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Abstract

Analyzing Loss Landscape of Deep Learning
Models for Better Robustness and

Generalization

Hoki Kim

Department of Industrial Engineering

The Graduate School

Seoul National University

Recent advances in deep learning have demonstrated significant performance im-

provements in various domains, such as computer vision and speech recognition,

yielding numerous industrial applications. Compared to other machine learning mod-

els, deep learning models have a large number of parameters and this brings near

zero training loss that was previously considered impossible. To train these over-

parameterized models, we generally minimize the loss on training data, which we

call empirical risk minimization (ERM). However, recent studies have demonstrated

that these deep learning models trained by ERM may suffer from two major prob-

lems: adversarial vulnerability and poor generalization.

Adversarial vulnerability is an intriguing property of deep learning models that

makes them susceptible to adversarial attacks that create malicious examples with

slight modifications (Szegedy et al., 2013; Goodfellow et al., 2014). Prior studies

have also confirmed that there exist the potential risks of deep learning models in
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real-world applications (Papernot et al., 2017; Kurakin et al., 2016). Adversarial

attacks entail severe hazards in real-world applications, e.g., causing autonomous

vehicle accidents by manipulating decision-making or extracting private information

by circumventing voice authorization. Thus, to prevent these malicious cases arisen

from the existence of adversarial attacks, many researchers proposed various methods

to enhance the robustness of deep learning models against adversarial attacks.

Poor generalization, another issue with current deep learning models, is a large

discrepancy between training accuracy and test accuracy. In other words, existing

methods can successfully minimize loss on train datasets, but this does not guarantee

high performance on test datasets (Ishida et al., 2020; Foret et al., 2020). To achieve

an ideal performance over various domains, improving the generalization of neural

networks has been a core challenge in deep learning.

In this dissertation, focusing on the fact that both robustness and generalization

are heavily related to the loss landscape, we aim to gain a deeper understanding of

adversarial robustness and generalization performance of deep learning models by

analyzing their loss landscape. First, we investigate the adversarial robustness with

respect to its loss landscape. Through analyzing the loss landscape of adversarially

trained models, we discover that the distortion of the loss landscape can occur, re-

sulting in poor adversarial robustness. Based on this observation, we extend the loss

landscape analysis to adversarial attacks and defenses to improve the adversarial ro-

bustness of deep learning models. We further analyze sharpness-aware minimization

with its loss landscape and reveal that there exists a convergence instability problem

due to its inherent algorithm. Specifically, whether the loss landscape in the parame-

ter space has a saddle point can heavily affect the optimization and its generalization
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performance. Given this phenomenon, we investigate the loss landscape with respect

to perturbation in the parameter space and improve generalization performance by

exploring a wider loss landscape.

Keywords: Deep learning, Robustness, Generalization, Loss landscape
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Chapter 1

Introduction

1.1 Motivation of the Dissertation

Recent developments in deep learning have shown considerable enhancement in per-

formance across a range of domains, such as computer vision and speech recognition.

Based on these improvements, deep learning models are now actively used in real-

world applications such as autonomous vehicles and smart home devices. A core

mechanism behind the success of deep learning is minimizing training loss with a

number of parameters, which we call empirical risk minimization (ERM). Given an

input x, model parameters w, and a loss function ℓ(x,w), ERM can be formulated

as follows:

min
w

ℓ(x,w). (1.1)

This has enabled deep learning models to reach near zero training loss and attain

performance levels that were previously thought to be impossible.

However, recent research has revealed that this simple objective for deep learning

models might result in two major issues: adversarial vulnerability and poor general-

ization. The intriguing property of deep learning models known as adversarial vul-

nerability corresponds to the phenomenon that deep learning models are vulnerable
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to adversarial examples, which are intentionally perturbed to cause misclassification

(Szegedy et al., 2013; Goodfellow et al., 2014). This adversarial vulnerability has

been observed in various domains, including vision, audio, time series, etc. Moreover,

adversarial vulnerability can lead to severe hazards in real-world applications, such

as causing autonomous vehicle accidents by manipulating decision-making or ex-

tracting private information by circumventing voice authorization. (Papernot et al.,

2017; Kurakin et al., 2016).

A method that generates adversarial examples is called an adversarial attack,

which aims to find the perturbation δ that maximizes the loss function for given

input x and parameter w:

max
δ
ℓ(x + δ,w). (1.2)

By using techniques, such as back-propagation and genetic algorithms, prior studies

have found a large number of adversarial attacks in various fields.

To prevent malicious cases that arise from these adversarial attacks, many re-

searchers aim to enhance the robustness of deep learning models against adversarial

attacks. Adversarial robustness can be guaranteed by the following equation:

min
w

max
δ
ℓ(x + δ,w). (1.3)

Since Szegedy et al. (2013) identified the existence of adversarial examples, many

defenses have been proposed (Athalye et al., 2018a; Tramer et al., 2020), but the

state-of-art performance is still insufficient to prevent models against possible ad-

versarial examples (Madry et al., 2018; Zhang et al., 2019b).

Poor generalization, another issue with current deep learning models, is a large
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gap between training accuracy and test accuracy. Under the i.i.d. assumption on

data, minimizing training loss generally yields the best solution of w on the true

distribution of data, however, this i.i.d assumption is often violated by the limitation

of training data and model structure in common practice. Therefore, existing meth-

ods can successfully minimize the loss on train datasets, but this does not guarantee

high performance on test datasets (Ishida et al., 2020; Foret et al., 2020).

To achieve an ideal generalization performance, improving the generalization

of neural networks has been a core challenge in deep learning. Prior studies have

suggested diverse techniques such as augmentation Zhang et al. (2017b); Yun et al.

(2019) and regularization Srivastava et al. (2014); Ioffe and Szegedy (2015); Barrett

and Dherin (2020), but recently researchers have discovered the relationship between

the geometric characteristics of the loss surface and the generalization performance

Hochreiter and Schmidhuber (1994); Keskar et al. (2017); Li et al. (2018). These

studies discuss the geometric properties of loss surfaces and argue that the sharpness,

which measures the flatness of a loss landscape, might be a core component of

generalization. Following Hochreiter and Schmidhuber (1994); Keskar et al. (2017);

Li et al. (2018), extensive theoretical and empirical analyses on the sharpness lead

to new sharpness-aware training methods (Izmailov et al., 2018; He et al., 2019a;

Chaudhari et al., 2019). Among them, sharpness-aware minimization (SAM) Foret

et al. (2020) has shown state-of-the-art performance by reaching flat minima across

various tasks and model structures Zhuang et al. (2021); Chen et al. (2022). SAM

aims to minimize the worst-case loss over its parameter neighborhood rather than
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minimizing the vanilla training loss ℓ(w,w) as follows:

min
w

max
δ
ℓ(x,w + δ), (1.4)

where δ is a perturbation in the parameter space.

In this dissertation, we focus on the fact that both adversarial robustness Eq.

(1.2) and generalization Eq. (1.4) depends on the loss landscape ℓ(·). By analyzing

their loss landscape, we aim to gain a deeper understanding of adversarial robustness

and generalization performance.

1.2 Aims of the Dissertation

To enhance the adversarial robustness and generalization performance of deep learn-

ing models, we conduct four different works in this dissertation. The detailed sum-

maries of this research are presented as follows:

Adversarial Robustness and Loss Landscape (Chapter 2) Adversarial ex-

amples are perturbations of inputs designed to deceive deep learning models by

adding adversarial noise. Despite being undetectable to humans, these perturba-

tions lead to incorrect classifications. To improve the robustness of deep-learning

models against adversarial attacks, a line of work was proposed, with projected gra-

dient descent (PGD) adversarial training (Madry et al., 2018) being one of the most

successful approaches. However, this method requires a high computational cost due

to multiple forward and back propagation during batch training. To reduce this cost,

single-step adversarial training methods have been proposed, such as fast adversarial

training (Wong et al., 2020). Although fast adversarial training is both robust and
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efficient, it suffers from “catastrophic overfitting,” where robustness against PGD

suddenly decreases to 0%. In this study, we analyze the differences before and af-

ter catastrophic overfitting, and identify the relationship between distortion of the

decision boundary and catastrophic overfitting. We find that sometimes a smaller

perturbation is sufficient to fool the model, while the model is robust against larger

perturbations during single-step adversarial training, which we call “decision bound-

ary distortion.”

Geometry-Aware Adversarial Attack and Defense (Chapter 3) Deep neu-

ral networks have demonstrated impressive performance in a variety of tasks, from

image classification to speech recognition. However, they have been shown to be

vulnerable to adversarial examples, which are generated by adding imperceptible

noise to the original example. To better understand and improve the adversarial

robustness of neural networks, two different works have been conducted in various

applications. These works include generating transferable adversarial examples and

improving adversarial training. Through these works, we discover that the transfer-

ability of audio adversarial examples is related to noise sensitivity, and that there is

a negative effect of the smoothness regularize on maximizing the margin.

Generalization and Loss Landscape (Chapter 4) Sharpness-aware minimiza-

tion is a recently proposed training method that seeks to find flat minima in deep

learning, resulting in state-of-the-art performance. We investigate the convergence

instability of SAM dynamics near a saddle point, utilizing the qualitative theory

of dynamical systems. We theoretically prove that the saddle point can become an

attractor under SAM dynamics, and that SAM diffusion is worse than that of vanilla

5



gradient descent in terms of saddle point escape. Additionally, we show that mo-

mentum and batch-size are important to mitigate the convergence instability and

achieve high generalization performance.

Sharpness-Aware Minimization with Multi-Ascent (Chapter 5) Recent

studies have discussed the geometric properties of loss surfaces in order to under-

stand and improve the generalization performance of deep neural networks. They

been argued that the sharpness, which measures the flatness of a minimum, may

be a core component of generalization. In this chapter, we analyze the effect of the

number of ascent steps on the inner maximization and investigate the difference be-

tween models trained with single-step and multi-step ascent. We demonstrate that

perturbed weights obtained by different number of ascent steps have their unique

gradient information and bring different effects on the perturbed loss surface. A new

training method is proposed which utilizes all gradient information during multi-step

ascent and is shown to improve generalization performance across various models

and datasets.

1.3 Organization of the Dissertation

The remainder of this dissertation is organized as follows. In Chapter 2, by inves-

tigating the loss landscape of adversarially trained models, we first discover that

distortion of the landscape can lead to poor adversarial robustness. In Chapter 3,

we extend the loss landscape analysis to adversarial attacks and defenses to im-

prove the adversarial robustness of deep learning models. In Chapter 4, we analyze

sharpness-aware minimization and its loss landscape and reveal that the presence of
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a saddle point in the parameter space can affect the optimization and generalization

performance. In Chapter 5, we explore a wider loss landscape with respect to per-

turbation in the parameter space, resulting in improved generalization performance.

Finally, we concludes the dissertation along with the contribution and future plan

of the research.
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Chapter 2

Adversarial Robustness and Loss Landscape

2.1 Chapter Overview

Adversarial examples are perturbed inputs that are designed to deceive machine

learning classifiers by adding adversarial noises to the original data. Although such

perturbations are sufficiently subtle and undetectable by humans, they result in an

incorrect classification. Since deep-learning models were found to be vulnerable to

adversarial examples (Szegedy et al., 2013), a line of work was proposed to mitigate

the problem and improve robustness of the models. Among the numerous defensive

methods, projected gradient descent (PGD) adversarial training (Madry et al., 2018)

is one of the most successful approaches for achieving robustness against adversarial

attacks. Although PGD adversarial training serves as a strong defensive algorithm,

because it relies on a multi-step adversarial attack, a high computational cost is

required for multiple forward and back propagation during batch training.

To overcome this issue, other studies (Shafahi et al., 2019; Wong et al., 2020) on

reducing the computational burden of adversarial training using single-step adver-

sarial attacks (Goodfellow et al., 2014) have been proposed. Among them, inspired

by Shafahi et al. (2019), Wong et al. (2020) suggested fast adversarial training, which

is a modified version of fast gradient sign method (FGSM) adversarial training de-
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Figure 2.1: Visualization of distorted decision boundary. The origin indicates the
original image x, the label of which is “dog”. In addition, v1 is the direction of a
single-step adversarial perturbation and v2 is a random direction. The adversarial
image x + v1 is classified as the correct label, although there is distorted interval
where x + k · v1 is misclassified even when k is less than 1. Due to this decision
boundary distortion, single-step adversarial training becomes vulnerable to multi-
step adversarial attacks.

signed to be as effective as PGD adversarial training.

Fast adversarial training has demonstrated both robustness and efficiency; how-

ever, it suffers from the problem of “catastrophic overfitting,” which is a phenomenon

that robustness against PGD suddenly decreases to 0%, whereas robustness against

FGSM rapidly increases. Wong et al. (2020) first discovered this issue and suggested

the use of early stopping to prevent it. Later, it was found that catastrophic over-

fitting also occurs in different single-step adversarial training methods such as free

adversarial training (Andriushchenko and Flammarion, 2020).

In this regard, few attempts have been made to discover the underlying rea-

son for catastrophic overfitting and methods proposed to prevent this failure (An-
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driushchenko and Flammarion, 2020; Vivek and Babu, 2020; Li et al., 2020a). How-

ever, these approaches were computationally inefficient or did not provide a funda-

mental reason for the problem.

In this study, we first analyze the differences before and after catastrophic over-

fitting. We then identify the relationship between distortion of the decision boundary

and catastrophic overfitting. Unlike the previous notion in which a larger perturba-

tion implies a stronger attack, we discover that sometimes a smaller perturbation is

sufficient to fool the model, whereas the model is robust against larger perturbations

during single-step adversarial training. We call this phenomenon “decision boundary

distortion.”

Figure 2.1 shows an example of decision boundary distortion by visualizing the

loss surface. The model is robust to perturbations when the magnitude of the attack

is equal to the maximum perturbation ϵ, but not to other smaller perturbations.

When decision boundary distortion occurs, the model becomes more robust against

a single-step adversarial attack but reveals fatal weaknesses to multi-step adversarial

attacks and leads to catastrophic overfitting.

Through extensive experiments, we empirically discovered the relationship be-

tween single-step adversarial training and decision boundary distortion, and found

that the problem of single-step adversarial training is a fixed magnitude of the per-

turbation, not the direction of the attack. Based on this observation, we present a

simple algorithm that determines the appropriate magnitude of the perturbation for

each image and prevents catastrophic overfitting. 1

1This work was accepted to AAAI 2021 (Kim et al., 2021a).
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2.2 Preliminaries

2.2.1 Adversarial Robustness

There are two major movements for building a robust model: provable defenses and

adversarial training.

A considerable number of studies related to provable defenses of deep-learning

models have been published. Provable defenses attempt to provide provable guar-

antees for robust performance, such as linear relaxations (Wong and Kolter, 2018;

Zhang et al., 2019a), interval bound propagation (Gowal et al., 2018; Lee et al.,

2020), and randomized smoothing (Cohen et al., 2019; Salman et al., 2019). However,

provable defenses are computationally inefficient and show unsatisfied performance

compared to adversarial training.

Adversarial training is an approach that augments adversarial examples gener-

ated by adversarial attacks (Goodfellow et al., 2014; Madry et al., 2018; Tramèr

et al., 2017a). Because this approach is simple and achieves high empirical robust-

ness for various attacks, it has been widely used and developed along with other

deep learning methods such as mix-up (Zhang et al., 2017b; Lamb et al., 2019; Pang

et al., 2019b) and unsupervised training (Alayrac et al., 2019; Najafi et al., 2019;

Carmon et al., 2019).

In this study, we focus on adversarial training. Given an example (x, y) ∼ D,

let ℓ(x, y; θ) = ℓ(fθ(x), y) denote the loss function of a deep learning model f with

parameters θ. Then, adversarial training with a maximum perturbation ϵ can be

formalized as follows:

min
θ

E(x,y)∼D[ max
δ∈B(x,ϵ)

ℓ(x+ δ, y; θ)] (2.1)
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A perturbation δ is in B(x, ϵ) that denotes the ϵ-ball around an example x with a

specific distance measure. The most used distance measures are L0, L2, and L∞. In

this study, we use L∞ for such a measure.

However, the above optimization is considered as NP-hard because it contains

a non-convex min-max problem. Thus, instead of the inner maximization problem,

adversarial attacks are used to find the perturbation δ.

Fast gradient sign method (FGSM) (Goodfellow et al., 2014) is the simplest

adversarial attack, which uses a sign of a gradient to find an adversarial image

x′. Because FGSM requires only one gradient, it is considered the least expensive

adversarial attack (Goodfellow et al., 2014; Madry et al., 2018).

x′ = x+ ϵ · sgn(∇xℓ(x, y; θ)) (2.2)

Projected gradient descent (PGD) (Madry et al., 2018) uses multiple gra-

dients to generate more powerful adversarial examples. With a step size α, PGD can

be formalized as follows:

xt+1 = ΠB(x,ϵ)(x
t + α · sgn(∇xℓ(x, y; θ))) (2.3)

where ΠB(x,ϵ) refers the projection to the ϵ-ball B(x, ϵ). Here, xt is an adversarial

example after t-steps. A large number of steps allows us to explore more areas

in B(x, ϵ). Note that PGDn corresponds to PGD with n steps (or iterations). For

instance, PGD7 indicates that the number of PGD steps is 7.

2.2.2 Single-step and Multi-step Adversarial Attack

Single-step adversarial training was previously believed to be a non-robust method

because it produces nearly 0% accuracy against PGD (Madry et al., 2018). Moreover,
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the model trained using FGSM has been confirmed to have typical characteristics,

such as gradient masking, which indicates that a single-step gradient is insufficient

to find a decent adversarial examples (Tramèr et al., 2017a). For the above reasons,

a number of studies have been conducted on multi-step adversarial attacks.

Contrary to this perception, however, free adversarial training (Shafahi et al.,

2019) has achieved a remarkable performance with a single-step gradient using re-

dundant batches and accumulative perturbations. Following Shafahi et al. (2019),

Wong et al. (2020) proposed fast adversarial training using FGSM with a uniform

random initialization. Fast adversarial training shows an almost equivalent perfor-

mance to those of PGD (Madry et al., 2018) and free adversarial training (Shafahi

et al., 2019).

η = Uniform(−ϵ, ϵ)

δ = η + α · sgn(∇ηℓ(x+ η, y; θ))

x′ = x+ δ

(2.4)

2.2.3 Catastrophic Overfitting

Although fast adversarial training performs well in a short time, a previously undis-

covered phenomenon has been identified. That is, after a few epochs with single-step

adversarial training, robustness of the model against PGD decreases sharply. This

phenomenon is called catastrophic overfitting. Fast adversarial training (Wong et al.,

2020) uses early stopping to temporally avoid catastrophic overfitting by tracking

robustness accuracy against PGD on the training batches.

To apply early stopping, robustness against PGD must be continuously con-

firmed. Furthermore, standard accuracy does not yield the maximum potential (An-
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(a) Robust accuracy and distortion
(b) Mean of absolute value of PGD7 per-
turbations and L2 norm of the gradients
of the images

Figure 2.2: (CIFAR10) Analysis of catastrophic overfitting. Plot (a) shows robust ac-
curacy of fast adversarial training against FGSM (red) and PGD7 (blue). Distortion
(green) denotes the ratio of images in distorted interval in Equation (2.5). Plot (b)
shows the mean of absolute value of PGD7 perturbation E[||δPGD7||1] (purple) and
the L2 norm of the gradients of the images E[||∇x||2] (orange). Dashed black lines
correspond to the 240th batch, which is the start point of catastrophic overfitting
in both plots.

driushchenko and Flammarion, 2020). To resolve these shortcomings and gain a

deeper understanding of catastrophic overfitting, a line of work has been proposed.

Vivek and Babu (2020) identified that catastrophic overfitting arises with early over-

fitting to FGSM. To prevent this type of overfitting, the authors introduced dropout

scheduling and demonstrated stable adversarial training for up to 100 epochs. In

addition, Li et al. (2020a) trained a model with FGSM at first and then changed it

into PGD when there was a large decrease in the PGD accuracy. Andriushchenko

and Flammarion (2020) found that an abnormal behavior of a single filter leads

to a nonlinear model with single-layer convolutional networks. Based on this ob-

servation, they proposed a regularization method, GradAlign, which maximizes

cos(∇xℓ(x, y; θ),∇xℓ(x + η, y; θ)) and prevents catastrophic overfitting by inducing

a gradient alignment.

However, even with an increased understanding of catastrophic overfitting and
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Figure 2.3: Process of normal decision boundary turns into distorted decision bound-
ary. (Left) The loss surface before catastrophic overfitting with a FGSM adversarial
direction v1 and a random direction v2. The red point denotes an adversarial example
x+v1 generated from the original image x, the label of which is “dog.” (Middle) The
changed loss surface after learning adversarial example x+ v1. Here, v1 is the same
vector as that on the left. Distorted interval begins to occur for the first time. (Right)
As training continues, distorted decision boundary grows uncontrollably such that
robustness against multi-step adversarial attacks decreases.

methods for its prevention, a key question remains unanswered:

What characteristic of single-step adversarial attacks is the cause of catastrophic

overfitting?

In this chapter, we discuss the cause of catastrophic overfitting in the context of

single-step adversarial training. We then propose a new simple method to facilitate

stable single-step adversarial training, wherein longer training can produce a higher

standard accuracy with sufficient adversarial robustness.

2.3 Methodology

2.3.1 Revisiting Catastrophic Overfitting

First, to analyze catastrophic overfitting, we start by recording robust accuracy

of fast adversarial training on CIFAR-10 (Krizhevsky et al., 2009). The maximum

perturbation ϵ is fixed to 8/255. We use FGSM and PGD7 to verify robust accuracy
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with the same settings ϵ = 8/255 and a step size α = 2/255.

Figure 2.2 shows statistics on the training batch when catastrophic overfitting

occurs (71st out of 200 epochs). In plot (a), after 240 batches, robustness against

PGD7 begins to decrease rapidly; conversely, robustness against FGSM increases.

Plot (b) shows the mean of the absolute value of PGD7 perturbation E[||δPGD7||1]

and squared L2 norm of the gradient of the images E[||∇x||2] of each batch. After

catastrophic overfitting, there is a trend of decreasing mean perturbation. This is

consistent with the phenomenon in which the perturbations of the catastrophic over-

fitted model are located away from the maximum perturbation, unlike the model

that is stopped early (Wong et al., 2020). Concurrently, a significant increase in the

squared L2 norm of the gradient is also observed. The highest point indicates a large

difference, approximately 35 times greater than that before catastrophic overfitting.

These two observations, a low magnitude of perturbations and a high gradient

norm, make us wonder what would the loss surface looks like. Figure 2.3 illustrates

the progress of adversarial training in which catastrophic overfitting occurs. The

loss surface of the perturbed example is shown, where the green spot denotes the

original images and the red spot denotes the adversarial example used for adversarial

training in the batch. The v1 axis indicates the direction of FGSM, whereas the v2

axis is a random direction. The true label of the original sample is “dog.” Hence,

the purple area indicates where the perturbed sample is correctly classified, whereas

the blue area indicates a misclassified area.

On the left side of Figure 2.3, we can easily observe that the model is robust

against FGSM. However, after training the batch, an interval vulnerable to a smaller

perturbation than the maximum perturbation ϵ appears, whereas the model is still
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robust against FGSM. This distorted interval implies that the adversarial example

with a larger perturbation is weaker than that with a smaller perturbation, which is

contrary to the conventional belief that a larger magnitude of perturbation induces

a stronger attack. As a result, the model with distorted interval is vulnerable to

multi-step adversarial attacks that can search the vulnerable region further inside

B(x, ϵ). As the training continues, the area of distorted interval increases as shown

in the figure on the right. It is now easier to see that the model is now perfectly

overfitted for FGSM, yet loses its robustness to the smaller perturbations. We call

this phenomenon “decision boundary distortion.”

The evidence of decision boundary distortion is also shown in Figure 2.2 (b).

When robustness against PGD7 sharply decreases to 0%, the mean of the absolute

value of PGD7 perturbation E[||δPGD7||1] decreases. It indicates that, when catas-

trophic overfitting arises, a smaller perturbation is enough to fool the model than the

maximum perturbation ϵ, which implies that distorted interval exists. In addition,

during the process of having distorted decision boundary, as shown in the figure on

the right, the loss surface inevitably becomes highly curved, which matches the ob-

servation of increasing the L2 norm of the gradients of the images E[||∇x||2]. This is

also consistent with previous research (Andriushchenko and Flammarion, 2020). An-

driushchenko and Flammarion (2020) argued that ∇xℓ(x, y; θ) and ∇xℓ(x + η, y; θ)

tend to be perpendicular in catastrophic overfitted models where η is drawn from a

uniform distribution U(−ϵ, ϵ). Considering that a highly curved loss surface implies

(∇xℓ(x, y; θ))T (∇xℓ(x+ η, y; θ)) ≈ 0 in high dimensions, the reason why GradAlign

(Andriushchenko and Flammarion, 2020) can avoid catastrophic overfitting might

be because the gradient alignment leads the model to learn a linear loss surface
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Figure 2.4: (CIFAR10) Robust accuracy and distortion on the training batch for
each epoch. Two multi-step adversarial attacks show zero distortion during the en-
tire training time and reach nearly 100% PGD7 accuracy. By contrast, fast adver-
sarial training shows high distortion and eventually collapses after the 71st epoch.
The proposed method successfully avoids such problems and achieves a high PGD7
accuracy similiar to multi-step adversarial training (Best viewed in color).

which reduces the chance of having distorted decision boundary.

We next numerically measured the degree of decision boundary distortion. To do

so, we first define a new measure distortion d. Given a deep learning model f and a

loss function ℓ, distortion d can be formalized as follows:

SD = {x|∃k ∈ (0, 1) s.t. f(x+ k · ϵ · sgn(∇xℓ)) ̸= y}

SN = {x|f(x) = y, f(x+ ϵ · sgn(∇xℓ)) = y}

d =
|SD ∩ SN |
|SN |

(2.5)

where (x, y) is an example drawn from dataset D. However, because the loss func-

tion of the model is not known explicitly, we use a number of samples to estimate

distortion d. In all experiments, we tested 100 samples in the adversarial direction

δ = ϵ · sgn(∇xℓ) for each example. Indeed, we can see that distortion increases in

Figure 2.2 (a) when catastrophic overfitting arises.

To verify that decision boundary distortion is generally related to catastrophic
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overfitting, we demonstrate how distortion and robustness against PGD7 change

during training. We conducted an experiment on five different models: fast adver-

sarial training (Fast Adv.) (Wong et al., 2020), PGD2 (PGD2 Adv.) (Madry et al.,

2018), TRADES (Zhang et al., 2019b), GradAlign (Andriushchenko and Flammar-

ion, 2020), and the proposed method (Ours). All models were tested on ϵ = 8/255.

The step size α is set to α = 1.25ϵ, α = 1/2ϵ, and α = 1/4ϵ for fast adversarial train-

ing, PGD2 adversarial training, and TRADES, respectively. We also conducted same

experiment on PGD adversarial training with different number of steps; however,

because these show similar results to PGD2 adversarial training, we only included

PGD2. TRADES is trained with seven steps.

As the key observation in Figure 2.4, the point where decision boundary distor-

tion begins in fast adversarial training (22nd epoch) is identical to the point where

robustness against PGD7 sharply decreases; that is, catastrophic overfitting occurs.

Then, when decision boundary distortion disappears (45th to 72nd epoch), the model

immediately recovers robust accuracy. After the 72nd epoch, the model once again

suffers a catastrophic overfitting and never regains its robustness with high distor-

tion. Hence, we conclude that there is a close connection between decision boundary

distortion and the vulnerability of the model against multi-step adversarial attacks.

2.3.2 Stable Single-Step Adversarial Training

Based on previous results, we assume that distorted decision boundary might be the

reason for catastrophic overfitting. Here, we stress that the major cause of distorted

decision boundary is that single-step adversarial training uses a point with a fixed

distance ϵ from the original image x as an adversarial image x′ instead of an optimal

solution of the inner maximum in Equation (2.1). Under this linearity assumption,
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the most powerful adversarial perturbation δ would be the same as ϵ·sgn(∇xℓ) where

ϵ is the maximum perturbation, and the following formula should be satisfied.

ℓ(x+ δ)− ℓ(x) = (∇xℓ)
T δ

= (∇xℓ)
T ϵ · sgn(∇xℓ)

= ϵ||∇xℓ||1

(2.6)

However, as confirmed in the previous scetion, decision boundary distortion with

a highly curved loss surface has been observed during the training phase, which

indicates that ϵ is no longer the strongest adversarial step size in the direction of

δ. Thus, the linear approximation of the inner maximization is not satisfied when

distorted decision boundary arises.

To resolve this issue, we suggest a simple fix to prevent catastrophic overfitting by

forcing the model to verify the inner interval of the adversarial direction. In this case,

the appropriate magnitude of the perturbation should be taken into consideration

instead of using ϵ:

δ = ϵ · sgn(∇xℓ)

arg max
k∈[0,1]

ℓ(x+ k · δ, y; θ)
(2.7)

Here, we introduce k, which denotes the scaling parameter for the original adversarial

direction sgn(∇xℓ). In contrast to previous single-step adversarial training which uses

a fixed size of k = 1, an appropriate scaling parameter k∗ helps the model to train
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Algorithm 1: Stable single-step adversarial training

Parameter: B mini-batches, a perturbation size ϵ, a step size α, and c
check points for a network fθ

for i = 1, ..., B do
η = Uniform(−ϵ, ϵ)
ŷi,0 = fθ(xi + η)
δ = η + α · ∇ηℓ(ŷi,0, yi)
for j = 1, ..., c do

ŷi,j = fθ(xi + j · δ/c))
end
x′i = xi + min({k|ŷi,k ̸= yi} ∪ {1}) · δ/c
θ = θ −∇θℓ(fθ(x

′
i), yi)

end

stronger adversarial examples as follows:

δ = ϵ · sgn(∇xℓ)

k∗ = mink∈[0,1]{k|y ̸= f(x+ k · δ; θ)}

min
θ

E(x,y)∼D[ℓ(x+ k∗ · δ, y; θ)]

(2.8)

In this way, regardless of the linearity assumption, we can train the model with

stronger adversarial examples that induce an incorrect classification in the adver-

sarial direction. Simultaneously, we can also detect distorted decision boundary by

inspecting the inside of distorted interval, as shown in Figure 2.3.

However, because we do not know the explicit loss function of the model, forward

propagation is the only approach for checking the adversarial images in the single-

step adversarial attack direction. Hence, we propose the following simple method.

First, we calculate the single-step adversarial direction δ. Next, we choose multiple

checkpoints (x+ 1
c δ, ..., x+ c−1

c δ, x+ δ). Here, c denotes the number of checkpoints

except for the clean image x, which is tested in advance during the single-step
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adversarial attack process. We then feed all checkpoints to the model and verify

that the predicted label ŷj matches the correct label y for all checkpoints x + j
cδ

where j ∈ {1, ..., c}. Among the incorrect images and the clean image x, the smallest

j is selected; if all checkpoint are correctly classified, the adversarial image x′ = x+δ

is used. Algorithm 1 shows a summary of the proposed method.

Suppose the model has L layers with n neurons. Then, the time complexity

of forward propagation is O(Ln2). Considering that backward propagation has the

same time complexity, the generation of one adversarial example requires O(2Ln2)

in total. Thus, with c checkpoints, the proposed method consumes O((c + 4)Ln2)

because it requires one adversarial direction O(2Ln2), forward propagation for c

checkpoints O(cLn2), and one optimization step O(2Ln2). Compared to PGD2 ad-

versarial training, which demands O(6Ln2), the proposed method requires more

time when c > 2. However, the proposed method does not require additional mem-

ory for computing the gradients of the checkpoints because we do not need to track

a history of variables for backward propagation; hence, larger validation batch sizes

can be considered. Indeed, the empirical results indicate that the proposed method

consumes less time than PGD2 adversarial training under c ≤ 4.

Figure 2.4 shows that the proposed method successfully avoids catastrophic over-

fitting despite using a single-step adversarial attack. Furthermore, the proposed

model not only achieves nearly 100% robustness against PGD7, which fast adver-

sarial training cannot accomplish, but also possesses zero distortion until the end

of the training. This is the opposite of the common understanding that single-step

adversarial training methods cannot perfectly defend the model against multi-step

adversarial attacks.
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Figure 2.5: (CIFAR10) Comparison of PGD7 accuracy on the training batch between
fast adversarial training with ϵ-scheduling and the proposed method. The dashed line
indicates the average maximum perturbation E [||δ||∞] calculated from the proposed
method for each epoch and is used as the maximum perturbation of fast adversarial
training.

The proposed model learns the image with the smallest perturbation among the

incorrect adversarial images. In other words, during the initial states, the model out-

puts incorrect predictions for almost every image such that min({k|ŷi,k ̸= yi}∪{1}) =

0 in Algorithm 1. As additional batches are trained, the average maximum pertur-

bation E[||δ||∞] increases, as in Figure 2.5, where δ = x′−x and x′ is selected by the

proposed method. Thus, the proposed method may appear to simply be a variation

of ϵ-scheduling. In order to point out the difference, fast adversarial training with

ϵ-scheduling is also considered. For each epoch, we use the average maximum pertur-

bation E[||δ||∞] calculated from the proposed method as the maximum perturbation

ϵ. The result is summarized in Figure 2.5.

Notably, ϵ-scheduling cannot help fast adversarial training avoid catastrophic

overfitting. The main difference between ϵ-scheduling and the proposed method is

that, whereas ϵ-scheduling uniformly applies the same magnitude of the perturbation

for every image, the proposed method gradually increases the magnitude of the

perturbation appropriately by considering the loss surface of each image. Therefore,
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in contrast to ϵ-scheduling, the proposed method successfully prevents catastrophic

overfitting, despite the same size of the average perturbation used during the training

process.

2.4 Experiments

2.4.1 Experimental Setup

In this section, we conduct a set of experiments on CIFAR10 (Krizhevsky et al.,

2009) and Tiny ImageNet (Le and Yang, 2015) , using PreAct ResNet-18 (He et al.,

2016a). Input normalization and data augmentation including 4-pixel padding, ran-

dom crop and horizontal flip are applied. We use SGD with a learning rate of

0.01, momentum of 0.9 and weight decay of 5e-4. To check whether catastrophic

overfitting occurs, we set the total epoch to 200. The learning rate decays with

a factor of 0.2 at 60, 120, and 160 epochs. All experiments were conducted on

a single NVIDIA TITAN V over three different random seeds. Our implementa-

tion in PyTorch (Paszke et al., 2019) with Torchattacks (Kim, 2020) is available at

https://github.com/Harry24k/catastrophic-overfitting.

During the training session, the maximum perturbation ϵ was set to 8/255. For

PGD adversarial training, we use a step size of α = max(2/255, ϵ/n), where n is the

number of steps. TRADES uses α = 2/255 and seven steps for generating adversarial

images. Following Wong et al. (2020), we use α = 1.25ϵ for fast adversarial training

and the proposed method. The regularization parameter β for the gradient alignment

of GradAlign is set to 0.2 as suggested by Andriushchenko and Flammarion (2020).
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Figure 2.6: (CIFAR10) Direction of FGSM adversarial perturbation v1 and random
direction v2.
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Figure 2.7: (CIFAR10) Direction of fast adversarial perturbation v1 and random
direction v2.
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Figure 2.8: (CIFAR10) Direction of FGSM adversarial perturbation v1 and random
direction v2.
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Figure 2.9: (CIFAR10) Direction of fast adversarial perturbation v1 and random
direction v2.
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2.4.2 Visualizing Decision Boundary Distortion

CIFAR10

In this section, we aim to provide more figures to describe the relationship between

catastrophic overfitting and decision boundary distortion. First, we plot various

shapes of distorted decision boundary. We note that it is not difficult to observe

distorted decision boundary of the catastrophic overfitted model.

Figure 2.6 shows distorted decision boundary of the fast adversarial trained

model on the first four images in the training set of CIFAR10. Although we applied

random crop and padding, the loss surface has distorted interval in the direction of

their FGSM adversarial perturbation.

In Figure 2.7, we plot distorted decision boundary in the direction of perturbation

obtained by the attack used in fast adversarial training. Similarly, even though the

attack used in fast adversarial training uses a uniform random initialization U(−ϵ, ϵ)

before adding a sign of gradient, decision boundary distortion is observed for most

of the cases. This indicates that single-step adversarial training cannot escape from

decision boundary distortion by using a random initialization.

Similar results were found for the test set of CIFAR10 as shown in Figures 2.8

and 2.9. Each figure shows the loss surface of the fast adversarial trained model for

the first four images in the test set.

Tiny ImageNet

To push further, we conducted the same experiment on Tiny ImageNet to observe

the relationship between catastrophic overfitting and distorted decision boundary.

As shown in Figure 2.10, PGD2 adversarial training shows zero distortion during the
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Figure 2.11: (Tiny ImageNet) Direction of FGSM adversarial perturbation v1 and
random direction v2.

training time and achieves nearly 100% accuracy against PGD7. Among the single-

step adversarial training methods, fast adversarial training shows 0% of robustness

against PGD7 with high distortion. The proposed method avoids catastrophic over-

fitting and achieves a high PGD7 accuracy, similar to multi-step adversarial training.

Noteworthy is the fact that GradAlign shows unusual behavior for different reg-

ularization parameter β for the gradient alignment. First, contrary to CIFAR10,

catastrophic overfitting occurs in GradAlign with β = 0.2 at the 67th epoch on Tiny

ImageNet. At 89th epoch, distortion of GradAlign decreases to 0% even when the
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Figure 2.12: (Tiny ImageNet) Direction of FGSM adversarial perturbation v1 and
random direction v2.
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Figure 2.13: (Tiny ImageNet) Direction of fast adversarial perturbation v1 and ran-
dom direction v2.
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Figure 2.14: (Tiny ImageNet) Direction of FGSM adversarial perturbation v1 and
random direction v2.
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Figure 2.15: (Tiny ImageNet) Direction of fast adversarial perturbation v1 and ran-
dom direction v2.
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accuracy against PGD7 is nearly zero. To investigate this result, we plot the loss

surface of GradAlign for each epoch. As in Figure 2.11, GradAlign with β = 0.2

shows distorted decision boundary at the 67th epoch. However, at the 89th epoch,

although gradient alignment works properly after catastrophic overfitting, the model

cannot escape from the local minima and thus PGD7 accuracy is still zero.

Considering that the successful value of β was different for different maximum

perturbation ϵ as Andriushchenko and Flammarion (2020) noted, we also conducted

the same experiment with different β because Tiny ImageNet is a more complicated

dataset than CIFAR10. We additionally use β = 2 and 0.02. When we use β = 2,

GradAlign shows zero-distortion until the end of the training. However, robustness

against PGD7 on the training batch cannot achieve near 100% unlike PGD adversar-

ial training and the proposed method. We think this is an interesting phenomenon

that might help the community interested to continue further research in better

schemes for single-step adversarial training. Note that the result of GradAlign with

β = 0.02 was similar to β = 0.2.

Finally, we plot distorted decision boundary of the fast adversarial trained model

on Tiny ImageNet. Figure 2.12 and Figure 2.13 show the results on the training set

and Figure 2.14 and Figure 2.15 on the test set. Interestingly, the model occasionally

outputs correct answers for the adversarial image but not for the original image, for

example, Figure 2.13 (c). This can be considered additional evidence that the model

is overfitted to only single-step adversarial images.

2.4.3 Distortion and Nonlinearity of the Loss Function

Previously, we mentioned that single-step adversarial training leads to a highly

curved loss surface, and single-step adversarial attacks such as FGSM cannot gen-
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erate strong adversarial examples because the following linearity assumption is not

satisfied.

ℓ(x+ δ)− ℓ(x) = ϵ||∇xℓ||1 (2.9)

Here, to detect decision boundary distortion from a different perspective of non-

linearity, we propose a new measure γ for the nonlinearity of the loss function based

on Equation (2.9):

γ = {ℓ(x+ δ)− ℓ(x)} − ϵ||∇xℓ||1 (2.10)
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Figure 2.16: (CIFAR10) Nonlinearity of the loss function. In plot (a), the top figure
shows robust accuracy against PGD7 on the entire training images. The bottom
figure shows the average of the nonlinearity of the loss function over entire training
images. Plot (b) shows the distribution of γ for each model at the last epoch.

Figure 2.16 demonstrates the different characteristics of γ for each method. Plot

(a) shows the mean value of γ for all 50,000 CIFAR10 training images. When catas-

trophic overfitting occurs, E[γ] becomes negative. The negative E[γ] of fast adver-

sarial training indicates that the loss function becomes nonlinear, which is one of

the main characteristics of distorted decision boundary.
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Method Standard FGSM PGD50 Black-box AA Time (h)

Multi-step PGD2 Adv. 86.6±0.8 49.7±2.6 36.0±2.3 85.6±0.8 34.8±2.1 4.5
PGD4 Adv. 86.0±0.8 49.6±3.0 36.7±2.9 85.3±0.8 35.4±2.6 6.7
PGD7 Adv. 84.4±0.2 51.5±0.1 40.5±0.1 83.8±0.2 39.4±0.2 11.1
TRADES 85.3±0.4 50.7±1.6 39.3±1.9 84.4±0.4 38.6±2.0 15.1

Single-step Fast Adv. 84.5±4.3 95.1±6.8 0.1±0.1 80.8±8.7 0.0±0.0 3.2
GradAlign 83.9±0.2 44.3±0.0 31.7±0.2 83.3±0.3 30.9±0.2 13.6

Ours (c = 2) 86.8±0.3 48.3±0.5 32.5±0.2 85.9±0.1 30.9±0.2 3.5
Ours (c = 3) 87.7±0.8 50.5±2.4 33.9±2.3 86.7±0.9 32.3±2.2 3.9
Ours (c = 4) 87.8±0.9 50.5±2.3 33.7±2.4 87.0±0.8 32.2±2.4 4.4

Table 2.1: Standard and robust accuracy (%) and training time (hour) on CIFAR10.

Method Standard FGSM PGD50 Time (h)

PGD2 Adv. 46.3±1.2 14.7±2.7 10.3±2.7 27.7
Fast Adv. 26.2±0.7 49.0±5.7 0.0±0.0 19.6

Ours (c = 3) 49.6±1.5 12.5±0.1 7.8±0.1 25.7

Table 2.2: Standard accuracy and robustness (%) and training time (h) on Tiny
ImageNet.

Similarly, in plot (b), the distribution of γ of fast adversarial training shows a

totally different behavior from that of PGD2 adversarial training and the proposed

method. Compared to the proposed method and PGD2 adversarial training with

few negative values, there are noticeably many negative values in fast adversarial

training. These results indicate the loss function ℓ of catastrophic overfitted model

follows ℓ(x+ δ)− ℓ(x) ≤ ϵ||∇xℓ||1, which implies highly nonlinear loss surface.

2.4.4 Adversarial Robustness

We then evaluate robustness on the test set. FGSM and PGD50 with 10 random

restarts are used for evaluating robustness of the models. Furthermore, to estimate

accurate robustness and detect gradient obfuscation (Athalye et al., 2018a), we also

consider PGD50 adversarial images generated from Wide-ResNet 40-10 (Zagoruyko

and Komodakis, 2016a) trained on clean images (Black-box), and AutoAttack (AA)
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which is one of the latest strong adversarial attacks proposed by Croce and Hein

(2020).

Tables 2.1 and 2.2 summarize the results. From Table 2.1, we can see that multi-

step adversarial training methods yield more robust models, but generally requires a

longer computational time. In particular, TRADES requires over 15 hours, which is

5-times slower than the proposed method. Among the single-step adversarial train-

ing methods, fast adversarial training is computationally efficient, however, because

catastrophic overfitting has occurred, it shows 0% accuracy against PGD50 and AA.

Interestingly, we observe that fast adversarial training achieves a higher accuracy

for FGSM adversarial images than clean images in both datasets, which does not

appear in other methods. The accuracy when applying FGSM on only correctly

classified images is 84.4% on CIFAR10, whereas all other numbers remain almost

unchanged when we use attacks on correctly classified clean images.

The proposed method, by contrast, shows the best standard accuracy and ro-

bustness against PGD50, Black-box, and AA with a shorter time. GradAlign also

provides sufficient robustness; however, it takes 3-times longer than the proposed

method. As shown in Table 2.2, similar results are observed on Tiny ImageNet.

We include the results of the main competitors, PGD2 adversarial training, fast

adversarial training, and the proposed method with c = 3 which shows the best

performance on CIFAR10. Here again, the proposed method shows high standard

accuracy and adversarial robustness close to that of PGD2 adversarial training.
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2.5 Chapter Summary

In this study, we empirically showed that catastrophic overfitting is closely related to

decision boundary distortion by analyzing their loss surface and robustness during

training. Decision boundary distortion provides a reliable understanding of the phe-

nomenon in which a catastrophic overfitted model becomes vulnerable to multi-step

adversarial attacks, while achieving a high robustness on the single-step adversar-

ial attacks. Based on these observations, we suggested a new simple method that

determines the appropriate magnitude of the perturbation for each image. Further,

we evaluated robustness of the proposed method against various adversarial attacks

and showed sufficient robustness using single-step adversarial training without the

occurrence of any catastrophic overfitting.
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Chapter 3

Geometry-Aware Adversarial Attack and Defense

3.1 Chapter Overview

Deep neural networks have shown promising performance in a wide range of tasks,

from image classification to speech recognition. Despite their success, neural net-

works have been shown to be vulnerable to adversarial examples Szegedy et al.

(2013); Goodfellow et al. (2014) generated by adding imperceptible noise to the

original example Biggio and Roli (2018). However, both adversarial attacks and

defenses are not perfectly understood, and still have unexplored areas. To under-

stand the adversarial vulnerability and improve the adversarial robustness of neural

networks, we conduct two different works in various applications as follows:

1. Generating Transferable Adversarial Examples: In this study, we provide a

thorough evaluation of the transferability of audio adversarial examples be-

tween various models under both silent and noisy conditions. We discover that

the transferability of audio adversarial examples is related to noise sensitivity.

Based on these observations, We propose a novel attack that generates highly

transferable audio adversarial examples by intentionally adding noise during

the gradient ascent process. 1

1This work was accepted to Pattern Recognition (Kim et al., 2022b).
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2. Improving Adversarial Training: We investigate the characteristics of the reg-

ularizers of the most popular adversarial training methods, AT and TRADES,

and find that there exists a negative effect of the smoothness regularizer on

maximizing the margin. From the analyses, we propose a novel method to mit-

igate the negative effect and provide stable performance by bridging the gap

between clean and adversarial examples. 2

3.2 Preliminaries

3.2.1 Adversarial Attack

White-box adversarial attack

Adversarial attacks generate imperceptible noise to make models incorrect (Szegedy

et al., 2013). A classifier f attempts to classify an image x as a correct label y or a

one-hot encoded vector y. Adversarial attacks aim to find an adversarial perturba-

tion δ that maximizes a loss function ℓ with a maximum perturbation ϵ:

max
δ∈B(0,ϵ)

ℓ(f(x + δ),y) (3.1)

where B(x, ϵ) is the ϵ-ball around x.

In white-box settings, an attacker can access the information of the model and

generate adversarial examples by solving optimization problems or using the gradient

of the input. Goodfellow et al. (2014) first proposed an effective gradient-based attack

called fast gradient sign method (FGSM).

x′ = x + ϵ · sgn(∇xℓ(f(x),y)) (3.2)

where sgn(·) represents the sign of each element. Madry et al. (2018) proposed an

2This work was preprinted in arXiv (Kim et al., 2021b).
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improved attack called projected gradient descent (PGD). With a step size α, PGD

can be formalized as follows:

xt+1 = ΠB(x,ϵ)(x
t + α · sgn(∇xℓ(f(x),y))) (3.3)

where ΠB(x,ϵ) denotes the projection to B(x, ϵ). In addition, x0 is the original ex-

ample x. Given the number of steps s, xs is used as the adversarial example x′.

Carlini and Wagner (2017b) proposed several loss functions for better optimiza-

tion, instead of cross-entropy loss. The Carlini and Wagner attack (CW) mainly uses

the loss function as follows:

ℓ(f(x′)) = −max(max
i ̸=y

f(x′)i − f(x′)y, 0) (3.4)

With the above loss maximization, CW also achieves a high attack success rate for

diverse model structure and datasets.

By adopting adversarial attacks in the vision domain, prior studies add inaudi-

ble noise to the waveform (Alzantot et al., 2018; Yuan et al., 2018) or perturb the

audio feature (Cisse et al., 2017a; Kreuk et al., 2018) to deceive speech models. Iter

et al. (2017) applied an FGSM (Goodfellow et al., 2014) to generate adversarial

MFCC features. However, they used spectrograms and MFCC features as inputs,

and thus a process for reconstructing the waveforms from spectrograms or an MFCC

is additionally required, which is considered a difficult problem to overcome. To re-

solve this issue, Gong and Poellabauer (2017) proposed a gradient sign method that

generates end-to-end audio adversarial examples based on an FGSM (Goodfellow

et al., 2014). They suggested substituting recurrent neural networks with convo-

lutional neural networks to prevent the vanishing gradient. The attack achieves a
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high error rate in gender recognition, emotion recognition, and speaker recognition

tasks. Carlini and Wagner (2018) achieved high attack performance by modifying

the CW attack with a new constraint on the decibels (dB) instead of applying pixel

bounding.

minimize
δ

||δ||+ c · ℓ(f(x + δ),y)

such that dBx(δ) < τ

(3.5)

where dB(x) = maxi 20 · log10(xi), dBx(δ) = dB(δ) − dB(x), and τ is a hyper-

parameter for adjusting the perturbation size. Following this line of work, many

adversarial attacks successfully generate audio adversarial examples (Kreuk et al.,

2018; Yakura and Sakuma, 2019; Yuan et al., 2018).

Black-box adversarial attack

In real-world application, the attacker usually can not access the target model.

Obviously, compared to the case when the attacker have access to all information

(i.e., white-box settings), the limitation on the information yields a lower attack

success rate. Thus, recently, researchers also focuses on gray-box settings and black-

box settings that the attacker does not know the completely information of the

target model in consideration of the most realistic cases. There are two main types

of black-box attacks: query-based attack and transfer attack.

Query-based attacks use outputs or predictions by requesting multiple queries.

Based on the information of querying outputs, attackers approximate the gradient of

the target model (Taori et al., 2019) or use genetic algorithms (Alzantot et al., 2018).

However, this type of attacks have a limitation, because they require a number of

queries that can be easily detected or restricted.
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Transfer attacks are motivated by the observation that some adversarial exam-

ples can deceive multiple models even though they are generated from one specific

model (Szegedy et al., 2013; Goodfellow et al., 2014). Transfer attacks first generate

adversarial examples on a source model (or surrogate model) under the white-box

settings. Then, it deceives a target model by feeding the adversarial examples. Here,

the performance of a transfer attack is called transferability. Given a source model

hS = fS(gS(·)) and a target model hT = fT (gT (·)), we measure the transferability

TA,S→T as follows:

TA,S→T = Ex,y[1{max
i
hT (A(x,y;hS))i ̸= y}] (3.6)

where 1{·} is an indicator function, and A is an adversarial attack. Here, A(x,y;hS)

is adversarial examples generated on the source model hS . Thus, TA,S→T denotes

the attack success rate of the attack A with the source model hT on the target

model hT . Note that TA,S→S corresponds to the attack success rate of A on S in the

white-box setting.

Low transferability indicates that the audio adversarial example generated can-

not deceive diverse models that have different structures or parameters from the

source model, which leads to disrupt estimating reliable robustness of models. If the

target model shares a similar structure as the source model, a transfer attack shows

high performance because they tend to have similar feature representation (Tramèr

et al., 2017b).

To increase the transferability, there are a line of works in the vision domain such

as using the attention network (Wu et al., 2020d), focusing on input diversity (Xie

et al., 2019; Dong et al., 2019), using multiple ensemble models (Hang et al., 2020),
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or finding universal perturbations (Li et al., 2021). Note that they achieved a high

transferability over various datasets (e.g., CIFAR and ImageNet) and models (e.g.,

ResNets and Transformers) (Springer et al., 2021; Wang et al., 2022). However, the

transferability of audio adversarial examples has not been as actively presented as

in the vision domain (Gong and Poellabauer, 2017). Indeed, Yang et al. (2019) that

audio adversarial examples generated by prior adversarial attacks (Alzantot et al.,

2018; Yuan et al., 2018; Carlini and Wagner, 2018) show a poor transferability.

Specifically, existing attack methods were mainly evaluated in the noiseless envi-

ronment (Yuan et al., 2018; Yakura and Sakuma, 2019; Cisse et al., 2017a) or used

limited models (Carlini and Wagner, 2018; Kreuk et al., 2018). Therefore, in this

chapter, we conduct extensive experiments on the transferability of existing audio

adversarial attack methods with various models in noiseless and noisy environment.

Based on the analyses, we propose a new attack method that generates high trans-

ferable audio adversarial examples that can measure more reliable robustness of the

audio systems.

3.2.2 Adversarial Defense

Since Szegedy et al. (2013) identified the existence of adversarial examples, most

defenses are broken by adaptive attacks (Athalye et al., 2018a; Tramer et al., 2020)

and the state-of-art performance is still observed from variants of adversarial training

(Madry et al., 2018) and TRADES (Zhang et al., 2019b) utilizing the training tricks

(Pang et al., 2020; Gowal et al., 2020), weight averaging (Wu et al., 2020b), and

using more data (Carmon et al., 2019; Rebuffi et al., 2021).

We consider a c-class classification task with a neural network fθ : X → Rc. The

network fθ classifies a sample x ∈ X as arg maxi∈Y [fθ(x)]i, where Y = {0, · · · , c−1}.
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We denote the true label with respect to x by y and the corresponding one-hot

representation by y ∈ {0, 1}c. That is, yi = 1{i = y}, ∀i ∈ Y, with an indicator

function 1{C} which outputs 1 if the condition C is true and 0 otherwise. Then

the probability function pθ = softmax ◦ fθ : X → [0, 1]c outputs a c-dimensional

probability vector whose elements sum to 1.

Given two probability vectors p, q in the c-dimensional probability simplex, we

define the following values: Hp(q) = −pT log q and KL(p||q) = pT log p
q . These are

called the cross-entropy and Kullback-Leibler (KL) divergence between p and q,

respectively. In addition, we denote the entropy of p as H(p) = Hp(p) = −pT log p.

Note that for a one-hot vector y ∈ {0, 1}c, KL(y||q) =
∑

i∈Y yi log yi
qi

= −yT log q is

equivalent to the well-known cross-entropy, Hy(q).

Adversarial Training (AT) (Madry et al., 2018) is one of the most effective

defense methods. Given a perturbation set B(x, ϵ), which denotes a ball around an

example x with a maximum perturbation ϵ, it encourages the worst-case probability

output over the perturbation set B(x, ϵ) to directly match the label y by minimizing

the following loss:

ℓAT (x,y;θ) = max
x′∈B(x,ϵ)

Hy(pθ(x′))

= max
x′∈B(x,ϵ)

KL(y||pθ(x′)).

(3.7)

TRADES (Zhang et al., 2019b) was proposed based on the analysis of the trade-

off between adversarial robustness and standard accuracy. TRADES minimizes the
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following loss:

ℓTRADES(x,y;θ)

=KL(y||pθ(x)) + β max
x′∈B(x,ϵ)

KL(pθ(x)||pθ(x′)).
(3.8)

where β is the regularization hyper-parameter. Here, the first term aims to maximize

the margin of clean examples, while the second term encourages the model to be

smooth.

To solve this highly non-concave optimization in Eq. (3.7) and Eq. (3.8), an

iterative projected gradient descent (PGD) (Madry et al., 2018) with n steps is

widely used:

xt+1 = ΠB(x,ϵ)
(
xt + α · sign(∇xℓinner(x,y;θ))

)
for t = 1, · · · , n− 1 (3.9)

where ΠB(x,ϵ) refers the projection to the B(x, ϵ) and α is a step-size for each step.

Here, x0 is the original example and xn is used an adversarial example x∗. We

denote this as PGDn. For example, AT aims to minimize the loss in Eq. (3.7) so

that KL(y||pθ(xt)) is used as ℓinner(x,y;θ).

Although some provable defensive methods have proposed, such as certified de-

fenses (Salman et al., 2019; Chen et al., 2020; Lee et al., 2021a), they are not our

main focus here because they are figuratively orthogonal from the above adversarial

training frameworks.

3.3 Methodology

3.3.1 Transferable Adversarial Examples

In this subsection, we first perform an extensive analysis on the transferability of

audio adversarial examples with diverse models under both silent and noisy condi-
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tions. We then explain the underlying relationship between transferability and noise

sensitivity of audio adversarial examples with respect to the loss landscape. Based

on the observation, we propose a new adversarial attack method, noise injected at-

tack, that generates more transferable audio adversarial examples by adopting noise

injection.

Transferability and noise sensitivity

We first perform a thorough evaluation on the transferability of audio adversarial

examples with various models and environments. We begin with an experiment on

the Google speech command dataset (Warden, 2018). The dataset consists of 65,000

one-second utterances by thousands of people. Following (Alzantot et al., 2018; Yang

et al., 2019), we filtered the 10 most commonly used classes.3

For a thorough evaluation, we consider seven models with two different types of

feature extractors: a frequency-based feature model and a Wav2vec-based model.

• Frequency-based model. A frequency-based feature extractor outputs Mel-

spectrogram, which is the feature for an input waveform. Thus, a time-varying

sequential waveform is converted to the mel-sacle frequencies through the Mel-

spectrogram layer. We feed them directly to a neural network-based classifier

following (Hannun et al., 2014; Amodei et al., 2016). For a classifier, we use

DenseNet, VGG-19 and Wide-ResNet 28-10 (WRN).

• Wav2vec-based model. The encoder network of pre-trained Wav2vec (Schnei-

der et al., 2019) outputs a representative vector as the feature for an input

waveform. For a classifier, we construct a long short-term memory model with

3https://www.kaggle.com/c/tensorflow-speech-recognition-challenge
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self-attention followed by a fully connected layer. We call this type of models

LS. The other type of classifier consists of only fully connected layers, which we

call FC. We construct two different models for each type with different number

of neurons. In total, four different classifiers were considered as Wav2vec-based

models: LS-Large, LS-Small, FC-Large, and FC-Small.

For each trained model, following (Iter et al., 2017; Carlini and Wagner, 2018), we

generated audio adversarial datasets with the most common baselines, PGD (Madry

et al., 2018) and CW (Carlini and Wagner, 2018). We remark that almost adversarial

attacks in the audio domain are the variants of PGD or CW. During attack process,

we set the maximum perturbation ϵ to satisfy dBx(δ) = −20 (Carlini and Wagner,

2018). Their step size α is fixed at 2ϵ/s, where the number of steps s = 10. Then,

we estimate the transferability TA,S→T in Eq. (3.6) for each attack A, source model

S, and target model T .

First, we calculate the transferability TA,S→T under the noiseless setting. To do

this, we directly feed generated audio adversarial datasets to the model without any

noise, where the audio adversarial datasets is generated on the whole test dataset.

Fig. 3.1 shows the transferability of the adversarial examples generated by each

attack. Both CW and PGD show high white-box attack success rates over 95% for all

types of feature extractors and structures as observed in prior work (Iter et al., 2017;

Carlini and Wagner, 2018). Wav2vec-based models are also highly vulnerable to

adversarial attacks because they use multi-layer convolutional neural networks. Here,

we emphasize that this is the first study confirming the adversarial vulnerability of

Wav2vec-based models.

However, both CW and PGD have low transferability (Yuan et al., 2018; Yang
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Figure 3.1: Transferability (%) of each adversarial attack from a source model (col-
umn) to a target model (row). Diagonal elements corresponds to the attack success
rate under the white-box settings rather than transferability. A darker red square
indicates a higher transferability. PGD shows higher transferability than CW.

et al., 2019), but with different characteristics. CW shows low transferability even

for the same feature extractor-based models. TCW,DenseNet→V GG only shows 53.25%,

although DenseNet and VGG share the same frequency-based feature extractor.

This tendency is also observed in Wav2vec-based models. Moreover, for different

feature extraction based models, the transferability significantly decreases. Specifi-

cally, TCW,DenseNet→LS−Large only shows 13.40%. By contrast, PGD achieves better

transferability than CW. For example, TPGD,DenseNet→FC−Large = 43.05%, whereas

TPGD,DenseNet→WRN = 94.74%. However, we note that the transferability to frequency-

based models from LS-Large and FC-Large still shows the maximum value of 56.53%.

In summary, both CW and PGD show limited transferability even under the noise-

less setting, but PGD generates better transferable audio adversarial examples.

In many real-world scenarios, there is a high probability that the audio adversar-
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Figure 3.2: Transferability (%) of each adversarial attack from a source model (col-
umn) to a target model (row) in the noisy environment. Diagonal elements corre-
sponds to the attack success rate under the white-box settings rather than trans-
ferability. A darker red square indicates a higher transferability. PGD shows higher
transferability than CW.

ial examples are played in the noisy environment (Foggia et al., 2015). Considering

that the attack success rate of audio adversarial examples is generally degraded in

noisy environment, it is thus imperative to estimate the transferability under the

noise setting in the audio domain. Thus, we further investigate the transferability

of each adversarial example after adding noise.

In this experiment, we simply add uniform noise n ∼ U[−ϵ/5, ϵ/5] to the adver-

sarial example x′ and evaluate the average transferability of x′ +n over three runs.

As shown in Fig. 3.2, small uniform noise is sufficient to decrease the transferability

of audio adversarial examples. Compared to Fig. 3.1, both CW and PGD show poor

transferability. Specifically, CW fails to achieve the transferability of more than 20%

. Moreover, the attack success rates of CW are also under 25%, which is significantly
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reduced from the values under the noiseless setting Fig. 3.1a. In the case of the PGD,

although slightly better than CW, it also shows a decreased transferability. The max-

imum value of transferabilty in Fig. 3.2b is TPGD,V GG→WRN = 67.98%, which was

95.21% in Fig. 3.1b. In addition, for different feature extractor-based models, the

maximum transferabilty becomes TPGD,LS−Small→WRN = 35.33%, which is much

worse than 63.50% in Fig. 3.1b. Thus, the transferability of existing audio adver-

sarial examples are much poorer under the noisy environment, which is a common

assumption in the real-world situation.

Interestingly, however, the reduced transferability of CW is more severe than

PGD. This difference between CW and PGD is clear at a glance, as shown in

Fig. 3.2a. Compared to Fig. 3.2b, all cells in Fig. 3.2a are yellow rather than red. the

effect of adding noise to PGD is less than that of CW. To quantitatively compare

the reduced transferability, we define a nullified ratio (NR):

NR = E[1{h(x′ + n) = y}|h(x′) ̸= y] (3.10)

Thus, NR measures the ratio of adversarial examples fail to deceive the model after

adding noise among those which succeeded in deceiving the model under the noiseless

setting.

The results are summarized in Fig. 3.3. The NR of CW exceeds 60% for all cases,

while PGD shows the NR under 50%. Specifically, TCW,DenseNet→V GG = 53.25%

drops to 18.43% after adding additive noise, which corresponds to 65.39% of the NR

much higher than that of PGD (25.08%). Thus, we can conclude that there CW is

more sensitive to the noise than PGD in terms of transferability.

As the key observation in Fig. 3.1 and 3.3, the more transferable attack (PGD)

48



DenseNet VGG WRN
Target Model

0

20

40

60

80

100

Tr
an

sf
er

ab
ilit

y 
(%

)

(a) DenseNet, CW

DenseNet VGG WRN
Target Model

0

20

40

60

80

100

Nu
llif

ie
d 

Ra
tio

 (%
)

Adv
Noisy
NR

(b) DenseNet, PGD

LS-Large LS-Small FC-Large FC-Small
Target Model

0

20

40

60

80

100

Tr
an

sf
er

ab
ilit

y 
(%

)

(c) LS-Large, CW

LS-Large LS-Small FC-Large FC-Small
Target Model

0

20

40

60

80

100

Nu
llif

ie
d 

Ra
tio

 (%
)

(d) LS-Large, PGD

Figure 3.3: Transferability of adversarial examples x′ (Adv) and noisy adversarial
examples x′ + n (Noisy) with the nullified ratio (NR). For all cases, the NR of CW
exceeds 60%, while PGD shows the NR under 50%. The title of each plot indicates
the source model and the attack method. The first column corresponds to the source
model so that Adv indicates the attack success rate under the white-box setting. The
following groups are target models with the same feature extractor. All values are
in percentage.

is hardly nullified by additive noise, while the less transferable attack (CW) is easily

nullified by additive noise; that is, the more transferable attack is less sensitive

to additive noise. Hence, we presume that there is a close connection between the

transferability of audio adversarial examples and their sensitivity to additive noise.
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Figure 3.4: Illustration of transferability and the loss landscape. The adversarial
example in a local optimum tends to have a low transferability (red), while the
adversarial example that have a high loss in their vicinity tends to have a high
transferability (blue) (Demontis et al., 2019). The variance of the loss value in its
vicinity would be higher for red point than that of blue point.

Loss landscape analysis

Previously, we observed that more transferable are less sensitive to additive noise.

To discover the underlying relationship between transferability and noise sensitivity,

we provide an explanation on with respect to their loss landscape. As Demontis et al.

(2019) argued, adversarial examples generated from a model with high variability

of the loss landscape tend to get stuck in local optima, making them less transfer-

able. We illustrate this phenomenon in Fig. 3.4. The red circle in a local optimum

is difficult to be transferred to the target model due to the irregularity of the opti-

mization. However, adversarial examples that have a high loss in their vicinity (blue

circle) tend to be more transferable, and thus the target model also misclassifies the

adversarial example by exceeding the decision threshold.

Now, we connect this loss landscape analysis to the noise sensitivity. If the adver-

sarial example in the local optimum (red circle), it tends to have high variance of the

loss value due to its variability. In contrast, when the adversarial example induces a
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high loss in its vicinity (blue circle), it tends to have low variance of the loss value.

Thus, considering that adding proper size of noise can provide the information of the

loss value in its vicinity, less sensitive to additive noise (i.e., low variance of the loss

in its vicinity for given noise) leads to more transferable audio adversarial examples.

Thus, a variance of the loss in the noise neighborhood of an adversarial ex-

ample {x + n}n∼N can be related to its transferability. To numerically verify this

assumption, we propose a sample-wise variance (SV) to measure variability of the

loss landscape of an adversarial example x′ in its vicinity.

SV(x′,y) = En∼N [ℓ(h(x′ + n),y)2]− En∼N [ℓ(h(x′ + n),y)]2 (3.11)

In other words, SV measures the variability of the loss landscape in the neighborhood

by the additive noise n. If the model has a high value of SV, then it implies that x′ has

a highly curved loss landscape in its vicinity (red circle in Fig. 3.4). On the contrary,

a low SV indicates x′ has a smoother loss landscape (blue circle in Fig. 3.4). We note

that SV differs from the variance of the loss landscape in (Demontis et al., 2019),

which estimates the model-wise variance of the loss landscape. By investigating the

connection between the SV and transferability, we can experimentally prove that

the more transferable, the less sensitive to additive noise.

Now, we verify the connection between the transferability and SV by controlling

the number of steps. We note that manipulating the number of steps can easily

adjust the transferability of an adversarial attack (Zhou et al., 2018). In addition,

controlling the number of steps can rule out the effect of the inherited transferability

of different adversarial attacks. In Fig. 3.5, we plot the transferability of adversarial

examples and the expectation of SV (E[SV ]) for whole adversarial examples. To
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Figure 3.5: Transferability and SV of the source model. As the number of steps
increases, the transferability decreases and the SV increases. Here, we used DenseNet
as the source model and PGD as the attack method.

calculate SV, we sampled five additive noises n ∼ U[−ϵ/5, ϵ/5]. As expected, we

can observe a close connection between the transferability and SV of the source

model. As the number of steps increases, the transferability decreases.

In summary, noise sensitivity of the adversarial example can be connected to its

transferability in terms of the loss landscape in its neighborhood. A highly trans-

ferable adversarial example should have a high loss value in its noise neighborhood

{x + n}n∼N , and thus it is less sensitive to additive noise.

Noise injected attack (NIA)

Based on the observation that more transferable audio adversarial examples are less

sensitive to additive noise, we now propose a method to increase the transferability

of audio adversarial examples. In order to generate a highly transferable adversarial

example, we should enforce a high loss value in its vicinity. However, maximizing

the loss of the neighborhood of adversarial example x is in general NP-hard. Thus,

we instead increasing the loss of the noise neighborhood of the adversarial example

{x + n}n∼N by utilizing the gradient information of x + n.
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The propose method, noise injected attack (NIA), aims to increase not only the

loss of adversarial examples but also the loss of its vicinity as follows:

xt+1 = ΠB(x,ϵ)(x
t + α · sgn(∇xtℓ(h(xt + nt),y))) (3.12)

where nt is a noise drawn from an appropriate noise distribution N for each step t.

The gradient obtained by ℓ(h(xt +nt),y) induces the increase of the loss h(xt +nt),

where xt + nt is in the neighborhood of the adversarial example xt. Due to the

randomness of nt ∼ N for each step t, the noise neighborhood of adversarial example

{x + n}n∼N tends to have a high loss over the entire area during the gradient

ascent process. Thus, the optimization is expected to increase the transferability by

increasing the loss of the neighborhood of the adversarial example for given noise

distribution so that it has low SV.

To push further, we provide a theoretical analysis of the proposed method in

terms of maximizing the transferability. Given a source model hS , existing adver-

sarial attacks try to find the solution:

max
δ∈B(0,ϵ)

ℓ(hS(x + δ),y) (3.13)

However, the optimal point can be stuck in the local optimum, which leads to a

poor transferability. Thus, by generating an adversarial example x′ where x′ +n in

its neighborhood also has high loss values, we can expect to find a more transfer-

able adversarial example. This can be achieved by the proposed method, which is

formalized as follows:

max
δ∈B(0,ϵ)

En∼Nℓ(hS(x + δ + n),y) (3.14)
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The optimization yields the adversarial example where the set of its neighborhood

x′ + n is also in a high-loss region for any random direction n.

Then, under some mild conditions on the hypothesis space H as in (Madry et al.,

2018; Wong et al., 2020; Kim et al., 2022a), Eq. (3.14) can be shown to be more

aligned with the optimization for maximizing transferability given by

max
δ∈B(0,ϵ)

Eh∼Hℓ(h(x + δ),y) (3.15)

which motivates the proposed method can yield adversarial examples with a higher

loss for a target model than the existing methods.

In addition, we investigate the fundamental differences between the proposed

method and the common techniques to generate adversarial examples. Here, we

compare our approach with several related lines of research in the prior literature.

Random initialization The random initialization during the first step of an ad-

versarial attack is a common practice (Madry et al., 2018). It was also recently

revealed that the random initialization in adversarial attack is a key to achieving

robustness in adversarial training (Wong et al., 2020; Kim et al., 2021a). However,

NIA injects different noise at every step, while existing adversarial attacks only add

noise in the first step of the attack process.

Input transformation Some adversarial attacks in the vision domain tried to

increase the transferability (Xie et al., 2019; Dong et al., 2019). Recently, Xie et al.

(2019) proposed diverse inputs iterative fast gradient sign method (DIM) to boost

the transferability of adversarial images. Although DIM mainly uses resize and

padding to generate diverse inputs at every step, NIA is different in that it uses
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adding noise to the input waveform at every step instead of spatial transformations

to the input image. Similarly, Dong et al. (2019) also proposed translation-invariant

method (TIM) based on the convolution operation on gradients with a kernel. How-

ever, it also depends on the spatial characteristic of images so that NIA shows better

performance within the audio domain than DIM and TIM.

3.3.2 Improved Adversarial Training

Understanding Margin and Smoothness in Adversarial Training

Similar robustness, but different margin and smoothness To illustrate the

difference between AT and TRADES in terms of margin and smoothness, we first

define a measure for margin and smoothness. To estimate margin, we adopt the prob-

abilistic margin M(·) that is commonly used by prior studies (Carlini and Wagner,

2017b; Gowal et al., 2020; Liu et al., 2021a):

M(x) := [pθ(x)]y −max
i ̸=y

[pθ(x)]i (3.16)

Thus, M(x) > 0 indicates that the model correctly predicts the label of x. On

the contrary, the model outputs a wrong prediction when M(x) < 0. To estimate

smoothness, we use KL(pθ(x)||pθ(x∗)) in (Zhang et al., 2019b), where x∗ is an

adversarial example of a clean example x.

Fig. 3.6 illustrates the difference between AT and TRADES in terms of margin

and smoothness. First, we trained models with the maximum perturbation ϵ = 8/255

on CIFAR10. Then, for each model, we measured the margin and smoothness on

an adversarial dataset (x∗,y) generated by using PGD50 with the same maximum

perturbation ϵ = 8/255. At the end of the training, although AT and TRADES have

similar robustness (53.94% and 52.98%), they show totally different characteristics.
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Figure 3.6: (CIFAR10) Margin and smoothness of AT and TRADES. (a) M(x) for
estimating margin (higher is better). (b) KL(pθ(x)||pθ(x

∗)) for estimating smooth-
ness (lower is better). Each vertical line indicates the average value of each measure.
Each plot used 10,000 test examples.
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Figure 3.7: (MNIST) Stability of each method for a wide range of the maximum
perturbation ϵ during training. Each model is trained on the given maximum per-
turbation ϵ and evaluated by using PGD50 with the same ϵ used during training. The
dotted and solid lines indicate the clean accuracy and robust accuracy, respectively.

AT shows a larger margin that is distributed close to 1, whereas it has a poor

smoothness than TRADES. On the contrary, TRADES shows a smaller margin

with only a few examples around 1, whereas it has a better smoothness than AT.

The vertical lines (the average values of their margin and smoothness) also show the

difference between AT and TRADES. Thus, we can conclude that AT and TRADES

have different characteristics in terms of margin and smoothness.

Same training settings, different optimization difficulty To push further,

we evaluate their clean and robust accuracy under various maximum perturbations

during the training on MNIST. As shown in Fig. 3.7, AT fails to achieve both

standard and robust accuracy for ϵ > 0.35. This is consistent with the observation

that the regularization term for maximizing the margin of adversarial examples has

some drawbacks in convergence (Shaeiri et al., 2020; Liu et al., 2020; Dong et al.,

2021; Sitawarin et al., 2020; Shaeiri et al., 2020). In contrast, even for ϵ > 0.35,
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TRADES holds its robustness better than AT. Interestingly, TRADES shows high

clean accuracy for ϵ ≥ 0.4 even it fails to gain robustness. However, TRADES also

fails to achieve the robustness for ϵ ≥ 0.4. The result is similar even with a smaller

weight (β = 1) on KL(pθ(x)||pθ(x∗)).

To explain this phenomenon, we take a closer look at the regularization terms of

AT and TRADES. First, AT directly increases the margin of adversarial examples

x∗ as in Eq. (3.7) by minimizing KL(y||pθ(x∗)). However, due to lack of considering

the connection between x and x∗, AT has difficulty attaining smoothness, which is

observed in Fig. 3.6. In addition, minimizing KL(y||pθ(x∗)) yields the drawbacks in

convergence (Shaeiri et al., 2020; Liu et al., 2020; Dong et al., 2021; Sitawarin et al.,

2020; Shaeiri et al., 2020), which can be observed in Fig. 3.7. In contrast, TRADES

adopts the regularization term KL(y||pθ(x)) and KL(pθ(x)||pθ(x∗)) in Eq. (3.8)

instead of KL(y||pθ(x∗)). Due to this loss function, TRADES shows much more

stable performance than AT for ϵ < 0.4 as shown in Fig. 3.7. However, TRADES

still fails to optimize KL(pθ(x)||pθ(x∗)) for ϵ ≥ 0.4, while it successfully optimizes

KL(y||pθ(x)). This implies that TRADES has trouble converging to the optimal

point during maximizing the margin and minimizing the KL divergence simultane-

ously.

Negative effect of smoothness regularizer on maximizing the margin The

degraded margin of TRADES and its failure cases for large perturbations lead

us to postulate the hypothesis that there is a conflict between KL(y||pθ(x)) and

KL(pθ(x)||pθ(x∗)). Now, we mathematically prove that the regularizer for smooth-

ness KL(pθ(x)||pθ(x∗)) in Eq. (3.8) has a negative effect on training a large margin.
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For simplicity, we first consider the binary case. Without loss of generality, we

may assume that the correct label for x is y = 0 and pθ(x) = [p, 1 − p]. Then, the

margin becomes M(x) = 2p − 1. Under this binary case, the following proposition

holds.

Proposition 3.1. Let p = pθ(x), p∗ = pθ(x∗), ∇ = ∇θ. Assume the binary case,
where p = [p, 1−p] and p∗ = [p∗, 1−p∗]. Then, −∇KL(p||p∗) has a gradient direction
opposite to ∇M(x).

∇KL(p||p∗) =
1

2

(
log

p

p∗
− log

1− p
1− p∗

)
· ∇M(x) + c

Here, c is a linear combination of other gradient directions. Since p > p∗, log p
p∗ −

log 1−p
1−p∗ is always positive. Thus, minimizing KL(p||p∗) hinders the increase in

M(x).

Proof. First, ∇KL(p||p∗) can be formalized as follows:

KL(p||p∗) = p log p+ (1− p) log(1− p)− p log p∗ − (1− p) log(1− p∗)

∇KL(p||p∗) =
∂KL

∂p
· ∇p+

∂KL

∂p∗
· ∇p∗

=
(

log
p

p∗
− log

1− p
1− p∗

)
· ∇p+

(
− p

p∗
+

1− p
1− p∗

)
· ∇p∗

=
(

log
p

p∗
− log

1− p
1− p∗

)
· ∇p+ c

In addition, ∇M(x) = 2∇p, since M(x) = p− (1− p) = 2p− 1. Thus,

∇KL(p||p∗) =
1

2

(
log

p

p∗
− log

1− p
1− p∗

)
· ∇M(x) + c.

We can easily extend the binary case to the multi-class problem by introducing

an element-wise division vector α = p/p∗, i.e., the i-th element of α is αi = pi/p
∗
i .

Proposition 3.2. Let the correct label y, t = arg maxi ̸=y p
∗
i and αi = pi/p

∗
i . Assume

that py > p∗y and pt < p∗t . Then, −∇KL(p||p∗) is aligned with a gradient direction
that penalizes pi with the scale of logαi, which minimizes the margin M(x).

∇KL(p||p∗) = (∇p)T logα + c
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Figure 3.8: (CIFAR10) Distribution of logαy = log(py/p
∗
y) for the true class y (red)

and − logαt = − log(pt/p
∗
t ) for the target class t = arg maxi ̸=y p

∗
i (blue). Each

plot shows the distribution of logαy and logαt for whole test adversarial examples
generated with different maximum perturbation ϵ. logαy is always positive and logαt

is always negative. In addition, for a larger ϵ during the attack process, both | logαy|
and | logαt| have a larger deviation from 0.

Here, c is a linear combination of other gradient directions. By the assumption,
logαy > 0 and logαt < 0 so that −(∇py)T logαy − (∇pt)T logαt minimizes the
margin M(x).

Proof.

∇KL(p||p∗)

=∇
(
pT log p− pT log p∗)

=(∇p)T log p + (∇p)T1− (∇p)T log p∗ − (∇p∗)T
p

p∗

=(∇p)T log
p

p∗ − (∇p∗)T
p

p∗

=(∇p)T logα− (∇p∗)Tα. (3.17)

which leads to the conclusion with c = −(∇p∗)Tα

Note that the assumption, py > p∗y and pt < p∗t , is generally acceptable under
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Figure 3.9: (CIFAR10) Projected gradients of each loss term of TRADES in Eq. (3.8)
on the direction of increasing the margin. At the end of each epoch, we calculated
∇KL(y||p) and ∇KL(p||p∗), and ∇M(x). Then, we plotted their inner products.
Minimizing the regularization term KL(p||p∗) (blue points) has a negative effect on
maximizing the margin.

the characteristic of adversarial attack, which reduces py and increase pi ̸=y. We em-

pirically proved this assumption in Fig. 3.8. From the model trained with TRADES

under ϵ = 8/255, we generated an adversarial dataset (x∗,y) from the whole test

dataset by using PGD50 with the same maximum perturbation ϵ = 8/255. Then,

we plot the distribution of logαi for y and t = arg maxi ̸=y p
∗
i . As shown in Fig. 3.8,

logαy is always positive and logαt is always negative for all test examples. Thus, we

can conclude that the regularization term for smoothness KL(pθ(x)||pθ(x∗)) hinders

the model from maximizing the margin.

Now, to provide empirical evidence of the negative effect, we visualize the effect of

each loss term of TRADES on the margin in Fig. 3.9. The x-axis denotes the gradient

direction that maximizes the margin, ∇M(x). The blue and green points represent

the effect of each term’s gradients, ∇KL(y||p) and ∇KL(p||p∗), on maximizing the

margin. While the gradient descent direction of KL(y||p) is aligned with ∇M(x),
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the gradient descent of the other term KL(p||p∗) is in the opposite direction. Thus,

the result confirms that minimizing the regularization term KL(p||p∗) has a negative

effect on maximizing the margin.

Moreover, we prove that this negative effect gets more pronounced as the maxi-

mum perturbation ϵ increases. This can be otherwise said, if ϵ1 < ϵ2, then B(x, ϵ1) ⊂

B(x, ϵ2) so that

max
x∗
1∈B(x,ϵ1)

| log[pθ(x)/pθ(x∗
1)]i| ≤ max

x∗
2∈B(x,ϵ1)

| log[pθ(x)/pθ(x∗
2)]i| (3.18)

for i = y, t. Thus, minimizing KL(pθ(x)||pθ(x∗)) with a larger ϵ comes with a larger

|αi| = |[pθ(x)/pθ(x∗)]i|. In summary, because the negative effect is proportional

to the scale of logαi as proved in Proposition 3.2, a larger ϵ leads to a prohibitive

negative effect on maximizing the margin.

Indeed, if we set a larger maximum perturbation ϵ = 16/255, the values of logαy

and logαt tends to have a larger deviation from 0 than that of ϵ = 8/255 (see Figure

3.8). This is consistent with our observation that TRADES suffers the convergence

problem and fails to achieve decent robustness for a larger perturbation in Fig. 3.7

and Section 3.4.2, respectively. Thus, from the above observations and analyses, we

expect the model to converge to a better local minimum by mitigating the negative

effect.

We theoretically and experimentally confirmed that there exists the negative

effect of the smoothness regularizer on maximizing the margin. Now, we enable the

model to converge to a better optimal point by mitigating the negative effect.
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Bridged Adversarial Training

Mitigating the negative effect by bridging To mitigate the negative effect

of KL(p||p∗) on maximizing the margin, we have to minimize the absolute value

of logα as proved in Proposition 3.2. The key idea to control the absolute value

of logα is bridging the gap between p and p∗. Let us consider a new probability

vector p̃. If we use a new loss function KL(p||p̃) + KL(p̃||p∗) instead of KL(p||p∗),

the gradient of KL(p||p̃) + KL(p̃||p∗) can be formalized as follows:

∇(KL(p||p̃) + KL(p̃||p∗))

=(∇p)T logα(1) + (∇p̃)T
(
−α(1) + logα(2)

)
− (∇p∗)Tα(2) (3.19)

where α
(1)
i = pi/p̃i and α

(2)
i = p̃i/p

∗
i .

As shown in Eq. (3.19), ∇p is now effected by logα(1) = log(p/p̃) instead of

logα = log(p/p∗). Thus, now we can control the degree of the negative effect by

introducing p̃, while achieving the smoothness. For example, if p̃ satisfies py > p̃y >

p∗y for a correct label y and pi < p̃i < p∗i for all i ̸= y, the negative effect can be

reduced because | logα
(1)
i | < | logαi| for all i. Considering this property, we name a

probability vector p̃ that reduces the negative effect as an intermediate probability.

In summary, minimizing the new loss KL(p||p̃) + KL(p̃||p∗) can provide the

smoothness between p and p∗ with the reduced negative effect on maximizing the

margin by introducing an intermediate probability p̃ as a bridge. Thus, we name a

new adversarial training method, which minimizes KL(p||p̃) + KL(p̃||p∗) instead of

KL(p||p∗), bridged adversarial training (BAT).

Intuitively, more than one intermediate probability can induce the less negative

effect of KL(p||p̃). For a given sample x, let γ : [0, 1]→ X be a continuous path from
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Algorithm 2: Generalized Bridged Adversarial Training

Input: training data, D; a continuous path, γ(·); a model parameter, θ; a
maximum perturbation, ϵ; an adversarial attack, Aθ,ϵ : X × Y → X ;
a hyper-parameter for regularizer, β; the number of bridges, m.

for (x,y) ∼ D do
x∗ ← Aθ,ϵ(x,y) γ(0)← x and γ(1)← x∗ ℓ← KL(y||pθ(x))
+
∑m−1

k=0 βKL
(
pθ(γ( k

m))||pθ(γ(k+1
m ))

)
θ ← θ −∇θℓ

end

γ(0) = x to γ(1) = x∗, where x∗ is an adversarial example of x. Now, we minimize

the bridged loss
∑m−1

k=0 KL(pθ(γ( k
m))||pθ(γ(k+1

m ))) instead of KL(pθ(x)||pθ(x∗)).

Here, m is a hyper-parameter for the number of intermediate probabilities. The

generalized bridged adversarial training procedure is presented in Algorithm 2.

Bound on the robust error Here, we provide theoretical evidence that the

proposed loss serves as an upper bound on the robust error of the model under

the binary classification setting. To give a self-contained overview, we follow (Zhang

et al., 2019b).

To give a self-contained overview, we follow (Bartlett et al., 2006). In the binary

classification case, given a sample x ∈ X and a label y ∈ {−1, 1}, a model can

be denoted as f : X → R. We use sign(f(x)) as a prediction value of y. Given

a surrogate loss ϕ, the conditional ϕ-risk for η ∈ [0, 1] can be denoted as H(η) :=

infα∈R(ηϕ(α)+(1−η)ϕ(−α)). Similarly, we can defineH−(η) := infα(2η−1)≤0(ηϕ(α)+

(1 − η)ϕ(−α)). Now, we assume the surrogate loss ϕ is classification-calibrated, so

that H−(η) > H(η) for any η ̸= 1/2. Then, the ψ-transform of a loss function ϕ,

which is the convexified version of ψ̂(θ) = H−(1+θ
2 )−H(1+θ

2 ), is continuous convex

function on θ ∈ [−1, 1].
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In the adversarial training framework, we train a model to reduce the robust error

Rrob(f) := E(x,y)1{∃x′ ∈ B(x, ϵ) s.t. f(x′)y ≤ 0} where B(x, ϵ) is a ball around an

example x with a maximum perturbation ϵ. Here, 1{C} denotes an indicator function

which outputs 1 if the condition C is true and 0 otherwise. As (Zhang et al., 2019b)

proposed, Rrob(f) can be decomposed as follows:

Rrob(f) = Rnat(f) +Rbdy(f) (3.20)

where the natural classification error Rnat(f) := E(x,y)1{f(x)y ≤ 0} and boundary

errorRbdy(f) := E(x,y)1{f(x)y > 0, ∃x′ ∈ B(x, ϵ) s.t. f(x)f(x′) ≤ 0}. By definition,

following inequality is satisfied:

Rbdy(f) = E(x,y)1{x ∈ B(DB(f), ϵ), f(x)y > 0}

≤ E(x,y)1{x ∈ B(DB(f), ϵ)}

= E max
x′∈B(x,ϵ)

1{f(x′) ̸= f(x)}

= E max
x′∈B(x,ϵ)

1{βf(x′)f(x) < 0}.

(3.21)

Let,R⋆
nat := inff Rnat(f) andR⋆

ϕ := inff Rϕ(f) whereRϕ(f) := E(x,y)ϕ{f(x)y ≤

0} is a surrogate loss with a surrogate loss function ϕ. Then, under Assumption 1,

following inequality is satisfied by Eq. (3.20) and Eq. (3.21).

Rrob(f)−R⋆
nat ≤ψ−1(Rϕ(f)−R⋆

ϕ) + E max
x′∈B(x,ϵ)

1{βf(x′)f(x) < 0} (3.22)

Given example x, adversarial example x∗ and a continuous path γ(·) such that

γ(0) = x and γ(1) = x∗, following inequality holds:

1{βf(x∗)f(x) < 0} ≤
m−1∑
k=0

1{βf(γ(
k

m
))f(γ(

k + 1

m
)) ≤ 0} (3.23)
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where m is a hyper-parameter for dividing the path γ(·).

Proof of Eq. (3.23). First, it is clear when f(x∗)f(x) ≥ 0. Thus, we consider the
case of f(x∗)f(x) < 0. To prove the statement by contradiction, suppose that
1 = 1{βf(x∗)f(x) < 0} >

∑m−1
k=0 1{βf(γ( k

m))f(γ(k+1
m )) ≤ 0}, or equivalently,

f(γ( k
m))f(γ(k+1

m )) > 0 for all k = 0, · · · ,m − 1. In other words, we have the same

sign values for every ( k
m ,

k+1
m ) pairs which leads a contradiction with the assumption

that f has different sign values at the end points γ(0) = x and γ(1) = x∗.

Now, we establish a new upper bound on Rrob(f)−R⋆
nat.

Theorem 3.3. Given a sample x and a positive β, let γ : [0, 1]→ X be a continuous
path from γ(0) = x to γ(1) = x∗ where x∗ = arg maxx′∈B(x,ϵ) 1{βf(x′)f(x) < 0}.
Then, for any non-negative classification-calibrated loss function ϕ such that ϕ(0) ≥
1, we have

Rrob(f)−R⋆
nat ≤ ψ−1(Rϕ(f)−R⋆

ϕ)

+ E(x,y)

m−1∑
k=0

ϕ(βf(γ(
k

m
))f(γ(

k + 1

m
)))

where R⋆
nat := inff Rnat(f), R⋆

ϕ := inff Rϕ(f) and ψ−1 is the inverse function of
the ψ-transform of ϕ.

Proof. By Eq. (3.22), the first inequality holds. Similarly, the second inequality
holds by Eq. (3.23), and the last inequality holds because we choose a classification-
calibrated loss ϕ.

Rrob(f)−R⋆
nat ≤ ψ−1(Rϕ(f)−R⋆

ϕ) + E(x,y)1{βf(x∗)f(x) < 0}

≤ ψ−1(Rϕ(f)−R⋆
ϕ) + E(x,y)

m−1∑
k=0

1{βf(γ(
k

m
))f(γ(

k + 1

m
)) ≤ 0}

≤ ψ−1(Rϕ(f)−R⋆
ϕ) + E(x,y)

m−1∑
k=0

ϕ(βf(γ(
k

m
))f(γ(

k + 1

m
)))

Theorem 3.3 tells us that our proposed method provides an upper bound on

the robust error of the model. To push further, we prove that the suggested loss is

tighter than that of TRADES under a weak assumption on the path γ(·).
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Following (Zhang et al., 2019b), we use KL divergence loss (KL) as a classification-

calibrated loss. To do this, we define p(x) := σ(f(x)) where σ is a sigmoid function.

Then, a model output with softmax can be denoted as p(x) := [p(x), 1 − p(x)]. In

this setting, we can prove that the suggest loss is tighter than that of TRADES

under a weak assumption on γ(·).

Assumption 1. [p(γ(t))]y is a decreasing function of t ∈ [0, 1], where [p(·)]y indi-
cates the probability corresponding to the correct label y.

Theorem 3.4. Under Assumption 1, the KL divergence loss has the following prop-
erty:

m−1∑
k=0

KL(p(γ(
k

m
))||p(γ(

k + 1

m
)) ≤ KL(p(γ(0))||p(γ(1))).

Proof. Let p1(x), p2(x), and p3(x) denotes three different distribution with possible
outcomes x = {−1, 1} and 0 < p1(x = 1) ≤ p2(x = 1) ≤ p3(x = 1) < 1. Then,

KL(p1||p2) + KL(p2||p3)−KL(p1||p3)

=
∑

x∈{0,1}

p1(x) ln
p1(x)

p2(x)
+

∑
x∈{0,1}

p2(x) ln
p2(x)

p3(x)
−

∑
x∈{0,1}

p1(x) ln
p1(x)

p3(x)

=
∑

x∈{0,1}

(p2(x)− p1(x)) ln p2(x) +
∑

x∈{0,1}

(p1(x)− p2(x)) ln p3(x)

=−
∑

x∈{0,1}

(p1(x)− p2(x))(ln p2(x)− ln p3(x))

≤ 0

The last inequality holds because p1(x)−p2(x) and p2(x)−p3(x) have the same sign
regardless of x. Likewise, for 0 < p1(x = −1) ≤ p2(x = −1) ≤ p3(x = −1) < 1, the
statement also holds true. Thus, by mathematical induction,

∑m−1
k=0 KL(p(γ( k

m))||p(γ(k+1
m )) ≤

KL(p(γ(0))||p(γ(1))) under Assumption 1.

For the multi-class problem, we can extend Theorem 3.4 by assuming [p(γ(u))]i

as a monotonic function for each individual component i ∈ Y.
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Table 3.1: Detailed structure of Wav2vec-based models.

Name Layers

LS-Large LS(512, 512)-FC(512, 12)
LS-Small LS(512, 64)-FC(64, 12)

FC-Large FC(512×98, 1000)-FC(1000,500)-FC(500,12)
FC-Small FC(512×98, 12)

3.4 Experiments

3.4.1 Transferability

Experimental setup

The Google speech commands dataset consists of 65,000 one-second utterances by

thousands of people. The target speech command are such as “yes”, “no”, “up”,

“down”, “left”, “right”, “on”, “off”, “stop”, and “go”. For the frequency-based ex-

tractor, we set the number of Mel-filterbanks to 32, the size of the FFT to 2048, and

the length of the hop between windows to 512, and it outputs Mel-spectrogram with

a size of 32 × 32. For the Wav2vec-based extractor, given a raw audio waveform as

an input, the encoder of pre-trained Wav2vec constructs the representative vector

with the shape of 512×98. The detailed structure of each classifier is summarized in

Table 3.1.

The VCTK dataset consists of speech data uttered by 110 English speakers. Fol-

lowing (Li et al., 2020b), the first 10 speakers in the VCTK dataset were used in this

experiment. We split the dataset into training and test datasets, with a 8:2 ratio. The

model should classify the input utterances as the target speaker. For the frequency-

based extractor, we set the number of Mel-filterbanks to 30, the size of the FFT to

2048, and the length of the hop between windows to 512. Following frequency-based

extractor, X-vectors (Snyder et al., 2018) is used as classifier (Model-F). For the
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Wav2vec-based model, we used the encoder of pre-trained Wav2vec as the extractor

and LS-Large as the classifier (Model-W).

For both datasets, the models were trained with 70 epochs and the Adam opti-

mizer was used with an initial learning rate of 0.005. We stress that Wav2vec was

fixed, and only the classifier was trained during the training session. We used the

cosine-annealing learning rate schedule. For the attacks, we set the maximum per-

turbation ϵ to satisfy dBx(δ) = −20 which is similar to the value used in (Carlini

and Wagner, 2018). Their step size α is fixed at 2ϵ/T , where T is the number of

steps which is set to 10. For NIA, a uniform distribution U[−ϵ, ϵ] is used as the noise

distribution N . All adversarial attacks require approximately 0.78s for generating

one audio adversarial example on DenseNet in average. All experiments were per-

formed using PyTorch (Paszke et al., 2019) and Torchattacks (Kim, 2020) on a single

NVIDIA TITAN V under Ubuntu 16.04.4 LTS. The hardware used in experiments

is Intel(R) Xeon(R) Gold 6126 CPU, 2.60GHz, 48 cores and 394GB memory.

Experimental results

Here, we provide the transferability of comparison methods and the proposed method.

In addition to CW and PGD, we also considered DIM (Xie et al., 2019) and TIM

(Dong et al., 2019) as the comparison methods, which generate the most transferable

adversarial examples in the vision domain. We converted their 2D transformations

into 1D transformations. For DIM, we 1D resize and 1D padding at every step. The

resize ratio was set to 0.9, then zero-pads the resized audio waveform to have the

same shape of the original waveform. For TIM, we evaluated its attack success rate

for diverse kernel lengths k ∈ [3, 5, 7, 9, 11, 15], because TIM is very sensitive to its

kernel length and shows the best performance when k = 3. Thus, we fixed the kernel
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Table 3.2: Transferability (%) of each adversarial attack for different source and tar-
get model on the Google speech commands dataset. The best results are shown in
bold. Green-colored cells correspond to the case when NIA shows the best perfor-
mance.

Source Model Attack
Target Model

Frequency-based Wav2vec-based
DenseNet VGG WRN LS-Large LS-Small FC-Large FC-Small

CW 99.92 53.25 57.54 13.40 14.10 16.48 19.87
PGD 99.57 90.22 94.74 38.57 43.79 43.05 49.51
DIM 99.34 92.64 95.17 41.18 47.45 46.83 53.33
TIM 95.40 77.80 82.12 43.55 48.66 52.24 57.03

DenseNet

NIA 95.01 89.83 91.62 53.06 57.58 56.33 58.71

CW 53.76 100.00 52.28 13.83 15.08 16.32 18.31
PGD 93.26 100.00 95.21 44.96 50.76 51.11 52.86
DIM 96.84 99.96 97.78 48.77 56.33 56.14 55.98
TIM 83.48 99.73 81.26 44.25 49.24 53.72 54.15

VGG

NIA 98.32 99.84 98.91 64.20 69.81 67.32 66.77

CW 53.25 47.80 99.49 13.60 14.53 16.17 17.76
PGD 88.24 84.50 96.49 30.11 32.49 35.76 39.77
DIM 89.21 86.99 94.90 33.97 37.63 38.92 42.66
TIM 79.74 75.07 92.29 36.85 42.89 48.66 49.63

WRN

NIA 89.55 88.35 92.99 43.36 49.01 48.77 50.44

CW 17.72 17.88 17.76 100.00 53.17 49.55 61.86
PGD 55.63 54.89 56.53 100.00 96.03 94.08 97.23
DIM 67.12 66.38 67.39 99.88 96.80 96.01 98.91
TIM 36.27 33.70 36.27 99.45 87.03 80.02 88.62

LS-Large

NIA 72.46 72.07 72.96 99.57 97.55 96.07 96.46

CW 17.92 18.58 18.15 45.97 99.96 47.29 59.95
PGD 60.93 61.12 63.50 96.49 100.00 95.99 98.17
DIM 70.20 69.81 71.48 97.94 99.92 98.21 98.79
TIM 40.71 38.61 39.54 88.86 99.69 87.46 91.74

LS-Small

NIA 78.38 77.02 79.08 98.56 99.96 98.25 98.87

CW 16.63 16.36 15.97 37.79 39.46 99.88 70.32
PGD 51.69 48.93 51.11 89.95 92.13 99.38 98.05
DIM 65.72 64.20 65.21 95.68 95.29 99.14 98.71
TIM 32.76 30.54 31.83 73.24 77.29 98.87 93.57

FC-Large

NIA 79.28 78.54 77.02 95.95 96.38 99.18 98.75

CW 7.28 7.79 6.90 15.35 16.48 24.07 84.92
PGD 54.85 51.27 54.11 95.13 96.92 99.38 100.00
DIM 65.17 62.80 65.37 97.62 98.44 99.38 100.00
TIM 36.62 31.63 35.88 81.92 85.55 92.29 100.00

FC-Small

NIA 77.17 75.54 77.13 98.29 98.83 99.69 100.00

length k = 3 with the Gaussian kernel.

The results on the Google speech commands and VCTK datasets are summarized

in Table 3.2 and 3.3. For both datasets, NIA achieves the best transferability for most

cases. Specifically, on the Google speech commands dataset, when the source model
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Table 3.3: Transferability (%) of each adversarial attack for different source and
target model on the VCTK dataset. The best results are shown in bold. Green-
colored cells correspond to the case when NIA shows the best performance.

Source Model Attack
Target Model

Frequency-based
(Model-F)

Wav2vec-based
(Model-W)

CW 100.00 65.68
PGD 99.87 82.64
DIM 99.87 81.97
TIM 98.65 79.41

Frequency-based
(Model-F)

NIA 100.00 86.27

CW 61.51 100.00
PGD 82.73 100.00
DIM 84.25 99.73
TIM 80.75 96.64

Wav2vec-based
(Model-W)

NIA 85.20 100.00

is CW, PGD, DIM, and TIM only show the TNIA,DenseNet→LS−Large of 13.40%,

38.57%, 41.18%, and 43.55%, respectively. However, NIA shows largely increased

transferability, TNIA,DenseNet→LS−Large = 53.06%, even the source model and the

target model have different feature extractors. This tendency is observed for most

cases on the Google speech commands dataset.

In addition, on the VCTK dataset, NIA shows the best transferability as shown

in Table 3.3. Specifically, NIA shows TNIA,Model−F→Model−W = 86.27%, which is

higher than that of PGD (82.64%). Similarly, NIA shows the best transferability

TNIA,Model−W→Model−F = 85.20%, which is higher than that of PGD (82.73%) and

DIM (84.25%). Thus, we can conclude that NIA successfully boosts the transferabil-

ity.

Based on the fact that audio adversarial examples are easily nullified by additive

noise, we conducted an experiment on the Google speech command dataset with

varying magnitude of uniform noise n. As shown in Fig. 3.10, the attack success rate
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Figure 3.10: Attack success rate (3.10a and 3.10b) and transferability (3.10c and
3.10d) of each attack method under the noisy setting. x-axis indicates the relative
magnitude of additive noise n to the original audio sample x.

decreased as the magnitude of the uniform noise increased in all cases. However, NIA

shows a stable performance against additive noise, not only for transferability but

also for the white-box attack setting compared to CW and PGD. In particular, NIA

shows the best transferability for varying magnitudes of noise (Fig. 3.10c and 3.10d).

This implies that NIA yields lower NR, which is connected to the transferability of

adversarial examples in real-world scenarios.

Similarly, on the VCTK dataset, we evaluate the transferability of each attack in

the noisy environment. We used the same setting n ∼ U[−ϵ/5, ϵ/5]. The results are

summarized in Table 3.4. Again, NIA shows the best performance for all cases even

for the white-box attack setting. Moreover, NIA shows the lowest NR than any other

comparison methods, which supports the connection between the transferability and

the noise sensitivity.
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Table 3.4: Transferability (%) of each adversarial attack in the noisy environment.
The NR (%) in Eq. (3.10) is also reported in parentheses. The best results are
shown in bold. Green-colored cells correspond to the case when NIA shows the best
performance.

Source Model Attack
Target Model

Frequency-based
(Model-F)

Wav2vec-based
(Model-W)

CW 73.76 (26.24) 56.53 (13.93)
PGD 99.33 (0.54) 73.22 (11.40)
DIM 99.33 (0.54) 73.62 (10.19)
TIM 97.44 (1.23) 69.72 (12.20)

Frequency-based
(Model-F)

NIA 100.00 (0.00) 79.00 (8.43)

CW 48.59 (21.00) 73.22 (26.78)
PGD 72.01 (12.58) 91.66 (8.34)
DIM 74.02 (12.14) 92.19 (7.56)
TIM 70.14 (13.14) 85.06 (11.98)

Wav2vec-based
(Model-W)

NIA 75.56 (11.31) 99.19 (0.81)

Furthermore, we estimate sample-wise variance (SV) with varying the number

of steps to compare the overall transferability of adversarial attacks. Fig. 3.11 shows

the results on the Google speech commands dataset, where DenseNet is the source

model hS . As the number of steps increases, the transferability of CW and PGD

decreases. Surprisingly, however, NIA shows continuously increasing performance

as the number of steps increases. Even with a large number of steps, NIA shows a

high transferability against the same feature extractor-based models (approximately

90%) and different feature extractor-based models (approximately 60%). Moreover,

NIA achieves a higher transferability with a lower SV compared to CW and PGD

for all number of steps.
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Figure 3.11: Transferability and SV for different number of steps. Each line denotes
the attack success rate TA,DenseNet→T for a target model T . Each color corresponds
to a different target model. Gray bars correspond to the expected SV (E[SV ]) for
the source model.

3.4.2 Adversarial Robustness

Experimental setups

For MNIST, we train LeNet (LeCun et al., 1998) for 50 epochs with the Adam

optimizer. Note that only MART is trained SGD with the initial learning rate 0.01

following (Wang et al., 2019b), because MART converges to a constant function

when the Adam optimizer is used. The initial learning rate is 0.001 and it is divided

by 10 at 30 and 40 epochs. During training, we use PGD40 with ϵ = 0.3 and 0.45,

which are commonly used in prior work (Wang et al., 2019b; Sitawarin et al., 2020).

We use PGD40 with ϵ = 0.3 and the step-size α = 0.02 to generate adversarial
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examples in the training session. No preprocessing or input transformation is used.

For CIFAR10, we train WRN-28-10 with two different training schemes. The one

is the step-wise decay setting, which is generally used, and the other one is cyclic

learning rate schedule (Smith, 2017), which is a recently proposed training scheme

that enables the model to converge faster (Wong et al., 2020). We report the results

with cyclic learning rate schedule, because its performance is slightly better than

the step-wise decay setting. We use 0.3 as the maximum learning rate and a total of

30 epochs for training. During training, we use PGD10 with ϵ = 8/255 and 16/255,

which are commonly used in prior work (Madry et al., 2018; Wang et al., 2019b).

The step-size is set to α = 2/255. Horizontal flip and random cropping with padding

of 4 are used for data augmentation.

For Tiny ImageNet, we used PreActResNet18 (He et al., 2016b). Following the

settings of (Rice et al., 2020; Pang et al., 2020), we train a model 110 epochs with

SGD optimizer and an initial learning rate is 0.1 and decayed with a factor of 0.1

at the 100th and 105th epoch. We use PGD10 with ϵ = 8/255 and the step-size

α = 2/255 to generate adversarial examples in the training session as used in (Kim

et al., 2021a). Horizontal flip and random cropping with a padding of 4 are used

for data augmentation. For Tiny ImageNet, we find that the performance under

β > 5 is sometimes better than that of β = 5. Thus, we perform grid search on

β = {1, 5, 10, 20, 40} and choose the best β that records the highest robustness

against PGD50 with ϵ = 8/255. Similarly, we found that m = 3 produces the best

performance on Tiny ImageNet among m = {2, 3, 5, 10}.

We basically evaluate the robustness of all models with PGD50. Furthermore,

we also consider AutoAttack (Croce and Hein, 2020), which is a combination of
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Figure 3.12: (CIFAR10) Analysis on the margin during the first 40 epochs. Top:
the expected margin increase −∇θM(x) · ∇θℓ of each method. Bottom: the actual
margin M(x) of each method. The proposed method shows a larger margin than
TRADES by mitigating the negative effect.

three white-box attacks (Croce and Hein, 2020, 2019) and one black-box attack

(Andriushchenko et al., 2020). Note that AutoAttack is by far the most reliable

attack to measure robustness. Unless otherwise specified, we use the same ϵ that

was used in the training session during evaluation.

Experimental results

Effect of gradient and actual margin Here, we remark that the gradient of

−KL(p||p∗) has a direction opposite to the gradient of the margin M(x) as described

in Proposition 3.2. Moreover, we experimentally confirmed this negative effect in

Fig. 3.9. In this paragraph, we further measure the actual effect of the gradient

on margin and its value during the training. First, we observe the effect of the

gradient descent ∇θℓ on the margin maximization, measured by −∇θM(x) · ∇θℓ.
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This indicates the expected margin increase by the weight update with the loss ℓ.

Then, we measure the actual margin M(x).

Fig. 3.12 shows that the proposed method mitigates the negative effect of the

regularization term during training. Compared to TRADES, the proposed method

shows a higher expected increase in the margin, and this enables the model to achieve

a large margin. Thus, by introducing the intermediate probability p̃, we successfully

encourage the model to reduce the negative effect of the regularization term on

maximizing the margin.

Gradient magnitude A larger norm of gradient also serves to explain the ad-

vantage of the proposed method. As prior works discovered (Liu et al., 2020; Dong

et al., 2021), a larger gradient norm in the initial training phase enables the model

to escape a suboptimal region. To provide a fair comparison for different training

methods, we normalize the norm of gradient by the norm of the loss value as follows:∥∥∥∥∇θℓ(x,y;θ)

ℓ(x,y;θ)

∥∥∥∥
2

(3.24)

As shown in Fig. 3.13, the gradients of AT show the smallest normalized gradient

norm among different training methods. This implies that AT has difficulty escaping

from the initial suboptimal region (Liu et al., 2020). It is also supported by the

experiments under the large maximum perturbation setting in Fig. 3.7. Compared

to AT, TRADES shows a higher norm of the gradients. This is consistent with the

observation that TRADES provides more gradient stability with the continuous loss

landscape (Dong et al., 2021). However, as shown in Fig. 3.7, TRADES also has

difficulty reaching the global optima with high clean accuracy and robustness under
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Figure 3.13: (CIFAR10) Normalized gradients of each loss term during the first 2000
batches. The proposed method (BAT) shows the largest gradient magnitude, which
can help the model quickly escapes the initial suboptimal region (Dong et al., 2021).

the large maximum perturbation setting. In contrast, the proposed method shows

the highest normalized gradient norm gained by mitigating the negative effect in

Fig. 3.13. Considering its stable performance even for larger perturbation conditions,

we believe that this might be explain the advantages of the proposed method.

Balanced margin and smoothness Previously, we verified that the proposed

method successfully mitigates the negative effect during the initial training phase.

Now, we investigate whether the proposed method achieves sufficient smoothness

while mitigates the negative effect until the end of training.

First, for each trained model, we generate a corresponding adversarial dataset

(x∗,y) by using PGD50 with ϵ = 8/255 and the step-size α = 2/255. Then, we plot

pairs of the margins of clean examples x and corresponding adversarial examples

x∗ with their KL divergence. In each plot, the upper and the right histograms show

the distribution of M(x) and M(x∗), respectively. We colored each point by the

KL divergence KL(pθ(x)||pθ(x∗)) to measure the smoothness. The red points have
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Figure 3.14: (CIFAR10) Distribution of the margins M(x) and M(x∗). Each point
indicates each test example, and the color of each point indicates the KL divergence
loss KL(p||p∗). The darker red ones indicate a higher KL divergence loss.
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high KL divergence (poor smoothness) and the blue points have low KL divergence

(better smoothness).

Now, we provide a detailed explanation of the plot. Each quadrant corresponds

to:

• Quadrant I: M(x∗) > 0. → Adversarial robustness (1 - Rrob).

• Quadrant III: M(x) < 0. → Natural classification error (Rnat).

• Quadrant IV: M(x) > 0 and M(x∗) < 0. → Boundary error (Rbdy)

Note that there is no point in the second quadrant (Quadrant II) because ad-

versarial attacks generally do not make incorrect examples (M(x) < 0) correctly

classified (M(x∗) > 0). Here, Rnat(f) := E(x,y)1{arg maxi f(x)i ̸= y} is the natural

classification error and Rrob(f) := E(x,y)1{∃x′ ∈ B(x, ϵ) s.t. arg maxi f(x′)i ̸= y} is

the robust error. Then, Rrob(f) can be decomposed as follows:

Rrob(f) = Rnat(f) +Rbdy(f) (3.25)

where Rbdy(f) := E(x,y)1{arg maxi f(x)i = y,∃x′ ∈ B(x, ϵ) s.t. arg maxi f(x)i ̸=

arg maxi f(x′)i} is the boundary error in (Zhang et al., 2019b). Thus, the ultimate

purpose of adversarial training is to move all the points to the first quadrant.

As shown in Fig. 3.14, the proposed method provide a balanced margin and

smoothness with better robustness. Compared to TRADES, which has only a few

samples with a high margin M(x) and M(x∗), the proposed method shows better

margin distributions near 1 for both clean and adversarial examples. This implies

that our method successfully mitigates the negative effect of the regularization term

on maximizing the margin as discussed in Section 3.3.2. As a result, our method
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Table 3.5: (CIFAR10) Sensitivity of β.

Method Clean FGSM PGD50

β = 1 89.03 56.98 50.33
β = 2 87.08 59.14 53.32
β = 3 85.89 57.46 52.52
β = 4 84.72 57.88 53.29
β = 5 83.69 58.04 53.86
β = 6 82.87 57.73 53.72
β = 7 82.10 57.11 53.75
β = 8 81.49 57.42 53.78
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Figure 3.15: Sensitivity of β in terms of margin and smoothness. x-axis denotes the
inverse of the expectation of the KL divergence and y-axis denotes the expectation
of the margin. Each expectation is calculated on the test set. Higher is better for
both axes.

achieves a lower natural classification error (14.9%) than that of TRADES (17.8%).

Compared to AT, the proposed method has fewer red points, which implies that

the proposed method provides smoothness. Due to the increased smoothness, the

boundary error of the proposed method (Rbdy = 28.8%) is lower than that of AT

(Rbdy = 31.6%).

Sensitivity analysis Here, we evaluate the sensitivity on the hyper-parameters

of the proposed method, β and m. Table 3.5 and Table 3.6 shows the sensitivity of β
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Table 3.6: (CIFAR10) Sensitivity of m.

Method Clean FGSM PGD50

m = 1 82.77 59.07 55.79
m = 2 85.14 60.18 56.01
m = 3 85.98 59.35 54.25
m = 4 86.30 58.35 53.40
m = 5 87.14 57.21 51.16

and m, respectively. All experiments are performed on CIFAR10 with cyclic learning

rate decay as same in Section 3.4.2. Here, we only performed each experiment once.

For the analysis on β, we fixed m = 2. As shown in Table 3.5, as β increases, the

standard accuracy decreases. To push further, we measure the margin and smooth-

ness with varying β. For better visualization, we used the inverse of the expectation

of the KL divergence (because the smoothness is better when KL(p||p∗) is lower).

Thus, as shown in Fig. 3.15, we plot the inverse of the KL divergence (x-axis) and

the margin (y-axis) for each model as shown in Fig. 3.15. The proposed method

shows better values in terms of margin and smoothness with varying β.

Table 3.6 shows the sensitivity of m. Here, we fix β = 5 from the observation in

Table 3.5. Due to decreased negative effect, as m increases, the model shows a higher

accuracy. However, we can not observe a similar increasing tendency of adversarial

robustness with m. In addition, we note that increasing m requires more time for

calculating intermediate probabilities. m = 2 only requires 1.3 seconds per iteration,

which is only 8% increase of m = 1 (1.2 seconds per iteration).

Adversarial Robustness Here, we verify the robustness of the proposed method.

Here, we adopt three benchmark datasets, i.e, MNIST, CIFAR10, and Tiny Ima-

geNet. They are widely used datasets to evaluate the performance of adversarially
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Table 3.7: Robustness accuracy (%) on MNIST. All models trained using PGD40

with ϵ = 0.3 and 0.45, then evaluated by each attack with the same ϵ = 0.3 and
0.45, respectively.

Method Clean PGD50 AutoAttack

(Training ϵ = 0.3)

AT 98.79±0.23 91.69±1.25 88.64±0.61
TRADES 98.89±0.01 93.70±0.01 92.31±0.21
MART 98.78±0.16 92.37±1.21 89.62±1.44
BAT 98.79±0.06 93.97±0.16 92.19±0.13

(Training ϵ = 0.45)

AT 11.35±0.00 11.35±0.00 11.35±0.00
TRADES 99.42±0.05 11.34±0.01 0.53±0.26
MART 13.13±2.54 7.80±3.73 0.93±1.32
BAT 97.72±0.26 88.20±0.57 76.09±1.65

trained models. To push further, in addition to AT and TRADES, we also con-

sider MART (Wang et al., 2019b), which aims to maximize the margin and recently

achieved the best performance by focusing on misclassified examples.

For all values, we report the average and the standard deviation of the perfor-

mance over three runs with different random seeds. We use PyTorch (Paszke et al.,

2019) and Torchattacks (Kim, 2020) for all experiments.

As shown in Table 3.7, for MNIST with ϵ = 0.3, all defenses show high robust-

ness. However, for a large ϵ = 0.45, all comparison methods converge to a constant

function or fail to gain robustness. In other words, the existing methods have diffi-

culty converging to the global optimal. For the cases of AT and MART, they have

the term that maximizes the margin of adversarial examples so that it can have dif-

ficulty in convergence (Dong et al., 2021). In contrast, TRADES also fails to achieve

stable robustness, because a larger perturbation brings stronger negative effect of
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Table 3.8: Robustness accuracy (%) on CIFAR10. All models trained using PGD10

with ϵ = 8/255 and 16/255, then evaluated by each attack with the same ϵ = 8/255
and 16/255, respectively.

Method Clean PGD50 AutoAttack

(Training ϵ = 8/255)

AT 85.65±0.33 53.64±0.03 50.87±0.22
TRADES 82.22±0.12 52.14±0.08 48.90±0.35
MART 77.51±0.46 53.87±0.08 48.25±0.06
BAT 84.84±0.28 55.64±0.37 52.41±0.02

(Training ϵ = 16/255)

AT 72.43±0.01 29.01±0.13 24.24±0.51
TRADES 70.01±0.44 24.52±0.06 14.63±0.22
MART 65.97±0.54 32.65±0.40 23.23±0.14
BAT 77.56±0.01 30.79±0.35 25.06±0.37

Table 3.9: Robustness accuracy (%) on Tiny ImageNet. All models trained using
PGD10 with ϵ = 8/255, then evaluated by each attack with the same ϵ = 8/255.

Method Clean PGD50 AutoAttack

AT 46.68±0.02 15.26±0.22 11.52±0.11
TRADES 40.39±0.05 20.48±0.03 12.03±0.13
MART 42.45±0.12 19.43±0.42 11.32±0.51
BAT 42.47±0.04 21.52±0.10 12.53±0.26
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KL(p||p∗) as we discussed in Section 2. However, the proposed method shows stable

results even for ϵ = 0.45. Considering that the difference between TRADES and the

proposed method is the usage of bridging, this result tells us that the convergence

becomes much easier by using the proposed bridged loss.

The proposed method also shows the best robustness on CIFAR10 (Table 3.8).

Specifically, for ϵ = 16/255, the proposed method achieves 77.56% of standard ac-

curacy, which is 5% higher than AT. Compared to TRADES and MART, it is 6%

and 12% higher, respectively. Simultaneously, it also achieves the best robustness

25.06% against AutoAttack. Note that the robustness of TRADES is only 14.63%,

which shows the weakness of TRADES for a larger perturbation.

3.5 Chapter Summary

In this study, we investigated and analyzed the adversarial robustness of deep learn-

ing models in various domains. From extensive empirical and theoretical analyses,

we improved the performance of both adversarial attack and adversarial defense.

The results of our work can be effectively used to develop a new adversarial attack

or defense method in consideration of diverse models and its loss landscape.
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Chapter 4

Generalization and Loss Landscape

4.1 Chapter Overview

With a large number of parameters, deep learning models have shown remarkable

improvements across a variety of domains. However, over-parameterized deep learn-

ing models may suffer from poor generalization, even though they enjoy near zero

training loss. To alleviate this overfitting problem, prior studies have suggested di-

verse techniques such as augmentation (Zhang et al., 2017b; Yun et al., 2019) and

regularization (Srivastava et al., 2014; Ioffe and Szegedy, 2015; Barrett and Dherin,

2020).

Recently, researchers have become interested in exploring the relationship be-

tween the geometric characteristics of the loss surface and the generalization per-

formance (Hochreiter and Schmidhuber, 1994; Keskar et al., 2017; Li et al., 2018).

Theoretical and empirical studies have demonstrated that the generalization per-

formance is potentially related to the sharpness of the loss landscape and that an

optimum with a flatter loss landscape can lead to better generalization. Based on

these prior studies, Foret et al. (2020) recently proposed a new training framework

called sharpness-aware minimization (SAM) that substantially improves the gen-

eralization performance on various tasks (Foret et al., 2020; Zhuang et al., 2021;
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Figure 4.1: The optimization has begun at the point indicated by the plus sign, and
the global minimum is indicated by the yellow star. SAM appears to be stuck at the
saddle point, rather than converging to the global minimum.

Chen et al., 2022). The key idea of SAM is to minimize the maximum loss near

its neighborhood in the weight space instead of minimizing the loss of the current

weight. Thus, SAM can reach an optimum with a flatter loss landscape, resulting in

improved generalization performance. Owing to its simplicity and ease of implemen-

tation, SAM has been adopted by many practitioners for training neural networks

and improving the generalization performance.

However, we identify an instability in the convergence process of SAM dynamics

near a saddle point, which may cause the suboptimal minimum problem. As shown

in Fig. 4.1, the Beale function, a widely used optimization problem, is optimized

using both vanilla gradient descent (GD) and SAM. GD reaches the global minimum

(yellow star) but SAM is trapped in the saddle point. As deep learning models are

highly non-linear and thus have multiple local minima and saddle points (Du et al.,

2017; Kleinberg et al., 2018a), this convergence instability near a saddle point should

be investigated.

To provide a comprehensive understanding of the convergence instability near
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a saddle point in SAM dynamics, we analyze the dynamics of SAM near saddle

points from the viewpoint of a dynamical system and show that SAM may not

converge due to its gradient oscillation. We then prove that saddle points can become

attractors under certain circumstances. We extend our investigation to the utilization

of stochastic optimization with mini-batch sampling and establish the property of

SAM diffusion, demonstrating that SAM requires more time to escape saddle points

than stochastic gradient descent (SGD). Based on the diffusion, we further identify

the importance of often overlooked training tricks, momentum and batch size, on the

convergence instability of SAM. To the best of our knowledge, this is the first work

that identifies and investigates the convergence instability of SAM near a saddle

point. 1

The main contributions of this study can be summarized as follows:

• We identify the convergence instability of SAM and theoretically prove the

difficulty of escaping saddle points under SAM dynamics from the perspective

of a dynamical system.

• We investigate the difficulty of saddle point escape under stochastic dynamical

systems by establishing SAM diffusion and identify the importance of momen-

tum and batch size for escaping saddle points with SAM diffusion.

• We conduct various experiments to support our theoretical results on a range

of optimization settings, from a basic optimization problem to neural network-

based benchmark tasks.

1This work was preprinted in arXiv (Kim et al., 2023).
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4.2 Preliminaries

4.2.1 Generliazation and Sharpness-Aware Minimization

Given a loss function ℓ(·) and weight parameters w, the traditional optimization,

the so-called empirical risk minimization, tries to minimize the following objective:

min
w
L(w;S) :=

1

n

∑
(x,y)∈S

ℓ(w;x,y), (4.1)

where S = {xi,yi}ni=1 is a sampled training dataset with n instances. Under the

general i.i.d. assumption on data, Eq. (4.1) generally yields a feasible solution of w

on the true distribution of data D,

min
w
L(w;D) := E(x,y)∼D [ℓ(w;x,y)] . (4.2)

However, in common practice, the i.i.d assumption is often violated by the limitation

of training data and model structure. Therefore, a generalization gap can be defined

as

E(w) = L(w;S)− L(w;D). (4.3)

A low generalization gap indicates a high generalization performance. Therefore, the

primary objective of machine learning is to attain the optimal solution that mini-

mizes both the training loss L(w;S) and the generalization gap E(w). Although the

training loss can efficiently be minimized to near zero even with a vanilla training

algorithm (Ishida et al., 2020), it still remains an open question how to minimize

the generalization gap effectively. To address this issue, recent studies have focused

on the flatness of the loss landscape as a potential solution (Hochreiter and Schmid-

huber, 1994; Dziugaite and Roy, 2017) and provided experimental evidence that a
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flatter loss landscape tends to have a better generalization performance (Jiang et al.,

2019).

Among several algorithms (Chaudhari et al., 2019; Izmailov et al., 2018; Foret

et al., 2020) that penalize sharp minima and seek flat minima, sharpness-aware

minimization (SAM) (Foret et al., 2020) has been shown to be effective in reaching

flat minima and has demonstrated significant improvements in generalization across

various tasks and model structures, such as medical tasks (Anand et al., 2022) and

transformers (Chen et al., 2022). SAM aims to minimize the worst-case loss over its

parameter neighborhood rather than minimizing the loss of current parameter. Let

us denote a vanilla gradient descent algorithm that minimizes the loss of current

weight wt at time t as

wt+1 = wt − η∇ℓ(wt), (4.4)

where η is a learning rate and ∇ℓ(v) is a gradient with respect to its input vector v

unless specified otherwise. In contrast, SAM minimizes the loss of perturbed weight

wp
t by using the first-order Taylor approximation:

wp
t = wt + ρ∇ℓ(wt). (4.5)

wt+1 = wt − η∇ℓ(wp
t ), (4.6)

where ρ is a given neighborhood radius. Note that ρ can be normalized with the

gradient norm as introduced in (Foret et al., 2020), i.e., ρ/∥∇ℓ(w)∥; however, a con-

stant ρ in Eq. (4.5) shows similar or higher performance than the normalized version

(Andriushchenko and Flammarion, 2022). Therefore, SAM consistently enforces w

to have a reduced perturbed loss ℓ(wp) within its ρ-neighborhood. This effectively

makes the loss landscape smoother in the vicinity of its optimum, leading to a better
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generalization performance than that of any other existing methods.

Following the success of SAM, further investigations have been conducted to

explore its algorithm and enhance its generalization performance or computational

efficiency. Kwon et al. (2021) proposed a transformation of parameters to achieve

scale-invariant sharpness. Zhuang et al. (2021) argued that subtracting ∇ℓ(w) from

∇ℓ(wp) can reduce certain drawbacks in optimization. Liu et al. (2022) explored

the effectiveness of a random perturbation during weight perturbation. Du et al.

(2022) demonstrated that perturbing only some parameters can also improve the

generalization performance with a reduced computational burden.

Despite the proposed variants and their improved generalization performance,

some unclear points of the mechanism behind SAM still remain. For instance, An-

driushchenko and Flammarion (2022) argued that the proposed generalization bound

of SAM is incomplete, and instead connected the success of SAM to its implicit bias

for different sizes of mini-batch. Our work also sheds light on understanding the

mechanism of SAM with respect to its optimization properties, and to the best of

our knowledge, this is the first work that identifies the convergence instability near

a saddle point in SAM.

4.2.2 Escaping Saddle Points

The non-linearity of the loss landscape of neural networks results in the presence of

multiple local minima and saddle points (Du et al., 2017; Kleinberg et al., 2018b).

Prior studies have demonstrated that both gradient descent (GD) (Lee et al., 2016;

Du et al., 2017) and stochastic gradient descent (SGD) (Xie et al., 2020; Ziyin et al.,

2022) can be hindered by the saddle point. Therefore, many researchers have focused

on escaping saddle points and reaching better minima. For instance, Du et al. (2017)
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demonstrated that GD can take exponential time to escape saddle points even when

using random initialization schemes. Xie et al. (2022) established SGD diffusion

and the importance of momentum in overcoming the saddle point issue. Ziyin et al.

(2022) also demonstrated that the learning rate can affect to the saddle point escape

in SGD.

Similar to these works, this study presents the difficulty of SAM in escaping the

saddle point under both asymptotic and stochastic system dynamics. We introduce a

dynamical system-based geometric method to investigate when SAM can be hindered

by saddle points. Moreover, we extend the diffusion theory in SGD (Xie et al.,

2022) to SAM, illustrating the convergence instability near a saddle point in SAM

dynamics. Additionally, we discuss the importance of carefully adopting training

tricks in SAM, which emphasizes the observation presented by (Ziyin et al., 2022).

4.3 Methodology

4.3.1 Asymptotic Behavior of SAM Dynamics

To investigate the underlying mechanism of SAM, we first apply a qualitative theory

of dynamical systems to identify a case of convergence instability in SAM dynamics.

Given the loss function ℓ(·), we consider the following gradient flow:

dw

dt
= −∇ℓ(w) (4.7)

We call a weight vector w that satisfies ∇ℓ(w) = 0 equilibrium point of system (4.7).

Without loss of generality, we assume that (4.7) is hyperbolic so that the Hessian

matrix of ℓ at each equilibrium point has no zero eigenvalues, which is a generic

property that holds for typical loss functions. Then, the Hessian matrix has real
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Figure 4.2: (a), (b) Phase portrait of system (4.7) associated with the loss function
ℓ. (c),(d) Phase portrait of system (4.7) associated with the loss function ℓ (Case-I
and Case-II). (e), (f) Phase portrait of system (4.7) associated with the loss function
ℓ (Case-III). Case-III causes the convergence instability near a saddle point.

eigenvalues because it is a real symmetric matrix.

If the Hessian matrix Hℓ(w) at w has exactly k negative eigenvalues, then it is

called an index-k saddle point of system (4.7). The stable manifold and the unstable

manifold of an index-k saddle point are defined as

W s(w) := {w0 : lim
t→∞

wt = w}, (4.8)

W u(w) := {w0 : lim
t→−∞

wt = w}. (4.9)
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where the dimension is n− k and k, respectively. Then, the basin of attraction of a

stable (index-zero) equilibrium point s can be defined as

A(s) := {w0 : lim
t→∞

wt = s},

Its basin boundary ∂A(s) consists of the (closure of) stable manifolds of index-one

saddle points di on its boundary as

∂A(s) =
⋃
i

cl(W s(di)).

This implies that near the basin boundary, index-one saddle points di behave like

the attractors.

Given the two adjacent local minima s1 and s2, i.e., ∂A(s1) ∩ ∂A(s2), there

exists an index-one equilibrium point d such that the 1-D unstable manifold W u(d)

converges to both s1 and s2 with respect to system (4.7). Therefore, it is sufficient to

consider the gradient flows near an index-one saddle point d to analyze the behavior

of SAM near the basin boundary. We illustrate the basin boundaries for two adjacent

local minima s1 and s2 and their stable and unstable manifolds in Fig. 4.2a and

Fig. 4.2b, respectively.

To this end, we use extensively the Lambda Lemma, a key and deep theory to

analyze the behavior of dynamical systems qualitatively. The Lambda Lemma in

our version is stated as follows:

Lemma 4.1. Lambda Lemma (Guckenheimer and Holmes, 2013; Palis
and De Melo, 2012). If ∆ is a 1-D disk meeting W s(d) transversely, then the
gradient flows of system (4.7) starting from ∆ arbitrarily close to W u(d).

In other words, the gradient flows near the basin boundary but in A(s1) directs

to the vector sum of W u(d) and s1. See Figure 4.2a for the illustration. Thus, the
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qualitative behavior of the gradient flows starting from wt ∈ A(s1) falls into one of

the following cases:

• Case-I. When wt is “away from” an index-one saddle point d and its stable

manifold W s(d): −∇ℓ(wt) ∼ −∇ℓ(wp
t ) and wt+1 converges to s1 iteratively.

(See Figure 4.2c).

• Case-II. When wt is “away from” an index-one saddle point d but near

W s(d): −∇ℓ(wt) ∼ −∇ℓ(wp
t ) and wt+1 approaches W u(d) by the Lambda

Lemma iteratively. The subsequent weight vector update iteration will fall

into the case of (I) or (III). (See Figure 4.2d).

• Case-III. When wt is near an index-one saddle point d (i.e.,W s(d)∩Bρ(wt) ̸=

∅): wp
t ∈ A(s2) outside of A(s1) and so −ℓ(wp

t ) directs to s2 and W u(d) by

the Lambda Lemma. In this case, there exist two sub-cases.

(i) When wt+1 ∈ A(s1): wt+1 approaches d and W s(d) iteratively and the

subsequent weight vector update iteration will fall into the next case (ii).

(See Figure 4.2e).

(ii) When wt+1 ∈ A(s2): starting from wt+1, the subsequent weight vector

update falls into Case-III but the roles of s1 and s2 are reversed. Thus,

the gradient oscillates near W u(d) iteratively. (See Figure 4.2f).

Therefore, SAM can be hindered by the saddle point d when the perturbed

weight wp falls into a different basin of attraction across a basin boundary (Case-

III), whereas GD smoothly directs to the stable equilibrium point. Furthermore, if

95



1.0 0.5 0.0 0.5 1.0
0.0

0.5

1.0

1.5

2.0

t = 5000

wp
t

Figure 4.3: Trajectory of wp
t after the optimization step t = 5000, when SAM is

beginning to become stuck in the saddle point during SAM optimization in Fig. 4.1.
It exhibits exactly the same behavior as that of Case-III in Fig. 4.2.

wp is consistently located in different basins, wt will not be able to escape the saddle

point under SAM dynamics.

To verify our investigation empirically, we introduce the optimization of the Beale

function, a widely adopted benchmark scenario in AdaGrad (Duchi et al., 2011) and

Adam (Kingma and Ba, 2014). This function has two benefits. First, it has a single

saddle point at (0, 1), which allows us to verify whether the parameter is stuck in

the saddle point and the convergence instability near a saddle point. Secondly, it

has four basins, as illustrated in Fig. 4.2, with only two basins (top left and bottom

right) containing a minimum. We use a learning rate of η=1e-4, as smaller learning

rates often perform better on low dimensional problems. We observe similar results

for other learning rates that make both GD and SAM converge.

The optimization result is illustrated in Fig. 4.1. While GD successfully converges

to the global minimum, SAM is trapped in the saddle point rather than the global

minimum. To verify the geometric analysis presented in Fig. 4.2, the trajectory of

the perturbed weight wp
t is plotted in Figure 4.3. After SAM becomes stuck in the
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Figure 4.4: Gradient oscillation during SAM optimization in Fig. 4.1. The line cor-
responds to cos(∇ℓ(wt),∇ℓ(wp

t )) for optimization step t. The oscillation continues
until the end of the optimization.

saddle point, wp
t continuously crosses the basin boundaries, which is consistent with

Fig. 4.2f. Additionally, in Fig. 4.4, the cosine between ∇ℓ(wt) and ∇ℓ(wp
t ) during

the optimization step t is plotted. The cosine value dramatically oscillates between

−1 and 1, which is consistent with the gradient oscillation described in Case-III-(ii).

These results demonstrate that SAM becomes stuck in the saddle point as if it were

a convergence point.

4.3.2 Saddle Point Becomes Attractor in SAM Dynamics

Previously, we observed that SAM becomes stuck in a saddle point even in the

simple optimization task as if the saddle point were a convergence point. Motivated

by this observation, we here mathematically derive a condition for when a saddle

point becomes an attractor under SAM dynamics as follows:

Theorem 4.2. Let d be an index-one saddle point of system (4.7) with a negative
eigenvalue λ1 of the Hessian matrix Hℓ(d) of the loss function ℓ. Then, the saddle
point d is an attractor of SAM dynamics in Eq. (4.5) if ρ ≥ −1/λ1.

Proof. Given the gradient flow of SAM in Eq. (4.5), we have

dw

dt
= −∇ℓ(w + ρ∇ℓ(w)) (4.10)

d2w

dt2
= −∇2ℓ(w + ρ∇ℓ(w))[I + ρ∇2ℓ(w)]. (4.11)
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Figure 4.5: Optimization on f(x, y) = x2−y2 with the saddle point at (0,0). (a) Loss
surface with the initial point denoted as the plus symbol (−3,−ϵ), where ϵ = 0.01.
(b) Divergence of the gradient flow of GD near the saddle point. (c) Convergence of
the gradient flow of SAM with ρ = 1.0 to the saddle point, thus making the saddle
point an attractor.
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Since the Hessian matrix is a real symmetric matrix, Hℓ(d) = QΛQT , where Q
is a real orthogonal matrix and Λ = diag[λ1, · · · , λn]T is a real diagonal matrix
consisting of eigenvalues as its elements. Given a saddle point d, we have ∇ℓ(d) = 0
and thus Eq. (4.11) becomes

d2w

dt2
|w=d = −∇2ℓ(d + ρ∇ℓ(d))[I + ρ∇2ℓ(d)] (4.12)

= −Q(Λ + ρΛ2)QT . (4.13)

As all the diagonal elements of Λ+ρΛ2 are positive, d becomes an attractor of SAM
dynamics.

Notice that the above results can be easily generalized to any type of saddle

points provided that

λj + ρλ2j ≥ 0 (4.14)

for all the negative eigenvalues λj at d. Moreover, this condition is mild practically

since the normalized radius ρ̃ = ρ/∥∇ℓ(w)∥ in the standard SAM dynamics (Foret

et al., 2020), which becomes very large near the saddle point. This result further

suggests that more points can become attractors under SAM dynamic because the

term ρΛ2 always results in positive diagonal values. Thus, Theorem 4.2 tells us that

a saddle point can become an attractor under SAM dynamics, whereas it is not a

general optimum in traditional approaches.

Fig. 4.5 illustrates the empirical verification of Theorem 4.2. We perform an

optimization with GD and SAM on a simple function f(x, y) = x2− y2, which has a

saddle point at (0, 0). In Fig. 4.5a, GD (blue-colored) successfully escapes the saddle

point due to the benefit of a good initial point (−3, ϵ). Specifically, the gradient flow

of GD (Fig. 4.5b) demonstrates that the saddle point is not a stable equilibrium

point, and thus a slight perturbation at the initial point ϵ = 0.01 is sufficient to help
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Figure 4.6: Value of λ+ρλ2 for the Beale function in Fig. 4.1. Near the saddle point
at (0, 1), for both eigenvalues of the Hessian, λ + ρλ2 is positive, which indicates
that the saddle point becomes an attractor.

GD escape the saddle point.

In contrast, SAM becomes stuck in the saddle point (red-colored in Fig. 4.5a).

In this optimization, eigenvalues of the Hessian at (0, 0) are λ = {2,−2} and thus

λ + ρλ2 > 0 for all eigenvalues λ ∈ λ. Therefore, by Theorem 4.2, the saddle point

will become an attractor under SAM dynamics. The gradient flow (Fig. 4.5c) also

supports our theorem as the saddle point has now become a point of convergence,

which implies that SAM will not be able to escape it.

We further explain the previous optimization result depicted in Fig. 4.1 by

calculating the eigenvalues of the Hessian for each point in the parameter space.

For each point in the parameter space, we calculate the eigenvalues of the Hessian

λ = {λ1, λ2} and visualize the heat map of λ+ ρλ2 in Fig. 4.6. For both λ = λ1 and

λ2, λ+ ρλ2 is positive near the saddle point, which is consistent with the behavior

of the saddle point as an attractor, as illustrated in Fig. 4.5. This suggests that the

convergence instability can arise even for a more complicated loss function because

the saddle point may become an attractor under SAM dynamics.
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4.4 Experiments

4.4.1 Stochastic Behavior of SAM Dynamics

Previously, we confirmed the asymptotic behavior of SAM dynamics and its conver-

gence instability near a saddle point. From now on, we focus on mini-batch sampling,

which has been found to provide high performance in various domains (Hoffer et al.,

2017; Ziyin et al., 2022), and thus it is a commonly used technique for training deep

learning models.

To investigate the behavior of SAM under stochastic system dynamics, we first

establish SAM diffusion with the stochastic differential equation. Note that the basis

formulations and notations are borrowed from (Risken, 1996; Sato and Nakagawa,

2014; Xie et al., 2020, 2022). We assume that the perturbed weight wp is precisely

calculated with Eq. (4.5), and thus the stochastic differential equation of SAM dy-

namics is formalized as follows:

dw = −∇ℓ(wp)dt+ [ηC(wp)]
1
2dWt, (4.15)
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where η is a learning rate and dWt ∼ N (0, Idt) for the identity matrix I. Given the

divergence operator ∇· and the diffusion matrix

D(wp) =
ηC(wp)

2
, (4.16)

we use the Fokker-Planck equation that describes the probability density of the

weight w as follows (Xie et al., 2020):

∂P (w, t)

∂t
= ∇ · [P (w, t)∇ℓ(wp)] +∇ · ∇[D(wp)P (w, t)]. (4.17)

Now, we assume the following second-order Taylor approximation of the loss

function ℓ near saddle points d, which holds locally around critical points and is

commonly adopted in (Mandt et al., 2017; Xie et al., 2020, 2022):

ℓ(w) = ℓ(d) +
1

2
(w − d)THℓ(d)(w − d).

Under the assumption, we draw SAM diffusion and prove that SAM escapes the

saddle point more slowly than SGD.

Theorem 4.3. (SAM diffusion) Given a saddle point d as the initial parame-
ter under the dynamics of Eq. (4.15), under the second-order Taylor approximation
assumption near d, the probability density function of w after time t is the Gaus-
sian distribution, i.e., w ∼ N (d, Qdiag(σ2(t))QT ) with σ2(t) = [σ21(t), · · · , σ2n(t)]T

where

σ2j (t) =
η|λj |

2Bλj(1 + ρλj)2
[1− exp(−2λj(1 + ρλj)

2t)] (4.18)

for the batch size B and the j-th eigenvalue of H(d), λj.

Proof. The solution of the Fokker-Planck Equation Eq. (4.17) should be formalized
as follows:

P (w, t) = (
n∏

j=1

2πσj)
− 1

2 exp

(
−1

2
(w − d)TQdiag(σ2(t))QT (w − d)

)
. (4.19)

To be self-contained, we mainly followed Appendix A.1 in (Xie et al., 2022). Let
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us denote the loss function of the i-th training sample ℓi(w) among N samples in
total. By using the Fisher Information Matrix (FIM) (Pawitan, 2001), the following
approximation can be adopted near the critical point d as described in (Jastrzkebski
et al., 2017; Zhu et al., 2018; Xie et al., 2022).

C(w) ≈ 1

B

[
1

N

N∑
i=1

∇ℓi(w)∇ℓi(w)T

]
=

1

B
FIM(w) ≈ 1

B
[H(w)]+. (4.20)

Here, given A = V diag([λ1, · · · , λn]T )V T , we denote V diag([|λ1|, · · · , |λn|]T )V T as
[A]+. By the above equation and Assumption 4.4.1, near the critical point, D(w) is
independent of w, i.e.,

D =
η

2B
[H]+. (4.21)

where H(d) = H for simplicity.
Following (Xie et al., 2022), without loss of generality, we consider one-dimensional

solution. Under the second-order Taylor approximation assumption, we have

∇ℓ(wp) = ∇
[
ℓ(d) +

1

2
(wp − d)TH(wp − d)

]
= H[w + ρ∇ℓ(w)]∇[w + ρ∇ℓ(w)] = H[I + ρH]2w.

Then, the right term of Eq. (4.17) can be formalized as

∇ · [P (w, t)∇ℓ(wp)] +∇ · ∇[D(wp)P (w, t)]

= P (w, t)H[I + ρH]2 −H[I + ρH]2 · w
σ2
P (w, t) +D

(
w2

σ4
− 1

σ2

)
P (w, t)

=

(
1− w2

σ2

)
H[I + ρH]2P (w, t) +D

(
w2

σ4
− 1

σ2

)
P (w, t)

=
(
−σ2H[I + ρH]2 +D

)(w2

σ4
− 1

σ2

)
P (w, t).

On the other hand, the left term of Eq. (4.17) can be formalized as

∂P (w, t)

∂t
=

1

2

(
w2

σ4
− 1

σ2

)
P (w, t)

∂σ2

∂t
.

Thus, the solution of Eq. (4.17) is

∂σ2

∂t
= 2D − 2σ2H[I + ρH]2,
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By using the initial condition σ2(0) = 0 and Eq. (4.21), we can obtain

σ2j (t) =
η|λj |

2Bλj(1 + ρλj)2
[1− exp(−2λj(1 + ρλj)

2t)].

Let us denote the mean squared displacement of the displacement ∆wj(t) =

wj(t)−wj(0) by ⟨∆w2
j (t)⟩. Then, we have the following result.

Corollary 4.4. (SAM escapes saddle point more slowly than SGD) The
mean squared displacement of SAM, denoted by ∆SGD := ⟨∆w2

j (t)⟩SGD, is smaller

than that of SGD, i.e., ∆SAM := ⟨∆w2
j (t)⟩SAM , near the saddle point d, which

satisfies the following inequality:

∆SGD −∆SAM =
2ηt2|λj |3

B
ρ > 0. (4.22)

Proof. By the definition of the mean squared displacement, ⟨∆w2
j (t)⟩ is equal to

= σ2j (t). Thus, given Theorem 4.3,

∆SGD =
η|λj |
2Bλj

[1− exp(−2λjt)]

∆SAM =
η|λj |

2Bλj(1 + ρλj)2
[1− exp(−2λj(1 + ρλj)

2t)].

As |λj |t ≪ 1 near ill-conditioned saddle points (Xie et al., 2022), the difference
∆SGD −∆SAM can be formalized as follows:

∆SGD −∆SAM ≈
η|λj |

2Bλj(1 + ρλj)2
[(1 + ρλj)

2[2λjt− 2(λjt)
2]

− [2λj(1 + ρλj)
2t− 2(λj(1 + ρλj)

2t)2]]

=
ηλj |λj |
B

[
(t+ ρλjt)

2 − t2
]

=
ηλj |λj |
B

[
2ρλjt

2 + (ρλjt)
2
]

≈ 2ηt2|λj |3ρ
B

.

Corollary 4.4 tells us that SAM requires more time to escape the saddle point

d compared to SGD, since ∆SGD is always larger than ∆SAM . Interestingly, this
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is consistent with the results from Sections 4.3.1 and 4.3.2, which show that as

ρ increases, the perturbed weight is more likely to be placed in the disjoint basin

boundaries (Section 4.3.1) and the saddle point is more likely to become an attractor

(Section 4.3.2). In Corollary 4.4, the difference between mean square displacements

∆SGD−∆SAM increases as ρ increases, indicating that the gap between the required

time to escape the saddle point between SGD and SAM increases as ρ increases.

To validate our theoretical results in stochastic dynamical systems, we first con-

duct an experiment using a neural network and artificial settings as proposed by

Ziyin et al. (2022). This experiment involves a two-layer neural network with one neu-

ron, with a non-linear coordinate-wise activation function φ. Specifically, φ(x) = x2

is used. The training set consists of an input x which is fixed to 1, and y ∈ {−1, 2}

with probability of 0.5. The loss function is the mean squared error, and thus the loss

landscape yields global minima ℓ(w) = 2.25 for {(w1, w2)|w2
1 = 1/2w2} and saddle

points ℓ(w) = 2.50 for {(w1, w2)|w1 = 0, w2 ≥ 0}, as illustrated in Fig. 4.7a. Due to

the presence of inherent data uncertainty in this experiment, we can expect more

practical results than those from previous experiments. Considering Theorem 4.3,

we initialize the parameters near the saddle point, w1 in the range [−0.1, 0.1] and

w2 in the range [0, 1] uniformly. Other training settings remain the same as those in

(Ziyin et al., 2022).

Fig. 4.7b shows the converged parameter distributions for SGD and SAM over

1,000 random seeds. The results demonstrate that the converged parameters of SAM

are mostly saturated in the saddle point area, whereas SGD successfully converges

to the global minima. This implies that the convergence instability near a saddle

point is present even in practical training settings with neural networks.
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Figure 4.8: Effect of varying batch size B and momentum γ. To measure the pure
effect of batch size and momentum, batch normalization and data augmentation are
turned off. A smaller batch size and larger momentum lead to better performance
of SAM.

Additionally, we plot the average loss of converged points of SAM with varying

ρ (Fig. 4.7c). Here, we normalize the radius with the gradient norm during the opti-

mization for easier comparison with prior studies (Foret et al., 2020; Zhuang et al.,

2021), but we observe similar results for the constant radius ρ. It is worth noting that

the range of ρ in Fig. 4.7c is commonly used in other benchmark experiments such

as the CIFAR classifications (Foret et al., 2020; Zhuang et al., 2021). As ρ increases,

the average loss of SAM increases. Furthermore, for ρ > 0.7, the parameters always

become stuck in the saddle point area, resulting in an average loss of 2.50. This

result is in agreement with Corollary 4.4, as a larger ρ makes SAM more difficult

to escape the saddle point in terms of diffusion, causing the convergence instability

near a saddle point from the stochastic dynamic systems view.
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4.4.2 Convergence Instability and Training Tricks

The convergence instability of SAM near saddle points, which we observed under

both asymptotic and stochastic dynamical systems in previous sections, can lead

to suboptimal minimum problems and performance degradation (Du et al., 2017;

Kleinberg et al., 2018a; Ziyin et al., 2022). However, this is in contradiction to

the claims of prior studies (Foret et al., 2020; Zhuang et al., 2021), which state

that SAM and its variants generally perform better than other methods on various

benchmark datasets. We theoretically and empirically demonstrate that often used

training tricks, such as momentum and batch size, not only help SAM to escape the

saddle point but are also the key to its success.

First, we extend SAM diffusion presented in Theorem 4.3 to include momentum

and investigate the relationship between the mean squared displacement of SAM,

momentum, and batch size.

Theorem 4.5. (SAM diffusion, momentum, and batch size) Given a mo-
mentum hyper-parameter γ and batch size B, the mean squared displacement of SAM
is given by

∆SAM = C1
(1− e−C2(1−γ))2

(1− γ)3B
+ C3

(1− e−
C4
1−γ )

(1− γ)B
, (4.23)

where C1 =
η2|λj |

2 , C2 = η
t , C3 =

η|λj |
2λj(1+ρλj)2

, and C4 = 2λj(1 + ρλj)
2t are positive

constants and λj denotes eigenvalue of the Hessian matrix Hℓ(d) of loss function
ℓ at saddle point d. Therefore, ∆SAM increases as (1) momentum increases
and/or (2) batch size decreases. Furthermore, as (1− γ)B → 0, we have

∆SAM ∝
1

(1− γ)B
. (4.24)

Proof. Similar to Theorem 4.3, we consider the on-dimensional case near a critical
point. As the momentum dynamics with a momentum γ and dampening τ can be
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written as follows:

mt = γmt−1 + (1− τ)gt

wt+1 = wt − ηmt

We let dt = η, ϕ = 1−γ
dt , and M = dt

1−τ . Then, the stochastic differential equation
and its Fokker-Planck Equation becomes

Mdẇ = −ϕdw − ∂ℓ(w)

∂w
dt+ [2D]1/2dWt

∂P (w, b, t)

∂t
= −∇w · [bP (w, b, t)] +∇b[ϕm +M−1∇wℓ(w)]P (w, b, t)

+∇b ·M−2D · ∇bP (w, b, t).

where ẇ := dw
dt . Further, combining the proof of Theorem 2 in (Xie et al., 2022) and

Theorem 4.3, we have the mean squared displacement of SAM with ρ for dampening
τ = 0,

⟨∆w2
j (t)⟩ =

η|λj |
2ϕ3M2B

[1− exp(−ϕt)]2

+
η|λj |

2ϕMBλj(1 + ρλj)2

[
1− exp

(
−2λj(1 + ρλj)

2t

ϕM

)]
=

η2|λj |
2(1− γ)3B

[
1− exp

(
−1− γ

η
t

)]2
+

η|λj |
2(1− γ)Bλj(1 + ρλj)2

[
1− exp

(
−2λj(1 + ρλj)

2t

1− γ

)]
.

Let C1 =
η2|λj |

2 , C2 = η
t , C3 =

η|λj |
2λj(1+ρλj)2

, and C4 = 2λj(1 + ρλj)
2t. Note that

C1, C2, C3, and C4 are positive. The above equation can be reformulated as follows:

⟨∆w2
j (t)⟩ =

C1

(1− γ)3B
[1− exp (−C2(1− γ))]2 +

C3

(1− γ)B

[
1− exp

(
− C4

1− γ

)]
.

The second term in the right-hand side is an increasing function with respect to

γ ∈ [0, 1], since both C3
(1−γ) and 1−exp

(
− C4

1−γ

)
are increasing functions with respect

to γ. For the first term in the right-hand, we use the following function.

h(γ) =
1

(1− γ)3

[
1− e−C2(1−γ)

]2
.
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Table 4.1: (CIFAR-10) Test accuracy for different momentum γ and radius ρ. The
bold and underlined numbers denote the maximum and minimum accuracy for each
ρ, respectively. Batch normalization and data augmentation are turned on.

SAM Momentum γ Gap

Radius ρ 0.0 0.9 0.95 (Max - Min)

0.01 93.77±0.08 94.99±0.09 94.94±0.09 1.22

0.05 93.56±0.03 95.01±0.11 94.94±0.11 1.45

0.1 92.29±0.08 94.84±0.15 95.08±0.07 2.80

0.5 86.20±1.66 88.76±1.14 91.98±0.03 5.79

We have h(0) = (1− e−C2)2 > 0 and

h′(γ) =
e−2C2(1−γ)[eC2(1−γ) − 1]

(1− γ)4

[
3(eC2(1−γ) − 1)− 2C2(1− γ)

]
> 0,

since eC2(1−γ) − 1 ≥ C2(1 − γ) for γ ∈ [0, 1] and C2 > 0. Therefore, h(γ) is an
increasing function with respect to γ ∈ [0, 1]. Thus, ⟨∆w2

j (t)⟩ is also an increasing
function with respect to γ. Furthermore, as (1− γ)B → 0, we have

∆SAM ≈
C1

(1− γ)3B
[1− (1− C2(1− γ))]2 +

C3

(1− γ)B

[
1− (1− C4

1− γ
)

]
≈ C1C

2
2 (1− γ)2

(1− γ)3B
+

C3

(1− γ)B
=
C1C

2
2 + C3

(1− γ)B
∝ 1

(1− γ)B
.

Theorem 4.5 tells us that increasing momentum γ and decreasing batch size B

can reduce the time to escape a saddle point. This result is consistent with the work

of Andriushchenko and Flammarion (2022), which observed that a smaller batch size

significantly increases the performance of SAM. While we derived the advantage of

small batch size from the diffusion term, Andriushchenko and Flammarion (2022)

provided theoretical proof of the benefit of a small batch size from the concept of

implicit bias. Integrating these theoretical analyses might be possible, but we leave

it as future work.
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Figure 4.9: (CIFAR-10) Effect of momentum γ for SGD and SAM. Batch normal-
ization and data augmentation are turned off. The momentum increases more dra-
matically the performance of SAM compared to that of SGD.

To empirically verify Theorem 4.5, we evaluate the effects of momentum and

batch size on the commonly used benchmarks, CIFAR-10 and CIFAR-100. To com-

pare the pure effect of momentum and batch size, we turn off both batch normal-

ization and data augmentation. We fix the radius ρ = 0.1 and use the momentum

γ = 0.0 and batch size B = 512 as default, and then vary the batch size and mo-

mentum independently. We normalize the radius with the gradient norm during the

training phase, but we observe similar results for the constant radius ρ similar to

(Andriushchenko and Flammarion, 2022). All the models are trained for 300 epochs

to ensure the convergence.

Fig. 4.8 provides a summary of the training loss and test accuracy for each

batch size and momentum. Figures 4.8a and 4.8b demonstrate that SAM struggles

to minimize the training loss as the batch size increases. Notably, for a batch size

of B = 512, SAM displays convergence instability with the train loss exceeding 1,

which results in a poor generalization performance of less than 60% accuracy.

In addition, momentum has a significant impact on the training loss and test
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accuracy (Figures 4.8c and 4.8d). As momentum increases, both the train loss and

test accuracy increase. This effect is particularly pronounced when compared to that

on SGD. Fig. 4.9 shows the train loss and test accuracy for SAM and SGD with

γ = 0.0 and 0.9. The momentum improves the accuracy of SGD by approximately

5%, whereas it enhances the accuracy of SAM by more than 20%.

Considering Corollary 4.4, which demonstrates that the mean square displace-

ment of SAM increases as ρ increases, Fig. 4.9 implies that a higher momentum

could be beneficial for SAM as ρ increases. We evaluate the test accuracy of SAM

for different radius ρ and momentum γ. Here, to obtain their best performance,

we turn on batch normalization and data augmentation. Table 4.1 shows the aver-

age and standard deviation of test accuracy over three different random seeds. The

minimum accuracies are observed only for γ = 0.0, whereas the best performance

is observed for γ = 0.9 or 0.95. Furthermore, as ρ increases, the gap between the

best and worst performances increases, and a higher momentum yields better per-

formance. Considering the fact that ρ = 0.1 with γ = 0.95 yields the best accuracy

over all combinations, using a higher momentum with a larger ρ can be beneficial

to improve the generalization performance under SAM dynamics.

4.5 Chapter Summary

SAM is an arguably promising training method with improved generalization abil-

ities. To gain insight into its mechanism, we analyzed the behavior of SAM, which

revealed the presence of convergence instability near a saddle point. Through theo-

retical and empirical analyses, we demonstrated that this convergence problem can

occur in various tasks, from a simple optimization to complicated neural network

111



training. Additionally, we demonstrated the importance of training tricks, such as

momentum and batch size, in relation to the diffusion theory. We believe that our

work sheds light on the mechanism of SAM and hope to be integrated in future work

and develop new methods to improve the generalization performance.

112



Chapter 5

Sharpness-Aware Minimization with Multi-Ascent

5.1 Chapter Overview

Modern deep neural networks are highly overparameterized so that models can

achieve near-zero training loss. However, minimizing training loss is not sufficient to

achieve better generalization (Ishida et al., 2020; Foret et al., 2020). To understand

and further improve the generalization performance of neural networks, recent stud-

ies discuss the geometric properties of loss surface and argue that the sharpness,

which measures the flatness of a minimum, might be a core component of gen-

eralization (McAllester, 1999; Dinh et al., 2017; Keskar et al., 2017; Jiang et al.,

2019). Extensive theoretical and empirical analyses on the sharpness lead to new

sharpness-aware training methods to improve generalization performance (Izmailov

et al., 2018; He et al., 2019a; Chaudhari et al., 2019).

Recently, Foret et al. (2020) proposed Sharpness-Aware Minimization (SAM)

that achieves state-of-the-art generalization performance. Given weight w and a

loss function ℓ, SAM is designed to minimize max∥v∥=1 ℓ(w + ρv), which is the

maximum loss within radius ρ in the weight space. To solve the inner maximization

problem, Foret et al. (2020) proposed a single-step gradient-based approximation,

which results in a perturbed weight wp1 = w + ρv1 with ascent direction v1 =
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Figure 5.1: Illustration of ascent step with different iterations.

∇ℓ(w)/∥∇ℓ(w)∥. To find a higher perturbed loss, the authors also investigated a

multi-step gradient-based approximation. As illustrated in Fig. 5.1, the multi-step

ascent with N iterations yields vN and wpN . However, the experimental results

in (Foret et al., 2020; Wu et al., 2020b; Andriushchenko and Flammarion, 2022)

show that multi-step ascent during training does not provide better performance.

Considering that a multi-step optimization generally induces a better approximation

than a single-step optimization, this raises the question: “Why better approximation

of the inner maximization does not bring any benefit to SAM?”

In this chapter, we take a closer look at the number of ascent steps in SAM. We

first analyze an effect of the number of ascent steps on the inner maximization, then

investigate the difference between models trained with single-step and multi-step

ascent. Unlike the previous statements that multi-step ascent does not affect the

model, we discover that different number of ascent steps yields different perturbed

loss surfaces. Fig. 5.2 illustrates the difference between models trained with single-

step and multi-step ascent. Let us consider two different trained weights w1 and

w2 with different number of ascent steps N = 1 and 2. Then, if we evaluate their
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Figure 5.2: Perturbed loss ℓ(w+ρv) for each v with different number of ascent steps.
If we consider the single-step ascent v1, w1 shows lower perturbed losses than w2

for all radius ρ (left). However, with multi-step ascent v2, w2 has lower perturbed
losses than w1 over certain radius (right).

perturbed loss with v1 (corresponds to the red arrow in Fig. 5.1), then w1 is better

than w2 because it has a lower loss for all radius ρ. However, if we consider multi-

step ascent v2 (corresponds to the blue arrow in Fig. 5.1), then w2 shows a lower

loss than w1 over certain radius.

Based on these observations, we demonstrate that perturbed weights obtained

by different number of ascent steps have their unique gradient information and bring

different effects on the perturbed loss surface. Inspired by the gradient diversity in

perturbed weight space, we propose a new training method that utilizes all gradient

information during multi-step ascent. We verify the theoretical and empirical ad-

vantages of the proposed method, and demonstrate that it improves generalization

performance across various models and datasets.

5.2 Preliminaries

Sharpness-Aware Minimization (SAM) seeks flat minima possessing low loss values

in its neighborhood (Foret et al., 2020). The key idea is to minimize the maximum
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loss within radius ρ in the weight space as follows:

min
w

max
∥v∥=1

ℓ(w + ρv) (5.1)

To solve this min-max optimization problem sequentially, SAM uses ascent step and

descent step for the inner maximization and outer minimization, respectively. Simply,

SAM calculates the perturbed weight wp = w + ρv where v is an ascent direction,

and then, SAM minimizes the loss of the perturbed weight, ℓ(wp), by utilizing the

gradient ∇wpℓ(wp). At time t, SAM is formulated as follows:

Ascent step: wp
t = wt + ρv (5.2)

Descent step: wt+1 = wt − η∇ℓ(wp
t ) (5.3)

where, η is the learning rate and ∇ℓ(θ) := ∇θℓ(θ) for any θ unless otherwise speci-

fied.

To calculate an ascent direction v in Eq. (5.2), Foret et al. (2020) basically

recommends to use v1 = ∇ℓ(w)/∥∇ℓ(w)∥ to w to maximize the loss ℓ(w). This

single-step ascent can be formalized as follows:

wp1
t = wt + ρ · ∇ℓ(wt)

∥∇ℓ(wt)∥
(5.4)

In addition, Foret et al. (2020) also explored multi-step ascent direction vN with

the number of inner maximization iterations N as follows:

wpnN = wpn−1
N + ρn ·

∇ℓ(wpn−1
N )

∥∇ℓ(wpn−1
N )∥

(5.5)

vN =
wpNN −w

∥wpNN −w∥
(5.6)

where wp0N = w, wpN = w + ρvN , and ρn denotes the radius at each iteration for
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n ∈ {1, ..., N}. Unless specified otherwise, ρn = ρ/N .

However, Foret et al. (2020) argued that using multi-step ascent during training

is not effective as single-step ascent, which is also observed in (Wu et al., 2020b).

Noteworthy, the concurrent work (Andriushchenko and Flammarion, 2022) focuses

the effect of batch-size used in ascent step and m-sharpness (Foret et al., 2020).

They also explored the effectiveness of multi-step ascent, but it does not improve

the performance of SAM. This phenomenon is particularly interesting because multi-

step ascent does not bring any improvement, while it would give a higher perturbed

loss in Eq. (5.1). Thus, in this study, we reveal an effect of the number of ascent steps

and investigate the characteristics of multiple perturbed weights and their gradients.

There has been some variants of SAM (Kwon et al., 2021; Zhuang et al., 2021;

Du et al., 2022) that improve the performance in different ways. Kwon et al. (2021)

proposed Adaptive Sharpness-Aware Minimization (ASAM) that adjusts parameter

re-scaling in the inner maximization regions. Du et al. (2022) proposed Efficient

Sharpness-Aware Minimization (ESAM), which focused on reducing the computa-

tional cost of SAM. Zhuang et al. (2021) proposed surrogate Gap guided Sharpness-

Aware Minimization (GSAM) that minimizes the gap ℓ(wp)−ℓ(w) instead of ℓ(wp).

However, while all of them focused on single-step ascent, our work sheds new light

on understanding the algorithm of SAM by considering both single-step and multi-

step ascent. Furthermore, deviating from the previous studies that considered a

perturbed loss with only one ascent step, we suggest that different number of ascent

steps should be considered for measuring the perturbed loss.
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Table 5.1: Analysis on different numbers of ascent steps during training and evalua-
tion. The number with the bold denotes the minimum perturbed loss. Evaluated on
whole test examples.

Ntr
Accuracy

(%)
Time / iter

(sec)
Perturbed loss with Nte ascent steps

0 1 3 5

CIFAR
-10

1 96.54±0.07 0.13±0.00 0.018±0.002 0.097±0.004 0.125±0.005 0.130±0.005

2 96.58±0.13 0.19±0.00 0.019±0.000 0.095±0.001 0.119±0.001 0.124±0.001

3 96.61±0.01 0.23±0.01 0.021±0.001 0.095±0.004 0.119±0.005 0.123±0.005

CIFAR
-100

1 85.44±0.07 1.10±0.00 0.166±0.008 0.744±0.018 1.285±0.022 1.416±0.021

2 84.91±0.08 1.55±0.00 0.226±0.008 0.810±0.007 1.198±0.026 1.280±0.030

3 85.17±0.01 2.04±0.00 0.251±0.004 0.816±0.019 1.180±0.018 1.262±0.027
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Figure 5.3: (CIFAR-10) Loss of perturbed weights in the direction of vN . (a) Per-
turbed loss in the direction of vN with different number of ascent steps N . As N
increases, a perturbed loss value also increases. (b) Loss of perturbed weights gener-
ated by v1 (x-axis) and v2 (y-axis). v2 increases a perturbed loss value more rapidly
than any linear combination.

5.3 Methodology

5.3.1 Revisiting Number of Ascent Steps in SAM

Multi-step ascent leads to a better inner maximization First, we verify

whether a multi-step optimization yields a better approximation than a single-step

optimization for the inner maximization in Eq. (5.1). To do this, we manipulate the

number of ascent steps N for generating vN with a model trained with SAM. Here,
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we use ResNet-18 trained on CIFAR-10 with ρ = 0.1. Then, for each vN , we plot

the loss of perturbed weights w + kvN , which is the linear interpolation of w and

w + ρvN . To consider a wider range of the weight space, we set k ∈ [0, 2ρ]. First,

we measure ℓ(w + kvN ) in Fig. 5.3a. As N increases, the loss value also increases.

In addition, a higher N induces a higher loss value for every k. This tells us that

multi-step ascent yields a better approximation for the inner maximization in Eq.

(5.1).

In addition, we plot perturbed losses generated by linear combinations of v1 and

v2 in Fig. 5.3b. The direction that generates the maximum loss increase is v2 rather

than any linear combination of v1 and v2. We note that similar results are observed

with a vanilla trained model. Thus, with widely used ρ, the loss surface near weight

w and its ρ-neighborhood is locally linear for vN .

Multi-step ascent during training provides a lower perturbed loss for

multi-step ascent directions Now, we evaluate the performance of the models

with different number of ascent steps Ntr during training. Indeed, as shown in Ta-

ble 5.1, their test accuracy are not significantly differentiated even the computation

cost linearly increases as Ntr increases. This is consistent with the results in previous

studies (Foret et al., 2020; Wu et al., 2020b).

However, considering the objective of SAM in Eq. (5.1), this result is interesting

because a higher Ntr would yield a better inner maximization approximation as we

observed in Fig. 5.3. To further investigate this phenomenon, we vary the number of

ascent steps Nte during evaluation for each trained model. Interestingly, we discover

that they show different behavior in their perturbed losses. Specifically, SAM with
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Figure 5.4: (CIFAR-10) Cosine similarity between gradients of diverse perturbed
weights. (a) Cosine similarity between ∇ℓ(wp1) and ∇ℓ(wp2) with different ρ during
training. (b) Cosine similarity between ∇ℓ(wp1) and the gradient of other perturbed
weights in the grid spanned by v1 and v2.

single-step ascent (Ntr = 1) achieves the lowest cross entropy loss for w (corresponds

to Nte = 0). In contrast, SAM with multi-step ascent (Ntr = 2, 3) show a higher loss

than Ntr = 1 for all the cases. However, if the number of ascent steps increases (i.e.,

Nte = 1, 3, and 5), SAM with multi-step ascent show a lower perturbed loss. Thus,

as described in Fig. 5.2, we can conclude that using different number of ascent steps

during training leads to different perturbed loss landscapes.

Gradient diversity of perturbed weights Inspired by the above results, we

analyze the gradient of each perturbed weight. We estimate the cosine similarity

between ∇ℓ(wp1) and ∇ℓ(wp2) during training. As shown in Fig. 5.4a, we discover

that the cosine similarity decreases as training proceeds. Especially, a larger training

ρ leads to a lower cosine similarity. The cosine similarity between ∇ℓ(wp1) and

∇ℓ(wp2) drops to 0.6 for ρ = 0.5. In Fig. 5.4b, we plot the cosine similarity of each

perturbed weight in the perturbed space generated by v1 and v2 for ρ = 0.5. We

120



0.00

0.05

0.10

0.15

0.20

0.25

Lo
ss

 d
ec

re
as

e

Interpolation between model weights

wp1 wp2

Update by (w)
Update by (wp1)
Update by (wp2)

Figure 5.5: (CIFAR-10) Loss decrease for each update gradient. Loss decrease of
perturbed weights λwp1 + (1− λ)wp2 by using each update gradient. For example,
the blue star indicates ℓ(wp1)− ℓ(wp1 − η∇ℓ(wp1)) where η is a learning rate. Each
gradient shows different effects on perturbed losses.

discover that not only ∇ℓ(wp1) and ∇ℓ(wp2), but also other perturbed weights have

different gradients.

To push further, we estimate the effect of each gradient on the perturbed loss

landscape. In Fig. 5.5, we first interpolate the perturbed weights wp1 and wp2 .

Then, we measure the loss decreases by using different gradients to update weights

at the end of training. First of all, ∇ℓ(w) fails to sufficiently reduce the losses of

all interpolated weights including both wp1 and wp2 , which is consistent with the

observation that the gradient of SGD generally cannot minimize the perturbed loss

in (Zhuang et al., 2021). In contrast, the gradients of perturbed weights ∇ℓ(wp1) and

∇ℓ(wp2) successfully minimizes both ℓ(wp1) and ℓ(wp2). However, as marked with

stars, the gradients of each perturbed point (∇ℓ(wp1) and ∇ℓ(wp2)) show better

loss decreases in the vicinity of their own weights wp1 and wp2 , respectively.

The above results are consistent with Table 5.1 in that Ntr = 1 sufficiently

reduces the perturbed loss with Nte ≤ 1, while it fails to achieve low loss values for
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Algorithm 3: Multi-ascent Sharpness-Aware Minimization

Parameter: Parameter wt at step t, learning rate η, number of ascent
steps N , series of radii ρn for n = {1, · · · , N}.

wp0
t ← wt, g0 ← ∇ℓ(wt)

for n = 1 to N do
wpn

t ← w
pn−1

t + ρn · gn−1

∥gn−1∥
gn ← ∇ℓ(wpn

t )
end

wt+1 ← wt − η · 1
N

∑N
n=1 gn

Nte ≥ 2. In contrast, Ntr ≥ 2 successfully reduces the perturbed loss with Nte ≥ 2.

In this point of view, instead of minimizing one specific perturbed loss, diverse

perturbed points should be considered to achieve the optimal flatness in terms of

minimizing perturbed losses in ρ-neighborhood.

5.3.2 Multi-ascent Sharpness-Aware Minimization

Previously, we found that perturbed weights obtained by different number of as-

cent steps provide distinct gradient information that effectively minimizes their own
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perturbed losses. From this observation, we suggest a simple method that considers

multiple perturbed weights to improve the performance of SAM. Given the number

of ascent steps N , the proposed method minimizes
∑N

n=1 ℓ(w
pnN ), where wpnN is a

series of perturbed weights in Eq. (5.5). With a similar gradient approximation in

(Foret et al., 2020), the update process can be formalized as follows:

wt+1 = wt − η ·
1

N

N∑
n=1

∇ℓ(wpnN
t ) (5.7)

We name this method Multi-ascent Sharpness-Aware Minimization (MSAM). Algo-

rithm 3 shows the pseudo-code.

Comparison between MSAM and multi-step ascent SAM The most im-

portant difference between MSAM and multi-step ascent SAM is whether it uses the

gradient of only one single perturbed weight or multiple perturbed weights. Specifi-

cally, MSAM minimizes
∑N

n=1 ℓ(w
pnN ), while multi-step ascent SAM only minimizes

ℓ(wpN ). Simply, if N = 2, the proposed method minimizes both ℓ(wp12) and ℓ(wp2),

while multi-step ascent SAM only minimizes ℓ(wp2) as illustrated in Fig. 5.6.

The ascent gradient of n-th inner iteration, ∇ℓ(wpnN ), is used as an ascent direc-

tion to obtain wpn+1
N in Eq. (5.5). MSAM simply re-uses these gradients ∇ℓ(wpnN )

as descent gradients. Thus, it requires the same forward/backward computation to

multi-step ascent SAM. However, unfortunately, for both SAM and MSAM, N ≥ 2

has a higher computational cost than single-step ascent SAM.

Upper bound on generalization performance We begin with a theoretical

analysis that considers multiple ascent points and also provides an upper bound on

generalization.
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Theorem 5.1. (PAC-Bayesian Theorem (McAllester, 1999; Dziugaite and Roy,
2017)) For given training dataset S drawn from population distribution D, define
the training loss LS(w) := 1

|S|
∑

x∈S ℓ(w,x) and the population loss LD(w) :=

Ex∼D[ℓ(w,x)]. With 1 − a probability, for any prior P and posterior Q, the fol-
lowing inequality holds:

Ew∼Q [LD(w)] ≤ Ew∼Q [LS(w)] +

√
KL(Q∥P) + log |S|

a

2(|S| − 1)
(5.8)

where KL(·∥·) is Kullback–Leibler divergence.

Corollary 5.2. (Stated informally) Suppose LD(w) ≤ Eδ∼N (0,σ2I)[LD(w + δ)],

where δ ∈ Rk and k is the number of parameters. Then, for any 0 ≤ λ ≤ 1, the
following inequality holds with high probability

LD(w) ≤ λ max
∥δ∥≤ρ1

LS(w + δ) + (1− λ) max
∥δ∥≤ρ2

LS(w + δ) (5.9)

+

√
KL(Q∥P) + log |S|

a

2(|S| − 1)
(5.10)

Proof. Assume ϵi ∼ N (0, σ). Then, ∥ϵ∥22 follows a Chi-square distribution. By
Lemma.1 in (Laurent and Massart, 2000), following inequality holds for every non-
negative t:

P(∥ϵ∥22 − kσ2 ≥ 2σ2
√
kt+ 2tσ2) ≤ exp(−t) (5.11)

Without loss of generality, let ρ1 ≤ ρ2. Then, with probability at least 1−1/
√
αn:

∥ϵ∥22 ≤ σ2(2 log
√
αn+ k + 2

√
k log

√
αn) ≤ 2σ2k

(
1 +

√
log
√
αn

k

)2

≤ ρ21 (5.12)

≤ 2σ2k

(
1 +

√
log
√
n

k

)2

≤ ρ22 (5.13)

Given a hyper-parameter λ, with probability at least 1− 1√
α
exp

(
−
(

ρ2√
2σ
−
√
k
)2)

,

Eϵi∼N(0,σ) [LS(w + ϵ)] = λEϵi∼N(0,σ) [LS(w + ϵ)] + (1− λ)Eϵi∼N(0,σ) [LS(w + ϵ)]

(5.14)

≤ λ max
∥ϵ∥≤ρ1

[LS(w + ϵ)] + (1− λ) max
∥ϵ∥≤ρ2

[LS(w + ϵ)] (5.15)
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Corollary 5.2 implies that minimizing both losses of perturbed weights with

different ρ1 and ρ2 also provides an upper bound on generalization.

5.4 Experiments

5.4.1 Experimental Setup

We use CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and ImageNet (Deng et al.,

2009). For CIFAR-10 and CIFAR-100, we trained ResNet18 (He et al., 2016a) and

Wide-ResNet-28-10 (WRN-28-10) (Zagoruyko and Komodakis, 2016b), respectively.

We basically follow the settings in (Du et al., 2022; Foret et al., 2020), but we find

that manipulating some training parameters can boost the performance of vanilla

training and SAM. For CIFAR-10, we use a batch size of 128, weight decay 5e-4, and

SGD with a learning rate of 0.1 with a momentum of 0.9. For CIFAR-100, we use

a batch size of 256, weight decay 1e-3, and SGD with a learning rate of 0.1 with a

momentum of 0.9. For both datasets, cutout (DeVries and Taylor, 2017) and cosine

learning rate decay (Loshchilov and Hutter, 2016) are used with 200 epochs. Finally,

in the radius ρ for SAM, we observe that CIFAR-10 and CIFAR-100 at ρ = 0.1 and

0.5 show the best performance, respectively. For ImageNet, we followed the settings

used in (Du et al., 2022). We trained ResNet-50 with 224× 224 resized images. The

number of epochs is set to 90 with a cosine learning rate schedule. The maximum

learning rate is fixed to 0.2 with the weight decay 1 × 10−4. Inception-style data

augmentation, and 512 batch size are used. For both SAM and MSAM, ρ = 0.05

is used. We train all the models using PyTorch-based libraries (Paszke et al., 2019;

Kim, 2020; Yao et al., 2020) on NVIDIA TITAN V and RTX 3090.
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Table 5.2: Experiment on CIFAR. The bold and underlined number denote the best
and the second best results, respectively.

Method Acc(A) Acc(B) Reported Best

CIFAR-10 (ResNet18)

SGD 96.26±0.03 - - 96.26±0.03
SAM 96.54±0.07 96.38±0.14 96.52±0.13 96.54±0.07
ESAM 96.56±0.05 96.43±0.11 96.56±0.08 96.56±0.05
GSAM 96.05±0.05 96.19±0.03 - 96.19±0.03
ASAM 95.19±0.08 96.53±0.09 - 96.53±0.09

MSAM 96.88±0.03 96.88±0.03† - 96.88±0.03

CIFAR-100 (WideResNet-28-10)

SGD 82.94±0.13 - - 82.94±0.13
SAM 85.44±0.07 84.05±0.17 85.10±0.20 85.44±0.07
ESAM 78.87±0.20 84.07±0.15 84.51±0.01 84.51±0.01
GSAM 83.36±0.39 82.76±0.20 - 83.36±0.39
ASAM 84.09±0.08 84.36±0.15 83.68±0.12 84.36±0.15

MSAM 85.87±0.38 86.06±0.07 - 86.06±0.07
†MSAM shows the best performance under the setting where SAM shows the best performance.

5.4.2 Generalization Performance

Here, we conduct experiments with additional methods in other studies (Kwon et al.,

2021; Zhuang et al., 2021; Du et al., 2022).

For the CIFAR datasets, we find that ρ used in comparison methods (Foret et al.,

2020; Kwon et al., 2021; Zhuang et al., 2021; Du et al., 2022) are highly varying than

ImageNet. Thus, to provide a fair comparison, we report three accuracy values for

each method on CIFAR: (1) Accuracy under the same ρ and training setting where

SAM achieves the best performance, denoted as Acc(A); (2) Accuracy under the

radius ρ proposed by authors but other settings remain the same, denoted as Acc(B);

(3) Reported accuracy in their original paper, denoted as Reported. We report the

average accuracy and standard deviation with three different random seeds.
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Table 5.3: Experiments on SAM → MSAM on various switching epochs. Switching
epochs of 200 indicates the model only trained with SAM.

Epochs 100 125 150 175 200

Acc (%) 96.71±0.08 96.71±0.01 96.65±0.11 96.63±0.04 96.54±0.07

The results are summarized in Table 5.2. Although SAM achieves higher accuracy

than those reported in (Foret et al., 2020; Du et al., 2022) for both datasets under

the optimized training settings, MSAM shows better performance than any other

methods for both CIFAR-10 and CIFAR-100. Note that MSAM also outperforms

SAM with N ≥ 2, which shown in Table 5.1.

5.4.3 Escaping Local Minima

MSAM requires the same forward/backward computation to multi-step ascent SAM.

However, when we compare it to single-step ascent SAM, it requires 1.5× computa-

tion. This is obviously the limitation of the proposed method. To detour the com-

putational burden, we here to show the usefulness of MSAM by training pre-trained

models. Specifically, we use MSAM for models obtained from different epochs during

training with SAM. As shown in Table 5.3, MSAM improves the generalization per-

formance of the model trained with SAM regardless of switching epochs. Thus, to

reduce the training time, we recommend to use MSAM after training a model with

SAM. To further improve the time computation, researches on combining efficient

variants of SAM (such as ESAM) and using various gradient information remains

as our future work.
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5.5 Chapter Summary

In this chapter, we aimed to understand how the number of ascent steps affects

on SAM. We also discovered the effect of using different gradients obtained during

multi-step ascent. Based on these empirical observation, we proposed a new method

utilizing all gradient information from multiple perturbed weights and achieve a

better performance than comparison methods.
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Chapter 6

Conclusion

6.1 Contributions

This dissertation provided a deeper understanding of adversarial robustness and

generalization performance of deep learning models by analyzing their loss land-

scape. We empirically showed that catastrophic overfitting is closely related to de-

cision boundary distortion, and proposed a new simple method to determine the

appropriate magnitude of the perturbation for each image. We evaluated the ro-

bustness of the proposed method against various adversarial attacks and showed

sufficient robustness using single-step adversarial training without the occurrence

of any catastrophic overfitting. Additionally, we investigated and analyzed the ad-

versarial robustness of deep learning models in various domains, and improved the

performance of both adversarial attacks and adversarial defenses. We also analyzed

the behavior of SAM, which revealed the presence of convergence instability near a

saddle point, and demonstrated the importance of training tricks, such as momen-

tum and batch size, in relation to the diffusion theory. Furthermore, we proposed a

new method utilizing all gradient information from multiple perturbed weights and

achieved a better performance than comparison methods.
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6.2 Future Work

In this dissertation, we discovered that analyzing the loss landscape can be benefi-

cial for improving adversarial robustness and generalization performance. However,

although our observations and proposed methods enhance the stability and perfor-

mance of deep learning models, robustness against possible diverse perturbations

and generalization for possible transformations should be further studied and much

progress is still needed to ensure security and provide more consistent accuracy

in real-world applications. We leave additional research challenges in the pursuit

of ideal robustness and generalization performance over various tasks and datasets.

Furthermore, given the close relationship between these two problems in terms of the

loss landscape, further analysis is needed across various tasks and datasets. Specifi-

cally, since both objectives are deeply connected to the shape of the loss landscape,

there may be a method that simultaneously improves adversarial robustness and

generalization performance. We hope our work will motivate researchers to develop

optimal deep learning models and training algorithms.
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국문초록

딥러닝은 다양한 분야에서 뛰어난 성능향상을 보이며, 음성 인식, 자율주행 및 의료

산업 등 많은 분야에 활용되고 있다. 딥러닝 모델은 수많은 가중치를 기반으로, 주어진

학습 데이터에 대한 손실함수를 줄이도록 학습된다. 그러나, 최근 학습 데이터에 대한

맹목적인 손실함수의 최소화는 크게 두 가지의 논의점이 있음이 밝혀졌다.

첫 번째 논의점은 딥러닝 모델의 강건성이다. 강건성이란 딥러닝 모델의 적대적

공격에 대한 방어 능력을 말한다. 적대적 공격은 학습된 딥러닝 모델의 가중치와 기

울기 정보 등을 활용하여 비정상적인 데이터를 만들어내는 방법으로, 딥러닝 모델의

성능을 현저하게 저하시킨다.현재까지 밝혀진 바로는 아주 작은 크기의 섭동도비정상

데이터를 생성하기에 충분하여, 사람에게는 정상 데이터로 인식되나 딥러닝 모델은 치

명적으로 오작동하는 적대적 예제를 쉽게 만들 수 있다. 따라서 딥러닝 모델의 안전한

상용화를 위해 강건성은 필수적으로 연구되어야 할 요소이다.

두 번째 논의점은 딥러닝 모델의 일반화이다. 일반화란 딥러닝 모델의 학습 데이터

에 대한 성능과 평가 데이터에 대한 성능의 차이를 의미한다. 차이가 작을수록 일반화

성능이 높으며, 이는 곧 딥러닝 모델의 높은 상용화 가능성을 내포한다. 그러나 학습

데이터에 대한 손실함수만을 줄이는 학습 방법은 학습 데이터에 대한 과적합 현상을

불러오며, 이는 곧 평가 데이터에 대한 성능 감소로 이어짐이 여러 선행 연구에 의해

밝혀진 바 있다. 딥러닝 모델의 성능 향상은 학습 데이터가 아닌 평가 데이터에 대해

판단되므로, 일반화 성능의 달성은 모든 딥러닝 모델의 궁극적인 목표라고 할 수 있다.

본 연구에서는 손실함수평면의 탐색을 통해 두 논의점에 대한 분석과 각 논의점에

대응하는 지표를 향상시킬 수 있는 학습 방법을 제안한다. 우선, 강건성의 이해와 향상

을위해 입력값에 대한 손실함수를 분석한다.적대적 공격은입력값에 대해 손실함수를
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최대화하는 섭동을 생성하므로, 비정상적인 섭동이 더해진 입력값에 대해서 손실함수

를 최소화할 수 있는 방어 방법에 대해 연구한다. 그 시작으로, 적대적 방어 기법의

하나인 단일 단계 적대적 학습에서 손실함수평면이 쉽게 뒤틀릴 수 있음을 밝혀낸다.

제안된 연구에서 뒤틀린 손실함수평면이 모델의 강건성을 심각하게 손상할 수 있음을

보이고, 이를 기반으로 매끄러운 손실함수를 갖는 것의 중요성을 증명한다. 손실함수

평면의 특성을 기반으로 다양한 영역에서의 적대적 공격과 방어 기법에 대한 분석과

성능 향상을 연구한다. 첫 번째로, 구조나 가중치가 상이한 모델에서 적대적 예제를 생

성하여 대상 모델로 공격하는 전이 공격의 세기가 손실함수평면과 깊이 관련이 있음을

증명한다. 이를 기반으로 강력한 적대적 소리 예제를 생성하고, 딥러닝 모델의 신뢰할

수있는강건성수준을제안한다.이어적대적학습의특징과학습된모델의손실함수평

면을 탐색한다. 입력값에 대한 손실함수평면을 부드럽게 만들기 위하여, 적대적 학습에

중앙점을 고려한 손실함수를 도입하여 모델의 강건성을 높인다.

다음으로, 일반화의 이해와 향상을 위해 가중치에 대한 손실함수를 분석한다. 최근

일련의 연구에서는 딥러닝 모델의 일반화 성능은 손실함수평면의 평평함과 긴밀하게

연결되어있음이증명된바있다.이를기반으로제안된첨예기반학습은첨예한최적점

을 기피하고 평평한 최적점을 찾음으로써 높은일반화 성능을 달성한다.본 연구에서는

첨예 기반 학습 방법의 손실함수평면에 대한 분석을 진행한다. 우선 첨예 기반 학습이

손실함수평면에 안장점이 존재할 경우 수렴이 불안정함을 밝힌다. 불안정한 수렴 때

문에 최적점이 아닌 안장점에 갇히는 경우가 발생하며, 이는 첨예 기반 학습의 성능을

저해함을 보인다. 불안정한 수렴을 개선하고 더 높은 일반화 성능을 달성하기 위해,

가중치 공간에서의 섭동을 구하는 단계에서 도출되는 모든 중앙점의 기울기 정보를

활용하는 방법을 제안한다.

본 연구는 손실함수평면에 대한 탐색과 고찰을 바탕으로 강건성과 일반화에 대한

더깊은이해를제시하고,이를통해서각지표의향상을위한새로운적대적공격방법,
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적대적 방어 방법, 첨예 기반 학습 방법을 제안하였다. 연구 결과는 향후 딥러닝 모델의

실현을 위한 추후 연구에 확장성 있는 모델이며, 강건성과 일반화에 있어 손실함수평

면에 대한 심도 있는 분석이 선행되어야 한다는 함의점을 제공한다.

주요어: 딥러닝, 강건성, 일반화, 손실함수평면

학번: 2018-23641
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