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Abstract

Building Named Entity Knowledge Graph
Using Named Entity Normalization

Sung Hwan Jeon

Department of Industrial Engineering

The Graduate School

Seoul National University

Text mining aims to extract the information from documents to derive valuable

insights. The knowledge graph provides richer information from various documents.

Past literature responded for such needs by building technology trees or concept

network from the bibliographic information of the documents, or by relying on text

mining techniques in order to extract keywords and/or phrases. In this paper, we

propose a framework for building a knowledge graph using named entities. The

knowledge graph construction framework in this paper satisfies the following condi-

tions: (1) extracting the named entity in the completed form, (2) Building datasets

that can be trained and be evaluated by the named entity normalization models

in various domains such as finance and technical documents in addition to bio-

informatics, where existing NEN research has been active, (3) creating the better

performing named entity normalization model, and (4) constructing the knowledge

graph by grouping named entities with the same meaning that appear in various

forms.
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Chapter 1

Introduction

The text mining technology is undergoing a rapid evolution thanks to the exponen-

tial growth in the number of text-rich documents available online, and as a result,

it is being widely applied in a range of domains’ documents such as finance docu-

ments, patent documents and bioinformatics documents. To organize and to derive

valuable insights from the documents, building the knowledge graphs from the doc-

uments is the one of the most effective techniques. In this research, we propose

named entity knowledge graph construction framework. To overcome drawbacks of

previous knowledge graph construction models, we present the dictionary construc-

tion for named entity normalization, named entity normalization model using edge

weight updating neural network, and building knowledge graph using named entity

recognition and normalization models.

Documents subject to analysis contain many named entities, which are proper

names that denote unique objects such as organizations, products, persons, and

locations. The technique used to extract named entities from documents is called

named entity recognition (NER, henceforth). Furthermore, named entity normaliza-

tion (NEN, henceforth) involves matching extracted named entities with homoge-

neous identity and is pivotal for text mining tasks.
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Identifying the matched named entity pairs is critical in financial text mining

tasks. More precise named entity normalization in text mining will benefit other

subsequent text analytic applications. Yet, there are insufficient public datasets

for financial named entity normalization. We built the named entity normaliza-

tion dataset from publicly open financial documents and patent documents using

parsed named entity tokens with state of the art named entity recognizing model

and concatenating named entity tokens with more precise token linking methodol-

ogy. Our dataset contains major challenges in named entity normalization are (1)

distinguishing synonyms, (2) linking abbreviations, (3) identifying acronyms, (4)

recognizing different mixture of punctuations and alphabets, (5) matching entity

with descriptive phrases and (6) correcting possible NER parsing errors.

The early NEN models explored knowledge-based approaches. Generating the

rules for named entity matching based on domain knowledge is valid only for the

dataset in which the corresponding rules are already created. The rule-based mod-

els are not robust for the neologisms. In order to overcome the disadvantage that

the rule-based model is not robust, models based on machine learning have been

introduced. However, machine learning models are limited to specific fields such as

bioinformatics NEN and chemical engineering NEN due to lack of NEN datasets in

other domains. Our research aims to construct fully automated NEN model that

can be applied to various other domains. To test our model’s robustness on different

domain, we also apply the NEN dataset in finance.

We built the named entity normalization model with a novel Edge Weight Up-

dating Neural Network. Our proposed model when tested on four different datasets

achieved state-of-the-art results. We, next, verify our model’s performance on NCBI
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Disease, BC5CDR Disease, and BC5CDR Chemical databases, which are widely

used named entity normalization datasets in the bioinformatics field. We also tested

our model with our own financial named entity normalization dataset to validate the

efficacy for more general applications. Using the constructed dataset, we differenti-

ate named entity pairs. Our model achieved the highest named entity normalization

performances in terms of various evaluation metrics.

An automated named entity normalization model reduce the burden of hand-

mined information extraction tasks. Clear linkage between entities with different

forms, such as abbreviations and acronyms, aid in more accurate sentiment analysis.

The named entity normalization model also benefits the creation of more compre-

hensible classifying and clustering documents. One of the primary contributions of

our study are (1) constructing better performing NEN model using an Edge weight

updating neural network and (2) applying our proposed model to bioinformatics

NEN and financial NEN tasks.

Recent technological discoveries have well been reflected through the rapid growth

in the patent filings. The speed and the volume these patents are being generated call

for an automated process, based on machine learning techniques, for cost-effective

and timely analysis. Past literature responded for such needs by building technology

trees or concept network from the bibliographic information of the patent docu-

ments, or by relying on text mining techniques in order to extract keywords and/or

phrases. While these approaches provide an intuitive glance into the technological

hotspots or the key features of the select field, there still is room for improvement,

especially in terms of recognizing the same entities appearing in different forms so

as to properly interconnect closely related technological concepts. In this paper, we

3



propose to build a patent knowledge network using USPTO’s patent filings for the

semiconductor device sector by fine-tuning Huggingface’s named entity recognition

model with our novel edge weight updating neural network. Experiment results show

that our proposed approach performs very competitively against the conventional

keyword extraction models frequently employed in patent analysis, especially for the

named entity normalization and the document retrieval tasks. We also show that

our model is robust to the out-of-vocabulary problem by employing the fine-tuned

BERT NER model.
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Chapter 2

Literature review

2.1 Named entity normalization dataset

Among many related text mining applications, named entity normalization can

be applied to various text mining researches and text mining practices. In pre-

processing for applying text mining techniques to solve real world problems, NER

and NEN models are preformed preemptively. ShARe/CLEF [84] is one of widely

used NEN dataset for bioinformatics which the dataset is constructed of clinical

notes. NCBI [16] dataset contains PubMed abstracts for disease name normaliza-

tion. TAC2017ADR [13] aims to link identical drug labels. Genes, proteins, and bac-

teria name normalization datasets are also available from BC2GM [80], BioNLP09

[38], and BioNLP-OST19 [8]. In chemical engineering, SCAI [44] and IUPAC [43]

are available for researches on chemical name matching. Similar to chemical names,

Weston et al. [87] constructed and distribute the dataset for material engineering to

normalize entities to a canonical form.

However, the NEN dataset for the financial domain is scant and there is a need for

developing a dataset targeting the financial NEN. Many researchers have developed

targeted datasets for more general NEN tasks in domains such as user comments,

product description, and financial invoices. For example, in their study, Jijkoun et
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al. [33] used user comments from newspaper websites. Sun et al. [81] performed

normalization of product entity names, for which the dataset was developed by the

authors. The study conducted by Francis et al. [18] on financial invoices is the most

relevant one to our study. However, Francis et al. focused on insurance, telecommuni-

cations, banking, and tax companies using the following entities: International Bank

Account Number (IBAN) of the beneficiary, invoice number, invoice date, and due

date [18]. The focus of our study is on more general financial entity normalization,

which covers entities from all financial sectors. Previous studies using the datasets

illustrated above used various machine learning and deep learning models.

2.2 Named entity normalization

Bioinformatics, chemical engineering, and materials science domain actively adopt

cutting-edge deep learning frameworks for NEN tasks. According to Cho et al. [9],

various products exist for recognizing and normalizing named entities in biomedical

fields such as ProMiner [26] and MetaMap [4]. DNorm [47] and TaggerOne [48] also

used machine learning models such as pairwise ranking scoring and semi-Markov

models, respectively, for NEN processing. In genetic engineering, GenNorm [86] and

GNAT [25] are used to normalize the gene names. ChemSpot [72] uses Conditional

Random Field for NER and NEN tasks in chemical engineering. Weston et al. [87]

developed MatScholar [87] python repository to perform general NLP tasks on ma-

terial science texts, which includes entity normalization.

Applying machine learning algorithms in the financial domain is gaining increas-

ing attention. One major branch is stock movement forecasting using various deep

learning mechanisms [5, 11]. Thanks to the rapid developments of unstructured data
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processing techniques, researches on applying text mining techniques to the finan-

cial fields have increased in number. In their study, Gupta et al. [24] illustrated the

trends for applying text mining in finance. Among many related text mining appli-

cations in finance, NEN can be applied to various financial researches and financial

practices.

There are similarities between the string matching methodologies in various other

fields and NEN researches. Sun et al. [81] proposed NEN for product names using

a pre-constructed product entity linkage dictionary. In semantic string matching,

Siamese Neural Networks are widely used [60, 71, 55]. Krivosheev et al. [45] used

Siamese Graph Neural Network for company name normalization. We need to extend

NEN on company names to NEN on a wide range of product names and legal entities.

Siamese RNN model successfully apprehends the morphological similarity between

strings [62]. Niu et al. [63] applied Attention mechanisms for medical concept nor-

malization. Furthermore, the evolution of Transformer-based models capacitate the

adoption pre-trained language models such as BERT [14] for entity linking problems

[61].

The major development in recent NEN researches is as follows. Kang et al. [35]

proposed rule-based NLP model for better disease name normalization. Ghiasvand

et al. [22] used edit distance based model for disorder mention normalization tasks.

D‘Souza et al. [17] proposed an early NEN model using a rule-based model, which

requires comparatively more human input when generating the rules. The model is

static and, thus, there is a possibility that new rules need to be created when apply-

ing the model to other datasets. Rahmani et al. [69] proposed random walk applied

on the augmented graph to link similar entities in genealogical graphs. NEN models
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that use more advanced machine learning and deep learning techniques can be more

effective. In order to overcome the disadvantage that the rule-based model is not ro-

bust, models based on machine learning have been introduced [36, 32, 83]. Leaman

et al. [48] used semi-Markov model, Li et al. [52] used word-level CNN model, and

Wirght and Dustin [88] and Phan et al. [66] models based on BiGRU and BiLSTM.

However, BERT achieved state-of-the-art performance in many general text mining

and natural language processing (NLP) challenges. Compared with the four models

illustrated above, the most recent researches such as the BERT ranking model [32]

and BioSyn [83] takes full advantage of the BERT model by training the model based

on BERT embeddings. The BERT Ranking model [32] used ranking-based objective

function and BioSyn [83] used Synonym Marginalization techniques as the objective

function for training. Our proposed model optimizes BERT embedding vectors with

named entity graph’s edge weight updating neural network. Our proposed model suc-

cessfully captures the ground truth linkage between named entity graphs, achieving

the highest accuracies. Previous NEN researches focus mainly on the NEN dataset

from a specific domain. To test the efficacy of our model in more general NEN tasks,

we evaluate our model with NEN datasets from both the bioinformatics domain and

financial domain.

Many NEN researches explore semi-supervised learning models. Our proposed

model is motivated by one of the leading semi-supervised models on images, Edge-

Labeling Graph Neural Network for Few-shot Learning [37] (EGNN). The major

difference between EGNN and our model is that EGNN labels an edge for each

round of training but our model updates edge weights for top K connected entities.

By capturing more node and edge information simultaneously for each round of

8



training, the proposed model shows better performance compared with other NEN

models.

2.3 Knowledge graph construction

Text mining techniques and their applications have received remarkable and rapidly

growing attention as a means to acquire useful information from corpora of vari-

ous backgrounds and characteristics. Technology management fields have responded

by actively utilizing text mining approaches to process and analyze professionally

written technological reports and other technology-related documents [64]. One of

the most prevailing examples includes text-mining-based patent analysis: to date,

numerous studies have attempted to analyze the patent documents to investigate

contemporary technological trends, assess technological capabilities, and/or analyze

the commercial value of select technologies [10]. Kim et al. [40], for instance, built

a semantic network to analyze the “ubiquitous computing technology” by merg-

ing pre-determined keywords, recommended by experts in the field, from the patent

claims. Patent claims were queried based on those pre-determined keywords, and the

returned documents were characterized further by employing the k-means clustering

algorithm. It is, however, very costly to pre-define manually the target technology-

related keywords as the authors did in their study because it requires a great amount

of background knowledge, time, and human labor during the process.

The number of studies on knowledge graph construction has grown rapidly. The

importance of knowledge graphs is emphasized in [31, 21, 27]. Relatively earlier

knowledge representations through the ontological graph and semantic web ap-

proaches for manufacturing are listed in [70]. Rahmani et al. [67, 68] proposed hu-
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man disease network and human drug network based on protein-protein interaction.

DDREL [2] is more recent research on constructing the drug-drug relation graph. Li

et al. [54] constructed the knowledge graph from electronic medical records(EMRs).

EMR2vec [15] suggested the platform which incorporated patient data and clinical

trials by a medical ontological graph. Bipartite graph [90] and hypergraph [85] are

also used to represent knowledge in graph form. Technology topic network which was

built based on the patent documents aided to establish the improved R&D plannings

[78]. Liu et al. [56] constructed the industrial knowledge graph based on various in-

dustrial documents and applied the knowledge graph to few-shot text classification

problems. Similarly, kim et al. [39] and Sun et al. [82] proposed information retrieval

technique using knowledge graphs.

Recently, the availability of NLP tools has led to the introduction of a wide

range of automatic keyword extraction models. TechNet [75] is the leading example of

such efforts, which was derived by applying word embedding algorithms to a massive

amount of patent filings to establish the semantic relations between the technological

terms presented as vectors on the same linear space. While these studies suggest

meaningful approaches for extracting insights from patent filings, they still suffer

from several limitations, such as entity matching and normalization. For example,

the terms “CNN” and “convolutional neural networks” convey virtually the same

meaning; yet, the standard word embedding approaches would vectorize these terms

separately as independent entities. In this study, we attempt to address such issues

by normalizing the named entities whose definitions are supposed to be aligned as

identical by exploiting the edge updating neural network of our novel design, with

triplet loss, as first proposed by [30].
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Chapter 3

Dictionary construction for named entity
normalization

3.1 Background

By constructing and distributing the NEN dataset for finance and patent documents

will foster researches on general text mining in various fields. We construct the

dataset for the financial NEN task from the annual reports (Form 10-K) of Standard

and Poor’s 500 listed companies. We aim to build the dataset that fulfills the need for

financial NEN; the dataset includes (1) synonyms, (2) abbreviations, (3) acronyms,

(4) different combinations of punctuations and alphabets, (5) descriptive phrases,

and (6) possible NER parsing errors. A detailed explanation of primary data sources,

data preprocessing steps, and dataset construction procedures are as follows. Fig. 3.1

demonstrates the overall flow diagram for NEN dataset construction.

11



Figure 3.1: Flow diagram of the overall dataset construction

3.2 Dictionary construction methods

3.2.1 Finance named entity normalization dataset

Data source

We gather the year 2019’s Form 10-Ks (published early 2020) of S&P500 companies

from the U.S. firms and Exchange Commission (SEC) website1, which is open to the

public. We parse the business section of each 10-K documents from 496 companies.

The business section of 10-K is considered the self-identity of firms and presents the

information of main products, competitors, partners, and laws affecting the business.

Among the sections in 10-K, this section contains the most number of entities. Out

of 496 companies’ business section, 67,792 sentences were parsed.

1https://www.sec.gov/edgar.shtml
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Figure 3.2: BERT named entity recognition in finance documents example

Data preprocessing

For NER in financial documents, we implement the BERT NER model [14] us-

ing Huggingface’s2 Python repository. Huggingface’s NER model is trained using

CoNLL-2003 NER dataset [74]. The outputs of the BERT NER model are Word-

Piece tokens that we have to link together with specified rules that will be circum-

stantially described below. There are four types of entity types: persons (PER),

organizations (ORG), locations (LOC) and miscellaneous names (MISC), and one

outside the named entity tag (O) in the CoNLL-2003 dataset. We detect entities

with ORG and MISC tags.

Fig. 3.4 depicts named entity recognizing using pretrained BERT model for ex-

ample sentence, “IPhone (r) Is the Company’s line of smartphones based on its

iOS operating system.”, from Apple Inc’s 10-K. The tag “IP” and “##hone” are

successfully recognized and easily be concatenated. In addition, detecting “(r)” or

“(tm)” mark (registered sign and trademark respectively) is very beneficial for fi-

2https://huggingface.co
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nancial tasks. Detecting named entities with registered sign and trademark can be

useful in distinguishing product named entities. Therefore, we decide to append such

marks.

Table 3.1: Example of named entity token concatenation

Named Entity Tokens Token Types

Snapchat S, ##nap, ##cha, ##t ORG,ORG,ORG,ORG
Amazon.com, Inc Amazon, ., com, ,, Inc ORG,ORG,ORG,O,ORG
Anti-Bribery Laws Anti, -, B, ##ri, ##bery, Laws O,O,MISC,O,O,MISC
Boeing 737 (B737) Boeing, 737, (, B, ##7, ##37, ) MISC,MISC,O,MISC,O,O,O
Google’s Play Store Google, ’, s, Play, Store ORG,O,O,ORG,ORG

We construct rigorous rule-based token concatenation model to detect named

entity as comprehensive and interpretable as possible. Examples in Table 3.4 show

how named entities are concatenated based on given BERT NER tokens.

• “Snapchat” is most basic and can be linked together with Huggingface’s default

NER concatenation package. If found named entity tag, “S”, followed tokens

are all tagged as named entity and starts with “##” which indicates that

the token should be joined to previous token, all tokens should simply be

connected.

• “Amazon.com, Inc” has “,” token which is not labeld as named entity. However,

“,” links “Amazon.com” and “Inc” together. “Amazon.com” can be interpreted

as website and comany name but “Amazon.com, Inc” clarifies that the entity

is company. Therefore, we join tokens which follows similar patterns.

• “Anti-Bribery Laws” and “Bribery Las” should be distinguished. Without

chaining “-” token, “Anti-Bribery Laws” can be separated, so concatenating

the tokens around “-” token is needed.
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• Named entity within the parenthesis are useful in detecting abbreviatons.

“B737” and “Boeing 737” are two entities with same connotation. Entity “Boe-

ing 737 (B737)” can play important role in named entity normalization as the

key for linking entities “B737” and “Boeing 737”. We preserve entities within

parenthesis.

• There are number of entities with “’s”. Token “’s” indicates the firms’ products

like the example provided, “Google’s Play Store”. Sometimes, firm contains

the “’s” for their company name like “DICK’S Sporting Goods Inc.”. For both

scenarios, “’s” as possessive case and “’s” in proper noun, our algorithm chains

the tokens around “’s”.

With the rule presented above, we complete named entity recognition as prepro-

cessing for creating the financial NEN dataset. For year 2019 S&P500 firms’ 10-K,

we parse total of 41,593 named entities.
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Financial named entity normalization dataset construction

Table 3.2: Example of financial named entity normalization dataset

Named Entity Matching Named Entity

Synonyms Coca-Cola ® Coca-Cola
COVID-19 Pandemic COVID-19

iPhone 11 Pro Max iPhone ®

Abbreviations Baker Hughes Company Baker Hughes Co.
Comcast Corporation Comcast Corp.
Qualcomm Incorporated Qualcomm Inc.

Acronyms Amazon Web Services AWS
Bank of New York Mellon BNY Mellon
New York Stock Exchange NYSE

Combinations of punctuations Apple, Inc. Apple Inc.
Walmart U. S. Walmart U. S
Booz Allen & Hamilton Booz Allen Hamilton

Descriptive Phrases EY ( formerly Ernst & Young ) Ernst and Young
Securities Exchange Act of 1934 ( the Exchange Act )

Facebook (including Instagram) Facebook ®

NER Parsing Errors Disney Channel-the Disney Channel

Full Throttle ®-a Full Throttle ®)
Keystone-our Keystone Foods

With named entities recognized illustrated in Section 3.2.1, we construct the financial

named entity normalization dataset. As mentioned in Section 3.1, our focus is to

build a NEN dataset to meet the need for general text mining in finance; the dataset

includes (1) synonyms, (2) abbreviations, (3) acronyms, (4) different combinations of

punctuations and alphabets, (5) descriptive phrases, and (6) possible NER parsing

errors. We hand label a total of 7,155 unique named entities into 2,600 groups; with

each group sharing the same identity. Table 3.2 shows three examples in our dataset

for types of named entities that need to be normalized.

• Synonyms:

There exist entities with the suffix “®” or “™”. “Coca-Cola ®” and “Coca-
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Cola” are the same entity. In addition, “COVID-19 Pandemic” and “COVID-

19” should be linked. We generalize the product model numbers in which

“iPhone 11 Pro Max” and “iPhone ®” are considered identical entities.

• Abbreviations:

Most abbreviations occur for abridging “Company” to “Co.”, “Corporation”

to “Corp.”, and “Incorporated” to “Inc.”.

• Acronyms:

Acronyms are one of the most challenging NEN tasks. There are multiple ab-

breviations that are included in financial documents. We avoided matching

acronyms if there are multiple original entities can be assigned. For example,

“Advanced Development Programs ( ADP )” and “Automatic Data Process-

ing, Inc. ( ADP )” both share the same acronyms, “ADP”, but these should

not be linked together.

• Combinations of punctuations:

The different combinations of punctuations problems can be solved using rule-

based approaches. However, there are many entities with a combination of

punctuations. “,”, “.”, and “&” are commonly found and used interchangeably.

• Descriptive phrases:

In parsed named entity, an entity with descriptive phrases can be frequently

found. With or without descriptive phrases, the root or the identified entity is

invariable.

• NER parsing errors:
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No NER models and entity concatenation models are perfect. If NER is con-

ducted manually, there are possible human errors too. According to our dataset,

one common error model makes is appending the following token after “-” to-

ken. NER parsing error correction is one of the important targets our NEN

model aims to achieve.

Table 3.3: Statistics of the financial named entity normalization dataset

Train Development Test Total

# of Identical Entity Groups 1,710 800 90 2,600
# of Positive Pairs 4,598 2,466 3,761 10,825
# of Negative Pairs 7,902 2,534 3,739 14,175
# of Pairs Total 12,500 5,000 7,500 25,000

Hand-matched entity pairs are labeled positive. We also added negatively labeled

pairs in which two entities have no relationship. A total of 25,000 pairs with 10,825

positive matching pairs and 14,175 negative pairs are created. We separate entity

groups for a train set, development set, and test set in which there are no overlapping

groups. This eliminates possible training bias, especially when training the model

with entities’ graph topology. Table 3.3 shows the statistics of our financial NEN

dataset. For training the models, we use train and development set for training and

test set for evaluation similar to bioinformatics datasets.

3.2.2 Patent named entity normalization dataset

Data source

In our experiment, we exploit USPTO data3 from January, 2020 until the end

of October, 2020. As our goal is to construct the patent knowledge graph from

3https://bulkdata.uspto.gov
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semiconductor-related patent documents, we filter the patent claims by querying

the word “semiconductor” in the description of the Cooperative Patent Classifica-

tion (CPC), as shown in the example exhibited in Figure 3.3. The resulting dataset

covers the following 12 CPC subclasses: H01C, H01F, H01G, H01L, H01M, H01P,

H01R, H01S, H03H, H04R, H05B, and H05K. From the total of 35,734 documents,

we recognized 69,812 named entities.

Figure 3.3: Description of CPC subclass H01L

Semiconductor related patent named entity normalization dataset con-
struction

For the NEN evaluation, we manually built a scarcely labeled dictionary matching

named entities of different forms, yet with the same meanings. Out of 69,812 named

entities, we hand-labeled 6,797 named entities to be matched with 1,000 unique

named entity groups.

To extract named entities from the patent claims, we rely on the BERT NER

model [14] provided by Huggingface’s4 Python package, in which the underlying

model was pre-trained with the CoNLL-2003 NER dataset [74]. Four types of named

entities are provided by the CoNLL-2003 dataset: persons (PER), organizations

(ORG), locations (LOC), miscellaneous names (MISC), and those not recognizable

4https://huggingface.co
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Figure 3.4: BERT named entity recognition in patent documents example

by the given dataset (O). Because our main focus is to extract technological concepts

and terms, we detect entities labeled as ORG and MISC tags only.

Figure 3.4 depicts an example of the NER case using the pre-trained BERT

model on the sentence “The FinFET device structure includes a second fin struc-

ture embedded in the isolation structure,” which actually appears in one of the

semiconductor-related patent documents considered in our experiment.

The raw output of the BERT NER model is in the form of WordPiece [89] tokens,

which are very difficult to interpret to the human eye at first glance. In this study,

we enhance the human understanding of the preliminary NER results by conducting

further token concatenation. More specifically, we construct a rigorous, rule-based

token concatenation model to detect the named entities. Table 3.4 lays out the token

concatenation scenarios we propose by the different concatenation types.
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Table 3.4: Example of named entity token concatenation

Named Entity Tokens Token Types

FinFET Fin, ##F, ##ET MISC, ORG, ORG
Amazon.com, Inc Amazon, ., com, ,, Inc ORG, ORG, ORG, O, ORG
Anti-Hebbian Anti, -, He, ##bb,##ian MISC, O, MISC, MISC
Micro USB Micro, USB O, MISC
(NFC) tag (, NFC, ), tag O, MISC, O ,O

The first case listed, where the tokens “Fin”, “##F”, and “##ET” are success-

fully recognized, is the simplest case that can be detected and easily concatenated

utilizing Huggingface’s default concatenation package. The term “FinFET” refers

to one of the field effect transistors, and it will make sense only if the tokens “Fin”

and the acronym “FET” are concatenated together. The tag of the token following

“Fin” begins with “##”, which indicates that it should be joined with the token

appearing before itself. The following token, which ends with “##ET” suggests that

the formerly merged term should be completed with the letters “F” and “ET”, hence

leading to the final form of the detected named entity as “finFET”.

The next case is slightly more complicated yet easily solvable. Entities whose

name includes punctuation marks such as periods (.) or commas (,), “Amazon.com,

Inc”, for example, require an extra step to be properly concatenated because these

punctuation marks are recognized with the other (o) tags. In this case, we join the

(o)-tagged token with the surrounding tokens if they are labeled with ORG tags.

Meanwhile, a compound noun, whose meaning changes owing to the combination

with prefixes, such as “Anti-Hebbian” in the given example, should be distinguished

from its original root word, “Hebbian”. In this case, one needs to carefully concate-

nate the prefix “Anti-” with the following token “Hebbian” in order not to deteriorate
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the implication of the original wording.

The next row in the table presents the case where the major named entity token

is decorated with a descriptive word or phrase, in this case “Micro USB”. We aim

to keep as many information in the named entity as possible.

Our proposed token concatenator model binds such descriptive named entity

tokens together effectively, hence providing richer understanding of the given corpus

without less misleading results.

The last token concatenation scenario presents the case of the recognition and

concatenation of tokens appearing in parentheses. For example, the pre-trained

BERT NER model dissects the given token “(NFC) tag” into pieces; our proposed

model, in contrast, preserves the parentheses intact with the acronym within as a

unified entity. Thus, it provides the accurate interpretation that the detected entity

is an acronym. Such instances are quite prevailing, especially in scientific documents,

because acronyms appear rather frequently.

We hand-matched entities of the following six types: (1) synonyms, (2) abbrevi-

ations, (3) acronyms, (4) different combinations of punctuation and alphabets, (5)

descriptive phrases, and (6) possible parsing errors. We report the examples of the

matching named entities by type in Table 3.5.
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Table 3.5: Matching categories and example for the named entity normalization
dataset

Named entity Matching named entity

Synonyms WiFi IEEE 802 . 11
Silicon Carbide . SiC

Abbreviations German Patent Appl . German Patent Application
Microsoft Corp . Microsoft Corporation .

Acronyms IoT Internet of Things
TFT Thin Film Transistor

Combinations of punctuations USB Type C USB Type - C .
Internet “ Internet ” .

Descriptive phrase Indium Tin Oxide Indium Tin Oxide ( ITO ) ,
LTE - A LTE - Advanced ( LTE - A ) ,

Parsing errors LEDs Emitting Diodes ( LEDs ) can
DRAM Access Memory ( DRAM ) is

Table 3.6 presents an example of the resulting, manually built dictionary for

semiconductor-related patent NEN.

Table 3.6: Excerpt from the semiconductor patent named entity normalization
dataset

Named Entity Group

Fin Field Effect Transistors ( FinFETs ) . group 0
( FinFets ) . group 0
( e . g . , FinFETs ) and group 0
FinFet group 0
WiFi . group 29
WiFi 802 . 11 group 29
IEEE802 . 11 ( WiFi ) , group 29
802 . 11 ( WiFi ) , group 29
CD - ROMs ( Compact Disc - Read Only Memories ) , group 70
( CD - ROM ) , Compact Disk group 70
( CD ) ROM group 70
( CD - ROMs ) , CD group 70

We report the positive and negative entity pairs based on the matching status on
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the substring graph, as described in Section 5.2.1, in cross-check with our manually

built dictionary, as mentioned in Section 3.2.2. Given the entity pairs connected on

the substring graph, if the two entities are labeled to be in the same named entity

group in our maunally built dictionary, the two entities are labeled positive. In

contrast, if the two entities connected in the substring graph are placed in different

groups, the two entities are labeled negative.

The detailed statistics are listed in Table 3.7.

Table 3.7: Statistics of the pairwise named entity matching evaluation dataset

Number of positive pairs Number of negative pairs Total pairs

Train 25,695 29,241 54,936
Test 14,133 14,050 28,183
Total 39,828 39,745 83,119

Finally, we provide the basic summary statistics for the training and test sets in

Table 3.8.

Table 3.8: Statistics of the semiconductor patent named entity normalization dataset

Number of named Entity Number of groups

Train 3,802 552
Test 2,995 448
Total 6,797 1,000

3.3 Chapter summary

In this chapter, we create financial NEN dataset using publicly opened financial

documents and semiconductor-related NEN dataset using semiconductor-related

patents. Our datasets covers six major NEN challenges: (1) synonyms, (2) abbrevi-

ations, (3) acronyms, (4) different mixture of punctuations and alphabets, (5) de-
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scriptive phrases and (6) possible NER parsing errors. Our proposed NEN datasets

are used in Chapter 4 and Chapter 5.
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Chapter 4

Named entity normalization model using edge
weight updating neural network

4.1 Background

In the biomedical domain, disease names and chemicals in drugs often have different

surface forms while sharing the same concept. Types of named entities with different

surface forms that share same concept can be divided into following categories: (1)

synonyms, (2) abbreviations, (3) acronyms, (4) different combinations of punctua-

tions and alphabets, (5) descriptive phrases, and (6) possible NER parsing errors.

For example, “hepatomegaly” and “liver enlarged” do not have matching strings

but the two disease names have identical meanings, and thus, these two named

entities are synonyms. Biomedical named entities have a wide variety of different

surface forms compared with entities from other text sources. More accurate named

entity normalization techniques will potentially improve the quality of downstream

tasks. Moreover, matching entity pairs such as “International Business Machines”

and “IBM”, which are examples of acronyms, are very critical in financial text min-

ing applications. Linking entities with the same identity enables accurate sentiment

analysis on firms and products. Furthermore, evaluation of news impacts on the

stock market requires the connection between news articles and related firms. Given

the wide range of named entities in bioinformatics and finance documents, the total
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number of tokens to be calculated for text clustering and classification is enormous.

The proposed method, that is, the edge weight updating neural network, con-

sists of four parts: (1) ground truth entity graph construction, (2) similarity-based

entity graph construction, (3) edge weight updating neural network training, and

(4) edge weight updating neural network inferencing. The main concept behind

the Edge Weight Updating Neural Network is to minimize the Ground Truth En-

tity Graph’s edge weight distributions and the Similarity-Based Entity Graph’s edge

weight distributions. By minimizing the edge weight distributions on the two graphs,

entity embeddings capture more accurate information on semantic similarity between

matching entities.

Our proposed model is evaluated on three widely used bioinformatics datasets

(NCBI Disease, BC5CDR Disease, and BC5CDR Chemical) and its performance is

compared with other cutting-edge models. Furthermore, to validate the efficacy of

our proposed model in general NEN tasks, we construct a financial NEN dataset with

state-of-the-art NER using BERT [14]. Using the constructed dataset, we propose

the deep learning model to solve more practical financial NEN tasks. Out dataset

incorporates major challenges in entity matching: (1) synonyms, (2) abbreviations,

(3) acronyms, (4) different combinations of punctuations and alphabets, (5) descrip-

tive phrases, and (6) possible NER parsing errors. Compare with other recent NEN

models, our proposed model shows higher accuracies in all datasets used in the ex-

periments, and our model is tested with not only bioinformatics NEN datasets but

also financial NEN datasets, which verifies the efficacy in general NEN tasks.
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4.2 Proposed model

Our proposed model, Edge Weight Updating Neural Network, consists of four major

parts.

1. Ground Truth Entity Graph construction

2. Similarity-Based Entity Graph construction

3. Edge Weight Updating Neural Network training

4. Edge Weight Updating Neural Network inferencing

The basic idea behind Edge Weight Updating Neural Network is to minimize the

Ground Truth Entity Graph’s edge weight distributions and the Similarity-Based

Entity Graph’s edge weight distributions. The detailed flow diagram of Edge Weight

Updating Neural Network is represented in Figure 4.1. Our motivation for construct-

ing Edge Weight Updating Neural Network is to provide more positive and negative

samples for training at once. Training the model to minimize the ground truth data

and reconstructed data is more widely used in the deep learning models in computer

vision such as GAN [23]. We apply these ideas to text mining and create the model

that is trained to minimize the edge weight distributions of the ground truth entity

graph and that of the similarity-based entity graph. In Figure 4.1, AWS is our query

entity. First, with the vanilla BERT encoder, unrelated entities such as Apple, Inc.

and NYSE might have higher similarity scores(edge weight between two entities)

than the entity Amazon AWS. Then, the similarity-based graph is constructed with

the given query entities according to the current similarity scores. The graph’s edge

weight distribution is compared with the ground truth entity graph’s edge weight
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distributions. Entity embeddings are trained with Kullback-Leibler divergence [46]

loss between two graphs. After iterating trough these steps, the BERT encoder will

be trained to calculate the two entities’ ground truth similarity score.

Figure 4.1: Diagram of edge weight updating neural network with the query entity,
AWS

We use the BERT model for the named entity embeddings. There are two main

reasons for choosing the BERT model for the named entity embeddings. There exist

various pretrained BERT models that serve the specific purposes such as BioBERT

[49] for bioinformatics documents, FinBERT [3] for finance documents, and Patent-

BERT [50] for patent documents. Compared to other language embedding models

such as Word2Vec [58], Glove [65], and Fasttext [7], BERT model’s WordPiece tok-
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enizer is more robust handling the out of vocabulary problems. The number of out of

vocabulary entities using the pretrained language models listed above are tabulated

in Table 4.1.

Table 4.1: Number of out of vocabulary entities using pretrained language models

Model (Total # entities) Word2Vec Glove Fasttext BERT-based models

NCBI Disease (73,181) 8,469 7,991 7,279 0
BC5CDR Disease (73,548) 8,526 8,077 7,319 0
BC5CDR Chemical (407,428) 87,859 70,683 70,091 0
Financial NEN Dataset (24,195) 3,871 4,300 3,615 0

Detailed steps for constructing the Ground Truth Named Entity Graph, building

the Similarity-Based Entity Graph, and training and inferencing the Edge Weight

Updating Neural Network are presented in Sections 4.2.1, 4.2.2, 4.2.3 and 4.2.4,

respectively.
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4.2.1 Ground truth entity graph construction

Figure 4.2: Ground truth named entity graph construction

Ground Truth Entity Graph constructions are based on entity mentions in each

dataset and their mapping concept IDs. Figure 4.2 demonstrates the steps for build-

ing the graph.

For the NEN corpus, each entity is annotated with one or more concept IDs. For

example in Figure 4.2, entities A, B, and C share the same concept ID, ID 1. Then,

entities A, B, and C are fully connected in the entity graph. Other entity pairs, D -

E (concept ID: ID 2) and F - G (concept ID: ID 3) are linked. The training dataset

for each NEN corpus has query entities with corresponding concept ID. If query

entity Q has a concept ID of ID 1, then, query entity Q will be linked to entities
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A, B, and C in the pre-constructed graph. As the constructed graph is the ground

truth graph, each edge weight in the graph is 1.

We iterate all the entities in training sets that include the referencing dictionary

entity table and the query entity table. Graph created by the following steps above

is the Ground Truth Entity Graph which is the reference or the target graph the

Similarity-Based Entity Graph will try to match.

4.2.2 Similarity-based entity graph construction

Figure 4.3: Entity matching graph based on entity similarity construction

For each query entity, Similarity-Based Entity Graph is constructed as follows.

Graph edges are calculated using BERT embedding vector similarities. We use
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BioBERT [49] for bioinformatics NEN corpus’ initial BERT embeddings and the

original BERT [14] for financial NEN corpus’ initial BERT embeddings.

For example, in Figure 4.3, let query entity Q has size of 768 (vector length

of BERT embeddings), EmbedQ = (XQ1 XQ2 · · · XQ768). Similarly, BERT-

based entity embeddings in the dictionary set are also denoted as Embedentity =

(Xentity1 Xentity2 · · · Xentity768). The BERT embedding has a fixed length of 768,

so our embedding vectors have a vector length of 768.

To calculate the edge weights based on entity similarities, we calculate inner prod-

ucts between query entities and dictionary entities. Since the calculation time for

the matrix multiplication is fast, computing the similarity between every query en-

tities and dictionary entities are relatively less time consuming. The largest dataset,

BC5CDR Chemical, with the matrix size of (407,454 * 768) by (1,317 * 768) takes

about 0.77 seconds on CPU and 0.27 seconds on GPU. The fastest calculation time

on CPU is NCBI Diesease, (72,887 * 768) by (1,587 * 768), which take 0.20 seconds.

The fastest calculation time on GPU is Finance NEN dataset, (20,071 * 768) by

(20,071 * 768), which take 0.042 seconds. < , > is the notation for inner product

and SimQ is the set of similarities between query entity Q and all the entities in a

dictionary; then the similarity between each query entity and each dictionary entity

calculation is expressed as Equation 4.1,

SimQ = {Sim | Sim =< EmbedQ, EmbedD > for D ∈ Dictionary}

where,

EmbedQ∈QueryEntities = (XQ1 XQ2 · · · XQ768),

EmbedD∈Dictionary = (XD1 XD2 · · · XD768) (4.1)
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We normalize the similarity score by dividing the maximum similarity score in each

query entity’s similarity score set, SimQ. For Similarity-Based Entity Graph, top

K edges based on similarity score are selected. Highlighted blue region in entity

similarity table for query entity Q in Figure 4.3 demonstrates the edge weight deter-

mination steps when top k = 5. Mathematically, edge weights are calculated using

Equation 4.2.

ConnectedEdgeWeight = {WeightEdge | Edge ∈ ConnectedEdge}

where,

ConnectedEdge = argmaxtop k{WeightQ},

WeightQ =

{
Weight | Weight =

Sim

MaxQ
for Sim ∈ SimQ

}
,

MaxQ = max{SimQ} (4.2)

For each training epoch, which is illustrated in Section 4.2.3, edge weights are up-

dated. Updated entity embedding vectors generate new similarity scores that alter

the edge weights in the graph.
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4.2.3 Edge weight updating neural network training

Figure 4.4: Minimizing the edge weight distributions in edge weight updating neural
network for query entity Q

The main concept of Edge Weight Updating Neural Network is to minimize the

difference between the edge weights’ discrete distribution for each query entity

in the Ground Truth Entity Graph and the Similarity-Based Entity Graph. The

Similarity-Based Entity Graph is dynamic. For the each iteration in the training

phase, the Similarity-Based Entity Graph is reconstructed with the updated BERT

model’s parameters from the previous traning iteration. As illustrated in Section

4.2.2, edge weights are calculated by entities’ embeddings. In each training epoch

in Edge Weight Updating Neural Network, baseline BERT model’s parameters are
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optimized to mimic the ground truth edge weight distributions.

Figure 4.4 shows the training process of our proposed model for the number of

connected edges in the Similarity-Based Entity Graph is 5 (top k = 5). Following

the example in Section 4.2.2, query entity Q is connected to dictionary entities A, B,

C, D, and F, and edge weights are 0.8, 0.9, 0.6, 0.7, and 0.5, respectively. Given the

Ground Truth Entity Graph in Section 4.2.1, the truth edge weights for connected

edges between query entity Q and dictionary entities, A, B, C, D, and F are 1, 1, 1,

0, and 0, respectively.

In training procedures, BERT parameters are tuned to make edge weights distri-

butions in Similarity-Based Entity Graph closer to the ground truth edge weight dis-

tributions. We use Kullback-Leibler Divergence Loss [46](KL divergence loss, hence-

forth) for training our model. As edge weight distribution is discrete, we normalize

the edge weights using the Softmax function.

We denote graph as G, entity as V , and edge as E. The Ground Truth Entity

Graph and the Similarity-Based Entity Graph are denoted as GGT = (VGT , EGT )

and GSim = (VSim, ESim), respectively. The adjacency matrices for Ground Truth

Entity Graph and the Similarity-Based Entity Graph are denoted GT A and Sim A.

PSim EdgeQ is the discrete distribution of edge weights of Q in Similarity-Based Entity

Graph. PGT EdgeQ is the discrete distribution of edge weights of Q in the Ground

Truth Entity Graph. Our KL divergence loss is calculated using Equation 4.3.

Loss = KL(PGT EdgeQ || PSim EdgeQ) = PGT EdgeQ · log
(
PGT EdgeQ

PSim EdgeQ

)
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where,

PGT EdgeQ = Softmax(GT EdgeQ),

PSim EdgeQ = Softmax(Sim EdgeQ),

GT EdgeQ = {GT Aquery,d | d ∈ argmaxtop k{Sim AQ}},

Sim EdgeQ = {Sim Aquery,d | d ∈ argmaxtop k{Sim AQ}},

and, AQ is the edge weight vector connected to the given query entity node Q

(4.3)

We use an Adam optimizer with weight decay [57], and set the batch size to

16 and the number of connected edges in the Similarity-Based Entity Graph to 30

(top k = 30) for all datasets we test. We train our model for 50 epochs. The best

scores are reported in Section 4.3.3.
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4.2.4 Edge weight updating neural network inferencing

Figure 4.5: Inferencing the edge weight distributions in edge weight updating neural
network for query entity Q

First, fine-tuned BERT embeddings illustrated in Section 4.2.3 are used to embed

unseen query entities in test sets. With newly computed BERT embedding vectors,

we repeat the steps in Section 4.2.2 to construct the new Similarity-Based Entity

Graph. For each query entity, a dictionary entity with the highest edge weights is

returned as a synonym. Figure 4.5 demonstrates the inferencing process of the Edge

Weight Updating Neural Network.
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4.3 Experiment results

4.3.1 Datasets

Most NEN researches are from the bioinformatics domain. To test our model’s per-

formance with other NEN models, we select three of the most used bioinforinmat-

ics NEN datasets: NCBI Disease [16] and two datasets from Biocreinative V CDR

(BC5CDR, henceforth) [53].

Three datasets summarized below contains bioinformatics-related entity men-

tions with unique concept IDs. The main goal of these datasets is to identify the

mentions that share the same concept IDs. We follow NEN preprocessing conven-

tion for the datasets below, in which the mentions that do not exist in the concept

dictionary are eliminated [66]. Bioinformatics NEN datasets usually consist of train,

development, and test sets. Following previous studies, we use train and development

sets for training our model. Test sets are used for evaluations.

Table 4.2: Data statistics of three bioinformatics NEN datasets

# of Documents # of Mentions (Entities)
Train Dev Test Train Dev Test

NCBI Disease 592 100 100 5,134 787 960
BC5CDR Disease 500 500 500 4,182 4,244 4,424
BC5CDR Chemical 500 500 500 5,203 5,347 5,385

NCBI Disease [16]. NCBI Disease corpus provides disease mentions in different

surface forms. Disease mentions in this dataset are extracted from 793 PubMed

abstracts containing a total of 6,892 disease mentions, which are mapped to 790

unique disease concepts. Disease concepts are annotated by Medical Subject Head-

ings (MeSH) and Online Mendelian Inheritance in Man (OMIM). Disease mentions
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sharing the same disease concept are considered synonyms. Table 4.2 shows detailed

statistics of the NCBI Disease corpus.

Biocreative V CDR Disease and Biocreative V CDR Chemical [53]. The

BC5CDR corpus is organized for challenging tasks of disease named entity recog-

nition and chemical-induced disease relation extraction. The BC5CDR corpus con-

sists of 1,500 PubMed articles with 4,409 annotated chemicals, and 5,818 disease

and 3,116 chemical-disease interactions [53]. The dataset contains disease mention

corpus and chemical mention corpus. Disease mentions are mapped into the MeSH

IDs similar to the NCBI Disease corpus. Chemical mentions are annotated using the

Comparative Toxicogenomics Database (CTD) [12]. Mentions that share the same

disease concept and chemical concept based on MeSH ID and CTD ID are consid-

ered synonyms. Detailed statistics of both BC5CDR Disease corpus and BC5CDR

Chemical corpus are illustrated in Table 4.2.

Financial named entity normalization dataset We use the dataset described

in Section 3.2.1.

4.3.2 Experiment settings: named entity normalization in bioinfor-
matics

We compare our proposed model’s performance with seven different biomedical NEN

models. The accuracy score presented in this study is excerpted from original papers.

A summary of each model is illustrated in Table 4.3.
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Table 4.3: Models used in bioinformatics NEN datasets evaluations

Models Descriptions

Sieve-based [17] This is one the earliest NEN papers. The research was
conducted with 10 Sieve, which is mostly a rule-based
approaches. Many published post this research follow
similar preprocessing steps.

Taggerone [48] Taggerone used the semi-Markov model for both NER
and NEN tasks. Taggerone was originally validated on
the NCBI Disease and BC5CDR corpus.

CNN Ranking [52] CNN Ranking model used a word-level deep learning
approach for NEN. This research did not perform better
than the previous model, Taggerone. However, it was
the first study that applied deep learning to NEN tasks.

NormCo [88] NormCo used BiGRU, which is considered to be a bet-
ter performing deep learning model with text data.
NormCo achieved similar accuracy scores with signif-
icantly fewer parameters.

BNE [66] BNE introduced two-level BiLSTM to capture both
character-level and word-level information of biomed-
ical entities, achieving increased NEN performance.

BERT Ranking [32] BERT Ranking model is based on Transformer-based
embeddings that use the pre-trained BERT [14],
BioBERT [49], and ClinicalBERT [79] for their entity
embeddings. For each entity, candidate concepts were
retrieved and three different BERT models are fine-
tuned to rank and to capture the ground truth concepts.

TripletNet [59] The concept of TripletNet [29] for semi-supervised
learning was introduced for NEN tasks. This study uses
CNN for entity embedding and shared CNN parameters
are trained with TripletNet structure.

BioSyn [83] BioSyn uses BioBERT for entity embeddings and
trained with Synonym Marginalization. Marginal Max-
imum Likelihood (MML) is the objective function for
Synonym Marginalization.
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4.3.3 Experiment Settings: Named Entity Normalization in Finance

The dataset we used is covered in Section 3.2.1. Table 4.4 shows each model used in

NEN in Finance is tested. BioSyn is one of the state-of-the-art NEN model and the

model’s code is opened to public. We modified BioSyn for NEN dataset for finance

domain and compared the performance. The experiments are conducted using Intel

Core-i9-10940X CPU with 128GB memory and three NVIDIA GeForce Titan RTX

GPU. To avoid possible biases caused by exogenous variables, we use the same

setting for all models if applicable.
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Table 4.4: Models used in finance NEN datasets evaluations

Models Descriptions

Edit Distance [51] Edit Distance is suitable for basic NEN tasks for link-
ing “Apple Inc” and “Apple Inc.”. However, Edit Dis-
tance can only capture the superficial morphological
similarity between two entities. In our experiment,
we calculate the Edit Distance between two entity
pairs and train a simple classifier to determine the
equivalence of two entities.

BERT [14] BERT is a state-of-the-art model for various NLP
tasks. However, for our specific tasks, the BERT
model has a limitation on capturing morphological
similarity between entity pairs. We use pre-trained
BERT vectors with size 768 and train a simple MLP
classifier with batch size 4096 to determine the link-
age between entity pairs.

Siamese GCN [42] We use the entity graph illustrated in Section 4.2.2
and we use a pre-trained BERT vector for each en-
tity node vector. 2-layer Siamese GCN is used in our
experiment with 256 hidden nodes for the first GCN
layer and 16 hidden nodes for the second GCN layer.
GCN requires more epochs for training so we trained
for 120 epochs for the full dataset (full batch: 17,500
entity pairs). The learning rate for ADAM optimizer
for GCN is 0.01.

Siamese BiLSTM [77] For Character Level Siamese BiLSTM model train-
ing, we one-hot encoded the characters entity strings
with unique 85 tokens. We stack two BiLSTM layers.
The BiLSTM cells in the first layer return 64 dimen-
sion hidden states output and the BiLSTM cells in
the second layer return 16 dimension hidden states
output. To prevent overfitting, we train the BiLSTM
model for 12 epochs. The BiLSTM model is trained
with a learning rate of 0.001. Embedding dimension,
16, is the same as GCN.

BioSyn [83] The detailed model description is illustrated in Ta-
ble 4.3.
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For the pairwise NEN tasks, we take slightly different approach for BioSyn and

our proposed model. The convention for the performance test in NEN tasks in bioin-

formatics is more similar to retrieval tasks. In bioinformatics NEN performance test,

the model retrieve most similar entity from the candidate concepts (mentions). For

each trial, the model scores if the retrieved named entity’s concept ID matches the

query entity’s concept ID. However, for the pairwise NEN tasks, the model will re-

trieve the top-k most similar entities for both entities in the pair. We test BioSyn

and our proposed model with the top-k of 1 and 3. The model scores if there exists

the overlapping concept IDs in two groups of retrieved entities. For top-1, the model

will recommend the one most similar entity and their concept IDs will be compared,

and for top-3, the model will recommend the three most similar entities and will be

scored by the presence of any overlapping concept IDs in two entity groups.

4.4 Results

We conduct both quantitative and qualitative analysis. For NCBI Disease, BC5CDR

Disease, and BC5CDR Chemical datasets, we compare our proposed model’s score

with previous researches. Bioinformatics datasets are reported by top one recommen-

dation accuracy. Given the biomedical entity in the train set, entities are matched

with the most similar entities in datasets. If the query entity and target entity share

the same concept ID, it is considered correct. The financial NEN dataset is a pair-

wise NEN matching corpus. For evaluations on the financial NEN dataset, models

that are used in evaluations distinguish whether two named entity pairs share iden-

tical meanings or not. We also perform the qualitative analysis to assess models’

weaknesses.
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4.4.1 Quantitative Analysis: Bioinformatics

Table 4.5: Bioinformatics named entity normalization performance test

NCBI Disease BC5CDR Disease BC5CDR Chemical

Sieve-Based [17] 84.7 84.1 90.7
Taggerone [48] 87.7 88.9 94.1
CNN Ranking [52] 86.1 - -
NormCo [88] 87.8 88.0 -
BNE [66] 87.7 90.6 95.8
BERT Ranking [32] 89.1 - -
TripletNet [59] 90.0 - -
BioSyn [83] 90.7 92.9 96.6
BioSyn with TF-IDF [83] 91.1 93.2 96.6
Proposed Model 91.7 93.4 96.7
Proposed Model with TF-IDF 92.1 93.7 96.7

Table 4.5 shows a performance comparison between our proposed model and previous

state-of-the-art models. The best scores are boldfaced and the second best scores are

underlined. We also train and report our model’s performance with TF-IDF vectors

added to the vanilla embedding vectors that is illustrated on the previous state-of-

the-art model, BioSyn [83]. For three bioinformatics datasets, our proposed model

achieved the highest accuracy. Our model showed the highest performance increase

by 1.0% in the NCBI Disease corpus. For BC5CDR Disease and BC5CDR Chemical

corpus, the performance increase compared the previous state-of-the-art model is

0.5% and 0.1%, respectively.

The NCBI Disease corpus is a comparatively harder dataset based on the per-

formance of other models. We conclude that there there is a significant to increase

the accuracy in a relatively lower performing dataset. The previous model already

performs excellently on the the BC5CDR corpus with accuracy scores of 93.2% to

96.6%. Especially, the earlier NEN models on BC5CDR Chemical dataset already
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achieved over 90% and the updates on the performance is decreased yearly, the

improvement on this specific dataset might reached the plateau.

4.4.2 Quantitative Analysis: Finance

Table 4.6: Precision, Recall, F-Score, Accuracy of models

Precision (%) Recall (%) F-Score (%) Accuracy (%)

Edit Distance 43.12 63.35 51.31 62.60
BERT 62.92 82.17 71.27 76.81
Siamese GCN 79.00 82.16 80.55 82.56
Siamese BiLSTM 75.96 89.98 82.38 85.15
BioSyn [83] by top1 99.73 77.77 87.39 88.75
BioSyn [83] by top3 99.38 89.79 94.34 94.60
Proposed Model by top1 99.82 90.88 95.14 95.35
Proposed Model by top3 99.68 98.03 98.85 98.85

Table 4.6 shows the performance of each model we test. The evaluation metrics are

expressed as follows

precision =
tp

tp+ fp

recall =
tp

tp+ fn

F1 = 2 · precision · recall
precision+ recall

(4.4)

False positive indicates that two entities should not be matched, but our proposed

model decided to link two entities. False negative indicates that two entities should

be matched, but our proposed model failed to link two entities.

For practical use in the NEN model in the finance domain, a model with higher

precision should be rewarded more. In practice, a model with higher precision will

reduce the burden for practitioners’ tasks by giving more reliable entity-matching

results. A model with higher precision will reduce time double-checking the validity
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entity pairs marked as matched.

Edit Distance had the lowest score along with all performance evaluation indi-

cators. Graph Convolutional Network we use for the experiments adopts the BERT

vector as entity node features. BERT and GCN have a similar recall, but GCN has

higher precision, which brings higher F-score and accuracy compared with BERT.

Our proposed model achieved the highest precision, F-score, and accuracy. Among

all the models, our proposed model is the only model with a precision score over

90%. Therefore, our proposed model is the most suitable for practical use.

4.4.3 Qualitative Analysis

Error Analysis

In error analysis, entities for which accurate recommendations are not made are

reported. Through error analysis, we aim to recognize the pattern of cases where

recommendations are not properly made.
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Table 4.7: Error analysis on three biomedical NEN datasets

Query Entity Retrieved Synonym Entity

encephalopathy aids encephalopathy
nail dystrophy twenty nail dystrophy

NCBI Disease cdm cdmd
copper overload copper deficient
g m2 gangliosidosis g m2 gangliosidosis type ii

lung mass liver mass
hypoactivity hyperactivity

BC5CDR Disease htn htx
thrombocytopenia type ii thrombocytopenia 2
chronic liver disease chronic hepatitis

inorganic as chemicals inorganic
alcohol nicotine alcohol nicotinyl

BC5CDR Chemical dph ddph
naoh natrolite
myo inositol 1 phosphate myo inositol 1 3 6 triphosphate

Table 4.7 lists the errors in three bioinformatics NEN datasets. Our proposed

model achieves approximately 90% accuracy for all three datasets. However, finding

the synonyms for short abbreviations such as “cdm”, “htn”, and “dph” seems rela-

tively harder. In addition, if there exist longer overlapping strings, the performance

of the model is degraded.
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Table 4.8: Error analysis on financial NEN dataset

False Positive
Entity 1 Entity 2

Park Hyatt ( Marriott, Hyatt, Hilton and AccorHotels )
AT & T Acquisition AT & T Corp. ’ s ( ATTC )
Bureau of Indian Affairs ( BIA ) Balanced Budget Act of 1997 ( BBA )
Garmin Corporation Garmin GTN Xi
Windows Server Microsoft Teams

False Negative
Entity 1 Entity 2

( LTE ) 4G
EU Member State European Union Member States
RPS Renewable Portfolio Standards ( RPS )
737-800 Boeing 737 ( B737 )
Cyber Security Regulation Privacy and Cyber Security Regulation

Financial NEN datasets are constructed using entity pairs. Our model predicts

whether two entity pairs are matched or not. Table 4.8 is divided into false positive

lists and false-negative lists. By examine the false-positive lists, entities with similar

meanings or with matching strings are often predicted positive while the actual label

is negative.

We also examine the false negatives. Matching named entities with parenthesis

and abbreviations is the part where our model’s prediction is relatively unstable.

Entity pairs such as “LTE” and “4G” can be one of the most difficult to predict as

positive because the intrinsic meaning of “LTE” and “4G” requires common sense.

Even our model is based on BERT, which captures the semantic meaning from the

sentences where named entities are excerpted, using the common sense beyond the

information presented in surrounding sentences can be limited.
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Named Entity Normalization Result According to Training Progresses

Table 4.9: Named entity normalization result for epoch 0, epoch 1, and epoch with
highest accuracy

NCBI Disease: c2 deficiency
Epoch 0 Epoch 1 Epoch with Highest Accuracy

Top 1 c2 deficiency c2 deficiency c2 deficiency

Top 2 c3 deficiency c6 deficiency c2 deficient
Top 3 t2 deficiency c3 deficiency hereditary c2 deficiency

Top 4 c5 deficiency c2 deficient type ii c2 deficiency

Top 5 cpox deficiency c4 deficiency type i c2 deficiency

BC5CDR Disease: failing left ventricle
Epoch 0 Epoch 1 Epoch with Highest Accuracy

Top 1 tumor cerebral ventricle dysfunction left ventricular left sided heart failure
Top 2 cerebral ventricle tumor left sided heart failure heart failure
Top 3 tumors cerebral ventricle remodeling left ventricular cardiac failure
Top 4 syndrome slit ventricle hypertrophy left ventricular heart failure left sided
Top 5 ventricle tumor cerebral outflow obstruction left ventricular right sided heart failure

BC5CDR Chemical: vincristine sulfate
Epoch 0 Epoch 1 Epoch with Highest Accuracy

Top 1 vincristine sulfate vincristine sulfate vincristine sulfate
Top 2 sulfate vincristine vincristine vincristine
Top 3 vinblastine sulfate voacristine sulfate vincristine
Top 4 sulfate vinblastine leurocristine vincristin
Top 5 riboflavin 3 sulfate ergocristine vincristin medac

Financial NEN: Polo Ralph Lauren Children
Epoch 0 Epoch 1 Epoch with Highest Accuracy

Top 1 Pinky Swear Foundation Polo Golf Ralph Lauren Polo Ralph Lauren

Top 2 Bath & Body Works Canada Polo Ralph Lauren Polo Ralph Lauren Children, Chaps

Top 3 Ticketmaster North America Siemens Medical Solutions USA Polo Golf Ralph Lauren

Top 4 LIP-BU TAN Mojo Networks, Inc. Lilly International
Top 5 Coca-Cola Life Polo Ralph Lauren Children, Chaps Polo / Lauren Company, LP

As the training epochs increase, recommendations become more accurate. We ran-

domly selected entities from four datasets we tested. Top 5 recommendations for the

selected entities are provided for epoch 0, epoch 1, and epoch with best result in

Section 4.4.1 and Section 4.4.2.

Table 4.9 shows how recommendations change as training progress. Entities after

each dataset are the examples excerpted (c2 deficiency, failing left ventricle, vin-

cristine sulfate, and Polo Ralph Lauren Children), and bold-underlined entities are

the entities with the same concept ID as the query entity. Throughout the datasets,
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at epoch 0, the recommended entities differ greatly from the concept ID of the

query entity. As the model is trained, the recommendation becomes more accurate

in epoch 1. At the epochs in which the highest accuracy for the datasets is achieved,

true synonyms for query entities are successfully selected.

Based on our experiments, our proposed model has the highest precision, recall,

F1 score, and accuracy. Qualitative analysis shows that our proposed model also

gives the most stable results by achieving over 98% on the four evaluation metrics.

4.5 Chapter summary

We introduce Edge Weight Updating Neural Network for NEN. NEN to match

extracted named entities with homogeneous identity is pivotal for many text mining

tasks. We tested our model on three widely used NEN datasets, NCBI Disease,

BC5CDR Disease, and BC5CDR Chemical. We also generated the NEN dataset

for the finance domain. Next, we verify our model’s performance for general NEN

applications.

The main contribution of this study are as follows. Our proposed model success-

fully links named entities with the same meanings with different surface forms. The

proposed model performs best among previous NEN models. We test our model not

only for bioinformatics datasets in which NEN researches are more active but also

for financial NEN datasets. According to the performance of the NEN corpus in two

distinct fields, our proposed model proves the efficacy for general NEN applications.

Similar to many other NEN models, the performance of linking named entities

with abbreviations is comparatively lower. Matching abbreviations more accurately

is one of the future works. The neural network model with our proposed Edge Weight
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Updating objective function performs better than other models. Providing the more

general guideline for the number of training epochs and increasing the training sta-

bility is one of the future research topics.
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Chapter 5

Building knowledge graph using named entity
recognition and normalization models

5.1 Background

Recent advances in technology have been actively witnessed through a wide range

of venues, one of which includes the patent claims. Patent claims contains infor-

mation on the new breakthroughs at the forefront of the industry and academia in

the rawest form, which may potentially help solve various tasks such as discover-

ing contemporary technological trends, forecasting future developments in specific

domains, evaluating ideas for R&D investment decisions, identifying competitors in

the technological horse-races, or developing strategic technological planning [1].

The rapid speed and the vast volume of patent filings have been worsening the

challenge of distillation of useful information from the claims, which is calling for the

automation, at least in part, of patent analysis. Until recently, research on patent

analysis has generally involved extracting technology trees based on the bibliographic

connections of the claim filings [91] or extracting keywords using text mining tech-

niques [40, 19, 20]. While these keyword-based approaches have provided meaning-

ful insights on the current technological developments, only few attempts have been

made to extract a more complicated form of information from the patent filings,

such as named entities. Named entities, which include technological concepts, spe-
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cific techniques used, names of the devices or the end products, and the associated

company names, are of a significant importance for richer and deeper understanding

of the innovations and technology underlying the patent filings.

Moreover, past efforts have failed to provide information on the intricate connec-

tivity among the concepts extracted from the patent-related documents. For exam-

ple, a well-designed keyword detection models may successfully determine the term

“Gate-All-Around” to be the arising keyword alongside the word “transistors” from

the patent filings within the field of semiconductor devices, yet it will not be able

to show through which patent documents and other keywords these two phrases are

interconnected. Furthermore, the conventional NLP approach will parse the terms

“Gate-All-Around” and “GAA” separately as two independent terms, leaving the

task of recognizing them as the same entities to additional human efforts.

In this study, we address the issues of interconnecting key technological con-

cepts and matching the same entities appearing in different forms by construct-

ing a semiconductor-related patent knowledge graph from patent filings using the

NER and NEN models with a novel edge weight updating neural network. More

specifically, we constructed the NEN dataset based on the patent documents. We

fine-tuned the NER model [14] using Huggingface’s Python repository, pre-trained

with the CoNLL-2003 NER dataset [74]. Our BERT token concatenator for NER

tasks provides more complete named entity phrases. We propose a state-of-the-art

NEN model with an edge weight updating neural network with triplet loss to extract

named entities and connect them through the semiconductor related patent docu-

ments and present them in the form of a knowledge graph. Our proposed NEN model

achieves the highest performance for not only the conventional candidate retrieval
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task in NEN but also pairwise named entity matching task. Extensive experiment

results show that our proposed approach performs, against the conventional keyword

extraction models frequently employed in patent analysis, very competitively, espe-

cially for the NEN and document retrieval tasks. We also show that our knowledge

graph construction method is robust to the out-of-vocabulary problem. Finally, we

further contribute to the existing literature by releasing our semiconductor-related

patent knowledge graph online, available for all non-commercial purposes.

5.2 Proposed model

Our approach consists of three major components: (1) NER using the Huggingface’s

pre-trained NER model; (2) NEN by relying on our novel edge updating neural

network; and (3) construction of the semiconductor-related patent knowledge graph.

Figure 5.1 shows the overall framework of the proposed method.

Figure 5.1: Overall framework
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5.2.1 Named entity normalization

Figure 5.2: Named entity graph construction based on named entities’ substrings

With the named entities concatenated as described in Section 3.2.2, we initialize the

construction of the named entity graph by connecting the substrings of the extracted

named entities, and the process is summarized graphically in Figure 5.2.

Edge weight normalization

Our named entity graph construction proceeds as follows: first, we parse the named

entities, resulting from the concatenation stage, using the whitespaces. For example,

the entity “Fin Field Effect Transistor”, after the parsing, will result in the token

pieces “fin”, “field”, “effect”, and “transistor”. Please note that we exclude the

punctuation and the common stopwords during the parsing process. We repeat the

parsing process on every named entity and construct a bipartite graph with the

named entities as one group, and the associated substrings resulting after the parsing,

as another, as illustrated in the left panel of Figure 5.2. Then, we one-mode project

the bipartite graph on the named entity level. The resulting network consists of
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named entities as its nodes and the number of shared substrings between each pair

of named entities as the edges, as depicted in the right box of Figure 5.2.

At this time, the entities “FinFET” and “Fin Field Effect Transistor” are not di-

rectly connected by an edge, but only indirectly via the common neighbor node “Fin

Field Effect Transistor ( FinFET )”. Given that these indirectly connected compo-

nents of entities imply similar ideas, our goal is to determine and connect nodes of the

exact same concept/definition. To do so, we compute the relative strength between

the two named entities by normalizing the edge attributes based on Equation 5.1 as

follows:

A = (Ws,Wt,Wm)

Ws =
ws,t

max({ws,i | i ∈ Cs})

Wt =
ws,t

max({wt,j | j ∈ Ct})

Wm = Ws ·Wt (5.1)

where A = (Ws,Wt,Wm) denotes the edge attributes and Ws,Wt the normalized

strength between the two named entities given the source entity and the target entity,

respectively. To dilute the over-fitting calculations for the relatively shorter named

entity and the undermining calculations for the relatively longer named entity, Wm

is set to the product of Ws,Wt. The number of shared substrings between the named

entity i and j is denoted by wi,j , and the connected components of the named entity

are i, Ci.
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Edge weight updating neural network using triplet loss

We first learn the named entities using the pre-trained BERT embedding model, and

then we fine-tune the parameters with our novel edge weight updating neural network

[30] using triplet loss [76]. The triplet loss function we employ is mathematically

defined by Equation 5.2, where a, p, and n are the anchor and the positive and

negative vectors, respectively:

L(a, p, n) = max{0, d(a, p)− d(a, n) +margin}

where,

d(x, y) = ∥x− y∥2 (5.2)

For training the model using the triplet loss function, several issues need to be

considered. First, because the loss function takes triplets as its input, the number

of triplet combinations explodes as the size of the data increases. At the same time,

the model performance is found to be sensitive to the quality of the triplets used

during the training. In other words, a selection of adequate triplets for the training

is necessary.

Previous studies have suggested promising solutions to this challenge. Hermans

et al. [28] proposed the batch-hard triplet loss, which chooses the most definitively

positive and negative samples when constructing the triplets for the online training.

Yu et al. [92], averaged the negative and positive samples instead of constructing

sample-to-sample triplets.

In this study, we adopt the batch-hard triplet loss approach as implemented in

[28]. Furthermore, we make use of a scarcely labeled dictionary of named entities

with its variant identities as supplementary data source because the use of external
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information during the training process exploiting the triplet loss function leads to

a significant increase in the quality of the positive and the negative samples [30].

We begin our training by using the graph resulting from Section 5.2.1. The

similarity between the two BERT vectors is then determined by computing the

inner products. After the first epoch of training, the positive and negative samples

are determined as follows: among the entities connected on the network, the entity

pair with the greatest similarities, yet labeled as unmatched (that is, labeled as

“0”) in the dictionary, is considered as the negative input of the triplet loss. In

contrast, the entity pair labeled as matched (labeled as “1”), yet the inner product

of its BERT vectors, is the lowest and is considered as the positive input of the

triplet loss. The positive and negative samples are then consumed as inputs in the

next training epoch, given the BERT vector similarity of the previous epoch among

connected entities in the substring graph.

Mathematically speaking, let the set of named entities be denoted by N =

[entity1, entity2, . . . ]; and the connected entities of the anchor entity a with the

positive and negative labels, Capos and Caneg , respectively. Then, the total training

loss can be expressed as Equation 5.3.
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L =
∑
a∈N

max
[
0,min{d(f(a), f(xp)) | xp ∈ Capos}

−max{d(f(a), f(xn)) | xn ∈ Caneg}+margin
]

where,

d(x, y) = ∥x− y∥2

f(x) = BERT (x)[CLS] (5.3)

We further illustrate our approach using an example. Consider an anchor en-

tity, “Fin Field Effect Transistor ( FinFET )”, and another one, “FinFET”, from

the same entity group but that shares only one substring, whereas “Metal Oxide

Semiconductor Field Effect Transistor ( MOSFET )”, which should be placed in a

different entity group, still shares the substrings, “Field”, “Effect”, and “Transitor”.

In this case, “FinFET” will serve as the positive input for the entity “Fin Field Effect

Transistor ( FinFET )”, while “Metal Oxide Semiconductor Field Effect Transistor

( MOSFET )” will take the place of the negative sample.
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Figure 5.3: Edge weight updating neural network with triplet loss

Figure 5.3 shows the example of the positive and negative inputs to train the

edge weight updating neural network with triplet loss.

5.2.2 Construction of the semiconductor-related patent knowledge
graph

The semiconductor-related patent knowledge graph is completed using the following

process. We train a simple regressor to determine whether the two given named

entity pairs of the fine-tuned BERT embeddings, first appearing in the initial graph

resulting from Section 5.2.1, have survived in the trained model in Section 5.2.1. All

of the linked entities in the substring named entity graph are tested and updated.

Then, the connected components of the final graph are considered the unique named

entity groups. These groups are expressed as separate nodes of a different mode,

which corresponds to the named entity groups. Finally, the semiconductor patent

knowledge is completed by linking the patent document, in which the named entity

appeared.
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5.3 Experiment results

5.3.1 Comparison models

We tested our proposed approach against conventional and standard text mining

models: Word2vec [58], Glove [65], Fasttext [34], and BERT [14]. SciBERT [6] is the

variant of the original BERT model, pre-trained with scientific text, which might

be more suitable for patent-related analysis. Hence, we also included SciBERT in

our experiment. BioSyn [83] is one of the state-of-the-art NEN models. The Bio-

medical documents were used for training in the original BioSyn paper. We trained

the BioSyn model with our patent NEN dataset and compared the performance with

other models including our proposed model. The weighted averaged vectors of each

word embedding model were used for the embedding of the named entities. Table 5.1

summarizes the basic characteristics of the baseline models in terms of the NEN and

document retrieval tasks.
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Table 5.1: Models used for the evaluation

Models Descriptions

Word2vec [58] Word2vec is one of the most widely used NLP models. In our research, pre-
trained Word2vec vectors were used. More specifically, word2vec-google-news-
3001 was used, which consists of 3 million words using Google News. The
dimension of each embedding vectors is 300.

Glove [65] Word2vec is constructed to predict the neighboring words given a window size.
However, in Glove the dot product of the embedding of the target word and
that of neighboring word matches the co-occurrence of words in the corpus. We
used the pre-trained Glove vectors, glove-wiki-gigaword-3002. The pre-trained
model consists of 400,000 word vectors trained with Wikipedia 2014 data and
Gigaword 52. The dimension of each word embedding vectors is 300.

Fasttext [34] Fasttext utilizes a training mechanism similar to that of Word2vec. Unlike
Word2vec and Glove, Fasttext splits the words into subwords tokens. Fasttext
is known to be the more robust NLP model when handling out-of-vocabulary
problems. In technical documents, where new terminologies frequently appear,
Fasttext can be the more suitable model. The pre-trained Fasttext model,
fasttext-wiki-news-subwords-3003, was used in our research, which contains a
million word vectors. The dimension of each word embedding vectors is 300.
The pre-trained model was trained with the Wikipedia 2017, UMBC webbase
corpus, and statmt.org news datasets3.

BERT [14] BERT is one of the state-of-the-art models for various NLP tasks. However,
for our specific tasks, the BERT model has a limitation in capturing the mor-
phological similarity between entity pairs. We used pre-trained BERT vectors4

with size of 768 and train a simple MLP classifier with batch size of 4096 to
determine the linkage between entity pairs.

SciBERT [6] SciBERT uses the BERT model architecture. The model has been fine-tuned
with various scientific documents. For specific NLP tasks, such fine-tuned mod-
els shows higher performance compared to the vanilla BERT model. As the
structure of SciBERT is the same as that of the BERT model, the embedding
dimension is same as that of the BERT model.

BioSyn [83] BioSyn is one of the state-of-the-art NEN models. In the original report, the
NEN was concentrated on bio-medical documents and used BioBERT[49] for
the pre-trained embedding model. BioSyn implements marginal maximum like-
lihood (MML) for the objective function. We trained the BioSyn model with
our patent NEN dataset. As the aim of the BioSyn model is NEN, evaluations
of BioSyn in information retrieval tasks in Section 5.4.1 and Section 5.4.1 are
excluded.

1https://code.google.com/archive/p/word2vec/
2https://nlp.stanford.edu/projects/glove/
3https://fasttext.cc/docs/en/english-vectors.html
4https://github.com/google-research/bert
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5.3.2 Parameter settings

The experiments were executed using an Intel Core-i9-10940X CPU with 128GB of

memory and three NVIDIA GeForce Titan RTX GPUs. For training the edge weight

updating neural network using triplet loss as described in Section 5.2.1, the batch

size was set at 64, and the learning rate was 10−5 using the Adam optimizer [41]

with weighted decay [57]. The model was trained for 50 epochs. We report the best

performing model out of all the results obtained after each epoch.

5.4 Results

5.4.1 Quantitative evaluations

Named entity normalization: candidate retrieval

Many NEN models from previous studies are evaluated by the candidate retrieval

tasks [52, 66, 32, 83]. We evaluated the performance of the candidate retrieval for

NEN with various models. An evaluation was conducted to validate the efficacy

under the same conditions as those for the previous NEN models including BioSyn

[83], the current state-of-the-art NEN model. The evaluation was reported based on

whether the group id of query entity and the group id of the most similar entity from

the dictionary dataset were the same. The performance of the models is presented

in Table 5.2.
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Table 5.2: Named entity normalization by candidate retrieval performances

Accuracy

Word2vec1 89.71%
Glove2 73.88%
Fasttext3 85.81%
BERT 4 64.17%
SciBERT 4 57.33%
BioSyn 92.52%
Our Model 97.46%
1Out of vocabulary: 1,074.
2Out of vocabulary: 1,802.
3Out of vocabulary: 937.

4Query vectors are smoothed by the entity group. The smoothing is conducted by averaging all
entity vectors in the group.

BERT [14] and SciBERT [6] models not specifically trained for NEN tasks. We

utilized the similarity ranking model described in the study of Ji et al. [32], but the

retrieval of a single entity was unsuccessful for many entities. Smoothing the dictio-

nary vectors by averaging the entity vectors in the named entity group gave rela-

tively higher accuracy. Among the models we tested, our proposed model achieved

the highest performance in candidate retrieval tasks for NEN.

Named entity normalization: pairwise matching

the model performances were tested by precision, recall, f-score, and accuracy, com-

puted as defined in Equation 5.4, which are standard metrics for evaluating the

pairwise named entity matching tasks.
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precision =
tp

tp+ fp

recall =
tp

tp+ fn

F1 = 2 · precision · recall
precision+ recall

(5.4)

We detected connected components from the semiconductor-related patent knowl-

edge graph as the unique named entity groups. Thus, we evaluated to which extent

these connected components matched well as compared to the ground truth groups

by computing the V-measure [73]. The V-measure calculates the harmonic mean of

the other two widely used clustering evaluation metrics, homogeneity and complete-

ness, to assess the range of the overlap between the given clusters and the ground

truth grouping. The mathematical definition is expressed by Equation 5.5.

V =
(1 + β) · homogeneity · completeness

β · homogeneity + completeness
(5.5)

In our evaluation, we assumed that the weight was equal across homogeneity and

completeness by setting β = 1.

Table 5.3 reports the performance of our proposed approach against the baseline

models. The results show that our model beats the conventional embedding methods

in almost every case. In particular, only our model achieved over 90% in precision

and recall in the pairwise entity matching tasks. By scoring over 0.97 in V-measure,

the named entity groups constructed by our proposed model highly resembled the

ground truth named entity groups. SciBERT with the substring graph showed the

best performance in terms of recall, yet compared to our model, the measure is very

close, and it differs by 0.1%. Such outstanding performances against the baseline
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models, we believe, is largely owed to the out of vocabulary problems. To support

our claims, we additionally report the number of out of vocabularies at the end of

Table 5.3. Word2vec, Glove, and Fasttext are known to perform relatively less robust

to the words unseen during the training process, hence deteriorating performance

when they met newly rising concepts. Given the recent fast-paced technological

developments, however, handling out-of-vocabulary concepts is critical in scientific

documents. The experiment results show that our proposed model performs well in

such cases and works robustly when faced with newly introduced words never seen

before.

Table 5.3: V-measure, precision, recall, F-score, and accuracy of models

V-measure Precision Recall F-score Accuracy

Word2vec1 0.5810 65.53% 65.01% 65.27% 66.11%
Word2vec1 with substring graph 0.7579 81.79% 86.95% 84.29% 84.12%
Glove2 0.5101 61.45% 64.15% 62.77% 65.62%
Glove2 with substring graph 0.7528 81.43% 86.71% 83.99% 85.06%
Fasttext3 0.6013 69.85% 62.55% 66.00% 68.76%
Fasttext3 with substring graph 0.8298 82.91% 90.58% 86.58% 86.38%
BERT 0.4922 68.66% 76.11% 72.20% 70.60%
BERT with substring graph 0.5943 82.04% 92.32% 86.88% 86.01%
SciBERT 0.5091 72.59% 72.14% 72.37% 72.37%
SciBERT with substring graph 0.7644 86.51% 88.79% 87.63% 87.44%
BioSyn 0.5824 73.24% 74.75% 73.99% 73.64%
BioSyn with substring graph 0.6688 80.96% 89.48% 85.01% 84.17%
Our Model 0.9787 94.45% 91.92% 93.17% 93.24%
Our Model with substring graph 0.9787 94.45% 92.20% 93.31% 93.37%

1Out of vocabulary: 1,074.
2Out of vocabulary: 1,802.
3Out of vocabulary: 937.

Document retrieval from the named entities

In this section, we report the performance of our proposed model in relation to

the document retrieval task. To be as fair as possible, we restrained from querying
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named entities as we conducted the test. For the competing embedding models such

as Word2vec, Glove, Fasttext, BERT, and SciBERT, the representations of each

entity and each document was computed as the weighted average of all the tokens

associated with the respective named entity or the documents. BioSyn is a model

that specifically focuses on NEN tasks, so BioSyn is not used for the retrieval tasks.

As for our proposed model, because our end-product has the form of a network, we

take advantage of the structural characteristics of the knowledge graph. When given

the query, we return the document with the highest edge weight connected to the

given named entity’s group. We test the relevance of the document recommendations

in response to the given query based on whether the named entity and the retrieved

documents are from same CPC group (total: 50) and CPC subgroups (total: 449).

The performances of each model are reported in Table 5.4.

Table 5.4: Accuracy of document retrieval from the named entities

Accuracy for CPC group(50) Accuracy for CPC subgroups(449)

Word2vec 70.70% 51.58%
Glove 68.14% 50.48%
Fasttext 48.31% 33.79%
BERT 67.26% 53.83%
SciBERT 62.09% 46.78%
Our Model 85.78% 77.46%

Across CPC groups and subgroups, our proposed model reports the highest ac-

curacy. Our model achieved over 77% accuracy on retrieving the relevant documents

with respect to the CPC subgroups. This, in particular, is an impressive result given

that there were 449 subgroups. Due to the granularity of the sub-groupings, all of

the other baseline models suffer gravely in terms of accuracy.
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Named entity retrieval from the documents

Retrieving the relevant named entities from patent documents is another important

task. The most related named entity was retrieved using the following procedures.

For Word2vec, Glove, Fasttext, BERT, and SciBERT, the embedding vectors of

the named entities that appeared in each document were averaged. Based on the

embedding obtained for each document, the named entity with the highest similarity

was recommended. As for our proposed model, we returned the named entity within

the group that had the highest connected edge weight to the given document’s

named entities. For the named entity recommendations, the named entities that

appeared directly in the document were excluded from the candidates. We evaluated

the performance of the named entity recommendations in response to the given query

based on whether the documents and the retrieved named entities were from same

CPC group (total: 50) and CPC subgroups (total: 449). The performances of each

model are reported in Table 5.5.

Table 5.5: Accuracy of the named entity retrieval from the patent documents

Accuracy for CPC group(50) Accuracy for CPC subgroups(449)

Word2vec 84.96% 72.78%
Glove 83.65% 68.53%
Fasttext 81.44% 67.73%
BERT 85.86% 64.28%
SciBERT 77.04% 61.05%
Our Model 91.65% 83.68%

Our proposed model reports the highest accuracy for the named entity retrieval

tasks. Our model achieved over 83% accuracy on retrieving the relevent named

entity with respect to the CPC subgroups. The second best performing model was

69



word2vec, which showed an accuracy of 73%, and the difference in performance

compared to that of our model was approximately 10%. The proposed model has

a significant improvement in performance compared to that of other models, and

it can provide insights by accurately retrieving the related named entities from the

document.

5.4.2 Qualitative evaluations

Error analysis on the pairwise named entity normalization

As the quality of the semiconductor-related patent knowledge graph relies heavily

on the performance of the NEN process, we report the result of the error analysis

we conducted on the pairwise NEN in this section. More particularly, we report the

false positive examples in Table 5.6 and the false negative examples in Table 5.7 on

the pairwise NEN tasks with the model’s confidence.

Table 5.6: Examples of false positives of pairwise named entity normalization task

Entity 1 Entity 2 Confidence1

Silicon germanium ( SiGe ) , Silicon Nitride ( SiN ) . 0.5400
( Organic Light Emitting Diode ) or Light - Emitting - Diode ( LED ) is 0.6526
( PVD ) processes ( CVD ) processes 0.6303
Digital Subscriber Line ( DSL ) , Digital Signal Processor ( DSP ) , 0.6072
DC - AC inverter ( AC ) power 0.5275
1Confidence of our model to predict the entity pair as the label 1(the matching entity pair).
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Table 5.7: Examples of false negative of pairwise named entity normalization task

Entity 1 Entity 2 Confidence1

Cobalt ( Co ) based Cobalt ( Co ) material 0.5504

Teflon ( PTFE ) , Teflon® 0.6565
FPC ( Flexible Printed Circuit ) , ( Flexible Printed Circuit ) . 0.5798

Linux OS Linux™ 0.5720

APPLE iPad . ( e . g . , iPad®) , 0.6894
1Confidence of our model to predict the entity pair as the label 0(the non-matching entity pair).

In general, both false positive and false negative results have relatively low confi-

dence. This implies that, when constructing the semiconductor patent named entity

graph, connecting the undesired entity pairs can be prevented by connecting the

entities with higher confidence.

5.4.3 Knowledge graph visualization and exemplary investigation

By training the NEN model as discussed in Section 5.2, with our hand-labeled

dataset as described in Section 3.2.2, we have successfully recognized 69,812 named

entities and connected the entity pairs with a confidence over 0.999 to maximize

precision. After pruning the false positive links, we ended up with a knowledge

graph with 25,938 named entities assigned to the total of 8,525 unique named entity

groups. The overall statistics of the semiconductor patent named entity knowledge

graph are listed in Table 5.8.
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Table 5.8: Statistics of the semiconductor patent named entity knowledge graph

Types Number of nodes Number of edges

Patent document nodes 34,356 —
Named entity nodes 25,938 —
Named entity group nodes 8,525 —
Total nodes 68,819 —
Total edges — 297,542

We present the graphical visualization of the entire knowledge graph in Fig-

ure 5.4. The resulting graph may also be accessed freely online via an interactive

environment, available for all non-commercial purposes 1.

The purple nodes represent the patent documents; the green nodes, the named

entity groups, and; the orange nodes, the associated named entities.

1https://sjeon7.github.io/Semiconductor Patent Named Entity Graph/network/
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Figure 5.4: Semiconductor patent named entity knowledge graph

As it is difficult to distinguish visually the graph with almost 70,000 nodes, we

selected three named entity groups, “USB type C”, “deep neural network”, and

“Samsung Galaxy S” and report the resulting subgraphs in Figure 5.5, Figure 5.6,

and Figure 5.7, respectively, for demonstrative purposes. As can be easily observed

in these subgraphs, the named entity nodes of similar technological concepts are

successfully grouped. For example, the terms “Universal Serial Bus” is well connected

to the entities “USB” and “USB Type C” in the subgraph in Figure 5.5, and the

patent connected to those named entity nodes well encompasses these terms.

A similar pattern is observed for the subgraph reported in Figure 5.6, which

shows the connection between the original phrase, “deep neural network”, with its
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abbreviation, “DNN”, correctly established.

The example reported in Figure 5.7 shows that our model, in addition to the

technological jargon, also successfully extracted and connected brand and product

names.

Figure 5.5: Subgraph of USB type C related groups

Figure 5.6: Subgraph of DNN related groups

Figure 5.7: Subgraph of Samsung Galaxy related groups
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5.5 Chapter summary

The knowledge graph has been recently attracting attention in the field of patent

analysis as a useful tool to summarize and represent information from patent filings.

Past research has mainly relied on extracting keywords to summarize and repre-

sent the information enclosed in patent filings. While keyword extraction models do

deliver meaningful insights, named entities such as technological concepts, specific

techniques used, name of the devices or end product, and the associated company

names may additionally provide richer and deeper understanding of the innovations

and technology underlying the patent filings.

In this study, we construct a semiconductor-related concept and entity knowledge

graph by applying a novel edge updating neural network algorithm on patent claims.

More specifically, our proposed model builds a knowledge network of semiconductor-

related named entities from the patent filings. During this process, named entities

with different surface forms, but of identical meanings, are placed into unique groups,

hence providing a clearer picture and better understanding of the patent filings

in hand. Our proposed model shows the highest performance on both the NEN

and document retrieval tasks against that of standard baseline models. Further,

experiment results show that the proposed knowledge graph construction method is

robust to the out-of-vocabulary problem.

While the proposed model has showed great performances, there still is a room

for further development. Currently, our research focuses only on the topics involv-

ing semiconductor devices. A focus switch to other fields may lead to a clearer

understanding of a different area of innovations, while an extension to encompass

a greater range of topics will help assemble a more complete picture of the recent
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technological advances in general. In addition, this study uses the edge updating

neural network approach to discover the inter-connectivity among named entities,

whereas their relationship to the patent documents is determined only through the

simple co-occurrence. By utilizing the techniques proposed in this research, defining

the relationship between the document and named entities is our next research topic.
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Chapter 6

Conclusion

6.1 Contributions

Building the more complete named entity knowledge graph requires human power

and costs. Our research aims to achieve the automation of more complete named

entity knowledge graph. We propose dictionary Construction for Named Entity Nor-

malization, named entity normalization model using edge weight updating neural

network, and framework for building knowledge graph using named entity recogni-

tion and normalization models. It is expected to lower the barriers in the text mining

field that may occur due to the absence of named entity normalization datasets and

dictionaries. By suggesting the better performing named entity normalization model,

our research will be helpful in text mining research in various financial and tech-

nical document analysis fields such as information retrieval, text classification, and

sentiment analysis. In practice, using the named entity dictionary, named entity

normalization model, and knowledge graph construction framework, it is possible

to automate some of the tasks performed by humans, which is expected to bring

improvement in business performance.
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6.2 Future work

Our study presents the named entity normalization datasets from finance documents

and patent documents. It is valuable to extend this to natural language process-

ing. Our next research topic will focus on creating the named entity normalization

dataset for the review texts. Furthermore, our knowledge graph construction frame-

work can be applied to many other text mining studies. Conducting the studies on

the applications of created knowledge graph will be beneficial to many practices.

Also, this study uses the edge updating neural network approach to discover the

inter-connectivity among named entities, whereas their relationship to the patent

documents determined only through the simple co-occurrence. By utilizing the pro-

posed techniques in this research, defining the relationship between the document

and named entities is our next research topic.
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국문초록

텍스트 마이닝은 다양한 인사이트를 얻기 위해 문서에서 정보를 추출하는 것을 목표로

한다. 문서의 정보를 표현하는 방식 중 하나인 지식 그래프는 다양한 문서에서 더욱 풍

부한 정보를 제공한다.기존 연구들은 텍스트 마이닝 기법을이용하여 문서의 정보들로

기술 트리 또는 개념 네트워크를 구축하거나 키워드 및 구문을 추출하였다. 본 논문에

서는 고유명사를 이용하여 지식 그래프를 구축하기 위한 프레임워크를 제안한다. 본

논문의 지식 그래프 구축 프레임워크는 다음과 같은 조건을 만족한다. (1) 고유명사를

사람이 이해하기 쉬운 형태로 추출한다. (2) 기존 고유명사 정규화 연구가 활발했던

생물정보학 외에 금융 문서, 반도체 관련 특허 문서에서 추출한 고유명사로 고유명사

정규화데이터셋을구축한다. (3)더나은성능의고유명사정규화모델을구축한다. (4)

다양한 형태의 동일한 의미를 가진 고유명사를 그룹화하여 지식 그래프를 구축한다.

주요어:고유명사정규화,간선가중치갱신인공신경망,고유명사지식그래프,키워드

추출

학번: 2016-21122
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