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Abstract

Optimal Price and Wage in a Food Delivery
Platform with Multiple Types of Customers

and Couriers

Yooseok Seo

Department of Industrial Engineering

The Graduate School

Seoul National University

This study developed a food delivery platform comprising multiple types of cus-

tomers and couriers to derive optimal service price and wage per service and achieve

profit maximization. The developed platform faced price- and time-sensitive cus-

tomers with heterogeneous delivery distances and earning-sensitive couriers with

heterogeneous transportation modes. Furthermore, we formulated the model using

multi-class multi-pool system and incorporated multiple types and differing service

times upon class-pool set. To solve this complex problem, we proposed an approxi-

mation algorithm to derive optimal values. Finally, extensive numerical experiments

were conducted, and practical managerial insights were driven.

Keywords: food delivery services, endogenous supply and demand, multi-class

multi-pool systems, queuing models, convex programming
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Chapter 1

Introduction

1.1 Problem Description

Owing to the development of mobile technology and the advent of on-demand ser-

vice platforms, people all over the world can enjoy various services anytime instantly.

Such dynamicity is due to the continuous coordination from on-demand platforms

comprising self-scheduled service providers (or freelancers) and arbitrarily incoming

service requests from customers. These on-demand services include meal delivery

(e.g., Doordash, UberEats, Deliveroo (United Kingdom), and Baemin (South Ko-

rea)), grocery delivery (e.g., Instacart, Amazon Fresh, and B-Mart (South Korea)),

goods delivery (e.g., Uber Rush and B-Mart (South Korea)), and ride-hailing (e.g.,

Uber and Lyft). Owing to its temporal and spatial convenience, the popularity of

on-demand services has multiplied in the past five years. In particular, food delivery

services have experienced a major jump in sales and growth in market size due to

COVID-19. The market value of the food delivery market tripled to $150 billion in

2021, and continues to increase.1 However, the uncertainty of supply and demand

imposes operational difficulties on the platform. Therefore, the platform must match

the ever-changing supply and demand to each other.

1https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-
insights/ordering-in-the-rapid-evolution-of-food-delivery
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Self-scheduling service providers can freely choose whether to join the plat-

form and provide services to cater to the demands. However, for their convenience,

providers are not guaranteed a specific annual wage and their idle times are not

compensated, making them earning-sensitive. Therefore, the supply depends on the

wage per service and utilization, which in turn depends on the demand. Meanwhile,

the demand itself is affected by the supply. Given the price- and time-sensitive na-

ture of customers, the number of providers directly influences the waiting time,

and therefore, the demand. Hence, supply and demand directly impact each other.

Likewise, food delivery platforms comprise self-scheduled couriers and impatient

customers. However, owing to the jointly interacting nature of supply and demand

in on-demand service platforms, setting the appropriate price and wage level has

always been challenging.

In South Korea, the food delivery market has grown 10 times within four years,

reaching ₩ 26 trillion in 2021. However, compared to the growth in the market

size, the courier numbers have failed to scale up in size within the same time span.23

Such difference in growth has resulted in a courier shortage problem for the platform,

which became exacerbated when the ”one-order-per-delivery” policy was adopted.

In this policy, a courier is mandated to deliver one order at a time to ensure fast

deliveries; however, the courier shortage problem increased proportionally. To miti-

gate the shortage problem, the platform increased its expenditure on hiring couriers.

This resulted in greater revenue through higher service levels; however, the surge in

outsourced delivery expenditures led to a consistent operating loss. Moreover, in-

creased expenditure on couriers increased the delivery price imposed on customers.

2https://www.joongang.co.kr/article/25050978
3https://www.seoul.co.kr/news/newsView.php?id=20220204022014
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Increased price has dwindled customer demand, but this was further aggravated as

social distancing policies of COVID-19 alleviated and customers had a lesser need

to use delivery services. In contrast, couriers demanded higher wages per service

to compensate for their low earnings owing to the ”one-order-per-delivery” policy;

furthermore, fuel costs increased.

Food delivery platforms worldwide share similar problems. In China, order surges

occurred owing to COVID-19 related restrictions, and the courier capacity was insuf-

ficient to cover them. 4 In India, food delivery platforms experienced a supply-side

crunch owing to rising fuel prices and inflation. 5 In the US and Europe, courier

strikes have increased and they are demanding higher pay rates and better treat-

ment. 6 7

Therefore, food delivery platforms are experiencing a trade-off between price

and wage. A platform must lower delivery prices to secure a large customer pool;

however, the wage per service must be raised to ensure a large courier pool and

fast deliveries. However, a platform cannot lower delivery prices and raise wages

per service for obtaining profit. Therefore, a food delivery platform to determine a

method to optimize its profit regarding the trade-off between price and wage.

In this study, we consider a food delivery platform with various types of cus-

tomers and couriers. The customers are differentiated by the delivery distances,

and couriers are discerned through their mode of transport. In practice, couriers

4https://www.globaltimes.cn/page/202211/1280250.shtml
5https://economictimes.indiatimes.com/tech/startups/how-shortage-of-gig-workers-is-affecting-

services-of-food-delivery-quick-commerce-startups/articleshow/91475586.cms
6https://www.einnews.com/prnews/602747180/gig−workers−go−on−3−day−thanksgiving−

strike− over − poor − pay − and− lack − of − safety − by − gig − companies
7https://www.reuters.com/markets/europe/strikes-protests-europe-over-cost-living-pay-2022-

11-24/
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are matched to customers based on the delivery distance and transportation mode.

If there is an excess supply of couriers that can serve all demands, the platform

wouldn’t have had to make any demand routing decisions. However, owing to courier

shortage, the platform needs to coordinate supply and demand through wages and

prices and decide which order demand must be serviced by which type of courier.

Therefore, the order allocating decisions of a platform must also be investigated.

This study aimed to solve the profit maximization problem of food delivery plat-

forms involving multiple types of customers and couriers. Additionally, we examined

how the price and wage decisions of the platform changed the dynamics within the

players in the model. Particularly, the questions below are to be answered through

this study:

1. What is the optimal size for each customer and courier type?

2. What is the optimal demand routing ratio of each customer type to each courier

type?

3. What is the optimal service price and wage per service?

To address these problems, we incorporated the Multi-Class Multi-Pool (MCMP)

system to portray the current delivery platform. This system assumes multiple types

of customer classes and server pools, where the service time is different by each

class-pool set. Fig 1.1 shows a schematic representation of the system. The cus-

tomer class can be classified by delivery distance, and the server pool is divided

by the transportation modes. This method portrays the current food delivery plat-

form effectively, thereby improving the single-type customer and courier assumption
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Figure 1.1: Schematic representation of multi-class multi-pool system

from previous literature. However, the problem dimension and complexity increase

significantly with the increase in the types of customers and couriers.

To solve such an important and difficult problem, we propose an approximation

algorithm that successfully derives an optimal solution regardless of the problem

size. Moreover, we construct a two-class two-pool model as a base model to analyze

the optimal price and wage that maximize the profit. Then, extensive numerical

experiments were conducted to acquire managerial insights. Furthermore, real data

from a Chinese online delivery platform were used in our model to check the validity

of the model, and realistic answers were obtained.

1.2 Research Motivation and Contribution

Very little research has been conducted to solve the pricing problem while incor-

porating the unique characteristics of customers and couriers. In practice, delivery

distances tend to vary widely and adequate couriers are matched based on the dis-
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tances and transportation. Therefore, studies that only consider a single type of

customer and courier may have some drawbacks in portraying reality. Therefore,

models that project the actual delivery service platform are necessary to derive

practical managerial insights.

This study makes three main contributions. First, we applied MCMP and mod-

eled a profit maximization problem for a food delivery platform comprising multiple

types of customers and couriers. Second, we suggested an approximation algorithm

to solve this computationally burdensome problem and obtained optimal value for

price, wage, and demand routing ratio. Finally, we obtained practical managerial

insights that reflect the distance characteristics of customers and the transportation

characteristics of couriers.

1.3 Organization of the Thesis

This paper is organized as follows. Chapter 2 provides a brief overview of previous

related literature. Chapter 3 introduces the modeling framework and Chapter 4 an-

alyzes the model and shows the approximation algorithm that was used to solve the

model. Chapter 5 states the results and main insights obtained from the numerical

experiments. Finally, Chapter 6 summarizes this study and presents future research

directions.
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Chapter 2

Literature Review

This study combines two streams of literature : ”on-demand platform” and ”multiple

types of customers and service providers”. Through integration, we could model

a more realistic framework that portrays the actual delivery platform. Moreover,

analyzing the model enabled us to acquire some practical managerial insights.

2.1 On-demand Platforms

The recent growth of various on-demand service platforms has evoked considerable

research interest in determining internal operational issues. Our paper is relevant to

coordinating self-scheduled service providers and highly variable demands. Cachon

et al. [6] analyzed various contracts in ride-hailing and showed that near-optimal

profits could be achieved through surge pricing. Bimpikis et al. [5] focused on ride-

hailing platforms that have services upon networks of locations and investigated

spatial price discrimination. Guda and Subramanian [11] studied a two-location set-

ting where workers may move between them. Furthermore, they concentrated on

the benefits of strategic pricing in the short term. Gurvich et al. [12] adopted a

newsvendor-like model to examine the cost of self-scheduling capacity. Besbes et al.

[4] proposed a two-dimensional framework that matched price-sensitive customers

to variable supply units in a given geographical area for a revenue-maximizing plat-
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form. In particular, our problem setting shares a lot in common with Taylor [19] and

Bai et al. [3], both of which solved a profit maximization problem of an on-demand

platform that has price- and time-sensitive customers and earning-sensitive service

providers by coordinating supply and demand with price and wage. Moreover, they

also incorporated queuing to reflect the waiting time on the rational behavior of

customers. However, the studies above used a single type of customer and courier

in their model. In contrast, this study integrated different delivery distances of cus-

tomers and transportation modes of couriers in our model using MCMP system,

which not only helped our model to capture actual delivery platforms more vividly

but also enabled us to present more practical managerial insights.

2.2 Multiple Types of Customers and Service Providers

Owing to the intrinsic nature of the market, customers are generally segmented, and

the type and skills of servers vary to fulfill the heterogeneous customer. To account

for such nature, there has been a large stream of literature dealing with multiple cus-

tomers and service providers and is closely related to our study. Studies in this field

focus on networks that involve multiple job types with different service times depend-

ing on the server types. Armony and Haviv [2] concentrated on a uniform pricing

problem under competition between two firms where customers had different delay

sensitivities. Ni et al. [16] studied the optimal price and service speed in customer-

intensive services comprising heterogeneous customers in terms of intensity. Zhou et

al. [21] examined an optimal uniform pricing problem regarding two classes of cus-

tomers with different valuations about the service and different sensitivity to waiting.

Zhong et al. [20] formulated a model that captures heterogeneous customers with

8



different congestion sensitivities and derived optimal strategies. Furthermore, they

compared the model with the one that presumes customers are homogeneous and an-

alyzed the need for classifying customers for the platform. de Véricourt and Zhou [8]

used a Markov decision process to determine the optimal demand routing policy that

minimizes the average total time of call resolution under various customer classes.

Argon and Ziya [1] focused on a priority assignment policy that minimized long-run

average waiting cost under two types of customers. Mehrotra et al. [15] considered a

call center with various call types and heterogeneous agents and explored call routing

strategies that would maximize resolution and minimize waiting time. Nourbakhsh

and Turner [17] modeled a waiting time minimization problem with multiple job

and server types. Various dynamic routing policies were implemented and compared

with a static policy. However, these studies assumed that the number of servers is

fixed and tried to control the demand side through pricing or routing policies. In

contrast, our model successfully incorporates the endogenous dependency of courier

capacity on wage so that actual supply movements in an on-demand platform are

well captured.
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Chapter 3

Problem

3.1 Problem Definition

This study determines the optimal service prices and wages per service regarding

multiple types of customers and couriers to maximize profit for a food delivery

platform. However, the setting of the food delivery industry may be further extended

to other on-demand platforms or situations where customers and service providers

each have multiple characteristics that can be grouped. The setting was fixed to a

certain industry to illustrate our problem precisely.

Here, the platform coordinates randomly arriving customers with couriers using

service price p and wage per service w that are pre-committed. However, the values

may vary across different customer and courier types, and across different periods.

We assume that customers are price- and time-sensitive so that a customer would

decide whether to enter the platform depending on the announced service price and

delivery time. Couriers are assumed as wage-sensitive so a courier can decide its

entry upon the platform based on the announced wage per service. Therefore, we

assume that all orders could be met by any couriers that are within the distance

that can be traveled during food preparation time.

Additionally, to incorporate the multiple characteristics innate to customers and
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Figure 3.1: Schematic representation of food delivery platform

couriers, we considered this problem as a multi-class multi-pool system. A schematic

representation of the system is shown in Fig 3.1. The customer classes and courier

pools were classified based on the delivery distance i ∈ I and transportation modes

j ∈ J , respectively. We assume that the demand of each customer class and the

service time of each class-pool set follows Poisson(λi) and exp( 1
τij

), respectively.

Owing to the different types innate to customers and couriers, the demand of

each customer class is allocated to each courier pool, and the allocated demand flow

is denoted as xij . Depending on the problem setting, there may be constraints on

feasible class-pool sets. Additionally, as each customer class can be served by multiple

courier pools, its demand routing probability is driven by the ratio of optimal flow

for each class-pool set. Therefore, demand routing probability of customer class 1 is

x11
x11+x12

in Fig 3.1.
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Table 3.1: Model Notation

Indices and Sets

i ∈ I Index for customer distance types; set of all customer classes
j ∈ J Index for transportation modes of couriers; set of all courier pools

Parameters

c cost of waiting per unit time for customers
λ̄i maximum potential demand rate of customer class i
k̄j maximum number of potential courier pool j
τij service time of courier pool j serving customer class i

Variables

pi price of service for customer class i
Wi expected waiting time of customer class i
λi demand rate of participating customer class i
xij demand rate of customer class i routed to courier pool j
vi value of service for a customer class i. vi ∼ Fvi(·)
wj wage per service that courier pool j get paid
kj number of participating couriers
oj opportunity cost per unit time. oj ∼ Goj (·)
rj workload of courier pool j.

∑
i∈I τijxij

12



3.1.1 Realized Customer Demand λi and Price pi

Each customer class has its maximum potential demand rate of λ̄i at a certain period.

Each customer can decide whether to enter the platform by comparing their service

valuation vi with the service price and waiting time. The customer’s value vi follows

a certain cumulative distribution function Fvi(·), where Fvi(·) strictly increases.

For each customer, the utility of value subtracted from cost is gained at every

service granted, which is expressed through the utility function as:

Ud(vi) = vi − (pi + cWi), (3.1)

where c is the cost of waiting per unit time for customers and Wi is the waiting

time for delivery in the case of customer class i. Assuming the customers enter the

platform when their utility is non-negative, the realized demand of the platform may

be represented as:

λi =
∑
j∈J

xij = Prob{Ud(vi) ≥ 0} · λ̄i = {1− Fvi (pi + cWi)} · λ̄i, (3.2)

where xij is the amount of demand of customer class i served by courier pool j.

Therefore, λi could be expressed by the sum of xij upon j. Using (3.2) and the fact

that vi ∼ Fvi(·), the price pi can be expressed as:

pi = F−1
vi

(
1− λi

λ̄i

)
− cWi = F−1

vi

(
1−

∑
j∈J xij

λ̄i

)
− cWi. (3.3)

3.1.2 Realized Customer Average Waiting Time Wi

Waiting time in this problem is identical to the sojourn time as the delivery service

ends when food is handed to the customer, not when couriers pick up food and start

13



their delivery. Moreover, we exempted food preparation time from total waiting

time assuming that the utility of customers does not decrease while the food is

being prepared. Therefore, the elements that comprise the total waiting time would

be service time and waiting time within queue. However, the service times can be

ignored and only the waiting time in the queue can be considered to suit instances

like Uber and taxis, where the service time is not added to the waiting time for

customers.

In this food delivery platform setting, service times change depending on the

class-pool sets; therefore, it is important to incorporate such changes. However,

it is difficult to reflect this dynamicity in our problem setting, thereby indicating

the importance of considering the mean service times and expected waiting times

differently from Bai et al. [3]. Instead, considering the ever-changing service time in

the mean value would simplify the problem significantly. Referring to Nourbakhsh

and Turner [17], the mean service time is obtained by dividing workload, or the

total time taken for service, by the number of served demands. Here, the workload

of courier pool j is given as:

rj =
∑
i∈I

τijxij . (3.4)

Thus, the mean service time of courier pool j is,

σj =
rj∑
i∈I xij

. (3.5)

For expected waiting time within a queue to be served by a courier pool, there has

been extensive research throughout the case of the M/M/k queue. The probability

14



of delay can be modeled through the Erlang-C function (Cooper [7]), given as:

EC (kj , rj) =
r
kj
j

(kj − 1)! (kj − rj)
·

kj−1∑
n=0

rnj
n!

+
r
kj
j

(kj − 1)! (kj − rj)

−1

, (3.6)

where kj is the realized number of couriers in pool j. Additionally, Hokstad [13]

derived the expected waiting time in the queue to be served by a courier pool j

using (3.6),

EW

∑
j∈J

xij , rj

 = EC (kj , rj) ·
rj∑

i∈I xij (kj − rj)
. (3.7)

Therefore, the total waiting time of a customer class for the courier pool j would

be the sum of (3.5) and (3.7). Finally, the expected total waiting time for customer

class i Wi can be derived using the demand routing ratio of customer class i for each

courier pool j and the total waiting time for the courier pool j, given as:

Wi =
∑
j∈J


(

xij∑
j∈J xij

)
·

EW

∑
j∈J

xij , rj

+ σj

 . (3.8)

3.1.3 Realized Courier Supply kj and Wage wj

When customers choose to enter the platform, an order is placed and routed to a

courier pool. For each courier pool, there is a maximum number of potential couriers

k̄j for a certain period. Similarly, couriers can decide whether to enter the platform

by weighing their opportunity cost oj with earnings per unit of time. Moreover,

opportunity cost oj follows a certain cumulative distribution function Goj (·), where

Goj (·) strictly increases.

In the case of couriers, we assume that couriers enter the platform when the

opportunity cost is smaller than earnings per unit of time. Therefore, utilization of
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courier pool j for a certain period is given as follows:

βj = Prob {Us(oj) ≥ 0} = Prob

{
oj ≤ wj

(∑
i∈I

xij/kj

)}
= Goj

(
wj

(∑
i∈I

xij/kj

))
,

(3.9)

where xij is the amount of demand of customer class i served by courier pool j.

Therefore, kj , the realized number of participating couriers in pool j, is given as:

kj = βj k̄j = Goj

(
wj

(∑
i∈I xij

kj

))
k̄j . (3.10)

Through manipulation of (3.10), wage per service for courier pool j can be expressed

as follows:

wj = G−1
oj (βj)

kj∑
i∈I xij

= G−1
oj

(
kj

k̄j

)
kj∑
i∈I xij

(3.11)

The wage per service wj considered is an average value for each courier pool. How-

ever, if a difference in wage can be identified for serving different customer classes,

each wage for serving each customer class can be acquired. Nonetheless, for analytic

simplicity, we only consider changes upon average wage value.

3.2 Problem Formulation

The total profit of the platform is generally denoted as π(x,p,w) =
∑

i∈I,j∈J xij(pi − wj).

However, we assumed the demand and supply were endogenous considering they were

set dependent upon price and wage, respectively. This indicates that the price and

wage could be in turn expressed as a function of demand and supply. Such interac-

tions between demand and price and supply and wage were derived through (3.3),

(3.8), and (3.11). Substituting price and wage with (3.3), (3.8), and (3.11), thereby
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enabling the profit function π to be defined by (x,k):

π(x,k) =
∑
i∈I

xij

[
F−1
vi

(
1−

∑
i∈I xij

λ̄i

)

− c
∑
j∈J


(

xij∑
j∈J xij

)
·

EW

∑
j∈J

xij , rj

+ σj


−G−1

oj

(
kj

k̄j

)
kj∑
i∈I xij

. (3.12)

Hence, the profit maximization model would be formulated as below:

maximize π(x,k)

subject to
∑
i∈I

τijxij ≤ kj ∀j ∈ J (3.13)

∑
j∈J

xij ≤ λ̄i ∀i ∈ I (3.14)

kj ≤ k̄j ∀j ∈ J (3.15)

xij ≥ 0 ∀i ∈ I, ∀j ∈ J (3.16)

kj ≥ 0 ∀j ∈ J. (3.17)

Constraint (3.13) ensures that the workload of each courier pool does not exceed

the number of realized couriers, which guarantees that the system is stable and

queues do not explode. Constraint (3.14) assures that the total realized demand

of each customer class i does not exceed the maximum potential demand of that

class, considering demands are endogenously determined through observation of the

service price. Constraint (3.15) states that the number of participating couriers for

each transportation mode j should not surpass the maximum potential number of

couriers of that mode. Finally, Constraints (3.16) and (3.17) ensure all decision
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variables are non-negative.
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Chapter 4

Model : Two-class Two-pool system

To solve this problem, a compact case is dealt with in advance. This case comprises

two types of customer distance (i.e. close and distant) and two types of courier trans-

portation modes (i.e. on-foot and motorcycle). As shown in Fig. 4.1, couriers on foot

cannot travel long distances whereas those on motorcycles can reach any distance.

Therefore, demand from close customers may be routed to either couriers on foot

or motorcycles. Contrastingly, demand from distant customers is only handled by

couriers on motorcycles.

4.1 Mean service time and Expected waiting time

In this compact case, two types of service times occur as courier pool 2, i.e., couriers

on motorcycles handle two types of customer classes. Therefore, instead of using

two types of service time τ11 and τ12 individually upon each customer, mean service

time is used. By adopting (3.5), the mean service time of courier pool 2 would be

τ12x12+τ22x22
x12+x22

whereas mean service time of courier pool 1, i.e., couriers on-foot would

be τ11.

In the case of close customers, the customers face two different service times from

two different courier types. When they are served by couriers on-foot, the customers

experience a service time of τ11. Conversely, customers go through a service time of
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Figure 4.1: Schematic representation of two-class two-pool system

τ12 when served by couriers on the motorcycle. Therefore, the expected waiting time

that customer class 1, i.e., close customers encounter can be modeled by applying

(3.5) and (3.7) as:

W1 =

(
x11

x11 + x12

)
· [EW (x11, r1) + τ11]

+

(
x12

x11 + x12

)
·
[
EW (x12 + x22, r2) +

τ12x12 + τ22x22
x12 + x22

]
. (4.1)

Likewise, the waiting time for customer class 2, i.e., distant customers can be mod-

eled as:

W2 = EW (x12 + x22, r2) +
τ12x12 + τ22x22

x12 + x22
. (4.2)

4.2 Model Formulation

For simple analysis, assumptions were made on the distributions of customer’s value

vi and courier’s opportunity cost oj . We assume that all customer values and courier

opportunity costs follow uniform distribution for each customer class and courier
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pool. The range of the specified distributions are as follows: v1 ∼ U [α, β], v2 ∼

U [γ, σ], o1 ∼ U [ϵ, ζ], o2 ∼ U [η, θ]. The parameters of uniform distribution may

vary considering the analytical and numerical results in this study can be extended

to more general instances; therefore, any value may be fitted in the parameters of

the distribution.

Using the above assumptions and the derivation of expected waiting times, the

functions of price, wage, and profit of (3.3), (3.11), (4.7) can be defined as follows:

p1 =

{
α+ (β − α) ·

(
1− x11 + x12

λ̄1

)}
− c

[(
x11

x11 + x12

)
· (EW (x11, r1) + τ11)

+

(
x12

x11 + x12

)
·
(
EW (x12 + x22, r2) +

τ12x12 + τ22x22
x12 + x22

)
, (4.3)

p2 =

{
γ + (σ − γ) ·

(
1− x22

λ̄2

)}
− c

(
EW (x12 + x22, r2) +

τ12x12 + τ22x22
x12 + x22

)
, (4.4)

w1 =

{
ϵ+ (ζ − ϵ) · k1

k̄1

}
· k1
x11

(4.5)

w2 =

{
η + (θ − η) · k2

k̄2

}
· k2
x12 + x22

(4.6)
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π(x,k) = (x11 + x12)

{
α+ (β − α) ·

(
1− x11 + x12

λ̄1

)}
+ x22

{
γ + (σ − γ) ·

(
1− x22

λ̄2

)}
− k1

{
ϵ+ (ζ − ϵ) · k1

k̄1

}
− k2

{
η + (θ − η) · k2

k̄2

}

− cx11


r
k1
1

(k1−1)!(k1−r1)
·
[∑k1−1

n=0
rn1
n! +

r
k1
1

(k1−1)!(k1−r1)

]−1

× r1
x11(k1−r1)

+ τ11


− c (x12 + x22)


r
k2
2

(k2−1)!(k2−r2)
·
[∑k2−1

n=0
rn2
n! +

r
k2
2

(k2−1)!(k2−r2)

]−1

× r2
(x12+x22)(k2−r2)

+ τ12x12+τ22x22
x12+x22

 (4.7)

Hence, optimization problem below must be solved:

(P1) maximize (4.7)

subject to Constraints (3.13), (3.14), (3.15), (3.16), (3.17)

4.3 Approximation Scheme

Before using various concave optimization techniques to determine the optimal set

of (x,k), the concavity of the model must be considered. (4.7) is the element-wise

concave regarding xij according to Grassmann [10] under fixed τij and kj . However,

showing the concavity of kj is difficult considering the expected waiting time func-

tion incorporates factorials and summations of kj , making it impossible to show its

hessian. Therefore, we use an approximation of the expected waiting time function

proposed by Sakasegawa [18], which provides a solid estimate of (3.7) when k ≥ 1:

ˆEW (x12 + x22, rj) =
ρ

√
2(kj+1)

j

(x12 + x22) (1− ρj)
, (4.8)
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where ρj =
rj
kj

represents system utilization. Additionally, the system utilization ρj

cannot exceed 1 owing to the constraint (3.13), which ensures that the system does

not overflow.

Using the above, equation (4.7) can be simplified:

π(x,k) = (x11 + x12)

{
α+ (β − α) ·

(
1− x11 + x12

λ̄1

)}
+ x22

{
γ + (σ − γ) ·

(
1− x22

λ̄2

)}
− k1

{
ϵ+ (ζ − ϵ) · k1

k̄1

}
− k2

{
η + (θ − η) · k2

k̄2

}

− c

ρ

√
2(k1+1)

1

1− ρ1
+ r1

− c

ρ

√
2(k2+1)

2

1− ρ2
+ r2

 . (4.9)

Therefore, the final optimization problem that should be solved is:

(P2) maximize (4.9)

subject to Constraints (3.13), (3.14), (3.15), (3.16), (3.17)

The joint concavity of x under fixed k can be shown using the property of con-

vexity mentioned in Theorem 1. Therefore, defining g(t) = π([x+ ty]) and obtaining
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its second derivative regarding t:

∂2π

∂t2
= −c


{
2 (k1 + 1)−

√
2 (k1 + 1)

}
y21ρ

√
2(k1+1)

1

(x11 + ty1)
2 (1− ρ1)

+
2
√

2 (k1 + 1)τ11y
2
1ρ

√
2(k1+1)

1

k1 (x11 + ty1) (1− ρ1)
2 +

2 (τ11y1)
2 ρ

√
2(k1+1)

1

k21 (1− ρ1)
3

+

{
2 (k2 + 1)−

√
2 (k2 + 1)

}
(y2 + y3)

2 ρ

√
2(k2+1)

2

(x12 + ty2 + x22 + ty3)
2 (1− ρ2)

+
2
√

2 (k2 + 1) (τ12y2 + τ22y3)
2 ρ

√
2(k2+1)

2

k2 (x12 + ty2 + x22 + ty3) (1− ρ2)
2

+
2 (τ12y2 + τ22y3)

2 ρ

√
2(k2+1)

2

k22 (1− ρ2)
3

− 2(β − α) (y1 + y2)
2

λ1

− 2(δ − γ)y23
λ2

, (4.10)

its negativity is evident from the above.

The joint concavity of k under fixed x can be shown through the hessian matrix

of (4.9). Second derivatives of kj :

∂2π

∂k2j
= −c


ρ

√
2(kj+1)

j

(
ln ρj√
2(kj+1)

−
√

2(kj+1)

kj

)2

1− ρj

−
2rjρ

√
2(kj+1)

1

(
ln ρj√
2(kj+1)

−
√

2(kj+1)

kj

)
(1− ρj)

2 kj
2

+

ρ

√
2(kj+1)

j

(√
2(kj+1)

kj
2 −

√
2

kj
√

kj+1
− ln ρ1

{2(kj+1)}
3
2

)
1− ρj

+
2rjρ

√
2(kj+1)

j

(1− ρj)
2 kj

3
+

2rj
2ρ

√
2(kj+1)

j

(1− ρj)
3 kj

4
− 2

kj
, (4.11)
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is always non-positive. This can be easily seen based on the fact that ρj < 1, which

is ensured by constraint (3.13). Moreover, (4.11) does not contain joint functions

of kj , which guarantees the hessian matrix of (4.9) to be a diagonal matrix that is

negative semi-definite. Therefore, the objective function of the proposed model is

concave to x and k.

4.4 Approximation Algorithm

The maximization problem (P2) that we face is nonlinear programming, in which

both objective function and constraints are nonlinear. As computational complexity

significantly increases with only one nonlinear constraint, the computational burden

of (P2) is significant for solving commercial convex optimization programs. Further-

more, variables in this problem tend to increase at a high rate as scale increases and

nonlinear constraint is added whenever there is an extra server pool. Therefore, it

is important to find an algorithm that could handle this problem even when there

are many classes and pools.

To address the aforementioned problem, we propose an approximation algorithm

that uses Newton’s method to achieve the optimal value. Each xij is updated via

Newton’s method, and optimal k∗ under given x is obtained at every update. For

any xij that turns negative after the update, it is bounded to the smallest positive

value possible. Other xij keep updating till the Euclidean distance between x of the

present and the previous is smaller than ϵ = e−5. After obtaining optimal k∗, the

integer set that derives the largest objective value is determined by exploring every

possible integer k̂ around optimal k∗.

The pseudo-code of the approximation algorithm is as follows.
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Algorithm 1 Approximation Algorithm (P2,x,k)

t← 0,
x0 ← 1;
while ||xt−1 − xt||2 ≥ ϵ and |πt−1 − πt| ≥ ϵ and t ≤ T do

solve (P2) using xt−1 and obtain solution kt−1;
if xt−1

ij > 0 then

Newton Update on xt−1
ij ;

foreach i ∈ I, j ∈ J do
if xtij < 0 then

bound xtij to smallest positive value
end if

end for
end if
solve (P2) using xt and obtain solution kt;
t← t+ 1;

end while
return feasible solution for P;

4.5 Scalability

Thus far, we have only analyzed the two-class two-pool case. However, the algorithm

proposed can be easily adopted in the general case of n class m pool. Generalizing

the profit maximization model, the objective function can be expressed as:

π(x,k) =
∑
i∈I


∑

j∈J
xij

 · F−1
vi

(
1−

∑
j∈J xij

λ̄i

)−∑
j∈J

kjG
−1
oj

(
kj

k̄j

)

− c
∑
j∈J

ρ

√
2(kj+1)

j

(1− ρj)
+
∑
i∈I

τijxij

 (4.12)

Under the assumption of uniform distribution, it is clear that the objective function is

a linear combination of concave functions. This is supported by the concavity proofs

derived above. Therefore, an increase in the scale of the model would only be shown

as an addition of concave functions. In other words, the proposed approximation
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algorithm can be applied regardless of the scale of the problem.
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Chapter 5

Numerical Experiments

5.1 Two-class Two-pool

For simpler analysis, numerical experiments were initially done on two-class two-

pool case. Our objective was to check the movements of important indicators as

parameters changed and subsequently derive managerial insights from them. The

parameters that changed were the waiting cost c, maximum customer class size λ̄i,

and maximum courier pool size k̄j ; the indicators we focused on were the profit

value π, demand routing probability x11
x11+x12

, realized customer demand λi, realized

courier supply kj , optimal price p∗i , and the optimal wage per service w∗
j . For this

set of numerical experiment, we set τ11 = 1
3 , τ12 = 1

5 , τ22 = 1
4 , v1 = U [0.5, 0.7], v2 =

U [0.6, 0.8], o1 = U [0.7, 1.0], o2 = U [1.0, 1.5],
∑

i∈I λ̄i = 400,
∑

j∈J k̄j = 100. Here,

customer class 1 and 2 were referred to as close and distant customers, respectively.

Additionally, courier pool 1 was indicated as on-foot couriers whereas the courier

pool was motor couriers. Based on the numerical experiments, important managerial

insights were acquired.

When c ranged from 0.02 to 0.4 and the other parameters were set as λ̄1 = 160,

λ̄2 = 240, k̄1 = 30, and k̄2 = 70, some counter-intuitive results were driven. To

begin with, as shown in Fig 5.1 (e), the number of realized couriers decreased as the
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Figure 5.1: Movements of indicators under changes in the cost of waiting

cost of waiting increased. Furthermore, reducing waiting time by employing more

couriers was an appropriate measure for increasing the profit of a platform when the

cost of waiting increased. However, the service price was significantly lower than the

minimum wage of couriers in delivery platforms owing to the nature of the industry.

Therefore, it is more economical for the platform to reduce their extra employment

cost than to reduce waiting time for customers through more employment. In other

words, platforms should offer a lower wage per service wj to employ fewer couriers

as c increases.

Nonetheless, the wage per service of on-foot couriers w2 tends to increase as c

increases. As a result, motor couriers cross-service close customers to reduce the

waiting time for customers. Owing to this, the amount of work that on-foot couriers

service decreases. Therefore, the wage per service for on-foot couriers must be in-

creased to match the high minimum wage when there is less work. This movement
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Figure 5.2: Movements of indicators under changes in maximum potential demand
ratio. k̄1 = 30, k̄2 = 70.

can be clearly seen in Figs 5.1 (d) and (f), where the probability of demand being

served by on-foot couriers decreases whereas wage per service for on-foot couriers

increases. Therefore, the platform should lower the overall expected earnings per

unit time for the couriers as c increases, while there may be a slight increase in wage

per service owing to the routing of demands.

In contrast, other indicators showed intuitive results where profit, price, and

realized customers decrease as the cost of waiting c increases. The decrease in profit

and realized customers is obvious as fewer customers enter the platform owing to

higher waiting penalties. Simultaneously, the platform will lower the price to bring

in customers as much as possible.

In a different experiment setting, the maximum potential demand ratio λ̄1

λ̄1+λ̄2

ranged from 0.1 to 0.95 and the waiting cost was fixed at c = 0.1. For courier pool
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parameters, we divided it into two cases where case 1 had on-foot couriers as the

majority while case 2 had motor couriers as the majority. For case 1, we set k̄1 = 30,

k̄2 = 70. First, the platform should have a sufficient size of maximum potential motor

couriers to be guaranteed a certain level of profit. As shown in Fig 5.2 (a), the profit

of the platform remained independent of changes in the demand ratio when there

were more motor couriers than on-foot couriers.

Second, the platform reduced the wage per service for motor couriers as the

demand for close customers increased. A steep decrease in wage per service for

motor couriers can be seen in Fig 5.2 (d) owing to an increase in the workload for

motor couriers as cross-service of close customers increases, as shown in Fig 5.2 (f).

Although the workload increased, a steep decrease in wage per service decreased

the overall earnings per unit time. Therefore, the number of realized motor couriers

decreased (Fig 5.2 (e)). However, this is reasonable as the platform does not have to

maintain a high employment rate of expensive motor couriers just to serve relatively

cheap close customer demands when the demands of distant customers decrease.

However, movements in the service price for distant customers and the wage

of on-foot couriers are not monotonic to demand ratio changes but they appear to

oscillate. The oscillation of service price of the distant customers in Fig 5.2 (b) is

due to an increase in the cross-service of close customers, which eliminates the need

for the platform to draw more distant customers. Therefore, our numerical results

indicate that the platform should maintain its high price for distant customers as

the proportion of distant customers decreases when there are more motor couriers

than on-foot couriers.

Additionally, the oscillation of the wage of on-foot couriers in Fig 5.2 (d) is a
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Figure 5.3: Movements of indicators under changes in maximum potential demand
ratio. k̄1 = 70, k̄2 = 30.

result of two simultaneous actions. The workload of on-foot couriers increases owing

to an increase in maximum potential close customer size. However, simultaneously,

motor couriers mitigate the burden by cross-services as the proportion of close cus-

tomers increases. Therefore, the low variance of workload per on-foot courier results

in the wage being fairly steady, which also maintains consistency for the number of

realized on-foot couriers. In other words, the platform must maintain its wage per

service level for on-foot couriers as the number of distant customers decreases when

there are more motor couriers than on-foot couriers.

Apart from this factor, there are only intuitive results that showed an increase in

the service price for close customers owing to an increase in the proportion of max-

imum potential close customers and the number of realized customers proportional

to the maximum potential customer sizes.
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For case 2 where the parameters are set as k̄1 = 70, k̄2 = 30, portrayed profit

increased as close customer ratio increased, unlike case 1 (Fig 5.3 (a)). This is clear

considering on-foot couriers cannot serve distant customers, unlike motor couriers.

However, the platform should change its action at the point where cross-service

occurs as the demand ratio changes when there are more on-foot couriers than

motor couriers.

The non-monotonic movement was seen in the service price for distant customers

in Fig 5.3 (b). Initially, the service price for distant customers decreased considering

the price necessary to control the level of demand decreases as the maximum po-

tential distant customer size decreases. However, at the point where motor couriers

cross-service close customers, distant service price increases to adjust the distant

customer level so that motor couriers can handle both close and distant customers.

Therefore, in Fig 5.3 (c), we observed an increase in realized close customers and

decrease in realized distant customers at the point of cross-service.

Coupled with price changes, the wage per service for motor couriers and the

number of realized on-foot couriers show non-monotonic movements. At first, as

the maximum potential distant customer size is large compared to the maximum

potential motor courier size, the constraint is on the supply side. Therefore, at first,

the wage for motor couriers maintains its level as no changes are observed in the

realized motor courier numbers and distant customers. Then, at the point where

cross-service is engaged, the wage of motor couriers decreases with an increase in

the workload (Fig 5.3 (d)).

The non-monotonicity of the number of realized on-foot couriers shown in Fig

5.3 (e) is due to cross-service. Before cross-service, the number of on-foot couriers
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continuously increases owing to an increase in the ratio of close customers. However,

cross-service alleviates their workload, eventually causing the number of on-foot

couriers to decrease. Furthermore, the point where non-monotonic movements start

is identical to the point where demand routing probability changes (Fig 5.3 (f)).

Therefore, the platform needs to review its actions when cross-service takes place.

Furthermore, only intuitive results that showed an increase in the service price for

close customers and the wage for on-foot couriers as the proportion of the maximum

potential close customers increases, are driven.

5.2 Real Data Implementation

Actual data from a food delivery platform in China were collected from Mao et al.

[14] to emulate real-life situations and obtain realistic optimal values upon price

and wage. This data contained the delivery data from Hangzhou, China from July

1 to August 31, 2015, which included information about order placements, order

deliveries, restaurants, drivers, weather and traffic conditions, and more. However,

because we were not familiar with China’s food delivery platform, we adopted many

features from a Korean food delivery platform, Baemin. Considering Hangzhou and

Seoul have many urban features like dynamicity and high population density in

common, we only used the population and delivery data from Hangzhou, and the

platform framework was adopted from Baemin for numerical analysis. We assumed

there are three types of couriers (on-foot, bicycle, and motorcycle), each having a

different delivery range. For instance, on-foot couriers can only deliver orders that

have a delivery distance of under 1 km, whereas a bicycle delivery range is within

2 km. Finally, a motorcycle has no boundaries. Similarly, we divided customer class
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into three according to their delivery distances. Therefore, close, middle, and distant

customer class refers to distance between 0 1 km, 1 2 km, and over 2 km. Under this

framework, we compared peak and non-peak hours upon the optimal value of price

and wage using the proposed approximate algorithm.

During the experiment, we updated each customer class’ maximum potential size

and service time of couriers every hour. While the update on customer class was fairly

reasonable, the update on service time was to convey the different traffic throughout

the day. Conversely, the parameters of the distribution of service value, opportunity

cost, and the maximum potential size of each courier pool were fixed regardless of

the time. Parameters of distribution of service value for each customer class were

set depending on the average service price and distance surcharge rate. Parameters

of distribution of opportunity cost for each courier pool were set according to the

minimum wage, average fuel cost per hour, and insurance cost per hour. Finally, we

set the value of waiting cost between 0-5000 won. According to Gomez-Ibanez et al.

[9], a working class passenger in San Francisco quantifies one’s waiting cost to be

195% of their after-tax wages. We provided a range based on this study and income

inequality prevalent in Korea. Additionally, we recalibrated the range by combining

the fact that the average delivery price is approximately 12% of the delivery food

price.

Using the parameter setting above, we obtained the values of optimal price and

wage under the range of the waiting cost. As a result, peak hours had higher values

of optimal price and wage, as shown in Figs 5.4 and 5.5, considering the peak hours

have a greater size in maximum potential customer class and longer service time

owing to traffic in peak hours.
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Figure 5.4: Values of optimal price and wage under changes in the cost of waiting
during peak hours

Figure 5.5: Values of optimal price and wage under changes in the cost of waiting
during peak hours
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The numerical results indicate that higher prices and wages should be charged

during rush hours or peak times when customer demands are high and service time

is low owing to traffic. These results go hand in hand with what is being practiced

in real delivery platforms, which usually run a promotion on wage per delivery to

engage more couriers. These results not only validate our results but also prove

that our model can be used as a guideline for crowdsourced delivery platforms in

increasing their profitability.
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Chapter 6

Conclusion

6.1 Summary

In this study, we modeled a food delivery platform having multiple types of customers

and couriers. To incorporate the unique characteristics that customers and couri-

ers have in a food delivery platform, we used multi-class multi-pool system. Our

framework harnessed the complexity of the network and combined the time- and

price-sensitive nature of customers and wage sensitive nature of couriers, thereby

providing an analytic framework that showed platforms how to set their prices,

wages, and optimal demand routing probabilities. Moreover, we proposed a solution

approach for a profit maximization problem, which is nonlinear programming having

high computational complexity. This was further followed by extensive numerical ex-

periments that provided practical managerial insights, and the validity of our model

was shown through real data implementation.

6.2 Future Direction

Possible directions for further extension of this problem are three-fold. First, our

results were based on assumption that the service value distribution of the customer

and the opportunity cost distribution of the courier are uniform. However, other
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more realistic distributions such as exponential and gamma distributions are to be

addressed in later works. Second, we can incorporate dynamic pricing strategies and

dynamic demand routing strategies so that the platform can offer dynamic prices and

wages based on real-time status. Finally, we plan to extend the problem situation

where competition is present to better depict how the platform acts and sets its

price and wage in the presence of competitors.
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국문초록

본 논문에서는 여러 유형의 고객과 배송업체가 있는 음식 배달 플랫폼을 고려한다.

플랫폼의 목표는 이익 극대화를 달성하기 위해 최적 서비스 가격과 서비스 당 임금을

도출하는 것이다. 그러나 플랫폼은 다양한 배송 거리와 서로 다른 서비스의 가치 평가

를 가진 가격과 시간에 민감한 고객과 다양한 운송수단과 서로 다른 기회 비용을 가진

수익에 민감한 배달원에 직면해 있다. 본 논문에서는 multi-class multi-pool 시스템을

사용하여 모델링을 진행하여 고객-배달원 조합에 따라 달라지는 서비스 시간을 모델에

적용하였다. 이 복잡한 문제를 해결하기 위해 최적해를 도출하기 위한 근사 알고리

즘을 제안한다. 광범위한 수치 실험이 실시되었고 이를 통해 실질적인 경영적 통찰이

도출되었다.

주요어: 음식 배달 서비스, 내생적 수요와 공급, multi-class multi-pool 시스템, 대기행

렬 모델, 볼록 최적화

학번: 2021-20497
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