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ABSTRACT 

 

Reflective Elastic Metagratings 
for Anomalous Wave Steering and 

Mode Conversion 
 

Shin Young Kim 

Department of Mechanical and Aerospace Engineering 

The Graduate School 

Seoul National University 

 

This dissertation deals with reflective elastic metagratings for anomalous wave 

steering and mode conversion. Elastic metagratings are newly designed artificial 

structures governed by the diffraction grating theory and the concept of elastic 

metamaterials. Recently, elastic metamaterials have been attracting attention as 

periodic structures which can effectively control the propagation characteristics of 

elastic waves. Such elastic metamaterials can be practically used in a wide range of 

industries for patient treatment, non-destructive testing, and vibration absorption by 

controlling elastic waves and vibrations. However, because of the characteristics of 

periodic structures, diffraction and interference phenomena of reflected or 

transmitted waves inevitably occur, and the problem of reduced wave efficiency due 
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to the occurrence of high-order diffraction modes still has an essential limit in the 

solution. To overcome this limitation, this thesis proposes novel reflective elastic 

metagratings which can precisely control the magnitude and direction of each 

diffraction mode of elastic waves such that wavefronts can be accurately steered as 

designed. 

The goal of this thesis is to realize the anomalous wave steering and mode conversion 

of elastic waves at the reflection problem in elastic media. By introducing well-

designed elastic metagratings, it is possible to solve the innate problem of reduced 

efficiency of the reflected wave. We solved the problems in two steps. In the first 

step, the single-mode wave manipulation problem is solved by controlling only the 

longitudinal waves without considering the shear waves. In this step, several beam-

type members are used as the elastic wave scatterers. Based on the theoretical 

modeling of the members, anomalous steering phenomena of the scattered 

longitudinal waves are realized through well-designed elastic metagratings. 

However, it is difficult to control various diffraction modes of the longitudinal and 

shear waves with beam-type metagratings, because of their few design variables and 

slender shape which only consider flexural and longitudinal motion. Thus, in the 

second step, strip-type continuum members with more DOFs including widths are 

used as wave scatterers to solve the double mode wave manipulation problem which 

is the simultaneous mode-conversion and steering of the longitudinal (or shear) wave. 

In this step, diffraction mode amplitudes of longitudinal and shear waves are 

quantified based on the solution of numerical analysis. Through this analysis, such 
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mode-converting reflection phenomena are realized through strip-type metagratings. 

In summary, to achieve the final goal, the design method of reflective elastic 

metagratings is divided into two steps, and through these steps, high-order diffraction 

modes of the elastic waves are controlled to realize the anomalous wave steering and 

mode conversion phenomena. Also, this thesis identifies the phenomena by 

analyzing the related physics at each step. It is meaningful in that it opens the 

possibility of practical usage of elastic metagratings by not only experimentally 

verifying it but also presenting applications in the actual ultrasonic non-destructive 

testing industry. 

 

Keywords: Elastic metagratings, Diffraction grating theory, 

Anomalous wave steering, Elastic mode conversion, Elastic wave scatterers 

Student Number: 2016-22851 
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CHAPTER 1.  

Introduction 
 

 

 

1.1 Research motivation 

Modern societies of mankind are surrounded by elastic media such as metal, rock, 

and plastic. These elastic media can be used for the materials of buildings, bridges, 

airplanes, automobiles, ships, etc. Therefore, the detection of defects in elastic 

materials and maintenance of mechanical structures become much crucial to protect 

against potential hazards that lie within the materials. 

To detect tiny invisible defects inside solid elastic media, elastic waves have been 

applied in the field of structural health monitoring [1] and ultrasonic nondestructive 

testing [2]. Here, elastic waves are energy (or power) carrying disturbances that 

travel through various elastic media. It should be much easier to detect the defects 

by using elaborately controlled elastic waves. To achieve high performance in the 

applications, the propagating mode and direction in the scattered wave field must be 

efficiently manipulated. However, the efficient mode conversion and wave steering 

of elastic waves remain challenging, owing to the complex polarization and 

dispersive properties of elastic wave motions. Even under the incidence of a single-

mode elastic wave, various wave modes are scattered in different directions from 
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boundaries or inhomogeneous interfaces [3,4]. For example, when a longitudinal 

wave impinges on the arbitrary boundary of an elastic plate, both the longitudinal 

and shear wave propagate to multiple directions in the scattered field. As a 

conventional way to manipulate the reflected waves, one can consider taper-shaped 

wedges used for mode conversion of elastic waves in industrial applications; the 

tapered wedges are designed to achieve a total internal reflection defined by the 

critical angle at which only one type of elastic wave can propagate, while other types 

of waves become evanescent [2,3]. However, the conventional wedge applications 

employing critical angles are strongly dependent on the working conditions; thus, 

the efficiency of mode conversion and wave steering is generally poor. Hence, 

efficient mode conversion and wave steering are still required in elastic wave 

applications. 

In this circumstance, man-made engineered structures called metamaterials are 

widely studied for anomalous controlling of waves in various media. These 

metamaterials are thought to have the potentials that can make remarkable outputs 

in elastic mode conversion and wave steering. Among these metamaterials, 

metagratings have received much attention for the high performance of steering the 

wavefronts. Metagratings are newly designed artificial structures governed by the 

diffraction grating theory and the concept of elastic metamaterials. Throughout the 

thesis, elastic metagratings will be studied in more detail and applied to solve the 

problem of anomalous wave steering and mode conversion. In the following sections, 

previous works on metamaterials, metasurfaces, and metagratings will be briefly 
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reviewed. Then, the research objective along with the coverage and outline of the 

thesis will be presented. 

 

1.2 Previous works 

As artificially engineered structural materials, metamaterials have attracted 

considerable attention in recent decades, because they can realize and tailor extreme 

characteristics in wave propagation [5-12]. Various metamaterials have been 

proposed for mode conversion or filtering of elastic waves by using anisotropic 

properties [13-15], negative mass and stiffness [16-18], Fabry–Pérot resonance [19-

21], and bimodal impedance matching [22,23]. In [19-21], using the Fabry–Pérot 

resonance, an incident longitudinal (shear) wave was entirely converted via an 

anisotropic metamaterial layer into a shear (longitudinal) wave. Recently. A perfect 

transmission of obliquely incident elastic waves has been reported [24]. While these 

metamaterials facilitated highly efficient mode conversion in the refraction and 

transmission of elastic waves, anomalous wave steering in the reflective wave field 

was not investigated. 

Metasurfaces, which are planar versions of metamaterials have been popularly 

studied for the anomalous steering of elastic waves. In most of the metasurface works, 

the generalized Snell’s law [25] has been employed to realize the anomalous steering 

of reflected and/or refracted waves by forming various types of phase gradients. 

Among metasurfaces for elastic wave steering, aligned gaps were set in an elastic 



4 

plate to produce phase gradients for steering longitudinal and flexural waves [26,27]. 

An effective mass-stiffness substructuring model was proposed to refract 

longitudinal waves in an elastic plate [28]. The disordered pillar resonators were 

installed on an elastic plate for anomalous deflection and focusing of flexural waves 

[29]. However, most metasurfaces based on phase gradients inevitably generate 

undesired multiply scattered modes, because multi-dimensional non-local effects are 

not fully considered in wave scattering phenomena [30]. In other words, the 

generalized Snell’s law has no mechanism for controlling the scattered modes from 

the boundaries and inhomogeneous interfaces of the wave-propagating media. 

Consequently, the wave steering efficiency of phase gradient-based metasurfaces is 

inherently low, and the mode conversion functionality is fundamentally limited. 

To selectively manipulate undesired multiply scattered modes, researchers have 

investigated metagratings that are governed by the diffraction grating theory [31,32] 

for electromagnetic [30,33-36] and acoustic wave fields in fluids [37-57] and, very 

recently for elastic wave field in solids [58-62]. In the metagrating used to 

manipulate flexural waves, point scatterers based on a mass-spring model were 

arranged [58,59] and phased grating elements were added to a superstrate of the 

elastic plate to manipulate guided waves [60]. 

 

1.3 Research objective and coverage 

This work aims to solve the problem of simultaneous wave steering and mode 
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conversion in elastic media. The problem will mainly focus on the reflection problem 

of in-plane elastic waves. It should be noted that accurately controlling the 

propagating direction and amplitude of each scattered elastic wave is difficult 

because of the innate coupling motion of longitudinal and shear waves. Therefore, 

quantifying each diffraction mode of scattered wave and controlling is the main issue. 

In this point of view, recently researched elastic metagratings will be investigated 

thoroughly. By using such elastic metagratings, we can solve the issues by 

calculating the magnitudes of diffraction modes and accurately controlling each of 

them. 

We will solve the problems in two steps. In Step 1, the problem of wave steering and 

mode conversion is simplified into controlling only the longitudinal wave without 

considering the shear wave. Here, we used an array of beam-type members to design 

metagratings that can control longitudinal waves successively. With these beam-type 

members, the elastic media and members are modeled theoretically. However, these 

beam-type members only consider longitudinal and flexural motion. Therefore, 

scatterers consisting of metagratings should have more degree of freedom on the 

motions and design parameters. In this point of view, we proposed two or three strip-

type continuum members to control both the longitudinal and shear waves in Step 2. 

Because it is difficult to model the strip-type continuum members theoretically, we 

analyzed our proposed metagratings through the numerical method. As design 

examples, several anomalous mode-converting reflections are realized numerically 

and experimentally. In both of the steps, we physically interpreted each phenomenon 
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induced by metagrating structures. 

 

The research objectives in the dissertation can be summarized as follows. 

 

1. Elastic metagratings for longitudinal wave steering 

In this step, we newly propose a novel elastic metagrating model to realize 

anomalous steering of longitudinal waves in an elastic continuum medium. Modeled 

by a periodic arrangement of a single or array of so-called beam-type elastic 

members, the present elastic metagratings resolve the difficulties in steering a 

specific scattered mode of elastic longitudinal waves by suppressing undesired 

modes in the scattered wave field. As the metagratings are attached to a boundary of 

the elastic continuum, both longitudinal and flexural motions in the beam-type 

members are so coupled with elasticity wave solutions in the elastic medium as to 

thoroughly manipulate the reflected longitudinal waves from the interface. A set of 

appropriate geometric parameters of the beam-type members are searched for direct 

control of the scattered modes quantitatively. As practical applications, the proposed 

elastic metagratings are applied to realize anomalous reflections and asymmetric 

splitting of longitudinal elastic waves. As well as experimental verifications, the 

performance of the designed elastic metagratings is physically interpreted from the 

perspective of phase modulation. 

 

2. Elastic metagratings for anomalous mode-converting reflection 
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In this step, we propose a new way for converting a normally incident elastic 

longitudinal (or shear) wave mode to an obliquely reflected elastic shear (or 

longitudinal) one, using metagratings of elaborately designed and arranged strips. 

For a longitudinal (or shear) wave incidence upon the free end of an elastic plate, it 

is intrinsically difficult to realize full-power mode conversion and steer the converted 

mode without generating undesired reflected waves. We show that our elaborately 

designed and optimized multiple rectangular strip-type metagratings are effective in 

simultaneously fulfilling the mode conversion and anomalous steering of elastic 

waves. Unlike metasurfaces, the proposed metagratings operate via the diffraction 

theory and multiple rectangular strips permit sufficient design freedom to fulfill the 

two design objectives. Several numerical simulations in this work show that the 

proposed strip-type metagratings achieve near-perfect mode-conversion efficiencies 

reaching 96 %, and the performance is supported by experiments. Applications of 

the designed metagratings in nondestructive evaluation are also demonstrated. 

 

1.4 Outline of thesis 

The thesis is organized as follows. 

In Chapter 2, the theoretical background of the waves in elastic media and 

diffraction grating theory are provided. The general wave theory in elastic media is 

first presented. In this section, the elastic wave equation as well as a reflection at the 

traction-free boundary is theoretically described. Since our problem is mainly 

focused on the reflection problem, such a description process is reasonable. In 
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addition, the description of diffraction grating theory is briefly introduced. 

In Chapter 3, the study of elastic metagratings for longitudinal wave steering is 

presented. This chapter is the first step in solving the main goal of the thesis. 

Analytical modeling of the elastic wave motion is first provided with the description 

of the wave motion in an elastic plate and the beam-type members. Then, the design 

of the proposed beam-type elastic metagratings is introduced using our analytical 

modeling. Several design examples are presented next. Finally, the experimental 

verification as well as the physical interpretation is given. 

In Chapter 4, the study of elastic metagratings for anomalous mode converting 

reflection is presented. Even though we designed metagratings with beam-type 

members, controlling all of the modes of elastic metagratings is not a simple task. 

Therefore, we applied the numerical method in the design of metagratings 

throughout the chapter. Mathematical descriptions of the wave motion are first 

provided. Then, the numerical method for analysis and optimization is given. Some 

of the design examples along with the analysis of the phenomenon are presented. 

In the last chapter, the conclusions of the thesis are described. 

  



9 

CHAPTER 2.  

Theoretical Background 
 

 

 

2.1 Chapter overview 

In this chapter, we will present the theoretical background of wave behavior in elastic 

media and the diffraction grating theory. Since our dissertation deals with the elastic 

metagratings which are the types of diffraction grating applied in the elastic wave 

field, it is worthy for reviewing both general wave theory in elastic media and 

discussing about the diffraction grating theory. In the following section, we first 

introduce the basic equations of elastic waves. From the solution of elastic wave 

equations, we solve the problem of reflection at the traction-free boundary. Our main 

problem is concentrated at the reflection problem, so the phenomena when the 

longitudinal or shear wave incidents to the traction-free boundary is reviewed in 

detail. Finally, the basic diffraction grating theory is reviewed. This concept will be 

used in following chapters, so it is essential to provide the background details in this 

chapter.  
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2.2 General wave theory in elastic media 

2.2.1 Elasticity 

Elastic waves are waves which propagate through elastic medium such as steel, 

aluminum, wood, etc. Due to complicated natures of elastic medium, the strain, stress, 

and stiffness should be expressed using second and fourth order tensor. Firstly, 

displacement vector using the Cartesian coordinate system can be expressed as: 

 
3

1

.i i i i
i

u u


 u e e  (2.1) 

From Eq. (2.1), the strain in second order tensor can be expressed as: 

 , ,

1
( ), ( , , , )

2ij j i i ju u i j x y z     (2.2) 

where ij   is the strain on ij plane and ,i ju   denots the derivative of the i-th 

component of displacement in terms of the j-th component of displacement. 

Using linearized constitutive equation (or Hooke’s law) in elastic media which is 

valid for small deformation, stress tensor can be expressed as: 

 ( , , , , , )ij ijkl klC i j k l x y z   , (2.3) 

where ij  is the stress on ij plane, ijklC  is the component of the stiffness tensor 

(fourth order tensor) C. The stiffness tensor C can be expressed in 6 by 6 matrix and 

the components differ by the characteristics of the elastic medium. Some examples 

of characteristics of elastic media are isotropic, anisotropic, orthotropic, etc. In our 

case, we will mainly discuss the isotropic elastic media in a plane-stress condition. 
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Such constitutive relation can be written as follows: 
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, (2.4a) 

or 2ij kk ij ij     , (2.4b) 

where E, ν each denote Young’s modulus and Poisson’s ratio in elastic media, 

respectively. And    and    denote for Lamé constants which are material-

dependent quantities arise in strain-stress relationships. Here, in the condition of 

isotropic medium and plane-stress condition, 2/ (1 ),E G      . 

 

2.2.2 Elastic wave equation 

By Newton’s 2nd law, the equation of motion can be written using the stress and 

displacement as: 

 

2

, 2
i

ji j i

u
b

t
 


 


, (2.5) 

where ib  and   each denote the body force acts on the entire elastic body and 

the density of the medium, respectively. 

By substituting Eq. (2,2) and Eq. (2.4) into Eq. (2.5), we can get the governing 

equation in terms of displacement as: 
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2

, , 2
( ) i

k ik i kk

u
u u

t
   


  


. (2.6) 

By using Helmholtz decomposition of a displacement vector and vector identities, 

we can get: 

 
2 2( 2 ) 0        

          
   

ψ ψ
γγ γγ

, (2.7) 

where   and   denote scalar and vector potential function. 

Since these potential are independent to each other, we can get two wave equations 

of elastic media as follows: 

 
2

2

1

dc
  

γγ

, (2.8a) 

 
2

2

1

sc
 ψ ψ

γγ

. (2.8b) 

where  ( 2 ) /dc      ,  /sc     each denote the dilatational wave 

speed, shear wave speed, respectively. Dilatational wave can be also called as 

longitudinal wave or P-wave. And shear wave can be also called as transverse wave 

or S-wave. In this dissertation, we will use the term “longitudinal wave” or “P-

wave” and “shear wave” or “S-wave”. For the characteristics of each wave, the 

displacement field of longitudinal wave directed along the propagating direction. 

This means that the vibration direction of elastic medium is coincident with the 

propagating direction of the longitudinal wave. On the other hand, the particle 
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motion of the shear wave is normal to the propagating direction. This means that 

the vibration direction of elastic medium is normal to the propagating direction of 

the shear wave. 

For the general solution of the elastic wave, there needs some assumptions. First, 

plane wave which means the infinite beam width should be assumed. Next, time-

harmonic wave ( ~ j te   ) is assumed. From such conditions, solutions for the 

longitudinal and shear wave can be written as (positive propagating direction only): 

 
( )pi t

Pe
   k x

, (2.9a) 

 
( )si tSe    k x

 (2.9b) 

where P and S are the amplitudes of longitudinal and shear waves,    is the 

angular frequency, and ( )p sk  denotes the wave vector of longitudinal (shear) wave. 

In addition, x denote the position vector using the Cartesian coordinate system. 

 

2.2.3 Reflection at the traction-free boundary 

In this section, we will solve the problem of reflection at the traction-free boundary. 

We will assume the wave as plane, time-harmonic wave. In addition, elastic half-

plane with plane strain condition is considered. 

Under these assumptions, general case of incident and reflected longitudinal and 

shear wave (shear-vertical in detail) is shown in Fig. 2.1. In Fig. 2.1, Each of the 

longitudinal i  and shear wave i  incidents to the traction-free boundary in the 
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angle of i  and i , respectively. Then, the longitudinal and shear wave can be 

reflected with the angle of r  and r  from the traction-free boundary. So our 

concern is what happens to the reflected longitudinal and shear wave. 

Total wave fields can be written as follows: 

 
( ) ( )ip rpi t i t

total i rP e P e
      k x k x

, (2.10a) 

 
( ) ( )is rsi t i t

total i rS e S e      k x k x
 (2.10b) 

where ( )( ) i rP S   denotes the amplitude of the incident (reflected) longitudinal 

(shear) wave. 

By using the traction-free boundary condition ( 0 0
0, 0zz zxz z

 
 
  ), we can get 

some interesting properties of reflection. The reflection phenomena for each 

longitudinal or shear wave incidence is shown in Fig. 2.2. In this section, we will 

only focus on the longitudinal wave incidence. In this way, we can concentrate on 

the reflection phenomena. 

When the longitudinal wave incidents to the traction-free boundary, both 

longitudinal and shear wave reflected from the boundary. This phenomenon is 

interesting because such reflection doesn’t happen on the acoustic wave reflection. 

The longitudinal wave is reflected in the same angle with the incident longitudinal 

wave. The shear wave is reflected in the different angle and this certain angle can be 

calculated from the Snell’s law of reflection. This property stems from the difference 

between two types of elastic waves. These two properties can be written as: 
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 i r  , (2.11) 

 
sin
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   , (2.12) 

where ( )p sk   and ( )p sc   denote the wavenumber and speed of the longitudinal 

(shear) wave. 

We can also get the amplitude ratio of incident and reflected waves as follows: 

 
       
       

2 2

2 2

sin 2 sin 2 / cos 2
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, (2.13a) 

 
   

       
2 2

2sin 2 cos 2
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i p s

P

P c c

 

  





. (2.13b) 

 

2.3 Diffraction grating theory 

A diffraction grating comes from the optics. Devices such as spectrographs are using 

the diffraction grating structure to divide or disperse the light by a number of 

different wavelengths. Usually, these devices have periodic structures. By 

controlling the spacing of the grating or the wavelength of the light, the propagating 

direction of beam differs. Usually the spacing (or the periodicity) of the diffraction 

grating is larger than wavelength of the light. If it is not greater than the wavelength, 

diffraction pattern does not arise and only direct reflection or refraction of the light 

according to the Snell’s law exists. In addition, either transmission or reflection type 
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diffraction grating is possible. In this section, we will derive the grating equation in 

1D periodic geometry. Such grating equation which is derived with the light 

propagation can also be used in diffraction grating structures in any wave fields such 

as electromagnetic, acoustic, elastic wave, etc. 

 

2.3.1 Grating equation in 1D periodic geometry 

In optics, the simplest type of diffraction grating structure is the evenly spaced 

periodic slit structures in the y-direction as in Fig. 2.3. For the periodicity, the number 

of structure should be large. When the incident monochromatic light of certain 

wavelength    enters the periodic slit structures, the light reflected or refracted 

from the structures in specific direction. We will derive the grating equation in terms 

of refractive problem as in Fig. 2.3. The reflection problem can also be derived in 

the same method. 

When the monochromatic light normally incidents into the periodic slit structure, the 

waves in the adjacent slits diffract and interfere with each other. The path difference 

between these refractive waves in the adjacent slits can be calculated as: 

 sin , ( 0, 1, 2, ...)n
rd n n      (2.14) 

where d   is the periodicity or the spacing of the diffraction grating,    is the 

wavelength of the incident monochromatic light, 
n
r  is the refractive angle of the 

n-th diffraction mode of the light, and n  is the diffraction mode number, which is 

the integer number. The 0th diffraction mode ( 0n   ) is the ordinary refraction 
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direction, which, in this problem, is the normal direction (
0 0r  ο

). The equation 

written in Eq. (2.14) is known as the grating equation in 1D periodic geometry for 

the normal incident monochromatic wave according to the diffraction grating theory. 

We can generalize the Eq. (2.14) by introducing the incident angle i . The grating 

equation in 1D periodic geometry for the oblique incident monochromatic wave can 

be written as follows: 

 (sin sin ) , ( 0, 1, 2, ...)n
r id n n        (2.15a) 

or sin sin . ( 0, 1, 2, ...)n
r i

n
n

d

       (2.15b) 

From Eq. (2.14) and Eq. (2.15), we can easily find all of the refractive angle of the 

diffraction modes. 

The phenomenon of diffraction grating can be physically interpreted from the 

diffraction grating equations. In Eq. (2.14) or Eq. (2.15), the path difference between 

the adjacent slits are calculated from the left-hand side of the equation. When the 

path difference equals with the integer multiple of the wavelength, then the 

constructive interference occurs. Due to the periodicity which can be thought to be 

a infinite array of periodic structures, such constructive interferences strengthen and 

the diffraction modes appear strongly in the certain directions. 

The grating equations in Eq. (2.14) and Eq. (2.15) are identical with the path 

difference equation in the double slits. In Young’s double slit experiment, same 

explanation using the path difference of the diffracted waves takes place. However, 
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the performance of the dividing the wave separately differs. Since the diffraction 

gratings consist of periodic structures, constructive interferences in the direction of 

diffraction modes strengthen. Therefore, the diffraction mode is well distinguished 

in the diffraction gratings. We can see that the wave amplitudes are highly increased 

at the diffraction modes. But, in the angle which is slightly different from the 

diffraction mode, the wave amplitude decreased abruptly.  

On the other hand, the double slits are less distinguished between the constructive 

and destructive interference position. We can see that the wave amplitudes are also 

highly increased at the certain positions because of the constructive interferences. 

However, wave amplitudes decreased gradually to the positions of the destructive 

interferences. In this reason, the spectrographs are widely using the diffraction 

gratings. 

In our dissertation, such the grating equation (Eq. (2.14) and Eq. (2.15)) are utilized 

to design the structures. With these grating equations, we can easily calculate the 

reflection or refraction angle of the periodic structures. In addition, we can calculate 

the wave vector from these grating equations. 
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Fig. 2.1 General case of reflection problem in a traction-free boundary. 
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Fig. 2.2 Two incident case of reflection problem in a traction-free boundary. (a) 
Longitudinal wave incidence, (b) Shear vertical wave incidence. 
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Fig. 2.3 The periodic slit structure operated as diffraction grating in 1D periodic 
geometry. The refration of the monochromatic wave in the normal incidence case is 
presented. 
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CHAPTER 3.  

Elastic Metagratings for Longitudinal Wave 

Steering 
 

The contents covered in this chapter were published through the journal paper [61]. 

 

 

 

3.1 Chapter overview 

Recently, extraordinary wave manipulation based on the concept of metamaterials 

has become a very popular topic in wave-related research fields. Among them, 

metasurfaces that are artificially engineered, subwavelength-scaled structural layers 

have been extensively investigated to realize anomalous wave steering due to their 

spatial compactness and theoretical clarity [8-11,63,64]. It is interesting that the 

introduction of a phase shift along an interface between dissimilar media has been 

the key strategy in most of the existing studies on metasurfaces to realize various 

phenomena, such as reflection [65-67], refraction [26-29,68-75], retroreflection [76-

79], beam focusing and self-accelerating [80-84], helical wave-front generators [85], 

asymmetric transmission [86-88], holograms [89,90], and cloaking [91-94]. 

Governed by the generalized law of wave reflection and refraction, i.e., the 

generalized Snell’s law [25], the phase gradient over a unit cell required for 
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reflecting or refracting an incident wave at a specific target angle can be determined. 

However, it has been observed that the phase gradient-type metasurfaces may suffer 

from poor efficiency, especially due to undesignated wave propagations in spurious 

directions [30]. Basically, this phenomenon is due to the existence of multiple modes 

composing the scattered waves. In other words, the phase gradient-type metasurfaces 

enable to specify one propagating mode in a target direction but they cannot control 

other propagating modes. 

Alternatively, the diffraction grating theory [31,32] has been employed to realize 

anomalous wave reflection/refraction in the fields of electromagnetic [30,33-36] and 

acoustic waves [37-57]. When the scatterers in the periodic gratings have specific 

properties, it is possible to cancel out some diffraction modes. Recently, the 

diffraction theory has been coupled with the concept of metamaterials. So-called 

metagratings consist of periodic gratings constructed with various kinds of scatterers, 

for example, printed circuit board scatterers [33,34,95], bianisotropic [30,44,46,96] 

and bipartite particles [97] for anomalous wavefront modulation. In metagratings, 

the main issue is how to find appropriate configurations of the scatterers effectively 

and systematically in the periodic gratings that acquire such a controllability for 

wave steering. 

Recently, a few studies on metagratings reported that the diffraction modes are 

manageable by solving a kind of inverse problems that are formulated to search for 

appropriate geometric parameters of the scatterers in acoustic [37,40,41] and elastic 

wave fields [58]. Such handlings of the diffraction modes require that the amplitudes 
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of every scattered mode from the periodic gratings are specified. Once the 

amplitudes of targeting scattered modes are set to take specific values, inverse 

problems are solved to find the corresponding geometric parameters. It is noteworthy 

to mention that analytical approaches with simple configurations may be helpful to 

model scatterers suitable for metagratings because analytical descriptions would 

provide more stable and efficient calculation of the amplitudes for a large number of 

scattered modes. For example, quarter-wavelength resonators frequently used for 

sound absorption at a narrow band frequency were employed to model scatterers of 

acoustic metagratings for anomalous steering [37]. To eliminate undesignated 

diffraction modes in [37], inverse problems were solved to find appropriate 

geometrical parameters of the resonators, such as the length of individual resonators 

as well as the distance between neighboring ones. Quarter-wavelength resonators 

were also applied for acoustic wave cloak [40] and beam splitter [41] applications. 

In an elastic medium, point scatterers modelled by mass-spring resonators were used 

to control flexural waves [58]. However, no elastic metagratings realizing anomalous 

reflections of longitudinal elastic waves with the undesignated diffraction modes 

eliminated have been proposed. 

In this chapter, the main problem of simultaneous wave steering and mode 

conversion is simplified into controlling only the longitudinal wave without 

considering the shear wave. We propose novel elastic metagratings composed of 

slender and straight beam-type members for anomalous reflections of longitudinal 

elastic waves. As far as the authors are aware, this work is the first contribution to 
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manipulate elastic longitudinal waves with metagratings. As shown in Fig. 3.1, the 

present elastic metagratings are constructed with a repeated attachment of unit cells, 

each of which consists of discrete, single or multiple beam-type members on a 

traction-free boundary of a thin elastic plate. The geometric parameters of the beam-

type members as in Fig. 3.2 will be searched to realize the desired anomalous 

reflections and beam splittings for normally incident longitudinal waves on the 

metagratings. Here, the beam-type members are named as they have longitudinal and 

flexural motions as described in Fig. 3.3(a). This implies that the simply configured 

beam-type members can effectively control the longitudinal and shear waves along 

the members as well as in the elastic continuum plate, efficiently managing the 

diffraction modes. Note that the out-of-plane motions of the elastic continuum plate 

and the beam-type members are not considered in the present work. 

To couple the wave field in the beam-type members with that in the elastic continuum 

plate, we establish analytical coupling conditions between them. The longitudinal 

and shear wave fields in the elastic plate are fully derived using the diffraction 

grating theory. On the other hand, the wave fields inside the beam-type scatterers are 

predicted by a combination of the bar theory and the Euler-Bernoulli beam theory. 

Then, the wave fields in the elastic plate and beam-type scatterers are coupled along 

their interfaces to satisfy the displacement continuities and force equilibrium. For 

grating scattered modes as designated, their wave potential amplitudes should be 

specified. The geometric parameters of the beam-type scatterers are found by solving 

inverse problems in which the wave potential amplitudes of the undesired scattered 
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modes are to be minimized. A gradient-based optimization algorithm is used for 

solving the inverse problem efficiently. As specific applications, the proposed 

metagratings are used to realize anomalous reflections and beam splitting for 

incident longitudinal waves. The physical significance of the designed metagratings 

is interpreted and some experiments were also performed to verify the designed 

metagratings. 

The present elastic metagratings are expected to be applied for non-destructive 

structural health monitoring and medical imaging. As in recent works related to the 

elastic metamaterials [17,19,98], the present elastic metagratings can be used for 

elaborate elastic wave manipulation, such as the realization of reflection-wave 

controlled or nonreflective free boundaries of elastic plates. 
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3.2 Analytical modeling of the elastic wave motion 

Fig. 3.1 briefly shows a schematic configuration of the present elastic metagratings 

with the illustration of in-plane incident and scattered longitudinal waves in an 

elastic plate. The unit cell of the elastic metagratings is defined in 2  of Fig. 3.2 

and composed of discrete beam-type members, which can carry longitudinal and 

flexural motions in the x-y plane. Incident longitudinal waves impinge on the plate 

in normal or oblique directions and scattered waves from the metagratings are 

composed of several modes as illustrated in Fig. 3.1. These scattered waves are 

composed of the main regularly reflected zeroth-order mode and irregularly reflected 

higher-order modes. According to the diffraction theory, the directions of the 

scattered longitudinal waves are determined when the length of the unit cell and the 

angle of the incident longitudinal wave is given. In this section, wave motions in an 

elastic plate and a discrete beam-type member are described using the diffraction 

theory and the bar-beam theory, respectively. 

 

3.2.1 Wave motion in an elastic plate 

In order to describe wave motion in a thin elastic continuum plate occupying 1  in 

Fig. 3.2, we first introduce the grating equation of elastic waves using the diffraction 

theory [31,32,99]. Since there are two types of waves in the elastic medium, two 

grating equations, each of which belongs to longitudinal and shear waves, 

respectively, are considered as: 
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where symbols k   and    denote the wave number and the angle of wave 

propagation. Subscripts p and s  indicate the quantities of the longitudinal and 

shear waves, respectively. The number of the scattered modes is denoted by n. 

Therefore, 0n  represents the zeroth mode. Additional subscripts y (or x ) on 

k   indicate the y  (or x   )directional component of the wave number, and 

additional subscripts inc  and re f  are used to indicate the angle of incident and 

reflected waves, respectively. The periodicity of unit cell is denoted by a , as 

illustrated in Fig. 3.2. 

Grating equations in an elastic continuum medium can be simplified using the 

generalized Snell’s law of the regularly reflected waves [4]: 

 0 0
. . . .sin sin sin sin     p p inc p p ref s s inc s s refk k k k  ,       (3.2) 

  n n n
py sy yk k k  .                     (3.3) 

For a later use, the x   components of the wave number k   for the nth-order 

longitudinal and shear waves are given by the dispersion relation, respectively, as: 

   2 22n n
px p pyk k k  ,     2 22n n

sx s syk k k   ,        (3.4a,b) 
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According to the classical theory on elastic waves [4], the wave equation of 

longitudinal and shear waves can be written in terms of the corresponding potential 

fields   and   , respectively, in the elastic domain 1   under plane-stress 

condition: 
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 ,           (3.5a,b) 

where symbols pc   and sc   denote the propagation velocities of the longitudinal 

and shear waves, respectively, and T  is time. 

In writing solutions to Eqs. (3.5a) and (3.5b), Eqs. (3.3) and (3.4) are used: 
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where Total
 and  Total

 represent the spatial variations of the   and  under 

the time-harmonic motion ( j Te  with the angular frequency   and 1j   ). 

In Eqs. (3.6a,b), coefficients nP  and nS   denote the amplitudes of the nth-order 

potentials of the longitudinal and shear waves, respectively, and N  indicates the 

limit number of the used modes. The unit amplitude of the potential corresponding 
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to the incident longitudinal wave is denoted by the Kronecker delta 0n . Although 

the scattered modes have to be infinitely summed in Eq. (3.6a) and Eq. (3.6b), a total 

of 141 modes (N = 70) are used in this work as the selected N  value appears to be 

sufficient to express the solution field in the present consideration. Among N  

modes, only a few modes represent propagating waves along the x  axis and the 

remaining modes represent non-propagating waves. 

Two-dimensional displacement ( ,x yu u ) and stress components ( ij , , 1, 2i j  ) of 

the elastic continuum plate in the domain 1  shown in Fig. 3.2 can be written in 

terms of the scalar wave potentials as [4]: 

 (1)   
 
 xu

x y
, (1)   

 
 yu

y x
 ,           (3.7a,b) 

 (1) (1) (1)2ij ij ije      ,                 (3.8) 

where superscript (1)   denotes the quantities defined in 1   and e   and ij  

stand for the dilatation (u ) and the strain components. Symbols  and  are 

the Lame constant and shear modulus in the elastic plate, respectively. As time-

harmonic waves are assumed throughout this study, the explicit dependence of xu , 

yu  and  ij  on j Te  will be omitted in the subsequent discussion. 

By substituting Eqs. (3.6a) and (3.6b) into Eqs. (3.7a), (3.7b) and (3.8), the explicit 
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expressions of the displacement and stress fields are obtained as: 
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The results given in Eqs. (3.9) and (3.10) will be used to establish the interface 

coupling of the wave fields with 2 . 

 

3.2.2 Modeling of the beam-type member 

As shown in Fig. 3.2, the present elastic metagratings are constructed with a periodic 

attachment of unit cells, each of which consists of slender and straight beam-type 

members in domain 2  . We will analyze wave phenomena of the beam-type 

members using the bar theory for their longitudinal motions and the Euler-Bernoulli 

beam theory for their flexural motions [100,101]. Using these theories, we can 

describe the displacement and slope fields of the i th beam-type member located by 
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ib  in the domain 2  as follows: 

  (2) ;     jkx kx jkx kx
y i i i i iu x b A e B e C e D e ,          (3.11a) 

  (2) ; jkx kx jkx kx
i i i i ix b jkAe kB e jkC e kD e       ,      (3.11b) 

       (2) (2) (2)
. ., ;       b bjk x jk x

x i x bar x beam i i iu x y b u u Fe G e y b x , (3.11c) 

where (2)
yu  and ( 2 )  denote the y-directional displacement and the slope of the 

neutral axis of the beam-type member, respectively. The wave number k  in Eqs. 

(3.11a,b) is related to  1/4
/ k S EI   for the Euler-Bernoulli beam theory 

where  , S , and EI   denote the density, cross-sectional area, and bending 

rigidity of the beam-type member. On the other hand, (2)
xu   is the x-directional 

displacement of the beam-type member, which is composed of the longitudinal 

displacements contributed by the bar theory and the Euler-Bernoulli beam theory 

together. 

In Eq. (3.11c), symbol bk  stands for the wave number in the bar ( /bk E  , 

with Young’s modulus E ). In Eqs. (3.11a-c), the amplitudes of propagating or 

evanescent flexural waves and propagating longitudinal waves are denoted as the 

coefficients iA  to iG . Note that the coordinates x  and y  in Eqs. (3.11a-c) are 

measured from the corner of the unit cell as shown in Figs. 3.1, 3.2, and 3.3. 

By imposing the traction-free condition at the free end of the beam-type member 
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(i.e., at  ix L ), one can derive the relations among iA  ~ iG : 

 2 b ijk L
i iG Fe  ,                      (3.12) 

    12 1      ii j kLjkL
i i iC jAe j Be  ,           (3.13a) 

    1 21     i ij kL kL
i i iD j Ae jBe  .           (3.13b) 

Substituting Eqs. (3.12) and (3.13a-b) into Eqs. (3.11a-c) yields: 

 
   

   

2 (1 )(2)

1 2

; 1

1 ,

  

  

     
     

i i

i i

jkx jkL kx j kLjkx
y i i

jkx j kL kx kLkx
i

u x b A e je j e

B e j e je
    (3.14a) 

 
     

   

12(2)

1 2

; 1

1 ,

  

  

      
      

ii

i i

kx j kLjkx jkLjkx
i i

jkx j kL kx kLkx
i

x b A jke ke j ke

B ke j ke jke
 (3.14b) 

 
      

      

( 2 )

12

1 2 2

, ;

1

1 .

ii

i i b b b i

x i

kx j kLjkx jkLjkx
i i

jkx j kL kx kL jk x jk x jk Lkx
i i

u x y b

y b A jke ke j ke

B ke j ke jke F e e

 

    

      
      

  (3.14c) 

Using Eqs. (3.14a-c), the stress components in the beam-type member can be found 

as: 

 

      
      

(2)

(2) (2)
. .

122 2 2

1 2 22 2 2

, ;

1

1 ,

ii

i i b b b i

xx i

xx beam xx bar

kx j kLjkx jkLjkx
i i

jkx j kL kx kL jk x jk x jk Lkx
i b i

x y b

E y b A k e jk e j k e

B k e j k e jk e jEk F e e



 
 

    

 

      
     

  (3.15a) 
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   (3.15b) 

where t   and w   are the beam thickness and the beam width, respectively. The 

quantities  ; iV x b  and  ; iQ y b  denote the shear force and the first moment 

of the cross section S  of the ith beam-type member, respectively. 

 

3.2.3 Interface coupling conditions 

To establish the interface coupling conditions between 1  and 2 , we consider 

a simple case in which 2  involves only one beam-type member, as shown in Fig. 

3.3(b). As the first interface condition, we must consider continuity in the 

displacement field at 0x  . Because the displacements in 2   are fully 

characterized by the one-dimensional bar and beam theories, the displacements in 

1  are matched to the displacements in 2  at the interface in an averaged sense 

as: 

  (1) (2)
0

1
0, ;    x x x i i

S

u dS u x y b b
S

,          (3.16a) 
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  (1) (2)
0

1
0;   y x y i

S

u dS u x b
S

.             (3.16b) 

Likewise, the stress continuities at the interface shown in Fig. 3.3(b) are replaced by 

force and moment equilibrium conditions. Since the stresses in 2   are only 

defined in the range of 2 2i ib w y b w    , it is required to express those 

stresses in a wider range 0 y a   as: 

for 2 2i ib w y b w    : 

 
      

      

(2)

122 2 2

1 2 22 2 2

, ;

1

1 ,

ii

i i b b b i

xx i

kx j kLjkx jkLjkx
i i

jkx j kL kx kL jk x jk x jk Lkx
i b i

x y b

E y b A k e jk e j k e

B k e j k e jk e jEk F e e


 

    

      
     

  (3.17a) 
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 (3.17b) 

for 0 2iy b w    or 2ib w y a   : 

  (2) 0, ; 0  xx ix y b ,                  (3.17c) 

  (2) 0, ; 0  xy ix y b .                  (3.17d) 

Imposing the stress continuity along the interface between 1  and 2 , we can 

get the force equilibrium equations as: 
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 (1) (2)
00

( ) 0   
a

xx xx x dy ,                (3.18a) 

 (1) (2)
00

( ) 0   
a

xy xy x dy .                (3.18b) 

In addition, the moment equilibrium in the range of 2 2i ib w y b w     can 

be obtained as: 

   (1) (2)
0 0; 0xx x i b iS

y b dS M x b      ,         (3.19) 

where (2) ( 0;  )b iM x b  is the bending moment of the beam-type member at the 

interface. 

Using the results in sections 3.2.1 and 3.2.2, Eqs. (3.16a,b) and (3.19) can be 

expressed as follows, respectively: 

     22
0

2

1
1

ni y b i

i

wN b jk y jk Ln n
wpx n n y n i

b
n N

jk P jk S e dy F e
S


  



  
      

   
  , (3.20a) 
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 (3.20c) 

If the total number of the beam-type members in each unit cell is set to be BN , then 
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the total number of equations in Eqs. (3.20a-c) becomes 3 BN . 

Eqs. (3.18a) and (3.18b) can be individually separated into  2 1N   equations 

using the property of orthogonality. 
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(3.21b) 

From Eqs. (3.20) and (3.21), one can form a full matrix equation of linear system 

consisting of   4 3 2 BN N   equations with respect to the same number of 

variables ( , , , ,n n i i iP S A B F ). Once we obtain scattered wave amplitudes ( ,n nP S ), 

we can analyze the whole longitudinal wave scattered field created by the 

metagrating. 

  



38 

3.3 Design of beam-type elastic metagratings 

In order to reflect the incident longitudinal wave at a specific angle, the lattice 

constant or periodicity of metagratings has to be determined using the generalized 

Snell’s law of reflection. Among multiple scattered modes, the first-order mode is 

required to propagate at a designated angle while the other unwanted modes are to 

be suppressed by using an elastic metagrating. The grating equations for the 1st-

order scattered mode for the longitudinal wave are obtained from Eq. (3.1a) by 

substituting 1n    and 1n   , respectively: 

for 1n   :        1 1
. .

2
sin sin

    p p ref py p p inck k k
a

, (3.22a) 

for 1n   :        1 1
. .

2
sin sin

    p p ref py p p inck k k
a

. (3.22b) 

From Eqs. (3.22a) and (3.22b), the unit cell length a   to steer the incident 

longitudinal wave is calculated for each value of 1n   , respectively, as: 

  1
. .

2

sin sin


 


p p ref p inc

a
k

,                (3.23a) 

  1
. .

2

sin sin


  


p p inc p ref

a
k

.                (3.23b) 

The unit cell length for a normally incident longitudinal wave ( . 0 p inc  ) is 

determined from Eq. (3.23a), while Eq. (3.23b) is used for an obliquely incident 

longitudinal wave. 
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To realize anomalous steering of longitudinal waves, we begin with a metagrating 

consisting of only one or two beam-type members. After investigating how effective 

the metagrating is for anomalous wave steering, we will consider a metagrating 

consisting of up to six beam-type members. Numerical simulations will show that 

the problems considered in this work can be fully handled using a metagrating 

consisting of six beam-type members. 

A 1 mm-thick aluminum alloy (A6061) plate is used to make the elastic continuum 

plate and the beam-type members. The target frequency is set to be 60 kHz for all 

metagratings in this work. The corresponding longitudinal wave number and 

wavelength are 169.89 mpk    and 0.0899 m p  , respectively. The length 

( iL ) of the ith beam-type member ( 1, ... , Bi N ) is treated as a design variable of 

the present elastic metagratings. In the case when multiple beam-type members are 

used, the distance between two adjacent members can be also considered as a design 

variable. The appropriate lengths of the beam-type members are determined by 

inverse problems solved by a gradient-based optimization algorithm [102]. The 

phenomena of anomalous wave reflection using the designed metagratings were 

investigated using a finite-sized model and an infinitely periodic model using 

COMSOL Multiphysics®. 

It should be noted that the displacements at the interfacial edges between the domains 

1  and 2  tend to be much larger compared to those in other regions when the 
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beam-type members experience longitudinal vibrational resonances. To account for 

such local motions near the resonances, we introduce the effective width 'w  and 

length 'L  by adopting end-effect correction factors in the x- and y-direction of the 

beam-type members as follow [26]: 

    1 2' 1 , ' 1w w L L     .           (3.24a,b) 

The correction factors 1   and 2   should be adjusted empirically, because they 

would depend on problems in consideration. In this work, 1   and 2   are 

evaluated by comparing the values of the numerically calculated divergence field 

(u ) with the analytical ones. The actual values and more explanations can be 

found in following examples. 
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3.4 Design examples 

As the first example, we consider a metagrating having only one beam-type member 

in order to realize retroreflection of an oblique incidence of the longitudinal wave. 

As illustrated in Fig. 3.4(a), the longitudinal wave impinges on the free boundary of 

the plate ( 0x ) at an angle of . 60p inc  
 and it is supposed to be reflected by a 

metagrating at a target angle of . 60p ref  
. The width of the beam-type member 

is set to be 3 mmw   and the length of the unit cell is determined to be 

0.0519 ma   by Eq. (3.23b). According to Eq. (3.22b), only two scattered modes 

( 0n   , 1n  ) exist in this case. In Eqs. (3.24a,b), the correction factors of 

1 0.285    and 2 0.15    were selected using polynomial interpolations for the 

effective width ( 'w ) and length ( 'L ) of the single beam-type scatterer. 

The length of the beam-type member, suitable for realizing the retroreflection can be 

determined by comparing the amplitudes of two scattered modes with respect to the 

length variation. As shown in Fig. 3.4(b), when the length is 0.013 mL   , the 

targeting 1n  scattered mode has a peak amplitude while the amplitude of the 

0n   mode is very small. When the 0.013 m-long beam-type member composes 

the elastic metagrating, it is clearly seen in Figs. 3.4(c,d) that the longitudinal wave 

returns back along the incident direction (i.e., retroreflection) at the angle of 

. 60p ref  
 . Note that Fig. 3.4(c) shows the contour plots of the incident and 

reflected longitudinal waves when the elastic plate part containing a unit cell is 
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assumed to be infinitely arrayed with periodic boundary conditions along the y 

direction. On the other hand, Fig. 3.4(d) shows the field of u  when the multiple 

unit cells are finitely arranged along the plate. The results shown in both of Fig. 3.4(c) 

and Fig. 3.4(d) represent the same conclusion that the retroreflection successfully 

occurs by the present metagrating that is composed of only one beam-type member. 

Secondly, we consider an elastic metagrating composed of two beam-type members 

for anomalous reflection. As illustrated in Fig. 3.5(a), the longitudinal wave 

impinges normally ( . 0p inc  
) on the elastic plate while the target reflection angle 

is set to be . 60p ref  
. In this case, the lengths of the beam-type members and the 

gap between them are selected as design variables to configure the elastic 

metagrating. The width of two beam-type members is set to be 1 mmw  and the 

end-effect correction factors 1 20.12, 0      are used in Eqs. (3.24a,b). 

According to Eqs. (3.22a) and (3.23a), the length of a unit cell is determined to be 

0.1038 ma , and three scattered modes ( 0,  1n   ) exist. 

Since the targeting reflection angle corresponds to the 1n    scattered mode, the 

appropriate lengths ( 1 2,L L ) of the two beam-type members and their gap ( 2 1b b ) 

should be searched to maximize the amplitude of the 1n    scattered mode (i.e., 

1P ). Fig. 3.5(b) shows a graphical method used in the searching process. Once many 

contour plots like Fig. 3.5(b) are obtained with respect to each allowable value of the 

gap between two beam-type members, then one can select a contour plot that 
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contains the maximum value of 1P . In this case, Fig. 3.5(b) is plotted when the 

gap is 2 1 0.04 mb b  , and the appropriate lengths of the beam-type members can 

be found to be 1 0.062 mL    and 2 0.02 mL   , respectively, to maximize the 

amplitude of the 1n     scattered mode. Figs. 3.5(c) and 3.5(d) show that the 

normally incident longitudinal wave is reflected at the angle of 60 
 by the present 

elastic metagrating composed of two beam-type scatterers having different lengths. 

These examples show that elastic metagratings for anomalous reflections of 

longitudinal waves can be possibly built by one or two beam-type members. 

However, such a small number of beam-type members may not be sufficient to 

realize more general wave steering cases. Accordingly, we generalize the present 

elastic metagrating model including up to six beam- type members so as to have 

sufficient degrees of freedom in realizing wave steering. The number of the beam-

type members is determined through various tests in the present metagrating design 

processes. 

 

As a more general metagrating model, six beam-type members are aligned in the unit 

cell and their lengths are set to be design variables varying in the range of 0 ≤ Li ≤ 

0.07 m ( 1, 2, ,6i    ) as illustrated in Figs. 3.6(a) and 3.6(d). The elastic 

metagrating, Case 1 shown in Fig. 3.6(a) is to be designed to reflect a normally 

incident longitudinal wave at the angle of . 45p ref   , while the metagrating, Case 
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2 in Fig. 3.6(d) is to return the obliquely incident longitudinal wave ( . 30p inc   ) 

to the same direction ( . 30p ref     ). According to Eqs. (3.22a,b), three modes 

( 0, 1 n ) can be scattered in Case 1, while two scattered modes ( 0, 1 n ) can 

propagate in Case 2. The length of the unit cell for each case is determined to be 

1 0.1271 mCasea   from Eq. (3.23a) for Case 1 and 2 0.0899 mCasea   from Eq. 

(3.23b) for Case 2, respectively. The relative positions of the beam-type members 

from the origin of the unit cell are fixed in these cases as 1 6b a b  /12a

( 0.0105 m)   and 1 / 6i ib b a  ( 0.021m) ( 2, , 6)i    (see Fig. 3.2), such 

that the beam-type members are distributed equally along the entire metagratings. 

The width of the beam-type members is fixed to be uniform with 1 mmw  , 

however the end-effect correction factors in Eqs. (3.24a,b) are set to be 1 0.06  , 

2 0    for Case 1, and 1 0.05   , 2 0.1024,  0.1400, 0.0251,  

0.0579,  0.0216,  0.0030  for Case 2, respectively. 

Since Cases 1 and 2 deal with multiple design variables, an employment of 

optimization algorithms may facilitate to find their optimal values. Using the method 

of moving asymptote [102], a gradient-based algorithm, we solve inverse problems 

formulated as minimization problems with six design variables 

1 2 3 4 5 6{ , , , , , }L L L L L L  . The objective function for the minimization problem is 

1 1 0 1min min
i i

CaseL L
f P P P         for Case 1 and 2min

i
Case

L
f   
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0 1min
iL

P P     for Case 2. In other words, the amplitudes of targeting scattered 

modes ( 1P  for Case 1 and 1P  for Case 2) are maximized, while those of the other 

modes are suppressed as illustrated in Figs. 3.6(a) and 3.6(d). 

As shown in Figs. 3.6(b,c) and Figs. 3.6(e,f), respectively, the designed elastic 

metagratings for Cases 1 and 2 realize anomalous reflections successfully. In Case 1, 

the normally incident longitudinal wave is reflected from the designed metagrating 

at the target reflection angle . 45p ref     in Figs. 3.6(b,c). And the metagrating 

designed for Case 2 returns the obliquely incident longitudinal wave in the same 

direction ( . 30p ref    ) in Figs. 3.6(e,f). In Case 1, the lengths of the beam-type 

members are found to be  1 2 3 4 5 6 1
, , , , ,

Case
L L L L L L 0.02007, 0.02105,

0.05967,  0.06132,  0.06180,  0.06206  m . The ratios of the power flows among 

the three scattered modes are calculated as 1 0 1: : 0.6357:0:0I I I   . This means 

that more than 60 % of incident power of the longitudinal wave is reflected along the 

target direction. The remaining power of the incident longitudinal wave is transferred 

into a shear wave, which is not the field of main interest in this study. For Case 2, 

the lengths of the beam-type members are found to be  1 2 3 4 5 6 2
, , , , ,

Case
L L L L L L

0.01666,  0.016,  0.02231, 0.0238,  0.0193, 0.02009 m. The power flow 

ratio between the 1n     and 0n    modes is 1 0: 0.4552:0.0180I I   . This 

result indicates that although approximately 2 % of the incident longitudinal wave 
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power is scattered into an unwanted mode ( 0n   ), the power of the desired 

retroreflected longitudinal wave ( 1n   ) is 25 times larger than that of the mode. 

 

As next examples, elastic metagratings are designed to split a normally incident 

longitudinal wave into two reflected longitudinal waves. The first elastic metagrating 

is to split the incident longitudinal wave into two reflected waves at different angles, 

while the second one is to control the relative amplitudes in the splitting directions. 

The generalized metagrating model composed of six beam-type members is used to 

design both beam splitters. 

In the design of metagratings for the beam splitter, it is noted that one can determine 

only one reflection angle while the other reflection angle is automatically decided 

among the scattered modes by the corresponding length of the unit cell. This means 

that it is useful to select one reflection angle, which provides a more number of 

scattered modes. When the target reflection angle . 1 25p ref     is selected, five 

scattered modes ( 0, 1, 2  n ) are expected by Eq. (3.22a) as illustrated in Fig. 

3.7(a). The corresponding unit cell has a length of 0.2127 ma  according to Eq. 

(3.23a). In Fig. 3.7(a), the beam-type members are positioned equally from each 

other within the unit cell, such that the gaps between neighboring beam-type 

members are set to be 1 1 6( / 7 0.03m)i ib b b a b a      ( 2, ,6)i    in the 

unit cell (see Fig. 3.2). Such equally separated members within the unit cell (not in 

the metagrating) are for a better convergence during solving the minimization 
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problem involving five scattered modes. Note that a search for an optimized gap 

between scatterers is an important issue as discussed in the acoustic metagratings 

work [37]. The width of the beam-type members is set to be 1 mmw  and the 

end-effect correction factors in Eqs. (3.24a,b) are selected to be 1 0.04    and 

2 0.   

As illustrated in Fig. 3.7(a), we intend to split the normally incident longitudinal 

wave into the angles of . 1 25p ref     and . 2 57.7p ref   , corresponding to the 

1n    and 2n   scattered modes, respectively. The appropriate lengths of the 

six beam-type members are searched by minimizing an objective function 

2 1 0 1 2min min
i iL L

f P P P P P             using the optimization algorithm. 

As a result, the lengths of six beam-type members are found as 

 1 2 3 4 5 6, , , , ,L L L L L L   0.06128,  0.06163,  0.01988, 0.06064,  0.06145,

 m0.02 55  1 . As clearly seen in Fig. 3.7(c), the elastic metagrating built by those 

lengths split the normally incident wave into two longitudinal waves along the 

designated directions. The complicated scattered field shown in Fig. 3.7(b) is due to 

the overlap of the two differently scattered waves. When the power flows are 

calculated in terms of the scattered modes, the ratio of power flow reaches 

2 1 0 1 2: : : :I I I I I    0:0.2368:0:0:0.2578  . Except for the power transformed 

into the reflected shear waves, the reflected longitudinal waves are directed as 

designated. 
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As the last example, an equiangular beam splitter is to be realized by the present 

generalized metagrating model. For the normally incident longitudinal wave, the 

target reflection angles are set to be . 1 60   
p ref  and . 2 60p ref   . In addition, 

the ratio of the amplitudes of the target scattered modes is prescribed to be 

1 1: 1: 0.85P P    in this beam splitter. The length of the unit cell is determined 

to be 0.1038 ma  and three scattered modes are in consideration as illustrated in 

Fig. 3.8(a). Except for the end-effect correction factors 1 0.12   and 2 0  , the 

remaining geometric conditions are identical with the previous anomalous reflection 

examples shown in Fig. 3.6. 

By minimizing the objective function 
22

0 1 1min min / 0.85
i iL L

f P P P 
   
   , 

the lengths of the beam-type members for the metagrating realizing the equiangular 

beam splitter are found to be  1 2 3 4 5 6, , , , ,L L L L L L  0.01970,  0.06509,

0.06109,  0.04680, 0.03658,  0.02075 m as shown in Fig. 3.8(a). The power 

flows into the three scattered directions are 1 0 1: :I I I  0.2862: 0.0278:0.1992 . 

Then, as shown in Fig. 3.8(c), the most of the reflected longitudinal wave are 

separated into the target angles of . 1 60   
p ref   and . 2 60p ref    , 

corresponding to 1n    and 1n   , respectively. By integrating the values of 

u   along the wavefront, at locations 10 wavelengths from the center of the 

domain, the amplitude ratio of the two anomalously reflected longitudinal waves 
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reaches 1 1Amp :Amp 1:0.8781    . Thereby, the relative ratio between the 

amplitudes realized by the present elastic metagrating agrees quite well with the 

prescribed values (1:0.85) within around 3 % difference. Note that it would be very 

difficult for gradient-type metamaterials to realize the functionality of the present 

beam splitter that is capable to achieve relative amplitude control. 
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3.5 Analysis of the phenomenon 

Examining the configurations of the elastic metagratings shown in Figs. 3.4-3.8 

alone, it is difficult to predict how the target wave steering can be realized by a single 

or a set of simply configured beam-type members. In this section, the significance 

of searched lengths of the beam-type members is physically investigated and some 

of the resulting metagratings are experimentally verified. 

 

3.5.1 Experimental verification 

As experimental verification of the present elastic metagratings for anomalous 

longitudinal wave steering, two metagratings designed for an anomalous reflection 

at the angle of 45 
(in Figs. 3.6(a-c)) and beam splitting with the angles of 25 

, 

57.7   (in Figs. 3.7(a-c)) are actually manufactured. Fig. 3.9(a) shows the 

experimental setup in which the metagrating array is fabricated in the 1mm-thick 

aluminum alloy plate for the anomalous reflection at an angle of 45 
. The array 

(1030mm 75mm 1mm  ) consists of five unit cells whose geometrical dimensions 

are the same with those in Section 3.4 and is protected by an outer frame in a width 

of 25mm (Note that the metagrating array for the beam splitter consists of four unit 

cells.). Since we consider in-plane longitudinal waves only, the lowest symmetric 

Lamb wave ( 0S  ) is excited in the aluminum alloy plate, which makes good 

correspondence to the longitudinal wave in bulk media [103]. 
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As shown in Fig. 3.9(a), the magnetostrictive patch transducer (MPT) was used to 

actuate in-plane longitudinal waves in the plate at 60 kHz [104]. A nickel patch with 

the dimensions of 400 mm 41mm 0.1mm   was used as the magnetostrictive 

element in the MPT. The MPT was installed 300mm  away from the metagrating 

array. The line source signal (30 cycles of a sinusoidal wave) was generated in a 

function generator (Agilent 33220A) and amplified through a power amplifier (AG 

1017L). The scattered in-plane longitudinal waves were measured using an 

electromagnetic acoustic transducer (EMAT) along the circle of a radius 500 mm. In 

order to obtain the radiation pattern, 23 measurement points 

( 80 ~80 (10 interval),    45 ,  37.5 , 42.5 , 45 , 47.5 , 52.5  ) were used for the 

anomalously reflecting experiment, while 19 points ( 80 ~80 (10 interval),   

25 , 57.7  
) were used for the beam splitting. Measured signals were amplified 

(SR 560) and stored in an oscilloscope (Waverunner 620Zi). For every measurement 

location, four measurements were averaged. Since the MPT is installed inside the 

measurement points, the effect of MPT to a reflection signal should be considered. 

However, when analyzing the experimental data on traction-free surface, the signal 

for normal incident and reflective wave doesn’t have much difference. Therefore, 

the effect of MPT on the reflective wave is thought be small. 

Figs. 3.9(b) and 3.9(c) compare the experimental results with the numerical 

predictions for the anomalous reflection (described in Fig. 3.6(a-c)) and the beam 

splitter (described in Fig. 3.7(a-c)), respectively. In both cases, the experimental 
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radiation patterns exhibit consistent results with the numerical predictions. Fig. 3.9(b) 

shows that the in-plane longitudinal wave is successfully steered at the target 

reflection angle of 45 
. Fig. 3.9(c) also shows successful splitting of the incident 

wave into two beams at the target reflection angles of 25 
  and 57.7   . Some 

differences between the experimental and numerical results appear to be caused in 

the fabrication procedure of the metagratings, for example, slight distortions due to 

extreme heat from laser precision cutting. The fabrication error by laser precision 

cutting is within the range of ±0.05 mm. However, when numerically simulated the 

metagrating structure with length/width difference of ±0.05 mm, high performance 

of longitudinal wave steering is still observed. Therefore, we can conclude that our 

experimental result is consistent with this fabrication error. 

 

3.5.2 Physical interpretation 

To physically interpret the length variations of the beam-type members in the 

designed metagratings, we consider the unit cell of the present metagratings as a 

super cell consisting of multiple subcells. In other words, we separate the designed 

unit cell into the six subcells, each of which is composed of a narrow elastic plate 

part and an attached beam-type member. Then, as shown in Figs. 3.10(a) and 3.10(b), 

we compare the reflected longitudinal wave fields (u ) in the subcells when the 

same longitudinal wave impinges on each of them. 
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The six subcells in Fig. 3.10(a) is divided from the metagrating unit cell shown in 

Fig. 3.6(a), which is for anomalous reflection of . 45p ref   for a normal incidence. 

As observable in Fig. 3.10(a) (and also in Fig. 3.6(a)), the lengths of the left two 

beam-type members are very close to each other (  1 2,L L 

 0.02007 m,0.02105 m ), while the other four members have the similar lengths 

together (  3 4 5 6, , ,L L L L  0.05967 ,  0.061 m 32 m, 0.06180 m,

0.06206 m ). When we assume that the two representative lengths are 0.02 m 

and 0.06 m  for simplicity, they correspond to the longitudinal vibrational 

resonances of the beam-type member at the exciting frequency (60 kHz), specifically, 

the quarter-wavelength and three-quarter-wavelength resonances, respectively. 

When the beam-type members have the similar lengths around the resonating 

dimensions, they produce a significant phase shift at the resonating frequency. This 

is the reason why the lengths of the six beam-type members are determined to be 

around the resonating dimensions in the present metagrating. The plot in Fig. 3.10(a) 

confirms that the accumulated phase shifts produced by the six subcells cover a 2  

span over the unit cell of the metagrating. 

Similarly, Fig. 3.10(b) shows the reflected longitudinal waves when the identical 

longitudinal wave is incident on each of subcells, which construct the unit cell of the 

metagrating shown in Fig. 3.7(a) for realizing the beam splitter. Note that the beam-

type members are positioned equally within the unit cell in this example. Accordingly, 
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the unit cell is divided into 7 subcells including one with free surface as shown in 

Fig. 3.10(b). Note that in Fig. 3.10(b) (also in Fig. 3.7(a)), the lengths of the beam-

type members are around either 0.02 m or 0.06 m, which are the representative 

dimensions for resonance at the exciting frequency. (Recall  1 2 3, , ,L L L

4 5 6, ,L L L  0.06128,0.06163,0.01988, 0.06064,0.06145,0.02155  m.) As 

indicated and replotted in Fig. 3.10(b), the selective phase shifts among the subcells 

successfully produce two kinds of 2  span over the unit cell of the beam-splitting 

metagrating. More precisely, the plot in Fig. 3.10(b) shows that the phase gradients 

of the 1n     and 2n     modes (corresponding to . 1 25p ref      and 

. 2 57.7 p ref   ) are   1n
x


   2 / a  and   2n

x


   2 / ( / 2)a , 

respectively. 

The physical interpretation of the relation between the length variations of the 

generalized beam-type metagrating members and the target wave steering, which 

was obtained from Fig. 3.10, is also applicable in case of the metagratings using 

small numbers of beam-type members in Figs. 3.4 and 3.5. More detailed 

explanations on the phase modulation in these elastic metagratings are provided. The 

metagrating unit cell consisting of single beam-type member in Fig. 3.4(a) is divided 

into two subcells, while that using two beam-type members in Fig. 3.5(a) is 

partitioned into three subcells in order to predict the phase profile by comparing the 

reflected longitudinal waves in each of the subcells. 
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To explain the phase modulation in the elastic metagratings using one or two beam-

type members (i.e., Fig. 3.4(a) and Fig. 3.5(a), respectively), the unit cell of the 

single-membered metagrating (Fig. 3.4) is divided into two subcells and that of the 

two-membered metagrating (Fig. 3.5) is partitioned into three subcells; see, Fig. 

3.11(a) and Fig. 3.11(b), respectively. The contour plots in Figs. 3.11(a,b) show the 

reflected longitudinal wave fields (u  ) in the subcells for normally incident, 

identical longitudinal waves. 

In Fig. 3.11(a), the two subcells exhibit both longitudinal and flexural motions, 

because a longitudinal wave impinges on them obliquely ( . 60  
p inc ). The beam-

type member in the subcell produces an abrupt phase change in the scattered field, 

because the length (0.013m) of the member is designed to be around the length 

generating the three-quarter-wavelength flexural resonance at the exciting frequency 

(60 kHz). The accumulated phase shift produced by the two subcells becomes 2  

over the unit cell of the metagrating as demonstrated in Fig. 3.11(a). Similarly, the 

three subcells in Fig. 3.11(b) include two beam-type members and one free surface. 

The lengths of the designed beam-type members are around 0.06 m and 0.02 m, 

respectively, which are the representative dimensions for longitudinal resonances at 

the exciting frequency as discussed in Fig. 3.10. As indicated and replotted in Fig. 

3.11(b), the accumulated phase shift by the three subcells covers a 2  span over 

the unit cell of the metagrating. 

These concept of phase modulation is widely used to design phase-gradient 
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metasurface. Since phase-gradient term in generalized Snell’s law and diffraction 

mode term of 1st mode in diffraction grating theory is identical, such phase 

modulation method can be used to explain the periodic structures such as 

metagratings. 
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3.6 Concluding remarks 

To resolve inefficiency in wave steering with widely used metasurfaces, we 

investigated and designed metagratings and successfully suppressed the undesired 

modes in scattered waves. Specifically, a novel elastic metagrating model was 

proposed in this work for efficient anomalous reflections of elastic longitudinal 

waves. The present elastic metagratings consisted of a periodic arrangement of a 

single or array of beam-type elastic members that were attached to the boundary of 

the elastic continuum medium. The slender and straight beam-type members were 

modeled to have both longitudinal and flexural motions to thoroughly manage elastic 

wave propagation. The interface coupling conditions were analytically established 

between the elastic plate and beam-type members. To suppress undesired higher 

modes in the scattered waves, a set of appropriate geometric parameters of the beam-

type members were determined by solving inverse problems formulated as 

minimization problems. Through several case studies, the proposed elastic beam-

type metagratings were found to be useful to realize anomalous reflections and 

asymmetric splittings of longitudinal elastic waves. Some of the designed elastic 

metagratings were actually manufactured and their steering performances were 

experimentally verified. It is expected that the proposed elastic metagratings can 

pave the way for practical applications, such as non-destructive structural health 

monitoring and medical imaging. 

Throughout the chapter, we solved the simplified version of the main problem. Even 

though the present study is limited to longitudinal waves, the analysis and design of 
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the present metagratings can be extended to manipulate both longitudinal and shear 

waves. In the following chapter, work on manipulating all of the diffraction modes 

of longitudinal and shear waves will be introduced. By these studies on elastic 

metagratings, we are managed to solve the problem of simultaneous mode 

conversion and wave steering. 
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Fig. 3.1 A schematic illustration of the elastic metagratings constructed with a 
periodic array of beam-type members. A unit cell composed of multiple beam-type 
members is attached to the elastic continuum plate where the longitudinal waves are 
scattered. 
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Fig. 3.2 The unit cell of the elastic grating with geometric parameters. 
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Fig. 3.3 (a) Illustrations of the longitudinal and flexural motions of a beam-type 

member. (b) The interface between elastic continuum plate Ω1 and a beam-type 

member in Ω2. 
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Fig. 3.4 The elastic metagrating using a single beam-type member for retroreflection 

at oblique incidence. (a) The problem definition ( 0 160 , 60     ), (b) the 

amplitudes of the normalized modes for the varying length of the beam-type member, 
(c) numerical simulations of the incident (left) and scattered (right) longitudinal 
fields, (d) a 2D simulation of the retroreflection from the elastic metagrating array. 
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Fig. 3.5 The elastic metagratings using two beam-type members for anomalous 

reflection at normal incidence. (a) The problem definition ( 1 60    ), (b) the 

amplitudes of the normalized mode amplitudes for the varying length of two beam-
type members at the gap distance of 0.04 m, (c) numerical simulations of the incident 
(left) and scattered (right) longitudinal fields, (d) the 2D simulation of the anomalous 

reflection at the angle of 60 
from the elastic metagrating array. 
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Fig. 3.6 The anomalous reflection at normal incidence using the designed beam-type 

metagrating ( 1 45    , [L1, ,L6] = [0.02007, 0.02105, 0.05967, 0.06132, 

0.06180, 0.06206] m). (b,c) The corresponding wave fields in the periodic unit cell 
and the 2D simulation results of anomalous reflection, respectively, for the problem 
defined in (a). (d) The retroreflection using the designed beam-type metagrating 

( 0 130 , 30     , [L1, ,L6] = [0.01666, 0.016, 0.02231, 0.0238, 0.0193, 

0.02009] m). (e,f) The corresponding wave fields in the periodic unit cell and the 2D 
simulation results of retroreflection, respectively, for the problem defined in (d). 
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Fig. 3.7 Beam splitting using the designed metagrating. (a) The problem definition 

and the designed lengths of the beam-type members ( 1 225 , 57.7       , 

[L1, ,L6] = [0.06128, 0.06163, 0.01988, 0.06064, 0.06145, 0.02155] m.), (b) the 
wave fields in the periodic unit cell, (c) the 2D numerical simulation of beam 
splitting at two different angles. 
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Fig. 3.8 Equiangular beam splitting using the design metagrating. (a) The problem 

definition and the resulted lengths of the beam-type members ( 1 60    , 

1 1Amp :Amp 1:0.85   ,  [L1, ,L6] = [0.01970, 0.06509, 0.06109, 0.04680, 

0.03658, 0.02075] m.), (b) the wave fields in the periodic unit cell, (c) the 2D 
numerical simulation of equiangular beam splitting. 
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Fig. 3.9 The experimental setup and result data for verification. (a) The experimental 
setup with an illustration of the designed elastic metagrating array manufactured in 
the aluminum alloy plate. (b) The variation of the normalized amplitudes of the 
reflected longitudinal wave for the anomalous reflection considered in Fig. 3.6(a). 
(c) The variation of the normalized amplitudes of the reflected longitudinal wave for 
the beam splitting considered in Fig. 3.7(a). 
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Fig. 3.10 The reflected longitudinal wave fields and the phase profiles over the 
subcells. (a) The phase profiles in subcells of the metagrating for the abnormal 
reflection considered in Fig. 3.6(a) and the plot of the phase shift in the scattered 
longitudinal waves. (b) The phase profiles in subcells of the metagrating for the beam 
splitting considered in Fig. 3.7(a) and the plot of the phase shift in the scattered 
longitudinal waves. 
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Fig. 3.11 The reflected longitudinal wave fields and the phase profiles over the 
subcells. The phase profiles in the subcells of the metagrating considered in (a) Fig. 

3.4(a) and (b) Fig. 3.5(a). The phase shifts in the scattered longitudinal waves 
are plotted. 
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CHAPTER 4.  

Elastic Metagratings for Anomalous Mode 

Converting Reflection 

 

The contents covered in this chapter were published through the journal paper [113]. 

 

 

 

4.1 Chapter overview 

Elastic waves have been applied to detect small invisible defects inside solid elastic 

media, such as for structural health monitoring [1] and ultrasonic nondestructive 

testing [2]. For the high performance in such applications, the resulted propagating 

diffraction modes and directions in the scattered wave field should be manipulated 

carefully. However, the efficient control of mode conversion and/or wave steering of 

elastic waves is hard to realize, owing to the properties of the polarization and 

dispersion of elastic wave motions. Such difficulty occurs even under the incidence 

of a single-mode elastic wave. In this case, various diffraction modes are scattered 

in different directions from boundaries or inhomogeneous interfaces [3,4]. Also, 

additional wave signals are disturbance in the sense of signal processing. 

Conventionally, taper-shaped wedges are used for mode conversion of elastic waves 

to manipulate the reflected waves. These taper-shaped wedges are designed using 
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the critical angle, and for the critical incidence, only one elastic mode propagate, 

while other elastic modes become evanescent [2,3]. However, these conventional 

taper-shaped wedges which employ critical angles depend on the working conditions. 

And this leads to poor efficiency of mode conversion and wave steering. Hence, 

efficient manipulation of both mode conversion and/or wave steering are still 

required in elastic wave applications. 

An artificially engineered structural materials, so-called metamaterials, have 

recently appeared and widely researched, because of their potential for tailoring 

extreme characteristics in wave propagation [5-12]. There have been various forms 

of metamaterials which have been proposed for mode conversion or filtering of 

elastic waves by using anisotropic properties [13-15], negative mass and stiffness 

[16-18], Fabry–Pérot resonance [19-21], and bimodal impedance matching [22,23]. 

Especially, in [19-21], using the Fabry–Pérot resonance, an incident longitudinal 

(shear) wave was entirely converted via an anisotropic metamaterial layer into a 

shear (longitudinal) wave. Such anisotropic metamaterial layer which can apply in 

the obliquely incidence of elastic waves has also been researched [24]. While these 

various metamaterials facilitated highly efficient mode conversion in the refraction 

and transmission of elastic waves, anomalous wave steering in the reflective wave 

field was not investigated. 

Metasurfaces, which are planar versions of metamaterials with small thickness 

compared to wavelength have been studied for realizing the anomalous steering of 

elastic waves. Almost all of metasurface researches, the generalized Snell's law [25] 
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has been employed to realize the anomalous steering of reflected and/or refracted 

waves by forming various types of phase gradients. For example, linear phase 

gradient along the boundary can steer the wavefront of reflected wave with 

anomalous angle. Among them, aligned gaps were set in an elastic plate to produce 

phase gradients for steering longitudinal or flexural waves [26,27]. An effective 

model of special form of mass-stiffness substructures was proposed to refract 

longitudinal waves in an elastic plate [28]. The disordered pillar resonators were 

installed on an elastic plate for anomalous deflection and focusing of flexural waves 

[29]. However, these metasurfaces are based on the design of phase gradients on the 

boundary. And these phase-gradient metasurfaces inevitably generate undesired 

multiple diffraction modes, because multi-dimensional non-local effects are not fully 

considered in wave scattering phenomena [30]. That is, the generalized Snell’s law 

has no mechanism for controlling the scattered modes from the boundaries and 

inhomogeneous interfaces of wave propagating media. From this result, the 

efficiency of wave manipulation using phase gradient-based metasurfaces is 

inherently low. In addition, the mode conversion functionality is fundamentally 

limited, because the mechanism of generalized Snell’s law only works for the wave 

steering. 

To manipulate every high-order diffraction modes of scattered waves, researchers 

have newly proposed and investigated the metagratings that are governed by the 

diffraction grating theory [31,32] for electromagnetic [30,33-36] and acoustic wave 

fields in fluids [37-57] and, very recently for elastic wave field in solids [58-62]. In 
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the metagrating for manipulating flexural waves, several group of point scatterers 

based on a mass-spring model were arranged to control wavefronts of flexural waves 

[58,59], and phased grating elements were added to a superstrate of the elastic plate 

to manipulate guided waves [60]. For anomalous steering of in-plane elastic waves, 

metagratings with beam-type members were proposed and realized anomalous 

reflection of longitudinal waves [61]. 

As discussed above, most of the previous metamaterial designs have primarily 

focused on the mode conversion or anomalous steering of scattered waves; the 

simultaneous manipulation of the reflected wave mode and the direction of the 

scattered elastic waves remains challenging. As illustrated in Fig. 4.1(a), a normally 

incident longitudinal (or shear) wave propagating towards the free end of a thin 

elastic plate is scattered as both the longitudinal and shear waves with multiple 

reflection angles. Multiply scattered diffraction modes should be carefully 

manipulated for mode conversion along the designated angle of reflection with 

undesired waves suppressed. 

The work in this chapter proposes a new strip-type elastic metagrating to realize the 

highly efficient mode conversion and wave steering of a desired mode in a scattered 

reflection field. The design of the metagratings is based on the diffraction grating 

theory. We formulate the design problem as an optimization problem and identify the 

optimal elastic metagrating configuration that fulfills our goal. We demonstrate that 

when the proposed metagratings are installed along the traction-free boundary of a 

thin elastic plate, a normally incident plane longitudinal (or shear) wave can be 
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precisely converted into a shear (or longitudinal) wave at a designated angle of 

reflection. As illustrated in Figs. 4.1(a,b), the designed metagratings consist of 

periodically repeated unit cells constructed with multiple rectangular strips. The 

elastic plate and rectangular strips in the metagratings are modeled as two-

dimensional continuum media. This model fully describes the coupled in-plane 

motions of longitudinal and shear waves. The amplitudes of multiply scattered 

diffraction modes from the boundary are numerically evaluated using the spatial fast 

Fourier transform of the wave field, as simulated using the finite element method. 

Design optimization is performed to determine the unit cell configurations of the 

metagratings, which can suppress undesired scattered diffraction modes and achieve 

a nearly total mode-conversion reflection. The optimal geometric dimensions of the 

strip-type unit cells are determined by solving optimization problems in which a 

gradient-based algorithm is used to update the design variables. The validity of the 

proposed metagratings is confirmed by numerical and experimental results. 
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4.2 Mathematical descriptions of the wave motion 

When a longitudinal or shear wave is normally incident upon a periodically 

structured boundary of an elastic plate, it is scattered via both longitudinal and shear 

modes in multiple directions. According to the diffraction grating theory, the number 

of scattered modes and their directions are determined by the wave mode, incident 

angle, and periodicity of the unit cell forming the boundary. The coupled motions 

and multiple diffractions of scattered elastic waves required to simultaneously 

accomplish precise and efficient mode conversion and wave steering are described 

in this section. 

 

4.2.1 Full wave motion in an elastic plate 

The following two individual wave equations can describe wave propagation in two-

dimensional thin elastic continuum media for longitudinal and shear waves, 

respectively, under the plane stress condition as [3,4]: 

2
2

2 2

1

pc t

 
 


,    

2
2

2 2

1

sc t

 
 


,            (4.1a,b) 

where   and   are scalar potential functions for describing the longitudinal and 

shear wave motions, respectively, and pc   and sc  are the corresponding phase 

velocities with time t . 

As analytical solutions for the wave equations in Eqs. (4.1a) and (4.1b), the total 
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potential functions total  and total  can be expressed by superposing the incident 

( inc , inc ) and scattered ( scat , scat ) wave potentials, each of which is written 

in terms of the diffraction modes: 

 0
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where the time-harmonic wave motion varies with j te    (  : angular frequency; 

1j   ). In Eq. (4.2), k  denotes the wavenumber of the propagating wave. The 

subscripts p   and s   denote longitudinal and shear waves, respectively, and the 

subscripts x   and y   denote the spatial directions of wave propagation. The 

superscripts n   and m   of the wave number k   denote indices of the scattered 

longitudinal and shear diffraction wave modes, respectively; N  and M  denote 

the total numbers of modes used in the analysis, respectively. The Kronecker deltas 

0n   and 0m   denote the unit amplitudes of the incident longitudinal and shear 

wave potentials, respectively, whose corresponding amplitudes of the nth- and mth-

order potentials for the scattered waves are denoted by nP  and mS , respectively. 

When a longitudinal (or shear) wave is incident upon a periodically structured 

boundary at an angle of inc , the longitudinal and shear waves are multiply scattered 

at reflection angles of ,
n
p ref  and ,

m
s ref . According to the diffraction grating theory 
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[31,32,99], the following two grating equations relate the scattered diffraction modes 

of longitudinal and shear waves to an incident wave mode, respectively: 

 ,

2
sin sinn n

py p p ref inc inc

n
k k k

a

    ,            (4.3a) 

 ,

2
sin sinm m

sy s s ref inc inc

m
k k k

a

    ,            (4.3b) 

where a   denotes the periodicity of unit cells along the boundary. The x  -

components of the wavenumbers of the scattered longitudinal and shear wave modes 

are given by the dispersion relation as 

2 2 2( ) ( )n n
px p pyk k k  ,     

2 2 2( ) ( )m m
sx s syk k k  .       (4.4a,b) 

Using Eqs. (4.3a) and (4.3b), the number of propagating diffraction modes from the 

boundary can be predicted from amongst the theoretically infinite scattered 

diffraction modes. The reflection angles of the propagating diffraction modes are 

ranged as , ,90 , 90n m
p ref s ref      , not to be evanescent in the elastic plate in 

consideration. Fig. 4.2 shows the theoretical number of propagating diffraction 

modes in the scattered field when a longitudinal or shear wave is incident at an angle 

of inc  upon a periodically structured boundary. The number of propagating modes 

increases for a larger periodicity, which is normalized by the respective wavelength 

of the incident wave type. This normalization is meaningful because the total number 

of modes in the present mode-converting anomalous reflection depends primarily 

upon the dimensions of the unit cell. As discussed in the next subsection, the 
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periodicity of the unit cell is determined by the target reflection angle when the 

incident angle is given for the prescribed excitation frequency. 

 

4.2.2 Selection of scattered modes 

To efficiently convert an incident longitudinal or shear wave into other type of 

waves with an anomalous reflection angle, the target scattered mode should be 

specified from among multiple ones. Although the number of scattered diffraction 

modes from a periodically structured boundary can theoretically be infinite, most of 

the higher modes in the scattered field are evanescent. Because the scattered angles 

in those higher modes exceed 9 0  , they do not contribute to the scattered reflection 

wave field in the considered elastic plate. Therefore, the scattered diffraction modes 

of , 0n m  , 1 , and 2  can be the primary concerns in the present investigation. 

Among them, the modes of , 1n m  are specified as the target diffraction modes 

for the present mode-converting and wave-steering elastic metagratings. 

For the present metagratings, the incident longitudinal wave should be efficiently 

converted into a shear wave, and vice versa. Because the diffraction modes of 

1n     are specified as the target scattered modes, the scattered shear wave for 

longitudinal wave incidence can be obtained from Eq. (4.3b) as: 

1 1
, ,

2 ( 1)
sin sins s ref sy p p inck k k

a

   
   .          (4.5a) 

Conversely, the scattered longitudinal wave for shear wave incidence is 
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characterized from Eq. (4.3a) with 1m    as: 

1 1
, ,

2 ( 1)
sin sinp p ref py s s inck k k

a

   
   .          (4.5b) 

Using either Eq. (4.5a) or Eq. (4.5b), the periodicity a  (i.e., length) of the unit 

cell for converting an incident elastic wave into other type of waves with the 

designated reflection angle can be determined. Because the case of 1n  

( 1m    ) is identical to that of 1n     ( 1m    ) owing to symmetry, the 

periodicity a  of the unit cell for converting the longitudinal-to-shear wave mode 

and opposite shear-to-longitudinal wave mode are respectively determined as 

1
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Note that Eqs. (4.6a) and (4.6b) are invalid when the scattered diffraction modes of 

0n    and 0m    are considered as the target mode. In these cases, a dummy 

mode can be employed to calculate an upper bound of the unit cell periodicity. The 

actual implementation of this technique is demonstrated by the design of Case 1 in 

Section 4.4. The periodicity obtained from Eqs. (4.6a) and (4.6b) is a basic 

requirement for the manipulation of the scattered diffraction modes from the unit cell 

according to the diffraction grating theory. To achieve a mode-converting elastic 

wave reflection, the unit cell configuration should be deliberately modeled and 

designed to represent the coupled motions of elastic waves. 
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4.2.3 Strip-type continuum members 

In earlier studies, pillared resonating beams [29], mass-spring models [58,59], 

and narrow superstrates [60] were used to construct unit cells for manipulating 

flexural elastic waves. For in-plane wave motions in the elastic plate, beam-type 

members based on both the beam and bar theories were modeled to construct a unit 

cell of metagratings for anomalous steering of longitudinal waves [61]. Compared 

with previous works, the unit cell in this work is modeled as an elastic continuum 

medium to allow more diversity when representing the coupled wave motions of in-

plane longitudinal and shear waves in detail. 

As shown in Fig. 4.3(a), the unit cell is constructed with multiple rectangular 

strip members attached along the traction-free boundary of the elastic plate. The 

dimensions of the ith strip-type member ( 1,2, , si N   , where sN  denotes the 

total number of strip-type members) is defined by the length iL  and width iw . 

The position of each strip along the surface is located by the parameter ib  in the 

unit cell. The total number of strip-type members sN  in the unit cell determines 

the degrees of freedom in the design of the metagrating unit cell. Basically, the 

degrees of freedom should exceed the number of diffraction modes considered in the 

scattered wave field. Through numerous numerical tests, it was found that two or 

three strip-type members are sufficient to successfully model the unit cell for the 

present mode-converting and wave-steering metagratings. 

Note that the use of strip-shaped structural members was employed in some previous 
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works to control elastic waves for transmitting flexural waves [29], controlling 

guided waves [60], and investigating the analytical identification of scattering 

features of Rayleigh surface waves [105]. Compared with previous works, this study 

investigates the coupled motions of longitudinal and shear waves in elastic 

continuum media, where the precise mode conversion and anomalous wave steering 

are simultaneously targeted by proposing a new type of metagrating structure based 

on the strip-type elastic members. 
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4.3 Numerical method for analysis and optimization 

With the proposition of the new strip-type metagrating model, the coupled motions 

of the longitudinal and shear waves and consequent scattered diffraction modes 

should be accurately analyzed and evaluated. Furthermore, the aim of mode-

converting anomalous reflections should be effectively realized by a systematic 

process for designing the metagrating configuration. To achieve the present objective, 

the wave motions and multiply scattered diffraction modes are numerically analyzed 

using the finite element method, and an optimization design problem suitable for the 

selective manipulation of diffraction modes is investigated. 

 

4.3.1 Numerical analysis and evaluation 

Because the elastic plate and strip-type members in the unit cell of the present 

metagratings are modeled as continuum media, analytical approaches are not 

effective for analyzing the coupled wave motions of the longitudinal and shear waves. 

Therefore, in this work, the wave motions in the considered elastic media (aluminum 

plate with a thickness of 1 mm, 32,700 kg m   , 70 GPaE   , 0.33   ) is 

numerically analyzed using the finite element-based commercial software COMSOL 

Multiphysics®. The solid mechanics module is employed to model and analyze the 

in-plane wave propagation in a thin elastic plate under plane stress condition. 

Because of the periodicity of the unit cell in the metagratings, a section of the elastic 

plate attached to one unit cell is primarily considered in the analysis, using the 
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Floquet periodic boundary conditions (PBC-y) as indicated in Fig. 4.3(a). The 

considered frequency is set to 120 kHz, for which the wavelengths of the longitudinal 

and shear waves in the 1 mm-thick aluminum plate are 0.045 m and 0.026 m 

( 5, 394 m/spc  , 3,122 m/ssc  ), respectively. To generate a longitudinal or shear 

wave in the elastic plate, a time-harmonic unit force is excited along the line 

positioned 0.135 mforceH   from the boundary of the elastic plate as shown in Fig. 

4.3(b). The aluminum plate and strip-type members were sufficiently discretized 

using six-node quadratic triangular finite elements to represent the coupled motions 

of the longitudinal and shear waves in detail. The discretization was carried out the 

element size to be smaller than one-sixth of the wavelength of the shear wave in 

consideration. In the aspect of the convergence in finite element analyses, we set the 

relative tolerance to be 0.1 % error. In addition to the infinitely periodic unit cell, the 

scattered wave field from an array of finite unit cells is fully simulated to evaluate 

the performance of the designed metagratings. 

To deal with the diffraction phenomenon, the amplitudes of the considered 

diffraction modes in the scattered wave field should be quantitatively evaluated. In 

this work, the fast Fourier transform (FFT) [106] is applied using the nodal 

displacement fields obtained from the finite element analyses; this is performed 

spatially in the infinitely periodic elastic plate as shown in Fig. 4.3(b). With an array 

of nodal displacement vectors ( )qu  extracted from the line 'AA  ( 0.3 mfftH   

away from the boundary), the amplitudes nP   and mS   of the scattered 
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longitudinal and shear modes are obtained through the spatial FFT as: 
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where q   denotes the number of equally spaced nodes used to extract the 

displacements for a total number of sampling points of 1000qN  . In Eq. (4.7b), 

( )( )q
zu  denotes the z -component of the curl field of the displacement vector. 

For the distances to the lines for the force excitation ( )forceH   and FFT data 

extraction ( )fftH   from the boundary, they are determined much longer than the 

wavelengths of the considered elastic waves. Compared to forceH , fftH  should be 

determined more carefully to guarantee the full development of far-field reflection 

from the boundary, i.e., ( )fft p sH  . 

 

4.3.2 Design optimization method 

To realize the present mode-converting and wave-steering metagratings, undesired 

modes from a periodically structured boundary should be suppressed such that the 

target mode propagates only in a designated direction. In this work, such selective 

manipulation of the scattered diffraction modes is accomplished by solving an 

optimization design problem to determine the appropriate geometric dimensions of 
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the strip-type members in the unit cell. The geometrical dimensions shown in Fig. 

4.3(a) are set as the design variable vector v  , as { , , }T
ij j jr L wv  

( , 1,2, , ;  si j N i j   ), where ijr   denotes the relative position value between 

two adjacent strip-type members ( ij j ir b b   ). The relative positions of the 

members are meaningful parameters because of the periodicity of the unit cell. The 

ranges of the design variables are set to be 0 0.02ijr   , 0 0.035jL   , and 

0 0.015jw   in meters for all of the design problems in this work. In addition, 

the members are not allowed to overlap with each other. The initial values of the 

design variables are set to be random values within the upper and lower bounds. 

By suppressing the amplitudes of the undesired diffraction modes, a minimization 

problem can be formulated for the optimization design of the metagrating unit cell 

as: 

( ) ( )

min ( ) min ( ) ( )
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v v
v v v ,          (4.8) 

subject to several constraint equations that account for the upper and lower bounds 

of the design variables. In Eq. (4.8), the amplitudes of the longitudinal and shear 

waves except for the target mode-converting reflection mode (indicated by tn  and 

tm ) are minimized. 

The basic form of the optimization formulation in Eq. (4.8) can be used to solve the 
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design problems when one or two undesired diffraction modes are to be suppressed. 

However, considering the multiple scattered diffraction modes, the convergence 

performance of Eq. (4.8) decreases because the obtained minimum value of the 

objective function C  does not guarantee the minimum amplitude of each undesired 

mode. This implies that the amplitude of each undesired mode should be selectively 

managed in the optimization formulation. 

Alternatively, the present optimization design problem suitable for the selective 

suppression of multiple scattered diffraction modes is formulated as: 

 min ( ) min 1C v ,                      (4.9) 

subject to 

( )
nn Ph   v ,    ( ~ ;   tn N N n n   ),         (4.10a) 

 ( )
mm Sg   v ,   ( ~ ;   tm M M m m   ),       (4.10b) 

where nh  and mg  are the constraint equations defined as the powers 
nP  and 

mS   of the undesired scattered diffraction modes for the longitudinal and shear 

waves, respectively. It was observed that the power consideration in the constraint 

equations rather than the amplitude was more helpful for fast and stable convergence 

during the optimization design process. Since the wave amplitudes vary between the 

maximum and minimum values depending on the modes and propagation directions, 

the power representing energy is more suitable to represent the state of wave mode-

converting phenomenon during optimization process. 
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In Eqs. (4.10a) and (4.10b), the symbol   is a very small and positive value close 

to zero. Through various numerical tests,    is set as 0.001 for the present 

optimization designs. Together with Eqs. (4.10a) and (4.10b), several constraint 

equations specifying the upper and lower bounds of the design variables are added 

to the optimization formulation. The details of the geometrical bounds are discussed 

with design examples in the next section. Note that the target converting mode tn  

or tm  is not directly considered in the formulation in Eqs. (4.8), (4.9), and (4.10). 

By suppressing all undesired modes, the remaining target mode propagates 

predominantly because there is no energy dissipation mechanism in the considered 

elastic media. 

Notably, the objective function ( )C v  in Eq. (4.9) is mathematically empty with a 

constant value of 1. This implies that it does not behave as a general objective 

function. Instead, the aim of the present optimization design (i.e., the suppression of 

undesired scattered modes) is expressed in the multiple constraint equations in Eqs. 

(4.10a) and (4.10b), which effectively forces the power of undesired modes to zero. 

This formulation scheme can be found in topology optimization designs that dealt 

with multiple target modes and frequencies in vibration and wave problems [107-

109]. To solve optimization problems with a gradient-based optimizer, it is necessary 

to compute the sensitivity information of the objective function and constraint 

equations with respect to the design variables. The method of moving asymptotes 

[102] was applied in this work as a gradient-based optimizer. Considering the small 
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number of design variables assigned to the unit cell, the finite difference method 

[110] is employed to calculate the gradients of the objective function and constraint 

equations with respect to the design variables. 

In the perspective of the sensitivity analysis, the finite difference method was 

adopted to calculate the gradients of the objective function and constraints equations 

with respect to the design variables. In the case which use Eq. (4.8) as a minimization 

problem, the gradients of the objective function are calculated as: 
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( ) ( )( )
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eC CC


  




v v vv
,                (4.11) 

where symbol ev  denotes the element of the design variable vector v that are the 

geometrical parameters of the metagratings. The increment ev   is defined as a 

vector which has small increment in each of the design variables. For example, ev  

of 12r  is set to { , 0, 0, 0, 0, 0, 0, 0}T  in case of eight design variables. Symbol 

  is a very small and positive value, which was set to -610 . 

In the case which use Eqs. (4.9) and (4.10) as a minimization problem, the gradients 

of the objective function and the constraints equations are calculated as: 
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where ( )n nh h    and ( )m mg g    denote the different form of the constraint 

equations given in Eqs. (4.10a,b). 
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4.4 Design examples 

Through the analysis, evaluation, and optimization processes described in the 

previous section, various designs for mode-converting and wave-steering 

metagratings were carried out. As mentioned above, normally incident plane elastic 

waves were considered in this work to represent the functions of mode conversion 

and anomalous steering apparently. However, the mathematical descriptions and 

numerical processes described in this work can be implemented identically for any 

oblique incident case. 

The strip-type metagrating designs in this work were categorized into three groups 

according to the level of difficulty of mode-converting reflections. In the first group 

(Case 1), the unit cell of the strip-type metagratings was designed to convert an 

incident longitudinal wave into a shear wave with a specular reflection angle. 

Specular reflection implies that the reflected wave propagates at the same angle as 

the incident wave from the metagratings. The second group (Cases 2 and 3) 

contained the metagrating designs for mode conversion with anomalous reflection 

angles: an incident longitudinal(shear) wave was converted into the other type of 

wave with a designated reflection angle. In the third group (Cases 4 and 5), the unit 

cells of the metagratings were designed to split a normally incident longitudinal or 

shear wave into both the longitudinal and shear waves at the respective reflection 

angles. In addition to the three groups of metagrating designs, an industrial 

application of strip-type metagratings is demonstrated in the last part. 
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For each case in the categorized groups, the number of scattered diffraction modes 

considered when designing the unit cell differ, as listed in Table 4.1. These numbers 

were determined by the target mode and angle of the reflecting wave, as stated in 

Eqs. (4.3) and (4.5). The number of required strip-type members sN  in the unit 

cell is important for defining the feasible region in which to realize mode-converting 

anomalous reflections. Numerous members may provide more degrees of freedom 

in the design; however, this does not guarantee fast and stable convergence in the 

optimization process. As discussed in Section 4.2, two or three members were used 

to construct the unit cell in the design results. 

 

For the first group of elastic metagrating designs (Case 1), the mode conversion in 

the specular reflection angle was considered. As illustrated in Fig. 4.4(a), a plane 

longitudinal wave was incident at an angle of , 0p inc    to the boundary occupied 

by the unit cell. Part of the elastic plate attached to one unit cell was considered under 

periodic boundary conditions. The existing scattered modes were predicted using the 

grating equations in Eqs. (4.3a) and (4.3b), by inserting , 0n m    for specular 

reflection. Both the scattered 0th-longitudinal and shear modes can propagate with 

identical angles of 
0 0
, , 0p ref s ref     in the scattered field. For the longitudinal-to-

shear wave mode conversion, the periodicity of the unit cell was set as 

1 22.5 mmCasea  . Note that Eq. (4.6a) is not valid for specular reflection, because 
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the term 2 n a  in Eq. (4.3a) vanishes when 0n  . As previously mentioned, a 

technique was employed to set a physically meaningful periodicity for the unit cell. 

We first calculated the value of the periodicity as 26.0 mma    by inserting 

, 0p inc    with 
1
, 90s ref    in Eq. (4.6a) as the dummy mode. Then, the dummy 

mode was made to be evanescent by setting the actual periodicity lower than the 

calculated value, such that only the 0th-order diffraction mode propagated in the 

scattered field. 

As shown in Fig. 4.4(a), two strip-type members were considered to design the 

metagrating unit cell, and the design variable vector was set as 

12 1 2 1 2{ , , , , }Tr L L w wv  . To realize longitudinal-to-shear wave mode conversion 

with specular reflection, the amplitude of the 0th-order scattered longitudinal mode 

0P  was suppressed in Eq. (4.8). The initial values of the design variables at the 

start of the optimization were set to be random values as listed in Table 4.2. As a 

result of the optimization, the obtained design variables were 

12 1 2 1 2{ , , , , }Tr L L w wv {14.14, 7.03, 9.25, 5.05, 5.10}T mm as listed in Table 4.2. 

Note that the unit cells shown in Fig. 4.4(a) were already configured with the 

obtained geometrical dimensions for visually convenient presentation. Fig. 4.4(b) 

shows the propagating modes in the present specular reflection and Fig. 4.4(c) shows 

the variation of the objective function with respect to iterations during the 

optimization process. While some fluctuation was observed in the objective function 
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history at the early stage, it reduced after several dozens of iterations; finally, the 

optimization converged smoothly at the 280th iteration. Figs. 4.4(d) and 4.4(e) 

compare the amplitudes of the scattered diffraction modes of the longitudinal ( u ) 

and shear (  z
u ) waves from the unit cell in the initial state and at the end of the 

optimization, respectively. While the 0th-order longitudinal wave mode had a large 

amplitude in the initial state, this mode was totally suppressed at the end of the 

optimization. In contrast, the 0th-order shear wave mode whose amplitude was very 

small became the unique one as a result of the optimization. 

The longitudinal-to-shear wave mode conversion performance of the designed unit 

cell in Case 1 is shown in Figs. 4.4(f) and 4.4(g). In Fig. 4.4(f), the scattered wave 

fields from the designed unit cell are compared to those from the initial unit cell. For 

a longitudinal wave incidence upon the initial unit cell, the longitudinal wave (u ) 

is specularly reflected, while the shear wave ( ( ) z  u ) does not actively propagate 

in the scattered field. However, the scattered wave fields from the designed 

metagrating unit cell showed the opposite phenomena. Without the longitudinal 

wave (u ) propagation, the shear wave ( ( ) z  u ) was only reflected from the 

designed metagrating unit cell at the specular angle. In Fig. 4.4(f), the scattered 

longitudinal potential field ( u  ) was contoured with repeated positive and 

negative values along the interface with the designed unit cell, such that the 

longitudinal wave could not propagate in the elastic plate. However, the scattered 

shear potential field ( ( ) z  u ) showed a strong interaction between the strip-type 
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members and elastic plate along the interface. The two strip-type members exhibited 

transverse vibrating motions in different phases. Because the designed lengths of the 

two members were similar, the phase difference in the shear potential field produced 

by the members diminished near the interface to form a specular reflection in the 

elastic plate, as shown in Fig. 4.4(f). From the scattered shear potential field shown 

in Fig. 4.4(f), it was calculated that 99 % of the incident power of the longitudinal 

wave was converted to the shear wave. When a finite number of unit cells were 

installed along the traction-free boundary of the elastic plate, longitudinal-to-shear 

wave-mode conversion was clearly realized as shown in Fig. 4.4(g). In addition, 

when the metagrating unit cell is designed for longitudinal-to-shear wave mode 

conversion, the opposite case (i.e., shear-to-longitudinal mode conversion) is 

automatically accomplished with the same unit cell configuration, owing to the 

reciprocity of the elastic wave propagation. 

 

In the second design category for the present metagratings, mode conversion and 

anomalous reflection were considered simultaneously. Case 2 depicts the design for 

realizing longitudinal-to-shear wave mode conversion with a reflection angle of 

1
,s ref

, and Case 3 presents shear-to-longitudinal mode conversion with 
1
,p ref

. By 

inserting the target reflection angles specified as the +1st-order scattered modes 

( 1m     and 1n    , respectively) in Eqs. (4.6a) and (4.6b), the required 

periodicity of the unit cell was determined for each case. Subsequently, the number 
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of propagating diffraction modes in each design case was predicted using Eqs. (4.3a) 

and (4.3b). Compared with the previous design in Case 1 for mode-converting 

specular reflection, one more strip-type member was added in the unit cells of Cases 

2 and 3 to tackle the increased number of scattered diffraction modes. Then, the 

design variable vector was set as v 12 23 1 2 3 1 2 3{ , , , , , , , }Tr r L L L w w w  for the three 

strip-type members. 

Fig. 4.5(a) illustrates the design problem of Case 2 for realizing longitudinal-to-shear 

wave mode conversion with a target reflection angle of 1
, 45s ref   . By inserting the 

reflection angle in Eq. (4.6a) with the wave propagation properties ( 0.045 mp   

and 0.026 ms    at the considered 120 kHz and , 0p inc    ), the required 

periodicity of the unit cell in Case 2 was calculated as 2 36.79 mmCasea   . The 

propagating diffraction modes from the unit cell of the calculated periodicity were 

predicted to be one longitudinal wave mode ( 0n  ) and three shear wave modes 

( 1,  0,  +1m   ) from Eqs. (4.3a) and (4.3b) as plotted in Fig. 4.5(b). Among these 

modes, the scattered shear mode of 1m     was specified as the anomalously 

reflecting target mode, while the scattered longitudinal ( 0n  ) and remaining shear 

modes ( 1,  0m   ) were suppressed, as indicated by the colored arrows in Fig. 4.5(a). 

The alternative form of the optimization formulation with Eq. (4.9) and Eq. (4.10) 

was employed for Cases 2 and 3, and for the rest of the cases as well. The constraint 

equations in Eq. (4.10) were stated as the power of the three undesired modes, as 
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00 ( ) Ph  v , 
11( ) Sg

  v , and 
00 ( ) Sg  v . 

Fig. 4.5(c) shows that the three constraints converge soon in the optimization process. 

Table 4.2 lists the obtained values of the design variables at the end of the 

optimization together with randomly generated initial values. As in the previous case 

study, the unit cells shown in Fig. 4.5(a) were already configured with the obtained 

geometrical dimensions. As a result of the optimization in Case 2, the undesired 

propagating diffraction modes appearing at the initial stage were precisely 

suppressed, while the amplitude of the target reflecting shear wave mode ( 1m   ) 

was present only at the end of the optimization as shown in Figs. 4.5(d) and 4.5(e). 

As shown in Fig. 4.5(f), the scattered wave fields from the designed metagrating unit 

cell were distinct from those obtained from the initially configured unit cell. From 

the initial unit cell, the 0th-order longitudinal wave was reflected by the specular 

reflection, and the 1st-order shear wave modes interfered constructively in the 

scattered field. On the other hand, the propagation of shear waves (  z
u ) from 

the designed metagrating unit cell was clearly observed, while the longitudinal wave 

( u ) could no longer propagate in the scattered field. Calculated in the scattered 

field shown in Fig. 4.5(f), 99 % of the incident longitudinal wave power was 

converted to the 45 -angle reflected shear wave from the designed metagrating 

unit cell. As shown in Fig. 4.4(f) for Case 1, Fig. 4.5(f) indicates that the scattered 

longitudinal potential field ( u ) is not developed because the strip-type members 

do not interact with the elastic plate along the interface. The strip-type members 
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produce a transversely vibrating shear potential field ( ( ) z  u ), in which the shear 

wave propagates in the oblique direction as designated. When the designed unit cells 

were multiply arranged along the traction-free boundary of the plate, the 

longitudinal-to-shear wave mode conversion was clearly achieved with a target 

reflection angle of 1
, 45s ref    as shown in Fig. 4.5(g). 

Case 3 aims at the opposite mode-converting phenomenon to Case 2. For an incident 

shear wave, the scattered wave field is manipulated to allow longitudinal wave 

reflection only at a target reflection angle of 1
, 62p ref   , as depicted in Fig. 4.6(a). 

Using Eq. (4.6b) with the considered wave propagation properties, the periodicity of 

the unit cell was determined as 3 50.91 mmCasea  . Then, as shown in Fig. 4.6(b), 

six propagating diffraction modes (three longitudinal wave modes in the order of 

0,  1n    and three shear waves in the order of 0,  1m   ) were predicted by 

Eqs. (4.3a) and (4.3b). With the same set of design variables as in Case 2, the five 

undesired scattered modes were suppressed by imposing them in the constraint 

equations of Eq. (4.10) as follows: 
11 ( ) Ph

  v  , 
00 ( ) Ph  v  , 

11 ( ) Sg
  v  , 

00 ( ) Sg  v , and 
11 ( ) Sg

  v . The randomly generated initial values of the design 

variables are listed in Table 4.2 alongside the values obtained at the end of the 

optimization. 

Figs. 4.6(c-e) shows the convergence history during optimization and the 

manipulated amplitudes of the six scattered modes in Case 3. As shown in the figures, 
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the amplitude of the target longitudinal wave mode ( u  ) for 1n     became 

predominant, whereas those of the five other modes were reduced at the end of the 

optimization. The shear-to-longitudinal wave mode conversion from the unit cell 

was clearly observed in Fig. 4.6(f), with a mode-conversion efficiency of 96 %. In 

Fig. 4.6(f), the scattered shear wave field (  z
u  ) was slightly observable, 

because the undesired shear wave modes were not perfectly suppressed as shown in 

Fig. 4.6(e). This slight reduction in the mode-conversion efficiency in Case 3 was 

attributable to the large number of propagating diffraction modes. Nevertheless, 

converting 96 % of the incident power into the different type of reflected wave 

represents a remarkable performance for the proposed strip-type metagratings. The 

reflected longitudinal wave propagated in the target direction distinctively from the 

array of the designed unit cells, as shown in Fig. 4.6(g). 

 

In the third design category (consisting of Cases 4 and 5), the proposed strip-type 

metagratings were designed to split a normally incident wave into two directions in 

different wave modes. As illustrated in Fig. 4.7(a), Case 4 was for designing the 

metagrating unit cell to split a normally incident longitudinal wave into both 

longitudinal and shear waves, each of which exhibits anomalous reflection angles of 

1
, 70p ref    and 1

, 33s ref    , respectively. On the other hand, in Case 5, the beam-

splitting metagrating unit cell was designed under a normal shear wave incidence as 

shown in Fig. 4.8(a). The split beams in Case 5 propagated in the target directions of 
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0
, 0p ref     and 1

, 50s ref     as longitudinal and shear wave modes, respectively. 

Note that one target angle among the beam splitting angles could be selected 

arbitrarily, while the other angle depended on the selected angle. Because an identical 

unit cell with the same periodicity was considered, it was impossible to set two beam 

splitting angles independently according to the diffraction grating theory. 

In the first beam-splitting metagrating design (Case 4), the periodicity of the unit cell 

was calculated as 4 47.83 mmCasea    by inserting 1
, 33s ref     into Eq. (4.6a). 

Owing to the symmetry between diffraction modes, the periodicity of the unit cell 

for 1
, 33s ref     matched that for the target angle of 

1
, 33s ref     as discussed. 

Then, the reflection angle of the longitudinal wave mode is dependently decided as 

1
, 70p ref   in Eq. (4.3a). The propagating diffraction modes in the scattered wave 

field were predicted using Eqs. (4.3a) and (4.3b) in three longitudinal wave 

( 0,  1n   ) and three shear wave ( 0,  1m   ) modes as listed in Table 4.1. To split 

an incident longitudinal wave into 1st-order longitudinal ( 1n   ) and 1 st-order 

shear ( 1m   ) wave modes as illustrated in Fig. 4.7(a), the remaining four modes 

were suppressed in the optimization. 

In Case 5, for splitting an incident shear wave into both longitudinal wave reflection 

at the specular angle 0
, 0p ref    and shear wave reflection at the target angle 

1
, 50s ref   , the periodicity of the unit cell was determined as 

5 33.96  mmCasea   
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with 1
, 50s ref    . Because four diffraction modes (one longitudinal wave mode 

( 0n  ) and three shear wave modes ( 0,  1m   )) can propagate in the scattered 

wave field, the two shear modes of 1,  0m    were suppressed by considering them 

as the constraint equations in the optimization, to thereby enrich the 0th-order 

longitudinal and +1st-order shear wave modes as illustrated in Fig. 4.8(a). 

The obtained values of the design variables for Cases 4 and 5 are presented in Table 

4.2. First, it is notable in Figs. 4.7(a) and 4.8(a) that the configurations of the 

designed unit cells in Cases 4 and 5 were dissimilar to each other. Figs. 4.7(b) and 

4.7(c) and Figs. 4.8(b) and 4.8(c) show the amplitudes of the scattered diffraction 

modes at the end of each optimization in Cases 4 and 5, respectively. In both cases, 

the multiple diffraction modes appearing at the initial stages were effectively 

suppressed such that the target modes became predominant at the end of the 

optimization. As shown in Figs. 4.7(d) and 4.8(d), respectively, normally incident 

longitudinal and shear waves were successfully split into both longitudinal and shear 

wave modes with target reflection angles. By evaluating the scattered wave fields 

shown in Fig. 4.7(d) for Case 4, it was found that 95 % of the incident longitudinal 

wave power was reflected in the two target modes: 24 % in the +1st-order 

longitudinal wave mode and 71 % in the 1 st-order shear wave mode. In Case 5 

shown in Fig. 4.8(b), the designed metagrating unit cell split 96.6 % of the incident 

shear wave power into the designated modes: 29.8 % and 66.8 % of the 0th-order 

longitudinal and +1st-order shear wave modes, respectively. As shown in Figs. 4.7(e) 
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and 4.7(f) and Figs. 4.8(e) and 4.8(f), respectively, the scattered longitudinal and 

shear waves from the multiply arranged metagrating unit cells propagate apparently 

in the target directions with 1
, 70p ref    and 1

, 33s ref    in Case 4, and 0
, 0p ref    

and 1
, 50s ref    in Case 5. It is observable that small quantities of wave power were 

spatially distributed across various directions in the scattered wave fields. These 

results arose from multiple constructive and/or destructive interactions of the 

undesired scattered modes; these corresponded to a small percentage of incident 

wave power that was not converted by the designed metagratings. 

 

Alongside the three categories of metagrating designs, we produced an additional 

design for the metagrating unit cell (Case 6) to make it practically applicable for 

nondestructive evaluation (more specifically, non-invasive flow speed measurement; 

see e.g., [111]). Conventional wedges typically feature tapered shapes, whose sloped 

reflecting planes are flat and traction-free surfaces that ensure total internal reflection 

using critical angles. However, tapering is no longer required for mode conversion 

when using the present metagratings. Instead, the designed mode-converting strip-

type metagratings are installed along the reflecting plane such that the incident 

longitudinal wave is precisely and efficiently converted into a shear wave at a target 

reflection angle. The resulting device is shown in Fig. 4.9(a) and referred to as a 

reflection-type mode converter. 

Rectangular blocks with a metagrating plane were attached to the upper and lower 
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surfaces of a thick aluminum plate. When a longitudinal wave excited by the 

transducer (PZT) impinged on the metagrating plane of the rectangular block on the 

upper surface of the plate, the incident longitudinal wave was converted into an 

inclined shear wave, as illustrated in Fig. 4.9(a). The propagating shear wave through 

the aluminum plate (indicated by the blue arrows) was obliquely incident to another 

rectangular block on the lower surface of the plate. The obliquely incident shear 

wave was then reconverted into a longitudinal wave, which reached the measuring 

transducer in the normal direction. The reciprocity characteristics of the elastic wave 

propagation meant that identical metagrating planes were implemented in the 

rectangular blocks on the upper and lower surfaces of the plate. 

Considering the practical working conditions of the conventional wedges used in 

nondestructive testing [111], the wave propagating frequency was set to 440 kHz 

( 6,198 m/spc   , 3,122 m/ssc   , and 0.014 mp   , 0.007 ms   ), and the 

target reflection angle was selected as 1
, 55s ref   . The required periodicity of the 

metagrating unit cell was calculated as 6 8.70 mmCasea  in Eq. (4.6a). As listed in 

Table 4.1 (Case 6), four propagating diffraction modes were predicted in the 

scattered wave field using Eqs. (4.3a) and (4.3b). By solving the optimization 

problem in Eq. (4.9) and Eq. (4.10), the metagrating unit cell was designed to allow 

1st-order shear wave propagation only in the target reflection angle. 

Figure 4.9(b) shows the configuration of the designed unit cell for the metagrating 

plane. The initial and optimized values of the design variables are listed in Table 4.2. 
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Based on the scattered field obtained from the periodic unit cell, the longitudinal-to-

shear wave-mode conversion efficiency was found to reach 99 %. To verify the 

validity of the present reflection-type mode-converter design, the conceptual 

environment in Fig. 4.9(a) was numerically modeled with plane strain condition. In 

Figs. 4.9(c) and 4.9(d), the reflection-type mode converter made of aluminum was 

modeled with dimensions of 80 mm 100 mm  (width height) and a thickness of 

80  mm . In each mode converter, 12 designed metagrating unit cells were installed 

on a reflecting plane as shown in the figures. The transducers were modeled as 70 

mm-wide, 4.5 mm-thick piezoelectric ones made of a PTZ-4 (Lead-Zirconate-

Titanate) compound. As shown in Figs. 4.9(c) and 4.9(d), the reflection-type mode 

converters exhibited excellent performances in the practical environment. The 

incident longitudinal wave from the exciting transducer and the longitudinal wave 

reflected to the measuring transducer are clearly shown in Fig. 4.9(c), whereas no 

longitudinal wave mode was observable in the aluminum plate. In contrast, the 

mode-converted shear wave from the upper mode converter obliquely propagated 

through the aluminum plate and reached the lower mode converter, as shown in Fig. 

4.9(d). The designed reflection-type mode converters were directly applicable for 

nondestructive testing, achieving remarkably high efficiencies in mode conversion 

and anomalous steering simultaneously. 
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4.5 Analysis of the phenomenon 

4.5.1 Experimental verification 

Among the present mode-converting and wave-steering metagrating designs, the 

beam-splitting metagrating structure in Case 4 was manufactured for an 

experimental performance evaluation. The designed metagratings shown in Fig. 4.7 

split a normally incident longitudinal wave into both longitudinal and shear waves 

with anomalous reflection angles of 1
, 70p ref     and 1

, 33s ref    , respectively. 

Fig. 4.10(a) shows the experimental setup; here, the beam-splitting metagrating array 

was fabricated along the boundary of a 1 mm-thick aluminum alloy plate (A5052) 

by laser precision cutting. The metagrating array in the plate consisted of 12 unit 

cells whose geometrical dimensions matched those designed in Case 4; these cells 

were protected by an outer frame with a width of 50 mm. The other boundaries of 

the plate were attached to Blu Tack layers to reduce the effect of reflected waves. 

As shown in Fig. 4.10(a), a magnetostrictive patch transducer (MPT) [104] was 

employed as a line transmitter to actuate the lowest symmetric Lamb wave (S0), 

which can be considered as an in-plane longitudinal wave in the plate, with a 

frequency of 120 kHz. The line source signal (30 cycles of a sinusoidal wave) was 

generated in a function generator (Agilent 33220A) and amplified using a power 

amplifier (AG 1017L) before application to the MPT. A 0.1 mm-thick nickel patch 

( 400 mm  22.5 mm ) was used as the magnetostrictive element in the MPT that 

was installed 300 mm away from the metagrating array, as shown in Fig. 4.10(a). 
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The scattered longitudinal and shear waves from the metagrating array were 

measured using an electromagnetic acoustic transducer (EMAT) and other MPT, 

respectively, along a semicircle of radius 500 mm. The scattered longitudinal waves 

were measured at 21 points on the semicircle (10  intervals in the range 80  ~

50   and 5   intervals in the range 55  ~ 85  ), while the measurements of the 

scattered shear waves were conducted at 24 points ( 80  , 70  , 5  intervals in 

the range 65  ~ 10  , 33  , and 10  intervals in the range 0~ 80 ). At every 

measurement point, the signals were averaged over four-times measurements. 

As the result of experiments, Figs. 4.10(b) and 4.10(c) show the normalized power 

amplitudes of the scattered longitudinal and shear waves obtained from the beam-

splitting metagrating array, respectively. It is clearly observed that the scattered 

longitudinal and shear waves propagate predominantly in the directions of the target 

reflection angles, 1
, 70p ref     and 1

, 33s ref     . Furthermore, the experimental 

results agree well with the numerical results, which were calculated from a model 

that duplicated the experimental configuration. Although small differences between 

the experimental and numerical results were observable, these may be caused by the 

fabrication procedure of the metagrating array. The present experimental results 

validate the performance of the proposed strip-type metagratings for mode 

conversion and wave steering. For further experimental verification of the 

performance of the elastic metagrating, the beam-split powers to the longitudinal and 

shear waves in Figs. 4.10(b,c) are compared with powers of reflected waves from a 
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traction-free boundary (i.e., without elastic metagrating treatment) in Fig. 4.11. 

Fig. 4.11 compares the split power amplitudes of the longitudinal and shear waves 

from the beam-splitting metagrating shown in Fig. 4.10 with the powers of reflected 

both waves from a traction-free boundary (i.e., without the metagrating). In Fig. 

4.11(a), the scattered longitudinal wave powers are normalized by the maximum 

value of the longitudinal wave power reflected from a traction-free boundary case. 

On the other hand, the scattered shear wave powers in Fig. 4.11(b) are normalized 

by the maximum value of the shear wave power from the present metagrating shown 

in Fig. 4.10. As shown in Fig. 4.11(a), the power of scattered longitudinal wave is 

concentrated in the middle which is straight from the source line at the traction-free 

boundary, while reflected power of the longitudinal wave is measured in the direction 

of the target reflection angle 1
, 70p ref    . By neglecting any kind of dissipation and 

loss of wave power, the longitudinal wave power from the traction-free boundary 

case can be assumed to be the same with the total incident longitudinal power. This 

assumption is reasonable because the normally incident longitudinal wave to the 

traction-free boundary reflects almost all of the power in normal direction. Then, by 

integrating the area of the power graphs in Fig. 4.11(a), we can estimate the power 

conversion ratio indirectly. The power of the scattered longitudinal wave is 

calculated to be 25.18 %, and it is consistent with the result in the simulation of 24 %. 

In a similar manner, Fig. 4.11(b) results in nearly 75 % of the incident wave power 

(which is calculated from Fig. 4.11(a)) is converted to the shear wave from the 

metagrating. 
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4.5.2 Physical interpretation 

In this part, we physically analyzed the phenomenon of mode-converting reflection 

using the surface impedance concept. In former research, it is thought to be difficult 

to fully understand the entire physics inside the elastic metagratings. The cause of 

such hardness stems from the unique characteristics of the scatterers. Each scatterer 

inside the unit cell of metagratings interact with each other and coupling of scatterers 

form complex phenomena. In earlier researches on metagratings, the physics of 

metagratings are usually explained in verbal form using the diffraction grating theory. 

Many of the works used the explanation as follows: the diffraction modes are 

controlled by the metagratings and modes except the target modes cancel out by the 

destructive interferences of waves. In the perspective of the diffraction grating theory, 

this explanation is true, but it is hard to analyze how the scatterers in metagratings 

actually cancel out undesignated modes. It is also difficult to apply the phase-

modulation method as in Chapter 3, because it can only explain the wave steering 

phenomena, not the mode-conversion. In addition, when the wave field of 

metagratings are observed, the diverse coupling phenomena can be found between 

these members. In this circumstances, we will use the concept of surface impedance. 

The surface impedance is originally used in the electromagnetic [112] or acoustic 

wave [77] to explain the wave phenomena in the certain line or the boundary. With 

using this concept, we can easily interpret the entire metagrating unit cell at once. It 

means that the coupling effect of structures can be take into account. 

To begin with, we should define the surface impedance in the elastic medium. As an 
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analogy to the surface impedance of acoustic waves, we can consider the straight 

line A-A’ which is normally depart from the metagrating structures as in Fig. 4.12(a) 

and Fig. 4.13(a). In acoustics, the pressure and velocity along the line are defined as 

function of position. However, the stresses extracted from certain line has two 

components including normal and shear stresses. Therefore, we should define the 

surface impedance in the form of matrix as: 

11 12

21 22

xx x

xy y

vZ Z

vZ Z



    

    
    

,                 (4.13) 

where xx  , xy   denote the normal and shear stress along the line A-A’, ijZ

( , 1, 2)i j   denotes the components of the surface impedance matrix at the line A-

A’, and xv  , yv   denote the x, y component of the velocity vector. Since we are 

analyzing the passive and lossless system, each component of the surface impedance 

matrix is calculated to be imaginary. 

Our approach using the surface impedance matrix is that for any wave steering 

phenomena there should be a certain wave field that can realize such phenomena. It 

means that if we design the structures that enable to realize certain wave field, then 

we can also realize any wave steering phenomena. For explanation, we revisit the 

mode-converting specular and anomalous reflection. 

Firstly, the mode-converting specular reflection in Fig. 4.4 is analyzed through 

surface impedance approach. For realizing the mode-converting specular reflection, 

the potential functions should be defined as follows: 
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0
pjk xinc A e  ,  0

sjk xscat B e  ,            (4.14a,b) 

where 0A  , 0B   denote the amplitude of longitudinal and shear wave potential 

function, respectively. If longitudinal wave is fully converted to shear wave, the ratio 

of the wave amplitude can be calculated using the power conservation law as: 

0

0

s

p

B c

A c
 .                      (4.15) 

In Eq. (4.15), the ratio of the wave amplitude is calculated to be 0.76 in aluminum 

medium. Using this value, we can easily calculate the displacement, velocity, and 

stress field. And utilize the condition that the surface impedance matrix is imaginary, 

we can calculate the surface impedance matrix at line A-A’ which is at the position 

of x = h as in Fig. 4.12. Since the value of h can be arbitrarily chosen, we used the 

value of 0.06 mh   . It should be noted that the h value should be larger than the 

wavelength of longitudinal or shear wave, since we only consider the far-field 

diffraction mode of elastic waves. 

We compare the results of surface impedance matrix between the theoretical and 

numerical values from Fig. 4.12(b) to Fig. 4.12(e). In each graphs, the imaginary part 

of the surface impedance matrix component is compared. For the numerical values, 

we extracted the stress and velocity field in the line A-A’ and calculate the surface 

impedance components. The result shows that theoretical and numerical values are 

in excellent coincidence. Therefore, we can conclude that proposed metagrating 

forms the wave field which can realize the mode-converting specular reflection. 
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Secondly, the mode-converting anomalous reflection in Fig. 4.5 is analyzed through 

same approach. For realizing the mode-converting anomalous reflection, the 

potential functions should be defined as follows: 

0
pjk xinc A e  ,  

( )

0
sx syj k x k yscat B e  .          (4.16a,b) 

If longitudinal wave is fully converted to shear wave with the target angle, the ratio 

of the wave amplitude can be calculated using the power conservation law as: 

0

0 ,cos
s

p s ref

B c

A c 
 .                   (4.17) 

In Eq. (4.17), the ratio of the wave amplitude is calculated to be 0.90 in aluminum 

medium. For the arbitrary position h, we used the value of 0.06 mh    as in Fig. 

4.13. 

We compare the results of surface impedance matrix between the theoretical and 

numerical values from Fig. 4.13(b) to Fig. 4.13(e). In each graphs, the imaginary part 

of the surface impedance matrix component is compared. For the numerical values, 

we extracted the stress and velocity field in the line A-A’ and calculate the surface 

impedance components. The result shows that theoretical and numerical values are 

in excellent coincidence. Therefore, we can conclude that proposed metagrating 

forms the wave field which can realize the mode-converting specular reflection. 

The surface impedance method can interpret the whole unit cell at once. However, it 

has a limitation. That is, the surface impedance doesn’t explain the wave controlling 
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phenomena by the metagratings with respect to the structure. For further studies, we 

need to evaluate the coupling effects induced by the interaction between nearby 

scatterers. But, our attempt to adopt the idea of analyzing entire unit cell at once is 

important and it is expected the additional physical interpretation on the metagratings 

using the coupling effects will be studied in the near future. 

For qualitative description of mode-converting reflection, some observation can be 

useful. In Appendix B in this dissertation, transient analysis and simulation result is 

presented. When 30 cycles of longitudinal waves normally incident to the 

metagrating structure, the mode-converting reflection phenomenon needs additional 

time to be realized. It means that after additional time, the phenomenon becomes a 

steady-state and condition becomes similar to the harmonic analysis. In the respect 

of structure, the surface wave is formed in the edge of the structure after the 

additional time. During the formation of surface wave, longitudinal and shear wave 

in the elastic medium are coupled due to the complex motions of metagrating 

structures. Inside the scatterers (or strip-type members) show complex motion 

including longitudinal, shear, and flexural motion and these complex motions seem 

to create coupling of elastic waves.  

Such metagratings can also be explained using the concept of reciprocal lattice. One-

dimensional lattice space which is a metagrating structure space with a periodicity 

can be transformed to the reciprocal space (or k-space) by the Fourier transform in 

spatial domain. Such relation between the wavenumber and reciprocal lattice is 

actually a diffraction grating equation. In definition, reciprocal lattice is identical to 
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diffraction term. We can also explain that complex motion of strip-type members 

coupled the elastic waves and affects wave amplitudes determined in reciprocal 

lattice. However, it still needs quantitative approach and we hope such additional 

interpretation can be possible. 
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4.6 Concluding remarks 

We showed that near-perfect mode conversion and wave steering can be 

simultaneously achieved if elaborately designed metagratings are attached to the free 

boundary of an elastic plate. In contrast to common metasurfaces based on phase 

gradients, the designed metagratings can satisfy the two objectives simultaneously 

because the wave phenomena realized with metagratings are governed by the 

diffraction grating theory and our metagratings have sufficient design degrees of 

freedom to accommodate the desired wave manipulations. Specifically, a normally 

incident longitudinal wave upon the traction-free boundary of an elastic plate was 

converted by the designed metagratings into a reflected shear wave at the specified 

oblique angle with other higher-order modes nearly suppressed; in terms of energy, 

the mode-conversion reflection efficiency was nearly perfect, reaching 96 %. Similar 

near-perfect wave mode conversions were accomplished in all other cases of wave 

manipulation (e.g., beam splitting) in this work. The numerical results were 

supported by the experimental results. We demonstrated a practically useful 

application of the proposed metagratings via the new type of perfect mode-

converting device as well. The reflection-type mode converter equipped with the 

designed metagratings was found to represent a new method to achieve full mode 

conversion and wave steering. Although this work focused upon a single harmonic 

wave, the extension of this work to tackle pulses is expected to pave the way towards 

improving the practicality of the proposed metagrating-based elastic wave 

manipulation.  
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Table 4.1 Number of diffraction modes considered in the metagrating designs. 

 Mode Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Number of 
diffraction 

modes  

Longitudinal 
wave mode 

1 1 3 3 1 1 

Shear wave 
mode 

1 3 3 3 3 3 
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Table 4.2 Initial and optimized values of the design variables in the design 
optimization. (Initial values were randomly generated) 

Case Design variables State Values ( m m ) 

1 12 1 2 1 2{ , , , , }Tr L L w w  
Initial {12.36, 5.95, 13.31, 5.46, 5.97}T 

Optimized {14.14, 7.03, 9.25, 5.05, 5.10}T 

2 12 23 1 2 3 1 2 3{ , , , , , , , }Tr r L L L w w w
Initial {5.94, 16.20, 15.67, 31.96, 7.18, 4.69, 3.04, 2.90}T 

Optimized {7.10, 19.52, 10.50, 31.76, 6.13, 3.06, 2.93, 6.17}T 

3 12 23 1 2 3 1 2 3{ , , , , , , , }Tr r L L L w w w
Initial 

{18.15, 18.95, 17.69, 17.63, 12.48, 13.60, 6.17, 
2.56}T 

Optimized 
{12.16, 19.21, 12.34, 8.62, 12.61, 14.96, 1.00, 

1.76}T 

4 12 23 1 2 3 1 2 3{ , , , , , , , }Tr r L L L w w w
Initial {22.53, 14.58, 31.97, 23.78, 9.14, 8.27, 7.73, 5.63}T 

Optimized {17.84, 21.92, 27.97, 22.98, 7.68, 5.01, 6.79, 6.12}T 

5 12 23 1 2 3 1 2 3{ , , , , , , , }Tr r L L L w w w
Initial {11.75, 9.59, 13.86, 24.20, 31.55, 7.10, 9.80, 6.13}T 

Optimized {15.29, 9.63, 9.42, 22.20, 33.38, 5.07, 9.02, 5.02}T 

6 12 23 1 2 3 1 2 3{ , , , , , , , }Tr r L L L w w w
Initial {3.10, 3.16, 5.76, 8.05, 5.13, 1.40, 1.38, 1.82}T 

Optimized {2.40, 3.60, 5.98, 7.85, 3.10, 1.51, 1.49, 1.44}T 
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Fig. 4.1 Conceptual illustrations of the multiply scattered diffraction modes and 
targeting mode-converting phenomena in this chapter. (a) Multiply scattered 
longitudinal and shear wave modes from a periodically structured boundary. (b) 
mode conversion and wave steering realized by the metagratings. 
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Fig. 4.2 Theoretical number of propagating diffraction modes in the scattered wave 
field with respect to the normalized periodicity of the unit cell and the incident angle. 
(a) Longitudinal wave incidence, (b) shear wave incidence. 
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Fig. 4.3 Configuration of the periodic unit cell of the proposed strip-type 
metagratings with boundary conditions for numerical analysis and evaluation. (a) 
Geometrical dimensions of rectangular strip members in the infinitely periodic unit 
cell, (b) boundary conditions together with the lines for force exitation and spatial 
FFT. 
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Fig. 4.4 Problem definition and results of Case 1 for longitudinal-to-shear wave 

mode conversion with a specular angle of 0
, 0s ref   . (a) Illustration of the reflected 

and suppressed diffraction modes, (b) number of propagating diffraction modes, (c) 
convergence history during optimization, (d,e) comparison of the scattered 
diffraction modes of longitudinal and shear waves, respectively, before and after 
optimization, (f) comparison of the scattered wave fields from the initial and 
designed unit cells, (g) scattered shear wave field from the multiply arranged unit 
cells. 
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Fig. 4.5 Problem definition and results of Case 2 for longitudinal-to-shear wave 

mode conversion with a target reflection angle of 1
, 45s ref    . (a) Illustration of the 

reflected and suppressed diffraction modes, (b) number of propagating diffraction 
modes, (c) convergence history during optimization, (d,e) comparison of the 
scattered diffraction modes of longitudinal and shear waves, respectively, before and 
after optimization, (f) comparison of the scattered wave fields from the initial and 
designed unit cells, (g) scattered shear wave field from the multiply arranged unit 
cells. 
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Fig. 4.6 Problem definition and results of Case 3 for shear-to-longitudinal wave 

mode conversion with a target reflection angle of 1
, 62p ref   . Note that the unit cells 

were already configured with the designed geometrical dimensions. (a) Illustrations 
of the reflected and suppressed diffraction modes, (b) number of propagating 
diffraction modes, (c) convergence history during optimization, (d,e) comparison of 
the scattered diffraction modes of longitudinal and shear waves, respectively, before 
and after optimization, (f) comparison of the scattered wave fields from the initial 
and designed unit cells, (g) scattered longitudinal wave field from the multiply 
arranged unit cells. 

  



122 

 

 
 

Fig. 4.7 Problem definition and results of Case 4 for splitting an incident longitudinal 

wave into both longitudinal and shear waves with reflection angles of 1
, 70p ref    

and 1
, 33s ref     , respectively. (a) Illustration of the reflected and suppressed 

diffraction modes, (b,c) comparison of the scattered diffraction modes of 
longitudinal and shear waves, respectively, before and after optimization, (d) 
comparison of the incident and scattered wave field from the designed beam-splitting 
metagrating unit cell, (e,f) scattered longitudinal and shear wave fields from the 
multiply arranged beam-splitting metagrating unit cells, respectively. 

  



123 

 

 
 

Fig. 4.8 Problem definition and results of Case 5 for splitting an incident shear wave 

into both longitudinal and shear waves with reflection angles of 0
, 0p ref    and 

1
, 50s ref   , respectively. Note that the unit cells were already configured with the 

designed geometrical dimensions. (a) Illustration of the reflected and suppressed 
diffraction modes, (b,c) comparison of the scattered diffraction modes of 
longitudinal and shear waves, respectively, before and after optimization, (d) 
comparison of the incident and scattered wave fields from the designed beam-
splitting metagrating unit cell, (e,f) scattered longitudinal and shear wave fields from 
the multiply arranged beam-splitting metagrating unit cells, respectively. 
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Fig. 4.9 Application of the proposed metagratings (Case 6): reflection-type mode 
converter for nondestructive evaluation. (a) Problem definition with two rectangular 
blocks on which the metagrating plane is attached, (b) Illustration of the targeting 
diffraction shear mode, (c) incident longitudinal wave field to and scattered 
longitudinal wave field from the designed metagrating plane, (d) scattered shear 
wave propagation through the thick aluminum plate. 

  



125 

 

 

 

 

 
 

Fig. 4.10 Experimental setup and measurement data for verifying the beam-splitting 
metagratings designed in Case 4 (as shown in Fig. 4.7). (a) Experimental setup with 
the manufactured beam-splitting metagrating array in the 1-mm thick aluminum 
alloy plate, (b,c) comparison of the experimental and numerical results for beam 

splitting to (b) longitudinal wave reflection with a target angle of 1
, 70p ref   , (c) 

shear wave reflection with a target angle of 1
, 33s ref     . 
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Fig. 4.11 Experimental measurements and numerical simulations for the beam-
splitting metagratings including comparison of the traction-free boundary and 
metagrating. (a) The power of scattered longitudinal and (b) shear wave fields. 
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Fig. 4.12 The surface impedance analysis for the mode-converting specular 
reflection. (a) The line A-A’ where the stress and velocity data for surface impedance 
calculation are extracted, (b-e) the components of surface impedance with respect to 
the unit cell line length. 
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Fig. 4.13 The surface impedance analysis for the mode-converting anomalous 
reflection. (a) The line A-A’ where the stress and velocity data for surface impedance 
calculation are extracted, (b-e) the components of surface impedance with respect to 
the unit cell line length. 
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CHAPTER 5.  

Conclusions 
 

 

 

In this dissertation, the reflective metagratings which can steer and/or convert the 

modes of the elastic waves were newly presented. For our research on metagratings, 

systematic studies followed by theoretical analysis based on the diffraction grating 

theory, numerical simulation using the finite element method, and experimental 

verification were implemented. The objective of the dissertation was challenging, 

because of the complex polarization and dispersive properties of the elastic waves. 

However, using the concept of metamaterials and the diffraction grating theory, 

newly presented metagratings can solve such difficult problems. In the thesis, we 

first control only the longitudinal wave using the beam-type metagratings. Then, the 

mode conversion between longitudinal and shear waves along with the wave steering 

is solved using the strip-type metagratings. We used either analytical or numerical 

methods for problem-solving. We will present the detailed investigation and 

conclusions of this dissertation as follows. 

First, systematic research on metagratings for in-plane elastic waves with two steps 

was implemented carefully. Since there are few research works in the field of elastic 

metagratings, the way for approaching the problem was crucial. As a golden rule, we 
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first simplify the problems which can only control the longitudinal waves. And 

simple structures (beam-type members) were selected as scatterers that can be 

analytically modeled. With simplified problems and simple structures, it was easier 

to solve the problem and find the physics inside the metagratings. However, due to 

less degree of freedom in the design process, beam-type members were not enough 

for realizing more complex phenomena. Therefore, strip-type continuum members 

which are the general version of such scatterers were introduced. Finally, several 

mode-converting reflection phenomena are realized and verified. In short, this thesis 

first presented and organized the concept of reflective metagratings for the in-plane 

elastic waves. In addition, systematic methods of designing efficient metagratings 

for anomalous mode-converting reflection are studied deeply. 

Next, the physics inside the wave phenomena is analyzed using the concept of phase 

modulation and surface impedance. The physics of metagratings is usually explained 

using the diffraction grating theory in various metagrating studies. In these works, 

the usual explanation is as follows: the diffraction modes are controlled by the 

metagratings and modes except the target modes cancel out by the destructive 

interferences of waves. Such an explanation in verbal form is not enough for 

understanding the inherent physics of metagratings. Therefore, we tried to explain 

physics using two different concepts. Using the phase modulation concept, we can 

conclude that metagratings can be interpreted as the phase-gradient metasurface. It 

is surprising that even though we never adopt the phase modulation concept for the 

design process, the metagratings were optimized with this concept and the 
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mechanism is thought to be identical to the phase-gradient metasurfaces in other 

research. However, when interpreting phenomena other than wave steerings such as 

mode-converting reflections, the situation becomes more complex. It is difficult to 

interpret using the phase-modulation concept because it can only explain the steering 

of each longitudinal or shear wave. In addition, when observing the wave field of 

these metagratings, we can see the diverse coupling phenomena between members. 

Therefore, the concept of interpreting the whole unit cell should be used and one of 

these concepts is the surface impedance method. Since there are few methods for 

analytical interpretation of the coupling of structures, the method for analyzing the 

entire unit cell at once is important in metagratings. This method tells us that when 

realizing high-efficiency wave phenomena such as the mode-converting reflection, 

certain wave fields including stress and velocity field should be formed. Such surface 

impedance method has a limitation. That is, the surface impedance doesn’t explain 

the wave-controlling performance of metagrating with respect to the structure. 

However, the attempt to adopt the concept of analyzing an entire unit cell at once is 

important and we hope that additional physics on the metagratings will be found in 

the near future. 

Finally, we presented the applications using the reflective elastic metagratings. Such 

applications can be applied in the field of structural health monitoring and ultrasonic 

nondestructive testing. In particular, we verified that the mode-converter with a 

metagrating array in the side wall can actually convert the longitudinal into the shear 

wave (or the shear wave into the longitudinal wave) and steer the wave into the 
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designated direction. It is expected that the proposed methods of designing elastic 

metagratings and such output structures can pave the way in the field of metagratings. 

Metagratings in an elastic medium still has a variety of problems using other types 

of elastic waves such as flexural wave, guided waves, torsional waves, etc. Also, we 

hope that our approach can be applied in practical applications in the industrial fields. 

Such application examples are non-destructive structural health monitoring, flow 

speed measurement, and medical ultrasonic applications (i.e., medical imaging, 

HIFU, etc.). Recently, active metamaterials are drawn attention for their possibility 

of controlling the material properties with an electrical signal [114]. Therefore, 

metagratings with active components can also be applied in the industrial field. 
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APPENDIX A. 

Different optimized solutions for mode-converting 

reflection 

 

Since the gradient-based optimizer employed in this work is searching for local 

optima during the optimization process, different optimized solutions with high 

performances can be found. Fig. A1 shows the scattered wave fields from the 

designed unit cells which have same performance as in Cases 1 and 2 of chapter 4. 

Compared with the unit cells shown in Figs. 4.4-4.5, those shown in Fig. A1 are 

designed to be dissimilar configurations due to the different initial values at the start 

of the optimization. Nevertheless, the designed unit cells shown in Fig. A1 realize 

the target mode conversion and wave steering successfully with the same levels of 

the mode conversion efficiency in each of the cases: 99% for Cases 1 and 2. This 

implies that the proposed optimization formulation in this work is effective to search 

for appropriate geometrical dimensions in the strip-type metagratings to realize the 

mode conversion and anomalous wave steering of elastic waves in the scattered 

reflection field. 
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Fig. A.1 The scattered wave fields from the designed metagrating unit cells with 
different optimized values in Cases 1 and 2 in chapter 4. (a) Case 1: the longitudinal-
to-shear wave mode conversion with the specular reflection, (b) Case 2: the 

longitudinal-to-shear wave mode conversion with the reflection angle of 1
, 45s ref    . 
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APPENDIX B. 

Transient simulation result and performance 

 

Proposed mode-converting metagratings are also verified using the transient analysis 

done by the numerical simulation. In this thesis, we will present the result of mode-

converting anomalous reflection with the reflection angle of 1
, 45s ref     in chapter 

4 (Case 2). Compared to harmonic simulation, we used 30 cycles of sinusoidal 

longitudinal wave as a normally incident wave which can checked in Fig. B1. In Fig. 

B1(a), a normally incident longitudinal wave is impinged to the surface of 

metagrating boundary at the early part of the transient simulation ( 86 s ). In the 

reflected field, however, both longitudinal and shear wave is reflected from the 

metagratings. Since not enough longitudinal wave is incident to the surface, 

additional time for performing the phenomenon is necessary for the metagrating 

structure. That is, additional time is essential for the structure to be in steady-state 

condition which is assumed in the harmonic analysis. After about 178 s  later, a 

longitudinal wave is converted to the shear wave and almost no reflective 

longitudinal wave is observed in Fig. B1(b). For check the performance, we 

numerically calculated the total energy for a cycle in the incident longitudinal and 

reflected shear wave field. The power ratio of reflected shear wave to the incident 

longitudinal wave is calculated to be 0.975 which is slightly lower than the result of 

harmonic analysis which is 0.99. The cause of such gap between the results stems 
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from the difference between harmonic and transient analysis. Harmonic analysis 

assumes infinite cycle of incident wave, while transient analysis assumes a certain 

number of cycle of incident wave. Therefore, if numerous incident wave along with 

large analyzing time is used for the transient analysis, the efficiency can be overcome. 

Nevertheless, the proposed metagratings still show high performance compared to 

earlier works. 
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Fig. B.1 The transient analysis of mode-converting anomalous reflection. The 

transient simulation result at (a) 86t s , (b) 264t s . 

 

 

  



138 

APPENDIX C. 

Effect of the number of beam-type members 

 

Beam-type metagratings in chapter 3 are designed to manipulate high-order 

diffraction modes of longitudinal waves. And six beam-type members are used as 

general metagrating model. In this appendix, the effect of the number of beam-type 

members related with the performance of beam-type metagratings will be shown. In 

addition, the reason of choosing six beam-type members will also be discussed. As 

an example, the problem of anomalous longitudinal wave steering in Fig. 3.5 is 

solved. In this problem, normally incident longitudinal wave is reflected at the angle 

of 60   . In Fig. C1, such problem is solved using two, four, and six beam-type 

members. Beam-type members are equally distributed inside the unit cell length. For 

the performance, we adopted FFT in spatial domain to numerically analyzed the 

amplitudes of each diffraction mode. Performance of each set is compared using the 

-1st and 0th diffraction modes of longitudinal waves. We didn’t consider shear waves 

in this chapter 3, therefore it is thought to be reasonable. As the number of beam-

type members increase from two to six in Fig. C1, the amplitudes of -1st and 0th 

diffraction modes decreased. We can conclude that more than four beam-type 

members show high performance in longitudinal wave steering. In previous 

metagrating researches, the structure with more DOFs than the number of diffraction 

modes is designed to control wave steering [37]. In our problems, we proposed the 

general beam-type metagrating model for the general problem solution. In most of 
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the wave steering (and beam split) problems, the number of diffraction modes are 

calculated to be three to five. Therefore, we chose the six beam-type members which 

can control general wave steering problem. In addition, more than six beam-type 

members can be possible, but the number of beam-type members should also be 

minimalized for compactness. 
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Fig. C.1 The performance of metagratings in the respect of the number of beam-type 
members. The problem is an anomalous longitudinal wave steering with the 

reflection angle of 60   in Fig. 3.5. The numerical simulation result are presented 

in both scattered divergence field and FFT in spatial domain using (a) two beam-
type members, (b) four beam-type members, (c) six beam-type members. 
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APPENDIX D. 

Effect of incidence angle on reflection angle of 

diffraction modes 

 

We will analyze the effect of incident angle on reflection angle of diffraction modes. 

For a constant periodicity of metagratings as in Fig. 4.4(b) (See also Fig. 4.5(b)), 

every reflection angle can be obtained if incidence angle is well adjusted. However, 

for a given incidence angle, the possibility of reflection angle is checked in this part. 

By calculating diffraction grating theory, we can obtain the reflection angle respect 

to the unit cell length as in Fig. D1. If incidence angle and frequency is fixed, then 

the reflection angles of diffraction modes can only be changed by the periodicity of 

structures. So, we can check the possible reflection angle by changing the length of 

the unit cell. In Fig. D1(a), the reflection angle of all diffraction modes is presented 

with respect to periodicity for the normal incidence of longitudinal wave case. For 

simplicity, we will focus on incident longitudinal wave case. Similar result can be 

obtained for the incident shear wave case. Through the graph, we can conclude that 

every angle of reflection can be obtained when changing the unit cell length. 

However, in Fig. D1(b), we can get different form of graph when the longitudinal 

wave is obliquely incident. For the analysis, we used the 45   as an incidence angle. 

In this graph, we can see the lines of 0th modes act as vertical asymptotes. Therefore, 

between these 0th modes, no other reflection wave can be generated.  
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Fig. D.1 The reflection angle of diffraction modes with respect to the periodicity of 
structure. The longitudinal wave case for (a) normal incidence, (b) oblique incidence 

of 45  . 
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APPENDIX E. 

Transfer matrix analysis of mode-converting specular 

reflection 

 

The mode-converting specular reflection will be analyzed in this part using the 

transfer matrix method. In previous works, anisotropic metamaterial is designed to 

convert the elastic mode [19-24]. For analyzing anisotropic metamaterials, transfer 

matrix method is adopted to relate the anisotropic effective properties with the mode-

converting phenomenon. In the same manner, we can adopt this transfer matrix 

analysis in our mode-converting specular reflection. The reflection problem in 

anisotropic medium is defined in Fig. E.1(a). The maximal reflective mode-

conversion from the P wave to the S wave can be calculated from the transfer matrix 

and reformed as [19]: 

 (2 1) , ( , : integer)
2 4
qp qsd n m n m
 

    (E1) 

where ( )qp qs    denotes quasi-longitudinal (quasi-shear) wave defined in an 

anisotropic effective medium, and d is the length of effective medium in reflection 

problem. 

Then, proposed metagrating structure is homogenized into anisotropic medium as in 

Fig. E.1(b). In the effective medium length of 0.1 m, the property of anisotropic 

effective medium is determined to be 31308.0 [kg/m ]eff   , 
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11, 16.163 [GPa]effC  , 16, 3.6315 [GPa]effC  , 66, 18.162 [GPa]effC   at 120 

kHz. Comparing theoretical and numerical values, the integer n, m in Eq. (E1) are 

approximately 15 and 5, respectively. Therefore, homogenization result and 

theoretical analysis show good agreement with each other. As a conclusion, we can 

explain the mode-converting specular reflection using anisotropic effective 

properties and transfer matrix analysis. However, the explanation for mode-

converting anomalous reflection is still difficult with this method. In addition, if the 

correlation between the structure and anisotropic effective medium is found in the 

near future, then the analysis on elastic metagratings can be more strengthen. 
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Fig. E.1 The reflection problem of anisotropic effective medium when longitudinal 
wave normally incidents. (a) The problem definition of reflection problem. (b) 
Homogenization result showing same performance as proposed metagratings. 
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ABSTRACT (KOREAN) 
 

특이 파동 조향 및 모드 변환을 위한 

반사형 탄성 메타그레이팅 

 
김 신 영 

서울대학교 대학원 

기계항공공학부 

 

본 연구에서는 특이 파동 조향 및 모드 변환을 위한 반사형 탄성 메타그

레이팅을 다룬다. 탄성 메타그레이팅은 회절 격자 이론을 탄성 메타물질

의 개념에 도입하여 새롭게 설계되는 인공적인 구조물을 말한다. 최근 

들어 탄성 파동의 전파 특성을 효과적으로 조절할 수 있는 주기적인 구

조물로서 탄성 메타물질이 주목받고 있다. 이와 같은 탄성 메타물질은 

탄성 파동 및 진동을 제어하여 환자의 치료, 비파괴검사, 흡진 등을 목표

로 광범위한 산업계에서 실용적으로 이용될 수 있다. 하지만 주기적인 

구조물의 특성상 반사 또는 투과하는 파동의 회절 및 간섭 현상이 필연

적으로 발생하며, 고차 회절 모드의 발생으로 인한 파동의 효율 저하 문

제는 해결책에 있어서 여전히 본질적인 한계점을 지니고 있다. 이러한 
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한계를 극복하기 위해, 본 연구에서는 파면이 설계된 대로 정확하게 조

향될 수 있도록 탄성 파동의 각 회절 모드별 크기 및 방향을 정밀하게 

조절 가능한 반사형 탄성 메타그레이팅을 새롭게 제안한다. 

본 연구에서는 일반적인 탄성 매질의 반사 문제에서 종파 및 횡파의 특

이 파동 조향 및 모드 변환을 목표로 한다. 잘 설계된 탄성 메타그레이

팅을 도입함으로써 태생적으로 발생하는 반사 파동의 효율 저하 문제를 

해결하고자 한다. 이러한 반사 문제는 두 단계를 통해 해결되었다. 해결

을 위한 첫 번째 단계에서는, 횡파의 고려없이 종파만을 제어하는 단일 

모드 파동 제어 문제를 해결하였다. 이때, 다수의 빔-타입 부재를 탄성 

파동 산란자로 사용하며, 이론적으로 모델링한 빔-타입 부재를 이용하여 

잘 설계된 탄성 메타그레이팅을 통해 산란하는 종파의 제어 현상을 구현

한다. 하지만 빔-타입 메타그레이팅은 그 설계 변수가 적으며, 굽힘 및 

종적인 운동만 가능한 가느다란 형상으로 인하여 종파와 횡파의 다양한 

회절 모드를 제어하기 어렵다. 이에 두 번째 단계에서는, 종파(또는 횡파)

를 모드 변환하면서 동시에 조향하는 이중 모드 파동 제어 문제를 해결

하는 데에 있어 파동 산란자로 부재의 폭 등이 고려되어 자유도가 보다 

많은 스트립-타입 연속체 부재를 사용한다. 이 단계에서는 수치해석으로 

구한 해를 바탕으로 종파와 횡파의 모드별 크기를 정량화하고, 이를 통

해 탄성 파동을 모드 변환하면서 조향할 수 있는 스트립-타입 메타그레
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이팅을 이용하여 현상을 구현한다. 정리하면, 최종 목표를 달성하기 위해, 

두 단계로 나누어 반사형 탄성 메타그레이팅의 설계 방법을 제시하고, 

이를 통해 탄성 파동의 고차 회절 모드를 제어하여 특이 파동 조향 및 

모드 변환 현상을 구현한다. 본 연구는 각 단계에서 관련된 물리 현상을 

분석하여 현상을 규명하며, 실험적으로 검증할 뿐만 아니라, 실제 초음파 

비파괴검사 산업에서 적용 가능한 어플리케이션을 제시하여 탄성 메타그

레이팅 실용화의 가능성을 열었다는 측면에서 그 의의가 있다. 

 

주요어: 탄성 메타그레이팅, 회절 격자 이론, 특이 파동 조향, 

탄성 모드 변환, 탄성 파동 산란자 

학 번 : 2016-22851  
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