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Abstract

Pseudo-labeling, Pre-training with
Multilingual Untranscribed Speech Corpora
and Fine-tuning for Low-resource Speech

Synthesis

Yeonsu Lee

Department of Industrial Engineering

The Graduate School

Seoul National University

Speech is used in many places as a very effective means of information transmission,

and speech synthesis with the modern deep learning models has reduced the need

for people to record voice, resulting in improved productivity and cost savings. How-

ever, training the majority of text-to-speech (TTS) models requires a large amount

of speech-text paired data, which makes it challenging to train a TTS model for

languages with less text-labeled data. Noting that voices uttered in other languages

share similar pronunciations, we propose to leverage multilingual untranscribed for-

eign speech corpora, which are relatively easy to procure, for training a TTS model.

Concretely, first, we extract features of each foreign waveform containing phoneme

information by inputting the waveform into the pre-trained wav2vec 2.0 XLSR-

53 model and then perform k-means clustering on these features to obtain pseudo

phoneme sequence (pseudo-label) that can play the role of text. Next, we pre-train a
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TTS model with the speech-pseudo phoneme sequence data. Finally, we fine-tune the

pre-trained model with a small speech-text paired dataset of a target language we

originally intended to use. Experimental results showed that the pre-trained models

with the multilingual data learned faster and achieved lower CER values, confirming

that a multilingual untranscribed speech corpora can help train a TTS model.

Keywords: Speech synthesis, Multilingual untranscribed speech corpora, Cluster-

ing, Pseudo phoneme sequence, Pre-training, Fine-tuning

Student Number: 2021-24409
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Chapter 1

Introduction

Speech is a very effective way to convey information. For instance, while it is risky

to read a newspaper when driving a car, many people listen to the news radio when

driving. Because of its unique characteristic, voice is used in many places and will be

used in more places with the development of IoT technology which need interfaces

that connect human with computers.

Recently, with the advance of deep learning-based speech synthesis models [12,

15, 22, 25, 27], high-quality voices which are hard to distinguish from that of humans

can be synthesized. It has become more accessible for people to use text-to-speech

(TTS) models for generating voices of diverse speakers when making content such as

YouTube videos. Furthermore, an AI news anchor with the TTS model can work 24

hours a day, which is especially useful in disaster situations. In summary, TTS models

have brought cost-cutting effects and increased productivity. However, for most TTS

models to generate high-quality voices, there needs to be a large speech-text paired

dataset (transcribed dataset) [16]. Because there are about 7000 languages in the

world, the vast majority of which lack such a large dataset [1], there is a need to

explore how to make a well-performing TTS model in low-resource scenarios. One

common solution to tackle the problem of training a model with insufficient data is to
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leverage other data with similar characteristics that are assumed critical for solving

the task the model was developed for. For example, when trying to learn a model

to synthesize the voice of someone whose speech-text paired dataset is small, pre-

training the model with a large, paired dataset of other people’s voices in the same

language and then fine-tuning it with the small dataset can synthesize better outputs

than it would have without the large dataset [5]. Likewise, when there are insufficient

paired data of a specific language, it is noteworthy that voices uttered in the other

languages share similar pronunciations. For instance, the sentence ”Hi” in English

can be written as ”하이” in Korean. Moreover, the existence of the International

Phonetic Alphabet (IPA), which was designed to represent utterances spoken in all

languages over the world, supports that there are overlaps in pronunciations of each

other languages. Even though there are differences in the distributions of frequencies

of use of, lengths of, and combinations of phonemes in each other languages, it may

be possible to cover the various distributions using many language data. In this sense,

we investigated how to leverage multilingual foreign data when there are insufficient

speech-text paired data of a specific language (target language) for training a TTS

model.

In this thesis, we propose to pre-train a TTS model (source model) with multilin-

gual foreign speech corpora without corresponding text, which is easier to get than

paired dataset. We assume there are speaker ids and language ids for each waveform.

Then we fine-tune the model with a small paired dataset of a target language. Specif-

ically, we make ’pseudo phoneme sequences’ corresponding to each speech waveform

by extracting features of the waveform via the pre-trained wav2vec 2.0 XLSR-53

[7] and k-means clustering, following [1, 16]. Then, we train a TTS model with the
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paired dataset consisting of waveforms and pseudo phonemes in the same way the

model would be trained with a speech-text paired dataset. Finally, we reinitialize

some model parameters and fine-tune the model with target language data. For

fine-tuning to be effective and handle multilingual data, we use YourTTS [3] archi-

tecture. It is based on VITS [15] where the invertibility of normalizing flow helps the

waveform domain to be an input domain so that the knowledge of the pre-trained

model can be utilized. Furthermore, it has language embedding to synthesize voice

in different languages.

The main contributions of the thesis are three-fold:

(a) We use a cost-effective and high-accessible dataset, which does not need corre-

sponding multilingual texts that are expensive to label and unfamiliar to most

people who use 1 or 2 languages.

(b) We observed that a model trained with the proposed method achieved a lower

character error rate than a model trained with only target language data, which

implies that multilingual untranscribed speech corpora can be effectively used

in low-resource scenarios.

(c) We propose a framework that uses a pre-trained multi-speaker and multilingual

model that can be adapted on any language, which can be the groundwork for

a model that will eliminate the need to train a TTS model from scratch for

any voice in any language.

The thesis consists of 6 chapters. In chapter 2, we review the literature concerning

how to handle untranscribed speech data and recent TTS models. In chapter 3,

we describe the proposed method. In chapter 4, we explain the settings used for
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experiments. In chapter 5, we compare models trained with the proposed method

and models trained with only target language data. In chapter 6, we summarize and

conclude the thesis and suggest possible future research directions of it.
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Chapter 2

Related Work

2.1 Leveraging untranscribed speech data

When trying to train a speech synthesis or speech recognition model, it is common

to train it with a speech-text paired dataset. However, there were some researches

related to using untranscribed speech data for training them. [1] suggested a way

to train a fully unsupervised speech recognition model with separate speech and

text corpora. The key idea was extracting features containing phoneme information

from waveforms and generating phoneme sequences whose distribution made similar

to a phoneme distribution of text corpora via adversarial training. They extracted

the features from the transformer block 15 of the pre-trained wav2vec2.0 [2] be-

cause they found that a phoneme classifier trained with features of that block had

shown the best performance. They observed features of the block 15 of wav2vec 2.0

XLSR-53 model [7] contain phoneme information across a range of languages too.

[16] proposed using a sizeable untranscribed speech corpus of the same language

when training a TTS model in low-resource settings. They also used features of the

block 15 of the wav2vec 2.0 to get pseudo phoneme sequences corresponding to each

waveform. They performed k-means clustering on the features to get K clusters, each

of which became a pseudo phoneme. After transforming the feature sequences into
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corresponding pseudo phoneme sequences and pre-training a TTS model with wave-

forms and pseudo phoneme sequences, they fine-tuned it with a small paired dataset.

They found that untranscribed speech data of the same language can improve the

model’s performance.

2.2 Multi-speaker & Multilingual TTS

Multi-speaker TTS model is a model that can generate the voices of multiple speak-

ers. It needs a speaker embedding vector containing the information for the model

to know whose voice to synthesize when it is given a text prompt of a waveform to

generate. There are two typical ways to get a speaker embedding. The first is us-

ing speaker id embedding with a lookup table which has unique embedding vectors

of each speaker [5, 14, 15, 29, 30]. The second is using a speaker encoder module

that takes a reference waveform as input and outputs the speaker embedding of

the waveform [3, 28]. Because a model with a speaker encoder module can take

an arbitrary waveform as input, once the model is trained, it may be possible to

generate a voice of an arbitrary speaker, which makes it called a zero-shot TTS

model. If a multi-speaker TTS model uses flow-based architecture with a speaker

embedding conditioned, it can disentangle the speaker identity (speaker embedding)

and the latent representations containing linguistic contents from a waveform by the

invertibility of the flow [3, 14, 15]. It makes the TTS model can convert only the

speaker identity of a waveform with the linguistic contents unchanged by changing

the extracted speaker embedding, which is called voice conversion.

Multilingual TTS model is a model that can generate voices of multiple lan-

guages. [3] used a language embedding in order to let the model know what language
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the voice to generate is of. They concatenated a language embedding into a character

embedding sequence and used it as input for the text encoder module. The language

embedding is also used as input for the duration predictor module that predicts the

duration of each character in the waveform domain.

2.3 Fine-tuning a TTS model

If there are insufficient data for training a model, one practical solution is pre-

training the model with another similar large dataset and then fine-tuning it with

the original small dataset. It works for some TTS models too. [5] proposed the

TTS model that can be adapted on an unseen speaker’s voice during training with

just 20 waveform and text pairs. Especially they only fine-tuned the speaker em-

bedding and the weight matrices for conditional layer normalizations so that they

could save ample memory storage. While [5] can only be adapted on speakers whose

speech data are transcribed, [29] can be adapted on speakers whose speech data

are untranscribed by using the Mel Encoder module. [30] fine-tuned a model pre-

trained with a reading-style speech dataset to generate spontaneous speech, which

has more dynamic rhythms and filled pauses such as ah and um, by introducing the

FP predictor module and the mixture of expert (MoE) based duration predictor. [16]

fine-tuned a model pre-trained with untranscribed speech data of the same language

and pseudo phoneme sequences. They pointed out that a general feed-forward TTS

model [25, 26, 27] is not appropriate for pre-training with pseudo phoneme sequences.

Because the pseudo phoneme embeddings are replaced by randomly initialized char-

acter embeddings, which makes features from the model different from those of the

pre-training stage, it makes the knowledge from the pre-training stage hard to be
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utilized in turn. Thus, they used VITS [15] architecture based on the normalizing

flow to exploit the invertibility so that the pseudo phoneme and the character em-

bedding domain became kinds of target domains, and the waveform domain became

a kind of input domain in reverse. As the distribution of waveform is unchanged

over the pre-training stage and fine-tuning stage, they could fine-tune the model

successfully.
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Chapter 3

Proposed Method

Our proposed method consists of 3 stages. The first stage makes pseudo phoneme

sequences corresponding to each waveform of an multilingual untranscribed dataset,

which will play the role of text. The second stage pre-trains a TTS model with

those speech-pseudo phoneme sequence data as speech-text paired data. The third

stage fine-tunes the TTS model with a small speech-text paired dataset of a target

language. We specify details in each section.

3.1 Pseudo-labeling

The overall procedure to get the pseudo phoneme sequences is the same as [16].

3.1.1 Extracting feature sequences of waveforms

When a waveform is given, we extract a feature sequence containing phoneme in-

formation of it. Because [1] found the features of the transformer block 15 of the

wav2vec 2.0 XLSR-53 helpful in predicting the phoneme sequence of a waveform

across a range of languages, we use the feature of the block 15. This process is

illustrated in Figure 1.
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Figure 1: Extracting phoneme-related features

3.1.2 K-means clustering on the features

We get many features by applying the above procedure to each waveform of the mul-

tilingual speech data. Then we perform k-means clustering on that features to get K

centers representing the overall feature space related to pronunciations. Clustering

can be performed on features of all language speech waveforms without language

distinction or performed respectively by language, which is an option for an experi-

mental setting. This process is specified in Figure 2.

Figure 2: K-means clustering on the features

10



3.1.3 Pseudo-labeling with center ids

After getting the K centers, we replace each feature sequence with the center se-

quence by substituting each feature with the nearest center. If the same center

appears several times in a row in a center sequence, we delete the repeated parts to

make all centers appear once in a row. Finally, we take the center id sequence as the

pseudo phoneme sequence. Figure 3 illustrates this process.

Figure 3: Center id sequences as pseudo phoneme sequences

3.1.4 Algorithm

We specify the overall procedure to get pseudo phoneme sequences in Figure 4.

11



Figure 4: Overall procedure to get pseudo phoneme sequences
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3.2 Pre-training with pseudo phoneme sequence

We pre-train a TTS model with the speech-pseudo phoneme sequence data as though

they are speech-text paired data. However, for fine-tuning to be effective, it is rec-

ommended to use a model with an invertible mapping structure [10, 18] rather than

a typical feed-forward model [25, 26, 27], as mentioned in [16]. In addition, in terms

of handling multiple languages, we utilize YourTTS [3] model structure, which is

a flow-based model and allows us to handle multilingual data through language

embeddings.

3.2.1 Network architecture

Figure 5 illustrates the overall model architecture for pre-training. To explain the

model components, the model is a kind of VAE [19] model. There is a posterior

encoder that calculates the posterior distribution of latent feature z from the input

and a decoder trying to restore z to the input again. However, while the input is a

waveform, the posterior encoder itself instead receives the linear spectrogram as the

input, which is calculated by applying a closed-form formula to the waveform. The

decoder is named HiFi-GAN Decoder because it uses the HiFi-GAN [20] network

structure, which was developed as a vocoder that converts a mel spectrogram to the

corresponding waveform. Both the posterior encoder and the decoder are conditioned

on a speaker embedding containing the speaker information.

There are two main ways to get a speaker embedding. One is to use a lookup

table containing unique embedding values for each speaker, and the other is to

obtain an embedding vector from a speaker encoder, which is a module that receives

a waveform as input. Which to use depends on the experimental setting, and we
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use both settings in experiments. In the speaker encoder case, we use a model with

a structure different from that of [3]. Given that [6] showed promising results in

voice conversion by using the block 1 feature of the wav2vec2.0 as the input to

the speaker encoder with the ECAPA-TDNN [8] structure to obtain an embedding

relating speaker’s timbre, we use that same architecture. The structure of the speaker

encoder we used is illustrated in Figure 6.

The prior distribution of latent feature z is modeled using a text encoder and a

normalizing flow. To get prior distribution, we first get a sequence of means and vari-

ances of normal distributions by the transformer-based text encoder, which takes as

input a concatenation of a pseudo phoneme embedding sequence and a language em-

bedding. The normal distribution sequence corresponds to the pseudo phoneme se-

quence, which means each normal distribution corresponds to each pseudo phoneme.

As there is no guarantee that the length of this mean and variance sequence, which

is equal to the length of the pseudo phoneme sequence, is the same as the length

of the latent z computed by the posterior encoder, we modify the distribution se-

quence by repeating some normal distributions to match the lengths. Which normal

distribution (pseudo phoneme) and how many to repeat is determined by the mono-

tonic alignment search [14]. Then the modified distribution sequence is transformed

to be the prior distribution of latent z by the normalizing flow with the rule of

change-of-variable. In addition, since the normalizing flow is also conditioned on

speaker embedding, it can be seen as conditional vae in that the prior distribution

is dependent on a pseudo phoneme sequence, a language embedding, and a speaker

embedding.

In [3, 15], the duration predictor is also trained to predict how many times each
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character would be repeated by the monotonic alignment search at inference time.

However, we do not need the duration predictor as we will not infer with the pre-

trained model. Thus, we can skip training the duration predictor, which is why

Figure 5 does not have a duration predictor.

Finally, there is a discriminator for adversarial training to reconstruct the input

more naturally. The discriminator has a multi-period discriminator structure of Hifi-

GAN [20].

3.2.2 Training loss

The loss function to optimize is the same as [3, 15], except for the term for training

the duration predictor. Because of the adversarial training, the process of updat-

ing the discriminator and the generator sequentially is repeated. In this case, the

generator means all modules except the discriminator.

The discriminator loss term is computed as Equation 3.1 borrowed from the LS-

GAN [21]. D,G, x, xlin, z, µϕ(xlin), σϕ(xlin) denote the discriminator, the generator,

an input waveform, the corresponding linear spectrogram, the latent variable, the

mean and variance of the posterior distribution computed by the posterior encoder

given the waveform, respectively.

Ladv(D) = E(x,z)[(D(x)− 1)2 + (D(G(z)))2] (3.1)

given x, z ∼ qϕ(z|xlin) = N (z;µϕ(xlin), σϕ(xlin))

The loss for the generator is the sum of several terms. The first term is for

reconstructing an input waveform from the latent variable z, which is computed as
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Equation 3.2. xmel,G(z)mel denote the mel spectrogram of the waveform and the

reconstructed waveform from the latent variable, respectively.

Lrecon(G) = E(x,z)[∥xmel − G(z)mel∥1] (3.2)

The second term is the KL-divergence term making the posterior distribution

and the prior distribution of the latent variable similar, which is computed as Equa-

tion 3.3. t, A, c, qϕ(z|xlin), pθ(z|c), fθ(z), µθ(c), σθ(c) denote text (pseudo phoneme se-

quence in pre-training stage), an alignment computed from the monotonic alignment

search, condition information (not consider a speaker embedding for simplicity), a

probability of the posterior distribution and the prior distribution, the inverted value

of z by the normalizing flow, mean and variance of the modified normal distribution

sequence, respectively.

LKL(G) = E(x,z,t)[log qϕ(z|xlin)− log pθ(z|c)] (3.3)

pθ(z|c) = N (fθ(z);µθ(c), σθ(c))| det
∂fθ(z)

∂z
|

where c = [t, A]

The third term is for making the generator deceive the discriminator, which is

computed as Equation 3.4.

Ladv(G) = E(x,z)[(D(G(z))− 1)2] (3.4)

The last fourth term is additional feature matching loss, which helps adversarial

training, computed as Equation 3.5. Nl,Dl(x),Dl(G(z)) denote the number of layers

16



of the discriminator, the feature of the l-th layer of the discriminator when it takes

as input a waveform and the reconstructed waveform, respectively.

Lfm(G) = E(x,z)[
1

Nl
∥Dl(x)−Dl(G(z))∥1] (3.5)

Therefore, the final loss for pre-training the generator is computed as Equation

3.6. λs are weights for each term.

Lgen(G) = λreconLrecon(G) + λKLLKL(G) + λadvLadv(G) + λfmLfm(G) (3.6)

3.2.3 Algorithm

We specify the overall procedure to pre-train a TTS model with speech-pseudo

phoneme sequence data in Figure 7.
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Figure 5: Model architecture for pre-training
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Figure 6: Speaker encoder architecture

Figure 7: Overall procedure to pre-train a TTS model with speech-pseudo phoeneme
sequence data
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3.3 Fine-tuning with a small speech-text paired dataset

of a target language

We fine-tune the pre-trained model with a small paired dataset of a target language.

It is almost the same as the pre-training stage. There are only slight differences.

3.3.1 Network architecture

Figure 8 illustrates the overall model architecture for fine-tuning. The parameters of

the posterior encoder and HiFi-GAN Decoder can be frozen or fine-tuned, which is

an option for an experimental setting. Although [16] froze the parameters of them,

we considered the option of fine-tuning them in that the distribution of waveform

of the multilingual dataset may not cover the distribution of waveform of the target

language dataset properly.

For speaker embeddings, we train a new lookup table from scratch if we used

the setting with a lookup table at pre-training. If we used the setting with a speaker

encoder at pre-training, we can freeze or fine-tune the parameter of the speaker

encoder, which is also an option for an experimental setting.

We train new lookup tables for text character and target language embedding

from scratch as they have to learn unique embedding for each input that has never

been seen in the pre-training stage. We also train a new text encoder from scratch

that takes the concatenation of two embeddings as input. Meanwhile, we fine-tune

the normalizing flow module in that it receives features extracted from a waveform

as input by its invertibility.

There is a duration predictor in the fine-tuning stage. As mentioned before, the

duration predictor predicts how many times each character would be repeated, which
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is the duration sequence, by the monotonic alignment search at inference time. We

train it from scratch.

We train a new discriminator from scratch as well.

3.3.2 Training loss

The loss function to optimize is exactly the same as [3, 15]. We use the same loss func-

tion for the discriminator as Equation 3.1. The loss function for the generator is also

the same, except that now it has the term for the duration predictor. The loss term

for the duration predictor is computed as Equation 3.7. u, v, d, qϕ(u, v|d, t), pθ(d −

u, v|t) denote a random variable for variational dequantization [11], a random vari-

able for variational data augmentation [4], the ground truth duration sequence ob-

tained from the monotonic alignment search, and distributions of the random vari-

ables for variational lower bound, respectively.

Ldp(G) = Eqϕ(u,v|d,t)[log pθ(d− u, v|t)− log qϕ(u, v|d, t)] (3.7)

Thus, the final loss for the generator is computed as Equation 3.8, where λs are

weights for each term.

Lgen(G) = λreconLrecon(G) + λKLLKL(G) + λadvLadv(G) + λfmLfm(G) + λdpLdp(G)

(3.8)

3.3.3 Algorithm

We specify the overall procedure to fine-tune the pre-trained TTS model with a

small speech-text paired data of a target language in Figure 9.
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Figure 8: Model architecture for fine-tuning
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Figure 9: Overall procedure to fine-tune the pre-trained TTS model with a small
speech-text paired data of a target language
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Chapter 4

Experimental Setting

4.1 Dataset

This section describes the dataset used in the experiments. There are two main

datasets used: the first is a multilingual foreign language dataset consisting only

of speech waveforms for pre-training, and the second is a small speech-text paired

dataset of a target language.

4.1.1 Multilingual untranscribed speech corpora

We used a part of the Multilingual LibriSpeech (MLS) [23] dataset. The MLS dataset

itself consists of a total of eight languages: English, German, Dutch, French, Spanish,

Italian, Portuguese, and Polish, with 44.5 k hours of voice and text data in English

and a total of 6 k hours of voice and text data in the remaining languages. How-

ever, since we used English as the target language, seven language data excluding

English were used to prevent a pre-trained model from seeing English data in the

pre-training stage. In addition, since we had limited computing resources and only

speech waveforms were needed, a total of about 63 hours of data consisting of about

9 hours of speech data per language were used as the full multilingual speech corpora

data. The sample rate of all waveforms is 16kHz. The statistics of the multilingual
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Table 4.1: Statistics of the multilingual dataset

Language Num of waveforms Total time (hr) Num of speakers

German 2194 9.00 27
Dutch 2153 9.00 21
French 2167 9.00 30
Spanish 2110 9.00 29
Italian 2173 9.00 30

Portuguese 2116 9.00 23
Polish 2173 9.00 9

Table 4.2: Statistics of the multilingual dataset used for pre-training

Language Num of waveforms Total time (hr) Num of speakers

German 1990 8.17 27
Dutch 1936 8.08 21
French 1955 8.14 30
Spanish 1889 8.07 29
Italian 1929 7.98 30

Portuguese 1919 8.16 23
Polish 1959 8.13 9

dataset are described in Table 4.1.

A complete dataset of 63 hours was used for obtaining pseudo phoneme se-

quences. However, when pre-training with pseudo phoneme sequences, only about

90% of the total data were used for pre-training, and the remaining data were used to

check whether overfitting occurred. The statistics of the dataset used for pre-training

are described in Table 4.2.

4.1.2 Speech-text paired data of a target language

We used English as the target language and used a part of the LibriTTS dataset

[31]. To handle low-resource scenarios, a total of about 100 minutes of speech-text
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paired dataset was used for fine-tuning the model, which was 10 minutes per speaker

consisting of a total of 10 speakers. The ids of the speakers were 3003, 2204, 8080,

3922, 7982, 3307, 5935, 3032, 3274, and 1271, consisting of five women and five men.

Although the original sample rate of LibriTTS is 22 kHz, we reduced it to 16 kHz

to match it with the sample rate of the previously used dataset for pre-training.

4.2 Training setting

The setting of how to train a model is divided into three categories to explain. The

first is about the model architecture for pre-training and whether to perform clus-

tering for pseudo-labeling by language. The second is about the model architecture

for fine-tuning. The third is about whether to freeze the parameters of some modules

at the fine-tuning stage.

The first category has settings called PEW, PIW, and PIL, respectively. For the

model architecture, we can use a lookup table or speaker encoder for speaker em-

beddings and choose whether to use a language-specific text encoder with language-

specific relative positional encoding in these settings. The details of the settings are

described in Table 4.3.

The second category has settings called TE and TI, respectively. Similarly, we

can use a lookup table or speaker encoder in these settings. The details of the settings

are described in Table 4.4.

The third category has settings called FF and FN, respectively. We can choose

whether to freeze the parameters of some modules, which are the posterior encoder,

decoder, and speaker encoder if the model has it. The details of the settings are
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Table 4.3: Details of the first category settings

Description

PEW Perform clustering on the whole corpora to get pseudo phoneme sequence
and pre-train a model with the speaker encoder

PIW Perform clustering on the whole corpora to get pseudo phoneme sequence
and pre-train a model with the lookup table

PIL Perform clustering on each language’s corpus to get pseudo phoneme se-
quence and pre-train a model with the lookup table and the language-
specific text encoder

Table 4.4: Details of the second category settings

Description

TE Use the model architecture with the speaker encoder at the fine-tuning stage

TI Use the model architecture with the lookup table at the fine-tuning stage

described in Table 4.5.

4.2.1 Baseline

The critical point of the experiments is to compare whether the model with pre-

training is better than the model without the pre-training. We call a model without

pre-training as a baseline. The baseline can also have a lookup table or speaker

encoder for speaker embeddings. Thus, there are two baselines: BASE TE and

BASE TI, which are named after the second category settings. The details of the

baselines are described in Table 4.6.
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Table 4.5: Details of the third category settings

Description

FF Freeze the parameters of posterior encoder, decoder, (speaker en-
coder)

FN Do not freeze the parameters of posterior encoder, decoder, (speaker
encoder)

Table 4.6: Details of the baselines

Description

BASE TE Baseline model with the speaker encoder - trained only with target
language data

BASE TI Baseline model with the lookup table - trained only with target
language data

4.2.2 Proposed method

There are several combinations of the settings. For example, we can pre-train a

model with the PEW setting and then fine-tune it with the TE and FF settings. We

call the model trained with this combination of the settings PEW TE FF. Similarly,

if we pre-train a model with the PIW setting and then fine-tune it with the TI

and FN settings, we call this model PIW TI FN. All the models trained with our

proposed method are described in Table 4.7.

4.3 Training details

In order to obtain pseudo phoneme sequences, K-means clustering must be per-

formed on a large number of features. We used the FAISS library [13] for efficient

processing. We used 128 for the K value for k-means clustering. Therefore, there are
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Table 4.7: Details of the models trained with the proposed method

Description

PEW TE FF Model pre-trained with PEW and fine-tuned with TE and FF

PEW TE FN Model pre-trained with PEW and fine-tuned with TE and FN

PIW TI FF Model pre-trained with PIW and fine-tuned with TI and FF

PIW TI FN Model pre-trained with PIW and fine-tuned with TI and FN

PIL TI FF Model pre-trained with PIL and fine-tuned with TI and FF

PIL TI FN Model pre-trained with PIL and fine-tuned with TI and FN

a total of 129 tokens consisting of 128 pseudo phonemes plus 1 pad token for the

whole multilingual speech corpora in the PEW and PIW settings. Likewise, there

are a total of 897 tokens consisting of 128 pseudo phonemes per language plus 1 pad

token for the whole multilingual speech corpora in the PIL settings.

Hyper-parameters for the network architecture, such as the dimension of speaker

embedding, are the same as that of YourTTS implementation of coqui 1. All the

experiments except pre-training with the PIL setting used batch size 16 and the

Adam optimizer [17] with β1 = 0.9, β2 = 0.999 and learning rate 10−4. We used

batch size 21 for pre-training with the PIL setting for the language-specific positional

encoding. Baselines are trained with the target language dataset for 180k steps, and

the models trained with our proposed method are pre-trained for 350k steps, then

fine-tuned for 180k steps. 2

1The code is publicly available at https://github.com/coqui-ai/TTS
2The code is publicly available at https://github.com/l22ys/multilingual_unlabeled_pretrain_tts
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Chapter 5

Experimental Results

5.1 Character Error Rate

We used Character Error Rate (CER) as a metric of the performance of a TTS model.

CER indicates a kind of distance between two text sentences, which is computed

as Equation 5.1. N,S,D and I denote the length of one sentence (reference text),

the required number of substitutions, deletions and insertions at the character level

to transform another sentence (prediction text) into the reference text, respectively.

The lower the CER, the closer the two sentences, and when the two sentences are

the same, the CER becomes 0.

CER =
S +D + I

N
(5.1)

Figure 11 describes how we used CER as a metric of the performance of a TTS

model. An input text for a TTS model is used as a reference text, and the generated

waveform is inputted into a high-performance automatic speech recognition model

(ASR) to get recognized text. The recognized text is used as the prediction text. As-

suming that the ASR model recognizes sentences as accurately as humans, the CER

will be lower as the speech synthesis model generates proper waveform. Therefore,
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Table 5.1: CER of the models we trained

CER(%)

BASE TE 22.35
BASE TI 27.07

PEW TE FF 16.69
PEW TE FN 10.87
PIW TI FF 14.30
PIW TI FN 11.89
PIL TI FF 14.48
PIL TI FN 12.53

we regard a TTS model with a lower CER as a better model.

Figure 10: CER as a performance metric of a TTS model

We calculated the average CER for n sentences that had not been seen in the

training stage for every model we trained. To recognize the generated text, we used a

pre-trained ASR model Whisper [24] from OpenAI.3 The CER of the models at the

180k step are shown in Table 5.1. Figure 11 shows the trends of the CER according

to the number of training steps of all models.

Table 5.1 and Figure 11 tell us that the average CER values of the models trained

with our proposed method were lower and decreased faster than those of the mod-

3The code is publicly available at https://github.com/openai/whisper
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Figure 11: CER trends of all models

els only trained with the target language dataset, which means the effectiveness of

multilingual untranscribed speech corpora for speech synthesis. Furthermore, Fig-

ure 12 shows us that the FN setting, in which we did not freeze the parameters of

some modules, achieved better performance than the FF setting. It may validate

our assumption that the multilingual dataset might not fully cover the distribution

of waveform of the target language dataset.

5.2 Mel spectrogram

We observed that pre-training helped the models learn faster than those without

pre-training. To take a closer look at the differences in the generated waveforms

in the early stages of learning, we looked at the mel spectrogram of the waveform

generated by each model trained for 10k steps, receiving text sentences they had not

seen during training as input. A mel spectrogram represents a two-dimensional image
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Figure 12: CER trend comparison of the FF and FN setting

of a waveform, with the horizontal axis representing the time axis and the vertical

axis representing the frequency axis, and visualizing how strongly components in a

specific frequency range exist at each time range.

Figure 13 shows us the mel spectrograms of the ground truth and generated

waveforms. We found that while the mel spectrograms of the baselines are blurry, the

mel spectrograms of the models with pre-training tended to have somewhat sharply

separated frequency components compared to the baselines. It seems to have been

influenced by the ability of the posterior encoder and the decoder to reconstruct

multilingual speech waveforms, which helped the pre-trained model to adapt fast to

reconstruct the waveforms of the target language dataset.
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Figure 13: Mel spectrograms of the ground truth and generated waveforms

5.3 Speaker Embedding Cosine Similarity

When evaluating the performance of a TTS model, it is also possible to evaluate

whether a waveform can be generated in the intended voice. It would be difficult

to say that a model is a good model if it generates another person’s voice rather

than the intended one. Speaker Embedding Cosine Similarity (SECS) was used as a

metric to evaluate this aspect. SECS is computed as Equation 5.2. ea, eb denote the

speaker embedding vector of waveform a and b, respectively. SECS ranges from -1

to 1, and the larger the SECS of ea, eb, the more similar the traits of the speakers

of waveform a and b are, which people use to distinguish who speaks. Because
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speaker embedding ea, eb should contain information for determining the owner of

the waveform, we used a pre-trained model for speaker verification task to extract

speaker embeddings from waveforms.4

SECS(ea, eb) =
ea · eb

∥ea∥2∥eb∥2
(5.2)

Figure 14: Procedure to calculate SECS

Figure 14 illustrates the procedure to calculate SECS as a metric of the perfor-

mance of a TTS model. As we did for CER, we calculated the average SECS for n

sentences that had not been seen in the training stage for every model we trained.

A higher SECS means that the model is better at generating a waveform of the

intended speaker’s voice.

The average SECS values of all models are shown in Table 5.2. Although the

PEW TE FN model achieved the highest SECS, we observed that whether a model

is pre-trained with the multilingual dataset was irrelevant to the performance at

generating the intended voice. Instead, it seemed important whether the model had

a speaker encoder, considering that top-3 models all had the speaker encoder.

Additionally, we visualized speaker embeddings on 2-dimensional space using T-

4The model is publicly available at https://huggingface.co/speechbrain/spkrec-ecapa-voxceleb
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Table 5.2: SECS of the models we trained

SECS

BASE TE 0.47
BASE TI 0.16

PEW TE FF 0.28
PEW TE FN 0.53
PIW TI FF 0.11
PIW TI FN 0.11
PIL TI FF 0.12
PIL TI FN 0.18

SNE in Figure 15. Each point indicates a speaker embedding of the corresponding

waveform, and the color of the point indicates the speaker of its waveform. We

found that the 2-dimension area was divided by gender for ground truth waveforms.

Likewise, we could find a similar tendency for the BASE TE, PEW TE FF, and

PEW TE FN, which had the speaker encoder. However, this was not the case for

other models where some speakers existed whose embeddings were closer to those of

someone of a different gender. We interpreted these results to mean the model with

the speaker encoder was more able to capture the speaker information, which aligns

with the result from SECS.
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Figure 15: Visualization of the speaker embeddings with T-SNE
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Chapter 6

Conclusion

We examined the effectiveness of pre-training a TTS model with multilingual untran-

scribed speech corpora when there is a small speech-text paired dataset of a target

language. Concretely, first, we obtained pseudo phoneme sequences corresponding

to each waveform that would play the role of text in the pre-training stage. We

then pre-trained a TTS model, which had the normalizing flow module to exploit its

invertibility, using multilingual speech data and pseudo phoneme sequences. Finally,

we fine-tuned the model with the small paired dataset of the target language. Exper-

imental results showed us that the model pre-trained with the multilingual dataset

could learn faster and achieve better CER than the model not using the multilingual

dataset, which confirmed the possibility that waveforms of foreign languages can be

helpful in training a TTS model for a target language.

As our proposed method uses multilingual untranscribed speech corpora, it is

meaningful in that people who are unfamiliar with the writing systems of those

foreign languages can use our method. Furthermore, our method can use speech

data from any language regardless of whether it uses logogram or phonogram, which

makes it easy to procure a large dataset for pre-training. Another thing worth noting

is that we use a multi-speaker and multilingual pre-trained model, which can be
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adapted on any voice in any language. In natural language processing, models pre-

trained with multilingual data, such as m-BERT [9], have been successfully used as

starting points of models for downstream tasks in many languages. From this point

of view, our method provides a possible direction for how to make a pre-trained

model that can be used as a starting point for a TTS model for any voice in any

language, which eliminates the need to train the TTS model from scratch.

However, although leveraging the multilingual dataset is more helpful than when

not used, there is a limitation that the quality of a generated waveform is much

lower than that of a waveform generated from a model trained with a lot of paired

data. The waveforms generated from the models trained with our method sound

rather noisy and robotic. Considering that there are models that generate almost

perfect waveforms indistinguishable from human speech if sufficient paired data exist,

improvements are needed to produce waveforms that are much more natural than

now.

Since the method proposed in this thesis use pre-training, it is affected by how

clearly the pre-trained model can reconstruct the foreign language waveform. Con-

sidering that a waveform was not so fully reconstructed at the pre-training stage,

it would be possible to increase the model’s expressivity by increasing the size of

the model and the dataset. In addition, a model using a large multilingual dataset

should be able to cover a variety of acoustic conditions because each waveform can

be recorded in different environments. To this end, as attempted in [5], it would be

possible to model elements that explicitly represent acoustic condition information.

We leave these explorations for future work.
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Appendix

A. K-means clustering results

In the PEW and PIW settings, we performed k-means clustering on the features of

the whole speech corpora. Figure 16 shows us the frequency of each cluster in the

PEW and PIW settings. The horizontal axis represents the id of each cluster, and

the vertical axis represents how many features are mapped into each cluster. We

can notice that the features are quite evenly distributed across the clusters, which

means 128 is a fairly appropriate number for clustering. In the PIL setting, k-means

clustering was performed for each language’s corpus. Figure 17, Figure 18, Figure 19,

Figure 20, Figure 21, Figure 22, and Figure 23 show similar results.
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Figure 16: Frequency of each cluster in the PEW and PIW setting
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Figure 17: Frequency of each cluster with German corpus in the PIL setting
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Figure 18: Frequency of each cluster with Dutch corpus in the PIL setting

48



Figure 19: Frequency of each cluster with French corpus in the PIL setting
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Figure 20: Frequency of each cluster with Spanish corpus in the PIL setting
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Figure 21: Frequency of each cluster with Italian corpus in the PIL setting
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Figure 22: Frequency of each cluster with Portuguese corpus in the PIL setting

52



Figure 23: Frequency of each cluster with Polish corpus in the PIL setting
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국문초록

음성은 매우 효과적인 정보전달 수단으로 굉장히 많은 곳에서 사용되고 있으며, 음성

합성 기술은 사람이 직접 음성을 녹음할 필요를 줄여주어 생산성의 향상과 비용 절감

효과를 가져왔다. 하지만 현재 대다수의 음성합성 모델을 학습시키기 위해서는 많은

양의 음성-텍스트 데이터가 필요하고, 이는 텍스트로 전사된 데이터가 적은 언어권

에서 음성합성 모델을 만드는 것을 어렵게 한다. 본 연구에서는 언어가 다르더라도

발화되는 음성들은 비슷한 발음을공유하는 경우가 있다는것에 주목하여,비교적 확보

하기더용이한전사되지않은외국어음성데이터셋을음성합성모델을학습하는데에

활용하는 방안을 제안한다. 구체적으로는 먼저 외국어 음성 데이터셋에 wav2vec 2.0

XLSR-53 모델을 적용해 발음정보를 담은 벡터들을 추출하고, 이 벡터들을 대상으로

k-means 클러스터링을 진행해 텍스트 역할을 수행할 슈도 레이블을 구한다. 그 다음

외국어 음성-슈도 레이블을 활용해 음성합성 모델을 사전 학습하고, 마지막으로 다시

원래 학습하고자 했던 타겟 언어의 음성-텍스트 데이터를 활용해 모델을 추가로 학습

한다. 실험을 통해서 외국어 음성 데이터를 활용해 사전 학습된 모델이 더 빠르게 더

낮은 CER 값을 달성하는 것을 확인함으로써, 음성으로만 구성된 외국어 데이터셋이

음성합성 모델을 학습하는 데에 도움이 될 수 있다는 것을 확인하였다.

주요어: 음성합성, 전사되지 않은 외국어 음성 데이터, 클러스터링, 슈도 레이블, 사전

학습, 파인 튜닝

학번: 2021-24409
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