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Abstract

A GPU-based pinwise two-step nodal core calculation code named VANGARD
(Versatile Advanced Neutronics code for GPU-Accelerated Reactor Designs) is
developed. It is featured by the GPU acceleration employing a consumer-grade GPU
which can be mounted on a personal computer to realize practical next-generation
pinwise nuclear designs. This research presents the development of the essential
capabilities for real nuclear designs and integration of them to constitute a fully
capable core analysis system. It includes primary solvers such as nodal — CMFD
coupled flux solver, thermal-hydraulic (T/H) solver, and depletion solver as well as
the capabilities of restart/reloading for multi-cycle calculations, control rod
movement during depletion, and load follow operation. The pinwise transient

simulation capability is also developed.

The code employs the Source Expansion Nodal Method (SENM) to solve Simplified
P; (SP;) equations so that the severe intra-pin thermal flux gradients can be
effectively captured with the use of hyperbolic functions while the 4-mesh per
assembly coarse mesh finite difference (CMFD) formulation is used as the overall
framework. For the T/H calculation, a simple T/H solver based on the single-phase
closed channel representing a quarter of an assembly is used for practical
applications. A massively parallelized depletion scheme based on the Chebyshev
Rational Approximation Method (CRAM) is implemented. The GPU acceleration is
applied to almost all of the calculation modules to render feasible simulation times

enough to be utilized commercially.

Not limited to the implementation of calculation capabilities and application of GPU
acceleration, this research resolves many issues and overcomes challenges revealed
in performing the pinwise two-step nodal core calculations on GPU, which have not
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been tackled or even known previously, and suggests resolutions for them with newly
developed elaborate methods and schemes. To resolve too significant memory
burden of the pinwise group constants to be ported on limited GPU device memory,
the burnup window scheme is introduced, and the cross section compression
technique employing the SVD and LRA are applied. The neighbor-informed burnup
correction method is proposed as a practical means to resolve the severe inaccuracy
in gadolinia fuel depletion which is apparently observed in pinwise two-step
calculations. The numerical stability and significant computing time reduction are

achieved by a new CMFD-based pinwise partial current update scheme.

The results of this research confirm the high accuracy and significant computing
performance of VANGARD. For the verification, two commercial PWR cores of
APR1400 and AP1000 and the BEAVRS multi-cycle benchmark problems were
analyzed. For all target problems, VANGARD showed significantly high accuracy
compared to nTRACER transport solutions. The CBC differences were within 15
ppm, and the maximum and RMS pin power errors were within 2.0% and 0.6%,
respectively, throughout the whole burnup steps. Meanwhile, substantial speedups
were achieved by GPU acceleration in every calculation module. Finally, for all the
target problems, a cycle depletion calculation that took more than an hour with 10
CPU cores could be completed within 3 minutes on a consumer-grade GPU. It is
corresponding to that core calculation time spent per each state is less than 10
seconds. These comprehensive verification results ensure that VANGARD satisfies
both accuracy and computing time requirements to be commercially utilized, which

confirms the feasibility of practical pinwise core designs.

Through all of these works, VANGARD has become the first and the only GPU-
based full-featured pinwise two-step nodal core calculation code that guarantees

accurate pin-level solutions in a feasible simulation time. All of these achievements



presented the high potential of practical pinwise nuclear designs, and this research
can serve as a good precedent for future developments of two-step pinwise core
calculation systems which will become a trend in the worldwide reactor core design

analysis institutes.
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Chapter 1. Introduction

The conventional assemblywise two-step core calculation has been the primary
nuclear design method in industries owing to its significantly high computational
efficiency. In terms of accuracy, it can meet the safety margin even though employing
assembly-homogenized group constants cannot consider the intra-assembly
heterogeneity so it inherently entails severe inaccuracy, because the conservative
regulatory requirements were applied in the conventional reactor designs and safety
analyses.

Recently, however, more precise and accurate core analysis is strongly required as
safety regulations have been further tightened, the margin for safety analysis has
become increasingly insufficient due to the deterioration of the aging nuclear power
plant, and advanced reactors with severe heterogeneity have been actively developed.
This requirement cannot be met with the conventional assemblywise two-step
method which cannot provide accurate pin-level solutions, therefore, the fidelity of
nuclear design tools needs to be enhanced.

As a means of high-fidelity reactor analysis, various direct whole core calculation
(DWCC) codes have been actively developed by worldwide research groups which
include DeCART of KAERI [1], n"TRACER of Seoul National University (SNU) [2],
and MPACT of Oak Ridge National Laboratory [3]. Furthermore, the feasibility of
the direct whole core analysis method has been greatly improved by the remarkable
advances in high-performance computing (HPC) technologies. However, it still
relies on large parallel computers and is too expensive to be practically utilized for
routine nuclear designs in the industries.

In this regard, the pinwise two-step method using pin-homogenized group
constants is getting increased attention as a compromise that can serve as a bridge
technology between the assemblywise two-step method developed decades ago and
whole core transport solution method which will take decades to be iI}ldustrially
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utilized. The pinwise two-step method has a high potential to be a next-generation
nuclear design method that can satisfy both accuracy and performance requirements.
With the employment of pin-homogenized cross sections, intra-assembly
heterogeneities can be explicitly considered, and it requires far less computational
costs compared to DWCCs. Especially, it is more suitable for modern light water
reactors (LWRs) and small modular reactors (SMRs) design and analysis in which a
detailed pin-level solution is necessary as core designs are more and more complex
and heterogeneous.

Based on this background, a new pinwise two-step nodal core calculation code
named VANGARD (Versatile Advanced Neutronics code for GPU-Accelerated
Reactor Designs) [4] was developed. It is featured by the GPU acceleration using a
consumer-grade GPU to achieve practical simulation time even on personal
computers (PCs) while retaining practicality. The NVIDIA CUDA [5] was chosen as
the GPU development framework for high applicability and ease of coding. The
pinwise group constants for VANGARD are generated from lattice calculations by
the DWCC code nTRACER to constitute the nTRACER/VANGARD pinwise two-
step code system.

In the following sections, previous researches on the pinwise two-step core
calculations leading up to this research will be explained, and the purpose and scope
of this research, which are specified to overcome the limitations of the previous
researches and to resolve previously undiscovered problems, are detailed. Then, the

outline of the research is given.



1.1 Previous Researches

Various pinwise nodal core calculation codes have been actively developed in both
industries and academic institutes, and the feasibility and high accuracy of pinwise
nodal core calculation have been continuously demonstrated. Since the early 2000s,
Nuclear Fuel Industries (NFI) company in Japan has been utilizing the
AEGIS/SCOPE2 code system [6]. In academic institutes, the DYN3D code of
Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in Germany [7], the NECP-
Bambo02.0 code system of Xi’an Jiaotong University (XJTU) in China [8], and the
HCMFD code of KAIST in Korea [9] are being developed. All of these previous
researches have demonstrated the high potential of pinwise two-step calculation code
as an alternative tool for future nuclear designs.

At Seoul National University (SNU) as well, researches on the pinwise two-step
core calculations have been conducted step-by-step. At first, Yoon [10] addressed the
need for pinwise two-step calculation for practical nuclear design analyses, and
based on this, he developed a new pinwise two-step core calculation code employing
the 2-dimensional(2D)/1-dimensional(1D) coupled finite difference method (FDM)
solver for diffusion equation to maximize computational efficiency. Following that,
Cho developed the SPHINCS (Simplified P; Pin Homogenized Innovative
Neutronics Core Simulator) code [11] which solves SP; equations employing the
FDM. According to the thorough and systematical analysis of the error sources in
pinwise multi-group core calculations by Hong [12] following the above two
previous researches, however, FDM is suffered from severe discretization errors and
refined meshes are required. However, the fine mesh FDM leads to a significant
computing burden, which weakens the original strength of FDM of high
computational efficiency. In this regard, he finally suggested Source Expansion
Nodal Method (SENM) solver employing SP; theory as the most optimal solver for

retaining both accuracy and practicality, which is in turn adopted as the primary



nodal kernel of VANGARD.

In spite of much cheaper computational costs of the pinwise two-step calculation
compared to the DWCC, it is still computationally too demanding to be practically
utilized for nuclear designs which involve hundreds of thousands of core calculations.
This inherent limitation is relevant to all of the aforementioned pinwise two-step
codes. To overcome the non-negligible computational burdens of pin-level
calculation, almost all of the pinwise two-step calculation codes ever developed
exploit massive CPU parallelism employing OpenMP or Message Passing Interface
(MPI). However, the performance enhancement of CPUs is stagnant due to the power
and memory barriers. Namely, satisfying the computing time requirement with CPU-
based pinwise calculations, especially with nodal solver, to substitute the legacy
conventional two-step methods is challenging.

In this regard, the application of GPU acceleration to the pinwise nodal core
calculation was devised. GPUs can be a desirable computing resource to substitute
multi-core CPU parallelism in that they contain a substantial number of simple
arithmetic cores which can deliver significant floating point computing power
enabling massive parallelism. The fact that the performance is still being improved
exponentially is another undeniable advantage of the employment of GPUs. In fact,
there has been an earlier work on applying GPU acceleration to pinwise core
calculations in the SCOPE2 code [13] in 2011. Yet, it had limited scope and
verification results, and no further work has been performed, supposedly due to the
difficulties in porting a large CPU-based legacy code that has been developed for a
long time and the limited capabilities and capacity of GPU hardware at that time. For
the decade, however, the performance and memory have been continuously and
drastically developed, and SNU has cleverly exploited these advanced modern GPUs
for practical high-fidelity nuclear analyses and succeeded in application to two codes:
the direct whole core calculation code nTRACER [14] and continuous energy Monte

Carlo Code PRAGMA [15].



Motivated by these previous successful experiences, VANGARD adopts GPU as
the main computing resource. Owing to the increased memory capacity compared to
when the GPU acceleration to SCOPE2 was conducted, most parts of VANGARD
were ported to GPU. Furthermore, it has been developed with careful considerations
of the advantages and limitations of GPU from the very beginning of the
development. Therefore, all the algorithms are elaborately optimized to be efficiently
executed on GPUs. All these things will allow substantial feasibility and practicality
to be achieved which none of the pinwise two-step core calculation codes ever

developed could have completely achieved.

1.2 Objectives and Scope of the Research

This research aims to develop a fast yet accurate GPU-based pinwise two-step
nodal core calculation code for practical applications in nuclear designs and analyses.
To accomplish it, the following objectives are achieved in this research.

The first objective is to develop the essential capabilities required for real nuclear
designs and integrate them to constitute a fully capable core analysis system. In
addition to the neutronics solver employing nodal — CMFD coupled calculation,
various capabilities for practical applications are developed as follows:

1) Inline T/H feedback module with the simplified model
2) Pinwise microscopic depletion and B-10 depletion
3) Critical Boron Concentration (CBC) search
4) Xenon equilibrium and transient feedback
5) Restart/Reloading for multi-cycle calculations
6) Control rod movements and load follow operation
The transient calculation capability was also developed to make VANGARD a

practical pinwise core design code, for which time-dependent nodal — CMFD solver



and T/H solver were additionally developed.

The second objective is to apply GPU acceleration to the calculation modules and
attain sufficiently high computational efficiency so that it can be practically utilized
in industries. VANGARD was developed to be executed on both CPU and GPU
platforms, and the CPU calculation module was also optimized, but in this thesis the
optimization requirements for GPU calculation are mainly dealt with in detail since
VANGARD is featured by uncommonly fast execution with the use of GPUs. The
requirements for exploiting GPU performance are as follows, and all the GPU
acceleration modules were implemented to meet the requirements as far as possible.

1) Vectorization:
GPU is specialized at SIMD (Single Instruction Multiple Data) parallelism,
therefore, branches should be minimized.

2) Memory Coalescing:
A group of threads should read and write contiguous memory.

3) Local Memory Use:
Access to the main memory should be minimized and frequently used data
should be saved in high-bandwidth memories such as cache and register.

Besides the implementation of essential calculation capabilities and GPU
acceleration for them to achieve substantial computational efficiency, the novelty of
this research comes from that it is also dedicated to resolving severe issues which
are newly confronted by shifting the nuclear design method from the legacy
assemblywise calculation to pinwise calculation and by introducing the GPU
acceleration which is limited by insufficient memory. None of the previous
researches on the pinwise two-step method has addressed these issues and suggested
the proper resolutions. Thus, this work can serve as a pioneer of GPU-based pinwise
two-step calculation method.

The final objective is to confirm the high accuracy and significant computing

performance of VANGARD. Since it targets to be applied to real core designs, the



target problems for the comprehensive assessments of VANGARD steady-state
calculation capabilities are a series of real cores — APR1400 initial core, AP1000
initial core, and BEAVRS Cycle 1 and 2 cores. — For the verification of the transient
calculation modules, NEACRP rod ejection benchmark problems are analyzed.
Basically, the accuracy of VANGARD solutions is assessed by comparison with the
transport solutions of nTRACER, and if available, measurements and the Monte

Carlo solutions of PRAGMA are also used as the references.

1.3 QOutline of the Thesis

In Chapter 2, the nTRACER/VANGARD two-step code system is introduced
including the group constant generation procedure. In Chapter 3, all the details of the
full implementation for steady-state calculation capabilities are spelled out. The
detailed rationale for the selection of nodal kernel, which is the one-node SP; SENM
kernel, and derivation of it are presented. The coarse mesh finite difference (CMFD)
acceleration to enhance the fission source convergence is also treated. Following the
neutronics solvers for flux update, all the auxiliary capabilities which are necessary
for core design listed in the previous section are detailed. The transient calculation
capabilities are addressed in Chapter 4. For computational efficiency and ease of
implementation, most of the modules which were pre-established for steady-state
calculation are shared with transient calculation as far as possible. This section will
specifically describe additionally developed solutions for transient calculation,
focusing on the time-dependent nodal — CMFD coupled solver and time-dependent
T/H solver. Chapter 5 presents all the details of the GPU acceleration strategies
including numerous elaborated computational methods for cleverly utilizing the
GPU computing technologies. Chapter 6 covers the challenges of pinwise two-step

core calculations and suggests the resolutions for them. Specifically, resolutions of



numerical instability and inaccuracy and resolutions of memory burden are proposed.

Chapter 7 presents comprehensive assessments of the simulation capabilities and
solution accuracy of VANGARD. In Chapter 8, the effectiveness of the GPU
accelerations is demonstrated with noticeable speedups over 10-core CPU
calculations for all problems. Chapter 9 concludes the thesis with remarks on the

value of this research.



Chapter 2. nTRACER/VANGARD Two-Step
Code System

This chapter will introduce the details of " TRACER/VANGARD two-step code
system. The procedure of generating pinwise multi-group constants as well as the
SPH factors are spelled out in Section 2.1. The lists of the nuclides considered in the
VANGARD code are explained in Section 2.2. The characteristics and the
advantages of the hierarchical data format for group constant storage are addressed

in Section 2.3.

2.1 Group Constant Generation

The pinwise group constants for VANGARD calculations are generated by the
nTRACER single assembly depletion calculations. As is done in the conventional
two-step calculations, branch calculations are performed at various burnups for each
assembly to generate the group constant table as a function of fuel temperature,
moderator temperature, moderator density, and boron concentration. Note that for
generating group constants of reflector assemblies which do not contain fissile
materials, fuel-reflector local problems are solved as described in Figure 2.1, and

reflector group constants do not have a dependency on burnup.

[T
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Figure 2.1 Fuel-reflector local configurations.

After generating a group constant file for a single assembly through nTRACER

calculations, the pinwise and groupwise SuperHomogenization (SPH) factors for



alleviating the homogenization errors are also generated from the combined
nTRACER/VANGARD lattice calculations for each assembly. Given the reference
pinwise flux information and pin-homogenized cross sections provided by the
nTRACER lattice calculations, VANGARD runs iterations to determine the SPH
factors for all the burnup points and branch points. This procedure is done only once
for each assembly type, and the SPH factors are stored in the pre-generated group

constant file.

2.2 List of Nuclides in VANGARD

VANGARD group constant considers 32 nuclides, whose list is shown in Table
2.1. There are a few nuclides specially treated in the VANGARD cross section
system that require explanations. First of all, the B-10 nuclide is separately defined
depending on whether it is used as soluble boron (5000) or burnable absorber (5010)
as they require separate treatments in T/H feedback, critical boron search, and
depletion calculations. The lumped nuclides are imaginary nuclides that represent
more than one elementary nuclide. Three lumped nuclides are for specific materials,
and the remaining one (0) incorporates all the other auxiliary nuclides of nTRACER

that are not explicitly considered in VANGARD.

Table 2.1 List of the nuclides considered in the VANGARD group constant.

Type Z1D

5000 (B-10 in soluble boron),

5010 (B-10 in burnable poison)

Poison 53135, 54135, 60147, 61147, 61148, 61149, 62149

92234, 92235, 92236, 92237, 92238

93237, 93238, 93239

Actinide 94238, 94239, 94240, 94241, 94242
95241, 95242, 95243
96242, 96243, 96244

0 (Other), 1000 (Moderator), 40000 (Zirconium),
64000 (Gadolinium)

Boron

Lumped




The lumped nuclide for moderator (1000) represents the H>O molecule. It is
defined to separately treat the scattering matrix of the moderator. In the VANGARD
group constant, scattering matrices of every nuclide but H,O are merged and stored
as a single macroscopic scattering matrix in order to reduce memory usage and
enhance computational efficiency. It is valid because the energy migration of
neutrons through scattering in LWRs is dominated by the light nuclides in the
moderator, especially hydrogen. Namely, it is a waste to store all the microscopic
scattering matrices of heavy nuclides to accurately calculate their scattering matrices
that are insignificant.

The lumped nuclide for zirconium (40000) incorporates all the zirconium isotopes.
It is defined to simulate the removal of burnable poison rods during reloading. In
many commercial PWRs, removable burnable poison rods such as Pyrex or WABA
are inserted for excess reactivity control which have the lifetime of a single cycle
and are removed in the subsequent cycle. However, the group constants for an
assembly are generated for the lifetime of the assembly which usually spans three
cycles, and it is difficult to consider the extraction of burnable poison rods in the
group constants in advance. In VANGARD, therefore, the removal of burnable
poison rods is modeled by forcing the number density of the lumped nuclide as well
as 5010 to zero during reloading, which is equivalent to removing all the poison and
structural materials contained in the burnable poison rods. In order to prevent the
guide tube material from being removed together as lumped nuclide, therefore,
zirconium is separately treated.

Finally, the lumped nuclide for gadolinium (64000) incorporates all the
gadolinium isotopes. A gadolinia fuel presents highly heterogeneous depletion
behaviors that cannot be accurately modeled in the pinwise two-step calculations due
to spatial homogenization. As the result, a special treatment for gadolinia fuels is
introduced in VANGARD in which the gadolinium isotopes are treated as a single

fictitious nuclide that is not depleted, which will be elaborated in Section 6.1.2.
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2.3 Hierarchical Data Format for Group Constants

The VANGARD group constants are stored in the Hierarchical Data Format (HDF)
[16] in single precision, although they are cast into double precision in calculations
for accuracy. Pinwise group constants are significantly larger in size than the
conventional assemblywise group constants, so efficient storing and parsing are
important. The HDF format is basically a binary format, so it has a smaller size and
much faster parsing speed than the ASCII format. In addition, the HDF format has a
hierarchical structure that resembles a file system and allows random access to a
specific data, whereas the ASCII format or the ordinary binary format needs to be
processed sequentially. Furthermore, the HDF format is readable via external
programs unlike the ordinary binary format, which makes troubleshooting easier for
programmers and users. Thus, the HDF format is appropriate for dealing with large,
hierarchical, and jagged data including the pinwise group constants. Figure 2.2
illustrates the layout of a group constant file of VANGARD visualized by an HDF

viewer program.

12



~ (8] APR1400_A0_8G.h5
B ASY_TYPE
B BRANCH_POINT_IDX
) BUEXP
) COND_BORON
& COND_RHO
B COND_TFUEL
B COND_TMOD
B GRID_RATIO
~ @I50_GC
~ @ D000
B BASE_D
5 BASE_GC
i BASE_H20SCAT
B BASE_SS
i VAR_D_BORONO
i VAR_D_RHOO
i VAR_D_TFUELDT
B VAR_D_TMODO1
B VAR_D_TMODDZ
B VAR_D_TMODO3
B VAR_GC_BORONDT
B VAR_GC_RHOD1
8 VAR_GC_TFUELOT
8 VAR_GC_TMODOT
8 VAR_GC_TMOD02
8 VAR_GC_TMODO3
{8 VAR_H20SCAT_BORONOT
8 VAR_H20SCAT_RHOD
B VAR_H20SCAT_TFUELO1
B VAR_HZ0SCAT_TMODON
B VAR_H20SCAT_TMODOZ
B VAR_H20SCAT_TMODO3
B VAR_SS_BORONO1
8 VAR_SS_RHOO1
8 VAR_SS_TFUELOT
8 VAR_SS_TMODO1
8 VAR_SS_TMOD02
8 VAR_SS_TMODO3
~ @bl
B BASED
B BASE_GC
) BASE_H20SCAT
B BASE_SS
Qybooz
L Doo3
CaDoo4
QDoos
QDoos
B ISO_NAME_LIST
QISO_ND_LIST
B NUM_BRANCH_PER_TYPE
B NUM_BRAMCH_POINT
B NUM_BURNUP_POINT
B NUM_PIN
QA PIN_CHI
QA PIN_FLUX
QaPIN_SPH
& SPH_TYPE

@BASE_GC at /1SO_GC/DO00/ [APR1400_A0_8G.h3 in D#VAMNGARD®APR1.. — [m]

Table Import/Export Data

Diata Display

b K[ 0]

0-bazed

0

1

ol

2 | 3 | a | =5

oL Ol W N = O

PR3 PO RS RO P P AD — = — o =
NG RWN S OO0~ ®a R W —

28

@

38

S
=)

<

0.019395...
0.021348...
0.021335...
0.021342...
0.021338...
0.021309..
0.021306...
0.021298...

1.8618153
1.8604132
1.8609351
1.8604467
1.8606816
1.8620675
1.8623401
1.8626571

0.02129803 1.8626571
0.02130683 1.8623401

0.021309...
0.021336...
0.021342...
0.021335....
0.021348...
0.019396...

0.021348...

1.8620676
1.8606516
1.8604497
1.8609351
1.8604132
1.8618156
1.860397

0.023482161.8604887

0.023435...

1.8500872

0.023434011.8500667

0.023494. ..
0.023486...

0.023448

0.023428...
0.023428...
0.023448...
0.023486..
0.023494. .
0.023484. .

0.023485...

1.8587978
1.869294

1.8611714
1.8620379
1.8620379
1.8611714
1.859284

1.8587978
1.8500867
1.8500972

0.023482161.8604887

0.021348...
0.021335...
0.023486...

1.860387
1.860937
1.8500764

0.023622191.8571882

0.023574...
0.023560...
0.023502...
0.023466...
0.02344. .
0.02344. .
0.023486...

N AP3EN2

1.8544189
1.8850473
1.8560364
1.860862

1.8613286
1.8613285
1.8509862

1 ARAMARL

.8852005 1.8217222 4166319
885477
.8858098 1.82

800477
(8852005 1.8217222 41668186 5.408806

.8835801

8835427 1.8217328 4184287

(8836263 1.8217321
(8026626 1.8226807 41611627 B.3957006

.8821429 1.8223716 4.153328
.8818650 1.8225168 4.1615684 5.398489
.8823643 1.8226272 41811726 ©.396932
(8051242 1.8226896 4161461
(8851242 1.8226895 4151461

.8818656 1.9226168 4.151668
8821429 1.9223714 4.183328

.8802681
B7TE134 18221487 41046164 5.4169197

.88282

8850198 1.9209120 4.180838 5.433426
8835427 1.9217328 4.164287 5.418476

.8840547 1.92168064 4.1656456 £.4181616
.8835601

1.9216841 41676014 5.416994
5416177
5405806
5.4082975
5.4061346
5.408134
5.408297

8837820 1.9216266 4167086
1.8218531

1

1

1

1

1 4184977

1
8868099 1.921

1

1

1

1

1

1.9218631 4 1644977

8837625 1.9216255 4167065 5416177
18215841 416702 5.416994
8840597 1.9216854 4.1605455 5.4151616
5.418476
8650198 1.9209129 4.1808395 ©£.4334246
41645255 5.418564

8821597 1.9224322 41532605 5.3964224
5.396051

6842456 1.9227031 4160964 5.386259
5.3583943
5.3839436
5.388258
5.396932
5.398489
5.396051

8821697 1.9224322 41532666 5.3964224

8542456 1.9227033 4.150964
8823543 1.9226272 4151172

(8026626 1.8226807 4.1611927 6395701
8835263 1.8217321

41645255 5.418864
8840615 1.9217014 41862117 5.416202
8821387 1.9224441 41531396 5.3966146
1.9223276 41544676 5£.4048886

8781455 1.9221216 4156476 5.413625

(8811088 1.8223136 41551757 5.400819
.88282

1822406 4156751 5382486
8843804 1.9227036 4.1530204 5.3875313
8843304 1.9227035 4.1530204 5.387531
1.922406  4.1867017 5392486
RATINAAR 1 4223137 A 1RRITR R ANNAR1G

5.327
5.302
5.30C
5.301
5.301
5.202
5.202
5.201
5.201
5,293
5,293
5.301
5.301
5.30C
5.302
5.322
5,303
5.281
5.281
5.281
5.283
5.282
5.273
5.26¢
5.26¢
5.272
5.282
5.283
5.281
5.261
5.281
5.302
5.30C
5.281
5.29C
5.301
5,208
5.26%
5.277
5.272
5.272
5.277
R oRRY
>

Figure 2.2 Layout of a group constant file.
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Chapter 3. Steady-State Calculation Capability

This chapter introduces the full implementation details of the steady-state
calculation capabilities of VANGARD. Section 3.1 covers the flux solvers which are
most primary in the code. VANGARD employs the one-node simplified P; (SP5)
source expansion nodal method (SENM) as the main nodal kernel while the 4-mesh
per assembly coarse mesh finite difference (CMFD) formulation is used as the
overall framework. This section presents the pinwise nodal solution method
including the selection of the nodal kernel and the CMFD acceleration scheme.
Section 3.2 introduces the feedback algorithm. In this section, the solution scheme
of a lightweight, inline thermal-hydraulic solver for practical applications is
explained, which comprises the solution of the heat convection equation for the
coolant channel and the heat conduction equation for the fuel pellet. In addition, this
section also explains the xenon transient/equilibrium feedback algorithm. In Section
3.3, the depletion algorithm is described. VANGARD employs pinwise microscopic
depletion scheme using a depletion chain consisting of 44 nuclides which is extracted
from nTRACER such that only important nuclides are explicitly traced and the
others are treated macroscopically as a lumped nuclide. This section explains the
burnup system solutions for the Bateman equation as well as the B-10 depletion
scheme for considering the soluble boron depletion. Section 3.4 presents the overall

flowchart of the steady-state calculation for a cycle depletion.
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3.1 Flux Solvers

This section presents the rationale for determining the one-node SP; SENM kernel
as the optimal pinwise nodal kernel, followed by the derivation of it. In addition, the
coarse mesh finite difference method for accelerating the fission source distribution
convergence is presented. All these elements constitute the efficient and accurate

neutronics solver of VANGARD.

3.1.1 Selection of the Pinwise Nodal Kernel

The SENM [17] is employed to solve the SP3 equation in VANGARD in that it
can capture severe flux gradients more accurately than other nodal methods owing
to the use of hyperbolic functions as well as polynomials for flux expansion. Because
the intra-assembly heterogeneities are explicitly considered in the pinwise
calculations and the intra-pin flux shapes change severely in low energy groups, the
SENM is suitable for the accurate representation of the flux shapes even in pinwise
calculations.

VANGARD is based on the SPs transport approximation in that it is superior in
capturing the transport effects to the diffusion approximation by accounting for
higher order of the angular flux expansion. Therefore, the SP; calculation can
produce more accurate solutions than the diffusion calculation especially in
problems where spatial flux variation is severe, which is challenging for the diffusion
approximation.

The superiority of the SENM to the NEM and of the SP3 to the diffusion were
confirmed through the actual core calculations. The BEVRS [18] benchmark cores
with ARO and with the control rod bank D, C, B, and A in under the HZP condition
were simulated, and the pin power distributions were compared with the nTRACER

transport solutions. Note that for all calculations, the pinwise and groupwise SPH



factors are employed. As shown in Figure 3.1 and Table 3.1, the SENM solution
shows definitely better accuracy than the NEM solution. Especially, in the rodded
case where the flux gradients are severe, the NEM solver cannot catch the flux
variation accurately to have the maximum and RMS pin power error of 7.1% and
2.6%, respectively, while those in the SENM calculation are only 2.6% and 0.8%.
The accuracy superiority of the SP3 solution over the diffusion solution is also clearly
confirmed, as presented in Figure 3.2 and Table 3.2. For both unrodded and rodded
cases, the SP3 solutions show better accuracy than the diffusion solutions.

The one-node kernel was chosen to avoid the use of a pinwise SP; CMFD solver.
Although the two-node kernel has better convergence characteristics by reflecting
the relations between the interface current and the two node average fluxes
simultaneously, it is not favorable in the pinwise SP3 core calculations since it relies
on the CMFD updates of the pinwise node average values of the second angular flux
moment which can cause numerical instability due to its potential negativity.
Furthermore, pinwise SP; CMFD is computationally expensive. In this regard, the
pin-level one-node SP; SENM kernel is finally chosen as the optimal nodal solution
employed within the assembly-level diffusion CMFD formulation with 4 meshes per

assembly.
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Figure 3.1 Pin power error (%) distribution comparison between NEM and SENM

calculations.
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Table 3.1 Comparison of maximum and RMS pin power errors between NEM and

SENM calculations.
Case Pin power error NEM SENM
(%)
Max 3.9 14
ARO RMS 2.0 0.6
. Max 7.1 2.6
D,C.B,An RMS 2.6 0.8
ARO D,C B,Ain
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Figure 3.2 Pin power error (%) distribution comparison between diffusion and SP3

calculations.

Table 3.2 Comparison of maximum and RMS pin power errors between diffusion

and SP; calculations.

Pin power error o
Case (%) Diffusion SP;
Max 6.7 14
ARO RMS 3.1 0.6
. Max 10.3 2.6
D,C,B, Ain RMS 4.7 0.8




3.1.2 Derivation of the One-node SP3 SENM Kernel

The derivation of the one-node SENM kernel starts from the transverse-integrated

one-dimensional within-group neutron diffusion equation in the following:

4D d?

—h—jd—§5¢(§u)+zr¢(§u)=Q(§u) (3.1)

where h, denotes the node size in the wu-direction and &, represents the

coordinate variable normalized in the range of [-1, 1] such that the origin of the

coordinate is located at the center of the node; namely
é:u = (32)

For brevity, the subscript for the direction will be omitted in the following. In the 4"
order SENM, the source term Q determined as the sum of the fission, scattering,

and transverse leakage sources is expanded up to 4" order using the Legendre

polynomials as:
QO = Ep (O +5(0) - L&) = X 4R () (33)

Note that the transverse leakage is approximated as a quadratic function using the
node-average leakages of three adjacent nodes, which is the conventional way. By
inserting Eq. (3.3) into Eq. (3.1) and solving for the flux, the analytic solution for

the flux can be obtained as follows:

#(S) =44 (5) + ¢ (S)

= Asinh(x¢&) + Beosh(x&) + .ZA:Ci P(&) (3.4)



where the subscripts H and P denote the homogeneous solutions with hyperbolic

functions and particular solutions with 4™ order polynomials, respectively, and

h [T
=\
(3.5)
_1( 15 C_1 B) % G
S O, + zqs’ ) g, ‘K2q4! 3—_Zr’ 4——2r-

The flux in Eq. (3.4) is also expanded by approximating the homogeneous solutions

using the Legendre polynomials, which yields the following expression for the flux:
_ 4

#(&)=¢+> aR () (3.6)
i=1

From the orthogonality of the Legendre polynomials, the flux expansion coefficients

are obtained as follows:

a = c1+§(cosh() Smh(K)JA,
K

3cosh(zc) sinh(x) B
K2 K ’

a3=c3+1( 1+— cosh(zc) [ 1fj5i”h(’<)JA,
K K K

5 21 45 105 |sinh(x
B

By imposing the partial incoming currents as the boundary conditions at the two

U'I

(3.7)

surfaces of the node, the coefficients A and B of the homogeneous solution are

determined as:

a0 —37) 12— (u+ B)e, —(u+6p)c,
prcosh(x) + psinh(x)
_—up+ (7 +3") 12— (u+3p)c, - (u+10p)c,
- prcsinh(x) + p(cosh(x) —sinh(x) / k)

(3.8)

where J'" and J" represent the incoming currents at the left and right surfaces of
i—! 2 1H
1 9 I__ I



the node, respectively, and u is the surface even moment fraction which is
differently determined for the summed flux and the 2™ flux moment in the SP;
SENM equations. Once the homogeneous solution is determined, the net current can
be obtained by taking the derivative of the node average flux as follows:

2D dg(¢)
E

=-2px(Acosh(x¢) + Bsinh(x&)) — 2,824: c,P(&).

(&) =-
(3.9)

Substitution of the net current to the nodal balance equation yields the final solution

for the node average flux as:

S+ m(%@f“(%+JJ)+(3—r“(u+3ﬁ“))cg+(10—r“(y+10/3“))c:;D

T o+ Y Spurt
(3.10)
where
K sinh(x)
£ : : (3.11)
Bxsinh(x) + ,U[COSh(K) _S'”h(’()j
K

Using the updated node average flux, the outgoing currents can be obtained as

follows:
I = ug (1)+%J D =a’A +a°B + u(é +¢3P(1))+%jp(1),
I = (D-Z3 (D =-a’A +a'B+u(F +§ (D)~ 23D
(3.12)

where
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a, =—pKcosh(x) + psinh(x),

o, =—presinh(x) + ,u(cosh(lc) - Si”h(’()j,
K

- 4 3.13
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The SP; formulation for SENM [19] is derived in the analogous manner to the

diffusion formulation starting from the following transverse integrated SP; equations:

4D, d? - .
_h_ZOF% +2r0,g¢0 :Qo’

1D d? (3.14)
- h22 d_é:z¢2 +2r2,g¢2 = Qz

where
b =ty +24,,
D, =—, D=—, (3.15)
3z, 7%,
4 5

X00=20 Zpp —§Zr +=3,.

The source terms in Eq. (3.14) are also separately defined for the summed flux ( ¢?0 )
and 2™ flux moment ( ¢, ) equations using the node average source (5 ) induced from
the 0™ flux moment, namely the node average flux, as:

Q,=5+2%, -,

2_ 2 (3.16)
Q, :_ES +§Zr¢0 -L

where

S=L S5 4+ 5 (3.17)

keff g' g’
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The SP; SENM equations are solved for the summed flux and the 2™ flux moment
with differently defined coefficients: diffusion coefficients, removal cross sections,

and surface even moment fraction u.The value of u issetto 1/4 and 7/16 for the

summed flux and the 2™ flux moment equations, respectively.

Note that the equations for the summed flux and the 2™ flux moment are written
in the same form. Only the specific data — diffusion coefficients, removal cross
sections, and source terms — are different. Namely, the solution schemes for the two
equations are identical. It allows to share the same compute kernels across the two
coupled equations in the SP; formulation, which is favorable for the vectorization on
a GPU that is optimized for the operations exploiting SIMD parallelism.

Figure 3.3 shows the within-group solution sequence of the one-node SENM
kernel. Operations colored in blue are performed for each direction, and they are
implemented such that the operation for one direction is independent from others.
Namely, it is possible to use different types of nodal kernels and expansion orders
across different directions. In case of the expansion order, 2™ order is applied to the
radial direction while 4" order is applied to the axial direction. For the radial
direction, applying 4" order expansion to the pin-sized fine mesh incurs stability
issues [19] and is basically overkill. On the other hand, the axial solution requires
full 4™ order expansion since the axial mesh size is relatively large. In this manner,
kernels of different orders are adaptively used in different directions for efficient

pinwise nodal core calculations.
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Figure 3.3 Solution sequence for each group in the one-node SENM kernel.

3.1.3 Coarse Mesh Finite Difference Acceleration

In VANGARD, the assembly-level multi-group (MG) diffusion CMFD
calculation is performed with the 4-mesh per assembly to accelerate the convergence
of fission source distribution. The conventional CMFD acceleration method is
employed where the linear system is set for the homogenized coarse meshes and the
unknown is the global 3D coarse mesh scalar fluxes. The CMFD calculation begins
with generating spatially homogenized MG cross sections and fission spectra on the
coarse meshes. The coarse mesh cross sections are calculated as the flux-volume-
weighted average of the fine mesh cross sections while the coarse mesh fission
spectra are computed by using the fission source distribution instead of the flux
distribution. Thus, for each energy group (g), the spatially homogenized macroscopic

cross section for the reaction type of x and the fission spectra are obtained as follows:



Zzé,i¢g,ivi Zlg,i'//ivi
le _ el ’ | —del 3.18
YV & 2wV, o

iel iel

where [/ is the coarse mesh index, and i is the fine mesh index.

The current correction coefficient ( I5) is introduced so that it preserves the net
current at the interface between two coarse meshes, which makes equivalent between

CMFD and nodal solutions, as follows:

J |nit1/2 = _Dl +1/2 (¢| +1 _¢| ) - |:A)|+1/2 (¢| + ¢|+1)- (3-19)

From the correlation between the net current at the interface which can be obtained
from the high-order solution, in this case the nodal solution, and the two coarse mesh
scalar fluxes, the correction coefficient of each coarse mesh is computed for each

direction as follows:

D :_5|+1/2(¢|+1_¢|)—Jrit1/2
1412 b

. (3.20)

With the net current relation in Eq. (3.19), the finite difference form of the diffusion

equation for each coarse mesh (/) of each energy group (g) is represented as follows:

> (-Byg ~ Dy )4 A +(zr,gv, +3(Byg - |5u,g)/\,uj¢,,g vV, Y 5.4,

u 9'#g
1

= k_ZgVI ZVZf ,g’¢| .9’
eff [

(3.21)

where A4, 1s the coarse mesh area at the u-th surface, and V is the coarse mesh volume.

Resultantly, the global 3D CMFD linear system is setup in the matrix form as:

1
M —Zs)<p=k—xFq> (3.22)

eff

Here, the node major ordering scheme is used so that a GXG block matr%x.,is fog‘medl :
'\._! -";". e 1_. 8
24 -



for each coarse mesh and the overall structure becomes a block septa diagonal matrix.

The solutions obtained from the CMFD power iteration are the global 3D coarse
mesh fluxes, which are fed back to the nodal solver by modulating the fine mesh
fluxes using the ratio of the coarse mesh fluxes determined in the previous nodal —

CMFD calculation as follows:

()
40 = 0 (—'(vf_“fff’ j icl (3.23)

1,Nodal

fine mesh flux obtained from the |-th CMFD calculation

S
Il

(D = coarse mesh flux obtained from the (I -1)-th nodal calculation

P Lo = coarse mesh flux obtained from the I-th CMFD calculation.

3.2 Feedback Calculations

Consideration of the T/H feedback effects is essential in analyzing operating
reactors, but it is typically achieved by coupling an independent T/H code with the
neutronics code, which is cumbersome. VANGARD has a lightweight built-in T/H
solver that uses a simplified yet reasonably accurate model suited for practical
applications. Equilibrium and transient xenon feedback schemes were also
introduced to prevent numerical xenon oscillations. This section spells out the T/H

feedback and xenon feedback calculations.

3.2.1 T/H Feedback

In the simplified T/H model employed in VANGARD, it is assumed that each axial
segment of a fuel rod is an axially infinite and azimuthally symmetric cylinder.
Namely, the axial heat conduction between the segments is neglected angli only the

A
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radial 1D heat conduction within each segment is solved. This is valid because the
axial temperature distribution in a fuel rod presents much milder variations than the
radial one so the axial heat flux is small. For the coolant, each flow channel is treated
as closed so that there is no flow mixing between the flow channels. All the other
hydraulic effects of coolant such as the pressure drop are also neglected, and only
the axial enthalpy rise by the heat transferred from the contained fuel rods is
considered.

Under these assumptions, the steady-state heat conduction equation for the fuel

and cladding is given as:

10 or m
22k -a-1a (3.24)

where " is the volumetric heat generation and y denotes the direct heating ratio
which is the fraction of the heat directly released to the coolant as gamma rays. The
correlations for the thermal conductivity k of fuel and cladding are adopted from
the fuel performance analysis code FRAPCON [20].

The heat convection equation for the gas gap is given as:
q"=h,AT. (3.25)

The gap conductance h, can be either specified by the user as a single value or

computed using a look-up table derived from the fuel performance analysis code
ROPER [21] in which the gap conductance is given as a function of linear power
rate and burnup.

The heat conduction equations are numerically solved with the finite difference
method. Figure 3.4 illustrates the discretization schematics of a fuel rod for the finite
difference calculation. Points are positioned with equidistance in each region. The
number of points in the fuel pellet n excluding the center point can be arbitrarily

determined by the user, and two and three points are used for the gap and cladding,
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respectively.

Fuel Pellet @ Gas gap

Cladding

Coolant Flow

T
1y I

Figure 3.4. Discretization of a fuel rod for the finite difference scheme.

The discretized equations for solving the heat conduction equations are shown
through Eq. (3.26) to Eq. (3.31). Boundary conditions are imposed by the zero
temperature gradient condition at the center and the coolant temperature T, , atthe
periphery. The equations at the region interfaces are derived by the assumption that
the temperature profiles in the pellet and cladding can be expressed as quadratic

functions.
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At the center of a pellet (i=0):

4k n
Foz(TO -T,)=0-7)q
f

At the interior of a pellet (1<i<n):

At the surface of a pellet (i=n):

1
Ar,

. {2%1 —(2kn +h,Ar, [3

At the gap side of a cladding (i=n+1):

rn

ti2|:8kn+1 (Tn+2 _Tn+1) + 4tchg

C n+l

+1_ n-1
n

n

(Tn - n+1)

(3.26)

_hg r” i+£ &
rn+l rn+l tc kn+l
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K T, +h Ar, 3+1—k—
k ! n k

n

JTTH-].} = (1_ }/)qm

—1]}0” ~T,,)=0

(3.27)
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At the middle of a cladding (i=n+2):

i2 k. 1(1_ Arc JTnu_ k. 1 +k. 1 +£[k. 1 _k. 1] Tn+2+k. 1
Arc |7§ 2r.n+2 FE HE 2r.n+2 HE IiE HE

At the wall side of a cladding (i=n+3):

k k 4h
_ 8 n2+3 Tn+2 + 8 n2+3 v hW i + E 1-— @ Tn+3 = 4hW +
tc tc tc rn+3 tc kn+3 tc

where

h, =  wall heat transfer coefficient,

t. = thickness of the cladding,

Ar, =  size of meshes in the pellet,

Ar, = size of meshes in the cladding,

k , = average thermal conductivity of point i and i+1.

29

Ar,

1+ —E
(Zr

n+2

__n+2

n+3

]ng} =0 (3.30)

]]:|Tbulk (3.31)



The fuel temperature of each cell used to determine the cross sections is defined
by the Doppler temperature, which is expressed as the weighted sum of the centerline

and surface temperatures as described in Eq. (3.32). The weighting factor « 1is set

to g [22] by default, while it can be specified by the user.

TDoppIer = (1_ 0[)T0 + OlTn. (332)

The coolant temperature of each axial segment of a channel is determined by the
simple enthalpy conservation equation in the axial direction with the constant mass

flux assumption, which is given as:
[phv]  =[phv] +q'Az (3.33)

where ' and Az are the linear heat generation rate and the thickness of the axial

segment, respectively. The average enthalpy of inlet and outlet is used to determine
the coolant temperature of the level.

To compensate the lack of cross-flow mixing effects between channels in the
closed-channel model, pinwise channels are lumped into coarser channels called
macro-channels, as described in Figure 3.5. All the fuel rods belonging to the same
macro-channel share the same coolant temperature. VANGARD can divide each
assembly into arbitrary N xN macro-channels. The number of divisions can be

specified by the user, and 2x2 division is used as default.

NS S RN N N N A A PN

Figure 3.5. Pinwise channels (left) and macro-channels (right).
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3.2.2 Xenon Feedback

Since the depletion calculation proceeds with relatively large time steps, short-
time xenon transient cannot be taken into account properly, which incurs xenon
oscillations that lead to severe changes in flux and power distributions between
burnup steps. To prevent this, the number density of xenon is not calculated by the
depletion solver but is determined by a nonlinear iteration between the neutronics

solution and the analytic solution of the xenon-iodine chain in the following:

dn, (t) =724 - AN, (1),
d dt (3.34)
Né:(t) ZVXer¢7+l| N, (t)_ﬂ“x(a’\l)(e(t)_O-zi<ezl\|><e(t)¢7

where 7 is the fission product yield.

The widely used assumption is the equilibrium xenon assumption in which the
number density of xenon is always at the equilibrium state. The equilibrium number
densities of xenon and iodine can be calculated by forcing the time derivative terms

to zero in Eq. (3.34), which yields:

=7|2f¢7

A
:(7’|+7><e)2f¢7
xe /IXE+0;<943 '

NI
(3.35)

However, in conditions where the reactor power level changes over time, the
equilibrium xenon assumption is not valid. In such cases, VANGARD can employ a
transient xenon assumption as well. Keeping the time derivative terms remained in

Eq. (3.34) and solving the system of ODEs yields:
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N,(t)=%+kle‘b‘,

3.36)
a+c e pdt _ ght ) (
NXe(t):T_bkle tb d)ﬁ+k2e at
where t is the time step and
a=7/|zf(za
b=4,
C=J/Xe2f¢7,
d=21, +0¢, (3.37)
a
k,=N,(0)-—,
, =N, (0) .
a+c
kZZNXe(O)_T'

Note that the flux solution used for the transient xenon is that of the current burnup
step, but the flux level normalizer is calculated using the average power level of the

two burnup steps.

3.3 Depletion Solvers

Depletion calculation is crucial for predicting the long-term behavior of a reactor.
For an accurate depletion, a pinwise microscopic depletion solver is implemented in
VANGARD which employs a simplified burnup chain derived from nTRACER. The
VANGARD depletion solver can model not only the transmutation of nuclides
during operation but also the long-term cooling effect during inspection and
reloading by nuclide decay. This section introduces the depletion calculation
algorithm of VANGARD, which encompasses the solution scheme for the burnup
chain and B-10 depletion model to track the isotopic changes in the soluble boron

during operation.



3.3.1 Solution of Burnup Systems

The burnup chain of VANGARD consists of 44 nuclides. For actinides, 29 major
nuclides from uranium (Z=92) to curium (Z=96) are considered. Figure 3.6
illustrates the burnup chain of actinides where only important decay and reaction are
shown. The remaining 15 nuclides include B-10 in burnable poison (5010) and
fission products related to xenon/samarium poisoning (I, Xe, Nd, Pm, and Sm). Only
four major fissile nuclides (U-235, U-238, Pu-239, and Pu-241) have fission product

yield information.

b

l Capture
~d
‘ U H U H = H Uzs7 H U H Uzzp H Uuu ‘ B+ ecay
- . B decay
—» adecay
‘ Npm H szzs H Nnm H ann ‘

\ p“zss H P“m H Pu“" H Pu2dl H Pu? "" P ‘ Pu#
1
I 242 243 244
| Cm Cm Cm
' |

Figure 3.6 Burnup chain of actinides in VANGARD.

The depletion calculation is governed by the Bateman equation which is written

as follows:
dN (t) x - _ -
zlu ]Nj(t)+¢zyijo-ij(t)_(/l|+O—i¢)Ni(t) (3.38)
]¢I }j
where
N - Atomic number density of nuclide i,
l = Yield fraction of nuclide i from the decay of nuclide j,
Vi = Yield fraction of nuclide i from the reaction of nuclide j,
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Decay constant of nuclide i,
i = One-group absorption cross section of nuclide i,

¢ = One-group neutron flux.
Eq. (3.38) can be expressed as a system of ordinary differential equations (ODE) in

a matrix form:
—2— AN(t) (3.39)

whose solution is expressed in terms of matrix exponential:
N(t) = e**N(0). (3.40)

Eq. (3.40) is solved by the Chebyshev Rational Approximation Method (CRAM)

[23], which reduces it to:

N(t) = ot N(0) + 2Re(k2/2:aj (At-o1)" N(O)J (3.41)
j=1
where Kk is the order of the CRAM, which is set to 16 as default in VANGARD,
and « and 6 are the complex residues and poles, respectively.

To obtain the solution of Eq. (3.41) which entails matrix inversion, iterative linear
system solution schemes are employed in VANGARD. In the CPU calculation, C++
Eigen linear algebra package [24] is utilized for the complex matrix and vector
operations. The Gauss-Seidel iteration method is employed for the matrix inversion
and the burnup system of each cell is solved independently by OpenMP
parallelization. However, the CRAM solver is implemented manually for GPUs due

to the lack of library support.



3.3.2 B-10 Depletion

The soluble boron is commonly utilized to control the excess reactivity of reactors.
It is dissolved in the Reactor Coolant System (RCS) by the Chemical and Volume
Control System (CVCS) in the form of boric acid. The natural boron consists of B-
10 and B-11, and B-10 takes approximately 20% of isotopic fraction. Since B-10 has
a significantly larger absorption cross section than B-11, B-10 is mostly removed
while the content of B-11 remains constant during the operation. For this reason, the
boron depletion in the RCS is implemented only for the B-10 with the change of B-
11 regarded negligible. The variation of the number density of B-10 is given as
follows:
jvm j oB(F, E)4(F, E)dEdF

dNgy (1)
—==" =Ny, (t , .
dt g0 (t) Voo (3.42)

which can be analytically solved as:

jv jafm (F,E)¢(t, E)dEdF
VRCS

Nigio(t) = Ngyo (O)exp| - t (3.43)

where Ng,, is the number density of B-10 and V_,, and V. are the volume of

B10 ore

the coolant in the core and the RCS, respectively. V. is calculated by the code,

ore

and V

~cs 1s derived from the user-specified relative volume of the core coolant to

the RCS coolant.

It should be noted that performing B-10 depletion requires a caution in the cross
section treatment, because the lattice calculations for the group constant generation
are performed with the natural boron composition. Namely, the boron concentrations

in the group constants become inconsistent with the simulation value when B-10 is



depleted. Thus, assuming the impact of B-11 is negligible, the simulated boron

concentration is adjusted to the equivalent value in the group constants as follows:

depleted
ppm = ppm x fBj]gmral (3.44)

B10

where foa™ and fgP*? are the abundance of B-10 in natural and depleted

boron, respectively. Note that the adjusted value is only used internally for the cross

section interpolation and not shown in the output.

3.4 Overall Flowchart of Steady-State Calculation

Figure 3.7 illustrates the overall calculation flow of VANGARD employing GPUs.
Calculations accelerated by GPU are colored in green and calculations performed on
CPU are colored in blue. Note that almost all of the calculation modules were
offloaded to GPU. Only the table setup which determines the burnup range required
for the core state of each burnup step and organizes a sub-table containing group
constants of the specified burnup points is performed on CPU, which will be
elaborated in Section 6.2.1.

The calculation begins with initializing the burnup table and cross sections,
followed by the initial CMFD calculation which provides the initial guess. If the core
is fresh, namely not reloaded, the burnup table will contain only one burnup point.
After the initial CMFD calculation, the neutronics iteration loop is initiated. First,
each nodal sweep performs 5 outer iterations where each outer iteration is again
composed of 6 inner iterations. The iteration counts were empirically chosen to be
optimal. After the nodal sweep, T/H feedback, boron update, and Xenon update are
carried out consecutively. Then, the cross sections are newly calculated and the
CMFD calculation is performed to accelerate the convergence. This procedure is

repeated until the neutronics iteration is converged. The converged neutronics
¥
]
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solution is then fed to the depletion solver and used to update the core compositions.
The updated core compositions are again fed back to the neutronics solver, which

constitutes the global iteration loop involving successive feedbacks between the

neutronics and the depletion solvers.

-[ Nodal calculation ]‘ [ Table Setup ]‘
!
[ T/H feedback ] [ XS update ]
I !
[ Boron update ] Homogenize
l for CMFD
[ Xenon update ] CMFD
[ i ] power iteration
XS update
l [ B10 depletion ]
Homogenize CPU
[ for CMFD ] |:| c T
i GPU
‘ CMFD ’ D 1
power iteration One-group collapse
C d?
No@‘r’es

Figure 3.7 Steady-state calculation flow chart of VANGARD.
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Chapter 4. Transient Calculation Capability

The need for a fast and accurate pin-level core analysis is particularly emphasized
in the transient analysis. The assemblywise two-step calculation employing
assembly-homogenized cross sections cannot catch the severe intra-assembly flux
gradients occurring near the perturbed rod during a transient, therefore, the use of
detailed pin-level solutions is essential in the transient analysis. Furthermore, one of
the significant challenges of transient analysis is excessive computational burdens
because it requires repetitive core calculations for more than hundreds of time steps.

In this respect, as a part of the development to make VANGARD a practical
pinwise core design code, the transient calculation capabilities have been developed.
VANGARD can be a completely suitable core transient analysis tool in terms of
accuracy and practicality in that it targets to achieve tolerable computing time even
on a PC by exploiting gaming GPUs while yielding accurate pin-level solutions.

Basically, the transient solutions are originated from the same governing equations
with the steady-state solutions, but the time derivative term which has been imposed
to be zero in the steady-state solution is retained. Therefore, efficient implementation
is possible without modifying the pre-established solvers for steady-state analysis.
Once the steady-state solvers are implemented, only a few modifications are
additionally needed to account for the time-dependent characteristics.

This chapter covers the solvers of time-dependent equations for the flux and T/H
feedback. In Section 4.1, the time-dependent SP; formulation is derived and the
CMFD linear system for the time-dependent diffusion equation is presented. In
Section 4.2, the solution of the time-dependent heat convection equation for the
coolant channel and the solution of the time-dependent heat conduction equation for

the fuel pellet are described in detail.



4.1 Flux Solvers

4.1.1 Time-dependent SP3 Formulation

In this section, the time-dependent nodal solution of the diffusion and SP3
equations are derived briefly. The detailed derivations including definitions of the
terms can be found in [25][26].

The time-dependent multi-group neutron diffusion equation as well as the

precursor balance equation are written as follows:

a G 6
Vi% KL (1_ﬂ)'// + Zzg’g(bg’ + Z}(dgk/lkck N (V ’ ‘]g +2r9¢9 )’ (4'1)

g g'=1 k=1
O 5y 0-20.0, (42)

For the temporal discretization, the theta method is applied, which writes Eq. (4.3)

where Rj denotes the RHS terms of Eq. (4.1) at the time step 7.

% b =OR™ +(1-6)R" . (4.3)
VgAtm-l ’ ’

In order to obtain the precursor density of the new time step (n+1), a quadratic
variation of the fission source is assumed, which expresses it in terms of the two
known fission sources of the previous and current time step and the one unknown

fission source of the new time step as follows:
n+l _ n ﬂk n-1 n-1 n.n n+l n+l
C\" =x.C, +Z(Qk v+ Q" + O ) (4.4)

where
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By combining Eq. (4.1), (4.3), and (4.4), the transverse-integrated time-dependent

neutron diffusion equation for each direction can be represented as follows:

4D d¢”+1 +1 +1 < +1
h2 df ng¢n (Zpg (1 ﬂ)+a)n )W + Zzg’g¢g’
g1
n n+1 o (46)
+—;V_Atg +85 — L™ + @R,
g n+l

where

6
Sl = 2 (Ao i+ A (0 0l ))

1o (4.7

6
1 1
a);H = ZldgkﬂkQE+ , 0= 0
k=1
For the efficient implementations, the equation is rearranged to have the same form

as the steady-state equation, and the final form of the time-dependent transverse-

integrated neutron diffusion equation is represented as Eq. (4.8). The only difference

n+l

from the steady-state solution is that the transient source ( sy,

) needs to be

additionally calculated. This reformulation enables most of the pre-established nodal
solvers for the steady-state solutions to be directly used for the transient solutions

without any modifications.

4D d2¢n+l n-+. < n+. n+. n+:
- h;* dgz +E 0t = g™ +Zzgg¢ Pt syt (4.8)
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where

¢n+1
Str:l = Srf]ixed, + AZ Wn+1 - ! ’
9 9 9 OV AL,
n an ¢«; n
Stied,g = 59 + 77—+ ORy, 4.9
ed,g g OV AL, 9

Axy =—1, +(;(pg 1-5) +a)g+l).

Note that the fixed source (S?ixed'g ) is determined only by the current time step

solutions which are known so that it is constant during the current time step.
Therefore, it is calculated only once per each time step.

The SP3; formulation is derived in an analogous manner with the diffusion
formulation. The equations are defined for the summed flux and 2™ flux moment

with differently defined diffusion coefficients and removal cross sections.

4D, d? - )
- h;)g d/:z ¢0,g +Zr0,g¢0,g = So,g + Str,O,g’
(4.10)
4D, d?
- hg - d_§2¢2,g +zr2,g¢2,g = sz,g +Str,2,g
where
¢20,g = ¢0,g + 2¢2,g '
Dogzi, ngzi, (4.11)
G cOTE,
4 5

S0e =8, 5, ==%  +>%

r0,g9 rg’ r2,9 3 rg 3 t,g"

As in the steady-state formulation, the source terms are also separately defined. In
the same manner as the diffusion equation, the total source terms in the SP; equations
are casily obtained by the addition of the transient sources to the steady-state

formulations as follows:
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So.g = Sg +22r,g¢_ Loyg, Sy =—§ o +§Zr,g¢0,g - szg,

S =8 +Ay "™ +—¢§,g _ ggl +OR! (4.12)
tr,0,g — “d 0,97 .
r.0.9 9 g HVgAth g

2 5( 4y, —bre
Str,Z,g :_Estr,o,g +§(—9\2Atn+j +®R2g .

4.1.2 CMFD for Transient Calculation

In the steady-state CMFD calculation, the fission source calculated in the previous
CMFD power iteration serves as the fixed source. The fixed source is updated during
iterations at a CMFD calculation, therefore, it runs iterations until it meets the
convergence criteria. In the transient calculation, on the other hand, the fission source
is included in LHS for better convergence, and the CMFD linear system for the new
time step (n+1) sets the transient fixed source in RHS which comprises the current
time step (n) solutions. Resultantly, the final CMFD fixed source problem is set as
Eq. (4.13). Since the fixed source is determined only once per each time step and is
not variant during the current time step, the linear system is solved only once per

each CMFD calculation.
(M™ =20 — ( + Ag)F"™ +ﬁ o™ =% (4.13)
where

¢" +OR" (4.14)

n _an
sfixed _sd +

OVAL

n+1
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4.2 T/H Feedback

4.2.1 Transient Heat Convection Solution for Channel

As in the steady-state solution, the heat convection equations are solved for each
axial segment of a channel. The derivation of the transient heat convection solution

is started from the mass conservation and energy conservation equations as follows:

9% 9 _g (4.15)
ot oz

9ph | opv_ (4.16)
ot 0z

The volume-integrated mass conservation and energy conservation equations with

temporal differencing by the Theta method are represented as follows:

) () (D) e QRN A 0
p p +H[pv]out [pv]in _|_0 [pv]out [pv]in IO, (417)

At Az Az

[ph]" =[ph]”  [ohv]n” =[pv]a™  _[phv]s —[phv])
+0 +0
At AZ AZ (4.18)
=609 +0q™.

Note that the variables without any subscript denoting inlet or outlet represent the

node-averaged quantities. The volumetric heat source () of each axial segment of

a channel is defined as the sum of the heat provided through the wall and the direct

heating as follows:

"

= +yq. (4.19)

d=q A

0 :
By dividing by v and setting all the knowns to the RHS except for the time
VA
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derivative terms, Eq. (4.17) and (4.18) are represented as follows:

AZ 0 () my 6 ™ 0
HAt ('D ) [ V]out [ ] 9(['Dv]out ['Dv]in )’ (420)

HM([ ™ =[ph]” )+ [tV
_ (4.21)

=[phv]o™ - ([phV]f,Zi —[phV]f:))MZ(Q‘”*” +%q(”)]-

Here, five variables are unknown including two average values (o, h) and three

outlet values ( p,,. ..V, ) of the time step (n+1), which are the targets to be solved.

out

Using auxiliary state equations as

(n)
dp

(n+1) (.

n+. _pﬂ_

e (h®® —h®™), (4.22)

P

(n)
Lo - on]” = 2121

o (h® —h®), (4.23)

the time derivative terms in LHS of the Eq. (4.20) can be expressed in terms of

volume enthalpy change as:

(n+1) Az dp(n) ey O (n) (n)
(v =i dnl XA ' —5([,0V]out ~[ov] )EaX + B (4.24)

[ —
=a =p

where

X =h™D _p™, (4.25)

By assuming the node-averaged enthalpy to be the average of the inlet and outlet
enthalpies and combining with Eq. (4.24) and (4.25), [ phv] ) can be represented

as a quadratic equation in terms of the enthalpy change ( X ) as follows:
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where

h (n+1) h(n) +X = ;(hmr::l + h (n+1) )

y=a(2h™ —h{")+ 2, (4.27)
§=ﬁ(2h(n) _hi(nn+1)).

A pair of the analytic solutions of Eq. (4.26) can be easily obtained. To choose the
final solution out of the two ones, a linear formulation is introduced which starts

from approximating the outlet enthalpy of the time step (n+1) to that of the time step
(n) so that [ phv]i::” is expressed as a linear equation in terms of the enthalpy

change as:

[phv](n+l) _[ ](n+l) (D) ~[ ](n+1) h™ =(aX +ﬂ)h(n) (4.28)

out out ~ out out  out out

With the above relation and additionally introduced auxiliary state equation as

[ph] ™ —[ph]™ = [d’; ] (R —h™), (4.29)
the LHS of Eq. (4.21) which consists only of the unknowns can be reformulated as
a linear equation in terms of enthalpy change, the solution of which also can be
directly obtained.

Out of the two solutions of Eq. (4.26), the one closer to the solution of the linear
formulation is selected as the final solution. Finally, the volume enthalpy change is
obtained and it resultantly updates the enthalpy of the new time step (n+1), with
which the two average unknowns of the new time step composing the time derivative

terms of the Eq. (4.20) and (4.21) are updated as follows:
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p(n+1) _ p(h(n+1) ),

(n+1) (n+1) o (n+1) (430)
[ph] = p"hY,

The final solutions for the mass conservation and energy conservation equations are
then obtained as follows:

n+ n+ A n+ n é n n
(] =[ov]; 1)—9?;(/7‘ l)—p(’)—5([pv]f,ui—[pv]fn)). (4.31)

(n+1) ()  AZ (n+1) ()
o] =[] == [h] "™ ~[oh]")
— (4.32)

_é ™ _ " o, & o
9([phv]out [phv] )+Az(q 2" )

By dividing Eq. (4.32) by Eq. (4.31), the outgoing enthalpy of the time step (n+1)
can be updated, with which the average enthalpy is subsequently updated. From the
average enthalpy, the node average channel bulk temperature can be calculated, from
which the heat transfer coefficient can be updated. All of them are then fed back to

the calculation of the fuel pellet temperature profile.

4.2.2 Transient Heat Conduction Solution for Fuel

As in the steady-state calculation, one-dimensional cylindrical finite difference
heat conduction equation is solved for each axial plane. The time-dependent heat
conduction equation is described as Eq. (4.33) where q” is the volumetric heat

generation rate.

or 10 oT
C.—==—|rk—|+q"= f(r,1). 4.33
P ot rar[ arj a .y (4.33)

With temporal differencing by the Theta method, the heat conduction equation can

be expressed as follows:



T(n+l) _T(n)
C"W=9f<”+l> +(1-6)f ™, (4.34)

Here, the spatial derivative term of f7is identical to that in the steady-state calculation.

This equation is setup for each fuel region with finite difference approximation.
As in the channel equations, all the known values are set on RHS which results in a
tridiagonal linear system as Eq. (4.35). Note that the spatial derivative term of f

which determines the lower and upper diagonal elements, | and u, respectively,
as well as d, 1is identical with those in the steady-state calculation, so most of the

steady-state calculation routines can be reused. Only the time derivatives applied to

the target fuel mesh (i) need to be additionally considered.

i+1

I(n+1)-|-(n+1) +(d(n+1) %JT(MD +u(n+1)-|-(n+1)
(4.35)
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Chapter 5. GPU Acceleration Strategies

GPU can be a desirable computing resource to substitute multi-core CPU parallelism
in that they contain a substantial number of simple arithmetic cores which can deliver
significant floating point computing power, enabling massive parallelism. In
particular, this characteristic can be a great remedy for the critical downside of the
pinwise two-step calculation that a tremendous amount of pinwise data should be
treated. In this research, the NVIDIA CUDA [5] was chosen as the GPU
programming tool kit to take advantages of its general applicability and ease of
coding. In order to achieve high performance of GPU, memory optimization is
particularly important. Three fundamental optimization requirements are presented
in the following, which all the GPU calculation modules in VANGARD are
developed to meet as far as possible.
1) Vectorization:

GPU is a subset of vector processors and is specialized in SIMD (Single

Instruction Multiple Data) parallelisms, namely, the efficiency is maximized

when threads in each warp perform SIMD operation. Therefore, braches that

can make a part of threads inactive should be minimized.

2) Local memory use:

A GPU contains a substantial number of simple arithmetic cores, which can

deliver significant floating point computing power. However, it is bounded

by the performance of the relatively slow main memory, so a GPU contains

several types of small but fast local memories to buffer the main memory

accesses. Therefore, access to the main global memory should be minimized

and frequently used data should be saved in high-bandwidth memories such

as cache and register to have high performance.
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3) Memory coalescing:
Even though the global memory access is required to be minimized due to
its poor bandwidth, it is inevitable. In this case, a group of threads should
read and write contiguous memory, which is called memory coalescing, so
that the memory access in a warp that is the computational unit for the
memory read and write operations should be concentrated.
Besides, numerous strategies were devised and introduced for the optimal and
efficient GPU calculation for each solver. This chapter describes all details of the
GPU acceleration strategies for the computational hotspots — nodal, CMFD, T/H,

and depletion calculations — which take most parts of the total computing time.

5.1 Nodal Calculation

The characteristics of the nodal method make it suitable for GPU acceleration.
First of all, the iteration scheme is highly regular and parallelizable in that every cell
and energy group are solved independently with the same algorithm. The memory
layout is also very much regular and contiguous, which enables coalesced memory
accesses. In addition, the nodal kernel involves a lot of arithmetic operations for the
calculation of expansion coefficients, and these variables are stored as local variables.
Namely, the operational intensity and the local memory utilization are high. Costly
exponential calculations in the SENM that were considered as a drawback can also
be effectively handled on GPUs by exploiting the Special Function Units (SFU) of
GPUs which provide hardware-level fast approximate single precision evaluations
of some special math functions including exponentials.

In GPU implementation, exploiting single precision is highly desirable in terms of
arithmetic performance and memory utilization. One of the key characteristics of the

consumer-grade GPUs on which VAGNARD targets to be executed is that they are



dedicated to single precision arithmetic, while the support for double precision
arithmetic is minimal. Hence, every arithmetic operation of the GPU nodal kernel
needs to use single precision to achieve the maximum performance. However, using
single precision can harm the accuracy and lead to numerical instabilities when
handling large exponential terms which arise in the axial solution. To elaborate, the
problem occurs when calculating the flux expansion coefficients in Eq. (3.7) where
hyperbolic terms are involved. The term inserted to the hyperbolic functions is
proportional to the mesh size, and it can lead to extremely large hyperbolic values
when solving the axial direction which has a relatively large mesh size. To resolve
this, a mixed precision scheme is employed, in which precisions are mixed in the
axial 4th order kernel while single precision is employed entirely for the radial 2nd
order kernel that does not suffer from the instability issues. In the axial kernel, double
precision is employed for the ordinary arithmetic — namely the coefficients
calculations — where a cascade effect of round-off errors may occur, while expensive
hyperbolic functions are still computed in single precision. In this way, an optimal
combination of precision is found with respect to performance, accuracy, and
stability.

To confirm if this mixed precision technique is optimal, a sensitivity study was
carried out with the APR1400 3D core problem, in which five different combinations
of precisions are tested. The combinations of precisions for each test case are shown
in Table 5.1. In the table, ‘arithmetic’ denotes the plain arithmetic operations other
than the hyperbolic function calculations. Figure 5.1 presents the relative nodal
computing time of each case with respect to the full single precision case (Case 1)
and the maximum pin power error of each case compared to the results of the full
double precision case (Case 5). In all cases, the impact of the choice of precisions on
the accuracy is negligible, where the maximum pin power errors are way less than
0.0001%. This verifies that the mixed precision approach is valid. Regarding the

performance, the case in which double precision is used only for the arithmetic in
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the axial kernel (Case 2) is the optimal except for Case 1, which can be easily
expected. It can be also seen that employing single precision selectively for the
hyperbolic functions renders much better performance than blindly using double
precision. Thus, it is proved that Case 2 which is the current mixed precision

approach is optimal since Case 1 incurs a stability problem.

Table 5.1 Tested combinations of precisions.

Case 1 Case 2 Case 3 Case 4 Case 5
Radial FP32 | FP32 | FP64 | FP32 | FP64
Arithmetic
Axial FP32 | FP64 | FP64 | FP64 | FP64
Arithmetic
Radial FP32 | FP32 | FP32 | FP32 | FP64
Hyperbolic
Axial FP32 | FP32 | FP32 | FP64 | FP64
Hyperbolic
%10
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Figure 5.1 Relative nodal computing time and maximum pin power error of each

casc.
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5.2 CMFD Calculation

All of the CMFD calculation modules are offloaded to GPU. Homogenization,
linear system setup, power iteration, and pinwise solution update are all performed
on GPU. Note that the CMFD calculation on GPU is performed entirely in double
precision for the numerical stability of linear system solution. For the linear system
solver, a preconditioned BiICGSTAB solver developed with the cuBLAS [27] and
cuSPARSE [28] libraries are used, where the zero fill-in incomplete LU (ILUO)
preconditioner provided by the cuSPARSE library is applied. The linear system
matrix is stored in the Block Compressed Sparse Row (BSR) format whose block
size is the number of energy groups. The BSR format inevitably contains some zeros
and may result in a waste of memory and computations compared to the ordinary
Compressed Sparse Row (CSR) format, but it makes the parallel matrix construction
on GPU easier and may expose more parallelism to the libraries due to its more

explicit block structure.

5.3 T/H Feedback Calculation

In the steady-state calculation, the T/H feedback calculation is very cheap because
it uses a simplified model and it solves the coolant heat transfer equation only once
per T/H calculation, owing to the fixed heat source with the concept that all heat
generated in the pellet must be delivered to the coolant without accumulation in the
fuel. As the result, T/H calculation takes only a little part of the total computing time.

On the contrary, in the transient calculation, the heat source for the coolant transfer
equation is determined by the fuel temperature profile. It requires coupled iterative
solutions, leading to repetitive steam table calculations for the coolant channel as

well as linear system solutions for the intra-pellet temperature of each pi)n_lThu_s, theI :
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T/H calculation time in the transient core analysis is non-negligible. Actually, when
the T/H calculation was still performed on CPUs while the other time-consuming
calculations such as nodal and cross section calculations were performed on a GPU,
it was observed that the portion of the T/H calculation becomes significantly large,
taking the largest portion of the total computing time in transient analysis. For this
reason, the T/H modules were ported on GPU.

For the fuel heat conduction solution, a linear system is set up for each fuel cell
and directly solved by the manually implemented tri-diagonal LU linear system
solver by taking advantage of the pre-described tri-diagonal matrix format of the heat
conduction equation solution. Since the linear system is solved independently for
each fuel cell, straightforward parallelization is possible such that each thread solves
a linear system of each fuel cell. Given the coolant bulk temperature as the boundary
condition, intra-pellet temperature profile of each fuel cell is obtained by each thread.

For the coolant channel heat transfer solution, on the other hand, the fine-grained
parallelization cannot be applied. The axial heat transfer calculation for a coolant
channel is the representative sequential calculation which requires the solutions of
the lower channel mesh as the boundary conditions. Therefore, it is not desired to
parallelize the axial planes. Considering that VANGARD uses the assembly-level
macro channel, as the result, the target mesh of the coolant channel calculation would
be 3D assembly-level mesh. With coarse-grained parallelism, the GPU acceleration
is not much effective. On the contrary, it was noted in Figure 5.2, which shows the
speedup of a single GPU calculation time over 10-core CPU calculation time for the
NEACRP HZP rod ejection problem on the quarter core, that the GPU calculation
took more computing time than the 10-core CPU calculation for the assembly
channel and 4-box mesh channel which VANGARD adopts as the default channel
option. Moreover, offloading the T/H channel calculation on GPU is cumbersome
due to the lack of library support for the steam table which is readily usable in the

CPU calculation.



For all of these reasons, the fuel pellet calculation is accelerated by GPU while the
coolant channel calculation remained to be performed on CPU multi cores even in
the GPU calculation mode. This kind of hybrid calculation requires the data transfer
between the host and GPU device for the coupled heat conduction for fuel pellet —
heat convection for coolant channel equation solutions. Specifically, the coolant bulk
temperature obtained in the channel calculation should be fed back to the pellet
conduction solution as the boundary condition, and the heat flux obtained by the
solution of the pellet fuel temperature profile should be transferred to the channel
calculation to compose the heat source. In spite of the repetitive data transfer, the
additional time for this is not that significant because the data size is small, which is

dependent on the macro-level coolant channel meshes.
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Figure 5.2 Speedup of coolant channel calculation time according to the number of
divisions per assembly.

5.4 Depletion Calculation

The entire procedure of depletion calculation, including one-group reaction rate
calculation and burnup system construction as well as the CRAM solver, is fully
parallelized on GPU. All the operations on GPU employ double precision as the
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range of the values treated in the depletion calculation is too wide for single precision
to cover. The primary operation in the CRAM is the matrix inversion in Eq. (3.41),
and VANGARD utilizes the Gauss-Seidel method for efficient inversion. The
depletion calculation is essentially solving a large batch of cell-wise independent
burnup systems possessing the same sparsity pattern, which is highly parallelizable
and vectorizable. Thus, parallelization is applied to the cells, and each thread runs
the Gauss-Seidel iteration for its cell for a prescribed number of times. The burnup
matrices are stored in the non-zero major ordering scheme [29], which takes
advantage of the common sparsity pattern and contiguously stores the matrix
elements of all cells for each non-zero position, as described in Figure 5.3. As the
result, accesses to the burnup matrices across the cells are fully coalesced. The
matrices are stored in the CSR format except the diagonals whose inverses are
separately stored as vectors for efficient Gauss-Seidel calculation, and the sparsity
pattern is searched only once at the initialization stage. The vectors for representing
the sparsity pattern are stored in a common and fast-access memory of GPU such as

constant memory.

Constant Memory
[[_Rothr ll Col[dx—l]
1

Broadcasting

L S !
| Thread 0 | Thread 1 | | Threadn,, |
A(cell = 0,nz=0) A(cell =1, nz =0) A(cell =N, nz=0)
A(eell =0, nz=1) A(ecell =1, nz =1) Alecell=N_,, nz=1)
A(eell=0, nz=N,.) A(eell =1, nz=N,.) A(ecell=N,,, nz=N,)
Global Memory

Figure 5.3 Schematics of the non-zero major ordering scheme for burnup matrices.
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Chapter 6. Challenges of Pinwise Two-Step
Core Calculation and Resolutions

6.1 Resolutions of Numerical Instability and
Inaccuracy

There are many issues apparently observed in the pinwise two-step core
calculation which have not been problematic in the conventional assemblywise two-
step core calculation. This section will cover two methodological issues and the
resolutions for them for practical and accurate pin-level core analyses.

One is numerical instability in the one-node pinwise nodal — assemblywise CMFD
coupled calculation. The one-node nodal kernel requires both incoming currents and
node average flux as the boundary conditions. However, the pinwise incoming
currents cannot be directly updated from the assembly-level CMFD calculation
while the pinwise average fluxes can be readily obtained by the CMFD solutions. It
causes a lagging between the pinwise flux and the pinwise incoming currents, which
in turn deteriorates the convergence and often incurs instability. To resolve this, the
CMFD-Based Partial Current Update Scheme was devised which recalculates the
pinwise partial currents using the CMFD solution so that not only the pinwise fluxes
but also the pinwise partial currents reflect the CMFD calculation results.

The other is the depletion inaccuracy of gadolinia fuel. It originates from retaining
the intra-assembly heterogeneities. Gadolinia fuels exhibit highly heterogeneous
depletion behaviors inside the pellet which is induced by the large spatial self-
shielding effect of Gadolinium (Gd). Since the heterogeneity information is
completely lost during the homogenization process, naively depleting the Gd
isotopes using the pin-homogenized quantities induces nonacceptable errors. To

accurately predict the depletion of gadolinia fuels in the pinwise two-step core
b _‘; T ;:
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calculations, a simple yet effective scheme was proposed. This scheme makes a
correction of burnups of gadolinia fuel pins using the information of neighboring
general fuel pins so that accurate cross sections can be used in the gadolinia fuels.
In the following subsections, these two methodological issues and resolutions for
each are addressed in detail. The effectiveness of each resolution is also examined

with the APR1400 [30] 2D core depletion calculation results.

6.1.1 CMFD-Based Partial Current Update Scheme

Methodology

In the conventional assemblywise nodal codes, the nodal mesh and the CMFD
mesh are neatly aligned, and two-node kernels whose only boundary condition is the
node average flux are typically used. Therefore, the CMFD solver does not have to
update the surface currents. In VANGARD, however, the radial CMFD mesh size is
chosen much bigger than the nodal meshes to achieve higher computational
efficiency in three-dimensional (3D) CMFD calculation. Specifically, a quarter of an
assembly is taken as the radial CMFD mesh size so that a CMFD mesh consists of
several tens of pin-sized nodal meshes. The linear system is set for the coarse meshes
and the solutions obtained from the CMFD power iteration are the coarse mesh
fluxes. Since the one-node kernel requires incoming partial currents which are to be
updated by the CMFD solution, a special measure has to be devised to determine the
nodewise partial current from the coarse mesh fluxes. Note that updating the pinwise
average fluxes is trivial since the level of the pinwise fluxes can be adjusted by the
ratio of the updated coarse mesh flux to the previous one. However, the pinwise
incoming currents cannot be updated directly from the coarse mesh CMFD results.

To reflect the CMFD solution in the update of pinwise partial current, two types

of CMFD current correction factors are employed. One is the standard CMFD net

57 =



current correction factor which is determined at the coarse mesh interface using the
homogenized nodal solutions and is used for constructing the CMFD linear system

for power iteration:

|j :_5“1/2(5“1_%)_‘]??1/2 (6 1)
1+1/2 ¢7| +$|+1 : :

The other is the outgoing partial current correction factor defined in the modified
partial current based CMFD formulation, mp-CMFD [31], calculated at the fine

mesh:

6+ _ 437y + 25i+1/2 (31-8) (04 +1-@)d,,)
2 = 44 '

(6.2)

Note that the mp-CMFD correction factor is not used in the CMFD power iteration.
It is only used to determine the pinwise outgoing currents from the modulated
pinwise fluxes determined from the CMFD coarse mesh flux update. Namely, the
pinwise outgoing partial current is not incorporated in the CMFD linear system but
is used only for the subsequent nodal calculation. The following relation is used for

the partial current update:

3p =3Bl - #) + 3 (@ +Q-0)4) + Dl (6
Figure 6.1 schematically describes the two-level correction of surface partial currents
where the detailed calculation procedure is given as follows:
1) Calculate the mp-CMFD outgoing partial current correction factors at the
surfaces of each pin.
2) Homogenize pins into coarse meshes and calculate the standard CMFD net
current correction factors for each coarse mesh.
3) Perform 3D CMFD calculation and update coarse mesh fluxes.

4) Modulate the pinwise fluxes using the updated coarse mesh fluxes.
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5) Recalculate the outgoing currents for each pin using the pinwise mp-CMFD

outgoing partial current correction factors and the modulated pinwise fluxes.
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Figure 6.1 Schematic procedure of the two-level correction in the CMFD
acceleration.

Figure 6.2 describes the overall algorithm of the nodal — CMFD iteration. The
nodal sweep is done in red-black ordering in space and Jacobi in energy to expose a
high degree of parallelism. The transverse leakage update is performed at each outer
iteration instead of each inner iteration for stability, which turned out to have a
negligible impact on the convergence rate. The nodal sweeper performs a fixed
number of iterations at each nodal solve: 5 times of outer iterations with 6 times of
inner iterations per outer iteration. On the other hand, the CMFD convergence
criteria are imposed on error reductions. For the inner iteration in which the
BiCGSTAB method is utilized as the linear system solver, relative residual reduction
of 0.01 is used as the escape criterion. The outer iteration escapes when the />-norm
of the relative fission source change reduces to below 0.5 times of its initial value
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with minimum of 5 iterations, and the Wielandt shift scheme is applied. All the

criteria were empirically determined to be optimal.

DO WHILE (!CONYV)
Update fission source
DO Nodal outer iteration
Update transverse leakage
DO Nodal inner iteration
DO Red-black sweep
DO Node sweep
DO Group sweep
Nodal kernel calculation
END DO Group sweep
END DO Node sweep
Update incoming current
END DO Red-black sweep
END DO Nodal inner iteration
Update fission source
Update eigenvalue
END DO Nodal outer iteration
Homogenize for CMFD
Set CMFD linear system
Solve CMFD linear system
Update eigenvalue
Update fine-mesh flux
Update fine-mesh partial current
END DO

Figure 6.2 Nodal — CMFD iteration algorithm.

Effects of CMFD-Based Partial Current Update Scheme

The effect of the partial current update was examined with an APR1400 2D core
depletion calculation. T/H feedback and CBC search were not carried out to prevent
them from affecting the convergence. Figure 6.3 shows the fission source error at
each nodal outer iteration at the beginning of cycle (BOC) with and without the

partial current update. Note that in both cases the pinwise fluxes are updated by the

11 O 11 =1
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CMFD calculation. The CMFD calculation is performed for every 5 nodal outer

iterations, and the partial current update follows after each CMFD calculation. It can

be seen that the convergence rate is significantly improved with the partial current

update, and as the result, the total number of the nodal and CMFD outer iterations

for the entire depletion calculation are also substantially reduced, as presented in

Table 6.1 which shows the total number of outer iterations during a depletion

calculation consisting of 22 steps. In the table, the average number of outer iterations

per step is given in parentheses. Approximately 60% of the iterations could be

reduced by the partial current update.
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Figure 6.3 Comparison of nodal outer fission source error reduction at the BOC.

Table 6.1 Comparison of the number of outer iterations in the depletion

calculations.
CMFD-based Ratio
partial current update Nodal CMFD Nodal | CMFD
off 1135 (51.6) | 4549 (207) 1.0 1.0
on 485 (22.0) | 1901 (86.4) 0.43 0.42
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6.1.2 Neighbor-Informed Burnup Correction Method

For the accurate prediction of Gd pin depletion, using the correct burnup of the
Gd pin is very important. Since the capture reaction rates of Gd isotopes change
sensitively with burnup, a small difference in burnup can significantly change the
result. However, it is quite difficult to determine the burnup of a Gd pin correctly so
that nontrivial errors can be induced in the core depletion calculation. In this regard,
the so-called neighbor-informed burnup correction (NIBC) method is introduced in
this section. The problem of using the own burnup of a Gd pin is identified in the
next subsection and the rationale and procedure of the NIBC method will be

presented in the second subsection.

Problem Identification

In order to demonstrate the problem associated with Gd depletion, a 2D model of
the APR1400 core, which is a commercial core loaded with a large amount of
gadolinia for reactivity control, is analyzed under a fixed thermal-hydraulic (T/H)
and boron condition. The core configuration is shown in Figure 6.4. The pin burnup
distributions of VANGARD are compared with those of nTRACER whole-core

transport calculation results.
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Figure 6.5 shows the maximum relative pin burnup errors for the APR1400 core.
One is for all fuel pins, and the other is only for ordinary fuel pins while excluding
Gd pins in the same core. This figure demonstrates that the maximum pin burnup
errors occur at the Gd pins at most burnup steps. Figure 6.6 illustrates the pin burnup
error distributions at the burnup of 0.05 MWD/kg, 10 MWD/kg, and 18 MWD/kg,
which correspond to the beginning-of-cycle (BOC), middle-of-cycle (MOC), and
end-of-cycle (EOC) steps, respectively. In early burnup steps, large errors occur at
the ordinary fuel pins located at the core periphery while the errors at Gd pins are
not noticeable. Only the environmental effects are dominant. However, the errors at
Gd pins continuously grow as the core depletes. It is most dominant at MOC which
involves a global tilt in the error distribution. Even with the global tilt, however, the
maximum errors of the ordinary fuel pins remain below 3%.

The opposite depletion behaviors of gadolinia and ordinary fuel pins can be
explained by the self-regulation mechanism between burnup and power. In an
ordinary fuel pin, lower burnup results in more fissile materials left, thereby leading
to higher power. As the result, if an ordinary fuel pin was predicted to have less
power than the normal value at a certain burnup step, the burnup is underestimated
and it would increase the power at the next burnup step, which in turn increases
burnup and suppresses power sequentially. In this manner, the burnup and power are
continuously self-regulated by negative feedback during depletion in the case of
ordinary fuel pins. In contrast, a lower burnup in a Gd pin results in more absorber
materials left which would further suppress power. As the result, positive feedback
occurs in the Gd pins: if a Gd pin is less depleted at a certain burnup step, not only
the burnup but also the power is reduced in the next burnup step, and this continues
until all the absorber materials are exhausted. In short, the burnup error of a Gd pin
at the beginning is propagated throughout depletion and accumulated in a

monotonous way.
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Figure 6.5. Maximum relative pin burnup errors (%) computed with and without
gadolinia fuel pins at each burnup step.
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Figure 6.6. Relative pin burnup error (%) distributions at BOC (left),
MOC (middle), and EOC (right).

Rationale and Procedure of NIBC

Based on the above observation, it can be concluded that an accurate estimation
of the Gd pin burnup using its own power history cannot be achieved due to the
underlying physics and that it is necessary to introduce an external correction. In this
regard, the NIBC method which is to utilize the average burnup of the neighboring

2] 8+ 3
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ordinary fuel pins in representing the burnup state of a Gd pin is devised in this work.
The rationale is that the Gd pin and its neighboring fuel pins would have been
depleted under a similar environment, and the burnups of ordinary fuel pins can be
predicted with high accuracy. Thus, the average burnup of its neighboring fuel pins
can be a reliable indicator of the depletion state. The procedure for applying the
NIBC method is set as follows:

1) In the group constant table, the XSs of each Gd pin are functionalized with
the average burnup of its surrounding 8 ordinary fuel pins instead of its own
burnup. If a neighboring pin is not an ordinary fuel pin, it is excluded from
the average.

2) Inthe depletion calculation, the burnup of every pin is first updated normally.
For the Gd pins, however, their own burnups are overridden by the average

of the updated burnups of their neighboring fuel pins in the XS interpolation.
Effects of the NIBC

As noted in Figure 6.7 which shows the reference multiplication factors of
nTRACER and the errors of VANGARD solutions and Figure 6.8 which shows the
maximum and RMS pin power errors at each burnup step, the NIBC method
noticeably reduces the errors in the gadolinia depletion for both multiplication factor
and pin powers. The negative biases in the multiplication factor which is as large as
nearly 200 pcm at the MOC are clearly reduced to less than 20 pcm throughout the
cycle. The improvements in the pin power errors are also meaningful in that the
maximum pin power error of nearly 8% is reduced to well below 3% and the largest
RMS error of over 2% is reduced to 0.7%. Figure 6.9 illustrates the pin power error
distributions at 9 MWD/kg where the peak pin power errors are observed. The
peculiar errors at the Gd pins mostly disappear with the NIBC method. As the

consequence, global error tilt is considerably reduced as well.
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Figure 6.7 Comparison of multiplication factors.
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Figure 6.8 Comparison of pin power errors between with and without NIBC.
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6.2 Resolutions of Memory Limitation

One of the significant issues accompanied with the pinwise two-step core
calculation is the considerable memory requirement by the group constant (GC) data.
The microscopic cross sections are tabulated for each pin, reaction type, energy
group, and nuclide at each burnup step, and at some selected burnup steps, extra
tabulations for branch points are further required. Therefore, the 8G pinwise
microscopic GC tables adopted in VANGARD result in tremendous data size.
Actually, the size is more than 1,000 times larger than the 2G assemblywise GC data.
It thus imposes a significant restriction on offloading onto a GPU of which the
available memory capacity is limited, and extremely deteriorates the practicality of
the code. Thus, it is necessary to overcome the significant memory limitation of the
GPU to exploit it to achieve feasible computing time.

This section describes two methods to reduce the memory burden ani Elffegtively ;
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offload the pinwise group constant data to the limited memory of the GPU. One is
the burnup window scheme with adaptively resizing sub-table which offload the
group constant data only for the required burnup points for the current core state, and
the other is the GC data compression scheme by the dimensionality reduction
technique utilizing Singular Value Decomposition (SVD) and Low Rank

Approximation (LAR).

6.2.1 Burnup Window Scheme with Adaptively Resizing Sub-table

It is practically impossible to store the entire group constant data on a GPU whose
memory is very much limited, which prevents achieving the goal of VANGARD to
be executed on PCs with consumer-grade GPUs. Thus, the burnup window scheme
is introduced for an efficient porting of the group constant data to GPUs. In this
scheme, a burnup window and a cross section sub-table are defined for each
assembly type. In a core, assemblies of the same type are located at multiple positions
and will have different burnup exposure with each other, but they will still share the
same group constant data. The burnup window of an assembly type is defined by the
minimum and maximum burnup exposures of the assemblies of that type in the core.
Then, the cross section sub-table of the assembly type is defined such that it only
contains the cross sections of the burnup range specified by the burnup window,
which is then ported to GPU. As the result, only the cross section data of the burnup
points necessary at the current core state are ported. The burnup windows and
accordingly the cross section sub-tables are updated at each burnup step by scanning
the burnup exposures of assemblies. Figure 6.10 shows an example of the burnup

window of an arbitrary group constant data.
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Figure 6.10 Example of burnup window (indicated as red-dotted box).

In the implementation of the cross section sub-table, the double-ended queue
(deque) container of the C++ Standard Template Library (STL) is utilized, which can
be flexibly resized by adding and deleting elements at both front and back. It is
preferred to the standard queue as a burnup window can occasionally move “forward”
between predictor and corrector steps within a burnup step. Figure 6.11
schematically illustrates the adaptive resizing of a cross section sub-table by drawing
necessary data from the group constant table and dropping unused data. The cross
section data of each burnup point are first wrapped into a class object (packet) and
pushed to the sub-table. When a packet is being pushed, its internal data are ported
to GPU and only the pointers to the GPU data are kept in the sub-table. When a
packet is being popped, its destructor is invoked which automatically wipes out its
containing GPU data. Once the sub-table for a burnup step is established, its elements
are cast into plain arrays of device pointers and provided to GPU because the deque

container is not directly usable on the GPU side.
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Figure 6.11 Implementation of a cross section sub-table with the deque container of
the C++ STL.

Even though the burnup window scheme alleviates the memory burden of GPUs,
however, its effectiveness is decreased in the later burnup steps where the required
burnup range is widened due to the non-uniform depletion of fuels across the core.
It is apparent for the types of assemblies which are loaded in both interior and
periphery of the core. The interior assemblies have high burnups while the peripheral
ones have low burnups, but because they utilize the same group constant data, the

burnup window has to cover both low and high burnups.

6.2.2 Cross Section Data Compression by Dimensionality Reduction

The burnup window scheme can alleviate the memory burden of GPUs by
selectively porting only the necessary data at each burnup step, but it does not resolve
the storage burden completely. In this regard, another measure to reduce the memory
for GC table storage is implemented in VANGARD. It is the XS data compression
technique proposed by Yamamoto et al. [33]. This technique makes an algebraic
compression of the microscopic XS matrix off-line by an LRA and reconstructs the

microscopic XSs on-the-fly. Note that the group constant data such as the
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macroscopic scattering matrices, SPH factors, and fission spectra, which are defined
macroscopically, are not compressed because their data sizes are not that large.

Consider an arbitrary Mx N matrix A where m>n.The SVD of a matrix A

is expressed as:
A=UzV' (6.4)

where U (mxm) and V (nxn) are the orthogonal matrices whose columns are
the left and right singular vectors of A, respectively, and £ (mxn)is the

diagonal matrix whose elements are the singular values arranged in the descending
order. The magnitude of a singular value is related to the contribution of the
corresponding singular vectors to the original matrix and typically the first a few
singular values are dominant. This implies that the singular vectors corresponding to
small singular values can be neglected. Using this fact, the LRA reduces the size of
U, V, and X by eliminating the singular values smaller than the k-t4 singular
value, where k is the reduced rank, and their corresponding singular vectors.

Consequently, the low-rank approximated matrix A, 1is represented as:
A =UZXV/ . (6.5)

By multiplying the left singular vector matrix U, (M xk) and the singular value

matrix X, (kxKk), the coefficient matrix F, (M xK) can be defined as:

S I ST P T | (6.6)
o --. sk f

ml mk

Thus, A, can be expressed as the multiplication of F, and the right singular

vector matrix V, (NxK) as:



A=l = e (6.7)
T

fo LV,

In consequence, each row vector of A, can be represented as the linear

combination of the coefficients and the right singular vectors as follows:
T T
a; = fi, v, +--+ f v, (6.8)

It is important to note that only F,_ depends on the pins and state points since V,
can be constructed such that it depends only on the XS type, the energy group, and
the nuclide type. Once V, is constructed, the singular vectors can be reused at
every pin and state point. This is a good feature for vectorization. The linear
combination coefficients in Eq. (6.8) are recalculated by interpolating the
coefficients in F, at every iteration in which the core state is changed. It is assumed
that the coefficients will have a similar dependency on the state point parameters as
the XSs do. Thus, the conventional XS interpolation method is applied directly to

the coefficients as well to yield:

fi, i (Tmin ' P ppm) = fi, j (TmovaoypO, ppmo)

+8f”AT + af” A\/T_Jrafi’jAp+ afi'j A(ppm)
LN " oop d(ppm)

m

(6.9)

For the decomposition, all the microscopic cross section data are first weighted by
the corresponding flux and number densities and then cast into a single cross section
matrix. Each row of the matrix contains the weighted microscopic cross sections of
all the nuclides, energy groups, and reaction types at each pin and state point. The
reason for weighting is to reflect the importance of each cross section element in

terms of the actual contribution to the reaction rates so that the quality of the LRA is
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improved. Also, it is important to note that xo-, , where « is the energy release per

fission, should not be included in the matrix, as it is extremely prone to numerical
errors due to its small magnitude which is lower by several orders than those of other

cross sections. Errors in xo, lead to inaccurate power calculation and can have a

substantial impact on depletion calculations as the flux normalization factors used in
the depletion calculations rely on the calculated power. Therefore, « is stored

separately and only &, and veo, areincluded in the matrix for the decomposition.

The XS matrix is constructed to be optimal considering the access patterns of F,
and V, onGPU, as described in Figure 6.12 and Figure 6.13. The order of elements
in each column, which determines the order of rows in F, , is arranged such that the

outermost parameter is the burnup point, and for each burnup point, the XS vectors
of the base condition and the branch conditions, if available, are arranged. In each
XS vector, pins are arranged sequentially. They are located innermost because the
interpolation of coefficients described by Eq. (6.9) is pinwise parallelized and it is
desired to have adjacent threads access contiguous memory for coalescing on a GPU.

The order of elements in each row, which determines the order of rows in V, , is

arranged such that the outermost parameter is the reaction type, followed by the
energy groups and nuclides. The linear combination in Eq. (6.8) is fully
parallelizable over reaction types, energy groups, and nuclides although there are
cases where only the XSs of a specific reaction type are required or energy groups
need to be swept sequentially for one-group reaction rate calculation. However, the
operations on the nuclides are always parallelizable in any case, thus it is desirable

to locate the nuclides innermost.
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Figure 6.13 Row structure of the cross section matrix.

For a VANGARD group constant file containing 256 pins and 138 state points, the

dimension of the XS matrix would be:

m = 256 [pins] x 138 [state points] = 35,328,
n = 32 [nuclides] x 8 [groups] x 5 [reactions] = 1,280

which would require 172.5 MB of memory in single precision. After applying the

compression technique with the reduced rank of 128, only F, and V, need to be

stored, whose dimensions are:

F, : mxk = 35,328 x128,
V, i nxk =1,280x128

which would require only 17.9MB of memory. Consequently, nearly 90% of memory

is reduced.
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Determination of the SVD Rank

In the dimensionality reduction technique employing the SVD and the LRA, the
reduced rank for the LRA should be pre-determined. We have set the criterion to

determine the reduced rank such that the sum of the cutoff singular values becomes

less than 10°° of the total, and the criterion was examined with the APR1400 basic
fuel assembly group constants, whose results are shown in Figure 6.14. Following
the result, we determined to globally use the first 128 singular values, which is the
smallest multiple of 32 (the size of warp in CUDA) that satisfies the criteria of all

types of assemblies.

120

100

60

40

Required Rank

20

AO BO Bl B2 B3 CO C1 C2 (3
Assembly Type
Figure 6.14 Required rank of each assembly type.

Effects of the Microscopic Cross Section Compression

The accuracy of the cross section reconstruction after the compression was
investigated by comparing the APR1400 core depletion calculation results with the
reference solutions obtained by using the original cross sections. Figure 6.15 presents

the difference in critical boron concentration (CBC) and the maximum pin power



error at each burnup step in the core depletion calculation. Here, the group constants
of not only the basic fuel assemblies but also the assemblies with spacer grids and
the radial and axial reflector assemblies were compressed. In all burnup steps, the
differences of CBC were less than 0.002 ppm, and the maximum pin power errors
are of 0.0001% order. It confirms that the solution accuracy is unchanged after the

compression even in core calculations.
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Figure 6.15 CBC and pin power differences in the core depletion calculations.

Figure 6.16 shows the comparison of GPU memory usage at each burnup step.
The memory usage changes at each burnup step due to the burnup window scheme.
However, it should be noted that the burnup window scheme is not applied to the
compressed cross sections; namely, the coefficient matrix of the entire burnup range
and the right singular vector matrix are stored on GPU as a whole, and only the
uncompressed group constant data such as the macroscopic scattering cross section
matrices, SPH factors, and fission spectra are subject to the burnup window scheme
and ported adaptively. Nevertheless, it does not serve as a large memory burden as
the compression is done very effectively. On the contrary, as the decomposed

matrices are ported only once at the initialization stage and employed throughout the

rest of the calculation, the overhead of constructing the cross section sub-tables at
11
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each burnup step is reduced. In addition, the GPU memory usage becomes stable and

predictable as most of the required memory is reserved at the initialization stage,

which eliminates the risk of running out of memory during calculation. Consequently,

the peak GPU memory usage is reduced from ~ 17 GB to ~ 9.2 GB. As shown in

Table 6.2, the group constant file size for each fuel assembly type is also substantially

reduced by the compression technique to yield a 73% reduction in memory.
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Figure 6.16. Comparison of GPU memory usages.
Table 6.2 Comparison of group constant file sizes.
Original Compressed
File Size (MB) 236.8 64.8
] 1]
= 1)
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Chapter 7. Verifications and Validations

The solution accuracy and simulation capabilities of VANGARD were
comprehensively examined through cycle depletion calculations for a series of real
cores of APR1400 [30], AP1000 [34], and BEAVRS benchmark [18] problems. For
all core problems, nTRACER direct whole core depletion calculations were
performed to generate the reference solution such that consistent comparisons are
possible with the same multi-group cross section library for both VANGARD and
nTRACER calculations. In the VANGARD calculations, the pinwise and groupwise
SPH factors are employed which are functionalized in the same way as the regular
cross sections. In the following sections through 7.1 — 7.3, the specification of each
core is given and the accuracy of VANGARD is then assessed by the comparison
with the nTRACER direct whole core calculation results and, if needed, measured
data and the PRAGMA Monte Carlo calculation results are also used as the reference.
For all cores, the axial structures were explicitly modeled as precisely as possible.
Group constants for the assemblies bearing spacer grids and the axial reflector
assemblies were separately generated and used. The transient solution accuracy was
examined by the HZP rod ejection problems of the NEACRP benchmark in Section
7.4. As in the core cycle depletions, the results of VANGARD are compared with the

nTRACER solutions.

7.1 APR1400 Initial Core Depletion

APR1400 is a Generation III large power reactor of Korea. The core is loaded with
241 fuel assemblies of 16 x 16 lattice and extensively utilizes the gadolinia burnable
absorbers to control excess reactivity. The initial core of APR1400 is loaded with

nine types of fuel assemblies that are classified according to the fuel enrichment and
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the gadolinia content, as illustrated in Figure 7.1 along with the loading pattern. This
core was chosen as the target problem for the verification of VANGARD due to its
representativeness of typical PWRs, its large size that increases the computational
complexity, and the existence of gadolinia fuels that enables to examine the gadolinia

fuel depletion scheme of VANGARD.
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13 in1 Aol A0 A0 B1 3.14/2.64 wt%; Fuel + 16 Gadolinia BP
14 Ao B A0 A0 3.64/3.14 wt% Fuel
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16 B1 3.65/3.14 wit% Fuel + 16 Gadolinia BP
17 EB B0 3.64/3.14 wt%; Fuel + 16 Gadolinia BP

Figure 7.1 Initial core loading pattern of the APR1400 core [32].

The core was depleted up to 18 MWD/kgHM, and 21 burnup steps including the
BOC were simulated in total with and without the NIBC option. Figure 7.2 shows
the 3D power distributions calculated by VANGARD with NIBC at the BOC, MOC
(8 MWD/kgHM), and EOC.

The CBC letdown curves ant the errors are shown in Figure 7.3. It seems that the
CBC errors are larger with the NIBC method, however, it can be easily found that it
is merely due to error cancellation. Without NIBC, the gadolinia burnable absorbers
are depleted slower than they should be, which can be confirmed by the large
negative pin power errors noted for the Gd pins at the MOC illustrated in Figure 7.4.
This introduces a significant negative bias in reactivity, which cancels out with the
baseline positive reactivity errors. In terms of the power distributions, the

improvement of errors with the burnup correction is clearer. At the MOC where the

A =)
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peak pin power error occurs, the maximum and RMS pin power errors are
substantially reduced from 4.3% and 0.9% to 1.7% and 0.5%, respectively, as
presented in Figure 7.5. As the peculiar errors at the gadolinia fuel pins are removed,
global power distributions are improved as well, which can be seen clearly by the
notable reduction of the global power error tilt at the MOC shown in Figure 7.4. The
axial power distributions and error distributions with NIBC are shown in Figure 7.6.
The axial power distributions are also significantly improved where the peak
maximum and RMS errors are reduced from 8% and 4.8% to 2.9% and 1.8%,
respectively, as shown in Figure 7.7.

As a whole, VANGARD presents fairly good agreements with nTRACER. CBC
differences are kept below 15 ppm, and the maximum and RMS pin power errors do
not exceed 2% and 0.5%, respectively. The axial power demonstrates slightly higher
degree of errors, as the maximum and RMS errors reach 4% and 2%, respectively.
Nonetheless, considering that the axial core structures were explicitly modeled in
detail which tend to be smeared in the conventional design codes, the errors are

considered acceptable.
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Figure 7.2. APR1400 power distributions at BOC, MOC, and EOC.
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Figure 7.3. CBC letdown curves and errors for the APR1400 initial core.
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Figure 7.4. Pin power error (%) distributions at BOC (left), MOC (middle), and
EOC (right) for the APR1400 initial core.
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Figure 7.5. Maximum and RMS pin power errors at each burnup step for
the APR1400 initial core.
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Figure 7.7. Maximum and RMS axial power errors at each burnup step for the
APR1400 initial core.

7.2 AP1000 Initial Core Depletion

AP1000 is the representative Generation III+ advanced nuclear power plant
developed by the Westinghouse Electric Company. Its core employs many advanced
design concepts such as fuel enrichment zoning, axial blankets with annular fuels for
accommodating fission gas release, and combination of multiple types of burnable
absorbers: Wet Annular Burnable Absorbers (WABA) of different axial lengths and
Integral Fuel Burnable Absorbers (IFBA). The initial core loading pattern is
illustrated in Figure 7.8. The core is loaded with 157 fuel assemblies of 17 x 17
lattice which are grouped into five regions according to the enrichment ranging
widely from 0.74 to 4.8 wt%. IFBAs and WABAs are contained in the region 4 and
5 where high-enriched fuels are loaded. The WABAs are classified as short,
intermediate, and long WABAs depending on the length of the absorber regions, as

described in Figure 7.9, and they are all inserted at the same time, which causes

severe heterogeneity in the axial direction. As the result, the core is highly
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heterogeneous in both radial and axial directions, posing challenges in modeling and
simulation. Such complexity makes the core suitable for verifying the solution

capability of VANGARD.

Figure 7.8 Initial core loading pattern of the AP1000 core [35].
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Figure 7.9 Axial configurations of fuel rods and WABAs of the AP1000 core [35].

The core was depleted up to 18 MWD/kgHM using 23 burnup steps including the
BOC. Figure 7.10 shows the 3D power distributions calculated by VANGARD at the
BOC, MOC, and EOC. The CBCs match closely within 14 ppm as shown in Figure
7.11, and the agreement in the pin power distributions is also quite good as shown in
Figure 7.12 and Figure 7.13 in that the largest maximum and RMS errors which
occur at BOC are only 1.76% and 0.54%, respectively. The errors smoothly decrease
by annealing to nearly 0.9% and 0.3% at the EOC, respectively. The axial power
reveals slightly larger errors than radial pin power, especially at the early stage of the
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cycle where the maximum and RMS errors reach 3.8% and 2.3%, respectively, as
seen in Figure 7.14 and Figure 7.15. However, given the extreme axial heterogeneity
introduced by the WABAs of different lengths, the errors are within an acceptable
level for a two-step design code. Rather, it should be emphasized that such detailed

axial representation is possible with VANGARD to yield reasonable accuracy.

BOC MOC EOC

Figure 7.10 AP1000 power distributions at BOC, MOC, and EOC.
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Figure 7.11. CBC letdown curves and errors for the AP1000 initial core.
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Figure 7.12. Maximum and RMS pin power errors at each burnup step for the
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AP1000 initial core.
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Figure 7.13. Pin power error (%) distributions at BOC (left), MOC (middle), and
EOC (right) for the AP1000 initial core.
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AP1000 initial core.
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7.3 BEAVRS Benchmark Problems

BEAVRS (Benchmark for Evaluation And Validation of Reactor Simulations) [18]
benchmark provides detailed descriptions of the two operational cycles of a
commercial nuclear power reactor as well as the measured data including HZP
physics test results, boron letdown curves, and detector signals. A series of problems
of BEAVRS benchmark is quite suitable for comprehensively verifying the extensive
capabilities of VANGARD such as the restart/reloading, control rod movements
during depletion, and load follow calculation capabilities.

The BEAVRS cores are loaded with 193 fuel assemblies of 17 x 17 lattice which
are specified according to the enrichments and burnable absorber (BA)
configurations. The fuel loading pattern of the Cycle 1 is shown in Figure 7.16 where
the indices on several assemblies denote the number of BA pins. The shuffling
pattern for the Cycle 2 core is shown in Figure 7.17.

As in the previous two core cases, the comparisons were made mainly against the
nTRACER transport solutions, however, in the case that n'TRACER cannot provide
the reference solutions due to the lack of simulation capabilities such as control rod
movements and load follow operation, PRAGMA solutions were used as the
reference. Furthermore, BEAVRS provides measurements, therefore, if
measurements are available, they were also used as the references. This section
covers the HZP physics tests, HFP depletion, and load follow operation for each

cycle.



RPNMLIEKJHGTFETDT CTUBA

. 3.1w/o U235 D 2.4w/oU235
D 1.6 w/o U235

Figure 7.16 Loading pattern of the BEAVRS Cycle 1 core [18].

RPNMLIKUJHGT FETDTCTBA

. Fresh 3.2 w/o U235 D Fresh 3.4 w/o U235
D Shuffled Assembly

Figure 7.17 Shuffling pattern of the BEAVRS Cycle 2 core [18].
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7.3.1 Hot Zero Power Physics Tests

The critical boron concentrations under various control rod bank insertion
conditions for the Cycle 1 are compared in Table 7.1. The estimated CBC of
VANGARD matches well with measurements in that the maximum difference
occurring in the most intensely rodded case is only 24 ppm. Considering that the
design review criterion (DRC) of the CBC in a typical HZP physics test is 50 ppm
[36], this difference is quite acceptable. In code-to-code comparisons with
PRAGMA and nTRACER, it shows much better accuracy for all cases. Especially
compared with nTRACER solutions, the differences for all cases are within 2 ppm.

The control rod bank worth (CRBW) for the full insertion sequence is calculated
by the difference of reactivity between before and after inserting the target control
rod in the core with the earlier inserted rods loaded under the critical condition made
by the pre-calculated CBC for each rodded case. The VANGARD solutions for the
Cycle 1 are compared with those of nTRACER and PRAGAM as well as
measurements, as shown in Table 7.2. Compared with the measurements, the
estimated CRBWs show good agreements. For all cases, the maximum absolute and
relative errors do not exceed 50 pcm and 5.0%, respectively. They are far less than
the DRC for the individual bank worths which are defined as the smaller one between
100 pcm and 15%. As in the CBC comparisons, VANGARD solutions for CRBW
agree well with those of PRAGMA and nTRACER within 20 pcm and 3.0%.

The isothermal temperature coefficient (ITC) is compared in Table 7.3. In all
codes, it is calculated in the same manner by making the 5°F perturbation to the inlet
temperature. On the contrary to the CBCs and CRBWs, VANGARD shows
significantly large differences in the ITCs from the measurements. VANGARD tends
to underestimate the ITCs, but this tendency is observed in two other code
calculation results. Meanwhile, it still shows good agreements with the solutions of

PRAGMA and nTRACER with negligible errors.
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Table 7.1 Comparison of HZP critical boron concentrations (ppm) of BEAVRS Cycle 1.

Case Me(al\s/Bred PRA(SMA nTR(ﬁ)CER VAI\ii}/)ARD V-M V-p V-n

ARO 975 978 969.43 967.90 -7 -10 -1.53

Din 902 917 908.67 907.06 5 -10 -1.61

C,Din 810 817 810.24 809.16 -1 -8 -1.08
B,C,Din - 725 719.14 717.39 - -8 -1.75
A,B,C,Din 686 679 673.46 672.69 -13 -6 -0.77
A,B,C, D, SE, in - 638 633.45 633.63 - -4 0.18

A, B,C, D, SE,SD in - 575 570.92 571.15 - -4 0.23
A, B, C, D, SE, SD, SCin 508 486 484.36 483.77 -24 -2 -0.59

91



Table 7.2 Comparison of HZP control rod bank worths (pcm) of BEAVRS Cycle 1.

Measured PRAGMA | nTRACER | VANGARD
Case V-M V-P V-n
M) () (n) V)
Din 788 783 781 781 7 2 0
(-0.9%) (-0.2%) (0.0%)
. . 36 -16 -7
Cwith D in 1203 1255 1246 1239 (3.0%) (-1.3%) (-0.6%)
. . 46 -3 6
B with D, C in 1171 1220 1210 1217 (3.9%) (-0.3%) (0.5%)
. . 22 -17 -15
Awith D, C, B in 548 587 585 570 (4.1%) (-2.9%) (-2.6%)
SE with D, C, B, Ain 461 497 494 482 21 15 12
T (4.6%) (-3.0%) (-2.5%)
. . 5 -7 -1
SD with D, C, B, A, SE in 772 784 778 777 (0.6%) (0.9%) (-0.1%)
. . 5 -11 7
SC with D, C, B, A, SE, SD in 1099 1115 1097 1104 (0.5%) (-1.0%) (0.7%)
Table 7.3 Comparison of HZP isothermal temperature coefficients (pcm/°F) of BEAVRS Cycle 1.
Measured PRAGMA | nTRACER | VANGARD
Case V-M V-P V-n
M) () (m) V)
ARO -1.75 -2.98 -2.80 -3.00 -1.25 -0.02 -0.20
Din -2.75 -4.56 -4.40 -4.40 -1.65 0.16 0.00
D, Cin -8.01 -9.43 -9.40 -9.40 -1.39 0.03 0.00
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Since the nTRACER code is not capable of elaborate load follow calculation and
control rod movements during depletion, the comparisons against nTRACER
solutions cannot be made for the Cycle 2. Instead, the VANGARD solutions were
compared with the measurements and the PRAGMA solutions, which are shown in
Table 7.4 — Table 7.6. In the reloaded cores as well, the CBC differences from the
measurements are sufficiently small within 20 pcm. The differences from PRAGMA
solutions are entirely negligible. In the case of CRBWs, the errors from the
measurements were still within the design criterion in that for all cases the absolute
and relative errors are smaller than 50 pcm and 15%. The error of total CRBW of
4.1% is also smaller than the DRC of 8.0%. The ITC for the Cycle 2 ARO case was
estimated larger than the measurement by 0.9 pcm/°F, but the difference from the

PRAMGA solutions is sufficiently small.

Table 7.4 Comparison of HZP critical boron concentrations (ppm) of BEAVRS

Cycle 2.
Measured PRAGMA | VANGARD
Case V-M V-P
M) (P) V)
ARO 1405 1390.5 1390.8 -14.3 03
Cin 1273 1289.3 1289.5 16.5 0.2
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Table 7.5 Comparison of HZP control rod bank worths (pcm) of BEAVRS Cycle 2.

Measured

PRAGMA

VANGARD

Case (M) (P) V) V-M V-P

D in 426 480.3 475.2 ( e ) (_f&)
Cin | 1o | o | s | g | e
Bin | M6 | s | MO | oy | G
Am | 0 W7 | Sow | e
SE in 438 440.9 444.0 ( &% (02%
SD in 305 360.3 82 | e ) (312(;) )
SC in 307 358.3 346.2 ( B : (31302 )
Sl N 217 | 885 | oy | Qew
SAin 326 3744 359.3 ( Yo : (_?41‘?) . )
Total 4733 49973 49285 (2?15 0-/2') (-_16.352 )

Table 7.6 Comparison of HZP isothermal temperature coefficients (pcm/°F) of
BEAVRS Cycle 2.
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Measured PRAGMA | VANGARD
Case V-M V-P
M) (P) V)
ARO 1.71 0.69 0.80 -0.91 0.11
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7.3.2 Hot Full Power Depletions

The Cycle 1 and 2 depletion calculations under the constant power level of 100%
were performed. Since the measured data for CBC are provided, the CBC at each
burnup step of both cycles was compared with measurements as well as with the
nTRACER solution.

Figure 7.18 shows the 3D power distributions calculated by VANGARD at the
BOC, MOC, and EOC. For the Cycle 1, both nTRACER and VANGARD estimate
CBCs lower than the measurement with the maximum difference of 37 ppm, as
presented in Figure 7.19. However, it is still in an acceptable range. On the other
hand, the CBC differences between VANGARD and nTRACER are negligible
throughout the whole burnup steps where the largest difference is only 6 ppm.

The pin power distributions and the axial power distributions were compared with
those of nTRACER. The maximum and RMS pin power error trends along the
burnup are shown in Figure 7.20, and the pin power error distributions at BOC, MOC,
and EOC are demonstrated in Figure 7.21. The excellent agreements between the
two codes are verified in the pin power comparisons where the maximum and RMS
pin power errors are kept below 0.8% and 0.3%, respectively, during the depletion
except for at the BOC. The axial power distributions are also estimated close to those
of nTRACER, as demonstrated in Figure 7.22 and Figure 7.23. At all burnup steps,
the maximum and RMS axial power errors are within 3% and 1%. However, the
axial power errors are increasing with significant oscillation especially near the EOC,
which turned out to be caused by the xenon oscillation. Thus, further investigation
to alleviate this effect is needed to ensure consistently high accuracy in axial power

distributions.
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Figure 7.18 BEAVRS Cycle 1 power distributions at BOC, MOC, and EOC
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Figure 7.19 CBC letdown curves and errors for the BEAVRS Cycle 1 core
under the HFP condition.

96 'H kl 1-'” “']r T



-
~

—— Max
—a—RMS| -

-
¥

—_
(N
T

Pin Power Error (%)
o o
[#)] (o] -

o
~

0 1 1 1 1 1 1
0 50 100 150 200 250 300

EFPD (days)
Figure 7.20 Maximum and RMS pin power errors at each burnup step for the
BEAVRS Cycle 1 core under the HFP condition.
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Figure 7.21 Pin power error (%) distributions at BOC (left), MOC (middle), and
EOC (right) for the BEAVRS Cycle 1 core under HFP condition.
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Figure 7.22 Maximum and RMS axial power errors at each burnup step for the
BEAVRS Cycle 1 core under the HFP condition.
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Figure 7.23 Axial power and error (%) distributions at BOC (left), MOC (middle),
and EOC (right) for the BEAVRS Cycle 1 core under HFP condition.
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The 3D power distributions and burnup distributions of the Cycle 2 calculated by
VANGARD at the BOC, MOC, and EOC are illustrated in Figure 7.24 and Figure
7.25, respectively. For the Cycle 2 as well, The CBCs estimated by VANGARD
match well with the measurements and with the nTRACER solutions within 20 ppm
and 15 ppm, respectively, as shown in Figure 7.26. The pin powers are in good
agreement with nTRACER as demonstrated in Figure 7.27 and Figure 7.28. At all
burnup steps except for the BOC, the maximum and RMS pin power errors are within
1.5% and 0.5%, respectively. The axial power distributions are also in good
agreement with nTRACER throughout the whole burnup steps, as shown in Figure
7.29 and Figure 7.30. For most burnup steps, the maximum and RMS axial power
errors are lower than 3% and 1%, respectively. The high solution accuracy for the
Cycle 2 calculation proves the soundness of the restart and reloading capability of
VANGARD.

There are many factors to cause the large pin power errors at the BOC for the
reloaded core in two-step calculations because it is unlikely that each fuel pin will
be depleted in the same condition with the lattice calculation. The most significant
factor is the environment effect caused by inter-assembly heterogeneity. This effect
is introduced more severely in the Cycle 2 core where high-enriched fresh fuel
assemblies are loaded between shuffled assemblies from the Cycle 1. As noted in
Figure 7.25, there must be severe gradients in burnup in the reloaded core. However,
this cannot be elaborately predicted in two-step core calculations which employ pre-
generated pin-homogenized cross sections from lattice calculations. Another factor
to cause errors only to reloaded cores is the inability to rigorously consider the
history effect of BA-withdrawn assemblies where the BA rods are loaded in the
Cycle 1 core but withdrawn in the Cycle 2 core. In order to rigorously simulate the
extraction of BA rods between cycles, it should use group constants generated from
an unnatural lattice calculation where an assembly is depleted with BA rods until a

certain burnup corresponding to the end of Cycle 1 and then depleted without BA
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rods. However, it is practically impossible because the group constants for an
assembly are generated for the lifetime of the assembly which spans three cycles at
once. Therefore, in VANGARD, for the Cycle 2 calculation of those BA-withdrawn
assemblies, the group constants of the corresponding base assembly which has the
same enrichment but does not contain BA rods are used. It entails an inevitable
limitation that the depletion history with BA rods loaded of the previous cycle cannot

be incorporated in the group constants.

BOC MOC EOC

Power
Power
Power

Figure 7.24 BEAVRS Cycle 2 power distributions at BOC, MOC, and EOC
under the HFP condition.
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Figure 7.25 BEAVRS Cycle 2 burnup distributions at BOC, MOC, and EOC
under the HFP condition.
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Figure 7.26 CBC letdown curves and errors for the BEAVRS Cycle 2 core
under the HFP condition.

101

Diff. (ppm)



—*— Max
251 —#—RMS| |

Pin Power Error (%)

0 50 100 150 200 250
EFPD (days)
Figure 7.27 Maximum and RMS pin power errors at each burnup step for the
BEAVRS Cycle 2 core under the HFP condition.
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Figure 7.28 Pin power error (%) distributions at BOC (left), MOC (middle), and
EOC (right) for the BEAVRS Cycle 2 core under the HFP condition.
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Figure 7.29 Maximum and RMS axial power errors at each burnup step for the
BEAVRS Cycle 2 core under the HFP condition.
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and EOC (right) for the BEAVRS Cycle 2 core under the HFP condition.
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7.3.3 Load Follow Calculations

BEAVRS benchmark provides measured data for boron letdown curves and
detector signals along with power history and the control rod bank positions at each
burnup step. Due to the lack of capability of control rod movement during depletion
and load follow calculation of nTRACER, the code-to-code comparisons in this
section were made with PRAGMA solutions.

Based on the actual power history, the power level model was simplified so that
total 31 burnup points were determined to be simulated which consists of burnup
points at which the measured data are provided and the burnup points right before
and after the reactor trip where the power level drastically changes, as presented in
Figure 7.31. Note that for the T/H feedback and xenon feedback calculation within
a specific burnup step, the core power provided at that burnup point is used, and for
the depletion calculation, the average core power during the burnup step is used.

The CBC letdown curves are compared in Figure 7.32. Compared to the
measurements, the non-negligible differences are observed at the later burnup steps,
which exceeds the acceptance criterion, 50 ppm, but this trend is observed in
PRAGMA results as well. The large errors at the later burnup steps are also noted in
the core follow results of another deterministic transport code nTER [37].
Considering that the large differences from the measurements at the later burnup
steps are commonly observed in the various code calculations, these errors might be
originated from the uncertainties of measurements and the inability to simulate the
actual power history accurately. Meanwhile, the differences between VANGARD
and PRAGMA solutions are kept below 15 ppm during depletion. Not only in CBCs
but also in pin powers, VANGARD shows excellent agreements with PRAGMA as
shown in Figure 7.33 and Figure 7.34. The largest maximum and RMS pin power

errors during the depletion are only 2.2% and 0.5%, respectively.
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The comparisons of detector signals at BOC, MOC, and EOC are demonstrated
through Figure 7.35 - Figure 7.37, and those at all burnup steps are summarized in
Table 7.7. As in the CBC comparisons, large differences from the measurements are
observed at the later burnup steps in which the maximum error of the detector signal
reaches nearly 7.5%. Nonetheless, the maximum errors do not exceed 5% except for
the EOC, and the RMS errors are kept below 2.5%, which results in the average RMS
error throughout the whole burnup steps of 1.6%. Through the code-to-code
comparison with PRAGMA, the high accuracy was confirmed in that the maximum

errors are within 2.5%, and the average RMS error of all burnup steps is only 0.6%.
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Figure 7.31 Power history and control rod bank positions of the Cycle 1 load
follow operation.
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Figure 7.32 CBC letdown curves and errors for the BEAVRS Cycle 1 core under

the load follow operation.

S
|
g 14+ 1
L —k— Max
- 12 1
g —— RMS
[o] L B
o 1
c
=08 :
0.6 r 1
0.4 1
0.2 1 Il Il 1 Il Il
0 50 100 150 200 250 300

EFPD (days)

Figure 7.33 Maximum and RMS pin power errors at each burnup step for the
BEAVRS Cycle 1 core under the load follow operation (ref.: PRAGMA).
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EOC (right) for the BEAVRS Cycle 1 core under the load follow operation
(ref.: PRAGMA).
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-2.00% 0.11% Diff. -0.23% -0.46% Diff.
1.2938, 1.1058 1.3007 1.2815 1.1031 1.2889
10 1.3015] 1.1048] 1.3085 RMS 10 1.2927| 1.0973] 1.2996 RMS
0.77% -0.11% 0.78% Max 1.11% -0.58% 1.07% Max
1.1066 1.2882 1.1120 1.2987 1.1013 1.3026 1.1027 1.2999
11 1.1039 1.3048 1.1038 1.3037 11 1.0964 1.2959 1.0963 1.2948]
-0.26% 1.66% -0.82% 0.50% -0.49% -0.66% -0.64% -0.51%
1.2806| 1.1061] 1.2721] 1.2704 1.0877 1.2808] 1.0756, 1.0834;
12 1.2892 1.0902 1.2842 1.0805 12 1.2804 1.0828 1.2754 1.0732 1.0942]
0.86% -1.59% 1.20% 1.00% -0.49% -0.54% -0.24% 1.08%
1.0494 1.2550 1.0304 1.0407| 1.2377 1.0286 1.2202 1.0164 0.7188
13 1.0477 1.2583 1.0349 1.2408 13 1.0406 1.2497 1.0279 1.2323 1.0149 0.7160
-0.17% 0.33% 0.45% -0.02% 1.20% -0.08% 1.21% -0.16% -0.27%
1.1843 0.8613 1.1422 1.1754 0.8519 1.1374 0.8110 0.7186 0.5299
14 1.1948, 0.8562 1.1552 0.8152 14 1.1866 0.8503 1.1474 0.8097 0.7259 0.5299
1.05% -0.52% 1.30% 1.13% -0.16% 1.00% -0.13% 0.73% 0.00%
0.6694 0.6813 0.6189 0.5133 0.6670 0.6784 0.6217 0.5033
15 0.6721 0.6828 0.6269] 0.5084 15 0.6676 0.6781 0.6226] 0.5050]
0.27% 0.15% 0.80% -0.49% 0.06% -0.03% 0.09% 0.17%
Figure 7.36 Comparisons of the Cycle 1 detector signals at MOC.
H G F E D C H G F E D C
1.1144
8 1.1465] 8 1.1348|
2.04%
0.9934 1.1199 Measured 1.0178, 1.1971 PRAGMA
9 1.0189 1.1944 VANGARD 9 1.0085 1.1822 VANGARD
2.55% Diff. -0.93% -1.49% Diff.
1.1609 1.0167 1.1751 1.1677 1.0413 1.1788
10 1.1993 1.0389 1.2089 RMS 10 1.1871 1.0283 1.1966 RMS
3.84% 2.21% 3.38% Max 1.94% -1.31% 1.78% Max
1.0481 1.1772 1.0643 1.2432 1.0536 1.2211 1.0637 1.2473
11 1.0488| 1.2155] 1.0595 1.2473 1 1.0381] 1.2031] 1.0487] 1.2346
0.07% 3.84% -0.49% 0.41% -1.55% -1.79% -1.50% -1.28%
1.1882 1.0680 1.2224 1.1376 1.2049 1.0718 1.2486 1.0840 1.0805
12 1.2374 1.0710 1.2471 1.0892 1.1143 12 1.2248, 1.0601 1.2344 1.0781 1.1030
4.92% 0.30% 2.47% -2.32% 1.98% -1.18% -1.43% -0.59% 2.25%
1.0840 1.0882 1.2693] 1.1056 0.8450] 1.0745 1.2314 1.0698 1.2243 1.0667| 0.7983|
13 1.0816 1.2673] 1.0761 1.2619 1.0791 0.8029 13 1.0705 1.2544 1.0651 1.2491 1.0681 0.7948
-0.24% -1.21% -0.74% -2.65% -4.20% -0.40% 2.29% -0.47% 2.48% 0.14% -0.35%
1.2247 0.9580 1.2071 0.7853 0.5795 1.2042 0.9244 1.1713 0.8675 0.7400 0.5550
14 1.2412 0.9285 1.2064 0.8737| 0.7654 0.5611 14 1.2286 0.9191 1.1941] 0.8648 0.7576 0.5554
1.65% -2.95% -0.07% -1.99% -1.84% 2.44% -0.54% 2.28% -0.28% 1.76% 0.05%
0.7223 0.7396 0.6811 0.5667 0.7083 0.7193 0.6658 0.5389
15 0.7116 0.7210 0.6706 0.5447 15 0.7043 0.7136 0.6638 0.5391
-1.07% -1.86% -1.04% -2.20% -0.39% -0.57% -0.20% 0.02%

Figure 7.37 Comparisons of the Cycle 1 detector signals at EOC.
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Table 7.7 Summary of the detector signal comparisons of the Cycle 1 load follow

calculation.
Measured Point | Power VANGARD vs. VANGARD vs.
(%) Measured (%) PRAGMA (%)
Day | EFPD Max | RMS Max | RMS
0 0.00 0.71 4.62 1.86 1.16 0.34
18 1.15 20.31 4.14 1.70 0.71 0.30
54 4.36 32.42 3.65 1.67 0.64 0.28
62 7.52 48.69 3.68 211 0.98 0.42
66 9.09 48.90 3.03 1.47 1.15 0.36
81 17.02 | 74.04 3.52 1.25 0.80 0.35
82 17.76 | 73.17 3.57 1.73 0.74 0.32
88 22.40 | 89.47 2.74 1.17 1.08 0.46
92 26.03 | 98.67 4.60 221 0.97 0.45
161 33.76 | 64.66 4.38 2.04 1.07 0.35
169 40.07 | 99.78 3.11 1.25 0.95 0.44
187 56.33 | 99.98 2.67 1.20 0.98 0.43
218 82.55 | 93.78 2.31 1.13 1.00 0.46
251 11450 | 99.60 2.14 1.14 1.13 0.54
323  147.79 | 63.65 4.92 2.12 1.08 0.51
339  159.56 | 99.70 2.50 0.98 1.48 0.65
368  184.14 | 99.30 241 1.25 1.76 0.77
403  212.61 | 99.86 3.78 1.46 1.65 0.88
434 23890 | 99.51 2.54 1.26 1.60 0.88
468 269.85 | 99.91 3.12 141 2.04 111
504  301.55 | 99.79 2.79 1.44 2.18 1.21
551 31491 | 84.48 4.53 2.20 2.35 1.32
573  331.80 | 69.86 7.45 2.49 2.48 1.40
Average RMS Error: | Average RMS Error:
1.59% 0.62%

For the Cycle 2 load follow calculation, VANGARD solutions show excellent
agreements with references. For CBCs as noted in Figure 7.38, the differences from
the measurements and PRAGMA are within 60 ppm and 4 ppm, respectively. In the
case of pin powers, as shown in Figure 7.39 and Figure 7.40, the maximum and RMS
pin power errors are consistently lower than 2% and 0.5%, respectively, except for
at BOC, which shows the same behavior in the Cycle 2 HFP calculation. For the
detector signal comparisons as well, as presented through Figure 7.41 - Figure 7.43
and in Table 7.8, the high accuracy of VANGARD solutions is confirmed where the

average RMS errors are at the level of 1%.
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Figure 7.38 CBC letdown curves and errors for the BEAVRS Cycle 2 core under
the load follow operation.
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Figure 7.40 Pin power error (%) distributions at BOC (left), MOC (middle), and
EOC (right) for the BEAVRS Cycle 2 core under the load follow operation
(ref.: PRAGMA).

H G F E D c H G F E D c
1.1958)
1.2006, 8| 11969
0.12%
11265  1.1161 Measured 11334  1.1193 PRAGMA
11135 1.0917 VANGARD 9| 11100 10883 VANGARD
-1.30%|  -2.44% Diff. -2.33%|  -3.10% Diff.
10081 11317 11466 10864] 11330 11562
10 10827 11145  1.1570] RMS 100 10794 11111 1.1534 RMS
-1.53%|  -1.72%|  1.04% Max 0.70%|  -2.20%| -0.27% Max 3.10%
10897 11393 1.0409] 10728 11034] 11629 1.0695  1.0995
11| 1oso7| 11488 10675 1.0883 11 10863 11453 1.0642| 1.0849
0.00%|  0.95%|  2.66%|  1.54% 1719%|  176%| -0.53%| -145%
10754] 10659 11075 0.9762 11002 1.0978] 11186 0.9667| 0.9989
12| 11037| 10937] 11076 09733 10137 12| 11003| 10003 11042 09703 1.0106
283%|  2.78%|  0.01% 3.75% 0.01%| -0.75%| -1.44%| 036%| 117%
10626) 1.1590| 1.0470] 11070 1.0685|  0.9868 1o713| 11013] 10623| Lo778] 1o288] 09726
13| 1o714] 11057 10674 10932 10425 09915 13| 1oes1| 11023 10641 10899 10393 09884
o.88% |SIS3%|  2.03%| -1.38%| -260%| 047% -032%|  010%| 0.18%| 1.20%| 1.05%| 1.59%
11014 10769 1.0753 0.8564|  0.4638 1.0575| 1.088| 10336 10595 0.8379] 0.4526
14| 10755 10876 1.0494| 10738 0.8621| 04541 14| 10722| 10843 10462 1.0705| 0.8595| 04527
2.50%|  1.07%| -2.58% 0.57%|  -0.97% 147%|  -038%|  126%| 110%|  2.16%)  0.00%
o9s88| 09793 08027] 04733 0.9586| 0.9544| 0.8007| 04770
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178%|  -143%|  1.01%|  0.42% 150%|  1.06%| 096%| -0.09%

Figure 7.41 Comparisons of the Cycle 2 detector signals at BOC.
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H G F E D C H [ E D C
1.185
8 1.2126 8 1.2067
1.0516| 1.0481] Measured 1.0572 1.0623] PRAGMA
9 1.0551] 1.0503] VANGARD 9 1.0500 1.0452] VANGARD
0.35% 0.22% Diff. -0.72% -1.70% Diff.
1.0471] 1.0891] 1.2150 1.0322 1.0906| 1.1992]
10 1.0496 1.0853 1.2164 RMS 10 1.0445 1.0800 1.2105] RMS
0.26% -0.38% 0.14% Max 1.23% -1.05% 1.12% Max
1.0706 1.1763 1.0853; 1.2548 1.0730 1.1925 1.0778 1.2580,
1 1.0661 1.1867] 1.0757] 1.2482] 1 1.0609 1.1809 1.0705] 1.2422]
-0.46% 1.04% -0.96% -0.66% -1.21% -1.16% -0.73% -1.58%
1.1170 1.0923] 1.2276] 1.1426 1.1146| 1.0921] 1.2334 1.0394 1.1274
12 1.1353] 1.0901] 1.2244 1.0414] 1.1493 12 1.1298| 1.0849 1.2185] 1.0364 1.1438
1.83% -0.22% -0.31% 0.67% 1.52% -0.72% -1.50% -0.30% 1.64%
1.0369 1.1485] 1.0655] 1.1921] 1.0657 0.9190 1.0400 1.1264 1.0505] 1.1702] 1.0543] 0.9174
13 1.0421 1.1416 1.0526] 1.1914 1.0603 0.9251 13 1.0370 1.1361 1.0475 1.1856 1.0551 0.9206
0.52% -0.69% -1.29% -0.07% -0.54% 0.61% -0.30% 0.97% -0.31% 1.54% 0.08% 0.33%
1.0148| 1.0533] 0.8192 0.5131 0.9880 1.0390 1.0250 1.0003; 0.8103| 0.5085|
14 1.0089 1.0379 1.0421 1.0084; 0.8315] 0.5095 14 1.0040 1.0328 1.0371 1.0035; 0.8274] 0.5070]
-0.59% -1.12% 1.23% -0.37% 1.60% -0.61% 1.21% 0.32% 1.71% -0.15%
0.8168 0.8321 0.7429 0.5299 0.8212 0.8351 0.7368 0.5262
15 0.8304 0.8428 0.7461 0.5272 15 0.8263 0.8387 0.7425 0.5246
1.36% 1.07% 0.32% -0.27% 0.51% 0.37% 0.56% -0.16%
Figure 7.42 Comparisons of the Cycle 2 detector signals at MOC.
H G F E D C H G F E D C
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8 1.2302 8 1.2175
1.0393 1.0423 Measured 1.0516 1.0573 PRAGMA
9 1.0476| 1.0474 VANGARD 9 1.0368| 1.0366| VANGARD
0.83% 0.50% Diff. -1.48% -2.07% Diff.
1.0473] 1.0756| 1.2295] 1.0196 1.0843] 1.2053]
10 1.0468, 1.0802 1.2374 RMS 10 1.0360 1.0691 1.2246] RMS
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1.0627 1.1889 1.0914 1.3230, 1.0639 1.2036 1.0858; 1.3162
1 1.0606 1.2003] 1.0830 1.3122] 1 1.0496 1.1880 1.0718] 1.2987]
-0.21% 1.14% -0.84% -1.09% -1.43% -1.56% -1.40% -1.75%
1.1283] 1.0975] 1.2672] 1.2125 1.1131] 1.0906| 1.2730 1.0726] 1.1766
12 1.1474 1.0893] 1.2693] 1.0774] 1.2130 12 1.1356| 1.0781] 1.2562] 1.0663| 1.2005
1.91% -0.82% 0.21% 0.04% 2.25% -1.25% -1.68% -0.63% 2.39%
1.0352] 1.0773] 1.2326] 1.0766 0.8960 1.0317 1.1283] 1.0507] 1.1938| 1.0588| 0.8876
13 1.0390 1.1605] 1.0565] 1.2324 1.0691 0.8938 13 1.0283 1.1485 1.0456 1.2197] 1.0581 0.8846
0.38% -2.08% -0.02% -0.75% -0.22% -0.34% 2.02% -0.51% -0.07% -0.30%
1.0036 1.0313] 1.0595] 0.8010 0.5386 0.9681 1.0277 1.0175] 0.9697 0.7800 0.5327
14 1.0005! 1.0322 1.0504 0.9807] 0.8105] 0.5359] 14 0.9901 1.0215] 1.0396! 0.9706| 0.8021] 0.5303
-0.32% 0.08% -0.91% 0.95% -0.27% 2.21% -0.61% 2.21% 0.09% 2.22% -0.24%
0.7713 0.7904 0.7181 0.5584 0.7718 0.7909 0.7106 0.5502
15 0.7828 0.8003 0.7216 0.5554 15 0.7747 0.7921 0.7141 0.5497
1.15% 1.00% 0.34% -0.30% 0.29% 0.12% 0.35% -0.05%

Figure 7.43 Comparisons of the Cycle 2 detector signals at EOC.
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Table 7.8 Summary of the detector signal comparisons of the Cycle 2 load follow

calculation.
Measured Point | Power VANGARD vs. VANGARD vs.
(%) Measured (%) PRAGMA (%)
Day | EFPD Max | RMS Max | RMS
5 0.43 29.11 5.33 2.07 3.10 1.25
10 3.01 80.47 5.47 1.78 2.50 1.01
13 5.49 99.99 4.69 1.83 2.25 0.95
35 27.25 | 99.68 2.34 1.13 2.67 0.81
42 34.25 | 65.00 3.83 1.85 1.57 0.72
65 51.31 | 100.16 1.87 0.95 1.90 0.94
93 77.17 | 99.90 1.58 0.85 1.93 0.88
126 97.48 | 100.08 1.80 0.92 2.20 0.98
156  125.78 | 99.75 1.83 0.78 217 1.01
191  156.89 | 99.91 1.83 0.85 2.23 1.12
220  185.78 | 99.96 3.35 1.07 247 1.16
251  209.85 | 99.55 1.97 0.89 2.28 1.23
266  224.83 | 99.91 251 0.98 2.28 1.30
296  251.30 | 99.92 2.08 0.84 2.59 1.46
Average RMS Error: | Average RMS Error:
1.20% 1.06%

7.4 NEACRP Rod Ejection Problems

The NEACRP benchmark [38] core is composed of 157 fuel assemblies. Each
assembly contains 264 fuel rods arranged in 17 X 17 array, and consists of 18 axial
planes including axial reflectors. For all cases, the rod ejection time is 0.1 seconds.

First of all, sensitivity tests were performed on time step size for VANGARD. The
results obtained from VANGARD employing the fully implicit method for temporal
discretization with time step size of 1ms were used as reference solutions. As
demonstrated in Figure 7.44, the transient solutions obtained from the Crank-
Nicholson (CN) method with time step size of Sms and 10ms match well with the
reference solutions for all problems. Thus, the time step size of VANGARD
calculation is set to 10ms, and the Crank-Nicolson method is employed for the
temporal discretization. In nTRACER calculation, on the other hand, the fully

implicit method is employed with time step size of Sms.
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Figure 7.44 Comparison of core power behavior according to time step sizes.
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Figure 7.45 - Figure 7.47 show the 3D power distributions of the A1, B1, and C1

problem calculated by VANGARD at the steady-state, at the time of core power peak

and also at 1.0 second. They clearly show the significant localized pinwise power

increase near the rod-ejected position during the transient, which demonstrates the
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transient simulation capability of VANGARD. Table 7.9 summarizes the calculation
results of VANGARD compared with those of nTRACER. Figure 7.48 shows the
core power behaviors of each problem, and the maximum Doppler temperature and
the maximum moderator temperature behaviors of each problem are in Figure 7.49.

Prior to the analysis of transient results, the steady-state solutions were assessed
for the ejected rod worth. For the B1 and C1 problems, the rod worth of VANGARD
agrees with that of nTRACER within 1 pcm. For the Al problem, however, a
relatively large overestimation of 3 pcm is noted due to the severe heterogeneity
which leads to a much earlier peak in the core power. Even the small difference has
a nontrivial impact on core power because the transient core power behavior is
strongly dependent on the ejected rod worth [26].

Meanwhile, for the other cases which do not suffer from the mismatch of the initial
condition, all the transient results including the core power and T/H parameters are
quite close to the nTRACER results, which verifies the soundness of the transient

simulation capability of VANGARD.

Figure 7.45 Power distributions of A1 problem at the steady state (left), core power
peak (middle), and 1.0 s (right).
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Figure 7.46 Power distributions of B1 problem at the steady state (left), core power
peak (middle), and 1.0 s (right).
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Figure 7.47 Power distributions of C1 problem at the steady state (left), core power
peak (middle), and 1.0 s (right).
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Table 7.9 Comparison between VANGARD and nTRACER results for the
NEACRP HZP rod ejection cases.

Parameter Solver Al B1 Cl1
nTRACER 792.67 824.15 945.97
Ejected Rod
worth VANGARD 795.62 824.15 946.95
(pcm)
Diff, 2.95 ; 0.98
nTRACER 69.07 236.70 397.42
Max. Core VANGARD 77.87 257.76 454.18
Power (%)
Diff, 8.80 21.06 56.76
nTRACER 0.715 0.515 0.265
Peak Time (s) | VANGARD 0.700 0.520 0.260
Diff, -0.015 0.005 -0.005
nTRACER 483.12 445.70 519.28
Max.
Doppler VANGARD | 477.15 | 45157 | 52432
Temperature
at 5s (°C)
Diff, -5.97 5.87 5.87
nTRACER 307.39 302.68 308.19
Max.
Moderator VANGARD 307.91 303.04 308.71
Temperature
at 5s (°C)
Diff, 0.52 0.36 0.52
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Chapter 8. Computing Time Assessments

The soundness and performance of the GPU calculation modules were examined
with a series of core cycle depletion problems and NEACRP control rod ejection
problems. The core features and the calculation conditions are all the same as those
introduced in Chapter 7 for verifications and validations. In the CPU calculation
modules, OpenMP multi-core parallelization is applied and the Eigen [24] linear
algebra package is utilized for the matrix and vector operations in the CMFD and
depletion calculations. The soundness of the GPU calculation modules was verified
by comparing the CBCs and pin powers with those of the CPU calculation modules,
and the performance of the GPU calculation modules was evaluated against the
multi-core CPU parallel calculation performance. For the CPU calculations, a single
Intel 19-10900X CPU with 10 cores was used, and a single NVIDIA GeForce RTX
3090 GPU was used for the GPU calculations. The specifications of the computing

resources are shown in Table 8.1.

Table 8.1 Specifications of the computing resources.

Processor Type GPU CPU
NVIDIA GeForce .
Name RTX 3090 Intel 19-10900X
10,496 for FP32
# of Cores 164 for FP64 10
Base Core Frequency 1.40 GHz 3.70 GHz
42 GB/s
DRAM Bandwidth ( (9}?)6])(;]2/;() (Dual Channel
DDR4-2666)
FP32 Performance 29,389 GFLOPS 1,184 GFLOPS
FP64 Performance 459 GFLOPS 592 GFLOPS
MSRP $ 1,499 $ 648 - § 658
:lx'-'i: ok ]
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8.1 APR1400 Initial Core Depletion

Figure 8.1 presents the CBC letdown curves of the CPU and GPU calculations,
and Figure 8.2 shows the pin power differences between the CPU and GPU
calculations at the BOC, MOC, and EOC. For a rigorous comparison, tightly

converged solutions were obtained with the fission source convergence criterion of

107 Throughout the results, it is confirmed that the GPU calculation modules yield
equivalent results to the CPU calculation modules, as the calculated CBCs and pin
power distributions are virtually the same. The CBC differences over the entire
burnup steps do not exceed 0.01 ppm, and the maximum pin power differences
steadily remain below 0.0003%. Additionally, this is another proof of that the mixed

precision technique used in the nodal solver does not deteriorate the solution

accuracy.
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Figure 8.1 Comparison of CBC letdown curves for the APR1400 core case.
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Figure 8.2. Pin power error (%) distributions at BOC (left), MOC (middle), and
EOC (right) for the APR1400.

On the other hand, the performance difference between the CPU and GPU
calculations is significant. In the CPU calculation, the three major modules take up
to 98% of the total computing time as shown in Figure 8.3. Substantial speedups for
these were achieved with GPU. As summarized in Table 8.2, the nodal, cross section,
and depletion calculations were accelerated by 22, 44, and 11 times, respectively. As
the result, the total calculation time was reduced from about 75 minutes with 10 CPU
cores to the level of 3 minutes with a single GPU. This demonstrates that the GPU
accelerations modules of VANGARD were highly efficiently implemented and that
the pinwise two-step nodal core calculation can be done with a feasible computing
time for the application to routine core design analyses by GPU acceleration.

Meanwhile, an important observation from the results is that reconstructing the
compressed XSs is faster than directly interpolating the raw XSs on GPU. It is
because the reconstruction calculation has highly regular memory access pattern
which is merely composed of element-wise matrix and vector operations, while the
raw XS interpolation involves very irregular memory accesses that hinder the
coalescing on GPU. Namely, the XS compression technique brings an additional

advantage in terms of computing time due to the special characteristics of GPUs.
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Figure 8.3 Computing time shares for the APR1400 core depletion case.

Table 8.2 Computing time of the major hotspots and total computing time for the
APR1400 core depletion case.

. GPU (Original) GPU (w/ Compression)
Calculation CPU(5) Time (s) Speedup Time (s) Speedup
Nodal 1586.9 72.4 21.9 72.9 21.8
XS 2450.2 55.9 43.8 29.1 84.2
Depletion 348.5 31.2 11.2 22.1 15.8

Total 4488.3 196.6 22.8 158.9 28.2

8.2 AP1000 Initial Core Depletion

The significant performance of the GPU calculation modules was also reproduced
in the AP1000 core case. Figure 8.4 illustrates the computing time shares of the CPU
and GPU calculations, and Table 8.3 presents the computing time of the three major
hotspots and the total computing time, along with the speedup factors. The nodal,
cross section, and depletion calculations were accelerated by 21, 57, and 15 times,
respectively, and as the result, the entire cycle depletion calculation for the AP1000
initial core could be carried out within 2.5 minutes with a single GPU which had

initially taken about 55 minutes with a deca-core CPU.
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Figure 8.4 Computing time shares for the AP1000 core depletion case.

Table 8.3 Computing time of the major hotspots and total computing time for the
AP1000 core depletion case.

. GPU (Original) GPU (w/ Compression)
Calculation CPU(5) Time (s) Speedup Time (s) Speedup
Nodal 1457.1 70.3 20.7 70.1 20.8
XS 1518.1 47.9 31.7 26.6 57.1
Depletion 247.8 224 11.1 16.3 15.2

Total 3305.2 168.8 19.6 143.2 23.1

8.3 BEAVRS Cycle 1 Core Depletion

The computing times and speedup factors of the computational hotspots and total
computing time are summarized in Table 8.4, and the computing time shares of CPU
and GPU calculations are presented in Figure 8.5. The nodal calculation and the cross
section update were accelerated by 25 and 37 times, respectively, and the depletion
calculation was also sped up by over 11 times. Consequently, the total computing
time was reduced from about 1 hour 20 minutes to within 3.5 minutes. This
computing time is equivalent to that a core calculation for a state can be performed

in 6.8 seconds, which is fast enough to be industrially executed.
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Table 8.4 Computing time of the major hotspots and total computing time for the
BEAVRS Cycle 1 core HFP depletion case.

. GPU (Original) GPU (w/ Compression)
Calculation CPU(5) Time (s) Speedup Time (s) Speedup
Nodal 2157.5 86.5 24.9 86.2 25.0
XS 2132.6 58.3 36.6 32.6 65.5
Depletion 339.6 30.2 11.3 26.9 12.6
Total 4740.0 212.6 22.3 187.7 25.3
CPU GPU GPU (w/ Compression)
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Figure 8.5 Computing time shares for the BEAVRS Cycle 1 core HFP depletion

8.4 NEACRP Rod Ejection Problems

case.

The soundness of the GPU-accelerated modules for transient analyses was

assessed by the comparison with CPU results for the C1 problem which was

calculated with full core geometry so that it takes the most computing time among

the three target problems. Figure 8.6 shows the core power behaviors from the CPU

and GPU calculations and the relative errors between the two calculations. The GPU

calculation result was confirmed to agree with the CPU calculation result, showing

the relative error kept below 0.01%.

Table 8.5 and Table 8.6 summarizes the computing times and speedup ratios of

the four major GPU-accelerated parts of Al quarter core problem and C1 full core

problem, respectively. The computing time share comparisons for them are
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demonstrated in Figure 8.7 and Figure 8.8. All the calculations involve 100 transient
steps with time step size of 10 ms. With GPU acceleration, substantial speedups were
achieved, especially in the nodal solver which took 96% of the total computing time
in the CPU calculation. Owing to this, the total computing time was reduced from
20 minutes to 50 seconds for Al quarter core problem, and from 75 minutes to 2.5

minutes for C1 full core problem.
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Figure 8.6 Core power comparison between CPU and GPU calculations for the C1

problem.

Table 8.5 Computing time (s) of the major hotspots and total computing time (s)
for the NEACRP Al problem.
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Calculation (15 (E)oLrJes) (s?nF;LIJe) Speedup
Nodal 1225.8 24.7 49.7
CMFD 15.6 3.3 4.7
XS 2.7 0.2 15.2
TH 271.7 14.6 1.9
Total 1285.2 50.9 25.2
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Figure 8.7 Computing time shares for the NEACRP A1 problem.

Table 8.6 Computing time (s) of the major hotspots and total computing time (s)
for the NEACRP C1 problem.

Calculation (10C cI;Dolﬁes) (s(iBnPgllJe) Speedup
Nodal 4420.0 78.1 56.6
CMFD 55.9 6.3 8.8
XS 9.7 0.5 18.7
TH 83.9 44.0 1.9
Total 4612.1 154.4 29.9
CPU GPU

1% 2% 1%

—

®Nodal mCMFD ®mTH = XS m Device Data Setup ™ Others

Figure 8.8 Computing time shares for the NEACRP C1 problem.

127



Chapter 9. Summary and Conclusions

The pioneering GPU-based pinwise two-step nodal core calculation code
VANAGARD has been developed, which leverages modern GPU computing
capabilities to realize practical next-generation nuclear designs. As VANGARD
targets to be used in commercial nuclear design analyses, a consumer-grade GPU
that can be mounted on PCs was adopted as the main computing resource, which
ensures affordability and practicality. Since VANGARD has been developed to fully
exploit GPU performance from the scratch, almost all parts of the calculation
modules including the three major computational hotspots — nodal solver, cross
section treatment, and depletion solver — have been ported to GPU. Therefore,
unnecessary overheads caused by the data transfer between CPU and GPU, which
were not negligible, were minimized.

In VANGARD, the pin-level one-node SP; SENM was chosen as the primary
nodal kernel. SENM was chosen owing to its capability to capture severe flux
gradients occurring in the pinwise multi-group calculations with use of its hyperbolic
terms. One-node kernel is selected to avoid the pinwise SP; CMFD calculation which
will lead to deterioration of stability and computing performance. In order to retain
both accuracy and computational efficiency, radial 2™ — axial 4™ order hybrid flux
expansion was used. Besides, a mixed precision technique was devised to maximize
the exploitation of powerful single precision computing power of consumer-grade
GPU, in which only the simple arithmetic operations in the axial kernel are
selectively done in double precision while the rest of operations of the nodal solver
are done in single precision. By the sensitivity test, it was demonstrated to be the
optimal combination in terms of stability, accuracy, and computing performance.

For the acceleration of fission source distribution convergence, assembly-level

diffusion CMFD solver was paired with the nodal kernel. In order to resolve the
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instability revealed in one-node pinwise nodal — assemblywise CMFD coupled
calculation, CMFD-based partial current update scheme was developed. This method
is to reflect the CMFD solutions in the update of pinwise partial currents by using
mp-CMFD relation and the modulated pinwise fluxes which are updated from the
CMFD coarse mesh flux update. Through the parametric study, the significant
effectiveness of the pinwise partial current update was demonstrated.

VANGARD employs 8-group microscopic group constants which are generated
by the lattice calculations of the whole-core transport code nTRACER. To resolve
too significant memory burden of the pinwise group constants, two measures were
introduced to fit into the limited memory capacity of consumer-grade GPUs. The
first one is the burnup window scheme which ports only the group constants which
are necessary at each burnup step. The second one is the cross section compression
technique which reduces the dimension of the microscopic cross section matrix
algebraically by employing the SVD and LRA. This compression technique was
confirmed not to harm the accuracy for the 2D core depletion calculation,
furthermore, it turned out that not only it reduced the memory usage but also it
reduced the computing time on GPU noticeably owing to the regular memory access
pattern.

In depletion calculation, an efficient and massively parallel solution of batched
burnup system with the CRAM was achieved by employing the cheap Gauss-Seidel
method for the matrix inversion. The non-zero major ordering scheme for the matrix
storage maximizes the coalescing on GPU. The inaccuracy of gadolinia fuel
depletion, which is apparently observed in pinwise two-step core calculations, was
resolved by introducing the neighbor-informed burnup correction scheme in which
the cross sections of gadolinia fuel pins are functionalized by the average burnup of
neighboring general fuel pins, not using their own burnups. The significant accuracy
improvement was confirmed by the APR1400 core depletion calculation which is

highly loaded with gadolinia fuels.
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To constitute a fully capable core analysis system, VANGARD is not limited to
developing individual modules but integrates them, and implements various
auxiliary capabilities for practical applications, including the inline T/H feedback
module with the simplified model and the features like CBC search, B-10 depletion,
and xenon equilibrium and transient feedback. In addition, the transient calculation
capability was also developed.

The high solution accuracy and execution performance of VANGARD were
confirmed by the cycle depletion calculations for two commercial PWR cores of
APR1400 and AP1000 and the BEAVRS multi-cycle benchmark problems. In terms
of accuracy, VANGARD solutions presented excellent agreements with nTRACER
transport solutions in both CBCs and power distributions. For all target problems,
CBC differences were within 15 ppm, and the maximum and RMS pin power errors
were within 2.0% and 0.6%, respectively, throughout the whole burnup steps.
Meanwhile, substantial speedups were achieved by GPU acceleration in every
calculation module. Finally, for all the target problems, a cycle depletion calculation
which took more than an hour with 10 CPU cores could be completed within 3
minutes on a consumer-grade GPU. It is corresponding to less than 10 seconds per
state. These results ensure that VANGARD satisfies both accuracy and computing
time requirements for commercial nuclear designs, which confirms the feasibility of
practical pinwise core designs.

For the verification of transient calculation capabilities, NEACRP rod ejection
problems were analyzed. All the transient results including the core power and T/H
parameters were confirmed to be quite close to the nTRACER results. In terms of
computing performance, a single consumer-grade GPU achieved substantial
speedups over the 10-core CPU calculation with 50 and 57 times speedup in the
nodal calculation time and 25 and 30 times speedup in the total calculation time,

which results in the total calculation time reduced to 50 seconds and 2.5 minutes to
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simulate 100 times steps for the Al quarter core and C1 full core problem,
respectively.

Through all of these works, VANGARD has become the first and the only GPU-
based full-featured pinwise two-step nodal core calculation code that can satisfy both
accuracy and computing time requirements to the practical level. Moreover, this
research is of value in that it resolved many issues and overcome challenges revealed
in performing the pinwise two-step nodal core calculations on GPU, which have not
been tackled or even known previously, and in that it suggested resolutions for them
with newly developed elaborate methods and schemes. All of these achievements
presented the high potential of practical pinwise nuclear designs, and this research
can serve as a good precedent for future developments of pinwise two-step core
calculation systems which will become a trend in the worldwide reactor core design

analysis institutes.
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