co-working with colleagues, and then 

they are expanded to the uncertainty-based frameworks. The works done using 
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this uncertainty-based framework is a kind of prerequisite for the reliability-

based design optimization. Presenting the uncertainty-based sizing result 

could reduce the number of design feedbacks and iterations from the further 

design phases, which resulting in successful advanced air mobility 

development program. 

• “Model uncertainty” from the simplified analysis models, one of the epistemic 

uncertainties, is quantified by adopting model uncertainty parameter that is 

defined as a ratio between a quantity of interest obtained by the used analysis 

method and that obtained by higher fidelity method. This epistemic 

uncertainty should be considered especially in the conceptual design phase 

where most analysis methods used have relatively low fidelity. With the model 

uncertainty parameters, the confidence interval induced by the used analysis 

methods can be modeled and presented in the sizing results. 

• Model uncertainty parameter, the method used in this dissertation for 

incorporating uncertainty effects from less reliable analysis methods, is the 

generalized formulation. They can be applied to a variety of other aircraft 

sizing and analysis frameworks or analysis tools for disciplines with the same 

approach. 
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5.3. Future Work Recommendation 

The recommendations for future work for the technology portfolio assessment 

method and uncertainty-based sizing method presented in this dissertation can be 

summarized as follows. 

An approach to modeling the impact of technology on a system can be improved. 

The definition of TRL applied in the current study was slightly modified by SAIC 

[99] from the perspective of the system level since the original definition of TRL 

was defined at the component technology level. In lieu of this approach, some of the 

previous studies [15,16] presented other indices for the readiness level such as the 

integration readiness level, and system readiness level. Adopting these readiness 

levels may be an effective method for taking a systematic approach, but at the same 

time, it might complicate the problem. In terms of TRL and the shape of 

technological uncertainty, the shape function of technology impact is assumed to be 

a function of the TRL of each technology. If more practical data are obtained from 

the reality, better assumptions could be developed to lead to more practically 

meaningful results [10]. Nevertheless, this assumption results in high dependency of 

the impact factor distribution on the TRL itself, which makes it another uncertainty 

source to determine which number is appropriate for TRL of a certain technology. 

Although, in this dissertation, the averaged TRL values obtained from the literature 

surveys were used in the exemplary application project, handling this aspect could 

lead to more practical and reasonable results for technology selection. 
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Second, the timeframe of each technology development speed is assumed that the 

technology will be sufficiently developed to reach high TRL when production of 

advanced air mobility starts. However, the development speed of each technology is 

different from each other in nature. In this dissertation, it was assumed that the 

parameter for RDT&E cost increase was much larger for low TRL technologies to 

compensate for the lag in development when compared to high TRL technologies. 

Developing a more quantitative formulation to address the timeframe issue may be 

one of the greatest steps toward achieving more meaningful and practical results. 

Third, from the perspective of uncertainty-based sizing, it is worth applying the 

method to more sophisticated and comprehensive analysis modules in order to 

capture the system response by physical parameter variation in the component level. 

For example, the implementation of advanced modeling methods for electric motors, 

inverters, and batteries based on their physical characteristics could result in more 

abundant materials to help understand the entire system. 

As well, reliability-based design optimization by changing the design variables 

with uncertainties could also be a promising step forward. The direct uncertainty-

based sizing process conducted in this dissertation requires substantial 

computational resources comparable to computational fluid dynamics analysis, from 

many hours to several days, which makes it difficult to carry out direct design 

optimization with uncertainties. Instead, for efficient optimization, the surrogate 

model-based design optimization method can be applied by estimating the mean and 

standard deviation that are obtained from the sizing with uncertainties. 
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Finally, the integration of the two processes, namely the assessment of the 

technology portfolio as well as sizing with uncertainties or optimization, should also 

be considered. Currently, the two frameworks were not coupled since the 

computational resource problem. The expected computational time in total is 

approximately over 50 days under personal desktop environment for constructing a 

surrogate model; 1000 cases for DOE of surrogate model, 5 seconds of averaged 

RISPECT+ runtime, and 1000 samples for MCS of each case. There is a possibility 

that the requirements and proper technology combinations may vary depending on 

the design variables, the geometry of the vehicle, and the uncertainties in the 

variables. They might be not independent of one another. The uncertainty effect on 

performance and weight could also be different depending on the design space and 

used technologies. To this end, a sophisticated mathematical formulation that 

connects the two processes is required, but the formulation should be both time- and 

resource-efficient in order to conduct iterative calculations within the available 

computational resources. This improvement eventually leads to reliable and practical 

design results in the conceptual design phase. 
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국문 초록 

 

지난 수십 년 동안, 항공기의 여러 학제에서 성취한 획기적인 

기술발전으로 오늘날 미래항공 모빌리티로 통칭되는 새로운 항공 

시스템이 출현하였다. 특히, 전기동력 추진기술의 성숙도 향상은 

미래항공 모빌리티의 다양한 형상과 도심 지역에서의 운용을 가능하게 

만든 가장 강력한 요인 중 하나이다. 

미래항공 모빌리티의 새로운 특성은 항공기 설계의 시작점인 초기 

설계단계에서 지난 반세기 동안 축적된 과거 데이터를 사용하는데 

어려움을 유발한다. 따라서 미래항공 모빌리티의 초기 사이징은 

물리이론 기반의 설계 접근법을 요구하고, 이와 동시에 개념설계단계의 

중요성이 이전에 비해 더욱 상승하였다. 신뢰성 있는 미래항공 모빌리티 

설계결과를 도출하기 위한 노력의 일환으로, 본 연구에서는 통계적, 

확률론적 방법론을 접목시켜 개념설계단계에서 다뤄지는 중요한 두 가지 

주요 업무를 개선하였다.  

첫 번째는 효용 최대화와 비용 최소화로 항공기 개발을 성공으로 

이끌 기술 포트폴리오를 결정하는 "기술평가" 업무이다. 본 연구에서 

제시된 불확실성 기반 기술 포트폴리오 평가 프레임워크는 기술 간의 

상호 작용과 기술 효과 예측에서 개선된 수학모델을 수립하였다. 또한 

근사모델에 존재하는 불확실성을 고려하여 보다 현실적이고 실용적인 

결과를 도출할 수 있다. 이 방법론을 통해 개념설계단계에서 의사결정에 
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필요한 정보 및 지식 수준을 높일 수 있으며, 이는 결과적으로 미래항공 

모빌리티의 개발비용과 반복적인 설계 피드백 횟수를 줄일 수 있다. 

두 번째는 상세설계단계를 위해 초기에 전반적인 형상과 중량 분포를 

계산하는 "사이징"이다. 본 연구에서는 미래항공 모빌리티 설계를 위한 

결정론적 사이징 프레임워크를 우선 제시하고, 이를 기반으로 하여 

형상변수와 단순화된 수학적 해석 모듈에 존재하는 불확실성을 

몬테카를로 시뮬레이션을 통해 사이징 프레임워크에 반영하였다. 

불확실성을 고려한 사이징은 사이징 결과에 적절한 설계여유를 확보하고, 

초기설계단계에서 불확실성에 대한 시스템의 반응을 이해할 수 있도록 

하여 의사 결정론자가 이후 설계단계를 준비하는데 도움이 될 수 있다. 

두 가지 개선된 프레임워크는 전기동력 수직이착륙기 형태의 가상의 

미래항공 모빌리티 설계에 적용되었다. 예제 프로젝트는 제시된 두 

방법론의 적용 및 결과분석에 대한 예제로서 이를 통해 방법론의 

유효성을 확인할 수 있다. 불확실성 기반의 기술 포트폴리오 평가 

프레임워크와 미래항공 모빌리티 사이징 프레임워크 두 가지 모두 

범용적인 방법론으로서 제시된 예제뿐만 아니라 다양한 항공기 개발 

프로그램에 적용할 수 있다. 
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