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Abstract

Motion and Depth Estimation for Event and Frame Cameras

Haram Kim

Department of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

Event cameras can stably measure visual information in high-dynamic-range and high-speed

environments that are challenging for conventional cameras. However, conventional vision al-

gorithms could not be directly employed to the event data, because of the frameless and asyn-

chronous characteristics of event data. For several years, various applications for event cameras

have been studied such as motion and depth estimation, image reconstruction with high-temporal

resolution and object segmentation. Here, I propose the rotational motion estimation method

with contrast maximization under high-speed motion environments. The proposed rotational mo-

tion estimation method runs in real-time and can handle the drift error accumulation, which the

existing contrast maximization methods have not dealt with.

However, it is still difficult for event cameras to replace frame cameras in non-challenging

normal scenarios. In order to leverage the advantages of event and frame cameras, I conduct

a study for the heterogeneous stereo camera system which employs both an event and a frame

camera. The proposed system estimates the semi-dense disparity in real-time by matching het-

erogeneous data of an event and a frame camera in stereo. I propose an accurate, intuitive and

efficient way to align events with 6-DOF camera motion, by suggesting the maximum shift dis-

tance method. The aligned event image shows high similarity to the edge image of the frame

camera. The proposed depth estimation method runs in real-time and can estimate poses of an

event camera and depth of events in a few frames, which can speed up the initialization of the

event camera system. Additionally, I propose a feature tracking and a pose estimation methods

that can operate in a hetero-stereo camera when the frame camera fails. The codes are released
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to the public on my project page, and I expect to contribute to the event camera community:

https://haram-kim.github.io

Keywords: Event cameras, pose estimation, depth estimation, hetero-stereo event-frame

camera, contrast maximization

Student Number: 2019-30458
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1
Introduction

Event cameras, also known as dynamic vision sensors or neuromorphic cameras, are bio-inspired

vision sensors that record events rather than capture frame images. Event cameras have a dif-

ferent information recording mechanism from ordinary cameras as in Fig. 1.1. Event cameras

asynchronously record the brightness change of a pixel, and their detailed properties can be

found in [3]. Generally, one event data (event point) includes the spatio-temporal information

as follows.

ek = (xk, tk, pk), where xk = (xk,yk). (1.1)

For an event point ek, xk is the pixel coordinate, tk is the time when the event occurred and

pk ∈ {+1,−1} is the event polarity (brightness increase over threshold: +1, decrease: −1).

When the brightness changes at a certain pixel of event camera, event data is recorded as

Eq. (1.1) if the following Eq. (1.2) is satisfied.

∆lnI(x, t) := lnI(x, t)− lnI(x, tprev)> p ·Cth, (1.2)

where I(x, t) is the intensity at a pixel x, and Cth is the event contrast threshold, and tprev is the

1



(a) (b) (c)

Figure 1.1: Frame and event data examples: (a) frame image (b) events top view (c) events diagonal view.

(a) (b) (c) (d)

Figure 1.2: Frame and event data in challenging environments: (a) frame image with fast motion, (b)
aligned event image with fast motion, (c) frame image in HDR, (d) aligned event image in HDR.

time of the most recent event recorded at the very pixel coordinate. If ∆lnI(x, t)>Cth, the event

data will be recorded as e = (x, t,+1) (ON-event). Else if ∆lnI(x, t) < −Cth, the event data will

be e = (x, t,−1) (OFF-event).

Event cameras have characteristics of high dynamic range (HDR), much less motion blur,

energy efficiency and low latency which could broaden the applicability of computer vision in

challenging environments. Thus, event cameras can show better performance than frame cam-

eras in challenging scenarios such as fast-moving environments or high-dynamic-range scenes.

In order to take advantages of event cameras, various applications have been studied for event

cameras [4–9]. In the dissertation, I cover the methods for motion and depth estimation using

event and frame cameras.
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1.1 Literature Survey

1.1.1 Frame image reconstruction from events

There have been attempts to adapt the existing vision algorithm to the event camera, by recon-

structing the frame images from events only: [10] and [11]. The author of [12] reconstruct frame

images with high temporal resolution, by using the frame and event cameras. However, unwanted

artifacts, such as bleeding effect or local black region, remain and if a still image is included or

once the algorithm fails to reconstruct the image. The artifacts will continue to adversely affect

later reconstruction performance.

1.1.2 Event based Motion Estimation

Some studies [13–22] estimated the camera ego-motion using event cameras. The study of [13]

firstly performed a 6-degree of freedom (DOF) motion estimation through the extended Kalman

filter (EKF) using an event camera only. The authors of [14] estimated 6-DOF motion using

an event camera with a photometric map. They built a photometric depth map by applying the

existing dense reconstruction method with an RGB-D camera. The study of [15] also utilized

an event camera without any external sensor. The authors of [15] obtained depth information by

applying the disparity space image (DSI) in [23], and constructed a 3D edge map with reliable

depth. Then, pose tracking was performed through the image-to-model alignment. Although

the methods [13–15] can estimate the rotational motion, they are not suitable for pure rotation

estimation because they require constraints for depth estimation in the initialization phase such

as a planar motion assumption.

Studies such as [1, 2, 24, 25] have been conducted to estimate rotational motion. The authors

of [2] proposed real-time panoramic tracking and mapping for event cameras. They utilize the

panoramic map (2D spherical mosaic map) as in [24] and estimated the rotational motion by

tracking the camera trajectory on the panoramic space. In [1], the authors warped the event points

considering the time of the event that occurred. The contrast of images obtained from the warped
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event points was used as the objective function. The authors estimated the angular velocity by

solving the contrast maximization problem. They extended the idea and proposed a method to

estimate the depth and optical flow in addition to the rotational motion through [26]. In [25], the

global optimal solution is presented to the contrast maximization problem through the branch-

and-bound (BnB) approach. Although the theoretical value is high, the heavy computational load

limits the actual use.

1.1.3 Event based Depth Estimation

A significant number of vision algorithms employ 3D scene information to demonstrate more

diverse applications. Similarly, in order to extend the limited application of a single event camera,

stereo event studies [27–38] aimed to estimate the depth. These studies were conducted to utilize

event cameras as stereo, and several attempts have been made to extract meaningful features from

events. In [28], semi-dense 3d reconstruction was performed employing a stereo event camera.

The method estimated the depth on edges where events frequently spiked, considering multiple

viewpoints. The authors of [27] estimated the disparity after aligning events with optical flow

in consideration of camera motion. Since it is difficult to accurately estimate the camera pose

with event data only, the authors used ground truth poses. Even though stereo event cameras can

utilize the depth information, there is a fundamental issue that the events do not spike in static

situations and the advantage is revealed only in specific scenarios.

In order to extend the usability of event cameras in general scenarios, several attempts [39–43]

have recently been made to combine the advantages of frame and event, which can also enable

the various applications of frame cameras.

In [39], the author attempted to use stereo cameras and event cameras together. When com-

bining an event camera with a stereo camera or a RGB-D camera, the individual depth of an event

is still unknown due to asynchronous characteristic. To combine events and frames, the author

conducted the dense and continuous disparity estimation method using camera motion. To ac-

complish the same goal as [39] in a monocular camera, the authors of [40] estimated depth map

in high frame rate from the monocular event camera which also provides frame images. Stud-
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ies [39–42] use two types of vision data, but cannot operate as stereo because frames and events

are acquired from a monocular camera.

So far, there has been a lack of study on stereo event frame studies that can estimate the depth

of events in general scenarios. In [44, 45], the authors conveyed a study to perceive 3D scene by

firstly configuring an event and a frame camera as stereo. In [44], by using the event-and-frame

camera attached to the robot arm, the author estimated the disparity through stereo matching with

binary frame edge and binary event edge images. The binary frame edge images are generated

from frame images, and the binary event edge images are from the event data with a high-pass

filter and non-maximal suppression.
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Figure 1.3: Algorithm flowchart.

1.2 Motivation

1.2.1 Real-time Rotational Motion Estimation with Contrast Maximiza-

tion over Globally Aligned Events

The contrast maximization method [1, 26] showed that event cameras can estimate high-speed

motion. Also, inertial measurement units (IMUs) are accurate for estimating angular velocity

and can cope with fast motion. However, when measuring the angular position, there is a prob-

lem in that a drift error is accumulated along with the integral. Existing contrast maximization

cannot handle drift error accumulation because it estimates the parameter (rotational motion,

optical-flow, depth) with events only in the current temporal window. Utilizing more events is

computationally demanding, and the linearization model cannot be applied to events observed

over a long period.

In the dissertation, I propose a method for contrast maximization which utilizes the events

observed for a long time through the global events alignment. The proposed method estimates

the rotational position by localizing the event points on the globally aligned events, as depicted

in Fig. 3.1. The globally aligned events refer to the alignment of all event points to the spatial

coordinates of the initial time and are different from the map that represents the intensity of the
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surrounding environment. I propose the contrast maximization over the globally aligned events

with a little additional computational load. I expect that the proposed method can be employed in

other applications of contrast maximization framework such as estimating depth and optical-flow.

1.2.2 Real-time Hetero-Stereo Matching for Event and Frame Camera with

Aligned Events Using Maximum Shift Distance

In order to extend the applications of the event camera, I tackle the problem of how to associate

event data and frame images in stereo event frame camera settings. I present an accurate and

intuitive way to align asynchronous event data. In order to accurately describe the edge of the

scene, the proposed method warps events by only considering camera motion and disparity. Thus,

the proposed event aligning module is parameter-free regardless of the speed of camera motion

and data domain. In [44], binary event edge images are obtained from the high-pass filter of [46]

with fixed parameters. Such binary edge images do not describe the scene properly on evaluation

dataset of Section 4.2. Thus, [44] shows low accuracy on disparity estimation as in Table 4.1.

While the method [27] utilized the ground truth camera pose and assumed that the depth of all

events in a short time window only depends on the pixel coordinate (not the temporal coordinate),

The proposed method estimates the camera pose from the initial matching method and assume

that events have the same depth value only at the reference time. For aligning events with 6-DOF

camera motion, I extend the accurate warping method of [47] rather than using the first-order

approximation of the warping function.

The proposed method can produce an aligned event image that looks similar to an edge im-

age as in Fig. 4.2.(e), and the edge features are appropriately represented even when uniformly

sampled events at 10% of the total are used as in Fig. 4.7. Additionally, I introduce the concept

of maximum shift distance to efficiently compute aligned event images. I expect to contribute to

the event camera community by suggesting an intuitive and efficient way to present edge images

from event data.
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1.2.3 Feature Tracking and Pose Estimation for Hetero-Stereo Camera

Existing visual odometry (VO) and simultaneous localization and mapping (SLAM) algorithms

can operate on the hetero-stereo camera setup, by utilizing the frame images and the depth images

obtained from the proposed stereo matching method. However, under challenging scenarios (i.e.

high-dynamic-range and fast camera motion), frame images cannot be used and VO and SLAM

algorithms fail. For this situation, I propose a pose estimation and a feature tracking method

using an event camera instead of a frame image to build a framework that guarantees robustness.
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1.3 Contribution and Outline

1.3.1 Real-time Rotational Motion Estimation with Contrast Maximiza-

tion over Globally Aligned Events

• The proposed method can accurately estimate the rotational position and velocity during

fast movements by introducing the contrast maximization over globally aligned events.

• The proposed method additionally requires less than 50% of the computational load of the

existing contrast maximization to use globally aligned events.

• The proposed method operates in real-time, and the source code and the data sets are open

to public.

1.3.2 Real-time Hetero-Stereo Matching for Event and Frame Camera with

Aligned Events Using Maximum Shift Distance

• I provide the hetero-stereo matching methods in order to associate different data types of

event-frame cameras and estimate disparities.

1. Initial matching method with time-gradient images for fast initialization of the system

(Section 4.1.1)

2. Aligned-event-based matching method with edge images for accurate stereo matching

(Section 4.1.3)

• I provide an accurate and intuitive event aligning method to describe the edge-like images,

which utilizes internally estimated camera poses (Section 4.1.2).

• I suggest the concept of maximum shift distance to align events efficiently (Section 4.1.4).
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1.3.3 Feature Tracking and Pose Estimation for Hetero-Stereo Camera

• For event cameras, I provide the continuous-time feature motion model and propose a

feature tracking method with contrast maximization (Section 5.1).

• I propose a pose estimation method using events and depth images (Section 5.2).
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2
Background

2.1 Rigid Body Motion

In the dissertation, the 3D rotation and 3D transformation matrix are parameterized as velocity

vectors (twist) according to lie group theory. The time resolution of event data is very high. I

obtained the linearly approximated 3D motion of individual events through the parameterized

velocity.

2.1.1 Lie group for 3D rotation

For the angular velocity ω = [ω1,ω2,ω3] and the time t, the 3D rotation is represented as follows:

R(t) = eω̂t , (2.1)
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where,

ω̂ = G1ω1 +G2ω2 +G3ω3 (2.2)

=


0 0 0

0 0 −1

0 1 0

ω1 +


0 0 1

0 0 0

−1 0 0

ω2 +


0 −1 0

1 0 0

0 0 0

ω3 (2.3)

=


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.4)

2.1.2 Lie group for 3D transformation

For the twist (linear velocity) ξ = [ν ,ω] = [ν1,ν2,ν3,ω1,ω2,ω3] and the time t, the 3D transfor-

mation is represented as follows:

T(t) =

R(t) t(t)

01×3 1

= eξ̂ t , (2.5)

where,

ξ̂ = G1ν1 +G2ν2 +G3ν3 +G4ω1 +G5ω2 +G6ω3 (2.6)
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ξ̂ =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

ν1 +


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

ν2 +


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

ν3 (2.7)

+


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

ω1 +


0 0 1 0

0 0 0 0

−1 0 0 0

0 0 0 0

ω2 +


0 −1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

ω3

=


0 −ω3 ω2 ν1

ω3 0 −ω1 ν2

−ω2 ω1 0 ν3

0 0 0 0

 . (2.8)

In the dissertation, I expressed the relative pose from the n−1th coordinate to the nth coor-

dinate as Tn
n−1 and Tn−1,n, which satisfying:

Tn
o = Tn−1

o Tn
n−1 (2.9)

and

To,n = To,n−1Tn−1,n. (2.10)

Let x(τn) be the position of an event in 3D space at the time of nth coordinate τn, then the

following equation holds:

x(τn−1) = Tn
n−1x(τn) (2.11)

and

x(τn−1) = Tn−1,nx(τn). (2.12)
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2.2 Rectification

Figure 2.1: The camera model and coordinate.

The data set, which employs stereo event camera and stereo frame camera [48–51], provides

rectified projection matrix for the stereo event camera and stereo frame camera, respectively.

However, hetero stereo event and frame camera setup is not considered the data set. In this

section, I will explain how to compute a calibration matrix with extrinsic parameters.

Let To, f be the transformation of world to the frame camera, and To,e be the transformation

of world to the event camera. The x, y and z-axes are colored as red, green and blue, respectively

in Fig. 2.1 and Fig. 2.2. Then, the principal axis is parallel to the blue arrow.

The center of the frame camera is to, f and the center of the event camera is to,e, and the

rotation matrix can be decomposed to three vectors as R = [rx,ry,rz]. Then, the x-axis of the

rectified coordinate, rx
o,r, has to be in the epipolar plane:

rx
o,r =

to,e− to, f

‖to,e− to, f ‖
(2.13)

The y and z-axes of the rectified coordinate are not constrained by epipolar plane. Instead,

the y and z-axes have to be perpendicular to the x-axis. In order to find two axes, I compute the
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Figure 2.2: The camera coordinates before rectification.

Figure 2.3: The camera coordinates after rectification.
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y-axis and the z-axis by processing cross-product twice to the temporary z-axis. The temporary

z-axis determines the y-offset of the rectified image coordinate. If there is a large empty space at

the top or bottom of the rectified image, the temporary z-axis should be adjusted. Most simply,

the temporary z-axis r̃z
o,r can be set as rz

o, f . In this dissertation, I set the z-axis as follows:

r̃z
o,r = rz

o, f + rz
o,e (2.14)

Then, ry
o,r and rz

o,r are computed as follows:

ry
o,r =

r̃z
o,r× rx

o,r

‖r̃z
o,r× rx

o,r‖
(2.15)

and

rz
o,r =

rx
o,r× ry

o,r

‖rx
o,r× ry

o,r‖
(2.16)

The orientation of the rectified coordinate Ro,r = [rx
o,r,r

y
o,r,rz

o,r] is now obtained. Finally, the

rectified matrices for the frame camera and the event camera are computed as follows:

Rr, f = Rᵀ
o,rRo, f (2.17)

Rr,e = Rᵀ
o,rRo,e (2.18)

2.3 Non-linear Optimization

The pose estimation and the feature tracking is proposed by using the contrast maximization ap-

proach. Various optimizers can be considered to solve contrast maximization, from the basic gra-

dient ascent (or descent) optimizer to Gaussian Newton, Levenberg–Marquardt (LM), Adaptive

Gradient (Adagrad), Root Mean Square propagation (RMS-prop) and Adaptive Moment Estima-

tion (Adam).

However, some optimizers are not applicable to contrast maximization problem. The contrast
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Figure 2.4: Cost function in contrast maximization problem for rotational velocity estimation. In order to
visualize cost in 3D space, the cost is depicted with varying the first and second element of the rotational
velocity.

cost of the rotational velocity is shown in Fig. 2.4. The Gaussian newton and Levenberg–Mar-

quardt optimizers adjust the step size using the second-order gradient, and it converges fast in

convex optimization problems. However, most contrast maximization problems have strong non-

linearity and are not convex (for minimization) or concave (for maximization) optimization prob-

lems. Therefore, I apply the first-order gradient-based optimizer. Among the first-order gradient

methods, the proposed method used the RMS-prop method, which is an optimization method that

can converge quickly by considering momentum.

For Jacobian ∇xJ(x) of the cost J(x), RMS-prop updates the state x as follows.

G←− γG+(1− γ)(∇xJ(x)∗∇xJ(x)) (2.19)

x←− x+
η√

G+ ε
∇xJ(x) (2.20)

where G is the momentum variable, γ is the smoothing factor (0 < γ < 1), ∗ is the element-wise

product (Hadamard product), η is the step size and ε = 1e−12 is an offset to avoid division by

zero problem.
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3
Real-time Rotational Motion Estimation with

Contrast Maximization over Globally Aligned

Events

In this chapter, I propose a method for contrast maximization which utilizes the events observed

for a long time through the global events alignment. The proposed method estimates the rotational

position by localizing the event points on the globally aligned events, as depicted in Fig. 3.1. The

globally aligned events refer to the alignment of all event points to the spatial coordinates of

the initial time and are different from the map that represents the intensity of the surrounding

environment. I propose the contrast maximization over the globally aligned events with a little

additional computational load. I expect that the proposed method can be employed in other

applications of contrast maximization framework such as estimating depth and optical-flow.
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(a) (b)

(c)

Figure 3.1: Snapshots of data set ESIM:OpenGL. (a) is a gray image for comparison. (b) and colored
red and blue in (c) show locally aligned events, and a wide view of a globally aligned event image with
estimated poses is shown in grayscale in (c). Existing contrast maximization utilizes the events only in
the current temporal window, as in (b). On the other hand, the proposed method calculates the contrast
considering globally aligned events as in (c).
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Figure 3.2: Overview of the rotational motion estimation algorithm.

3.1 Method

The proposed algorithm simultaneously estimates the rotational motion and aligns all events.

This chapter will describe the rotational motion estimation module by dividing the details into

the estimation of rotational velocity, global events alignment, and the estimation of rotational

position. I will explain the modified rotational velocity estimation method from [1], and then

explain a new process for estimating the rotational position using globally aligned events. The

block diagram of the proposed method is depicted in Fig. 3.2.

3.1.1 Event Image and Warping Function

It is difficult to obtain enough data from just a single event point to build a meaningful model.

Thus, most algorithms process the group of events observed in a certain temporal window or

the constant number of events. If the camera moves slowly, a set of events may include multiple

rotational motions which cannot be expressed as a single rotational motion. This can be addressed

by reducing the time interval or the number of events so that the set of events corresponds to a
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Figure 3.3: Polarity-time graph for the temporal window method.

single motion. However, when the camera moves fast, the method with a small constant number

can become inefficient as it may create many event bundles within a short time interval. Thus, I

use the constant temporal window with time interval ∆τ and represent the bundle of events in a

time period [τm,τm+1] as

E|τm+1
τm = {ek|τm ≤ tk ≤ τm+1}, (3.1)

where τm+1 = τm +∆τ . The conceptual illustration is depicted in Fig. 3.3.

Let ωm be the angular velocity for the event bundle E|τm+1
τm . Then, the warping function for an

event ek is defined as

w(xk,ωm,δ tk|R) = R · exp(ω̂mδ tk)x′k. (3.2)

Here, δ tk is the time difference between the event point time tk and the reference time τm for

the event ek i.e. δ tk = tk− τm. R is the rotation matrix and if it is omitted, the default value of R

is the 3× 3 identity matrix. The hat operator ω̂m ∈ R3×3 represents the cross-product matrix of

ωm, and x′k = [x′k,y
′
k,z
′
k]

T ∈ R3 is an inverse-projected point from xk into the camera coordinate.

Then, I obtain the event image aligned with warping function for a pixel x for the time interval

[τm,τm+1] as

Iraw
m (x,ωm|R) =

Nm

∑
k=1

pk ·δd(x−w(xk,ωm,δ tk|R)), (3.3)

where δd is the Dirac delta function, and Nm is the cardinality of E|τm+1
τm = {ek}Nm

k=1. To abbreviate

notation, I omitted the projection function that projects events from the camera coordinate to the

image coordinate when obtaining the event image. In the contrast maximization, as convergence
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in areas with higher intensity is strengthened, events in areas with relatively low intensity are not

aligned properly. To address this, the event images are clamped with threshold ρ as

Im(x,ωm|R) =

±ρ |Iraw
m (x,ωm|R)|> ρ

Iraw
m (x,ωm|R) otherwise.

(3.4)

I let Im(ωm|R) denote the matrix whose elements are Im(x,ωm|R).

3.1.2 Estimation Problem of Rotational Velocity

The cost function Eq. (3.5) is used to estimate the angular velocity for the interval [τm,τm+1] with

the RMS-prop optimizer.

maximize
ωm

J(ωm), (3.5)

where J(ωm) = ‖Im(ωm)‖2 , (3.6)

where ‖·‖2 denotes the squared Frobenius norm. The cost function J(ωm) is the contrast of the

event image of the m-th temporal window, which equals the sum of squares reward in [52]. Its

Jacobian is computed as follows.

dJ(ωm)

dωm
=

Nm

∑
k=1

2Im(xk,ωm) ∇Im(xk,ωm) (3.7)

·

 −x̄kȳk fx (1+ x̄2
k) fx −ȳk fx

−(1+ ȳ2
k) fy x̄kȳk fy x̄k fy

δ tk,

where ∇Im(xk,ωm) is the gradient of Im(xk,ωm), fx, fy is the camera focal length in the pro-

jection function, and x̄k, ȳk is the normalized position satisfying x̄k = x′k/z′k, ȳk = y′k/z′k.
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(a) (b)

(c) (d)

Figure 3.4: Example of warping event data. (a), (c) event points before warping. (b), (d) event points
warped with the angular velocity which maximizes the event image contrast. The blue and red dots repre-
sent different polarities. As a result of warping, events are aligned parallel to the time axis.

3.1.3 Warping Function with Rodrigues’ Rotation Formula

When warping as shown in Fig. 3.4, each event point should be warped with different δ tk corre-

sponding to each event in Eq. (3.2), which has a high computational load. In this subsection, I

describe an accurate warping in a matrix form that does not require computation of Eq. (3.2) per

each event.

Within this subsection, the index of the temporal window m is omitted for the sake of no-

tational simplicity. For each temporal window, ~δ t ∈ R1×Nm is the stack of δ tk’s which satisfies
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δ tk = tk− τm ≤ ∆τ , and~x ∈ R2×Nm is the stack of xk.

The authors in [1] proposed a first-order approximation of the warping function as follows:

~w(~x,ω, ~δ t|R) = R · (~x′+ ω̂ ·~x′ ∗ ~δ t), (3.8)

where ∗ is the element-wise multiplication. Since ω̂ ∈ R3×3, ~x′ ∈ R3×Nm and ~δ t ∈ R1×Nm , the

right-hand side of Eq. (3.8) satisfies the dimension~w(~x,ω, ~δ t|R)∈R3×Nm , while w(xk,ω,δ tk|R)∈

R3×1.

Instead of the linear formula of Eq. (3.8), in order to compute the warping accurately, the Ro-

drigues’ rotation formula is adapted in the proposed warping function Eq. (3.9) for exact warping.

Furthermore, the second-order approximation of the warping function can be done by the Taylor

expansion of trigonometric functions as in Eq. (3.10).

~w(~x,ω, ~δ t|R) = R · {~x′+ ω̂

|ω|
·~x′ ∗ sin(|ω| ∗ ~δ t) (3.9)

+
ω̂2

|ω|2
·~x′ ∗ (1− cos(|ω| ∗ ~δ t))}

≈ R · (~x′+ ω̂ ·~x′ ∗ ~δ t +
1
2

ω̂
2 ·~x′ ∗ ~

δ t2). (3.10)

3.1.4 Global Events Alignment

The proposed algorithm aligns all observed events and uses them to solve the drift error prob-

lem in the estimation of rotational position. For the convenience of calculation, The event points

are normalized to have the unit distance to the origin. Since the depth of the event point is not

necessary for the rotational motion estimation, the normalization does not affect the algorithm.

The proposed algorithm continuously aligns events to the initial camera coordinate as shown in

Fig. 3.5a. Here, wG(E,R) is the warping function that rotates event points E by R with respect

to the body frame. The algorithm warps the event points E|τm+1
τm = {ek}Nm

k=1 to the camera co-

ordinate at time τm as locally aligned events Ē|τm+1
τm = ~w(~x,ωm, ~δ t), and then warps the locally

24



aligned events Ē|τm+1
τm with a rotation matrix Rm to the initial camera coordinate at time τ0 as

wG(Ē|
τm+1
τm ,R−1

m ). The globally aligned events Ē|τm
τ0 shown in Fig. 3.6 are updated as

Ē|τm+1
τ0 ←− Ē|τm

τ0
+wG(Ē|

τm+1
τm ,R−1

m ). (3.11)

(a)

(b)

Figure 3.5: Polarity-time graph for (a) global events alignment and (b) estimation of rotational position.
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3.1.5 Estimation of Rotational Position

In this section, I will discuss how to obtain Rm which is used in global alignment. The pro-

posed method estimates the rotational position which maximizes the contrast between the locally

aligned event image and the globally aligned event image at the camera coordinate at reference

time τm as depicted in Fig. 3.5b. In the process of maximization, warping of global events is

burdensome to handle many events in real-time. To address this problem, I use a strategy that

estimates the update parameter for the initial rotational position. The global events were warped

only once for the initial rotational position Rinit
m = Rm−1exp(ω̂m−1∆τ), and the rotational position

update parameter Rupd
m was estimated by warping the events in the current temporal window in

the optimization stage.

The objective function in the proposed contrast maximization of Eq. (3.12) is defined as the

contrast of the sum of the locally aligned event image IL and the global event image IG. The

image with aligned events Ē is represented as I(Ē), so the global event images of the camera

coordinate at time τm can be represented as I(wG(Ē|τm
τ0 ,Rm)).

maximize
ωm,R

upd
m

J(ωm,Rupd
m ) =

∥∥∥IL(ωm,Rupd
m )+ IG(Rinit

m )
∥∥∥2

, (3.12)

where

IL(ωm,Rupd
m ) = Im(ωm|Rupd

m ), (3.13)

IG(Rinit
m ) = I(wG(Ē|τm

τ0
,Rinit

m )). (3.14)

Here, the polarity of the local event image and the global event image is ignored for estimating

rotational position because the polarity may change according to the camera movement. When

estimating the rotational velocity, the polarity of the local event is considered.
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The Jacobian matrix for the updating Rupd
m is computed as follows.

dJ(ωm,R
upd
m )

dRupd
m

=
Nm

∑
k=1

2(IL + IG) (∇IL +∇IG)

·

 −x̄kȳk fx (1+ x̄2
k) fx −ȳk fx

−(1+ ȳ2
k) fy x̄kȳk fy x̄k fy

 , (3.15)

where IL, IG are the intensity of the event image IL, IG at the pixel xk, ∇IL and ∇IG are the

intensity of gradient of IL and IG at the pixel xk, respectively.

The proposed algorithm solves the cost function Eq. (3.12) with RMS-prop optimizer to esti-

mate the angular velocity and the rotational position simultaneously. Here, IG,∇IG can be com-

puted in advance, because Rinit
m does not change. In the optimization process, IL,∇IL and the last

matrix term in Eq. (3.15) are only computed, which are also used computed for the rotational

velocity estimation in Eq. (3.7). Then Rm is updated as follows.

Rm = Rinit
m ·Rupd

m . (3.16)

Through this strategy, the proposed algorithm runs in real-time by reducing the amount of com-

putation.
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3.2 Experimental Results

I evaluate the proposed algorithm on the public data set, the event camera simulator (ESIM) [53],

and the data set that I collected.

ESIM provides event data for various scenarios. I employed the panoramic renderer and

the OpenGL renderer to evaluate the accuracy of the rotational motion estimation. I set IMU

measurement noise as a zero-mean Gaussian with 0.2 rad standard deviation and the update rate

of the IMU to 1 kHz.

I obtained the rotational motion data set using DAVIS240C and VICON trackers. DAVIS240C

can operate as a dynamic vision sensor (DVS, event camera) and an active pixel sensor (APS, gray

image camera). I perform camera calibration using the gray image camera. The pixel resolution

of the vision sensor is 240×180 and the field of view is 60◦ on the horizontal axis and 45◦ on

the vertical axis. Also, InvenSense MPU-6150 IMU is supported in DAVIS240C. IMU provides

translation acceleration and gyro velocity data at 1kHz. The VICON tracker is used as the ground

truth pose, which can accurately estimate the position within the millimeter error range at 100

Hz.

In this section, the angle axes represent the component of the rotation vector with respect to

the initial orientation. The coordinate of the initial orientation is shown in Fig. 2.1. Please note

that the z-axis is parallel to the principal axis of the initial camera pose.

I set ρ = 5, ∆τ = 25 ms, and compare the proposed algorithm to the integrated gyro velocity

data of IMU and the method in [1] in terms of the accuracy of rotational position estimation.

For comparison, I re-implemented the method of [1]. I quantitatively evaluated the proposed

algorithm with VICON ground truth data. The qualitative evaluation was performed in various

environments not limited to the indoor VICON room. The source code and data sets are available

at:

https://haram-kim.github.io/Globally_Aligned_Events/
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(a) (b)

(c) (d)

Figure 3.7: Data set acquisition environments: (a) room, (b) outside the building, (c) lobby, (d) rooftop.
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3.2.1 Qualitative Evaluation of Global Alignment

I obtained VICON-free data sets from outside the building, in the room, lobby, and at the rooftop

Fig. 3.7. The snapshots of two data sets with the most notable results are presented in Fig. 3.8.

The polarity is considered for visualization to make the scene easier to understand.

In the data sequence shown in Fig. 3.6 and Fig. 3.8a which is named 360◦ outdoor, the camera

rotates 360◦ with respect to Y-axis outside the building. I can qualitatively check the accuracy

of rotational motion estimation by checking how well the events are aligned. The first column

shows the globally aligned events at the initialization step. In the last column, the edges of the

mountain were repeatedly depicted in the proposed method. This is the most impressive result:

the initially aligned events from mountain reappear after rotating 360 degrees. This result shows

that the rotation drift error is greatly reduced. On the other hand, in the third row, the event

images are unclear when the events are aligned by using the integral of the angular velocity

of [1]. I acquired data sets handheld, which contain little translational motion. Because of this,

in Fig. 3.6, the events of the fences and the poles which are close to the camera are not aligned

properly by the estimated rotational motion. On the other hand, the events of distant objects,

such as the columns and the mountain reflected in windows, are aligned well. In the last column,

the flare phenomenon was detected in the gray image, which is caused by sunlight beyond the

photosensitive capacity of the APS sensor, while event cameras are less prone to this problem

thanks to the high dynamic range.

In the fast roll data sequence recorded in the room, the event camera rotates repeatedly in the

roll direction, up to 1000◦/s. Conventional vision algorithms would fail to estimate rotational

motion with the gray images of Fig. 3.8b because of the heavy motion blur. However, the pro-

posed algorithm stably aligns all events by accurately estimating the rotational motion even in

this fast-moving situation. The last column shows a very fast rotation around 1000◦/s, and the

proposed method aligned the event points well enough to identify objects such as shelves. In the

method obtained by integrating the angular velocity, it is difficult to identify the scene with the

aligned event images.
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(a) 360◦ rotation outside the building
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(b) Fast roll rotation in the room

Figure 3.8: Snapshots of the results for 360◦ outdoor and fast roll. The gray images with the conventional
vision sensor (first row), the images of the globally aligned events from the proposed method (second row),
and the images of the globally aligned events from the integral of the angular velocity of [1] (third row).
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(a) 360◦ indoor (b) fast motion (c) ESIM: panorama (d) ESIM: OpenGL

Figure 3.9: Snapshots of the results for 360◦ indoor, fast motion, panorama, OpenGL. The gray images
with the conventional vision sensor (first row), the images of the globally aligned events from the proposed
method (second row), and the images of the globally aligned events from the integral of the angular velocity
of [1] (third row).
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(a) EDCS:shapes (b) EDCS:poster (b) EDCS:boxes

Figure 3.10: Snapshots of the results for EDCS:shapes, poster, boxes. The gray images with the con-
ventional vision sensor (first row), the images of the globally aligned events from the proposed method
(second row), and the images of the globally aligned events from the integral of the angular velocity of [1]
(third row).
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Figure 3.11: Orientation trajectory (first to third row) and the number of events per temporal window used
in the proposed method (last row) for fast motion data sequence. The trajectories of the proposed method
(blue line) are almost identical to the ground truth (black dashed line).
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Figure 3.12: Orientation trajectory (first to third row) and the number of events per temporal window used
in the proposed method (last row) for 360◦ indoor data sequence.
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Figure 3.13: Orientation trajectory (first to third row) and the number of events per temporal window used
in the proposed method (last row) for ESIM:panorama data sequence.
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Figure 3.14: Orientation trajectory (first to third row) and the number of events per temporal window used
in the proposed method (last row) for ESIM:OpenGL data sequence.
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Figure 3.15: Orientation trajectory (first to third row) and the number of events per temporal window used
in the proposed method (last row) for ECDS:shapes data sequence.
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Figure 3.16: Orientation trajectory (first to third row) and the number of events per temporal window used
in the proposed method (last row) for ECDS:boxes data sequence.
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Figure 3.17: Orientation trajectory (first to third row) and the number of events per temporal window used
in the proposed method (last row) for ECDS:poster data sequence.
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The data set from the lobby also contains 360◦ rotation of the camera, and the data set ob-

tained from the rooftop mainly includes a scene of the ceiling and the floor. The lobby data

sequence best demonstrates the HDR advantage of the event camera among the data sets given in

Fig. 3.7, and in the rooftop data sequence, the proposed algorithm estimates rotation well in the

entire angular range.

3.2.2 Benchmark of Motion Estimation

I evaluate the proposed algorithm with the 360◦ rotational motion data set with VICON pose data,

i.e. the sequence named 360◦ indoor, and the high-speed rotational motion sequence fast motion,

and the event camera simulation sequences ESIM: panorama, OpenGL. Because the source code

for the rotational motion estimation module in [24] is not disclosed, I compare the proposed

method with [1, 2] and IMU by integrating the angular velocity. The algorithm of [2] failed and

gave not-a-number value in most data sets. I computed the RMS error of the algorithm up to the

estimated poses.

I compute the absolute orientation error with the degree unit in a similar concept to the ab-

solute trajectory error (ATE) [55] to evaluate the performance of the algorithm. The root mean

square of error was computed for each axis. For example, the X-axis error metric is

RMSE(X) =

√
1
T

T

∑
m=1

(resti
m (X)− rtruth

m (X))2, (3.17)

where rm = [rm(X),rm(Y ),rm(Z)] satisfies Rm = exp(r̂m), rm(X) ∈ R is the m-th X-axis angle

with degree unit and T is the number of temporal windows in motion estimation. resti represents

the estimated angle, and rtruth the ground truth angle. The RMS error and the overall rotational

motion plot are shown in Table 3.1 and Fig. 3.11. In the sequence 360◦ indoor, the event camera

rotates 360◦ with respect to the Y-axis. There are many events that occurred from the Y-axis

rotation, resulting in much smaller drift error on the Y-axis than on the other axes in Table 3.1.

In contrast, IMU accumulated more drift error on the Y-axis and less drift error in the other axes.

In the sequence fast motion, the proposed method estimates rotation stably despite the high-
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speed ego-motion, while [1] and [2] estimate rotation improperly.

In the both sequences, 360◦ indoor and fast motion, the camera moves very slowly between

0 and 1 seconds as shown in Fig. 3.9, allowing the event camera to detect very few events. In the

method from [1], angular velocity estimation frequently falls into the local minimum during the

first 1 second. On the other hand, using globally aligned events, the proposed method reliably

estimates the rotational motion even though the number of events in the temporal window was

small. In the simulation data set, the angular velocity estimation method [1] showed less drift

error than in the real-world data sets. In the presence of Gaussian noise in the IMU measurements,

the IMU gyro integration method showed a similar level of performance to the proposed method

in the ESIM: panorama. In ESIM: OpenGL, measurement error was accumulated more than in

the ESIM: panorama data set, resulting in less accurate results than the proposed methods, but

the performance is still better than [1].

I verified the performance of the algorithm using the rotation data sets in [54]. The duration of

the data sets is about a minute, and the camera moves faster over time. The RMS error evaluated

in [54] is shown in Table 3.1. While estimating motion in the sequences of [54] which have

longer duration than the other sequences, the RMS error of the proposed method is larger than

the other data sets because of the drift error caused by saturation of the contrast image. However,

the proposed method showed significant improvements in rotational motion estimation on all the

tested data sets. As a future work, I will reduce the drift error even for long-duration data sets by

adaptively sampling the globally aligned events to obtain the unsaturated global event image IG.
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3.2.3 Computation Time

I measured the computation time of the algorithm on a Linux laptop with the i7-7500U@2.7GHz

CPU. Even if the temporal window size is constant, the number of events per temporal window

can be different depending on motion or surrounding environment, and the calculation time varies

according to the number of iterations during optimization. Thus, I measured the computation time

varying the number of events and the number of optimization iterations, and analyzed the effect

of global alignment and the presence of rotational position estimation on computation time. The

results are displayed in Fig. 3.18.

When changing the optimization iteration, the number of events is fixed at 5000, and when

changing the number of events, the iteration is fixed at 50. The results show that the time required

for the proposed method takes about 50% on average than the existing contrast maximization, and

the proposed algorithm achieves angular velocity estimation within tens of ms. The proposed

method is highly valuable for contrast maximization frameworks, as drift errors can correct by

this computational trade-off.

3.3 Summary

This section, I present the rotational motion estimation method using an event camera only. I use

globally aligned events to reliably estimate rotation. The proposed method gives more accurate

results than the methods of [1] and [2] in [54] data sets, and shows much higher accuracy than

the IMU in real-world data set, within the maximum error of 3 degrees. Also, the algorithm can

stably estimate the rotational position in very fast motion. I expect that the proposed method can

also be applied to the scale drift problem in monocular depth estimation and the drift problem of

the feature tracking with optical flow. In conclusion, the proposed method improves the contrast

maximization and runs in real-time with around 50% additional computation only. The provided

source code and the data sets will contribute to the community.
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(a) (b)

Figure 3.18: Computation time with varying optimization iteration (a), the number of events per temporal
window in 360◦ outdoor data set (b). The blue line indicates the computation time when only local events
(subset events) are processed, and the red line indicates the computation time in the proposed method
which utilizes global events. The dashed line represents the time spent in the optimization process, and the
solid line represents the total time taken for the contrast maximization. The latency of the system is same
as the presented computation time.
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4
Real-time Hetero-Stereo Matching for Event

and Frame Camera with Aligned Events

Using Maximum Shift Distance

The proposed methods estimate the disparity and depth of events by associating the event and

frame data. I obtain camera poses from the 3D reconstructed points which are computed from

the initial matching method. Then, I estimate accurate disparity and depth by matching the frame

edge image to the aligned events using the camera poses. For aligning events, I extend the event

alignment module in [47], additionally considering the translation motion and an arbitrary depth

in the disparity range. Rather than considering all disparities in range, I efficiently compute the

aligned events with maximum shift distance method by considering the representative disparities

which produce distinct aligned event images.

47



Figure 4.1: Hetero-stereo matching algorithm operating range according to camera speed. The proposed
method enables hetero-stereo camera system to apply vision applications (motion estimation, feature track-
ing, etc.) regardless of camera speed and to have high dynamic range (HDR).

4.1 Hetero Stereo Matching

There are two concepts to associate the event camera with the frame camera. The event data

should be reconstructed into frame images [10,56–58], or frame images should be converted into

the event camera-like images. Frame reconstruction methods still suffer from unwanted artifacts

such as bleeding and local reconstruction error amplification problems. It is confirmed that the

artifacts degrade the performance of disparity estimation in Section 4.2. Thus, I will cover the

matching method by converting frame images to event images between the two concepts.

For stereo matching, the events and the frame images should be undistorted and rectified. In

general for frame images, the inverse mapping technique is used during rectification and undis-

tortion. Likewise, I utilize the inverse mapping to rectify the raw event image for the initial stereo

matching of Section 4.1.1. The inverse mapping is an image-to-image operation. On the other

hand, for aligning events in the Section 4.1.2, The events should be warped individually consider-

ing their time and camera motion after rectification. This means that warping of individual events
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(a)

(b) (c)

(d) (e)

Figure 4.2: Illustrations of the stereo matching results. (a) frame image. Red cross represents the edge
pixel f and blue square represents patch P(f, IF

n) of the n-th frame image IF
n. (b) and (d) are the frame

patch of the temporal gradient image IF ∆τ
n and the edge image IF ∆x

n represented as P(f, IF ∆τ
n ), P(f, IF ∆x

n ),
respectively. (c) and (e) are the event patch of the raw event image IE ∆τ

n and the aligned event image IE ∆x
n )

with the estimated disparity d∗ represented as P(f+[d∗,0]ᵀ, IE ∆τ
n ), P(f+[d∗,0]ᵀ, IE ∆x

n ), respectively.

cannot be performed after the inverse mapping as in Fig. 4.3 (because the time information of in-

dividual events gets lost to perform the image-to-image operation). Thus, I undistort and rectify

events in a direct way, before warping the events as in Fig. 4.4.

In the heterogeneous camera case, the resolution of the event camera and the frame camera

may be different. If the rectification resolution is set to be different from the resolution of the

event camera, the image projected from events will suffer from web-shaped artifacts, because

some pixels contain overlapped events or nothing. Likewise, the focal length should not be

significantly different from the focal length of the event camera. Thus, I set the resolution and

the focal length of rectification coordinate to those of the event camera. In this dissertation, all

the event points and frame images are rectified.

49



Figure 4.3: Rectification with inverse mapping method.

Figure 4.4: Rectification with direct method.

4.1.1 Initial Stereo Matching

Event cameras record polarities of change of log intensity and have a different dynamic range

from frame cameras. For associating the frame image IF
n with the event set E|τn

τn−1 in the initial

phase, I use the temporal gradient image IF ∆τ
n = IF

n− IF
n−1 and the event image IE ∆τ

n which

is computed by accumulating the raw events of E|τn
τn−1 considering polarity. The frame image

IF ∆τ
n and the event image IE ∆τ

n contain information about intensity changes. Because the above

two images have the same tendency but different dynamic range, I utilize the normalized cross-

correlation (NCC) cost that is robust to the difference in dynamic range, rather than applying

residual cost such as the sum of absolute distance (SAD) and the sum of squared distance (SSD).

Then, the edge pixel f ∈ R2×1 is extracted from the frame image with Sobel filter and con-

duct patch matching methods on the temporal gradient image and the event image. I shift the
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Figure 4.5: Overview of initial stereo matching.

event patch P(f, IE ∆τ
n ) along the x coordinate (parallel to epipolar line) and compare P(f, IE ∆τ

n )

with the frame patch P(f, IF ∆τ
n ) using NCC cost C(·, ·). Additionally, 2D Gaussian-smoothing is

applied on NCC cost along the image coordinate to alleviate the noise effect. Then, I estimate

the disparity d̂ where the Gaussian-smoothed NCC G(Eτ(f,d)) is maximized as

Eτ(f,d) = C
(

P(f, IF ∆τ
n ),P(f+[d,0]ᵀ, IE ∆τ

n )
)
, (4.1)

d̂ = argmax
d

G(Eτ(f,d)) . (4.2)

For the sub-pixel accuracy, I interpolate the disparity with quadratic interpolation as follows:

d∗ = d̂ +0.5
Eτ(f, d̂−1)−Eτ(f, d̂ +1)

2Eτ(f, d̂)−Eτ(f, d̂−1)−Eτ(f, d̂ +1)
. (4.3)

The presented initialization of the system can be performed with two frames if sufficient

events are spiked.
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4.1.2 Event Alignment

I can expect more accurate matching by using edge images instead of temporal gradient images.

In order to match the event data with edge images, I align events with the camera motion. The

frame camera pose TF is estimated by applying APnP [59] from the constructed 3D points with

the initial disparity, and then compute the event camera pose TE with extrinsic parameters.

When accurately warping event points, it is computationally expensive to consider the time

and depth of each event. In order to reduce the computation load of warping function, I assume

that the events in E|τn
τn−1 share the same depth at reference time τn, which means that the depth

values of events are all the same after warping with the motion TE n
n−1. Here, the depth at refer-

ence time is a given value and is covered in Section 4.1.3, which allows the event to have different

depth at the event time tk. This condition is a more relaxed than [27] which assumes that the depth

of the event is the same regardless of the event time.

Even if the events have the same depth at reference time τn, an event ek can have different

depth zk(tk) before warping. The warping function for the k-th event can be presented as follows.

Xk(τn) = Rn(δ tk)Xk(tk)+ tn(δ tk), (4.4)

Xk(τn) = zk(tk)Rn(δ tk)X̄k(tk)+ tn(δ tk) (4.5)

where Xk(t) = [xk(t),yk(t),zk(t)]> is the inverse-projected 3D point of the event ek in the camera

coordinate at time t and X̄k(t) = [x̄k(t), ȳk(t),1]> is the inverse-projected point from the event

pixel xk, which satisfying Xk(t) = zk(t)X̄k(t). zk(tk) is the exact depth of the event and zk(τn) is

the depth at the reference time. The reference depths zk(τn) of events in E|τn
τn−1 are given and have

all the same value, as I assumed, while zk(tk) differs. δ tk is the time difference between the time

of an event tk and the reference time τn i.e. δ tk = τn− tk, Rn(δ tk) and tn(δ tk) is the rotation and

the translation matrix of camera motion TE n
n−1 considering the time difference δ tk.
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Then, the depth of the event zk(tk) can be inversely computed with given zk(τn) as follows.

zk(τn) =
[
0 0 1

](
zk(tk)Rn(δ tk)X̄k(tk)+ tn(δ tk)

)
, (4.6)

zk(tk) =
zk(τn)−

[
0 0 1

]
tn(δ tk)[

0 0 1
]

Rn(δ tk)X̄k(tk)
, (4.7)

I can get aligned event points with the same depth at reference time by putting zk(tk) back into

Eq. (4.5).

Since each event has different δ tk, I need to lighten the computational load when computing

Rn(δ tk) and tn(δ tk) for each event. I convert the existing warping function into a matrix operation

using the second-order approximation as in [47]. I employ the twist coordinate representation

[ν ;ω] ∈ R6 provided by the Lie algebra se(3) associated with the group SE(3), where ν is the

linear velocity and ω is the angular velocity. The exact warping can be achieved with Rodrigues’

formula as follows.

Rn(δ tk)X̄k(tk) = X̄k(tk)+
ω̂

|ω|
X̄k(tk)sin(|ω|δ tk)+

ω̂2

|ω|2
X̄k(tk)(1− cos(|ω|δ tk)) , (4.8)

tn(δ tk) = νδ tk +
ω̂ν

|ω|2
(1− cos(|ω|δ tk))+

ω̂2ν

|ω|3
(|ω|δ tk− sin(|ω|δ tk)) , (4.9)

where ω̂ is the cross-product matrix of ω . By substituting cos(|ω|δ tk) ≈ 1− |ω|2δ t2
k /2 and

sin(|ω|δ tk) ≈ |ω|δ tk in Eq. (4.8) and Eq. (4.9), the rotation and translation can be simplified as

follows.

Rn(δ tk)X̄k(tk)≈ X̄k(tk)+ ω̂X̄k(tk)δ tk +
1
2

ω̂
2X̄k(tk)δ t2

k , (4.10)

tn(δ tk)≈ νδ tk +
1
2

ω̂νδ t2
k . (4.11)
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Then, the aligned event point Xk(τn) which has the same depth at reference time can be

obtained by substituting Eq. (4.10) and Eq. (4.11) into Eq. (4.7) and Eq. (4.5) as follows.

Xk(τn) =
zk(τn)−

[
0 0 1

]
tn(δ tk)[

0 0 1
]

Rn(δ tk)X̄k(tk)
·Rn(δ tk)X̄k(tk)+ tn(δ tk) (4.12)

4.1.3 Stereo Matching with Aligned Events

I perform stereo matching using the aligned events to increase the number of inlier disparity

and to estimate disparity more accurately than the initial phase. To align the event, the camera

pose TE n
n−1 and the reference depth zk(τn) are required. Since I slide the patch images in stereo

matching, there are several disparity and depth candidates. I set the reference depth candidates

by converting the disparity range as z = f ·b/d where f is the focal length and b is the length of

the baseline, and compute the bunch of aligned events for each depth candidates by assuming that

the entire events of E|τn
τn−1 have the same reference depth. By projecting the aligned events X(τn)

into the image plane, I obtain the aligned event image IE ∆x
n (d) with disparity d as a parameter as

shown in Fig. 4.6. Then, I perform the stereo matching with the aligned event image IE ∆x
n (d) and

the edge image IF ∆x
n =

∣∣∇ IF
n
∣∣ as follows.

Ex(f,d) = C
(

P(f, IF ∆x
n ),P

(
f+[d,0]ᵀ, IE ∆x

n (d)
))

, (4.13)

d̂ = argmax
d

G(Ex(f,d) ·Eτ(f,d)) . (4.14)

The aligned event images improve stereo matching accuracy by representing clear edges, but

similar edges can be mismatched because the edges do not take into account polarity. I alleviate

this ambiguity problem by multiplying the initial matching cost that considers polarity as in

Eq. (4.14).

As in the initial phase, the interpolated disparity d∗ is computed as in Eq. (4.3) for sub-pixel

accuracy. Due to the aligning events using camera motion, the proposed method can reliably

represent edge features even when I use a smaller number of events as in Fig. 4.7.
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(a) Reference (b) d = 0 (c) d = 15 (d) d = 30

Figure 4.6: Illustrations of (a) frame image IF
n and (b - d) aligned event images IE ∆x

n (d) with varying
disparity d. For aligned event images, polarity is considered only in the figures for visibility.

(a) Frame (b) Edge (c) 100% (d) 50% (e) 10%

Figure 4.7: Illustrations of sampling effect on the aligned event image. (a) frame image, (b) edge of frame
image, (c) aligned event image without sampling, (d) aligned event image with half of the events and (e)
aligned event image with 10% events. Even with a small number of events, the proposed method can
describe edges for stereo matching.

4.1.4 Maximum Shift Distance (MSD) by Translational Motion

If there is no translational motion (tn = 0), the aligned event images are identical, regardless

of the varying disparity. In this case, it is inefficient to compute the aligned event image for

each disparity, because only one aligned event image is needed. I mitigate this inefficiency by

grouping disparities that produce similar aligned events. The disparities are grouped based on the

maximum shift distance of events which is related to the magnitude of translation.

In this section, it is assumed that all points are already rotated in order to focus on the effect of

translational motion on the maximum shift distance. When points are shifted by the translational

motion, the most shifted point exists at the corner of the image due to the characteristics of

the pinhole camera model. In the presence of the translational motion t, the 3D point X which

corresponds to the image corner will be warped to X′ with depth z as depicted in Fig. 4.9. The
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Figure 4.8: Overview of maximum shift distance (MSD).

trajectory of the 3D point X is projected onto the image plane is called the event shift trajectory,

denoted as s. It is the orange colored vector in Fig. 4.9.(a).

t̄ =
f

z−|tz|
t, (4.15)

where t̄ is the scaling transformation of translation t for the image plane. txy, tz are the decom-

posed vectors of t, perpendicular to the image plane and parallel to the principal axis, respectively.

As shown in Fig. 4.9.(b), the shift s is computed as the sum of a and b, where a is the vector

from the corner to the principal point. b is parallel to t̄xy−s, and has a similarity ratio of f and |t̄z|

in the plane perpendicular to txy. Then, b is composed of the two vectors txy and s by substituting

t̄ with t as in the second part of Eq. (4.16).

b =
f
|t̄z|

(t̄xy− s) =
f
|tz|

txy−
(

z
|tz|
−1

)
s (4.16)

s = a+b = a+
f
|tz|

txy +

(
1− z
|tz|

)
s, (4.17)

By substituting b in Eq. (4.17) with the second part of Eq. (4.16) and rearranging Eq. (4.17)

for s, the shift s can be obtained as Eq. (4.18).

s =
|tz|a+ f txy

z
(4.18)
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By the trigonometric inequality, |s| ≤ (|a||tz|+ f |txy|)/z is satisfied, where |a| is the half

of the diagonal image size. I set the maximum shift distance as (|a||tz|+ f |txy|)/z. If the

depth z is expressed again as disparity d, the maximum shift distance satisfies smax(d, t) :=

(|a||tz|+ f |txy|)/( f ·b) ·d which indicates that it is proportional to the disparity d.

I can quantize the aligned event image without loss by grouping disparities whose smax values

do not differ by more than 1 px. In addition, I can significantly reduce the number of aligned

event bunches by adjusting the interval of pixels where the smax value differs (MSD interval).
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(a) Similarity transformation of t to t̄

(b) Computing maximum shift distance s

Figure 4.9: Illustrations of maximum shift distance. The corner point X is moved to X′ by translation. The
maximum shift distance is the orange colored arrow s, and translation is the red colored arrow t.
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4.2 Experimental Results

I evaluate the proposed method on the DSEC dataset [51]. DSEC is the disparity and optical-flow

evaluation dataset that records the city driving scenario. It employs high resolution stereo event

(640×480) and frame (1440×1080) cameras (4 cameras in total), and provides the ground truth

disparity converted from LIDAR.

I compare the proposed method with the initial stereo matching method described in Sec-

tion 4.1.1, E2VID [10] based method and the implemented version of SHEF [44]. The recon-

struction performance of [10] affected by the number of events. I evaluate [10] into the two

event grouping manners. E2VID-τ reconstructs frame images from the events in a fixed tem-

poral window (τn− τn−1 ≈ 50 ms), E|τn
τn−1 , which I used. E2VID-N uses the fixed number of

events (N = 105). Then, I perform stereo matching on the reconstructed frame with NCC cost as

in Eq. (4.2) (E2VID-N/τ). Also, the standard semi-global matching method (SGM) is applied

which utilizes residual costs (E2VID-SGM-N/τ).

I set disparity range to 100 px, MSD interval to 10 px, std of Gaussian filter G(·) to 2 px and

the kernel radius of all methods to 12 px.

4.2.1 Performance of Stereo Matching

I verified the matching accuracy with the disparity error in Table 4.1. I used the following metrics:

• root mean squared error within 3 px disparity error (RMSE):
√

1
T ∑p(dgt−dp)2

• mean absolute error within 3 px disparity error(MAE): 1
T ∑p |dgt−dp|

• percentage of absolute error for the all edge pixels (recall) with threshold δ ∗: percentage

of dp s.t. |dgt−dp|= δ < δ ∗

For depth evaluation, I used RMSE and the following metrics:

• absolute relative distance (ARD): 1
T ∑p

|zgt−zp|
zgt
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Disparity RMSE MAE
percentage of absolute error (δ ∗)
1 px 2 px 3 px

HSM
Prop. 1.036 0.796 0.560 0.743 0.800
Init. 1.131 0.895 0.501 0.723 0.791

E2VID-N 1.048 0.807 0.451 0.595 0.644
E2VID-τ 1.768 1.558 0.079 0.175 0.268

E2VID-SGM-N - - 0.009 0.116 0.120
E2VID-SGM-τ - - 0.002 0.005 0.009

SHEF 1.630 1.386 0.088 0.163 0.227
(a) Disparity

Depth RMSE ARD
percentage of relative error (δ ∗)
1.05 1.052 1.053

HSM
Prop. 3.092 0.060 0.444 0.664 0.743
Init. 3.118 0.066 0.350 0.634 0.739

E2VID-N 2.950 0.058 0.363 0.534 0.599
E2VID-τ 7.490 0.148 0.048 0.100 0.154

E2VID-SGM-N - - 0.079 0.108 0.116
E2VID-SGM-τ - - 0.001 0.003 0.006

SHEF 6.156 0.112 0.063 0.127 0.170
(b) Depth

Table 4.1: Disparity and depth estimation results for interlaken_c. I evaluate the disparity estimation
results on edges with root mean squared error, mean absolute error and percentage of absolute error (recall)
and evaluate the depth with root mean squared error, absolute relative distance and percentage of relative
error (recall). ‘-’ indicates that the algorithm failed with less than 15 % inliers. E2VID-N/τ apply the
NCC cost on stereo matching, and E2VID-SGM-N/τ utilize the standard semi-global matching method.

• percentage of relative error (recall) with threshold δ ∗: percentage of zp s.t. max( zgt
zp
,

zp
zgt
) =

δ < δ ∗

All error metrics except percentages (disparity RMSE, MAE, depth RMSE and ARD) are

only evaluated for pixels with a disparity error within 3 px. This is to prevent large errors from

affecting the metric.

The proposed method outperformed other stereo event frame methods (HSM-Init, E2VID-τ

[10] and SHEF [44]) for inliers and disparity RMSE and MAE. The standard stereo matching

method (E2VID-SGM-N/τ) failed due to the different dynamic range of the reconstructed frame

image. NCC cost based E2VID-N [10] methods showed comparable disparity RMSE to the

proposed method. The reconstructed image from E2VID methods describes detailed features.
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Thus, RMSE error of E2VID methods is small for the inlier disparity matches. However, the

percentage of absolute error of E2VID-N is 10% to 15% less than the proposed method.

For other data sequences, I evaluate the disparity RMSE and percentage of absolute error

within 3 px as in Table 4.2. In E2VID methods, especially E2VID-τ , there exist improperly

reconstructed local regions for some data sequences, as already reported in [60]. These local

region artifacts appear as black region or squiggle pattern when the events are detected either

too little over a long period of time or too many over a short period of time. For this reason, in

Fig. 4.10, E2VID-N method estimate the disparity of the foreground better than the background.

E2VID-τ often failed on reconstruction, because there are too many events in a single input

tensor to network. The performance of E2VID methods dropped in the other data sequences due

to the reconstruction artifacts. Meanwhile, the proposed method is free from this artifact issue

and always showed reliable disparity estimation.

4.2.2 Qualitative Evaluation of Stereo Matching

The results of semi-dense reconstruction is depicted in Fig. 4.11. The proposed method estimate

the disparity on edges. For evaluation, I display the disparity which has less than 10 px error on

edges. The proposed method can estimate disparity as densely as the ground truth and perform

better than E2VID [10] and SHEF [44]. SHEF [44] cannot properly estimate disparity on unclear

edge regions where it is difficult to generalize a high-pass filter to build binary edge maps.

I display the detailed patch matching results of the proposed method HSM-Prop and HSM-Init

in Fig. 4.17. The last columns of Fig. 4.17.(a) and Fig. 4.17.(a) show examples where HSM-Init

failed with the disparity error of more than 10 px.

4.2.3 Computation Time

I run the proposed method on NVIDIA GeForce RTX 3080 Ti GPU and Intel Core i9-12900KF @

3.20GHz CPU. I compute disparity at 640×480 resolution and events are not scaled or sampled

at all. The analysis at ‘interlaken_c’ is shown in Fig. 4.20 and Table 4.3. I estimate computation
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(a) frame image (b) N = 105

(c) ∆τ = 50ms (d) ∆τ = 25ms

(e) ∆τ = 10ms (f) ∆τ = 5ms

Figure 4.10: E2VID reconstruction results for interlaken_c data sequence. (a) is the frame image, (b) is
the reconstructed image with fixed number of events, and the others are the reconstructed image with fixed
temporal window. The reconstruction suffer from black region for dense event region, and squiggle pattern
for sparse event region. The unwanted artifacts degrade the stereo matching performance.
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(a) frame image (b) event image

(c) ground truth (d) proposed

(e) E2VID-N (f) SHEF

Figure 4.11: Snapshots of the semi-dense disparity results for interlaken_c data sequence.
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(a) frame image (b) event image

(c) ground truth (d) proposed

(e) E2VID-N (f) SHEF

Figure 4.12: Snapshots of the semi-dense disparity results for interlaken_d data sequence.

65



(a) frame image (b) event image

(c) ground truth (d) proposed

(e) E2VID-N (f) SHEF

Figure 4.13: Snapshots of the semi-dense disparity results for interlaken_e data sequence.
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(a) frame image (b) event image

(c) ground truth (d) proposed

(e) E2VID-N (f) SHEF

Figure 4.14: Snapshots of the semi-dense disparity results for interlaken_f data sequence.
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(a) frame image (b) event image

(c) ground truth (d) proposed

(e) E2VID-N (f) SHEF

Figure 4.15: Snapshots of the semi-dense disparity results for interlaken_g data sequence.
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HSM-Prop E2VID-N/τ
Compute MSD 2.66

Reconstruction 93.26 / 16.36Compute AEI 3.13
Stereo NCC AEI 5.00
Stereo NCC Init 4.79 Stereo NCC 6.04
Stereo postproc 3.12 Stereo postproc 2.42
Etc. 2.41 Etc. 2.08
Total 21.13 Total 103.82 / 26.90

Table 4.3: Computation time per frame (ms). MSD is maximum shift distance, AEI is aligned event
images. ‘Stereo NCC AEI, Init’ correspond to construct cost volume Ex(f,d),Eτ(f,d), respectively, and
‘Stereo postproc’ is the computation process of Eq. (4.14). Except computing MSD, all the processes are
computed on GPU. E2VID-N takes 93.26 ms for reconstruction, while E2VID-τ takes 16.36 ms.

time by averaging the computation time of the modules processing 10 times. The proposed

stereo matching method achieves real-time performance by taking 21.13 ms per frame, which is

less than 50 ms per frame. Such performance has become possible by utilizing the concept of

the maximum shift distance (MSD) which lessen the computational load. The maximum shift

distance depends on the size of the translation and the pixel interval. I can compute fewer aligned

event images by adjusting the MSD interval. Since most pixels are not located on the corner of the

image, most events are shifted much less than smax(d, t). Thus, even if I aligned the events with

more sparse disparity values, it does not significantly affect the stereo matching performance as

in Table 4.4. Rather, the performance becomes better than default, since MSD supports Gaussian

smoothing to work better. When a camera moves fast, smax(d, t) can be greater than the maximum

disparity. In this case, it is necessary to compute the aligned event image for all disparity.

I implemented SHEF [44] without computation time optimization. SHEF reconstructs edge

images using the high-pass filter of [46] and non-maximal suppression, which is a similar concept

to the Canny edge detection with the time complexity O(n logn) where n is the number of image

pixels. SHEF requires relatively light computation on reconstruction than the E2VID methods

and HSM-Prop. Thus, SHEF can sufficiently operate in real-time.
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MSD interval 1 px 2 px 3 px 5 px 10 px
Avg. events
per frame

Compute AEI 15.96 10.41 7.06 5.24 3.13
0.8 million

RMSE 1.08 1.07 1.07 1.06 1.04

Table 4.4: Computation time (ms) to construct aligned event images (AEI) and disparity RMSE (px) with
varying maximum shift distance interval.

4.3 Summary

I perform hetero-stereo matching using frame cameras and event cameras, which have different

characteristics. I present a method using a temporal gradient image to perform initialization

within a few frames to estimate the camera pose, and proposed an accurate, efficient and intuitive

method for aligning events utilizing camera motion. I propose the warping method considering

the different depth of asynchronous events, and the maximum shift distance method to use fewer

aligned event images for real-time performance. The proposed method describes edges using a

much smaller number of events through the aligning events with camera motion. I verify the

method with several experiments, which confirm that the proposed method outperforms than

the other method for the inlier percentage and matching accuracy. I expect that the proposed

approach will improve the capability of using frame and event camera and the provided code will

contribute to the event camera community.
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Figure 4.16

Figure 4.17: Snapshots of the hetero-stereo matching results. The reference frame images in the first
row (REF-F) are magnified images of the yellow squared patch, and the red squared patches indicate
the mismatched patches in HSM-Init method (the last column). The second row (REF-TG) indicates the
corresponding reference temporal gradient of the frame images IF ∆τ

n , and the third row represents the
matched event images IE ∆τ

n . The fourth row (REF-SG) and the last row are showing the edge images IF ∆x
n

(the norm of spatial gradient image) obtained from the frame images and the aligned event images IE ∆x
n of

the proposed method, respectively.
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Figure 4.18

Figure 4.19: Snapshots of the hetero-stereo matching results. The reference frame images in the first
row (REF-F) are magnified images of the yellow squared patch, and the red squared patches indicate
the mismatched patches in HSM-Init method (the last column). The second row (REF-TG) indicates the
corresponding reference temporal gradient of the frame images IF ∆τ

n , and the third row represents the
matched event images IE ∆τ

n . The fourth row (REF-SG) and the last row are showing the edge images IF ∆x
n

(the norm of spatial gradient image) obtained from the frame images and the aligned event images IE ∆x
n of

the proposed method, respectively.
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Figure 4.20: Graph of computation time per frame (ms). Computation time to construct aligned event
images is proportional to the number of events.
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5
Feature Tracking and Pose Estimation for

Hetero-Stereo Camera

The proposed method can estimate depth and can estimate camera pose using ORB-SLAM. Since

I provide stereo depth image to the ORB-SLAM, camera pose is estimated up to real-world

scale. For challenging environments such as blurred image or bad illumination condition, ORB-

SLAM poses are incorrect. In the proposed framework workflow, event camera can assist feature

tracking and pose estimation when frame camera fails to track under fast camera motion and high-

dynamic-range scene. Here, I propose robust heterogeneous stereo camera system with feature

tracking via contrast maximization.

5.1 Feature Tracking

5.1.1 Motion Model

In conventional frame images, feature is a piece of information about the content of an image.

The types of feature are edges, corners, blobs and etc. Most of studies utilize the corner and edge
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(a) Corner (b) Edge (c) Blob

Figure 5.1: Types of features for frame image data.

features Fig. 5.1.

In contrast to the frame images, event data gives high-temporal resolution trajectory of the

corners and edges. Thanks to the high-temporal resolution property of event data, it is possible

to track features that have moved a lot. Meanwhile, the defining descriptor and matching feature

task is difficult for event data. Also it cannot take advantage of the high-temporal resolution

property of event data. Thus, feature tracking is more suitable than feature matching on event

data.

Since events are consisted of temporal information, event images can show different aspects

even for the same corner and edge as in Fig. 5.2. Therefore, I track features by aligning events

considering event timestamp. I applied contrast maximization approach as in Chapter 3. Here,

corner features are mainly tracked due to the aperture problem of tracking edge features.

In order to apply contrast maximization to the feature tracking task, it is necessary to define

the motion model of the feature. In general, SE(2) space is mainly used as a rigid body transform

on 2D space. The SE(2) space contains the rotation and movement of the center of the feature.

First, SO(2), Lie group for 2D rotation, and so(2), Lie algebra for 2D rotation, are expressed

as follows.

θ ∈ R, (5.1)
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(a) Frame image (b) Corner (c) Edge

(e) Event image (SAE) (e) Corner (bad) (f) Edge (bad)

Figure 5.2: Corner and edge features for event data. The clear features correspond to the yellow patch and
ambiguous features correspond to the blue patch.
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0 −θ

θ 0

 ∈ so(2), (5.2)

R = exp

0 −θ

θ 0

=

cos(θ) −sin(θ)

sin(θ) cos(θ)

 ∈ SO(2), (5.3)

where, θ is the rotation angle. Then, SO(2) can be extended by considering translation as SE

(2). SE(2), Lie group for 2D transformation, and se(2), Lie algebra for 2D transformation, are

expressed as follows.

[
θ ,u1,u2

]
∈ R3, (5.4)

0 −θ u1

θ 0 u2

0 0 1

 ∈ se(2), (5.5)

T = exp


0 −θ u1

θ 0 u2

0 0 1

=

 R t

01×2 1

 ∈ SE(2), (5.6)

where u1,u2 are the translational velocity components. Note that t ∈ R2, t 6= [u1,u2]
ᵀ.

Since feature tracking of frame camera processes two frames, the framed based feature track-

ing module only consider the amount of change of the position and rotation of a target feature.

That is to say, frame based feature tracking module uses T directly and [θ ,u1,u2] is not calculated.

However, in the case of events that have individual timestamp, I should consider time in

the motion model. As a naive method, the motion model at time tk can be interpolated linearly

through internal division as follows.

T(tk) = I3×3 +(T− I3×3) ·
δ tk
∆τ

, (5.7)

where δ tk = tk−τm and ∆τ = τm+1−τm as same in Fig. 3.3. Then, warping can be computed
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Internal division method

(a) pure rotation (b) arbitrary motion

as follows.

xk(tk) = T(tk) ·xk(τm), (5.8)


xk(tk)

yk(tk)

1

= T(tk) ·


xk(τm)

yk(τm)

1

 . (5.9)

The trajectories of the patch for interpolation models are shown in Section 5.1.1. The trajec-

tory of the vertex of the patch is depicted as a green line. For pure rotational motion, an arc-shaped

trajectory should appear for the trajectory of the vertex, but it is expressed as a straight line in the

internal division model. Therefore, this naive interpolation method is quite far from the actual

behavior and cannot be applied to contrast maximization for feature tracking.

I can define a feature motion model for continuous time by multiplying Eq. (5.5) by time δ tk.

T(tk) = exp


0 −θδ tk u1δ tk

θδ tk 0 u2δ tk

0 0 1

=

R(tk) t(tk)

01×2 1

 (5.10)

SE(2) does not reflect the scale, thus, tracking may not work well when the camera moves
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The proposed motion model

(a) pure rotation (b) arbitrary motion

Figure 5.3: The trajectories of patch 2D transformation for equal time intervals.

along the principal axis. To supplement this, the following motion model is applied. It is assumed

that the scale factors for x-axis and y-axis are the same.

dx(t)
dt

=

 s −θ

θ s

x(t)+

u1

u2

= Axk(τm)+B (5.11)

The A denotes the tangent of the scale and rotation matrix, and the B denotes the tangent of

the translational motion. For short time intervals, the tangents of scale, rotation and translational

motion can be approximated with constant values. Since this system corresponds to the continu-

ous time-invariant system of the state-space model, the solution can be obtained as follows.

x(t) = eAtx(0)+
∫ t

0
eA(t−τ)Bdτ (5.12)

x(t) = eAtx(0)+
[
eAt− I2×2

]
A−1B (5.13)

x(t)

y(t)

= est

cosθ t −sinθ t

sinθ t cosθ t

x(0)

y(0)

+
estcosθ t−1 −estsinθ t

estsinθ t estcosθ t−1

· 1
s2 +θ 2

 s θ

−θ s

u1

u2


(5.14)
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where A is non-singular matrix s.t. s2 +θ 2 = 0.

For an event ek = (xk,yk, pk, tk), the aligned event at reference time τm is compute as follows:

xk(τm) = e−Aδ tkxk(tk)+
[
e−Aδ tk− I2×2

]
A−1B, (5.15)

where xk(tk) = [xk,yk]
ᵀ is the observed event position.

Since the time difference satisfies that δ tk � 1, the warping function can be approximated

using the Taylor series as follows:

xk(τm) = xk(tk)− (Axk(tk)+B)δ tk +
1
2

A(Axk(tk)+B)δ tk2. (5.16)

I(ζ ) =
Nm

∑
k=1

δd(x−x(τm)), (5.17)

where ζ =
[
s θ u1 u2

]
, (5.18)

Consequently in Fig. 5.3, the trajectories of patch show correct warping results for equal time

intervals. The trajectory of patch corner vertex(green line) shows reasonable results, even when

scale change exists. While, Lie group 2D transform cannot reflect the scale changes.

5.1.2 Contrast Maximization Approach

I track a feature by maximizing the contrast of feature patch P(f,I(ζ )) with following cost:

maximize
ζ

J(ζ ) (5.19)

J(ζ ) = ‖P(f,I(ζ ))‖2 (5.20)

The Jacobian of the cost function (Eq. (5.20)) is derived as follows:
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∂J
∂ζ

=
∂J
∂ I

∂ I
∂x

∂x
∂ζ

, (5.21)

where
∂J
∂ I

=
N

∑
k=1

2I(xk,ζ ) (5.22)

∂ I
∂x

=

[
∂ I(xk,ζ )

∂u
∂ I(xk,ζ )

∂v

]
(5.23)

∂x
∂ζ

=

[
∂x
∂ s

∂x
∂θ

∂x
∂u1

∂x
∂u2

]
(5.24)

Note that commutative property holds for identity matrix and skew symmetric matrix. Then,

derivative of matrix exponential can be computed as follows:

eAδ tk = exp

s

1 0

0 1

+θ

0 −1

1 0

δ tk

 (5.25)

∂eAδ tk

∂ s
=

1 0

0 1

δ tk · eAδ tk = δ tkeAδ tk (5.26)

∂eAδ tk

∂θ
=

0 −1

1 0

δ tk · eAδ tk (5.27)

∂A−1

∂ s
=

1
(s2 +θ 2)2

θ 2− s2 −2sθ

2sθ θ 2− s2

 (5.28)

∂A−1

∂θ
=

1
(s2 +θ 2)2

 −2sθ s2−θ 2

θ 2− s2 −2sθ

=

0 −1

1 0

 ∂A−1

∂ s
(5.29)

Then,
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∂x
∂ s

=
∂

∂ s

[
e−Aδ tkxk(tk)+

(
e−Aδ tk− I2×2

)
A−1B

]
(5.30)

=−δ tke−Aδ tkxk(tk)+
[
−δ tke−Aδ tkA−1 +

(
e−Aδ tk− I2×2

)
∂A−1

∂ s

]
B, (5.31)

∂x
∂θ

=−

0 −1

1 0

δ tke−Aδ tkxk(tk)+

−
0 −1

1 0

δ tke−Aδ tkA−1 +
(

e−Aδ tk− I2×2

)
∂A−1

∂θ

B,

(5.32)

=−

0 −1

1 0

δ tke−Aδ tkxk(tk)+

0 −1

1 0

[
−δ tke−Aδ tkA−1 +

(
e−Aδ tk− I2×2

)
∂A−1

∂ s

]
B,

(5.33)

=

0 −1

1 0

 ∂x
∂ s

(5.34)

∂x
∂u1

=
(

e−Aδ tk− I2×2

)
A−1

1

0

 , (5.35)

∂x
∂u2

=
(

e−Aδ tk− I2×2

)
A−1

0

1

 . (5.36)

The Jacobian can be simplified by deviating approximation form Eq. (5.16) as follows:

∂x
∂ s

=−xk(tk)δ tk +Axk(tk)δ tk
2, (5.37)

∂x
∂θ

=−

0 −1

1 0

xk(tk)δ tk +

0 −1

1 0

Axk(tk)δ tk
2 =

0 −1

1 0

 ∂x
∂ s

, (5.38)

∂x
∂u1

=

1

0

δ tk +
1
2

A

1

0

δ tk
2, (5.39)

∂x
∂u2

=

0

1

δ tk +
1
2

A

0

1

δ tk
2. (5.40)
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Figure 5.4: Feature tracking fail case

I use RMS-prop optimizer for the optimization problem of Eq. (5.19). The result of the

proposed feature tracking is depicted Fig. 5.4. Many features are inaccurately tracked. Unlike

other contrast maximization tasks, it easily falls into the local minimum, because target of the

image, the patch, is too small. In order to solve the local minimum problem, I apply truncation

and zero padding.

I use truncation method as a regularization which is also applied in Chapter 3 to avoid maxi-

mizing contrast only for event concentrated areas.

The Fig. 5.5 shows the example of falling into a local minimum.

In contrast maximization, the gradient gets stronger near the optimal solution (in Fig. 5.6,

step 4 of the first row). and updated value passes the optimal solution (in Fig. 5.6, step 5 of

the first row). When truncation is applied to suppress the gradient near the optimal solution, the

convergence value reached optimal value (in Fig. 5.6 from step 1 to 5 of the second row). Fig. 5.6.

The converged event patch (in Fig. 5.6, step 5 of the second row) matched the patch of the frame

edge image (in Fig. 5.5.(b)).
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(a) Target feature (b) Edge image of the feature

(c) Event image of the feature with polarity (d) Event image of the feature without polarity

Figure 5.5: Target feature for tracking.

Event Patch

Event patch with truncation method

Truncation mask

Step 1 Step 2 Step 3 Step 4 Step 5

Figure 5.6: Event images during contrast maximization with varying optimization step.
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Figure 5.7: Patch of tracking failed feature due to gradient sliding.

Even after truncation is applied, some features are not tracked correctly, because the patch

size is still small. Once the feature motion is updated in wrong direction (The red arrows in the

first row of Fig. 5.7), the feature motion diverges in one direction and does not converge later. I

will refer to this situation as “gradient sliding” in this dissertation. Fig. 5.7 depicts the gradient

sliding feature of Fig. 5.8.

If the intensity of the event patch boundary is set to 0 (zero padding), the gradients near the

boundaries are oriented to the center of the patch (The blue arrows in the first row of Fig. 5.7).

Through this, it is possible to prevent contrast maximization from divergence, and it is confirmed

that feature tracking works well as in Fig. 5.8.

I evaluate the proposed feature tracking method in ECDS data set [54] as in Fig. 5.9, Fig. 5.10

and Fig. 5.11.
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Without zero padding

Zero padding applied

Initial
event patch

Initial
truncation mask

Aligned
event patch

Final
truncation mask

Figure 5.8: Feature tracking with zero padding. Aligned event patch with zero padding shows highly
similarity to target patch of Fig. 5.7, while aligned event patch without zero padding shows diverged result
due to the gradient sliding. The red arrows are gradients which can induce gradient sliding, and the blue
arrows are center oriented gradients from zero padded boundaries that prevent gradient sliding.
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Figure 5.9: Illustration of feature tracking results in ECDS:boxes_rotation.
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Figure 5.10: Illustration of feature tracking results in ECDS:shapes_rotation.
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Figure 5.11: Illustration of feature tracking results in ECDS:poster_rotation.

89



5.2 Pose Estimation

5.2.1 ORB-SLAM with Hetero-Stereo Camera

Through the depth estimation method introduced in Chapter 4, the camera motion can be esti-

mated in the hetero-stereo setup. When only monocular frame camera is used, camera motion

suffers from the scale ambiguity problem. By attaching an event camera that can be used in a

challenging environment, it is possible to estimate the absolute scale preserved depth. Here, I im-

plement the camera pose estimation algorithm by fusion of ORB-SLAM3 [61] and the proposed

method in Chapter 4.

I quantitatively and qualitatively compare the localization performance of ORB-SLAM3 [61]

with monocular camera and ORB-SLAM3 with hetero-stereo camera. The evaluation is per-

formed in DSEC [51] and TUM-VIE [49]. Since DSEC dataset does not provide ground truth

poses, I qualitatively evaluate the algorithm by comparing road of the satellite map and path of

the camera. I used RVIZ-satellite [62] to draw satellite map. Then, I qualitatively and quantita-

tively evaluate the proposed method in TUM-VIE dataset which provides ground truth poses. For

fair comparison, I calibrate the global scale of each method to the ground truth and then evaluate

the methods.
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Monocular setup
ATE 1d-trans 3d-trans 6dof
RMSE 0.028967 0.082613 0.048711
MEAN 0.023494 0.073844 0.046150
STD 0.016945 0.037040 0.015587

(unit: m)
The proposed event and frame setup

ATE 1d-trans 3d-trans 6dof
RMSE 0.023498 0.024156 0.019971
MEAN 0.021383 0.021908 0.018307
STD 0.009744 0.010176 0.007980

(unit: m)

Table 5.1: The results of absolute trajectory error(ATE).

The quantitative evaluation results for the TUM-VIE dataset are shown in Table 5.1. I evaluate

the methods using absolute trajectory error(ATE) metric with the code provided by ORB-SLAM3

[61]. Because the proposed approach can estimate depth with absolute scale, the proposed setup

show better performance for all data sequences in ATE than the monocular setup.

The quantitative results are illustrated in the figures below. In the case of the monocular

version of ORB-SLAM3, scale consistency is not maintained when the rotational motion is large.

In the interlaken_c and interlaken_f data sequence, there are no large rotational motions, so the

pose estimation performance is not far behind the hetero stereo version. However, since there

are several large rotational motions in interlaken_d, interlaken_e, interlaken_g sequences, the

scale consistency is not maintained. Although the performance of monocular ORB-SLAM3 is

degraded due to scale ambiguity, the proposed method is not affected by scale issue.
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Monocular setup

The proposed event and frame setup

Figure 5.12: Pose estimation results in DSEC:interlaken_c data sequence.

Monocular setup

The proposed event and frame setup

Figure 5.13: Pose estimation results in DSEC:interlaken_d data sequence.
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Monocular setup

The proposed event and frame setup

Figure 5.14: Pose estimation results in DSEC:interlaken_e data sequence.
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Monocular setup

The proposed event and frame setup

Figure 5.15: Pose estimation results in DSEC:interlaken_f data sequence.

Monocular setup

The proposed event and frame setup

Figure 5.16: Pose estimation results in DSEC:interlaken_g data sequence.
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Monocular setup

The proposed event and frame setup

Figure 5.17: Pose estimation results in TUM-VIE:mocap_1d data sequence.
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Monocular setup

The proposed event and frame setup

Figure 5.18: Pose estimation results in TUM-VIE:mocap_3d data sequence.
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Monocular setup

The proposed event and frame setup

Figure 5.19: Pose estimation results in TUM-VIE:mocap_6dof data sequence.
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5.3 Future Work

Pose estimation fails in some cases when the camera quickly passes through areas where the map

has not been reconstructed. If translational motion exists, the depth can be estimated with an

event camera, and pose estimation is possible. If the newly discovered area is observed with fast

rotational motion, it becomes difficult to estimate the depth, and it is difficult to estimate the trans-

lational motion. In noisy visual data, without depth, a panning motion cannot be distinguished

from an x-axis translational motion.

As a future work, I will propose a method for depth estimation in a challenging environment

with a hetero-stereo setup with one more event camera added. It is expected that not only depth

estimation and existing vision algorithms can be used with the frame camera, but also depth can

be stably estimated even for fast pure rotational motion by using the event camera as a stereo.

The initial stereo matching and the proposed stereo matching with aligned events in Chapter 4

will be applied to the stereo events, and contrast maximization with globally aligned events will

be adapted to estimate 6-DOF camera pose.
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6
Conclusion

I propose accurate, intuitive and efficient methods to align events with geometric approach. I

apply the aligning methods to motion estimation, depth estimation, and feature tracking. The

proposed event aligning method assumes that a motion is constant for a short time interval. By

utilizing Lie algebra, the proposed method aligns events at a reference time considering the time

of every individual event. The event images obtained by the proposed aligned events can identify

the shape of an object by depicting the edge of the frame images. In addition, the proposed meth-

ods of motion estimation and depth estimation can run in real-time, since the proposed methods

consider the computational efficiency. The proposed event alignment method achieves high accu-

racy for the angular motion estimation, and the depth estimation performance is equivalent to the

stereo matching method with frame images. In addition, through the estimated depth from hetero

stereo matching, the pose estimation performance is improved than the monocular frame cam-

era. In order to track features even when frame cameras fail, I also propose the feature tracking

method for event cameras.

In this dissertation, I show that the event camera can accurately depict edge images with

a geometric approach. I expect that the proposed study will help understand the geometrical
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characteristics of event data.
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A
Detailed Derivation of Contrast for Rotational

Motion Estimation

This section shows a detailed derivation of the contrast for rotational motion estimation. The cost

function J(ωm) is the contrast of the event image, and formulated as follows:

J(ω) = ‖I(ω)‖2 . (A.1)

By expressing all without omission, the event image at pixel xk, I(xk,ω), can be formulated as

follows:

I(ω) =
N

∑
k=1

I(xk,ω) (A.2)

I(xk,ω) = δd(x−π(w(xk,ωm,δ tk))) (A.3)
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Here, π([x,y,z]ᵀ) is the projection function, which satisfying:

π




x

y

z


=

 fxx/z+ cx

fyy/z+ cy

 . (A.4)

Using the chain rule, Jacobian is derived as follows:

∂J(ω)

∂ω
=

∂J
∂ I

∂ I
∂π

∂π

∂w
∂w
∂ω

, (A.5)

∂J
∂ I

=
N

∑
k=1

2I(xk,ω) (A.6)

∂ I
∂π

= ∇I(xk,ω) =
[

∂ I(xk,ω)
∂u

∂ I(xk,ω)
∂v

]
(A.7)

∂π

∂w
=

∂ ( fxx/z+cx)
∂x

∂ ( fxx/z+cx)
∂y

∂ ( fxx/z+cx)
∂ z

∂ ( fyy/z+cy)
∂x

∂ ( fyy/z+cy)
∂y

∂ ( fyy/z+cy)
∂ z

 (A.8)

=

 fx/z 0 −∂ fxx
z2

0 fy/z −∂ fyy
z2


∂w
∂ω

=
∂eωδ tkx′

∂eωδ tk
· ∂eωδ tk

∂ω
(A.9)

Let eωδ tk be:

eωδ tk =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (A.10)
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Then,

eωδ tkx′ =


r11x+ r12y+ r13z

r21x+ r22y+ r23z

r31x+ r32y+ r33z

=


α

β

γ

 (A.11)

∂eωδ tkx′

∂eωδ tk
=


∂α

∂ r11

∂α

∂ r21

∂α

∂ r31

∂α

∂ r12

∂α

∂ r22

∂α

∂ r32

∂α

∂ r13

∂α

∂ r23

∂α

∂ r33
∂β

∂ r11

∂β

∂ r21

∂β

∂ r31

∂β

∂ r12

∂β

∂ r22

∂β

∂ r32

∂β

∂ r13

∂β

∂ r23

∂β

∂ r33
∂γ

∂ r11

∂γ

∂ r21

∂γ

∂ r31

∂γ

∂ r12

∂γ

∂ r22

∂γ

∂ r32

∂γ

∂ r13

∂γ

∂ r23

∂γ

∂ r33

 (A.12)

=


x 0 0 y 0 0 z 0 0

0 x 0 0 y 0 0 z 0

0 0 x 0 0 y 0 0 z



∂eωδ tk

∂ω
=

∂e(G1w1+G2w2+G3w3)δ tk

∂ω
(A.13)

=
[

∂e(G1w1+G2w2+G3w3)δ tk
∂ω1

∂e(G1w1+G2w2+G3w3)δ tk
∂ω2

∂e(G1w1+G2w2+G3w3)δ tk
∂ω3

]
The derivative of exponential matrix of linear combination can be easily derived, if com-

mutative property holds on matrices. If ωδ tk � 1, the approximate form of Eq. (A.13) can be
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computed as follows. The exact solution can be found at [63].

∂eωδ tk

∂ω
≈
[
vec(G1) vec(G2) vec(G3)

]
δ tk =



0 0 0

0 0 1

0 −1 0

0 0 −1

0 0 0

1 0 0

0 1 0

−1 0 0

0 0 0



δ tk (A.14)

By chaining derivatives, Jacobian can be summarized as follows:

∂J(ω)

∂ω
=

Nm

∑
k=1

2I(xk,ω)
[

∂ I(xk,ω)
∂u

∂ I(xk,ω)
∂v

] −x̄kȳk fx (1+ x̄2
k) fx −ȳk fx

−(1+ ȳ2
k) fy x̄kȳk fy x̄k fy

δ tk, (A.15)
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국문초록

이벤트카메라는기존카메라가동작하기어려운환경에서시각데이터를안정적으로얻을

수있다. 대표적으로빛밝기범위가넓거나 (High Dynamic Range: HDR)빠르게움직이는

환경에서이벤트카메라의장점이두드러진다. 그러나이벤트데이터는기존의컴퓨터

비전알고리즘을바로적용할수가없다. 이벤트는프레임단위가없으며비동기적이기

때문에새로운접근방법이요구된다. 최근몇년간,동작깊이추정,초고속이미지복원,

물체추정연구등다양한활용을보여주는이벤트연구가활발하게진행되었다. 본논문

에서는이벤트카메라를활용하여고속환경에서운용가능한각운동추정연구를다루었

다. 제안하는방법은대비최대화기법을통해각속도, 각위치를추정하였고실시간으로

동작하며기존대비최대화기법에서다루지않았던드리프트에러누적문제를해결하여

뛰어난성능을보여주었다.

그러나여전히일반적인사용환경에서는이벤트카메라가기존카메라를대체하기에

어려움이있다. 이벤트와프레임카메라의장점을모두활용하기위해,본논문에서는헤

테로스테레오카메라시스템을제안하였다. 헤테로스테레오카메라시스템은이벤트와

프레임카메라를동시에활용한다. 제안하는방법은두카메라를활용하여실시간으로

이벤트와프레임데이터를매칭하여준-조밀한(semi-dense) 깊이영상을계산하였다. 이

과정에서이벤트데이터를정확하고,효율적이며,직관적으로정렬하는방법을제안하였

다. 최대픽셀이동거리(maximum shift distance)를제안하여실시간이벤트정렬을가능

하게하였으며,정렬된이벤트로획득한이미지는프레임카메라의모서리이미지와매우

유사한형태를띄는것을보여주었다. 제안하는깊이추정방법은카메라위치및자세를

추정할수있으며매우짧은시간안에시스템초기화구동(initialization)이가능하다. 추가

적으로,헤테로스테레오카메라에서프레임카메라동작이불가능한경우이벤트카메라

가대체하여동작할수있도록,이벤트카메라기반특징점추적방법과자세추정연구를

진행하였다.

이벤트카메라연구에기여하기위해,본학위논문의코드를모두오픈소스로공개하
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여개인프로젝트페이지에배포하였다. https://haram-kim.github.io

주요어: 이벤트카메라,자세추정,깊이추정,헤테로스테레오이벤트프레임카메라,

대비최대화

학 번: 2019-30458
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