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Abstract

In this dissertation, a versatile path-following control method for aerial vehicles

that can effectively deal with an ambient wind shear is proposed. Novel equa-

tions of motion for aerial vehicles considering the effect of continuously differ-

entiable time-varying ambient winds are derived, and a path-following control

law in a three-dimensional Euclidean space, called the Weighted-Perpendicular-

Tangent-based Path-Following Control (WPTPFC), that makes the vehicle

asymptotically follow a given sufficiently smooth desired path is developed.

The proposed equations of motion consist of the aerodynamic angles and

the inertial flight path angles as state variables. The equations cover a large

range of ambient wind speeds without any approximation or linearization. Two

unique angles of sequential rotations called the path-relative wind angles are

proposed to parametrize the difference between the air-relative velocity and the

inertial velocity caused by ambient wind terms. The conventional aerodynamic

roll angle is not defined in a wind condition; thus, a compatible modified ver-

sion is also proposed. The resulting state equations are structured to form a

cascade system, which helps designers interpret the physical and geometrical

meaning of individual subsystems and efficiently design a corresponding feed-

back control law. The model particularly fits motion control problems such as

trajectory tracking or path-following control of fixed-wing-type aerial vehicles

in the presence of time-varying ambient wind. The properties and potential of

the proposed formulation are discussed in depth by focusing on the meaning

and use of each proposed angle and the wind estimation techniques.

In the design of WPTPFC, a reference point called the perpendicular foot
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is proposed for path-following control as an alternative to the closest point.

Though the notion of perpendicular foot suffers from a similar singularity issue

that the closest point has, it guarantees the continuity of solution with respect

to the motion of the vehicle provided that the point does not reach some ge-

ometrical region, and it is shown that the region can be effectively avoided

by the proposed singularity avoidance strategies. A Velocity Direction Input

(VDI) and Steering Input (SI), which are common input configurations for mo-

bile robots with nonzero moving speed, are considered the inputs of the control

system. In particular, a special barrier function-based method called the Bar-

rier Weighting Method (BWM) is developed to fully utilize the characteristics

of the backstepping control for a certain class of constrained systems. Using

the proposed technique, it is demonstrated that the velocity direction control

law can be efficiently reused for the steering input control design preserving the

singularity avoidance capability.

Finally, the flight control system and WPTPFC are unified based on the

time-scale decomposition technique. The compatibility between the methods is

investigated, and appropriate coordinate transformations and control allocation

methods are developed. Numerical simulations are performed to demonstrate

the effectiveness of the proposed control scheme.

Keywords: Flight Dynamics, Ambient Wind, Path-Following Control, Back-

stepping, Barrier Weighting

Student Number: 2013-23070
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Chapter 1

Introduction

1.1 Motivation and Objective

1.1.1 Effects of Wind Shear on Aerial Vehicles

A few fatal accidents in aviation history later turned out to be attributed to

a low-level wind shear such as microburst [1]. The influence of strong wind

shear on aircraft is particularly hazardous in take-off and landing phases due

to low airspeed and thrust [2]. An abrupt change in wind speed and direction

can cause a severe decrease in the airspeed of an aircraft, which often leads

to aircraft upset. In particular, the detrimental effect is greater on small-sized

unmanned aerial vehicles (UAVs) whose airspeed is relatively less than that

of manned aircraft, where the wind speed can reach 50 percent or more of

the airspeed of the UAV during operation [3]. On the contrary, wind can be

exploited to make an efficient flight. Several flight techniques make use of a

steady wind shear formed by meteorological phenomena such as terrain-induced

flow or atmospheric convection, where dynamic soaring and thermalling are

1



representative examples. By intentionally flying through the wind shear layers,

an aerial vehicle can gain additional energy which consequently extends the

overall flight time or raises the altitude using less thrust [4].

With regard to controller design, especially for fixed-wing aircraft, both the

two foregoing opposite points of view on wind shear suggest that the flight con-

trol system should deliberately take the effects of wind into account. The stabil-

ity and performance of a model-based control law are primarily determined by

the fidelity of the equations of motion. In other words, the model should reflect

the actual system as close as possible. However, a zero-wind or constant wind

condition is often assumed for the flight dynamics in the literature [5,6], which

is not usually the case in the general aviation environment. The linearization

technique is used under the assumption that the angle deviations due to wind

are sufficiently small [7]. The performance of the flight control laws resorting

to such an ideal situation can be largely degraded during a flight across a wind

field and, consequently, the flight envelope must be limited to an extent. The

issues particularly apply to fixed-wing-type aerial vehicles in which changes in

the angle of attack due to turbulence critically affect the performance and sta-

bility, whereas multi-rotor-type vehicles are relatively easier to deal with the

wind disturbance [8, 9].

Various robust control and adaptive control laws have been developed to

handle the issue and they show a satisfactory performance allowing moder-

ately bounded uncertainty or disturbance. However, the bounds were often

determined based on the empirical data or subjective evaluation of the de-

signers, and the wind was simply modeled and treated as an unstructured dis-

turbance [10,11]. In this case, large estimated bounds are inevitable in general.

The approach essentially entails a problem that the controller gains or adapta-

tion rate chosen based on the large disturbance bounds may result in somewhat

2



degraded transient response [12]. In contrast, as control system with an exact

disturbance model does not suffer from large estimated bounds, the trade-off

between the performance and the robustness of the closed-loop system can be

mitigated. This stresses the need for a precise flight dynamics considering the

wind effect.

1.1.2 Path-Following Control for Aerial Vehicles

The mobility of a mobile robot such as aerial, marine, automotive vehicle, and

missile is often realized by making it accurately follow a predefined spatial tra-

jectory or path, where a trajectory is a parametric curve whose parameter is a

time variable. The motion control of robots is usually formalized as a trajectory

tracking problem due to its relatively affordable difficulty in controller design

whose primary goal is to drive a robot to track a trajectory [13]. Consequently,

the temporal parametrization of the desired trajectory directly affects the per-

formance of the tracking control. However, for some underactuated robots, de-

signing a physically feasible timing law is not a trivial task [14–16]. Unpowered

vehicles or powered vehicles without active speed controllers such as a glider

or solid-propellant rocket are equipped only with steering actuators. For such

vehicles, trajectory tracking can generate a command that a specific vehicle

cannot comply with. In this case, path-following control (PFC) is a good al-

ternative because the behavior of the reference point, a point that a vehicle is

supposed to follow, is determined online by the motion of the vehicle [13,17].

There exist numerous well-designed PFC schemes aimed at the effective

utilization of fixed-wing aerial vehicles. However, fundamental shortcomings of

existing works that motivated this study stem from the use of local reference

frames and inverse trigonometric functions. Local reference frames built on

the differential geometric properties of a path are not free from an inherent
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singularity. The Frenet-Serret (FS) frame has been the most widely used for

the parametric PFC [18–22], whose bases are determined by the derivatives of

a regular path. As the definition implies, the frame has singular points where

the curvature vanishes though many of the related works utilize it without

justification. A few approaches resort to the FS frame constructed by sequential

rotations from the world frame using inverse trigonometric functions [18,20,22,

23]. From a mathematical point of view, such a formulation cannot attain a

global stability property.

The most important motivation for this study is the reference point for

PFC. The closest point [18, 24–26] is a common reference favored in a vast

amount of research because of its simple form and geometric advantages; it

provides the fastest route that the maneuverable point can take to reach the

desired path. However, it has an apparent limitation (usually not explicitly

referred to in the literature) that it is mathematically allowed only for a straight-

line path because, for general differentiable curves, the closest point is not

unique, not even continuous respect to the motion of the maneuverable point,

and finding the point involves numerical optimization that does not guarantee

a global solution. Furthermore, there is a singularity where the closest point

is indeterminate; the speed of the point diverges as the maneuverable point

approaches the center of curvature of the path.

1.1.3 Unification of Flight Controller and PFC

Flight control generally refers to the tracking control of the vehicle’s direction,

and flight guidance is a higher-level control that determines the direction the

vehicle should track to follow the designated path. They are referred to as

dynamics-level and kinematics-level control, respectively. In this aspect, PFC

can be classified as a guidance. A typical approach to this flight control and
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guidance problem is to separate the design process treating each dynamics level

as a subsystem of a cascaded system and to consolidate the individual con-

trol law under the time-scale decomposition principle [27,28]. If the inner-loop

dynamics is not sufficiently “faster” than the outer loop, the control problem

is usually addressed by a more rigorous control scheme such as backstepping

or sliding mode control [5, 6]. The advantages of these approaches include the

inherent robustness and the ease in unifying the controllers for each subsystem.

However, a few of the existing control approaches overlook some details of the

problem by blurring the importance of the domain of interest. Some classical

methods make use of the linearized or feedback-linearized model of the entire

system and apply a robust and adaptive linear feedback controller. However,

though the linear control system is well-understood, it sometimes ignores the

characteristics of each subsystem and thus make it harder to interpret the per-

formance in handling nonlinearity [7].

1.1.4 Study Objective

The objective of this study can be summarized as follows: First, the study

carefully inspects the flight dynamics and path-following geometry. Then, cor-

responding high-performance control laws are designed and unified. Motivated

by the aforementioned limitation of existing methods, the author aims not only

for developing a practical solution for the PFC problem considering ambient

wind shear but also for mathematically rigorous reasoning.
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1.2 Literature Survey

1.2.1 Flight in Ambient Wind Shear

There have been several achievements regarding the development of equations

of motion describing the three-dimensional relative motion of an aerial vehicle

with respect to an unsteadily moving atmosphere (air mass). One of the most

famous formulations was proposed by Frost and Bowles [29]. They introduced

a total of three air-relative angles to describe the sequential rotations from the

inertial frame to the wind frame: the air-relative roll angle, the air-relative flight

path angle, and the air-relative course angle, where the latter two are together

called the air-relative flight path angles. These angles concisely formulate the

motion of the aircraft relative to the air mass, but none of them can be directly

measured by existing sensors. Moreover, the inefficient angle transformation

must be accompanied to apply the model to design a spatial trajectory tracking

because the angles do not represent the motion relative to the inertial frame.

The inertial flight path angles, simply called the flight path angles, are

defined to parametrize the direction of the inertial velocity. By using the flight

path angles, the conventional aerodynamic roll angle in [30] is also defined

to parametrize the rotation from the inertial velocity frame to the wind frame

about the inertial velocity direction in the no-wind condition. The notion of the

aerodynamic roll angle is quite useful for designing a trajectory tracking control

law in that it provides an intuitive geometrical interpretation of the relation

between aerodynamic forces and the spatial motion of the aircraft with respect

to the inertial frame [5, 6]. However, the definition is valid only in the no-wind

condition because the coordinate transformation can no longer be represented

by a single rotation about the inertial velocity direction in wind conditions

as the air-mass-relative velocity deviates away from the inertial velocity by the
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ambient wind terms; therefore, it cannot be directly used under wind conditions

without modification.

1.2.2 PFC for Aerial Vehicles

PFC methods can be classified into two major categories depending on whether

the desired path (geometric curve) is parametric. A PFC law based on a para-

metric curve utilizes the curve parameter to determine a reference point to

follow, whereas one based on a nonparametric curve describes the path as a set

of spatial points. A vector-field-based PFC is a representative nonparametric

PFC, whose desired path is described as a 1-manifold defined by a system of

implicit equations consisting of differentiable path functions [16]. By using the

gradient of the path functions, a vector field is designed to make the desired

path (set) attractive. However, the performance of the method heavily depends

on the design of the path functions, whose difficulty is practically manageable

only for simple paths such as circles or straight lines. Therefore, the method is

usually applied to simple planar paths [28]. Though some algorithms guarantee

their effectiveness for general multidimensional smooth paths, the estimation

of the region of attraction involves a tricky analysis of the critical points where

the vector field degenerates [16,31,32]. Another drawback of the nonparametric

PFC is that it does not allow self-intersecting paths [33].

Parametric PFC is usually preferred because it easily overcomes the fore-

going drawbacks. The method is further divided into two subcategories by the

way the reference point is defined: static and dynamic. A static reference refers

to a point defined solely by the position of the maneuverable point (robot as

a point mass) [18, 24–26, 34]. A few research took the closest point [18, 24–26]

as a static reference due to its simplistic definition and ease of handling. On

the other hand, a dynamic reference has the state and dynamics augmented to
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the system that determines the behavior of the reference point, which can be

utilized to eliminate the limitations [13,20,35,36].

For many underactuated or nonholonomic mobile robots, insufficient con-

trol authority over traversing speed due to slow thrust dynamics or absence of

pertaining actuators makes it more efficient for PFC laws to treat the speed

as a measured exogenous signal rather than a state variable of the system. In

this case, the speed is augmented as a constraint on the control system, and the

steering force is applied in the normal direction to the velocity as usual in missile

guidance [20,25,36,37]. Otherwise, the robot should be equipped with a thruster

to actively control the speed, and a PFC law is then designed to make the speed

of the maneuverable point approach the desired speed [13,15,21,22,26,33,38,39].

One of the most effective parametric PFC laws for mobile robots is the

lookahead-based line-of-sight guidance method, extensively refined by Breivik

and Fossen [20], which is pure pursuit of the lookahead point of a reference

point [22–25]. The lookahead distance, not necessarily a constant, is the key

design parameter of the method as it determines the trend of the transient re-

sponse; thus, several variations of the method have been proposed regarding the

design of the lookahead distance [25, 40]. There exist both static and dynamic

reference versions of lookahead-based PFC. Particularly, the former, based on

the closest point reference, shows a better smooth transient response admitting

some singularity issue [24,25].
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1.3 Research Contribution

The main contributions of the dissertation are twofold: The derivation of a novel

equations of motion for aerial vehicles and the development of a versatile PFC

called WPTPFC.

1.3.1 Flight Dynamics

This dissertation proposes a novel nonlinear equations of motion for the three-

dimensional flight dynamics, which models the effects of continuously differen-

tiable time-varying ambient winds without approximation or linearization. The

difference between the air-relative velocity and the inertial velocity caused by

the wind component is parametrized by two angles of sequential rotation called

the path-relative wind angles. Moreover, a generalized version of the aerody-

namic roll angle is proposed to describe the rolling motion of the aerial vehicle

in the presence of wind, which is identical to the definition of the conventional

aerodynamic roll angle in the no-wind condition.

The formulation is particularly beneficial for trajectory tracking or path-

following problems since it explicitly shows the geometrical relation between

the forces exerted on the vehicle and the motion in the inertial frame. Another

advantage of using the proposed equations of motion is that existing high-

performance flight controllers initially developed by assuming no-wind condi-

tion can be easily reused for wind-conditioned environment while keeping their

overall form. Therefore, the equations of motion help expand the fields of ap-

plication of the conventional flight controllers by enabling them to deal with

ambient winds. The equations of motion are applicable to any flight controllers

that exploit the flight path angles and aerodynamic roll angle convention, which

include [5, 6, 30,41–43].
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1.3.2 Weighted-Perpendicular-Tangent-based PFC

A parametric PFC law, called the weighted-perpendicular-tangent-based path-

following control (WPTPFC), is proposed for three-dimensional regular paths.

It is assumed that the speed profile of the maneuverable point is predeter-

mined. Being continuously differentiable and having bounded locally Lipschitz

derivatives are the only conditions required for the paths. A point called the

perpendicular foot is selected as a dynamic reference point. A control law for

the kinematics-level system that takes the velocity direction as input is designed

first; the tangent vector of the path at the perpendicular foot, the perpendicu-

lar, and appropriate weighting functions are utilized to form the desired velocity

direction. The design of a dynamics-level control law with steering input fol-

lows afterwards, where a backstepping-based approach is developed to reuse

the kinematics-level control law. The proposed design consists of only vector

operations that reject any use of local reference frames or angle-based geome-

try; thus, it can be applied to planar dynamical systems including ground or

surface vehicles without modification. Moreover, the region of operation where

the method guarantees the effectiveness of the PFC law, which is analogous to

the region of attraction, is estimated through rigorous analysis.

The perpendicular foot concept leverages the idea of the closest point while

addressing discontinuity by incorporating the path parameter into the system

dynamics as a state; the formulation renders the system classified as the semi-

explicit differential-algebraic equation of index 1 [44]. Because the definition

of the point also entails the same singularity issue that the closest point has,

corresponding reasonable singularity avoidance methods are presented; special

attention has been paid to developing the set-invariance-based avoidance strat-

egy [45, 46] handling the kinematics-level (geometric) singularity that occurs
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when the maneuverable point reaches the line passing through the center of

curvature of the path. In particular, the dynamics-level controller design is fea-

tured by a unique method called the Lyapunov barrier weighting for backstep-

ping control developed to efficiently inherit the singularity avoidance designed

for kinematics-level systems.

1.3.3 Summary

� The difference between the air-relative velocity and the inertial velocity

caused by the wind component is parametrized by two angles of sequential

rotation called the longitudinal and lateral path-relative wind angles.

� A generalized version of the aerodynamic roll angle is proposed to describe

the rolling motion of the aerial vehicle in the presence of wind, which

coincides with the definition of the conventional aerodynamic roll angle

in the no-wind condition.

� Existing high-performance flight controllers initially developed by assum-

ing no-wind condition can be easily reused for wind-conditioned environ-

ment while keeping their overall form by using the proposed equations of

motion.

� A reference point called the perpendicular foot is proposed for PFC as

an alternative to the closest point. Though the notion of perpendicular

foot suffers from a similar singularity issue that the closest point has, it

guarantees the continuity of solution with respect to the motion of the

vehicle provided that the point does not reach some geometrical region,

and it is shown that the region can be effectively avoided.

� A special barrier function based method called the Barrier Weighting
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Method (BWM) is developed to fully utilize the characteristic of the back-

stepping control for a certain class of constrained systems. It is shown that

the velocity direction control law can be efficiently reused for the steering

input control design preserving the singularity avoidance capability.

� After a flight control system based on the proposed equations of motion is

designed, it is integrated with WPTPFC to form a unified control system.

A subsystem of the flight control system is carefully selected to have a

compatibility with the WPTPFC method in each input configuration,

Velocity Direction Input (VDI) and Steering Input (SI), by using the

nonlinear control allocation method.
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1.4 Dissertation Organization

The dissertation is organized as follows:

Chapter 2 focuses on the flight dynamics in the presence of continuously

differentiable ambient winds. In Section 2.1, the equations of motion are derived.

In Section 2.2, the properties of the equations of motion and their possible

applications as well as the ambient wind estimation techniques are discussed.

Chapter 3 deals with the design of flight control system. Sections 3.1 and

3.2 introduce preliminaries. A flight control system is developed by designing

separate controllers for each subsystem of the flight dynamics by viewing it as

a cascade system from Section 3.3 to 3.5. Section 3.6 demonstrates the perfor-

mance of the flight controller and the usefulness of the proposed equations of

motion.

Chapter 4 provides the essential theoretic bases for the development of

WPTPFC. Section 4.1 summarizes the notation used in Chapter 4, and Sec-

tion 4.2 presents the mathematical preliminary. Fundamental propositions about

barrier-based methods for constrained systems are introduced in Section 4.3.

Section 4.4 introduces the Lyapunov barrier weighting method for constrained

systems.

Chapter 5 develops WPTPFC. Section 5.1 summarizes the notation, and the

definition of the path-following problem is stated in Section 5.2. Sections 5.3

and 5.4 propose design strategies for PFC laws. In Section 5.5, the simulation

results are given.

Chapter 6 deals with the unification of the flight control system andWPTPFC.

Finally, a summary of the dissertation is presented in Chapter 7.
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Chapter 2

Flight Dynamics Considering
Time-Varying Ambient Wind

This chapter derives the equations of motion of aerial vehicles in the differen-

tiable time-varying wind shear. The equations of motion model the dynamics

of angular velocity ω, aerodynamic roll angle µ, aerodynamic angles (angle of

attack α and sideslip angle β), and flight-path angles (lateral flight-path angle

χ and longitudinal γ). The main contribution of this chapter is the introduction

of two angles called the path-relative wind angles χw and γw to incorporate the

effect of ambient winds to the equations of motion. The equations of motion are

structured by considering which states each dynamics is dominantly dependent

on from a control design perspective. The practical aspects of the proposed

equations of motion are discussed in depth later in this chapter.
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2.1 Derivation of Equations of Motion

Let us introduce some notations for compact representation of the equations.

|·| denotes the absolute value for scalars and the Euclidean norm for vectors.

For an angle θ, the coordinate transformations pertaining to the right-handed

rotation about each axis of the three-dimensional Cartesian coordinate system

are represented by

Cx (θ) =


1 0 0

0 cos θ sin θ

0 − sin θ cos θ

 ,

Cy (θ) =


cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

 ,

Cz (θ) =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 .

(2.1)

For u = [u1 u2 u3]
⊤ ∈ R3, the operator [·]× that maps a vector to a cross

product matrix is represented by

[u]× =


0 −u3 u2

u3 0 −u1

−u2 u1 0

 . (2.2)
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The function atan2 :
{
(y, x) ∈ R2

∣∣ x ̸= 0 or y ̸= 0
}
→ R is defined by

atan2 (y, x) =



arctan (y/x) , x > 0

arctan (y/x) + π, x < 0 and y ≥ 0

arctan (y/x)− π, x < 0 and y < 0

π/2, x = 0 and y > 0

−π/2, x = 0 and y < 0.

(2.3)

The physical vector and matrix notations are summarized in Table 2.1. In

particular, Cc/a = Cc/bCb/a and C−1
b/a = C⊤

b/a = Ca/b for arbitrary coordinate

system a, b, and c. The coordinate transformation matrices are used to change

the coordinate system in which a physical vector is represented, i.e., vb =

Cb/av
a. On the other hand, ωc/a = ωc/b+ωb/a and ωb/a = −ωa/b for arbitrary

frames Fa, Fb, and Fc. See [47, Chapter 1] for more detail of the properties of

the vectors and transformation matrices.

Table 2.1: Vector and matrix notations

pA/B = position vector of point A with respect to point B

vA/i = velocity vector of point A in frame Fi
bv̇A/i = derivative of vA/i taken in frame Fb

vc = vector represented in coordinate system c
ωb/a = angular velocity of Fb with respect to Fa

Cb/a = coordinate transformation matrix: from system a to system b

ia, ja, and ka are right-handed orthonormal bases of the frame of refer-

ence Fa. Without any subscript, they indicate the column vectors: i = [1 0 0]⊤,

j = [0 1 0]⊤, and k = [0 0 1]⊤; thus, iaa = i, jaa = j, and ka
a = k for any coordi-

nate system a. The frames and the coordinate systems used in this study are

summarized in Table. 2.2. Coordinate transformation matrices that represent
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the rotations between some important coordinate systems are given as follows:

Cw/s = Cz (β)

Cs/b = Cy (−α)

Cσ/i = Cy (γ)Cz (χ) ,

(2.4)

where β is the sideslip angle, α is the angle of attack, γ is the flight path angle

(elevation), and χ is the course angle (azimuth). The coordinate transforma-

tions, for instance, can be use to derive the stability frame Fs by rotating the

body frame Fb by −α about the y-axis of the body-fixed coordinate system

(jb) as shown in Fig. 2.1; thus, the angular velocity of Fs relative to Fb is

ωs/b = −α̇jb.1 Note that Cσ/i is defined to indicate the direction of the inertial

velocity, that is, Ci/σi
σ
σ = C⊤

σ/ii is the direction of flight represented in the coor-

dinate system i. The rest of the relations are developed in the later part of this

section. Function arguments will be often omitted throughout the dissertation

for simplicity.

The state vector of the system is given by

x = [P Q R µ β α χ γ VT pN pE pD]
⊤ , (2.5)

where P , Q, R are the roll, pitch, yaw rate in the body-fixed coordinate system

b, µ is the aerodynamic roll angle, VT is the airspeed, and pN , pE , pD denote the

position in the flat-earth-fixed coordinate system i. Formulation of the flight

dynamics is carried out under the following assumptions:

Assumption 2.1.1: The aerodynamic force coefficient vector CF =

[−CD CY − CL]
⊤ and the moment coefficient vector CM = [Cl CmCn]

⊤ of

1Because the coordinate systems s and b share the same y-axis, it follows that ωs/b =
−α̇jb = −α̇js.
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the vehicle are functions of the time t, the state x, and the control surface

deflection δ, i.e., CF = CF (t,x, δ) and CM = CM (t,x, δ), where CD, CY ,

and CL are the drag, sideforce (lateral force), and lift coefficient in wind coor-

dinate system w, and Cl, Cm, and Cn are moment coefficients in the system

b, respectively. This assumption can be easily relaxed by simple modification

depending on the application; one can assume that the coefficients are general

time-varying parameters such that CF = CF (t) and CM = CM (t).

Assumption 2.1.2: The center of mass of the vehicle is fixed to the origin of

the body-fixed coordinate system. The whole airframe is assumed to be a rigid

body; the mass m is constant.

Assumption 2.1.3: The flat-earth assumption is applied; the inertial velocity

indicates the velocity of an aerial vehicle with respect to the ground.

Assumption 2.1.4: The ambient wind velocity vi
W/i : [t0, ∞) → R3 is con-

tinuously differentiable, and its derivative iv̇i
W/i is denoted by aiW/i. The air

mass frame Fa is an imaginary frame defined by viewing the atmosphere as a

rigid body as opposed to the real world property: The frame moves at the same

velocity as the ambient wind measured at the center of mass of the vehicle, and

the airframe does not influence the air flow [29]. Moreover, the frame does not

rotate with respect to the inertial frame.

Assumption 2.1.5: The ambient wind speed is smaller than the airspeed of

the aerial vehicle, that is,

∀t ≥ t0 :
∣∣vi

W/i(t)
∣∣ < VT (t). (2.6)
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According to Assumption 2.1.5, the domain of the system is chosen as

Dt =
{
x ∈ R12

∣∣ |β| < 90◦, |γ| < 90◦, VT >
∣∣vi

W/i(t)
∣∣} (2.7)

which is dependent on time t. For bounded ambient wind speeds, a static domain

can be chosen instead; VT > w̄, where
∣∣vi

W/i(t)
∣∣ ≤ w̄ for all t ≥ t0.

Remark 2.1.1: It is apparent from Assumption 2.1.5 that the airspeed VT

should be nonzero for the other state variables to be well-defined, and this

requirement makes the proposed equation suitable for aerial vehicles with fixed

lifting apparatus such as wings or fins including conventional fixed-wing aircraft

or missiles that do not hover consistently. This constraint is inherently entailed

by every equation of motion involving aerodynamic angles and should not be

perceived as a limitation of the proposed model.

The key identity used in this study is the equation that represents the

derivative of a vector observed in the other frame. For an arbitrary physical

vector u, and frames Fa and Fb moving in the relative angular velocity ωb/a, it

follows that

au̇ = bu̇+ ωb/a × u. (2.8)

If the coordinate system of a vector is attached to the frame where the deriva-

tive of the vector is taken, the vector derivative is composed of the very time-

derivative of each component, that is, for any frame of reference Fa and the

corresponding system a, ua = [u1 u2 u3]
⊤ implies au̇a = [u̇1 u̇2 u̇3]

⊤.

2.1.1 External Force and Moment

The force F exerted on the aircraft is composed of the aerodynamic force FA,

the thrust T, and the weight mg, where m is the mass of the aircraft and g
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is the gravitational acceleration. The aerodynamics force is usually modeled as

Fw
A = qSCF , where q = ρV 2

T /2 is the dynamic pressure, ρ is the air density,

S is the wing area. The total force in the wind coordinate system w is then

represented as

Fw = Fw
A +Tw +mgw = qSCF + Tλ+mCw/σCσ/ig

i, (2.9)

where T is the magnitude of thrust,

λ = Cw/bCy (−αT ) i = Cw/sCs/bCy (−αT ) i

= Cz (β)Cy (−(α+ αT )) i

= [cos ᾱ cosβ − cos ᾱ sinβ − sin ᾱ]⊤

is the direction of thrust represented in the wind coordinate system, ᾱ = α+αT ,

and αT is the longitudinal angle between thrust and the reference line (x-axis)

of the vehicle. Cw/σ is the most important matrix that motivated this study,

which accounts for the relation between the vehicle’s inertial motion and relative

motion with respect to the air mass.Cw/σ and its transpose are used throughout

the dissertation and their components will be developed in Section 2.1.7.

The moment M exerted on the aircraft is composed of the aerodynamic

moment MA and the moment due to the thrust MT as a function of T . The

aerodynamic moment is modeled as Mb
A = qSBCM , where B = diag (bs, c̄, bs),

bs is the wing span, and c̄ is the mean aerodynamic chord. The total moment

in the body-fixed coordinate system b can be represented as

Mb = Mb
A +Mb

T = qSBCM +Mb
T , (2.10)
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2.1.2 Angular Velocity Dynamics

The dynamics of the angular velocity ω is directly obtained from the Newton-

Euler equation as [47, Ch. 1]

ω̇ = J−1
{
Mb − ω × (Jω)

}
, (2.11)

where ω = ωb
b/i = [P Q R]⊤ is the angular velocity and J is the moment of

inertia of the aircraft. Equation (2.11) can be structured as follows:

ω̇ = fω (ω, T ) + gω (t,x, δ) , (2.12)

where

fω (ω, T ) = J−1
{
Mb

T − ω × (Jω)
}

(2.13a)

gω (t,x, δ) = qSJ−1BCM . (2.13b)

2.1.3 Aerodynamic Angle Dynamics

The air-relative velocity vr := vG/a, the inertial velocity v := vG/i, and the

wind velocity vW/i have the following relation, called the wind triangle:

vr = v − vW/i. (2.14)

Note that vr = VT iw and v = V T iσ; thus, VT = |vr| and V T = |v|, where V T

is the ground speed. The air-relative velocity is the velocity of the center of

mass with respect to the air mass, and the inertial velocity is with respect to

the ground. The aerodynamic angles are defined by

β = arcsin
Vr
VT
, α = atan2 (Wr, Ur) , (2.15)
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where vb
r = [Ur Vr Wr]

⊤. Figure 2.1 shows the geometry of the aerodynamic an-

gles and the components of the air-relative velocity in the body-fixed coordinate

system.

The aerodynamic angle dynamics can be derived from Newton’s second law

of motion miv̇ = F [47, Ch. 2]:

iv̇ = iv̇r +
iv̇W/i =

wv̇r + ωw/i × vr + aW/i =
F

m
, (2.16)

where aW/i =
iv̇W/i is the acceleration of the air mass. By using the relation

ωw/i = ωw/b + ωb/i, Eq. (2.16) can be rearranged as

wv̇r + ωw/b × vr =
F

m
− ωb/i × vr − aW/i. (2.17)

In the wind coordinate system, the vector components of the left-hand side of
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Eq. (2.17) are

wv̇w
r + ωw

w/b × vw
r =


V̇T

0

0

+


−α̇ sinβ

−α̇ cosβ

β̇

×


VT

0

0

 = Λa


V̇T

β̇

α̇

 , (2.18)

where Λa = diag (1, VT , VT cosβ), vw
r = VT i

w
w = VT i, and

ωw
w/b = ω

w
w/s + ω

w
s/b = ω

w
w/s +Cw/sω

s
s/b

= β̇k+Cz (β) (−α̇j)

=


0

0

β̇

+


cosβ sinβ 0

− sinβ cosβ 0

0 0 1




0

−α̇

0

 =


−α̇ sinβ

−α̇ cosβ

β̇

 .
(2.19)

Then, it follows that[
V̇T β̇ α̇

]⊤
= Λ−1

a

(
Fw

m
− ωw

b/i × vw
r − awW/i

)
= Λ−1

a τw +Λ−1
a [vw

r ]×Cw/bω,

(2.20)

where ωw
b/i × vw

r = − [vw
r ]×Cw/bω, Cw/b = Cw/sCs/b, and

τw =
Fw

m
−Cw/ia

i
W/i.

2 (2.21)

The dynamics of the aerodynamics angles ξa = [β α]⊤ can be extracted

from Eq. (2.20) as

ξ̇a = [j k]⊤
[
V̇T β̇ α̇

]⊤
= fa (t,x, δ, T ) +Ga (ξa)ω, (2.22)

2The measurement of the ambient wind vW/i or its derivative aW/i is usually given in the
flat-earth-fixed coordinate system i. Therefore, the ambient wind will always be transformed
from the system i; for instance, Cσ/iv

i
W/i represents the ambient wind in the inertial velocity

coordinate system vσ
W/i.
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where

fa (t,x, δ, T ) = [j k]⊤Λ−1
a τw =

1

VT

0 1 0

0 0 1/cosβ

 τw (2.23a)

Ga (ξa) = [j k]⊤Λ−1
a [vw

r ]×Cw/b

=

 sinα 0 − cosα

− cosα tanβ 1 − sinα tanβ

 . (2.23b)

2.1.4 Flight Path Angle Dynamics

The flight path angles are defined by

χ = atan2 (VE , VN ) , γ = − arcsin
VD

V T

(2.24)

where vi = [VN VE VD]
⊤. Applying Newton’s second law of motion yields

iv̇ = σv̇ + ωσ/i × v =
F

m
(2.25)

The left-hand side of Eq. (2.25) in the inertial velocity coordinate system σ can

be written as follows:

σv̇σ + ωσ
σ/i × vσ =


V̇ T

0

0

+


−χ̇ sin γ

γ̇

χ̇ cos γ

×


V T

0

0

 = Λf


V̇ T

χ̇

γ̇

 (2.26)

where Λf = diag
(
1, V T cos γ,−V T

)
, vσ = V T i, and

ωσ
σ/i = γ̇j+Cy (γ) (χ̇k)

=


0

γ̇

0

+


cos γ 0 − sin γ

0 1 0

sin γ 0 cos γ



0

0

χ̇

 =


−χ̇ sin γ

γ̇

χ̇ cos γ

 (2.27)
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Therefore, we have[
V̇ T χ̇ γ̇

]⊤
=

1

m
Λ−1

f Cσ/wF
w

= Λ−1
f Cσ/ig

i +
1

m
Λ−1

f Cσ/w (Tλ+ qSCF )
(2.28)

The dynamics of the flight path angle ξf = [χ γ]⊤ can be extracted from

Eq. (2.28) as

ξ̇f = [j k]⊤
[
V̇ T χ̇ γ̇

]⊤
= ff

(
t, VT , ξf

)
+Gf (t,x)ηf (t,x, δ)

(2.29)

where

ff
(
t, VT , ξf

)
= [j k]⊤Λ−1

f Cσ/ig
i = − g

V T

 0

cos γ

 (2.30a)

Gf

(
t, VT , ξf

)
=

1

m
[j k]⊤Λ−1

f [j k] =
1

mV T

1/cos γ 0

0 −1

 (2.30b)

ηf (t,x, δ, T ) = [j k]⊤Cσ/w (Tλ+ qSCF ), (2.30c)

where gi = [0 0 g]⊤.

2.1.5 Airspeed Dynamics

The dynamics of the airspeed VT can be extracted from Eq. (2.20) as

V̇T = i⊤
[
V̇T β̇ α̇

]⊤
= i⊤Λ−1

a τw + i⊤Λ−1
a [vw

r ]×Cw/bω = i⊤τw,
(2.31)

where the identity i⊤Λ−1
a [vw

r ]× = VT i
⊤ [i]× = 0 is applied. As a result, Eq. (2.31)

can be structured as follows:

V̇T = fV (t,x, δ) + gV (ξa)T, (2.32)
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where

fV (t,x, δ) =
qS

m
i⊤CF − i⊤Cw/ia

i
W/i + gi⊤Cw/σCσ/ik (2.33a)

gV (ξa) =
1

m
i⊤λ =

1

m
cos ᾱ cosβ. (2.33b)

2.1.6 Ground Speed Dynamics

Though the ground speed is not a state variable of the system, that is, V T =

V T

(
t, VT , ξf

)
by Eq. (2.14), its equation of motion is presented because it is

useful for motion control problems such as path-following. The dynamics of the

ground speed V T can be extracted from Eq. (2.28) as follows:

V̇ T = i⊤
[
V̇ T χ̇ γ̇

]⊤
=

1

m
i⊤Λ−1

f Cσ/wF
w

=
1

m
i⊤Cσ/w (qSCF + Tλ) + i⊤gσ

= fV (t,x, δ) + gV (t,x)T,

(2.34)

where

fV (t,x, δ) =
qS

m
i⊤Cσ/wCF + i⊤Cσ/ig

i (2.35a)

gV (t,x) =
1

m
i⊤Cσ/wλ. (2.35b)

Remark 2.1.2: For zero ambient wind speeds, i.e., vW/i(t) ≡ 0, fV and gV

should coincide with fV and gV in Eq. (2.32), respectively. This property can

be easily derived from the structure of Cw/σ defined in Section 2.1.7, by which

i⊤Cw/σ = i⊤Cσ/w = i given that vW/i ≡ 0.

On the other hand, the position can be obtained by the following kinematical
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Figure 2.2: Geometry of path-relative wind angles

equation:

ṗ = vi = Ci/σv
σ = C⊤

σ/i

(
V T i

)
= V T


cosχ cos γ

sinχ cos γ

− sin γ

 , (2.36)

where p = [pN pE pD]
⊤.

2.1.7 Aerodynamic Roll Angle Dynamics

To formulate the relation between the wind frame Fw and the inertial velocity

frame Fσ, several angles and frames are introduced: the path-relative wind
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angles χw and γw, the aerodynamic roll angle µ, and the intermediate frames

Fν1 and Fν2 . They are defined to describe the sequential rotations from Fσ to

Fw as shown in Fig. 2.2. Note that iσ, iν1 , ki, kσ, kν1 , and kν2 lie on the same

plane. The path-relative wind angles are restricted to have the following range:

|χw| < 90◦, |γw| < 90◦. (2.37)

Definition of longitudinal path-relative wind angle γw

Let Fν1 be the frame defined by the right-handed rotation of the frame Fσ

about the vector jσ so that kν1 is perpendicular to iw:

kν1 =
iw × jσ
|iw × jσ|

. (2.38)

The rotation angle γw, called the longitudinal path-relative wind angle, is rep-

resented by kσ × kν1 = sin γwjσ; therefore,

sin γw = jσ · (kσ × kν1) = kν1 · (jσ × kσ) = kν1 · iσ

=
1

|iw × jσ|
(iw × jσ) · iσ = − iw · kσ

|iw × jσ|

= − iw · kσ√
1− (iw · jσ)2

.

(2.39)

Definition of lateral path-relative wind angle χw

Since both iν1 and iw are perpendicular to kν1 , iν1 can be made identical to iw

by a single right-handed rotation about the vector kν1 ; let Fν2 be the frame

defined by the foregoing rotation of the frame Fν1 . The rotation angle χw, called

the lateral path-relative wind angle, is represented by iν1×iw = sinχwkν1 . Thus,

sinχw = kν1 · (iν1 × iw) = iw · (kν1 × iν1)

= iw · jν1 = iw · jσ.
(2.40)
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Substituting Eq. (2.40) into Eq. (2.39) yields

sin γw = − iw · kσ

cosχw
. (2.41)

Finally, χw = arcsin (iw · jσ) and γw = − arcsin (iw · kσ/ cosχw) are obtained.

Definition of aerodynamic roll angle µ

By the above two sequential rotations, iν2 = iw is obtained; thus, the frames

Fν2 and Fw differ by only a single right-handed rotation about iw. This raises

the definition of the aerodynamic roll angle µ, which can be represented by

jν2 × jw = sinµiw and cosµ = jw · jν2 . The value of sinµ can be obtained by

sinµ = iw · (jν2 × jw) = − (iw × jw) · jν2 = −kw · jν2 , (2.42)

which gives µ = atan2 (−kw · jν2 , jw · jν2).

Time-derivative of Aerodynamic Roll Angle

There are two distinct ways to describe the sequential rotations from the inertial

frame to the wind frame as shown in Fig. 2.3, where the rotation angles are

written above the arrows, while the angular velocities are written below them. In
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particular, the rotation from the inertial frame to the body frame is represented

by the angular velocity, which is integrated to be orientation parameters such

as quaternion or Euler angles.

The two representations provide an expedient way to derive the dynamics

of the aerodynamic roll angle µ. The angular velocity of Fw with respect to

Fi can be obtained either by ωw/i = µ̇iw + χ̇wkν2 + γ̇wjν1 + γ̇jσ + χ̇ki or by

ωw/i = ωw/b + ωb/i. Equating the two representations of the angular velocity

in the wind coordinate system yields

ωw
w/i = µ̇i+χ̇wCw/ν2k+(γ̇w+γ̇)Cw/σj+χ̇Cw/ik

= Cw/bω + ωw
w/b,

(2.43)

where the coordinate transformation matrices defined by the path-relative wind

angles and aerodynamic roll angle have the following relation:

Cw/σ = CµCχwCγw , (2.44)

where

Cµ := Cw/ν2 = Cx (µ)

Cχw := Cν2/ν1 = Cz (χw)

Cγw := Cν1/σ = Cy (γw)

To expand ωw
w/b in Eq. (2.43), recall Eqs. (2.19) and (2.22) to get

ωw
w/b =


0 − sinβ

0 − cosβ

1 0

 ξ̇a =


0 − sinβ

0 − cosβ

1 0

 (fa (t,x, δ, T ) +Ga (ξa)ω)

= F1τw +G1ω,

(2.45)
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where

F1 =
1

VT


0 0 − tanβ

0 0 −1

0 1 0



G1 =


cosα sinβ tanβ − sinβ sinα sinβ tanβ

cosα sinβ − cosβ sinα sinβ

sinα 0 − cosα

 .
Applying Eq. (2.45) to Eq. (2.43) yields

Cw/ν2kχ̇w +Cw/σjγ̇w +
[
i Cw/σj Cw/ik

]
[µ̇ γ̇ χ̇]⊤

= F1τw +
(
Cw/b +G1

)
ω.

(2.46)

The next step is to derive the relation between χ̇w, γ̇w and [µ̇ γ̇ χ̇]⊤. From

the definitions vr = VT iw and v = V T iσ, together with Eq. (2.14), it follows

that

iw =
V T

VT
iσ − 1

VT
vW/i. (2.47)

Applying Eq. (2.47) to Eqs. (2.40) and (2.41) yields the salient equations:

sinχw = −
jσ · vW/i

VT
(2.48a)

sin γw =
kσ · vW/i

VT cosχw
. (2.48b)

The value of the path-relative wind angles can be computed from the wind and

states by selecting coordinate systems as follows:

jσ · vW/i = j⊤Cσ/iv
i
W/i

kσ · vW/i = k⊤Cσ/iv
i
W/i.

(2.49)

Hence, χw and γw are functions of t, VT , χ, and γ because vW/i is a function

of time t, and Cσ/i is a function of χ and γ. On the other hand, since µ is

independent of any other states or time-varying components, it is assigned as a
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state of the system; having the other state variables fixed still leaves the degree

of freedom by 1.

Taking time derivatives of Eq. (2.48) yields

χ̇w cosχw =
jσ · vW/i

V 2
T

V̇T − 1

VT
jσ · σv̇W/i = −sinχw

VT
V̇T − 1

VT
j⊤σv̇σ

W/i (2.50a)

γ̇w cos γw = −
kσ · vW/i

V 2
T cosχw

V̇T +
kσ · vW/i

VT cos2 χw
sinχwχ̇w +

1

VT cosχw
kσ · σv̇W/i

= −sin γw
VT

V̇T + tanχw sin γwχ̇w +
1

VT cosχw
k⊤σv̇σ

W/i.

(2.50b)

As a result, the derivatives of the path-relative wind angles are obtained as

follows:

χ̇w = −tanχw

VT
V̇T − secχw

VT
j⊤σv̇σ

W/i (2.51a)

γ̇w = −sec2 χw tan γw
VT

V̇T

+
1

VT

(
− tanχw secχw tan γwj

⊤ + secχw sec γwk
⊤
)

σv̇σ
W/i

(2.51b)

where Eq. (2.51a) is applied to Eq. (2.50b) to obtain Eq. (2.51b), and 1 +

tan2 χw = sec2 χw is used.

To find the path-relative wind angle derivatives in relation to [µ̇ γ̇ χ̇]⊤, let

us factorize Eq. (2.27) as follows:

ωσ
σ/i = Hγ [µ̇ γ̇ χ̇]

⊤ , (2.52)

where

Hγ =


0 0 − sin γ

0 1 0

0 0 cos γ

 .
The identity σv̇W/i =

iv̇W/i + ωi/σ × vW/i in the inertial velocity coordinate
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system is

σv̇σ
W/i = aσW/i + vσ

W/i × ω
σ
σ/i = aσ +Bσ [µ̇ γ̇ χ̇]

⊤ , (2.53)

where aσ = Cσ/ia
i
W/i and Bσ = [Cσ/iv

i
W/i]×Hγ . Applying Eqs. (2.31) and

(2.53) to Eq. (2.51) gives

χ̇w = bχwτw + cχwaσ + cχwBσ [µ̇ γ̇ χ̇]
⊤ (2.54a)

γ̇w = bγwτw + cγwaσ + cγwBσ [µ̇ γ̇ χ̇]
⊤ , (2.54b)

where

bχw = − (tanχw/VT ) i
⊤

bγw = −
(
sec2 χw tan γw

/
VT
)
i⊤

cχw = − (secχw/VT ) j
⊤

cγw =
(
−tanχw secχw tan γwj

⊤+secχw sec γwk
⊤)/VT .

Applying Eq. (2.54) to Eq. (2.46) yields

Cw/ν2k (bχwτw + cχwaσ) +Cw/σj (bγwτw + cγwaσ) +N [µ̇ γ̇ χ̇]⊤

= F1τw +
(
Cw/b +G1

)
ω,

(2.55)

where

N =
(
Cw/ν2kcχw +Cw/σjcγw

)
Bσ +

[
i Cw/σj Cw/ik

]
.

Finally, the dynamics of the aerodynamic roll angle is represented as

µ̇ = fµ (t,x, δ, T ) + gµ (ξa)ω, (2.56)

where

fµ (t,x, δ, T ) = i⊤N−1[
(
F1 −Cw/ν2kbχw −Cw/σjbγw

)
τw (2.57a)

−
(
Cw/ν2kcχw +Cw/σjcγw

)
aσ] (2.57b)

gµ (ξa) = i⊤N−1
(
Cw/b +G1

)
. (2.57c)
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Remark 2.1.3 (range of path-relative wind angles): From the definition,

Eq. (2.6) implies Eq. (2.37) whenever the angles, χw and γw, are in the do-

main of arcsin function: [−90◦, 90◦]. Suppose that
∣∣vW/i

∣∣ < VT and let vσ
W/i =

[w1 w2 w3]
⊤; thus, w2

1 + w2
2 + w2

3 < V 2
T . Then, from Eq. (2.48a), we obtain

|sinχw| =
|w2|
VT

< 1 (2.58)

On the other hand, from Eq. (2.48b),

|sin γw| =
|w3|

VT cos γw
=

|w3|

VT

√
1− w2

2

V 2
T

=
|w3|√
V 2
T − w2

2

. (2.59)

If w3 = 0, sin γw = 0. In the case of w3 ̸= 0, the following holds:

|w3|√
V 2
T − w2

2

<
|w3|√
w2
1 + w2

3

≤ 1. (2.60)

Therefore, it follows that |sin γw| < 1. From the analysis, it is shown that

Assumption 2.1.5 guarantees the path-relative wind angles to be well-defined.

Remark 2.1.4 (no ambient wind): The no-ambient-wind condition vW/i = 0

implies that iw = iσ from Eq. (2.47); hence, iw · jσ = 0 and iw · kσ = 0,

i.e., χw = γw = 0 from Eqs. (2.39) and (2.40). Then, Cw/σ = Cµ because

Cχw = Cγw = I. This property was used in Remark 2.1.2, which is equivalent

to the identity i⊤Cµ = i⊤C⊤
µ = i derived from the structure of Cµ = Cx (µ).

Note that, as a more general case, the path-relative wind angles are both zero

whenever the direction of the inertial velocity v = V T iσ is parallel to the
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ambient wind vW/i because jσ · vW/i and kσ · vW/i in Eq. (2.48) are all zero in

that case.

Remark 2.1.5 (computation of aerodynamic roll angle): In practice, it is hard

to directly measure the aerodynamic roll angle. Therefore, it is circuitously

computed by measuring Cb/i which is often parametrized by a quaternion or

Euler angles:

CµCχwCγwCσ/i = Cw/bCb/i (2.61a)

Cµ = Cw/bCb/iC
⊤
σ/iC

⊤
γwC

⊤
χw
. (2.61b)

As a result,

µ = atan2 (c23, c22) , (2.62)

where cij represents the (i, j)-th component of the right-hand side of Eq. (2.61b).

2.1.8 Overall Dynamics

The flight dynamics under continuously differentiable wind on the domain Dt

is summarized in Table 2.3. The state equations are structured based on the

dominance of each state or control input over the state functions. The angular

velocity ω is dominantly affected by the control surface deflection δ such as

the elevator, aileron, and rudder. The aerodynamic moment coefficient CM is

often formulated in input-affine form with respect to control surface deflection,

which can be readily handled by the control allocation technique [48, 49]. The

aerodynamic roll angle µ and the aerodynamic angles ξa can be efficiently

controlled by taking ω as input, which is a typical approach exploited by a

cascade control scheme such as backstepping or a time-scale decomposition

technique [5,6]. Note that the coefficients of ω, i.e., Ga and gµ, are all functions
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of only ξa. On the other hand, ξa has a large effect on the motion of flight

path angles ξf , whereby it can be viewed as input for the flight path angle

dynamics. However, the relation is basically nonlinear, which is represented by

the function ηf . Therefore, for some control schemes, an appropriate nonlinear

pseudo-inverse mapping of ηf on a confined domain with the rest of the state

variables fixed must be found [43]. The airspeed VT and the ground speed V T

are typically controlled by the thrust T .

Although the proposed state functions are structured based on several as-

sumptions on the aerodynamics, one may utilize the intermediate result found

during the derivation. Then, some state functions would not be structured as

proposed. However, the whole derivation procedure given in this dissertation

sufficiently shows how to obtain the state functions corresponding to such mod-

ified assumptions.
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2.2 Discussions

The flight dynamics developed in this study has many advantageous features.

Some of them are introduced in this section considering potential applications.

Issues that arise regarding hardware implementation are also discussed.

2.2.1 Aerodynamic Roll Angle

The essence of the notion of the aerodynamic roll angle defined in wind condi-

tions is that it provides a convenient way for designing a control law capable

of coordinated-turn (bank-to-turn) by which the aircraft can keep the sideforce

being zero while changing its flight direction even in the presence of varying

wind. Since iw = iν2 , the aerodynamic force FA can be made lie on the z − x

plane of the wind coordinate system w through a rolling motion about iν2 ,

i.e., by controlling the aerodynamic roll angle using Eq. (2.56), as shown in

Fig. 2.4, where the desired wind frame, in which the sideforce is zero, is de-

noted by Fw′ . In other words, the frame Fw′ should satisfy FA · jw′ = 0 because

Fw
A = [−D Y − L]⊤, where D, Y , and L are the drag, sideforce, and lift, re-

spectively. The projection of the aerodynamic force FA on the y − z plane of

the coordinate system ν2 is (FA · jν2) jν2 + (FA · kν2)kν2 . Therefore, by using

the following aerodynamic angle command

µc = atan2 (FA · jν2 ,−FA · kν2) , (2.63)

the sideforce FA · jw tends to zero as µ approaches µc, which means that the

roll angle command is determined such that the sideforce Y converges to zero.

In addition, in the no-wind condition, the aerodynamic roll angle defined in

this study is exactly the same as the conventional aerodynamic roll angle [5,

Appendix B]. If vW/i = 0, the path-relative wind angles χw and γw in Eq. (2.49)
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are zero; thus, Cw/σ = Cµ is obtained as derived in Remark 2.1.4, which is

desirable in that it maintains consistency with the conventional description of

flight dynamics for flight path angle control.

2.2.2 Path-Relative Wind Angles

The path-relative wind angles χw and γw that appear in the coordinate trans-

formation from σ to w, represented byCw/σ, are used throughout the derivation

of the equations of motion. As discussed earlier, they are functions of time (due

to ambient winds), airspeed, flight path angles, and aerodynamic roll angle.

Therefore, the derivation of the coordinate transformation matrix Cw/σ explic-

itly shows that they do not depend on the aerodynamic angles β and α. More

specifically, the pseudo-inverse mapping of the function ηf in Eq. (2.30c) can

be easily obtained by taking ξa as the only variable. Owing to this property, a

control design approach for cascade systems can be applied effectively.

2.2.3 Compensation of Unsteady Winds

The equations of motion derived in this study comprise the analytic formulation

of the effect of varying wind on the motion of an aerial vehicle. Therefore, once

the wind profile is known a priori or measured on-line, the wind effect can be

efficiently compensated by applying an adequate flight controller based on the

proposed model. Model-based robust or adaptive controllers with an accurate

model exhibit more satisfactory performance since the estimated bounds of the

uncertainty or disturbance are much smaller than those of a controller based on

a roughly evaluated model. In particular, as the bounds of disturbance increase,

the robust controllers are necessarily forced to have a higher control gain due

to the desired ultimate boundedness of states, which may result in excitation

of an un-modeled high-frequency dynamics or even imperil the stability of the
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Figure 2.4: Geometry of the aerodynamic roll angle in coordinated turn
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system due to physical constraints on the actuators.

2.2.4 Local Wind Field

If a local wind field is provided for some position domain Dp ⊆ R3, then the

wind can be treated as a part of the plant rather than an exogenous time-varying

signal as previously assumed. Consider a continuously differentiable wind field

vi
W/i = w (t,p) . (2.64)

The ambient wind dynamics is derived from the following equation [29]:

ẇ =
∂w

∂t
+
∂w

∂p
ṗ =

∂w

∂t
+ V T

∂w

∂p
C⊤

σ/ii. (2.65)

The wind velocity can be estimated by a model-based nonlinear estimator such

as the extended Kalman filter. Furthermore, if the dependence of the wind on

the time t is negligible, i.e., ∂w/∂t ≈ 0, then the overall equations of motion

are approximated to a time-invariant system by substituting V T (∂w/∂p)C⊤
σ/ii

for aiW/i; thereby all the state equations are functions of only state and input.

The approach based on the local wind field is effective particularly in the

crosswind take-off and landing situations. With a well-developed ambient wind

shear profile around the runway that is measured in real-time or formulated

beforehand, the crosswind take-off and landing can be more safely performed

with wind compensation. Representative examples are the projects North Illi-

nois Meteorological Research on Downbursts (NIMROD) and Joint Airport

Weather Studies (JAWS) that were conducted as a part of an effort to alleviate

the hazardous influence of microbursts [50]. Control theoretic approaches con-

cerning the takeoff or landing of an aircraft in wind shear using a parametrized

wind shear model are proposed in [2, 51,52]

Another recommended application is found in the flight control for dynamic
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soaring and thermalling of a sailplane. Dynamic soaring is one of the flight

techniques by which an aircraft flies across the boundary between layers of sig-

nificantly different wind velocities to gain energy. Such a wind shear is typically

formed by the terrain, e.g., mountains or cliffs, where the wind field is almost

steady. Thermalling is a flight technique that makes use of the thermal lift in-

duced by columns of rising air formed by solar energy, which also has a steady

wind field. In summary, the flight dynamics considering varying ambient winds

can be utilized for the design of the controller for effective coordinated flight

across the steady wind shear.

2.2.5 Wind Estimation

The equations of motion developed in this study require the differentiabil-

ity of ambient wind velocity to get the wind acceleration aW/i. Considering

hardware implementations, however, the requirement confronts numerical is-

sues. While wind velocities can be observed through on-board air data sensors

such as pitot tube [53] or ground-fixed wind shear detecting devices including

Doppler radar [50], there is no physical sensor that directly measures the wind

acceleration, and therefore it must be numerically estimated from the velocity

measurements. However, wind measurements are usually corrupted by noises

significantly heavier than typical IMU measurement noises. Thus, an adequate

estimation method needs to be deliberately chosen to obtain a reliable wind ac-

celeration estimate; it is required that the estimate should be smooth enough to

prevent any instability in feedback control with the estimation delay being min-

imized [53]. In this dissertation, two representative simple real-time numerical

differentiation methods are introduced and compared.

The first one is a linear second-order low-pass filter (LPF). Let x1 and x2

be the filtered wind velocity and acceleration, respectively, and let w be one of
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the measured wind components wN , wE , and wD. Then, the LPF has the form

ẋ =

 0 1

−ω2
n −2ζωn

x+

 0

ω2
n

w (2.66)

where ζ is the damping ratio, ωn is the natural angular rate, and x = [x1 x2]
⊤.

Because the measurements are discrete-time data, the filter should be dis-

cretized accordingly for the sampling time Ts [54] to get xk+1 = Flpfxk+Glpfwk,

where xk and wk are the k-th estimate and measurement, respectively, and the

coefficient matrices are constant.

Another method called the Kalman filter differentiator (KFD) uses the

Kalman filtering technique to estimate the derivative of noisy discrete sig-

nal [55]. The target system is represented by the following stochastic differential

equation and measurement equation:

ẋ =

0 1

0 0

x+

0
1

u(t) (2.67a)

wk =
[
1 0

]
x+ vk (2.67b)

where u is a continuous-time white noise with the power spectral density (PSD)

Ad, and vk is a discrete-time white noise with the standard deviation σm. Ad and

σm are the design parameters of KFD. As shown in the system equation, KFD

models the wind acceleration as a random walk whose integration is the wind

velocity that is measured as wk. Similar to the LPF case, the process can be

discretized as well [56]. Due to the time-invariance of the process, there exists

a steady-state Kalman filter xk+1 = Fkfdxk + Gkfdwk, where the (constant)

coefficient matrices are obtained by solving an algebraic Riccati equation.

To compare the methods, the filter parameters are set as ζ = 0.7, ωn = 2,

Ad = 0.36, and σm = 0.25 with the sampling time Ts = 0.1 s, which yield the
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coefficient matrices

Flpf =

 0.982 0.087

−0.346 0.737

 , Glpf =

0.018
0.346


Fkfd =

 0.759 0.076

−0.331 0.967

 , Gkfd =

0.241
0.331


They are applied to a generated noisy wind profile obtained in the following

chapter, whose simulation result is shown in Fig. 2.5. Note that in the wind

velocity estimate plot, the output of a Savitzky-Golay filter (SGF) of a polyno-

mial order 3 3 is presented as a reference, and in the wind acceleration estimate

plot, the output of a direct finite difference-based differentiation (FD) of wind

velocity measurement and the output of a finite difference applied to the SGF

output (SGF + FD) are presented as well for comparison.

First of all, it is obvious that the acceleration estimates obtained by LPF

and KFD are almost identical in contrast to the velocity estimates where a

severe time lag is observed from the former compared to the latter. Besides

this property, however, because the integration of the acceleration estimate x2

is precisely the x1 estimate from LPF by definition, it is apparent that the

x1 and x2 estimates by KFD do not form an exact integration-differentiation

relationship. Nonetheless, the result of KFD is more desirable in practice due

to its low time lag capability in x1 estimation. Furthermore, KFD even shows

a better acceleration estimate profile than SGF + FD, not to mention FD that

is severely corrupted by amplified noises, in that it exhibits far less fluctuation.

In the estimation error plot, SGF shows the smallest estimation error leaving

KFD and LPF to follow in order, whose RMS errors read 0.370, 0.535, and

3SGF is a discrete signal data smoother that cannot be applied in real-time. However, due
to its high-quality denoising capability, it is used to assess the performance of real-time filters
that inherently cannot be free from a certain amount of estimation time lags.
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0.947 m/s, respectively. KFD gives an estimation error bound since KFD is an

estimator, which is particularly useful for controller design and is constant for

steady-state Kalman filters.

Figure 2.6 shows the PSD estimations of each signal and the cross-correlations

between each estimate and the measurement, which are quantitative indicators

of the smoothness and time lags of the filtered signals, respectively. As discussed

previously, the LPF output mostly gives the lowest PSD estimate values, which

means that it is smoother than the others, but suffers from a large estimation

lag (0.7 s) as it can be found from the peak of the cross-correlation graph. The

KFD output has slightly higher PSD estimate values than SGF at larger fre-

quencies, but the overall trends of the amplitudes agree. The KFD method is

superior to LPF in time lag property where the estimation lag of KFD is 0.2 s.

This analysis suggests that differentiator parameters can be systematically cho-

sen by designating safety envelopes on the PSD spectrum and time lag values

that are mainly dependent on the controller design and aircraft dynamics.
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Chapter 3

Design of Flight Control System

This chapter develops tracking controllers for the flight dynamics summarized

in Table 2.3. The flight control laws are efficiently designed by treating the flight

dynamics as a cascade system. For the systems whose error state equations are

not affine in their inputs, an nonlinear control allocation based on optimiza-

tion method is employed. The performance of the flight control laws is verified

through numerical simulations.
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3.1 State Representation

The state vector x of the overall control system consists of the vehicle state

vector xv and the foot parameter α of WPTPFC. The vehicle state is defined

by

xv =


v

ω

q

p

 (3.1)

where v = vi
G/i is the vehicle velocity, ω = ωb

b/i is the angular velocity, q = qb/i

is the attitude quaternion, and p = pi
G/O is the position. The other states

will be gradually augmented as the control laws are developed for each given

control problem. Note that the state variables are chosen in order to avoid

any internal singularity in the plant dynamics. For example, the state variables

defined for the development of the flight dynamics in Chapter 2 has a singularity

at |γ| = π/2. If the state representation is used in the control design, it will

cause a unwanted problem even if the controller does not make use of the

definition of γ. Therefore, each state variable in Chapter 2 will be obtained

by the transformation from xv only when it is mandatory, while they are also

called state variables.
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3.2 Cascade System Approximation

The dynamics of aerial vehicle dynamics is not a cascade system as shown in

Table 2.3. In spite of this fact, a crucial design strategy in this dissertation is

treating the vehicle dynamics as if it were a cascade system. For example, the

angular velocity dynamics Eq. (2.12) has a dependency on the angle of attack

α because the aerodynamic moment coefficient CM varies with α; thus, the

ω-dynamics cannot be an inner loop of the α-dynamics. In this dissertation, α

in the ω-dynamics is treated as an exogenous time-varying parameters rather

than a state and simply canceled out through an equivalent control. Based on

this strategy, tracking controllers are designed separately for each subsystem

and integrated by using the time-scale decomposition technique.

In particular, the flight control design in this dissertation treats the thrust

T (t) of the vehicle as a time-varying parameters for entire subsystems as the

development of the equations of motion does for the ambient wind velocity

vW/i(t). It is assumed that the derivative of the thrust is available on-line by

thrust sensors or numerical differentiation.
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3.3 Angular Velocity Tracking Control

Let the aerodynamic moment coefficient multiplied by B = diag(bs, c̄, bs), be

denoted by E = BCM . Due to Assumption 2.1.1, E is a function of t, xv, and δ.

Since the coefficient varies effectively with the control surface δ in an ordinary

flight condition, δ is chosen as input to this subsystem.

The control design takes E as a virtual input to the angular velocity system

Eq. (2.12), and then the control surface deflection command δc will be sought

by a control allocation method that makes the virtual control effective. Let

rω(t) be a differentiable reference for the angular velocity. The tracking error is

then

eω = ω − rω(t) (3.2)

whose derivative is

ėω = fω(ω, T (t)) + gω(t,xv, δ)− ṙω(t)

= fω(ω, T (t)) + qSJ−1E(t,xv, δ)− ṙω(t)
(3.3)

The desired error dynamics of the closed-loop system is designed as

ėω = −Kωeω (3.4)

with the positive definite control gain Kω. The dynamic inversion method is

then applied to get the desired E that is denoted by Ed:

Ed =
1

qS
J(ṙω − fω −Kωeω) (3.5)

The next step is to find a control surface deflection command δc that makes

the error between E(t,xv, δc) and Ed minimized while fixing all the variables

other than δ. This is a control allocation problem that can be formalized as the
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following optimization problem:

minimize ∥E(t,xv, δ)−Ed∥2 + wδ∥δ∥2

subject to cδ(δ) ≤ 0
(3.6)

where t and xv are fixed, wδ > 0 is the regularization weighting, and cδ is

a vector-valued function that represents the control surface deflection limits.1

A minimizer of the problem is then chosen as δc. A strong assumption is in-

troduced in this dissertation for the sake of simplicity that a unique solution

exists for the optimization problem Eq. (3.6), and the solution is continuous in

t and xv. This property is strongly dependent on the form of the aerodynamic

moment coefficient.

1Control surface constraints are usually given by simple angle limits; δmin ≤ δ ≤ δmax.
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3.4 Aerodynamic Angle Tracking Control

From this point on, the state vector ξb = [µ β α]⊤ for the aerodynamic roll angle

µ and the aerodynamic angles β, α will be called the aerodynamic angle (vector),

and the corresponding state function is formed by concatenating Eqs. (2.56) and

(2.22) accordingly as follows:

ξ̇b = fb(t,x, δ, T (t)) +Gb(ξb)ω (3.7)

where

fb(t,x, δ, T ) =

fµ(t,x, δ, T )
fa(t,x, δ, T )



Gb(ξa) =

Gµ(ξa)

Ga(ξa)

 =


cosα

cosβ
0

sinα

cosβ

sinα 0 − cosα

− cosα tanβ 1 − sinα tanβ


Let rb = rb(t) = [µr(t) βr(t) αr(t)]

⊤ be a differentiable tracking reference

and define the tracking error:

eb = ξb − rb (3.8)

whose time-derivative is

ėb = fb(t,x, δ, T (t)) +Gb(ξa)ω − ṙb(t) (3.9)

The desired error dynamics of the closed-loop system is designed as

ėb = −Kbeb (3.10)

with the positive definite control gain Kb.

The determinant and the condition number of the matrix-valued function
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Gb(ξa) are

detGb =
1

cosβ
(3.11)

and

κ(Gb) =
|sinβ|+ 1√
1− sin2 β

(3.12)

respectively. It is easy to see that the values are close to unity for a small sideslip

angle β. Therefore, it can be said that Gb is well-conditioned in an ordinary

flight condition. Therefore, ω is chosen as input to this subsystem from the fact

that Gb serves as a coefficient of ω in the error dynamics Eq. (3.9). Because

the error state function in Eq. (3.9) is affine in ω, it is straightforward to find

the angular velocity command ωc:

ωc = G−1
b (ṙb − fb −Kbeb) (3.13)
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3.5 Flight-path Angle Tracking Control

Let rf (t) be a differentiable reference for the flight-path angle ξf = [χ γ]⊤. The

tracking error is

ef = ξf − rf (t) (3.14)

whose derivative is

ėf = ff (t,xv) +Gf (t,xv)ηf (t,xv, δ, T (t))− ṙf (t) (3.15)

The desired error dynamics of the closed-loop system is designed as

ėf = −Kfef (3.16)

with the positive definite control gain Kf . The dynamic inversion method is

then applied to get the desired ηf that is denoted by ηfd:

ηfd = G−1
f (ṙf − ff −Kfef ) (3.17)

From the structure of ηf in Eq. (2.30c)

ηf (t,xv, δ, T ) = [j k]⊤Cσ/w(Tλ+ qSCF )

it follows that ηf is dependent on the aerodynamic force coefficient CF . Since

CF effectively varies with ξa in an ordinary flight condition, ξa is taken as an

input to the Flight-path Angle (FPA) tracking control system.

A control allocation method is used to find the aerodynamic angle command

ξac = [βc αc]
⊤ that minimizes the error between ηf (t,xv, δ, T (t)) and ηfd:

minimize
∥∥ηf (t,xv, δ, T (t))− ηfd

∥∥2 + wa∥ξa∥
2

subject to ca(ξa) ≤ 0
(3.18)

where t and x
(a)
v are fixed, wa > 0 is the regularization weighting, x

(a)
v denotes
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the state vector with ξa removed, and ca is a function that represents the flight

envelope of β and α. A minimizer of Eq. (3.18) is chosen as ξac. Similar to

Section 3.3, it is assumed that a unique solution exists for the optimization

problem Eq. (3.18), and the solution is continuous in t and x
(a)
v . This property

is strongly dependent on the form of the aerodynamic force coefficient.
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3.6 Numerical Examples

In this section, the FPA controller developed in Section 3.5 is applied to the

high-fidelity F/A-18 High Angle of Attack Research Vehicle (HARV) aircraft

model [57]. The aim of the flight control is to make the aircraft track the time-

varying flight path angle references χr and γr while minimizing the excursion

of sideslip angle; the aerodynamic roll angle reference µr is geometrically de-

termined by the condition discussed in Section 2.2.1. The controller is applied

without any adaptation or integral terms to exclusively assess the advantages

of using the model alone. In all scenarios, the aircraft is commanded to make

a level flight, i.e., γr(t) ≡ 0. In Example 3.1, a straight level flight is followed

by a zig-zag maneuver starting at t = 30 s. The aircraft in Example 3.2 makes

simple coordinated turns with a large range of course angle changes, and make

a straight line trajectory in Example 3.3. In Example 3.1 and 3.2, numerical

simulations are performed each for no-wind and wind condition and the results

are compared, where the conventional equations of motion are used in the case

of no-wind condition. In particular, the second example takes a closer look at

the performance of the wind estimators in an intense wind condition. In Ex-

ample 3.3, both the conventional and proposed equations of motion are used

in the wind condition to see how the tracking performance is degraded by the

inaccuracy in the model.

The initial conditions and nominal ambient wind profiles are summarized in

Table 3.1 and 3.2, respectively. Note that the initial aerodynamic roll angle is

non-zero because of the presence of the ambient wind. The average magnitude

of nominal ambient wind in Example 3.1 and 3.2 is about 32 m/s that is nearly

a quarter of the airspeeds throughout the simulation. In particular, Example 3.2

exploits a more challenging ambient wind profile that varies with time along
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sinusoidal waves, and the direction of flight is constantly changed; thus, the

relative direction and magnitude of wind with respect to the aircraft vary widely

at a high frequency. In addition, the nominal wind profiles are corrupted by

Dryden wind turbulence model represented in the Military Specification MIL-

F-8785C with wind speed 15 m/s at a height of 6 m, which determines the

intensity of the turbulence and is relatively intense for general fighter aircraft

at a low airspeed. The KFD designed in Section 2.2.5 is used for the wind

estimation.

Table 3.1: Initial conditions

States Units Example 3.1 Example 3.2 Example 3.3

P, Q, R deg/s 0.0, 0.0, 0.0 0.0, 0.0, 0.0 0.0, 0.0, 0.0
µ deg −0.6 −1.2 0.0
β deg 0.0 0.0 3.2
α deg 5.2 4.7 6.5
χ deg 0.0 180.0 0.0
γ deg 0.0 0.0 0.0
VT m/s 125.5 135.0 180.0

pN , pE , pD m 0, 0, − 1000 0, 0, − 1000 0, 0, − 4000

Table 3.2: Nominal ambient wind profiles

Components Units Example 3.1 Example 3.2 Example 3.3

wN m/s 0 10 sin(πt/5)− 10 + t/4 0
wE m/s 30 30 + 5 cos(πt/5) −10
wD m/s −10 −10 + 2 cos(πt/5) 0

3.6.1 Example 3.1

The result of Example 3.1 is shown in Figs. 3.1 and 3.2, where ψ, θ, and ϕ

are the 3-2-1 attitude Euler angles, δel, δer, δa, and δr are the left and right
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horizontal stabilizer, aileron, and rudder deflections, respectively, and nw stands

for the no-wind case. The most remarkable result of this example is the attitude

correction feature achieved by replacing only the model. Because the direction of

the ambient wind is almost perpendicular to the flight path, the aircraft should

slightly turn its heading toward the opposite direction to the wind velocity

to reduce the sideforce, which can be explicitly confirmed by the ψ history

compared to no-wind case. This kind of attitude correction against the external

wind disturbance is essentially attributed to the equations of motion because

there are no adaptive terms applied. Figure 3.3 shows the wind, filtered wind,

and the filtered path-relative wind angle profiles.

In Fig. 3.4, the tracking errors remain less than 1 deg for both flight path

angles. Another notable important aspect of this example is that the tracking

error profiles in the wind and no-wind cases are the same in shape and mag-

nitude except for filter noises in the presence of ambient wind. It implies that

in spite of large ambient wind disturbances, the performance degradation of

the controller can be effectively prevented by simply replacing the equations of

motion. It can be expected that the burden on the controller which would be

problematic when conventional equations of motion were used is greatly miti-

gated accordingly by reducing the magnitude of disturbances to be compensated

by the controller.

3.6.2 Example 3.2

The actual influence of the ambient wind on an aircraft can be better estimated

from the path-relative wind angles rather than the wind terms themselves rep-

resented in the flat-earth-fixed coordinate system. This claim can be confirmed

from the definition of the path-relative wind angles Eq. (2.48). For example,

even if the magnitude of the wind is relatively large, when the airspeed of the
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Figure 3.1: Flight trajectory under wind condition: Example 3.1
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Figure 3.2: State and input history: Example 3.1
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Figure 3.3: Wind profile: Example 3.1
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Figure 3.4: Flight path angles and tracking error: Example 3.1

62



Figure 3.5: Flight trajectory under wind condition: Example 3.2
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Figure 3.6: State and input history: Example 3.2
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Figure 3.7: Wind profile: Example 3.2
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Figure 3.8: Flight path angles and tracking error: Example 3.2
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aircraft is much higher, the resulting impact will not be significant, and vice

versa. From this aspect, it can be said that the aircraft in Example 3.2 is under-

going an ambient wind that severely varies with time both in magnitude and

direction as shown in Fig. 3.7; see Fig. 3.3 for comparison. In Fig. 3.5 and 3.6,

it is shown from the attitude history that the heading of the aircraft is actively

controlled to track the commanded flight path angles by compensating for the

consistently varying ambient wind compared to the no-wind case. In particu-

lar, the angle of attack aggressively fluctuates to adjust the aerodynamic lift to

compensate for the sinusoidal noisy wind profile. This compensation capability

is also achieved by the proposed model.

Additionally, in this example, each result obtained by using wind estimators

based on LPF and KFD is also presented. In Fig. 3.7, the most apparent dif-

ference between wind estimates comes from the time lags as expected. It turns

out that the lag severely affects the performance of the feedback controller as

shown in Fig. 3.8, where the tracking error profile generated by applying the

KFD wind estimator is almost identical to the no-wind case, similar to the result

in Example 3.1, even under severe wind conditions. In contrast, the tracking

errors compensated by the LPF wind estimator oscillate largely around the no-

wind case profile with the same frequency as the wind fluctuates though it does

not at least cause an instability. The results demonstrate the advantage of the

KFD wind estimator.

3.6.3 Example 3.3

As shown in Fig. 3.9, the proposed model exactly compensates for the wind

term by the wind estimate, while the conventional no-wind model exhibits large

deviation of FPA from the zero commands. The result shows the effectiveness

of the proposed model. On the other hand, the deviation grows as time passes;
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this is because the aircraft gains airspeeds losing altitude due to the inaccurate

tracking, and high airspeeds yield more intense deviation.

Figure 3.9: Comparison between the proposed model and no-wind model: tra-
jectory
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Figure 3.10: Comparison between the proposed model and no-wind model: FPA
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Chapter 4

Lyapunov Barrier Weighting
Method

A function is usually said to have a singularity if its domain is a proper subset

of the space. That is, the function is not defined on some region.1 Similarly,

for a dynamical system, a singularity matters when the solution trajectory

approaches the boundary of the domain of the state function or has a finite

escape property. Therefore, the singularity avoidance of a dynamical system is

closely related to the notion of set invariance. Given that a solution of the system

is guaranteed to stay inside a closed set whose boundary does not intersect

that of the domain,2 the singularity will not occur. Furthermore, the solution is

expected to be continued indefinitely if the derivative of the states is bounded.

This chapter develops several useful claims on this problem.

Barrier methods are the most easy and effective approaches that guarantee

1The general definition of singularity of a function in analysis includes several more cases,
but this study will not extend to such cases.

2The domain of a dynamical system is a nonempty open connected subset of the Euclidean
space.
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the set invariance of a dynamical system. In this section, several well-known

studies on this topic are introduced. The first study to note is summarized

in [58], where Ngo et al. designed a backstepping-based controller for feedback

linearizable system to have the boundedness of each state and to perform a

tracking control of the most-lower-indexed state. The study is especially fa-

mous for introducing a logarithmic barrier function to form a barrier Lyapunov

function. The approach was further refined by Tee et al. In [59], a strict feedback

system is controlled to have a bounded states and output. They specialized the

study by considering uncertainties that are linear in the parameters, which is

handled by adding adaptive terms, and at the same time, the augmented closed-

loop system still avoids a constraint violation. Liu et al. [60] also inherited the

main idea of [58]. They applied an approximation-based adaptive control made

of a neural network of radial basis functions to a strict feedback system to

achieve a bounded control signals and the uniform ultimate boundedness of the

tracking error. On the other hand, Ames et al. dealt with general autonomous

nonlinear systems using control Lyapunov function (CLF) and control barrier

function method. In contrast to the foregoing studies, the constraints are given

by a superlevel set of a continuous function of states; thus, it can handle a

much larger class of constraints compared to the methods imposing bounds to

individual states only. However, finding a control law that makes the control

Lyapunov function have a desired property is not an easy task. Their study

manages to find one using optimization-based approach resorting to quadratic

programming.

The Lyapunov Barrier Weighting Method (BWM) proposed in this disserta-

tion specializes itself by extracting the advantage of the aforementioned studies.

BWM can handle constraints given by a closed superlevel set of a continuous

function using singular barrier weighting but avoids the use of numerical op-

68



timization algorithm by exploiting the backstepping control scheme. Further-

more, it applies to nonautonomous (time-varying) system, and it can be used

when only the part of the states need to be regulated (set stability). A summary

of the studies are given in Table 4.1
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4.1 Notation

� The prime ′ denotes the derivative of a function with respect to its argu-

ment. t and the upper dot denote the time and the time-derivative of a

function, respectively.

� Cr refers to the differentiability class of order r.

� R+ denotes the set of nonnegative real numbers.

� For a ∈ (0,∞], a continuous function f : [0, a) → R+ is said to belong to

class K if it is strictly increasing and f(0) = 0; class K∞ denotes class K

functions with a = ∞ and f(r) → ∞ as r → ∞.

� A continuous function f : [0, a) × R+ → R+ is of class KL if, for each

fixed s, f(r, s) is a class K function with respect to r and, for each fixed

r, f(r, s) decreases with respect to s and f(r, s) → 0 as s→ ∞.

� Br(x) and Br(x) are balls of radius r centered at x open and closed,

respectively.

� The value of a function f along the solution of a dynamical system at a

time t is occasionally denoted by f |t.
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4.2 Mathematical Preliminary

As is well-known, a positive definite Lyapunov function is a useful tool for

finding a positively invariant set because a sublevel set is a positively invariant

subset of the region of attraction if the set is compact. However, the idea stops

to work for a semidefinite Lyapunov function, because a sublevel set cannot be

compact. In other words, the negative semidefinite derivative of the Lyapunov

function alone does not guarantee the forward completeness3 of the solution.

The following discussion focuses on this issue.

Let the function f(t,x) be continuous in t and locally Lipschitz in x on

R+ ×D where D is an open subset of Rn. Consider the differential equation

ẋ = f(t,x), x(t0) = x0, (4.1)

where t0 ≥ 0 and x0 ∈ D. Let I = [t0, T ) for some T > 0 be the maximal

interval of existence.

The following proposition, Lemma 4.2.1, is a crucial basis for the majority

of the propositions in this chapter. The design of the lemma was inspired by

Theorem 3.3 in [61]. The theorem requires the solution to stay inside a compact

subset of D, whereas the lemma concerns for a closed set and the boundedness

of the state function in the set. This is a slight modification of the Theorem 3.3.

However, the lemma is useful when it is needed to test the forward completeness

of the solution of a dynamical system associated with a positive-semidefinite

Lyapunov function that has a unbounded sublevel set. The author was hinted

by the proof of the first theorem in p. 173 of [62], and the same result can be

obtained by applying Theorem 3.14 of [63].

3The solution is defined for all future time.
4The hypothesis of this theorem is slightly stronger than Lemma 4.2.1 in the dissertation,

for f should be bounded on the entire domain D.
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Lemma 4.2.1 Let A ⊆ D be closed, x0 ∈ A, and f be bounded on R+ × A.

Suppose that the solutions of Eq. (4.1) lie entirely in A. Then, there is a unique

solution defined for all t ≥ 0. □

Proof: Note that the proof uses Theorem 3.1 in [61], known as Picard’s

(existence) theorem. The maximal interval of existence has the form [0, T ),

where T ∈ (0,∞] [63, Section 2.3]. Let I = [0, T ) and x : I → Rn be a so-

lution. For all t1, t2 ∈ I, the solution satisfies the integral equation x(t2) =

x(t1) +
∫ t2
t1

f(τ,x(τ))dτ . Let M > 0 be the bound of f . Since x(t) ∈ A for all

t ∈ I,

∥x(t2)− x(t1)∥ =
∥∥∥∫ t2

t1
f(τ,x(τ))dτ

∥∥∥
≤
∫ t2
t1

∥f(τ,x(τ))∥dτ

≤M(t2 − t1)

(4.2)

which shows that x is Lipschitz, hence the existence of the limit L = limt↗T x(t).

Suppose that T is finite. Let I = [0, T ] and define an extension y : I → Rn

of x with L appended, i.e., y(t) = x(t) for all t ∈ I, y(T ) = L; thus, y is

uniformly continuous. Since f(t,x) is locally Lipschitz in x and y is continuous,

f(t,y(t)) is integrable on I and satisfies

lim
t↗T

∫ t

0
f(τ,x(τ))dτ =

∫ T

0
f(τ,y(τ))dτ (4.3)

The integral equation results in

y(T ) = limt↗T x(t)

= x(0) + limt↗T

∫ t
0 f(τ,x(τ))dτ

= y(0) +
∫ T
0 f(τ,y(τ))dτ

(4.4)
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which shows that y is also a solution extended from x. Because A is closed in

Rn, and y(t) ∈ A for all t ∈ I, y(T ) is a limit point of A and y(T ) ∈ A ⊆ D.

Therefore, there is a closed ball centered at y(T ) contained in D, and it can

be shown that the solution y can be further extended from Picard’s theorem,

which is a contradiction to the claim that I is maximal. Therefore, the maximal

interval cannot be bounded, i.e., I = R+.

The uniqueness of the solution follows from the fact that the solutions tra-

verse the domain on which f(t,x) is locally Lipschitz in x. Consider two solu-

tions x1,x2 : R+ → Rn with x1(0) = x2(0). Since they share the same initial

point, there exists t0 ∈ (0,∞) such that the solutions agree on the interval

[0, t0] by Picard’s theorem. Let I ⊆ R+ be the union of all such intervals. Then,

by the continuity of the solutions, I is closed and has a right-hand endpoint

T0 > 0 such that I = [0, T0]. Suppose that T0 is finite, i.e., there exists a non-

empty open interval J ⊆ R+ such that I and J are disjoint, I ∪J is an interval,

and x1(t) ̸= x2(t) for all t ∈ J . Because x1(T0) is in D, there is a closed ball

centered at x1(T0) contained in D, which means that the two solutions must

agree on the interval [T0, T0 + δ] for some δ > 0 by Picard’s theorem, which is

a contradiction. □

Lemma 4.2.2 Let I = [0, T ) for some T > 0 and A be a nonempty closed

subset of I. Then, for every t ∈ I, there is s ∈ I such that [s, t] ⊆ A as well as

either s = 0 or s ∈ ∂(I \A), where singleton intervals are allowed. □

Proof: Let R = {[u, t] | u ≤ t, [u, t] ⊆ A} and B =
⋃
R. First, suppose that

B is not closed, and let a = inf B which exists since A is bounded from below.

Then, a belongs to A from the fact that A is closed and B ⊆ A, and B has the
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form B = (a, t] because B is an interval. However, they immediately yield a

contradiction because {a} ∪ (a, t] ∈ R; hence, B is closed. Now, let s = minB.

If [0, t] ∈ R, s = 0. If [0, t] /∈ R, suppose s /∈ ∂(I \ A). Then, since s ∈ A, there

is ϵ > 0 such that Bϵ(s) ⊆ A. Therefore, s cannot be the minimum of B, which

is a contradiction. □

Lemma 4.2.3 Consider the differentiable function h : R+ ×D → R. Suppose

that there are h1, h2 > 0 with h1 < h2 such that ḣ(t,x) = ∂h
∂t + ∂h

∂x f(t,x) ≥

0 whenever h(t,x) ∈ (h1, h2). Then, the solutions of Eq. (4.1) satisfy h|t ≥

min {h|0, h2} if h|0 > h1. □

Proof: First, assume h|0 ≤ h2. Suppose there is t1 ∈ I such that h|t1 ∈

(h1, h|0) aiming for contradiction. Let t2 = min {t ∈ [0, t1] | h|t ≤ h|t1} and t3 =

max {t ∈ [0, t2] | h|t ≥ h|0}. Then, for all t ∈ (t3, t2), h|t ∈ (h|t1 , h|0); thus,

h|t ∈ (h1, h2), from which it follows that h|t2 − h|t3 =
∫ t2
t3
ḣ|τdτ ≥ 0. However,

h|t2 − h|t3 ≤ h|t1 − h|0 < 0, which is a contradiction. Therefore, h|t ≥ h|0

for all t ∈ I because h|t ≤ h1 cannot not happen due to continuity. Now, a

similar argument can be developed for the case h|0 > h2. Suppose that there

is s1 ∈ I such that h|s1 ∈ (h1, h2). Let s2 = min {t ∈ [0, s1] | h|t ≤ h|s1} and

s3 = max {t ∈ [0, s2] | h|t ≥ h2}. Then, for all t ∈ (s3, s2), h|t ∈ (h|s1 , h2); thus,

h|t ∈ (h1, h2). From the fact that h|s2 − h|s3 ≤ h|s1 − h2 < 0, h|t ≥ h2 is

obtained. □

Corollary 4.2.1 Suppose the differentiable function h : R+ ×D → R satisfies

ḣ ≥ g(h) for some continuous function g : R → R with g(hc) > 0 where hc ∈ R.

Then, the solutions of Eq. (4.1) satisfy h|t ≥ hc whenever h|0 ≥ hc. □
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Proof: Since g(hc) > 0, there is δ > 0 such that g(x) > 0 for all x ∈ (hc −

δ, hc + δ); hence, ḣ ≥ 0 whenever h ∈ (hc − δ, hc). Now, it directly follows from

Lemma 4.2.3 that if h|0 ≥ hc, h|t ≥ min {h|0, hc} = hc. □

Definition 4.2.1 (positive invariance) A set S is said to be positively invariant

with respect to Eq. (4.1) if for any initial time t0 ≥ 0 and state x0 ∈ S, a unique

solution, defined for all t ≥ t0, exists and stays inside S for all future time.

It will be shortly shown in the following chapter that PFC requires the

notion of the set stability. It can be thought of as an extension of the original

Lyapunov stability theory.

Definition 4.2.2 (set stability) Let C ⊆ Rn.

1) The set

Nϵ(C) = {x ∈ Rn | d(x, C) < ϵ} (4.5)

is called an ϵ-neighborhood of C, where

d(x, C) = inf
y∈C

∥y − x∥ (4.6)

is the distance from x to the set C.

2) C is said to be uniformly asymptotically stable (UAS) with respect to

the system Eq. (4.1) if C is closed, and there are δ > 0 and a class KL

function β : [0, δ]× R+ → R such that

d(x(t), C) ≤ β(d(x0, C), t− t0) (4.7)

for all t ≥ t0 and all x0 ∈ Nδ(C);

76



3) The region of attraction of C is a set of all initial states, of which the

corresponding solution x(t) is defined for all t ≥ 0, and

lim
t→∞

d(x(t), C) = 0 (4.8)

Note that 2) in Definition 4.2.2 is a sufficient condition for the stability of a

closed invariant set introduced in [61,64] and the partial stability in [65] when

the system is autonomous.
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4.3 Barrier Method

In this section, the barrier method integrated with a semidefinite Lyapunov

function is proposed. Theorem 4.4.1 provides a sufficient condition for a dynam-

ical system to stay in a subset of the domain that is closed in the Euclidean

space. Then, by progressively adding assumptions, the ultimate property of

a solution and uniformly asymptotic stability of a closed invariant subset is

presented in Corollary 4.3.1 and Theorem 4.4.2, respectively.

Consider the system

ẋs = fs(t,η)

ẋ1 = f1(t,η)
(4.9)

where xs ∈ Rns and x1 ∈ Rn1 are the states, and η = (xs,x1). fs : R+×D → Rns

and f1 : R+ ×D → Rn1 are the state functions on the open set Dη ⊆ Rn where

n = ns + n1. The overall equations are represented by η̇ = fη(t,η). The state

x1 is the part to be stabilized.

Let V1 : Rn1 → R be a continuously differentiable positive definite function

and P1 = {x1 ∈ Rn1 | (xs,x1) ∈ Dη}.

Assumption 4.3.1: There are a set A1 ⊆ P1 and a continuous positive definite

function W13 on P1 such that the time-derivative of V1 satisfies

V̇1 =
∂V1
∂η

fη(t,η) ≤ −W13(x1) whenever x1 ∈ A1 (4.10)

Theorem 4.3.1 Under Assumption 4.3.1, suppose that

1) There exist ϵV1 , cV1 , k > 0 such that ϵV1 < cV1 , and

[x1 ∈ A1 and W13(x1) ≥ k] whenever V1(x1) ∈ [ϵV1 , cV1 ] (4.11)
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2) There are hc ∈ R, c ∈ [0, cV1 ], a continuously differentiable function h :

Dη → R, and a continuous function g1 : R → R such that

[ḣ ≥ g1(h) and g1(hc) > 0] whenever V1(x) ≤ b (4.12)

where b = max {c, ϵV1}.

Then, every solution starting in

S = {η ∈ Dη | V1(x1) ≤ c, h(η) ≥ hc} (4.13)

remains in {η ∈ Dη | V1(x1) ≤ b, h(η) ≥ hc}. □

Proof: Let I be the maximal interval of existence of the solution starting in

S. Without loss of generality, let the solution start at t = 0 and thus satisfy

V1|0 ≤ c and h|0 ≥ hc. Since

V1 ∈ [ϵV1 , c] ⊆ [ϵV1 , cV1 ] ⇒ x1 ∈ A1 (4.14)

it follows that V̇1 ≤ −W13 ≤ −k whenever V1 ∈ [ϵV1 , c]. Therefore, V1|t ≤

max {V1|0, ϵV1} ≤ max {c, ϵV1} = b for all t ∈ I. Consider the differential equa-

tion ẏ = g1(y) with y(0) = hc, whose solution satisfies y(t) ≥ hc from Corol-

lary 4.2.1. Hence, from Lemma 3.4 (comparison lemma) in [61], h|t ≥ y(t) ≥ hc

for all t ∈ I. □

Corollary 4.3.1 In addition to the hypothesis of Theorem 4.3.1, suppose that

c ≥ ϵV1 , and the set Ω = {η ∈ Dη | V1(x1), h(η) ≥ hc} is closed in Rn, and fη

is bounded on R+ × Ω. Then, Ω is positively invariant, and for every solution
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η(t) starting in Ω uniformly ultimately stays in the ϵV1-sublevel set of W1. □

Proof: b = c because c ≥ ϵV1 . Due to Theorem 4.3.1, every solution starting

in Ω remains inside thereafter. Since fη is bounded on R+ × Ω, Ω is positively

invariant by Lemma 4.2.1. On the other hand, from the result V̇1 ≤ −k whenever

V1 ≥ ϵV1 , V1|t ≤ V1|0−kt for all t ∈ [0, Tc] where Tc = (V1|0− ϵV1)/k. Moreover,

from Lemma 4.2.3, it follows that V1|t ≤ ϵV1 for all t > Tc. Finally, the solution

enters {x ∈ D | V1(x1) ≤ ϵV1} in [0, Tc] and stays there for all future time. □

Assumption 4.3.2: There are r > 0 and class K functions α1i : [0, r] → R,

i = 1, 2, 3, such that P1 ⊆ Br(0), and

α11(∥x1∥) ≤ V1(x1) ≤ α12(∥x1∥), W13(x1) ≥ α13(∥x1∥) (4.15)

for all x1 ∈ P1.

Corollary 4.3.2 In addition to Assumption 4.3.1 and 4.3.2, suppose that there

are hc ∈ R, c > 0, a continuously differentiable function h : Dη → R, and a

continuous function g1 : R → R such that

[ḣ ≥ g1(h) and g1(hc) > 0] whenever V (x) ≤ c (4.16)

and {x1 ∈ P1 | V1(x1) ≤ c} ⊆ A1. Then, there is a class KL function β : [0, r]×

R+ → R such that

∥x1(t)∥ ≤ β(∥x1(t0)∥, t− t0) (4.17)

for all x(t0) ∈ Ω and all t ≥ t0 ≥ 0. □

Proof: Unlike Corollary 4.3.1, this proposition guarantees that the inequality
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in Eq. (4.10) applies on the entire region that the solution can reach. It was

shown previously that for any initial state in Ω, a unique solution exists for all

t ≥ t0. The comparison functions in Assumption 4.3.2 give

V̇ ≤ −W13(x1) ≤ −α13(∥x1∥) ≤ −α13(α
−1
12 (V )) (4.18)

To see the behavior of V1|t, consider the differential equation ẏ = −(α13◦α−1
12 )(y)

with y(t0) = V1|t0 . For the solution y(t), there is a class KL function β0, whose

domain contains [0, α12(r)]×R+, such that y(t) ≤ β0(y(0), t−t0) by Lemma 4.4

in [61]. The comparison lemma then yields V1|t ≤ β0(V1|t0 , t− t0) for all t ≥ t0.

Hence, the following is obtained by using the comparison functions

∥x1(t)∥ ≤ α−1
11 (β0(α12(∥x1(t0)∥), t− t0)) (4.19)

where the right-hand side of Eq. (4.19) defines the desired β. □

The consequent of Corollary 4.3.2 does not yet satisfy the requirements of

uniform asymptotic stability despite the existence of KL function β because

it does not guarantee an ϵ-neighborhood of the surface {η ∈ Dη | x1 = 0} on

which β is active. In this aspect, when classical stability is in demand, the

following theorem provides a useful sufficient condition for the surface to be

UAS.

Theorem 4.3.2 Let C = {η ∈ Dη | x1 = 0}. Under the hypothesis of Corol-

lary 4.3.2, suppose that

1) Dη contains an ϵ-neighborhood of C;

2) h((xs,x1)) is Lipschitz in x1;
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3) There is l > 0 such that h((xs,0)) ≥ hc + l for all (xs,x1) ∈ Dη.

Then, C is UAS, and Ω is a subset of the region of attraction. □

Proof: Because C is relatively closed in Ω, C is closed. First, for each η =

(xs,x1) ∈ Nϵ(C), it follows that d(η, C) = ∥x1∥ from

∥η − η1∥ = ∥η − (xs1,0)∥ = ∥(xs − xs1),x1∥ ≥ ∥x1∥

for all η1 = (xs1,x11) ∈ C. Therefore, the proof is done if δ ∈ (0, ϵ] is found

such that Nδ(C) ⊆ Ω because β in Corollary 4.3.2 can be chosen as the desired

class KL function to show UAS. To this end, let

δ = min
{
l/L, α−1

12 (c), ϵ
}

where L is the Lipschitz constant in 2). Let η = (xs,x1) ∈ Nδ(C) be arbitrary.

From ∥x1∥ < δ ≤ l/L, the following is obtained:

|h(xs,x1)− h(xs,0)| ≤ L∥x1∥ < Ll/L = l

Therefore, h((xs,x1)) ≥ h(xs,0) − l > hc. On the other hand, V1(x1) ≤

α12(∥x1∥) < α12(δ) ≤ c. Hence, Nδ(C) ∩ Dη ⊆ Ω. As Nδ(C) ⊆ Nϵ(C) ⊆ Dη,

Nδ(C) is contained in Ω, which completes the proof. □

Remark 4.3.1: Corollary 4.3.2 and Theorem 4.3.2 are interesting in their

own sakes. Though the former is not qualified for the classical definition of

asymptotic stability, as long as the convergence of the states is the only concern,

it provides useful conclusion under relatively weaker requirements. On the other

hand, generally, the latter achieves asymptotic stability under a less restrictive

constraint, represented by the indicator h.
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4.4 Lyapunov Barrier Weighting Method

This section provides sufficient conditions for an augmented system of the pre-

vious system in Section 4.3 to have a desired ultimate property and uniform

asymptotic stability. The propositions in this section are specifically dedicated

for the backstepping control as it will be demonstrated in the development of

WPTPFC.

Consider the system

ẋs = fs(t,x)

ẋ1 = f1(t,x)

ẋ2 = f2(t,x)

(4.20)

where xs ∈ Rns , xi ∈ Rni , i = 1, 2, are the states, and x = (xs,x1,x2).

fs : R+ ×D → Rns and fi : R+ ×D → Rni , i = 1, 2, are the state functions on

the domainD = Dη×D2 ⊆ Rn, n = ns+n1+n2, for some open setsDη ⊆ Rns+n1

and D2 ⊆ Rn2 . Two partially coupled states are further introduced: η = (xs,x1)

and ζ = (x1,x2) with nη = ns+n1 and nζ = n1+n2, where η accounts for the

constraints of the system, and ζ is the part to be stabilized to its origin. The

overall equations are represented by ẋ = f(t,x), where f : R+ ×D → Rn.

Let h,w : Dη → R be continuously differentiable functions. w is constrained

by the continuous functions
¯
w, w̄ : Rn1 → R as follows:

w0 ≤
¯
w(x1) ≤ w(η) ≤ w̄(x1) (4.21)

for all η ∈ Dη, where w0 > 0. For the continuously differentiable positive definite

functions Vi : Rni → R, i = 1, 2, let V : D → R be defined by

V (x) = V1(x1) + w(η)V2(x2) (4.22)
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for all x ∈ D. Then, from the properties of w, it follows that

W1(ζ) ≤ V (x) ≤W2(ζ) (4.23)

where W1 and W2 are continuous positive definite functions on Dζ = P1 × D2

defined by W1(ζ) = V1(x1) +
¯
w(x1)V2(x2) and W2(ζ) = V1(x1) + w̄(x1)V2(x2)

for all ζ ∈ Dζ , where P1 is the projection {x1 ∈ Rn1 | (xs,x1) ∈ Dη}, whereby

Dζ is an open subset of Rnζ . The property that V (x) is bounded by function

values that depend only on ζ will be used to make sure that the stability of the

system is independent of xs.

Definition 4.4.1 Suppose that there is a function ξ : (0,∞) → R that has

the following properties:

1) ξ(h(η)) ≤ w(η) whenever h(η) > 0;

2) ξ(σ) → ∞ as σ ↘ 0;

3) There is unique σc > 0 such that ξ(σc) = w0 and the restriction ξr :=

ξ↾(0,σc] is strictly decreasing; hence ξr is invertible.

Then, w is a barrier weighting for V over h. ξ and h are the (singular) barrier

base and constraint indicator for w, respectively.

Assumption 4.4.1: w is a barrier weighting for V over h, and ξ is a barrier

base for w. There are a set Aζ ⊆ Dζ and a continuous positive definite function

W3 on Dζ such that the time-derivative of V satisfies

V̇ =
∂V

∂x
f(t,x) ≤ −W3(ζ) whenever ζ ∈ Aζ (4.24)

Theorem 4.4.1 Under Assumption 4.4.1, suppose that
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1) There are ϵV , cV , k > 0 such that ϵV < cV , and

[ζ ∈ Aζ and W3(ζ) ≥ k] whenever [W1(ζ) ≤ cV and W2(ζ) ≥ ϵV ]

(4.25)

2) There are a, hc > 0, c ∈ (0, cV ], and a continuous function gζ : R → R

such that

[ḣ ≥ gζ(h) and gζ(hc) > 0] whenever [V (x) ≤ b and V2(x2) ≤ a] (4.26)

hc ≤


ξ−1
r (b/a), b ≥ w0a

σc, otherwise

(4.27)

where b = max {c, ϵV }.

Then, every solution starting in S = {x ∈ D | V (x) ≤ c, h(η) ≥ hc} remains

in {x ∈ D | V (x) ≤ b, h(η) ≥ hc}. □

Proof: Let I be the maximal interval of existence of the solution starting in

S. Without loss of generality, let the solution start at t = 0 and thus satisfy

V |0 ≤ c and h|0 ≥ hc. Since

V ∈ [ϵV , c] ⇒ [W1 ≤ c ≤ cV and W2 ≥ ϵV ] ⇒ ζ ∈ Aζ (4.28)

V̇ ≤ −W3 ≤ −k whenever V ∈ [ϵV , c]. Therefore, V |t ≤ max {V |0, ϵV } ≤

max {c, ϵV } = b is obtained for all t ∈ I by applying Corollary 4.2.1. On the

other hand, from the inequalities

V (x) ≥ V1(x1) + max {ξ(h), w0}V2(x2) (4.29)
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and V |t ≤ b, it follows that b ≥ max {ξ(h|t), w0}V2|t for all t ∈ I. The behavior

of h|t is inspected by partitioning I into two subsets along the cases V2|t > a

and the other:

1) Let V2|t > a. Note first that hc ≤ σc in any case from (4.27). There-

fore, if ξ(h|t) < w0, h|t > σc ≥ hc due to 3) in Definition 4.4.1. On

the other hand, when ξ(h|t) ≥ w0, it follows that ξ(h|t) = ξr(h|t) and

b ≥ max {ξ(h|t), w0}V2|t = ξ(h|t)V2|t > ξ(h|t)a, where the resulting in-

equality w0 ≤ ξ(h|t) < b/a shows that b must have been chosen so that

b > w0a for this case to be feasible; hence, h|t > ξ−1
r (b/a) ≥ hc. Conse-

quently, regardless of the value of ξ(h|t), h|t > hc. Note that hc is positive

due to the domain of ξr.

2) Now, let V2|t ≤ a. Lemma 4.2.2 ensures the existence of the closed time

interval [s, t] in I such that s = 0 or ∂ {t ∈ I | V2|t > a}. First, let us

examine the case when s = 0. Consider the differential equation ẏ =

gζ(y) with y(s) = hc, whose solution satisfies y(τ) ≥ hc for all τ ∈ [s, t]

by Corollary 4.2.1. ḣ|t ≥ gζ(h|t) follows from (4.26) and h|0 ≥ hc from

x(0) ∈ S. Hence, from the comparison lemma, h|τ ≥ y(τ) ≥ hc for all

τ ∈ [s, t] = [0, t]. If s ∈ ∂ {t ∈ I | V2|t > a}, from the fact that h|t > hc

whenever V2|t > a, it follows that limτ↗s h|τ ≥ hc; thus, h|s ≥ hc by

continuity. Therefore, similar to the previous case, h|τ ≥ y(τ) ≥ hc for all

τ ∈ [s, t], which leads to h|t ≥ hc.

Finally, combining the preceding results yields h|t ≥ hc for all t ∈ I. □

In Theorem 4.4.1, if there is a class K function α : [0, g1(hc)] → R such that

gζ(h) ≥ g1(h) − α(V2) whenever V ≤ b for the same b, the existence of a is

86



guaranteed. Choose a < α−1(g1(hc)). Then, it follows that gζ(hc) ≥ g1(hc) −

α(V2) ≥ g1(hc)−α(a) > 0 whenever V ≤ b and V2 ≤ a. This property motivated

the development of the barrier weighting method in that the bounding function

g1 can be reused for the augmented system in this case.

Now, several useful propositions that apply to more specialized systems are

derived.

Corollary 4.4.1 In addition to the hypothesis of Theorem 4.4.1, suppose that

1) c ≥ ϵV ;

2) There are c2 > 0 and a continuous function g2 : R → R such that V̇2 ≤

g2(V2) with g2(c2) < 0;

3) The set Ω = {x ∈ D | V (x) ≤ c, h(η) ≥ hc, V2(x2) ≤ c2} is closed in Rn,

and f is bounded on R+ × Ω.

Then, Ω is positively invariant, and for every solution x(t) = (xs(t), ζ(t)) start-

ing in Ω, ζ(t) uniformly ultimately stays in the ϵV -sublevel set of W1. □

Proof: The proof is similar to Corollary 4.3.1. b = c because c ≥ ϵV . Due to

Theorem 4.4.1 and the existence of the function g2, every solution starting in Ω

remains inside thereafter. Since f is bounded on R+×Ω, Ω is positively invariant

by Lemma 4.2.1. On the other hand, from the result V̇ ≤ −k whenever V ≥ ϵV ,

V |t ≤ V |0 − kt for all t ∈ [0, Tc] where Tc = (V |0 − ϵV )/k. Moreover, from

Lemma 4.2.3, V |t ≤ ϵV for all t > Tc. Because V (x) ≤ ϵV implies W1(ζ) ≤ ϵV ,

it is concluded that the solution enters {x ∈ D | W1(ζ) ≤ ϵV } in [0, Tc] and

stays there for all future time. □
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Remark 4.4.1: In 2) of Corollary 4.4.1, if c2 ≤ a is further assumed, the

condition hc ≤ ξ−1
r (b/a) in Theorem 4.4.1 becomes obsolete because V2|t ≤

c2 ≤ a for all t ∈ I, and (4.26) will ensure h|t ≥ hc for any hc. Therefore, hc can

be any positive number in this case. Moreover, 2) can be omitted if c2 ≥ c/w0

because V (x) ≤ c implies V2(x2) ≤ c2 from w0V2 ≤ V ≤ c ≤ w0c2.

Assumption 4.4.2: There are r > 0 and class K functions αi : [0, r] → R,

i = 1, 2, 3, such that Dζ ⊆ Br(0), and

α1(∥ζ∥) ≤W1(ζ), W2(ζ) ≤ α2(∥ζ∥), W3(ζ) ≥ α3(∥ζ∥) (4.30)

for all ζ ∈ Dζ .

Corollary 4.4.2 In addition to Assumptions 4.4.1 and 4.4.2, suppose that

1) There exist a, c, hc > 0 and a continuous function gζ : R → R such that

[ḣ ≥ gζ(h) and gζ(hc) > 0] whenever [V (x) ≤ c and V2(x2) ≤ a] (4.31)

hc ≤


ξ−1
r (c/a), c ≥ w0a

σc, otherwise

(4.32)

as well as 2) and 3) of Corollary 4.4.1.

2) Aζ in Assumption 4.4.1 contains the set {ζ ∈ Dζ | W1(ζ) ≤ c, V2(x2) ≤ c2}.

Then, there is a class KL function β : [0, r]× R+ → R such that

∥ζ(t)∥ ≤ β(∥ζ(t0)∥, t− t0) (4.33)
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for all x(t0) ∈ Ω and all t ≥ t0 ≥ 0. □

Corollary 4.4.2 can be shown by following the proof of Corollary 4.3.2.

Theorem 4.4.2 Let C = {x ∈ D | ζ = 0}. Under the hypothesis of Corol-

lary 4.4.2, suppose that

1) D contains an ϵ-neighborhood of C;

2) h((xs,x1)) is Lipschitz in x1;

3) There is l > 0 such that h((xs,0)) ≥ hc + l for all (xs,x1) ∈ Dη.

Then, C is UAS, and Ω is a subset of the region of attraction. □

Proof: For each x ∈ Nϵ(C), d(x, C) = ∥x1,x2∥ from

∥x− y∥ = ∥x− (ys,0,0)∥ = ∥(xs − ys),x1,x2∥ ≥ ∥x1,x2∥

for all y = (ys,y1,y2) ∈ C. Let

δ = min
{
l/L, α−1

2 (c), α−1
22 (c2), ϵ

}
where L is the Lipschitz constant in 2), and α22 : [0, r] → R is a class K function

such that V2(x2) ≤ α22(∥x2∥). Now, follow the proof of Theorem 4.3.2. □
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Chapter 5

Weighted-Perpendicular-Tangent-
based Path-Following Control

In this chapter, the weighted-perpendicular-tangent-based PFC is designed. The

reference point for PFC called the perpendicular is defined and its properties

are investigated in depth. It is a locally closest point to a desired path but

has more advantageous properties than the closest point that is commonly

used in the literature. The target plant is a point mass vehicle that has two

input configuration: velocity direction input (VDI) and steering input (SI).

The VDI control is designed first and the SI control law is design by using

the VDI control law through an integrator backstepping-like control method.

The Lyapunov barrier weighting method (BWM) is then applied to inherit

the singularity avoidance capability the VDI control law has. Simple design

examples are presented for each input system, and their numerical simulations

are shown, which demonstrates the effectiveness of the proposed method.
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5.1 Notation

� ∥·∥ denotes the Euclidean norm.

� A Cr function is said to be of class M r if its derivatives are all bounded

and the r-th order derivative is locally Lipschitz.

� A C1 parametric curve γ : R → R3 satisfying ∥γ ′(s)∥ = 1 for all s ∈ R is

said to be naturally parametrized.

� For the derivatives of the curve denoted by T(s) = γ ′(s), κ(s) = T′(s),

and κ2(s) = T′′(s), the first and second ones are called the tangent and

curvature vectors, respectively, and κ(s) = ∥κ(s)∥ is the curvature.

� The world frame defined in Euclidean space is the only frame of reference

that is used; therefore, both vector and matrix notations will be used

interchangeably to represent three-dimensional vectors.
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5.2 Path-Following Problem

In this section, the reference point is defined, and the baseline equations of

motion for the path-following problem are derived.

5.2.1 Perpendicular Foot

Let γ : R → R3 be a naturally parametrized path (curve), and p ∈ R3.

Definition 5.2.1 The path parameter α is called the foot parameter of p onto

γ if it satisfies the following equation for a fixed p:

(γ(α)− p)⊤γ ′(α) = e(α,p)⊤T(α) = 0 (5.1)

where e(α,p) = γ(α)− p. γ(α) and e(α,p) are called the (perpendicular) foot

and the perpendicular at α, respectively.

From this point on, any path and path derivatives at a foot will be occa-

sionally written without arguments for brevity. That is, γ = γ(α), T = T(α),

κ = κ(α), and κ2 = κ2(α), respectively.

To investigate the behavior of α over p, let us derive the Jacobian of

T(s)⊤e(s,p) with respect to (s,p):

∂T(s)⊤e(s,p)

∂(s,p)
=
[
∆(s, e(s,p)) −T(s)⊤

]
(5.2)

where ∆ : R× R3 → R is defined by

∆(s, e) = e⊤T′(s) +T(s)⊤T(s) = e⊤κ(s) + 1 (5.3)

From this result, though Eq. (5.1) can have multiple solutions over a single p

for general paths, the sensitivity of one of the foot parameters α with respect
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to p is available by the implicit function theorem if ∆(α, e(α,p)) ̸= 0. The

derivative of Eq. (5.1) with respect to p taking α as a function of p on some

neighborhood of p yields

e⊤T′∂α

∂p
+T⊤

(
T
∂α

∂p
− I

)
= 0

Therefore, the sensitivity is obtained as

∂α

∂p
=

1

∆
T⊤ (5.4)

where ∆ = ∆(α, e(α,p)). The sensitivity has a singularity at ∆ = 0.

The sensitivity takes an important role in this study. Therefore, to gain

some intuition about ∆, the geometric properties of the condition ∆ = 0 is

investigated by the following theorem:

Theorem 5.2.1 ∆ = 0 if and only if κ > 0 and p is on the straight line λ

passing through the center of curvature, γ + κ/κ2, and parallel to T× κ. □

Proof: (Sufficiency) For each c ∈ R, let p = γ + κ/κ2 + cT × κ be the

parametrization of λ. Then, e = γ − p = −κ/κ2 − cT × κ, which leads to

∆ = e⊤κ+ 1 = −∥κ∥2/κ2 + 1 = 0.

(Necessity) Let ∆ = 0. κ cannot be zero because κ = 0 leads to e⊤κ+1 = 1 ̸= 0.

In the case of κ > 0, κ and T × κ form orthogonal bases of e from the fact

that T⊤T′ = T⊤κ = 0 due to ∥T∥ = 1; therefore, e = c1κ + c2T × κ. From

∆ = e⊤κ+1 = c1κ
2+1 = 0, it follows that c1 = −1/κ2. Now, the claim follows

because for each c2 ∈ R, the point p = γ+κ/κ2− c2T×κ is on the line λ. □

Let p : R+ → R3 be a differentiable function that represents the position

of the vehicle P . Now, the motion of the corresponding foot parameter of P is
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studied. Consider the following dynamics of the path parameter s:

ṡ =
1

∆(s, e(s,p(t)))
T(s)⊤ṗ(t) (5.5)

Let E(t) = e(s(t),p(t))⊤T(s(t)) for the solution s(t) of the differential equation.

Then, we have

Ė = ė⊤T+ e⊤Ṫ

= (γ̇ − ṗ)⊤T+ e⊤Ṫ

= (Tṡ− ṗ)⊤T+ e⊤T′ṡ

= (T⊤T+ e⊤T′)ṡ− ṗ⊤T

=
1 + e⊤κ

∆
T⊤ṗ− ṗ⊤T

= 0

(5.6)

Therefore, E(t) will stay zero whenever E(0) = 0, or equivalently, whenever s(0)

is the foot parameter of p(0), s(t) will also be the foot parameter of p(t) on the

interval of existence of the solution. Due to the singularity of the dynamics on

∆ = 0, it is demanded that ∆ should be bounded away from zero to continue

the solution indefinitely, which motivated this study on singularity avoidance

techniques.

5.2.2 Vehicle Dynamics

In this study, two types of input that determines the motion of P are considered:

the velocity direction input and the steering input, and each system has its own

state equation. The former can be applied to kinematics-level systems whose

input is velocity and the latter can be applied to dynamics-level systems driven

by normal acceleration. In either cases, the speed of P is given as a function

U = U(t), that is,

∥ṗ(t)∥ = U(t) (5.7)
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where U : R+ → R is an exogenously determined bounded C1 signal; there

exist Um, UM > 0 such that Um ≤ U(t) ≤ UM for all t ≥ 0.

Let v be the velocity direction vector of P , that is,

v(t, ṗ) :=
ṗ

∥ṗ∥
=

ṗ

U(t)
(5.8)

In the velocity direction system, p is the state, and the input uv, called the

velocity direction input, is a unit vector that determines the direction of the

velocity vector:

v = uv (5.9)

or

ṗ = Uuv (5.10)

On the other hand, the steering input system has p and ṗ as the states, and

the steering input (SI) us changes the velocity vector:

v̇ =
d

dt

(
ṗ

U

)
=

p̈

U
− ṗ

U2
U̇ =

p̈

U
− U̇

U
v = us (5.11)

or

p̈ = U̇v + Uus (5.12)

Because ∥v∥ = 1, the input us must be perpendicular to v from

v · v̇ = v · us = 0 (5.13)

By using this property, p̈, the acceleration of P , can be decomposed into the

two orthogonal components as shown in Eq. (5.11): p̈ = aT + aN with the

tangential acceleration aT = U̇v and the normal acceleration aN = Uus. aT is

parallel to the velocity direction, and aN is always perpendicular to aT . us can

be seen as a scaled version of aN .
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Trajectory

Figure 5.1: Acceleration geometry

5.2.3 Problem Statement

To define the PFC problem, the perpendicular foot dynamics Eq. (5.5) is com-

bined with the vehicle dynamics Eqs. (5.10) and (5.11) taking the foot as the

reference point for the PFC problem. No matter what input type the com-

bined system has, the domain D of the system should exclude the surface

∆(α, e(α,p)) = 0. Therefore, an arbitrary number ∆0 ∈ (0, 1) is chosen as

a bound for ∆ to define the domains for each system. The set F ⊆ D of all ini-

tial conditions for (s,p) that form a perpendicular foot is called the consistent

set for the system [44]; the path parameter trajectory s(t) that starts from this

set will be always denoted by α(t) to avoid confusion with general parameters.

Every solution starting in F must remain inside on the interval of existence due

to the foot dynamics Eq. (5.6). In particular, in SI system, once ṗ(0) = U(0),

ṗ(t) = U(t) thereafter because ∥v(t)∥ will not change from its initial value due

to the input orthogonality condition Eq. (5.13). This setup is summarized in

Tables 5.1 and 5.2. The subscripts v and s on the set symbols stand for VDI

and SI, respectively.
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Table 5.1: VDI system representation

VDI

States s,p

Input uv

Foot dynamics ṡ =
U(t)

∆(s, e(s,p))
T(s)⊤uv

Position dynamics ṗ = U(t)uv

Input constraint ∥uv∥ = 1

Domain Dv =
{
(s,p) ∈ R4

∣∣ ∆(s, e(s,p)) > ∆0

}
Consistent set Fv =

{
(s,p) ∈ Dv

∣∣ e(s,p)⊤T(s) = 0
}

Table 5.2: SI system representation

SI

States s,p, ṗ

Input us

Foot dynamics ṡ =
U(t)

∆(s, e(s,p))
T(s)⊤v

Position dynamics p̈ = U̇(t)v + U(t)us

Input constraint v⊤us = 0

Domain Ds =
{
(s,p, ṗ) ∈ R7

∣∣ ∆(s, e(s,p)) > ∆0

}
Consistent set Fs =

{
(s,p, ṗ) ∈ Ds

∣∣ e(s,p)⊤T(s) = 0, ṗ = U(0)
}
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Definition 5.2.2 (path-following problem) A control law for the systems in

Tables 5.1 and 5.2 is called a PF controller if it drives the closed-loop system to

have a nonempty set R ⊆ F of initial states such that for the solution starting

in R,

1. The solution is unique and defined for all t ≥ 0;

2. The perpendicular is regulated:

∥e(α(t),p(t))∥ → 0 as t→ ∞ (5.14)

3. The velocity direction ṗ(t)/U(t) converge to the path tangent T(α(t)) at

the foot: ∥∥∥∥ ṗ(t)U(t)
− sdT(α(t))

∥∥∥∥→ 0 as t→ ∞, (5.15)

where sd ∈ {−1, 1} is a predetermined constant called the path direction,

which is used to choose the direction in which the point P traverses the

path.

From the Definition 5.2.2, PFC can be classified as a constrained output

regulation problem in that the regulation of the output e(α,p) is required and

that ∆ should be bounded from below by some positive constant ∆c ∈ (∆0, 1).

On the other hand, from Eqs. (5.5) and (5.15), it can be seen that the foot

parameter |α(t)| eventually grows unbounded because there are ϵ, T > 0 such

that
∣∣T(α(t))⊤ṗ(t)

∣∣ > ϵ for all t > T . In the PFC problem, the initial time is

fixed to 0 for simplicity.
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5.2.4 Path and Initial Position

As stated earlier, a single position p can have multiple distinct foots on a path. It

will be shortly shown that only the initial foots with positive distance convexity

(∆ > 0) are eligible for the path-following problem. Because ∆ = 1 whenever

ρ = 0 and the solution ∆|t is a continuous function of t, a solution trajectory

with the initial foot that satisfies ∆ < 0 must pass through the surface ∆ = 0 as

ρ(t) approaches zero, which cannot happen. Fortunately, foots with ∆ < 0 are

naturally out of our interest because of its geometric inadequacy. To verify this,

let f(s) = ∥γ(s)− p∥2/2 for some fixed p ∈ R3. Then, f(α) = ∥γ(α)− p∥2/2 =

ρ2/2, f ′(α) = 0, and f ′′(α) = 1+(γ − p)⊤T′ = ∆. Therefore, f(s) has its local

minimum, local maximum, and inflection point at s = α if ∆ > 0, ∆ < 0, and

∆ = 0, respectively. Because f(α) is proportional to the square of the local

distance ρ, the foots with ∆ < 0 have a local maximum local distance. There

is no reason a local maximum should be chosen as a reference point when a

local minimum can be always found. The foregoing discussion is summarized in

Fig. 5.2.

5.2.5 Closest Point and Perpendicular Foot

The perpendicular foot (PF) shares several properties with the closest point

(CP). The line that connects the reference point and the point p, which rep-

resents the perpendicular in the PF geometry, is orthogonal to the tangent T.

Since CP requires the distance to be minimum, the derivative of the distance

∥e(s)∥2 must be zero, where e(s) = γ(s)− p. That is,

d

ds
∥e(s)∥2 = 2γ ′(s) · (γ(s)− p)

= 0

(5.16)
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Figure 5.2: Geometry of ∆. The sign of the distance convexity ∆ is geometrically
determined by the position of p relative to the osculating circle at the foot H.

Equation 5.16 is a necessary condition for the point γ(s) to be the closest point

on the path for p. This is identical to the PF condition in (5.1); thus, every

CP is PF. CP has several advantages: 1) CP represents the shortest route for

the vehicle to the desired path; 2) If CP is uniquely determined by each p,

CP is a function of the vehicle position p only. The second property is a key

feature that most CP-based research resort to because it greatly simplifies the

controller design.

However, it entails a critical problem that the assumption is valid for only

straight lines. For general paths, it is not guaranteed that CP is unique for all p,

and CP is not even continuous with respect to the motion of p. Some paths have

a region where CP does not exist at all for p in the region. In practice, CP can

only be found by using a numerical method for general paths. Moreover, general

approaches do not guarantee a global solution. Therefore, even if a unique CP

exists for p, finding one is another challenge.
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Path

Trajectory

CP

PF

Figure 5.3: Comparison between CP and PF: CF is discontinuous, while PF is
continuous for the trajectory of p on the U-shaped path. CP undergoes a jump
discontinuity from H2 to H ′

2 during the movement from H0 to H3. PF starts
from H0 and arrives at H1 in a continuous motion.

In contrast, PF consists of an augmented state, path parameter s, which

is controlled by the associated state equation (5.5). Therefore, PF is always

continuous with respect to p, and PF needs not be unique for each p since

s keeps track of a continuous trajectory of PF. Fig. 5.3 illustrates a situation

where a jump discontinuity occurs in CP for a moving p, while PF is continuous.

To see another advantage of PF over CP, consider a planar path

γ(σ) =

cos(2πσ) + 2 exp(−σ)

sin(2πσ)

 (5.17)

The image Γ = {γ(σ) | σ ∈ R} of the path resembles a sagging spring, and it can

be seen by inspection that the left-most side of the path in x-y plane approaches

the line x = −1 as σ → ∞ as shown in Fig. 5.4. Let p = [−1 0]⊤ be the position

of a vehicle. Then, it is easy to see that d(p,Γ) = infy∈Γ ∥p− y∥ = 0 but p /∈ Γ.

Therefore, the CP for p on the path γ does not exist. In contrast, there are
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infinite number of PFs with ∆ > 0 exist, which can be verified from Figs. 5.4 and

5.5, where the red x-shaped markers represent the feet with positive distance

convexity ∆(σ) = e(σ) · κ(σ) + 1, and E(σ) = e(σ) ·T(σ) is the orthogonality.

This example shows that PF can be used for a much larger class of desired

paths. Furthermore, from the practical point of view, an estimate of PF can be

found easily by general unconstrained optimization algorithms since every local

minimum solution yields one of the PFs for each p.

Aside from the desirable properties of PF, the singularity that occurs when

the zero distance convexity ∆ = 0 is a disadvantage that both reference points

have, which can be seen from the fact that CP has the same sensitivity (5.4) as

PF; the speed of the reference point becomes indefinite as ∆ approaches zero.

The discussions are summarized in Table 5.3.

Table 5.3: Comparison: the closest point and perpendicular foot

Closest point Perpendicular foot

Numerical approach
ineffective
for general paths

easily found
by numerical approaches

Number of states 0 1

Continuity w.r.t. p
generally
discontinuous

continuous

Singularity
(indefinite reference speed)

occurs when ∆ = 0
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Figure 5.4: Perpendicular feet on a spring-like path
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Figure 5.5: The orthogonality E and the distance convexity ∆
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5.3 Velocity Direction Control

5.3.1 Dynamics

First, a change of variables is introduced to efficiently formulate PFC problem:

(α,p) 7→ (α, e) from the domain Dv of the VDI system into the error space Dv,

defined by e = e(α,p) = γ(α)−p. This is a natural choice for PFC because the

perpendicular e(α,p) serves as a tracking error in the problem. The state in the

error space is denoted by xv = (α, e). The state function fv : R+×Dv×R3 → R4

is then obtained by

α̇ =
U(t)

∆(α, e)
T(α)⊤uv (5.18a)

ė = T(α)α̇− ṗ =
U(t)

∆(α, e)
T(α)T(α)⊤uv − U(t)uv (5.18b)

= U(t)A(α, e)uv

where A(α, e) = T(α)T(α)⊤/∆(α, e)− I3, and ẋv = fv(t,xv,uv). The domain

and consistent set of the transformed system are

Dv =
{
xv ∈ R4

∣∣ ∆(α, e) > ∆0

}
Fv =

{
xv ∈ Dv

∣∣∣ e⊤T(α) = 0
} (5.19)

In particular, the magnitude of the perpendicular is called the local distance

and denoted by ρ := ∥e∥.

Remark 5.3.1: Dv is nonempty, open, and connected. To see it is connected,

let us first show that (s, ke) ∈ Dv for all (s, e) ∈ Dv and all k ∈ [0, 1]. Suppose
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e⊤κ(s) + 1 > ∆0. Then, because ∆0 ∈ (0, 1),

(ke)⊤κ(s) + 1 ≥ k(e⊤κ(s) + 1)− k + 1

> k∆0 + 1− k ≥ min {1,∆0}

= ∆0

On the other hand, it is easy to see that (s,0) ∈ Dv for all s ∈ R. Therefore,

for each (s1, e1) and (s2, e2) in Dv, the union

{(s1, ke1) | k ∈ [0, 1]} ∪ {(s,0) | s ∈ [s1, s2]} ∪ {(s2, ke2) | k ∈ [0, 1]}

is a polygonal path contained in Dv, which means Dv is path-connected, hence

connected.

Define a positive semidefinite control Lyapunov function (CLF) V : R3 →

R+ by

V (xv) =
1

2
e⊤e =

1

2
ρ2 (5.20)

whose derivative is

V̇ (t,xv,uv) = e⊤ė = Ue⊤Auv = −Ue⊤uv (5.21)

on Fv, where e⊤T = 0 and

e⊤A = e⊤
(

1

∆
TT⊤ − I

)
= −e (5.22)

5.3.2 Controller Design

Definition 5.3.1 The functions wT = wT(t,xv), we = we(t,xv), and wµ =

wµ(t,xv) are tangent, approach, and rotation weighting functions, respectively,
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if

1. they are all bounded, Lipschitz in xv, and C1 functions from R+ × Dv

into R, whose derivatives are continuous in t and locally Lipschitz in xv

on their domain;

2. they satisfy

|wT(t,xv)| ≤ uT

wT(t, (α,0)) = ϵTsd

le ≤ we(t,xv) ≤ ue

|wµ(t,xv)| ≤ uµ

(5.23)

for all (t,xv) ∈ R+×Dv, where uT, ϵT, le, ue, and uµ are positive constants.

Using the weighting functions, define a function

ν = ν(t, α, e) = wTT+ wee+ wµe×T. (5.24)

In Fig. 5.6, e and T′ lie on the plane ΣT that is perpendicular to T. On the

other hand, T and e×T lie on the plane Σe that is perpendicular to e. Since all

three terms on the right-hand side of Eq. (5.24) are orthogonal to each other,

it follows that

∥ν∥2 = wT
2 + we

2∥e∥2 + wµ
2∥e×T∥2 = wT

2 +
(
we

2 + wµ
2
)
ρ2, (5.25)

where ∥e×T∥2 = ∥e∥2 − (e ·T)2 = ρ2.

Lemma 5.3.1 ∥ν∥ is bounded away from zero on Dv. □

Proof: Let L > 0 be the Lipschitz constant of wT. Then, for all (t, (α, e)) ∈
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Figure 5.6: Geometry of ν

R+ ×Dv and all (t0, α0) ∈ R+ × R, it follows that

|wT(t, (α, e))− wT(t0, (α0,0))|

= |wT(t, (α, e))− wT(t0, (α,0))|

= |wT − ϵTsd|

≤ L∥(α, e)− (α,0)∥ = Lρ

noting that wT (t, (α,0)) = ϵTsd for any t and α by definition. Therefore, ϵTsd−

Lρ ≤ wT ≤ ϵTsd + Lρ. When ρ ≤ ϵT/L, it follows that wT
2 ≥ (ϵT − Lρ)2 for

each sd ∈ {−1, 1} and

∥ν∥2 ≥ wT
2 + we

2ρ2 ≥ ϵ2T − 2LϵTρ+ L2ρ2 + l2eρ
2

=
(
L2 + l2e

)(
ρ− LϵT

L2 + l2e

)2

+
l2eϵ

2
T

L2 + l2e

≥
l2eϵ

2
T

L2 + l2e
.
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In the case ρ > ϵT/L, ∥ν∥ ≥ leρ > leϵT/L . Let ϵ = leϵT/
√
L2 + l2e . Then, the

choice of ϵ is independent of t and (α, e); thus, ∥ν∥ ≥ ϵ > 0 on Dv. □

From Lemma 5.3.1, the control law uv = ϕ(t,xv) can be designed as follows:

ϕ(t,xv) =
ν

∥ν∥
. (5.26)

The closed-loop system is then

ẋv = (α̇, ė) = gv(t,xv)

=

(
U

∆
T⊤ϕ, UAϕ

) (5.27)

where gv(t,xv) = fv(t,xv,ϕ(t,xv)). It can be seen by inspection that gv is

bounded and locally Lipschitz in xv on R+×Dv. The derivative of V along the

solution of Eq. (5.27) is

V̇ (t,xv,ϕ(t,xv)) = e⊤ė = −Ue⊤ϕ

= −U 1

∥ν∥
e⊤(wTT+ wee+ wµe×T)

= −U we

∥ν∥
e⊤e

= −UX ,

(5.28)

where

X = X (t,xv) =
weρ

2√
wT

2 + (we
2 + wµ

2) ρ2
. (5.29)

Let β : R+ → R be a class K function defined by

β(ρ) =
leρ

2√
u2T +

(
u2e + u2µ

)
ρ2

Then, X (t,xv) ≥ β(ρ) for all (t,xv) ∈ R+ ×F s; thus,

V̇ ≤ −Umβ(ρ) (5.30)
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On the other hand, it can be seen that the regulation of the local distance,

ρ→ 0, implies Eq. (5.15) from

ρ→ 0 ⇒ ν → wT|ρ=0T = ϵTsdT

⇒ ϕ→ sdT ⇒ ṗ = Uϕ→ UsdT.
(5.31)

Therefore, only the regulation of ρ is needed to ensure that ϕ is a PF controller.

Definition 5.3.2 A set R ⊆ Fv in Definition 5.2.2 is called a region of oper-

ation for VDI PF controller if the following set is UAS:

Cv(R) = {xv ∈ R | ρ = 0} (5.32)

Now, let us find a region of operation. Let γ be of a class M2. Then, curva-

ture κ of the path is bounded from above. Let κ̄ be the least upper bound of κ

and suppose κ̄ > 0. Let rq = (1−∆c)/κ̄ for some ∆c ∈ (0, 1), and let Q be a

tube of a constant cross-section radius rq centered at the path:

Q =
{
xv ∈ Fv

∣∣ ρ ≤ rq
}

(5.33)

For all xv ∈ Q, V ≤ r2q/2, and

∆ = e⊤κ+ 1 ≥ 1− ∥e∥∥κ∥ ≥ 1− rqκ = 1− (1−∆c)
κ

κ̄
≥ ∆c.

Proposition 5.3.1 Q is a region of operation. □

Proof: Because

V̇ ≤ −Umβ(ρ) = −Umβ(
√
2V ) (5.34)

on Q, ρ(t) monotonically decreases. Therefore, the solution xv(t) will stay in

the closed set Q. Since fv(t,xv,ϕ(t,xv)) is bounded and locally Lipschitz in
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xv on Dv, a unique solution exists over R+ by Lemma 4.2.1. Moreover, from

Lemma 4.4 in [61] and from the fact that V is a class K∞ function of ρ and

β(
√
·) is a locally Lipschitz class K function, it follows that there is a class KL

function ζ : [0, rq]×R+ → R such that V |t ≤ ζ(V |0, t). Because d(xv, Cv(Q)) =

∥e∥ =
√
2V , the set Cv(Q) is UAS. □

Remark 5.3.2 (rate of convergence): From V̇ = ρρ̇ and Eq. (5.30), the differ-

ential inequality ρ̇(t) ≤ g(ρ(t)), ρ(0) = ρ0 ∈ [0, rq], is obtained, where

g(y) = −Um
ley√

u2T + c21y
2

and c1 =
√
u2e + u2µ. The differential equation ẏ = g(y), y(0) = ρ0 can be

solved by separation of variables to obtain y(t; ρ0) = G−1(G(ρ0) − Umlet) for

all ρ0 ∈ (0, rq], and y(t; 0) = 0, where G : (0,∞) → R is a strictly increasing

bijection defined by

G(y) =

√
u2T + c21y

2 +
uT
2

log

(√
u2T + c21y

2 − uT√
u2T + c21y

2 + uT

)
.

Then, by the comparison lemma, ρ(t) ≤ y(t; ρ0) for all t ≥ 0 and y(t; ρ0) can be

chosen as the class KL function ζ in Proposition 5.3.1, i.e., ζ(ρ0, t) = y(t; ρ0).

The bound function y(·; ρ0) can be used to estimate the time required for the

local distance to be less than a given value; for any y1 ∈ (0, ρ0], ρ(t) ≤ y1 for all

t ≥ t1 =
1

Umle
(G(ρ0)−G (y1)). The schematic of the bound y(t; ρ0) is shown in

Fig. 5.7. On the other hand, there is a more conservative bound:

g(y) ≤ − Umle√
u2T + c21r

2
q

y (5.35)
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Figure 5.7: Rate of convergence

for all y ∈ [0, rq], which implies that any ρ(t) with ρ0 ∈ [0, rq] decays exponen-

tially at the same rate since ρ(t) monotonically decreases and the coefficient of

y is constant.

Remark 5.3.3 (trajectory shaping): The velocity direction control, repre-

sented by Eq. (5.24), is composed of the three mutually orthogonal vectors T,

e, and e×T. In particular, if wµ > 0, the trajectory of P draws a spiral curve

around the path in accordance with the right-hand rule about the tangent vec-

tor at the foot while approaching the path asymptotically as exemplified in

Fig. 5.8. Since ν is eventually normalized to form ϕ and we ≥ le on its domain,

the control design is equivalently considered as the design of the two weighting-

ratio functions ŵT := wT/we and ŵµ := wµ/we . ŵT and ŵµ determine how

faster the maneuverable point P advances forward along the path and rotates

around the path, respectively, than it approaches the path. By appropriately

shaping the weighting functions, the trends of the transient trajectory can be

easily and intuitively designed. Furthermore, by allowing the approach weight-
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Figure 5.8: Solution trajectory by constant weighting functions with ŵT > 0
and ŵµ > 0 for a sinusoidal path.

ing to have a negative value, e.g., the constraint on we is replaced by |we| ≤ ce

for some ce > 0, the control law can be easily modified such that the maneuver-

able point P keeps a specified standoff distance from the path, whose trajectory

is adjusted by wµ.

Remark 5.3.4 (invariance of image): If any of the weighting functions are not

an explicit function of time t, that is, ϕ = ϕ(xv), the image of the position

{γ(α(t))− e(t) | t ∈ R+}

of a solution trajectory is invariant with respect to the speed profile U(t). To

this end, consider two speed profiles U1(t) and U2(t) and corresponding equa-

tions of motion ẋv = (Ui(t)T
⊤ϕ/∆, Ui(t)Aϕ), i = 1, 2, whose solutions for the

same initial state xv0 ∈ Fv are denoted by xvi(t) = (αi(t), ei(t)). Consider the

transformation f : R+ → R+ defined by f(τ) =
∫ τ
0 U1(ξ)dξ, which is bijective

because U1(t) ≥ Um > 0 by assumption. Let τ = τ(t) = f−1
(∫ t

0 U2(ξ)dξ
)
be

the new time variable for the system with U2, where τ : R+ → R+ is also a
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bijection because U2(t) ≥ Um. Since
dτ
dt = U2(t)/U1(τ), the foot dynamics with

U2 can be parametrized with τ as follows:

α̇ = U2(t)
T⊤ϕ

∆
=

dα

dτ

dτ

dt
=

dα

dτ

U2(t)

U1(τ)
.

Because U2(t) is nonzero, dα
dτ = U1(τ)T

⊤ϕ/∆. de
dτ = U1(τ)Aϕ is obtained

through a similar process. The result shows that the solution xv1(t) is a reparametriza-

tion of xv2(t). Hence, the claim follows from the fact that the image of a curve

is invariant under reparametrization.

5.3.3 Direct Approaching

It is guaranteed that if the trajectory starts inside the tube Q, there is no

possibility that the trajectory would make the term ∆ = e⊤T′ + 1 excessively

close to zero for all future time while the perpendicular e is regulated. However,

the problem is that Q is significantly smaller than Fv. To expand the region,

let us inspect the dynamics of the closed-loop system expanded further from

Eq. (5.27) on Fv as follows:

α̇ =
U

∆
T⊤ϕ =

U

∆∥ν∥
T⊤ν

=
U

∆∥ν∥
T⊤ (wTT+ wee+ wµe×T) = U

wT

∆∥ν∥

(5.36a)

ė = UAϕ =
U

∥ν∥
Aν =

U

∥ν∥

(wT

∆
T− ν

)
=

U

∥ν∥

{
wT

(
1

∆
− 1

)
T− wee− wµe×T

}
.

(5.36b)

Consider the weighting function design satisfying

∀ρ > rq : [wT = 0 and wµ = 0] (5.37)
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in addition to Eq. (5.23). Then, whenever ρ > rq, the dynamics reduces to

ẋv = (α̇, ė) = (0,−Ue/ρ) whose general solution, for the initial condition xv0 =

(α0, e0) with ρ(0) > rq, is α(t) = α0 and e(t) =
(
1− 1

ρ(0)

∫ t
0 U(τ)dτ

)
e0 defined

on I =
{
t ∈ R+

∣∣∣ ∫ t
0 U(τ)dτ < ρ(0)− rq

}
. Note that ρ(t) = ∥e(t)∥ = ρ(0) −∫ t

0 U(τ)dτ ≤ ρ(0), which leads to the result that if ∆|0 > 0,

∆|t = e(t)⊤T′(α(t)) + 1

=

(
1− 1

ρ(0)

∫ t

0
U(τ)dτ

)
e⊤0 T

′(α0) + 1

=
ρ(t)

ρ(0)
(∆|0 − 1) + 1 ≥ min {∆|0, 1}

Thus, ∆|t ≥ ∆c whenever ∆|0 ≥ ∆c for all t ∈ I. This weight design temporarily

makes the foot stop (curvature of the path at the foot remains constant) until P

enters the tube Q, where the entrance to the tube in finite time is guaranteed.

In other words, the velocity ṗ is directly headed towards its foot until it enters

the tube. The method is called the direct approaching. The resultant property

of Eq. (5.37) greatly expands the region of operation compared to Q. Let

Qc =
{
xv ∈ Fv

∣∣ ∆ ≥ ∆c

}
. (5.38)

It is easy to see that Qc is a region of operation because Q ⊆ Qc, and ρ(t)

monotonically decreases on Qc \Q.

5.3.4 Singularity Avoidance

As shown previously, the region of operation is excessively confined when deal-

ing with M2 paths. Though the direct approaching expands the region to a

satisfactory extent, it is a conservative singularity avoidance that the maneu-

verability should be significantly restricted to the simplest motion. If κ̄ is large,

the tube Q becomes too thin and the control law may require an impractically

high acceleration at the boundary of the tube. To prevent undesired actuator
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saturation, the speed U must be decreased before entering the tube.

In this section, it will be shown that, for M3 paths, the region of operation

can be expanded while retaining its maneuverability compared to the tech-

niques for M2 paths represented in the foregoing discussion. Therefore, it will

be assumed from this point on that the path γ is a class M3 function, that is,

γ ′′′ = T′′ is bounded and locally Lipschitz.

Theorem 5.3.1 Let

Kv = Kv(t,xv) = wT
e⊤κ2

∆
+ we (1−∆)− wµe

⊤ (T× κ) . (5.39)

Suppose that the weighting functions wT, we, and wµ are designed so that there

are c1 > 0 and a continuous function gv : [∆c,∞) → R such that Kv ≥ gv(∆)

and gv(∆c) > 0 on Ω =
{
xv ∈ Fv

∣∣ V ≤ c1, ∆ ≥ ∆c

}
. Then, Ω is a region of

operation. □

Proof: The derivative of ∆ on Fv is

∆̇ =
∂∆

∂α
α̇+

∂∆

∂e
ė = U

{
e⊤T′′

∆
T⊤ + (T′)⊤A

}
ϕ

= UK⊤
s ϕ =

U

∥ν∥
K⊤

s (wTT+ wee+ wµe×T)

=
U

∥ν∥
Kv,

(5.40)

where

Ks =
e⊤T′′

∆
T+A⊤T′ =

e⊤κ2

∆
T+

1

∆
TT⊤κ− κ

=
e⊤κ2

∆
T− κ

115



from T⊤κ = 0. Therefore,

∆̇ ≥ Um

bν
Kv ≥ Um

bν
gv(∆) (5.41)

on Ω, where bν =
√
u2T + 2(u2e + u2µ)c1 from ρ2 = 2V ≤ 2c1. On the other hand,

∆(α,0) = 1 > 0, and ∆(α, e) is Lipschitz in e because ∆(α, e2) −∆(α, e1) =

(e2 − e1)
⊤κ(α) for all e1, e2 ∈ R3 and κ is bounded. Therefore, from Corol-

lary 4.3.2, Cv(Ω) is UAS, and Ω is a subset of region of attraction. □

The bound estimation y(t; ρ0) in Remark 5.3.2 now holds for any initial

state in Ω for a control system that satisfies the conditions of Theorem 5.3.1.

Therefore, any trajectory ρ(t) starting in Ω decays at an exponential rate,

i.e., the closed invariant set Cv(Ω) is exponentially stable. Note that when

the desired path is a straight line, that is, κ(s) = ∥T′(s)∥ = 0 for all s ∈ R

(⇔ κ̄ = 0), the singularity avoidance is not required and the set Fv is the

largest region of operation because ∆ = e⊤T′ + 1 = 1 > ∆c for all xv ∈ Fv.

5.3.5 Design Example

The conditions required for the design of a velocity direction control law are

Eq. (5.23) and the assumptions in Theorem 5.3.1. First, two shaping functions

are defined: A sinusoidal cutoff function is a strictly increasing class M1 func-

tion q (·;x1, x2) : R → R defined for each x1, x2 ∈ R by

q (x;x1, x2)=


0, x < x1

x− x1
x2−x1

+
1

2π
sin

2π (x−xc)
x2 − x1

, x1≤x<x2

1, x ≥ x2,
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where xc = (x1 + x2) /2. It can be thought of as a smooth blending of 0 and

1. An algebraic sigmoid function is a strictly increasing class M1 odd func-

tion r (·; k) : R → R defined for each k > 0 by r (x; k) = kx/
√
x2 + k2.

|r (x; k)| < k for all x ∈ R. |r (x; k)| → k as x → ∞ and the derivative

r′ (x; k) = k3/
(
x2 + k2

)3/2
approaches 1 as x vanishes.

The following weighting function design is proposed in this dissertation:

wT = uTq (∆;∆T , 1)

we = 1

wµ = −r
(

kµ0
1 + kµ1ρ2

e⊤ (T×T′) ;uµ

)
,

(5.42)

where ∆T ∈ (∆c, 1) is the cutoff point, kµ0 > 0 is the rotation intensity, and

kµ1 > 0 is the fade-out factor. All the weighting functions are bounded and

Lipschitz in x on R+ × D. Moreover, Kv ≥ 1 − ∆T > 0 whenever ∆c < ∆ ≤

∆T because 1) wT becomes zero; and 2) wµ guarantees the third term in the

right-hand side of Eq. (5.39) to be always nonnegative. The term ρ2 in the

denominator inside wµ is used to fade out the effect of wµ as P gets far from

the foot.

Remark 5.3.5: It is recommended to raise ∆ as much as possible before P

gets sufficiently close to the desired path because small ∆ generally results in

a large normal acceleration. By inspecting the structure of Kv, it can be seen

that positive we will increase ∆|t whenever it is close to ∆c. On the other hand,

wµ in Eq. (5.42) is used to always increase ∆|t unless either e(t) or T′(α(t)) is

zero. A solution trajectory with such wµ will draw a spiral curve around the

path traversing from the region of low ∆ to higher one, that is, the point P will

try to move opposite to the direction toward which the path bends.
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5.4 Steering Control

5.4.1 Dynamics

Similar to the VDI case, let us introduce the time-dependent change of variable

(α,p, ṗ) 7→ (α, e, z) from the domain Ds of the SI system into the error space

Ds, defined by e = γ(α)− p and

z = v(t, ṗ)− ϕ(t,xv) (5.43)

z represents the difference between the velocity direction v and the VDI PF

controller ϕ; it can be expected that if z(t) ≡ 0, P would behave as if it were

driven by the VDI PF controller v = ϕ. The state in the error space is denoted

by xs = (α, e, z), and the state function fs : R+×Ds is obtained from v = z+ϕ

as

α̇ =
U(t)

∆(α, e)
T(α)⊤v(t, ṗ) (5.44a)

=
U(t)

∆(α, e)
T(α)⊤(z+ ϕ(t,xv))

ė = U(t)A(α, e)v (5.44b)

= U(t)A(α, e)(z+ ϕ(t,xv))

ż = v̇ − ϕ̇ (5.44c)

= us −Φ(t,xs)

where

Φ(t,xs) =
∂ϕ

∂t
+
∂ϕ

∂xv
ẋv =

∂ϕ

∂t
+ U

∂ϕ

∂xv

T⊤/∆

A

v (5.45)
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and ẋs = fs(t,xs,us). The domain and consistent set of the transformed system

are

Ds =
{
xs ∈ R7

∣∣ ∆(α, e) > ∆0

}
F s =

{
xs ∈ Ds

∣∣∣ e⊤T(α) = 0, ∥v∥ = 1
} (5.46)

z can be seen as a state augmented to the VDI system, while the steering input

is taken as a new input.

z has the important properties:

z⊤ (v + ϕ) = (v − ϕ)⊤ (v + ϕ)

= 12 − ϕ⊤v + v⊤ϕ− 12

= 0

(5.47)

and ∥z∥ ≤ ∥v∥+ ∥ϕ∥ = 2 on F s. On the other hand, the derivatives of V and

∆ now contain a z term:

V̇ = e⊤ė = Ue⊤A(ϕ+ z)

= −UX − Uz⊤e
(5.48)

∆̇ = UK⊤
s v = UK⊤

s (ϕ+ z)

= U
Kv

∥ν∥
+ UK⊤

s z
(5.49)

which follows from Eq. (5.40).

Consider the functions

Vz (z) =
1

2
z⊤z (5.50)

and the C1 function wz : Dv → R bounded from below by w0 > 0. Form a

positive semidefinite composite CLF Vc : Ds → R+ defined by

Vc(xs) = V (xv) + wz(xv)Vz(z) (5.51)
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whose derivative is

V̇c(t,xs,us) = V̇ +
ẇz

2
z⊤z+ wzz

⊤ż

= −UX − Uz⊤e+
fw
2
z⊤z+ wzz

⊤(us −Φ),
(5.52)

where ẇz = fw(t,xs). Note that Vc(xs) is positive definite with respect to (e, z).

5.4.2 Controller Design

To design SI PF controller, first, the domain is restricted to

Dc
s =

{
xs ∈ Ds

∣∣ ∥z∥ < 2
}

(5.53)

Since ∥z∥ < 2 if and only if 1 + v⊤ϕ > 0 from ∥z∥2 = (v − ϕ)⊤ (v − ϕ) = 2−

2v⊤ϕ, the domain can be equivalently written asDc
s =

{
xs ∈ Ds

∣∣ 1 + v⊤ϕ > 0
}
.

The corresponding consistent set is Fc
s = F s ∩ Dc

s .

Definition 5.4.1 A function η : R+ ×Dc
s → R3 is a direction error regulator

if

1. η(t,xs) is piecewise continuous in t and locally Lipschitz in xs;

2. There is a positive definite function Wz : B2(0) → R such that η satisfies

the inequality

z⊤η(t,xs) ≥Wz(z) (5.54)

for all (t,xs) ∈ R+ ×Fc
s ;

3. For every ρc > 0 and zc ∈ (0, 2), η is bounded on

R+ ×
{
xs ∈ Fc

s

∣∣ ρ ≤ ρc, ∆ ≥ ∆c, ∥z∥ ≤ zc
}

For a direction error regulator η, define the function (base controller) ψb :
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R+ ×Dc
s → R3 by

ψb(t,xs) = Φ(t,xs) +
1

wz(xv)

(
Ue− fw(t,xs)

2
z− Uη(t,xs)

)
, (5.55)

Then, the control law us = ψ(t,xs), where ψ : R+×Dc
s → R3, can be designed

as follows:

ψ =
1

1 + v⊤ϕ
v × {ψb × (v + ϕ)} (5.56)

which can be rearranged on Fc
s as

ψ = ψb −
v⊤ψb

1 + v⊤ϕ
(v + ϕ) . (5.57)

ψ is designed so that v⊤us = v⊤ψ = 0. Applying the control law yields the

closed-loop system

ẋs = (α̇, ė, ż) = fs(t,xs,ψ(t,xs))

=

(
U

∆
T⊤v, UAv,ψ

) (5.58)

together with the derivative of the CLF

V̇c = −UX − Uz⊤e+
fw
2
z⊤z+ wzz

⊤(ψ −Φ)

= −UX − Uz⊤η − wz
v⊤ψb

1 + v⊤ϕ
z⊤ (v + ϕ)

(5.47)
= −UX − Uz⊤η

≤ −Um (β(ρ) +Wz(z))

(5.59)

obtained by applying Eq. (5.57) to Eq. (5.52), and

V̇z = z⊤ż = z⊤(ψ −Φ) = z⊤(ψb −Φ)

=
1

wz
z⊤
(
Ue− fw

2
z− Uη

) (5.60)

on Fc
s .
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Remark 5.4.1: The discussion in Remark 5.3.4 about invariance of the image

of a position trajectory is still valid in the steering input case. Suppose that

the weighting functions and the direction error regulator are all time-invariant,

that is, ϕ = ϕ(x) and η = η(xs). Then,
∂Φ
∂t in Eq. (5.45) is canceled out and

Φ has U(t) as a factor, hence ψb and ψ. Consequently, by the same rationale

in Remark 5.3.4, the image of the position p is invariant with respect to the

speed profile U(t).

Now, the region of operation is defined for steering input system analogous

to Definition 5.3.2.

Definition 5.4.2 A set R ⊆ Fc
s in Definition 5.2.2 is called a region of opera-

tion for SI PF controller if the following set is UAS:

Cs(R) = {xs ∈ R | ρ = 0, ∥z∥ = 0} (5.61)

5.4.3 Singularity Avoidance

In this section, the barrier weighting method developed in the previous chap-

ter, characterized by Definition 4.4.1 and Theorem 4.4.2, is used to achieve

singularity avoidance of the SI system.

Proposition 5.4.1 In the hypothesis of Theorem 5.3.1, let gv be decreasing on

[0,∆c]. Let wz be a barrier weighting with a barrier base ξ such that ξ(σc) = w0

and ∆ be the constraint indicator. Suppose further that there are zc ∈ (0, 2)

and a continuous function gz : R → R such that V̇z ≤ gz(Vz) with gz(z
2
c/2) < 0.

Then, for each c1 > 0, there is ∆c1 ∈ (0,∆c] such that the following set is a
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region of operation:

Ω =
{
xs ∈ Fc

s

∣∣ Vc(xs) ≤ c1, ∆ ≥ ∆c1, Vz(z) ≤ z2c/2
}

(5.62)

□

Proof: Let xs ∈ Ω. Then, recalling from Eq. (5.25), we have

∥ν∥ ≤ bν =
√
u2T + 2(u2e + u2µ)c1 (5.63)

and ρ =
√
2V ≤

√
2Vc ≤

√
2c1.

∥Ks∥ =

∥∥∥∥e⊤κ2

∆
T− κ

∥∥∥∥ ≤ ρ∥κ2∥
∆

+ κ <

√
2c1∥κ2∥
∆0

+ κ (5.64)

Since κ and κ2 are all bounded, there is bs > 0 such that ∥Ks∥ ≤ bs on Ω.

Therefore, the following inequality holds:

∆̇ = U
Kv

∥ν∥
+ UK⊤

s z ≥ Um

bν
gv(∆)− UMbs∥z∥ (5.65)

Choose a > 0 such that

a <
1

2

(
Umgv(∆c)

UMbsbν

)2

(5.66)

and define g : R → R by

g(x) =
Um

bν
gv(x)− UMbs

√
2a (5.67)

Then, whenever Vz(z) ≤ a, or equivalently, ∥z∥ ≤
√
2a, it follows that ∆̇ ≥
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g(∆), and

g(∆c1) =
Um

bν
gv(∆c1)− UMbs

√
2a

≥ Um

bν
gv(∆c)− UMbs

√
2a

> 0

(5.68)

If c1 ≥ w0a, choose ∆c1 ≤ ξ−1
r (c1/a). Otherwise, let ∆c1 ≤ σc. Then, from

Corollary 4.4.2, Ω is UAS. □

What makes this singularity avoidance method unique is that it is designed

simply by multiplying the barrier weighting wz to Vz of the composite CLF

Vc, which utilizes the specific characteristics of the velocity direction control

system and backstepping control structure: As stated previously, ∆|t cannot

approach ∆c by Theorem 5.3.1 if z(t) ≡ 0. Using this property, the method

manages to enforce z(t) ≈ 0 whenever it has to: Suppose that z(t) is nonzero

as it may usually be. Then, whenever ∆|t approaches ∆c, the barrier weighting

wz must increase indefinitely; thus, z(t) will squeeze its magnitude in order to

make Vc(xs(t)) monotonically decrease.

Remark 5.4.2: The open-loop system has the inherent singular surface ∆ = 0,

and the closed-loop system has the additional singular surface ∥z∥ = 2 as shown

in Eq. (5.56) recalling that 1 + v⊤ϕ = 2 − ∥z∥2/2. The proposed control law

is designed to keep ∆ away from below by a positive constant ∆c through the

barrier weighting method to prevent any malfunction that can occur when ∆

approaches 0. Likewise, z is also protected by the function gz.

5.4.4 Design Example

Consider the assumptions in Section 5.4.3 to design a steering control law.

One of the useful functions for barrier weighting design is a strictly decreasing
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function

ξ(∆) =
b20
∆2

where b0 > 0 is the barrier intensity. A barrier weighting function and a direction

error regulator are designed as

wz = logsumexp

(√
w2
0 + w1

2ρ2, ξ(∆); kl

)
(5.69)

and

η =
1

2
wzks (2− ∥z∥) z− fw

2U
z, (5.70)

respectively, where w1 > 0 is the asymptotic weight slope,

ks = ks(xs) = max

{
fw

Uwz (2− ∥z∥)
,

1

w1

}
+ ϵs, (5.71)

and ϵs > 0. For kl > 0, logsumexp(·, ·; kl) : R × R → R is a smooth approxi-

mation of the maximum function defined by

logsumexp(x1, x2; kl) =
1

kl
log(exp(klx1) + exp(klx2))

≥ max {x1, x2}
(5.72)

The design represented by Eqs. (5.69) and (5.70) yields

z⊤η =
1

2
wzks∥z∥2 (2− ∥z∥)− fw

2U
∥z∥2

=

{
1

2
wzks (2− ∥z∥)− fw

2U

}
∥z∥2

≥ ϵs
2
wz (2− ∥z∥) ∥z∥2

≥ ϵs
2
w0 (2− ∥z∥) ∥z∥2

(5.73)

that is positive whenever ∥z∥ ∈ (0, 2), i.e., the most right-hand side of Eq. (5.73)

can be chosen as Wz(z) in Eq. (5.54). Furthermore, to satisfy the assumption
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in Theorem 5.4.1, the derivative of Vz is inspected:

V̇z =
1

wz

(
Uz⊤e− fw

2
∥z∥2 − Uz⊤η

)
=

1

wz

[
Uz⊤e− U

2
wzks(2− ∥z∥)∥z∥2

]
= U

[
∥z∥ρ√

w2
0 + w1

2ρ2
− ks

2
(2− ∥z∥)∥z∥2

]
≤ U

[
∥z∥
w1

− ks
2
(2− ∥z∥)∥z∥2

]
≤ U

[
∥z∥
w1

− 1

2

(
1

w1
+ ϵs

)
(2− ∥z∥)∥z∥2

]
=

Um

2w1
∥z∥ [2− (1 + w1ϵs) (2− ∥z∥)∥z∥]

=
Um

2w1

√
2Vz

[
2− (1 + w1ϵs) (2−

√
2Vz)

√
2Vz
]

= gz(Vz)

(5.74)

Therefore, noting that Vz ≤ z2c/2 < 2 on Ω, gz(Vz) < 0 can be obtained by

increasing w1ϵs.

Remark 5.4.3: ks is a function that serves as a scaling factor of the decreasing

rate of Vz as shown in the third line of Eq. (5.74). Recalling that ẇz = fw, if

∆|t approaches 0, ξ(∆|t) will increase rapidly, which renders the first element

in Eq. (5.71) active, and Vz will be decreased accordingly to prevent wz from

rising indefinitely. Then, P is forced to follow the velocity direction control law

that is guaranteed to avoid ∆ = 0.
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5.5 Numerical Simulations

Three numerical simulations of the path-following problem are given in this

section. The first one is the result of the velocity input case, and the others

are of the steering input case. The parameters used for the control law are

summarized in Table 5.4. (sd = 1 in all simulations.)

Table 5.4: Control parameters

Categories Parameters

∆ ∆c = 0.2
wT uT = 1, ∆T = 0.5
wµ uµ = 4, kµ0 = 2, kµ1 = 0.25
ξ b0 = 16
wz w0 = 1, w1 = 16
ks ϵs = 0.9375 = 1− 1/w1

Factors that should be noted before conducting numerical simulations are

twofold: 1) Even if a given parametric path is not naturally parametrized, the

PFC law can be directly applied with only minor modifications; 2) The inte-

gration error on the foot α, possibly caused by numerical roundoff errors or

by an error due to inconsistent initial conditions, can be effectively rejected by

designing a simple foot stabilizing controller. These techniques are summarized

in Appendix B.1.

5.5.1 Rotation weighting function

A simple circular path, represented by

γ(σ) = [cosσ sinσ 0]⊤

is chosen to illustrate the role of the rotation weighting function. The maneuver-

able point P starts from the point σ(0) = 0, p(0) = [0.5 0 2]⊤ and moves at a
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Figure 5.9: Solution trajectory of the circular path scenario in Section 5.5.1 for
different rotation intensity kµ0.
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Figure 5.10: History of the circular path scenario in Section 5.5.1 for different
rotation intensity kµ0.
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constant speed: U(t) = 2. The rotation intensity kµ0 is selected among 0, 0.5, 1,

and 2, where kµ0 = 0 implies that the rotation weighting is not applied because

the condition leads to wµ|t ≡ 0. As shown in Figs. 5.9 and 5.10, nonzero kµ0

raises the distance convexity ∆ immediately after the simulation starts. (init.

in the figure stands for initial.) Noting that ∆ = 0 at the center of the circle,

it can be seen that the result is consistent with the tendency of the solution

trajectory projected to x − y plane in Fig. 5.10 in that the trajectory moves

from the interior of the circle (low-∆ area) to the outer region (high-∆ area).

Though the convergence rate of ρ slightly decreases as kµ0 increases, it follows

that the system safety is improved by the sufficiently raised ∆. The surge in the

normal acceleration aN history at the beginning of the simulation is attributed

to the design of wT; because wT is designed to be 0 whenever ∆ = ∆T = 0.5

and nonzero otherwise, the magnitude of the velocity components tangent to

the path, wTT/∥ν∥, rises from 0 as P approaches the circle, which is a major

cause of the change in heading.

5.5.2 Singularity Avoidance

The planar desired path, represented by

γ(σ) = [2σ + 1− exp(−σ) 8 exp(−σ/16) sin(σ) 0]⊤

and the initial condition σ(0) = 3.742, p(0) = [10.5 − 2.75 0]⊤, and v(0) =

[0.848 0.530 0]⊤ are selected to show the performance of the singularity avoid-

ance. The speed is constant: U(t) = 2. The barrier intensity b0 is chosen among

0, 16, and 256. The simulation results are shown in Figs. 5.11 and 5.11, where

perp., vel., dir., and cont. are the abbreviations for perpendicular, velocity,

direction, and control, respectively, and the tinted region represents the area

swept out by the perpendicular. The motion of P is vulnerable to the singular-
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Figure 5.11: Solution trajectory of the singularity avoidance scenario in Sec-
tion 5.5.2 for different barrier intensities b0.
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Figure 5.11: History of the singularity avoidance scenario in Section 5.5.2 for
different barrier intensities b0.
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ity ∆ = ∆c when b0 = 0, i.e., the barrier is inactive. In contrast, when b0 > 0,

the trajectory smoothly avoids the singularity because the angle between the

velocity direction v and the velocity direction control ϕ, denoted by ∠(v,ϕ),

is made rapidly decreased as ∆ approaches ∆c as discussed in Remark 5.4.3. It

is natural to expect that large b0 will make ∆ stay larger than lower b0 as ex-

emplified by the cases of b0 = 16 and b0 = 256. However, b0 should be carefully

chosen because large b0 can incur an undesirably high normal acceleration for

large ∠(v,ϕ)|0.

5.5.3 Various Initial Position and Velocity

The desired path is represented by

γ(σ) = [cos(σ) sin(σ) + σ/2 cos(σ/2)]⊤

and the numerical solutions for the several initial conditions are shown in

Figs. 5.12 and 5.12. The initial foot parameters, positions, and corresponding

∆ are summarized in Table 5.5. The initial velocities have the same magnitude

but distinct directions to consider various ∠(v,ϕ). To also consider time-varying

speed of P , U is commanded to make a sinusoidal wave of large magnitude. It

is observed that all the solution histories of the local distance ρ and the angle

difference ∠(v,ϕ) tend to zero as time passes. The trends of ∠(v,ϕ) shows that

as the initial angle gets bigger than 90 deg, the decreasing rate of the angle be-

comes smaller. Noticing that ∠(v,ϕ) = arccos(v · ϕ) = arccos(1 − Vz), it can

be seen that it is the direct consequence of the design in Eq. (5.70) since the

decreasing rate of ∥z∥ reduces whenever ∥z∥ approaches 0 or 2. It effectively

prevents the resultant normal acceleration from diverging as the initial angle

approaches 180 deg.

The two solutions that have the largest initial normal acceleration among
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Table 5.5: Initial conditions (ICs)

IC index σ(0) p(0)⊤ ∆|0
1 0 [0.5 0 0.5] 0.722
2 −1.054 [2 − 3 2] 2.319
3 0 [2 0 2] 1.556
4 1.054 [2 3 2] 2.319
5 1.512 [2 6 2] 4.214
6 1.705 [2 9 2] 6.587

the simulation results are denoted by dashed lines, which all belong to IC 1.

These outliers are an exception to the foregoing trends. IC 1 particularly has

∆|0 smaller than 1; therefore, it renders the barrier active. In general, low initial

∆ together with the initial velocity heading opposite to its foot exhibits a large

normal acceleration because P has to turn its velocity direction swiftly to avoid

the singularity. This characteristic can be seen from the history of ∠(v,ϕ) in

these two cases that the angle decreases faster than the other results at the

beginning of the simulation. Though it is not guaranteed, ∆ has a tendency

that once ∆|0 > 1, ∆|t keeps larger than 1 for all future time giving no chance

for the barrier to be active.
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Chapter 6

Unification of Flight Control
System and WPTPFC

The flight control system and WPTPFC developed in Chapter 3 and 5 are

unified in this chapter. The flight control system is composed of the tracking

controllers of the angular velocity, aerodynamic roll angle, aerodynamic angles,

and flight-path angle (FPA), while WPTPFC generates a velocity direction

input and a steering input. In order to unify the methods, the compatibility of

between the subsystems should be inspected carefully for efficient integration.

The dissertation gives a close look at factors to be noted for practical uses of

the methods. The numerical simulations verify the effectiveness of the proposed

approaches.

137



6.1 Parameter Normalization

To use the WPTPFC control gains chosen in Chapter 2.3 for a physical system

involving aerial vehicles, the vehicle states need to be normalized with reference

values. In this dissertation, the vehicle state variables that have the length

dimension including the desired path are normalized with the reference Lref.

That is, the perpendicular e in Section 5.2.1 and the speed of the vehicle U in

Section 5.2.2 are normalized as

e =
1

Lref
(γ(α)− p)

U =
V T

Lref

(6.1)

where p and V T are the vehicle’s position and ground speed, respectively. The

reference is chosen as Lref = 2, 000 m for the F/A-18 HARV aircraft model.

6.2 WPTPFC: Velocity Direction Control

VDI WPTPFC designed in Section 5.3 generates a unit vector ϕ that represents

the velocity direction command for the vehicle, whereby it inherently requires an

velocity direction tracking controller in the inner loop as shown in Fig. 6.1. The

angles in the vehicle dynamics relevant to the flight direction are the course

angle χ and the longitudinal flight-path angle γ. Therefore, it is natural to

pair the FPA tracking controller developed in Chapter 3 with the VDI control

system.

In order to integrate the FPA tracking control and VDI control, the VDI

control law ϕ should be converted to a flight-path angle coordinates. One of

the ways is to find a solution of the following system of trigonometric equations
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FPA

Tracking Controller

Aerodynamic Angle

Tracking Controller
VDI

WPTPFC

Aircraft Dynamics

Flight Controller

Angular Velocity

Tracking Controller

Figure 6.1: Block diagram of the unified system: VDI WPTPFC and the flight
control system

for the unknown ξf = [χ γ]⊤ and given ϕ:

ϕi = Ci/σi =


cosχ cos γ

sinχ cos γ

− sin γ

 (6.2)

where ϕi is the VDI control represented in the NED coordinate system i. Let

ϕi = [ϕ1 ϕ2 ϕ3]
⊤. Then, an analytic principal solution can be obtained as

γc = − arcsin(ϕ3)

χc = atan2(ϕ2, ϕ1)
(6.3)

However, in spite of its simplicity, the solution is not a good choice for the

FPA command. Because they can only have values in the principal region of

the domain, (−π, π] for atan2, a discontinuous jump will occur when χc crosses

±π. This dissertation proposes an efficient remedy to this issue in the following

section.
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6.2.1 FPA Command Filter

First, augment ξf c = [χc γc]
⊤ to the state variables, and consider the change

of variable

vc =


cosχc cos γc

sinχc cos γc

− sin γc

 (6.4)

Then, vc is a unit vector, and χc and γc represent the azimuth and elevation

angle of vc, respectively, as shown in Fig. 6.2. Now, design the dynamics of vc

by

v̇c = kf [ϕ− (ϕ · vc)vc] (6.5)

for some kf > 0. The dynamics has the following properties:

1. v̇c is orthogonal to vc:

vc · v̇c = kf

[
vc · ϕ− (ϕ · vc)∥vc∥2

]
= 0

(6.6)

This property ensures the dynamics is well-defined for the unit vector vc.

2. vc tracks ϕ. To see this, let V = ∥ϕ− vc∥2/2 = 1 − ϕ · vc. Then, V is

the direction difference between ϕ and vc, and its derivative satisfies the

following inequality:

V̇ = −ϕ · v̇c − ϕ̇ · vc

= −kf
[
1− (ϕ · vc)

2
]
− ϕ̇ · vc

= −kf (1 + ϕ · vc)(1− ϕ · vc)− ϕ̇ · vc

≤ −kf (1 + ϕ · vc)V + ∥ϕ̇∥

(6.7)

Let c1, c2 ∈ (0, 2) and c1 < c2. Suppose that the derivative of the VDI
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control ϕ is bounded: ∥ϕ̇∥ ≤ b for some b > 0. Then, it follows that

V ∈ [c1, c2] ⇒ 1− ϕ · vc ∈ [c1, c2]

⇒ 1 + ϕ · vc ≥ 2− c2 > 0

⇒ V̇ ≤ −kf (2− c2)V + b

⇒ V̇ ≤ −kfc1(2− c2) + b

(6.8)

Therefore, a choice of gain kf >
b

c1(2−c2)
ensures the derivative of V to

be always negative whenever V ∈ [c1, c2]. That is, V along the solution

for every initial condition that satisfies V ≤ c2 is uniformly ultimately

bounded:

lim sup
t→∞

V |t ≤ c1 (6.9)

Consequently, no matter how fast ϕ excurses, an ultimate bound of V |t

can be arbitrarily reduced by decreasing c1, which implies an increased

gain kf . The dynamics can be thought of as a constrained first-order low

pass filter for ϕ.

Now, the dynamics of vc is transformed to χc and γc-dynamics. Let the

right-hand side of Eq. (6.5) be denoted by [f1 f2 f3]
⊤. Taking derivative of the

right-hand side of Eq. (6.4) with Eq. (6.5) applied yields
−χ̇c sinχc cos γc − γ̇c cosχc sin γc

χ̇c cosχc cos γc − γ̇c sinχc sin γc

−γ̇c cos γc

 =


f1

f2

f3

 (6.10)

Then, given that cos γc ̸= 0, cosχc ̸= 0, and sinχc ̸= 0, the state equation for
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χ̇c and γ̇c are obtained by

χ̇c =
1

cosχc cos γc

(
f2 −

sinχc sinχc

cos γc
f3

)
(6.11a)

χ̇c =
1

sinχc cos γc

(
cosχc sinχc

cos γc
f3 − f1

)
(6.11b)

and

γ̇c = − f3
cos γc

(6.12)

The resulting state equations are equivalent to the vc-dynamics. In particular,

Eqs. (6.11a) and (6.11b) represent the same dynamics, but a significant dif-

ference comes from the fractions outside the parenthesis. Equation (6.11a) is

singular at cosχc = 0, while Eq. (6.11b) is singular at sinχc = 0. Therefore, a

state function that is free from the singularity caused by χc can be designed by

switching; Eq. (6.11a) is used when |cosχc| ≥ 1/
√
2, and Eq. (6.11b) is used oth-

erwise, where this switching criterion does not incur a chattering phenomenon

because the state equation is always locally Lipschitz whenever γc ̸= 0. Since

the solution of the state equation does not suffer from discontinuities, it can be

used as a filtered FPA command for the given VDI control.
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Figure 6.2: FPA command filter geometry. The green line segment is the part
to be regulated.
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6.3 WPTPFC: Steering Control

SI WPTPFC gives the steering command ψ. As discussed in Section 5.2.2 and

5.4.2, the steering input us is a scaled version of the normal acceleration aN ;

aN = V Tus. Therefore, the normal acceleration command aNc is obtained by

aNc = V Tψ (6.13)

and an inner-loop subsystem for SI control should be chosen accordingly in

order to track the commanded normal acceleration. To this end, the normal

component of the total force exerted on a vehicle is investigated. The component

can be found by projecting F = FA + T + mg onto the plane perpendicular

to the inertial velocity v = vi
G/i. Let the vector projection of a onto the plane

orthogonal to the unit vector u be denoted by

oproj(u,a) = a− (a · u)u

Applying the Newton’s second law of motion 1
mF = p̈ to Eq. (5.11) yields

1

m
oproj(v,F) = oproj(v, p̈) = aN = V Tψ (6.14)

where v = v/∥v∥ = v/V T .

The normal acceleration of an aerial vehicle is effectively manipulated by

controlling the aerodynamics angles ξa = [β α]⊤ because oproj(v,FA) is sus-

ceptible to β and α in an ordinary flight condition. Therefore, it is reasonable

to take ξa as input to yield to normal acceleration command aNc; the aerody-

namic angle tracking control law developed in Section 3.4 is paired with the SI

control as shown in Fig. 6.3.
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Control Allocation

Aerodynamic Angle

Tracking Controller
SI

WPTPFC

Aircraft Dynamics

Flight Controller

Angular Velocity

Tracking Controller

Figure 6.3: Block diagram of the unified system: SI WPTPFC and the flight
control system

Figure 6.4: Force projection and orthogonal projection. The green line segment
is the part to be minimized by the control allocation.
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6.3.1 Normal Acceleration Control Allocation

Now, the unification of the two control laws boils down to finding an aerody-

namic angle command ξac = [βc αc]
⊤ that makes the error between oproj(v,F)

and mV Tψ minimized while fixing all the variables other than ξa as illustrated

in Fig. 6.4. This is a control allocation problem that can be formalized as an

optimization problem:

minimize
∥∥oproj(v,F)−mV Tψ

∥∥2 + ws∥ξa∥
2

subject to ca(ξa) ≤ 0
(6.15)

where t and x
(a)
v are fixed, ws > 0 is the regularization weighting, x

(a)
v denotes

the state vector with ξa removed, and ca is a function that represents the flight

envelope of β and α. A minimizer of Eq. (6.15) is chosen as ξac. Similar to

Section 3.5, it is assumed that a unique solution exists for the optimization

problem Eq. (6.15), and the solution is continuous in t and x
(a)
v .

6.3.2 Low-pass Filter for VDI Control

SI WPTPFC requires the derivative of the VDI control ϕ to get the steering

control ψ as shown in Eqs. (5.44c) and (5.55). However, depending on the VDI

design, the derivative of ϕ can be undesirably complex due to the “explosion

of terms” [66]. For this reason, a first-order Loss-pass Filter (LPF) is used.
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6.4 Numerical Simulation

The unified control systems are applied to two scenarios through numerical

simulations in this section. The goal of the control system is to make an aerial

vehicle follow general three-dimensional paths with bounded curvature under

time-varying ambient wind condition.

In all scenarios, the engines of the F/A-18 HARV model are not actively

controlled, which implies that the ground speed is solely determined by the

ambient wind and the aircraft’s maneuvers. This is a deliberate setup made in

order to differentiate PFC from trajectory tracking. Unlike trajectory tracking

control, PFC does not need any timing law for path parameters. Therefore, the

performance requirements imposed on the target plants are relatively mitigated.

For example, PFC is a better choice for unpowered vehicles such as gliders or

powered vehicles being impaired in flight.

6.4.1 Scenario 1: straight line tracking

The VDI control is applied in this scenario, and the scenario is chosen to demon-

strate the base performance of the control system. The desired path is given

by

γ(σ)i = Lref

[
σ 5 −2− 0.4σ

]⊤
(6.16)

where Lref = 2000 m is the reference length for normalization defined in Sec-

tion 6.1. The path increases its altitude as the path parameter σ grows. The

ambient wind is time-varying and its average speed is 21.2 m/s. The aircraft

starts at Lref[0 0 − 3]⊤, and the thrust is fixed to 50 % of its maximum.

As shown in Fig. 6.5, the ground speed of the aircraft increases before it

converges to the path as the perpendicular foot is located below the initial

position of the aircraft. Then, due to the relatively steep slope of the path, the
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airspeed gradually decreases after the aircraft touches the path in spite of the

thrust. As a result, the speed of the aircraft varies widely in the scenario. The

state profile reveals that the tracking performance of the flight control system

is not deteriorated by such a condition.

An important result to be noted in this scenario is the response of the lo-

cal distance ρ, which indicates the path-following performance of the unified

system. In Fig. 6.7, the distance asymptotically regulated and the estimated

ultimate bound is 34 m. The ultimate bound is practically acceptable in this

windy condition, and it can be further reduced through gain tuning or an aug-

mentation of a simple adaptive law will effectively reduce the bound.
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Figure 6.5: Scenario 1: straight line tracking. (top) Vehicle speed and ambient
wind speed profile. (second) wind velocity profile. (third) path-relative wind
angles (bottom) dynamic pressure
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Figure 6.6: Scenario 1: straight line tracking. (top) Euler angles. (second) an-
gular velocity and command. (third) aerodynamic roll angle. (fourth) FPA.
(bottom) sideslip and angle of attack.
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Figure 6.7: Scenario 1: straight line tracking. (top) path parameter. (second) lo-
cal distance to the path. (third) VDI control and FPA command filter. (fourth)
G factor.
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Figure 6.8: Scenario 1: straight line tracking. Trajectory of the vehicle converg-
ing to the straight line (black).
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6.4.2 Scenario 2: descending vertical helix tracking

The SI control is applied in this scenario. The environment of Scenario 2 is

much harsher than that of Scenario 1, and it is chosen to demonstrate the

robust performance of the control system. The desired path is given by

γ(σ)i = Lref

[
cosσ sinσ + 3 −2 + 0.1σ

]⊤
(6.17)

and the aircraft starts at Lref[0 0−3]⊤. The path descends as the path parameter

σ grows.

The ambient wind is time-varying and its average speed is 60.3 m/s. The

condition is particularly unrealistic in general sense since most airports do not

allow aircraft to takeoff and land in 20 m/s or more ambient wind speeds (es-

pecially for crosswinds). However, the simulation result will verify the proposed

approach more effectively with this condition. Moreover, the two engines of

the aircraft are assumed to be completely failed during airborne maneuver.

Therefore, the dynamic pressure of the aircraft can be maintained only by the

initial kinetic energy and an adequate gliding path. The descending rate of the

helical path is determined by considering the dynamics of the F/A-18 HARV

model. Hence, the dynamic pressure will stay in the safe envelope if the aircraft

successfully follows the desired path.

As shown in Fig. 6.9, the ambient wind speed intermittently reaches about

70 % of the aircraft’s airspeed, which could be disastrous if it were a tailwind

because the aircraft could lose its dynamic pressure and fall into loss of control.

The severity of the ambient wind can also be seen from the profile of the path-

relative wind angles, where lateral path-relative wind angle χw exceeds 20 deg

at t = 65 s. In moderate flight conditions, χw stays less than 10 deg in general.

In Fig. 6.10, the SI WPTPFC successfully drives the aircraft to follow the
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helical path as shown by the local distance profile. The estimated ultimate

bound is 34 m, which is the same as the VDI control case in Scenario 1. The

airspeed of the aircraft stops decreasing after t = 70 s keeping at least 150 m/s,

which is safe for F/A-18 HARV at this altitude.
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Figure 6.9: Scenario 2: descending helix tracking. (top) vehicle speeds and am-
bient wind speed. (second) path-relative wind angles. (third) local distance.
(fourth) VDI control. (bottom) SI control.
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Figure 6.10: Scenario 2: descending helix tracking. Trajectory of the vehicle
converging to the descending helix (black).
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6.4.3 Various simulation results

In this section, a total of four curves are selected as a desired path to show the

performance of the unified control system, and they are specified in Table 6.1.

The aircraft starts at Lref[0 0 − 2]⊤, and the ambient wind is given by

vi
W/i(t) =

[
−60 0 −15

]⊤
+ d(t) (m/s)

for some continuous function d : R+ → R3×1 such that ∥d(t)∥ ≤ 10 (m/s). The

SI control is used for these simulations.

Table 6.1: Various paths

Path name Components

Ascending helix Lref[cosσ + 3 sinσ 2− 0.2σ]⊤

Ascending wave Lref[
3
4 cosσ + 4 3

4 sinσ − 0.2σ − 2]⊤

Canted circle Lref[cosσ + 4
√
2
2 sinσ

√
2
2 sinσ − 2]⊤

Barrel roll Lref[0.5 cosσ + 3 0.4σ 0.5 sinσ + 0.05σ − 2]⊤

Figures 6.11 and 6.12 show the result for the ascending helix, Figs. 6.13 and

6.14 show the result for the ascending wave, Figs. 6.15 and 6.16 show the result

for the canted circle, and Figs. 6.17 and 6.18 show the aircraft performing barrel

roll. The simulations demonstrate that the aircraft can follow various paths well

as intended.
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Figure 6.11: Simulation result for the ascending helix. (top) vehicle speeds and
ambient wind speed. (second) path-relative wind angles. (third) local distance.
(fourth) VDI control. (fifth) SI control. (bottom) G factor.
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Figure 6.12: Trajectory of the vehicle for the ascending helix.
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Figure 6.13: Simulation result for the ascending wave. (top) vehicle speeds and
ambient wind speed. (second) path-relative wind angles. (third) local distance.
(fourth) VDI control. (fifth) SI control. (bottom) G factor.
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Figure 6.14: Trajectory of the vehicle for the ascending wave.
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Figure 6.15: Simulation result for the canted circle. (top) vehicle speeds and
ambient wind speed. (second) path-relative wind angles. (third) local distance.
(fourth) VDI control. (fifth) SI control. (bottom) G factor.
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Figure 6.16: Trajectory of the vehicle for the canted circle.
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Figure 6.17: Simulation result for the barrel roll. (top) vehicle speeds and am-
bient wind speed. (second) path-relative wind angles. (third) local distance.
(fourth) VDI control. (fifth) SI control. (bottom) G factor.
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Figure 6.18: Trajectory of the vehicle for the barrel roll.
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Chapter 7

Conclusion

7.1 Concluding Remarks

In this dissertation, the equation of motion of the three-dimensional flight dy-

namics considering continuously differentiable time-varying ambient winds was

derived. One of the worthwhile results is the definition of the path-relative

wind angles and the aerodynamic roll angle, which can be effectively utilized

for the design of trajectory tracking or a coordinated flight control law in the

presence of time-varying ambient winds. Each state function was formulated to

help design a cascade controller.

The dissertation also presented a novel Path-Following Control (PFC) method

for vehicles applicable to general sufficiently smooth three-dimensional regular

parametric paths. The target plants include vehicles equipped with steering

actuators and moving with a specified nonzero time-varying traversing speed.

The perpendicular foot was proposed to inherit the advantage of the closest

point reference but reject the discontinuity issue and the need for numerical
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optimization. Two controllers were designed sequentially: kinematics-level ve-

locity direction input control followed by dynamics-level steering input control.

The weighted combination of the perpendicular, tangent, and the cross product

of the two forms a velocity direction control law. In the steering control design,

the velocity direction controller was reused through the backstepping control

scheme. Each control design consists of singularity avoidance methods to ef-

fectively expand the region of operation. In particular, the Lyapunov barrier

weighting method for backstepping was proposed, whose notion is not restricted

to the design of PFC.

The two control methods were unified by designing a control allocation to

make them compatible. The jump discontinuity issue due to the use of an inverse

trigonometric function was effectively addressed by developing a a continuous

conversion method. A constrained first-order low-pass filter was designed for

Steering Input (SI) Weighted-Perpendicular-Tangent-based PFC (WPTPFC)

unification to avoid a tedious work to obtain the derivative of the velocity

direction input (VDI) control.

7.2 Future Research

Future work includes the development of PFC for deforming paths, i.e., the

paths are dependent on the time as well as the path parameter. A dynamic

reference point that is free of inherent singularity has to be designed to consider

general smoothly deforming paths though the reference is less efficient than the

foot in transient performance.
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Appendix A

Flight Dynamics

A.1 Components of the Equations of Motion

The components of the several selected terms that appear in the derivation

are summarized in the following with appropriate simplification, where c and s

stand for cos and sin, respectively:

1. Ground speed

V T

(
t, VT , ξf

)
= VT cχwcγw + wN (t)cγcχ

+wE(t)cγsχ− wD(t)sγ
(A.1)

where vi
W/i(t) = [wN (t) wE(t) wD(t)]

⊤.

2. Path-relative wind angles

χw (t, VT , χ) = arcsin

(
wN (t)sχ− wE(t)cχ

VT

)
(A.2a)

γw
(
t, VT , ξf

)
= arcsin

(
wN (t)sγcχ+ wE(t)sγsχ+ wD(t)cγ

VT cχw

)
(A.2b)
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3. Force

Fw (t,x, δ, T ) =


−qSCD + T cᾱcβ −mgcχwsγ̄

qSCY − T cᾱsβ +mg (sµcγ̄ + cµsχwsγ̄)

−qSCL − T sᾱ+mg (cµcγ̄ − sµsχwsγ̄)

 (A.3)

where γ̄ = γw + γ.

4. State functions

ηf (t,x, δ, T ) =



qS (−CDsχw + CY cµcχw + CLsµcχw)

+ T (sᾱsµcχw + cᾱcβsχw − cᾱsβcµcχw)



qS{CDcχwsγw + CY (sµcγw + cµsχwsγw)

+ CL (sµsχwsγw − cµcγw)}

+ T{sᾱ (sµsχwsγw − cµcγw)

− cᾱsβ (sµcγw + cµsχwsγw)− cᾱcβcχwsγw}




(A.4)

fV (t,x, δ) = −qS
m
CD + ẇN (t) (sχwsχ− cχwcγ̄cχ)

−ẇE(t) (sχwcχ+ cχwcγ̄sχ)

+ẇD(t)cχwsγ̄ − gcχwsγ̄

(A.5)

fV (t,x,δ)=
qS

m
{−CDcχwcγw + CY (sµsγw−cµsχwcγw)

−CL(cµsγw+sµsχwcγw)} − gsγ
(A.6)

gV (t, µ, ξa) =
1

m
{cᾱsβ (cµsχwcγw − sµsγw)

−sᾱ (cµsγw + sµsχwcγw)

+ cᾱcβcχwcγw}

(A.7)

gµ (ξa) =

[
cα

cβ
0

sα

cβ

]
(A.8)
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A.2 Angle Conversion

In this section, the conversion between the proposed angles and the conventional

air-relative (or air-mass-relative) angles is derived. The air-relative angles are

composed of three angles: the air-relative roll angle µa, the air-relative course

angle χa, and the air-relative flight path angle γa [29]. The air-relative flight

path angles are defined when |VD − wD| < VT as follows:

χa = atan2(VE − wE , VN − wN )

γa = arcsin

(
wD − VD

VT

)
.

(A.9)

The air-relative roll angle is defined such that the following is satisfied:

Cx (µa)Cy (γa)Cz (χa) = Cw/i. (A.10)

Then, the conversion is represented by a mapping between the following coor-

dinates: (
V T , χ, γ, µ

)
↔ (VT , χa, γa, µa) . (A.11)

Let Fa1 and Fa2 be the intermediate frames formed by the sequential ro-

tations by χa and γa, respectively, i.e., the corresponding coordinate systems

satisfy

Ca1/i = Cz (χa)

Ca2/a1 = Cy (γa) .
(A.12)

Using the frames, the geometrical relations between the two coordinates in

Eq. (A.11) are shown in Fig. A.1.

Equation (2.14) in the inertial coordinate system is VTCi/wi = V TCi/σi −
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Figure A.1: Relation between the proposed angles and the air-relative angles
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vi
W/i or

VT


cγacχa

cγasχa

−sγa

 = V T


cγcχ

cγsχ

−sγ

−


wN

wE

wD

 , (A.13)

which gives

χa = atan2
(
V T sχcγ − wE , V T cχcγ − wN

)
γa = arcsin

(
V T sγ + wD

VT

) (A.14)

and

χ = atan2 (VT sχacγa + wE , VT cχacγa + wN )

γ = arcsin

(
VT sγa − wD

V T

)
V T =

√
(VT cγacχa+wN )2+(VT cγasχa+wE)

2 + (VT sγa − wD)
2 .

(A.15)

On the other hand, from Cw/i = CµCχwCγwCσ/i, Eq. (A.10) yields

sµa = sχa {cχ (cµsγ̄ + sµsχwcγ̄) + sµcχwsχ}

−cχa {sχ (cµsγ̄ + sµsχwcγ̄)− sµcχwcχ}

cµa = cχa {sχ (sµsγ̄ − cµsχwcγ̄) + cµcχwcχ}

−sχa {cχ (sµsγ̄ − cµsχwcγ̄)− cµcχwsχ}

(A.16)

and

sµ = sγ̄sχ (cµacχa + sµasγasχa)

−sγ̄cχ (cµasχa − sµasγacχa) + sµacγacγ̄

cµ = sγ̄cχ (sµasχa + cµasγacχa)

−sγ̄sχ (sµacχa − cµasγasχa) + cµacγacγ̄,

(A.17)

which are directly used to obtain the value of roll angles using atan2 function.
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Appendix B

WPTPFC

B.1 Foot Dynamics

B.1.1 Curve Parametrization

Consider a class C1 curve γ : R → R3 and assume that there is ϵ > 0 such

that ∥γ ′(σ)∥ ≥ ϵ for all σ ∈ R. Then, the function l : R → R defined by

l(σ) =
∫ σ
a ∥γ ′(ξ)∥dξ for some a ∈ R is a global diffeomorphism. Consider now

the reparametrization, s = l(σ), the derivative of whose inverse is

dσ

ds
=

dl−1(s)

ds
=

1
dl(σ)
dσ

=
1

∥γ ′(σ)∥
. (B.1)

Define γ̄ = γ ◦ l−1. Then, γ̄ ′(s) = dγ
dσ

dσ
ds = γ′(σ)

∥γ′(σ)∥ . Since ∥γ̄ ′(s)∥ = 1 for all

s ∈ R, γ̄ is the natural parametrization of γ, and T = γ̄ ′(s). The curvature

vector can be obtained from

T′=
d

dσ

(
γ ′

∥γ ′∥

)
dσ

ds
=

γ ′′

∥γ ′∥2
− γ ′ · γ ′′

∥γ ′∥4
γ ′=

γ ′ × (γ ′′ × γ ′)

∥γ ′∥4
. (B.2)
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In the path-following problem, the actual reparametrization l that involves

an integral need not be found because the foot parameter α is not explicitly

used. Instead, only the position, tangent, and curvature vectors at each foot are

needed.

The dynamics of a general foot parameter σ that satisfies α = l(σ) is then,

σ̇ =
∂σ

∂α
α̇ =

α̇

∥γ ′(σ)∥
=

U

∆∥γ ′∥
T⊤v. (B.3)

By using these relations, all the equations can be adapted to any paramet-

ric paths that satisfy the required assumptions. For example, ė = Tα̇ − ṗ =

T∥γ ′∥σ̇ − Uv and Ṫ = T′α̇ = T′∥γ ′∥σ̇.

B.1.2 Robust Foot Control

Suppose that the dynamics of σ and e are corrupted by bounded uncertainties

uσ and ue, respectively. Noticing that the dynamics of the foot parameter can be

modified by a designer, this dissertation proposes to apply an additive control

term f to the foot dynamics:

σ̇ =
1

∆∥γ ′∥

(
UT⊤v + f + uσ

)
(B.4a)

ė = T
∥∥γ ′∥∥σ̇ − Uv + ue. (B.4b)

Let E = e⊤T; then, E represents the degree of orthogonality of the vectors e

and T, which should be always zero to ensure that σ is one of the foots of P .

Its derivative is

Ė = T⊤ė+ e⊤Ṫ

= T⊤ (T∥γ ′∥σ̇ − Uv + ue) + e⊤T′∥γ ′∥σ̇

=
(
1 + e⊤T′) ∥γ ′∥σ̇ − UT⊤v +T⊤ue

= uσ +T⊤ue + f

(B.5)
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recalling that ∆ = e⊤T′ + 1. For some kσ > 0, if the stabilizing controller is

chosen as f = −kσE, it follows that

d
dt

(
1
2E

2
)
≤ |E| (|uσ|+ ∥ue∥)− kσE

2. (B.6)

Let bu be an upper bound of |uσ| + ∥ue∥. Then, E|t is uniformly ultimately

bounded by bu/kσ + ϵ for some ϵ > 0. By choosing kσ sufficiently large, the

integration error on σ(t) can be effectively suppressed. It can be intuitively

interpreted that if the estimated foot parameter is behind the true value, that

is, the perpendicular and tangent vector of the path at the foot form an obtuse

angle (indicated by E), the rate of change of the foot parameter is increased, and

vice versa. This approach is much more accurate and reliable than finding the

closest point with numerical optimization [21] because in general, optimization

does not guarantee the required continuity and smoothness of the estimated

closest point with respect to time.
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Switzerland: Birkhäuser, 2 ed., 2015.

180



[46] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier func-

tion based quadratic programs for safety critical systems,” IEEE Transac-

tions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2017.

[47] B. L. Stevens, F. L. Lewis, and E. N. Johnson, Aircraft Control and Sim-

ulation: Dynamics, Controls Design, and Autonomous Systems. Hoboken,

NJ: John Wiley & Sons, 2015.

[48] O. Härkeg̊ard, Backstepping and control allocation with applications to

flight control. PhD thesis, Linköpings universitet, Linköping, Sweden, 2003.

[49] M. Bodson, “Evaluation of optimization methods for control allocation,”

Journal of Guidance, Control, and Dynamics, vol. 25, no. 4, pp. 703–711,

2002.

[50] M. R. Hjelmfelt, “Structure and life cycle of microburst outflows observed

in colorado,” Journal of Applied Meteorology, vol. 27, no. 8, pp. 900–927,

1988.

[51] R. Bulirsch, F. Montrone, and H. J. Pesch, “Abort landing in the presence

of windshear as a minimax optimal control problem, part 1: Necessary con-

ditions,” Journal of Optimization Theory and Applications, vol. 70, no. 1,

pp. 1–23, 1991.

[52] R. B. Bobbitt and R. M. Howard, “Escape strategies for turboprop aircraft

in microburst windshear,” Journal of Aircraft, vol. 29, no. 5, pp. 745–752,

1992.

[53] J. W. Langelaan, N. Alley, and J. Neidhoefer, “Wind field estimation for

small unmanned aerial vehicles,” Journal of Guidance, Control, and Dy-

namics, vol. 34, no. 4, pp. 1016–1030, 2011.

181



[54] C.-T. Chen, Linear System Theory and Design. New York, NY: Oxford

University Press, 1999.

[55] P. R. Belanger, “Estimation of angular velocity and acceleration from

shaft-encoder measurements,” in International Conference on Robotics and

Automation, (Nice, France), May 1992.

[56] R. G. Brown, P. Y. Hwang, et al., Introduction to Random Signals and

Applied Kalman Filtering. Hoboken, NJ: John Wiley & Sons, 1992.

[57] A. H. Bowers, J. W. Pahle, R. J. Wilson, B. C. Flick, and R. L. Rood, “An

overview of the nasa f-18 high alpha research vehicle,” NASA Technical

Memorandum 4772, 1996.

[58] K. B. Ngo, R. Mahony, and Z.-P. Jiang, “Integrator backstepping using

barrier functions for systems with multiple state constraints,” in Proc. 44th

IEEE Conference on Decision and Control, (Seville, Spain), pp. 8306–8312,

Dec. 2005.

[59] K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier Lyapunov functions for the con-

trol of output-constrained nonlinear systems,” Automatica, vol. 45, no. 4,

pp. 918–927, 2009.

[60] Y.-J. Liu, J. Li, S. Tong, and C. P. Chen, “Neural network control-based

adaptive learning design for nonlinear systems with full-state constraints,”

IEEE Transactions on Neural Networks and Learning Systems, vol. 27,

no. 7, pp. 1562–1571, 2016.

[61] H. K. Khalil, Nonlinear Systems. Upper Saddle River, NJ: Prentice Hall,

3rd ed., 2002.

182



[62] N. A. Shneydor, Differential Equations, Dynamical Systems, and Linear

Algebra. London, UK: Academic Press, 1974.

[63] R. K. Miller and A. N. Michel, Ordinary Differential Equations. New York,

NY: Academic Press, 1982.

[64] M. I. El-Hawwary and M. Maggiore, “Reduction principles and the stabi-

lization of closed sets for passive systems,” IEEE Transactions on Auto-

matic Control, vol. 55, no. 4, pp. 982–987, 2010.

[65] V. I. Vorotnikov, Partial Stability and Control. Cambridge, MA:
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초록

본 논문에서는 대기바람이 존재하는 환경에서 운용되는 비행체에 적용할 수 있는

경로추종 기법을 제안하였다. 연속 미분가능한 대기바람 속도를 고려하는 비행체

운동방정식을유도하고,이를기반으로한비행제어법칙을설계하였다.또한,비행

체가충분히매끈한경로를추종하도록하는수직-접선벡터가중치기반경로추종

제어를개발하고비행제어법칙과통합하였다.

본논문에서제안한운동방정식은공력각과관성경로각을상태변수로가진다.

두 개의 경로대비 바람각(path-relative wind angle)을 정의하여 대기바람에 의해

발생하는대기속도와대지속도벡터성분의차이를매개화하였다.대기바람이존재

하는상황에서공력롤각을정의하여대기바람이존재하는환경에서도균형선회가

수월하게 하였다. 제안한 운동방정식은 계단식 구조를 가지도록 정식화하여 제어

법칙을 설계하는 데 도움이 되도록 하였다. 또한, 제안한 모델은 바람이 존재하는

상황에서도 관성 경로각의 거동을 효율적으로 표현하므로 경로추종 제어법칙을

설계하기에유리하다.

한편,수직-접선벡터가중치기반경로추종제어는경로에대한수선의발(per-

pendicular foot)을기준점으로채택하여,기존기법에서널리쓰이는최단점이가지

는특이점,불연속성등의문제들을보완하였다.시스템입력으로는속도방향벡터

(velocity direction)와 조향 벡터(steering)을 고려하였다. 특히, 장벽가중치 기법

(barrier weighting method)을적용하여조향벡터입력시스템에백스텝핑기법을

도입할때기준점운동방정식이가지는특이점을효과적으로회피하도록하였다.

위의연구내용은시간비례분해기법(time-scale decomposition)을적용하여비

행제어법칙과경로추종제어기법을통합하였다.개별적으로설계된비행제어법칙

간의호환성을검토하고,적절한변환및조종할당기법을개발하였다.본논문에서

제안한기법의성능을평가하기위해수치시뮬레이션을수행하였다.

주요어:비행동역학,대기바람,경로추종,백스텝핑,장벽가중치기법

학번: 2013-23070
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