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Abstract  
 

 

A GPU-based pinwise two-step nodal core calculation code named VANGARD 

(Versatile Advanced Neutronics code for GPU-Accelerated Reactor Designs) is 

developed. It is featured by the GPU acceleration employing a consumer-grade GPU 

which can be mounted on a personal computer to realize practical next-generation 

pinwise nuclear designs. This research presents the development of the essential 

capabilities for real nuclear designs and integration of them to constitute a fully 

capable core analysis system. It includes primary solvers such as nodal – CMFD 

coupled flux solver, thermal-hydraulic (T/H) solver, and depletion solver as well as 

the capabilities of restart/reloading for multi-cycle calculations, control rod 

movement during depletion, and load follow operation. The pinwise transient 

simulation capability is also developed.  

 

The code employs the Source Expansion Nodal Method (SENM) to solve Simplified 

P3 (SP3) equations so that the severe intra-pin thermal flux gradients can be 

effectively captured with the use of hyperbolic functions while the 4-mesh per 

assembly coarse mesh finite difference (CMFD) formulation is used as the overall 

framework. For the T/H calculation, a simple T/H solver based on the single-phase 

closed channel representing a quarter of an assembly is used for practical 

applications. A massively parallelized depletion scheme based on the Chebyshev 

Rational Approximation Method (CRAM) is implemented. The GPU acceleration is 

applied to almost all of the calculation modules to render feasible simulation times 

enough to be utilized commercially. 

 

Not limited to the implementation of calculation capabilities and application of GPU 

acceleration, this research resolves many issues and overcomes challenges revealed 

in performing the pinwise two-step nodal core calculations on GPU, which have not 
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been tackled or even known previously, and suggests resolutions for them with newly 

developed elaborate methods and schemes. To resolve too significant memory 

burden of the pinwise group constants to be ported on limited GPU device memory, 

the burnup window scheme is introduced, and the cross section compression 

technique employing the SVD and LRA are applied. The neighbor-informed burnup 

correction method is proposed as a practical means to resolve the severe inaccuracy 

in gadolinia fuel depletion which is apparently observed in pinwise two-step 

calculations. The numerical stability and significant computing time reduction are 

achieved by a new CMFD-based pinwise partial current update scheme. 

 

The results of this research confirm the high accuracy and significant computing 

performance of VANGARD. For the verification, two commercial PWR cores of 

APR1400 and AP1000 and the BEAVRS multi-cycle benchmark problems were 

analyzed. For all target problems, VANGARD showed significantly high accuracy 

compared to nTRACER transport solutions. The CBC differences were within 15 

ppm, and the maximum and RMS pin power errors were within 2.0% and 0.6%, 

respectively, throughout the whole burnup steps. Meanwhile, substantial speedups 

were achieved by GPU acceleration in every calculation module. Finally, for all the 

target problems, a cycle depletion calculation that took more than an hour with 10 

CPU cores could be completed within 3 minutes on a consumer-grade GPU. It is 

corresponding to that core calculation time spent per each state is less than 10 

seconds. These comprehensive verification results ensure that VANGARD satisfies 

both accuracy and computing time requirements to be commercially utilized, which 

confirms the feasibility of practical pinwise core designs.  

 

Through all of these works, VANGARD has become the first and the only GPU-

based full-featured pinwise two-step nodal core calculation code that guarantees 

accurate pin-level solutions in a feasible simulation time. All of these achievements 
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presented the high potential of practical pinwise nuclear designs, and this research 

can serve as a good precedent for future developments of two-step pinwise core 

calculation systems which will become a trend in the worldwide reactor core design 

analysis institutes. 

 

Keywords: Pinwise Two-Step Calculation 

SP3 SENM 

GPU Acceleration 

    VANGARD 
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Chapter 1. Introduction 
 

The conventional assemblywise two-step core calculation has been the primary 

nuclear design method in industries owing to its significantly high computational 

efficiency. In terms of accuracy, it can meet the safety margin even though employing 

assembly-homogenized group constants cannot consider the intra-assembly 

heterogeneity so it inherently entails severe inaccuracy, because the conservative 

regulatory requirements were applied in the conventional reactor designs and safety 

analyses. 

Recently, however, more precise and accurate core analysis is strongly required as 

safety regulations have been further tightened, the margin for safety analysis has 

become increasingly insufficient due to the deterioration of the aging nuclear power 

plant, and advanced reactors with severe heterogeneity have been actively developed. 

This requirement cannot be met with the conventional assemblywise two-step 

method which cannot provide accurate pin-level solutions, therefore, the fidelity of 

nuclear design tools needs to be enhanced. 

As a means of high-fidelity reactor analysis, various direct whole core calculation 

(DWCC) codes have been actively developed by worldwide research groups which 

include DeCART of KAERI [1], nTRACER of Seoul National University (SNU) [2], 

and MPACT of Oak Ridge National Laboratory [3]. Furthermore, the feasibility of 

the direct whole core analysis method has been greatly improved by the remarkable 

advances in high-performance computing (HPC) technologies. However, it still 

relies on large parallel computers and is too expensive to be practically utilized for 

routine nuclear designs in the industries.  

In this regard, the pinwise two-step method using pin-homogenized group 

constants is getting increased attention as a compromise that can serve as a bridge 

technology between the assemblywise two-step method developed decades ago and 

whole core transport solution method which will take decades to be industrially 
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utilized. The pinwise two-step method has a high potential to be a next-generation 

nuclear design method that can satisfy both accuracy and performance requirements. 

With the employment of pin-homogenized cross sections, intra-assembly 

heterogeneities can be explicitly considered, and it requires far less computational 

costs compared to DWCCs. Especially, it is more suitable for modern light water 

reactors (LWRs) and small modular reactors (SMRs) design and analysis in which a 

detailed pin-level solution is necessary as core designs are more and more complex 

and heterogeneous. 

Based on this background, a new pinwise two-step nodal core calculation code 

named VANGARD (Versatile Advanced Neutronics code for GPU-Accelerated 

Reactor Designs) [4] was developed. It is featured by the GPU acceleration using a 

consumer-grade GPU to achieve practical simulation time even on personal 

computers (PCs) while retaining practicality. The NVIDIA CUDA [5] was chosen as 

the GPU development framework for high applicability and ease of coding. The 

pinwise group constants for VANGARD are generated from lattice calculations by 

the DWCC code nTRACER to constitute the nTRACER/VANGARD pinwise two-

step code system.  

In the following sections, previous researches on the pinwise two-step core 

calculations leading up to this research will be explained, and the purpose and scope 

of this research, which are specified to overcome the limitations of the previous 

researches and to resolve previously undiscovered problems, are detailed. Then, the 

outline of the research is given. 

 

 

 

 

 

 



 

 
3 

1.1 Previous Researches 
 

Various pinwise nodal core calculation codes have been actively developed in both 

industries and academic institutes, and the feasibility and high accuracy of pinwise 

nodal core calculation have been continuously demonstrated. Since the early 2000s, 

Nuclear Fuel Industries (NFI) company in Japan has been utilizing the 

AEGIS/SCOPE2 code system [6]. In academic institutes, the DYN3D code of 

Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in Germany [7], the NECP-

Bamboo2.0 code system of Xi’an Jiaotong University (XJTU) in China [8], and the 

HCMFD code of KAIST in Korea [9] are being developed. All of these previous 

researches have demonstrated the high potential of pinwise two-step calculation code 

as an alternative tool for future nuclear designs. 

At Seoul National University (SNU) as well, researches on the pinwise two-step 

core calculations have been conducted step-by-step. At first, Yoon [10] addressed the 

need for pinwise two-step calculation for practical nuclear design analyses, and 

based on this, he developed a new pinwise two-step core calculation code employing 

the 2-dimensional(2D)/1-dimensional(1D) coupled finite difference method (FDM) 

solver for diffusion equation to maximize computational efficiency. Following that, 

Cho developed the SPHINCS (Simplified P3 Pin Homogenized Innovative 

Neutronics Core Simulator) code [11] which solves SP3 equations employing the 

FDM. According to the thorough and systematical analysis of the error sources in 

pinwise multi-group core calculations by Hong [12] following the above two 

previous researches, however, FDM is suffered from severe discretization errors and 

refined meshes are required. However, the fine mesh FDM leads to a significant 

computing burden, which weakens the original strength of FDM of high 

computational efficiency. In this regard, he finally suggested Source Expansion 

Nodal Method (SENM) solver employing SP3 theory as the most optimal solver for 

retaining both accuracy and practicality, which is in turn adopted as the primary 
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nodal kernel of VANGARD. 

In spite of much cheaper computational costs of the pinwise two-step calculation 

compared to the DWCC, it is still computationally too demanding to be practically 

utilized for nuclear designs which involve hundreds of thousands of core calculations. 

This inherent limitation is relevant to all of the aforementioned pinwise two-step 

codes. To overcome the non-negligible computational burdens of pin-level 

calculation, almost all of the pinwise two-step calculation codes ever developed 

exploit massive CPU parallelism employing OpenMP or Message Passing Interface 

(MPI). However, the performance enhancement of CPUs is stagnant due to the power 

and memory barriers. Namely, satisfying the computing time requirement with CPU-

based pinwise calculations, especially with nodal solver, to substitute the legacy 

conventional two-step methods is challenging.  

In this regard, the application of GPU acceleration to the pinwise nodal core 

calculation was devised. GPUs can be a desirable computing resource to substitute 

multi-core CPU parallelism in that they contain a substantial number of simple 

arithmetic cores which can deliver significant floating point computing power 

enabling massive parallelism. The fact that the performance is still being improved 

exponentially is another undeniable advantage of the employment of GPUs. In fact, 

there has been an earlier work on applying GPU acceleration to pinwise core 

calculations in the SCOPE2 code [13] in 2011. Yet, it had limited scope and 

verification results, and no further work has been performed, supposedly due to the 

difficulties in porting a large CPU-based legacy code that has been developed for a 

long time and the limited capabilities and capacity of GPU hardware at that time. For 

the decade, however, the performance and memory have been continuously and 

drastically developed, and SNU has cleverly exploited these advanced modern GPUs 

for practical high-fidelity nuclear analyses and succeeded in application to two codes: 

the direct whole core calculation code nTRACER [14] and continuous energy Monte 

Carlo Code PRAGMA [15].  
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Motivated by these previous successful experiences, VANGARD adopts GPU as 

the main computing resource. Owing to the increased memory capacity compared to 

when the GPU acceleration to SCOPE2 was conducted, most parts of VANGARD 

were ported to GPU. Furthermore, it has been developed with careful considerations 

of the advantages and limitations of GPU from the very beginning of the 

development. Therefore, all the algorithms are elaborately optimized to be efficiently 

executed on GPUs. All these things will allow substantial feasibility and practicality 

to be achieved which none of the pinwise two-step core calculation codes ever 

developed could have completely achieved.  

 

 

1.2 Objectives and Scope of the Research 
 

This research aims to develop a fast yet accurate GPU-based pinwise two-step 

nodal core calculation code for practical applications in nuclear designs and analyses. 

To accomplish it, the following objectives are achieved in this research. 

The first objective is to develop the essential capabilities required for real nuclear 

designs and integrate them to constitute a fully capable core analysis system. In 

addition to the neutronics solver employing nodal – CMFD coupled calculation, 

various capabilities for practical applications are developed as follows: 

1) Inline T/H feedback module with the simplified model 

2) Pinwise microscopic depletion and B-10 depletion  

3) Critical Boron Concentration (CBC) search 

4) Xenon equilibrium and transient feedback 

5) Restart/Reloading for multi-cycle calculations 

6) Control rod movements and load follow operation 

The transient calculation capability was also developed to make VANGARD a 

practical pinwise core design code, for which time-dependent nodal – CMFD solver 
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and T/H solver were additionally developed.  

The second objective is to apply GPU acceleration to the calculation modules and 

attain sufficiently high computational efficiency so that it can be practically utilized 

in industries. VANGARD was developed to be executed on both CPU and GPU 

platforms, and the CPU calculation module was also optimized, but in this thesis the 

optimization requirements for GPU calculation are mainly dealt with in detail since 

VANGARD is featured by uncommonly fast execution with the use of GPUs. The 

requirements for exploiting GPU performance are as follows, and all the GPU 

acceleration modules were implemented to meet the requirements as far as possible.  

1) Vectorization: 

GPU is specialized at SIMD (Single Instruction Multiple Data) parallelism, 

therefore, branches should be minimized. 

2) Memory Coalescing: 

A group of threads should read and write contiguous memory. 

3) Local Memory Use: 

Access to the main memory should be minimized and frequently used data 

should be saved in high-bandwidth memories such as cache and register. 

Besides the implementation of essential calculation capabilities and GPU 

acceleration for them to achieve substantial computational efficiency, the novelty of 

this research comes from that it is also dedicated to resolving severe issues which 

are newly confronted by shifting the nuclear design method from the legacy 

assemblywise calculation to pinwise calculation and by introducing the GPU 

acceleration which is limited by insufficient memory. None of the previous 

researches on the pinwise two-step method has addressed these issues and suggested 

the proper resolutions. Thus, this work can serve as a pioneer of GPU-based pinwise 

two-step calculation method. 

The final objective is to confirm the high accuracy and significant computing 

performance of VANGARD. Since it targets to be applied to real core designs, the 
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target problems for the comprehensive assessments of VANGARD steady-state 

calculation capabilities are a series of real cores – APR1400 initial core, AP1000 

initial core, and BEAVRS Cycle 1 and 2 cores. – For the verification of the transient 

calculation modules, NEACRP rod ejection benchmark problems are analyzed. 

Basically, the accuracy of VANGARD solutions is assessed by comparison with the 

transport solutions of nTRACER, and if available, measurements and the Monte 

Carlo solutions of PRAGMA are also used as the references. 

 

 

1.3 Outline of the Thesis 
 

In Chapter 2, the nTRACER/VANGARD two-step code system is introduced 

including the group constant generation procedure. In Chapter 3, all the details of the 

full implementation for steady-state calculation capabilities are spelled out. The 

detailed rationale for the selection of nodal kernel, which is the one-node SP3 SENM 

kernel, and derivation of it are presented. The coarse mesh finite difference (CMFD) 

acceleration to enhance the fission source convergence is also treated. Following the 

neutronics solvers for flux update, all the auxiliary capabilities which are necessary 

for core design listed in the previous section are detailed. The transient calculation 

capabilities are addressed in Chapter 4. For computational efficiency and ease of 

implementation, most of the modules which were pre-established for steady-state 

calculation are shared with transient calculation as far as possible. This section will 

specifically describe additionally developed solutions for transient calculation, 

focusing on the time-dependent nodal – CMFD coupled solver and time-dependent 

T/H solver. Chapter 5 presents all the details of the GPU acceleration strategies 

including numerous elaborated computational methods for cleverly utilizing the 

GPU computing technologies. Chapter 6 covers the challenges of pinwise two-step 

core calculations and suggests the resolutions for them. Specifically, resolutions of 
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numerical instability and inaccuracy and resolutions of memory burden are proposed. 

Chapter 7 presents comprehensive assessments of the simulation capabilities and 

solution accuracy of VANGARD. In Chapter 8, the effectiveness of the GPU 

accelerations is demonstrated with noticeable speedups over 10-core CPU 

calculations for all problems. Chapter 9 concludes the thesis with remarks on the 

value of this research. 
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Chapter 2. nTRACER/VANGARD Two-Step 

Code System 
 

This chapter will introduce the details of nTRACER/VANGARD two-step code 

system. The procedure of generating pinwise multi-group constants as well as the 

SPH factors are spelled out in Section 2.1. The lists of the nuclides considered in the 

VANGARD code are explained in Section 2.2. The characteristics and the 

advantages of the hierarchical data format for group constant storage are addressed 

in Section 2.3. 

 

2.1 Group Constant Generation 
 

The pinwise group constants for VANGARD calculations are generated by the 

nTRACER single assembly depletion calculations. As is done in the conventional 

two-step calculations, branch calculations are performed at various burnups for each 

assembly to generate the group constant table as a function of fuel temperature, 

moderator temperature, moderator density, and boron concentration. Note that for 

generating group constants of reflector assemblies which do not contain fissile 

materials, fuel-reflector local problems are solved as described in Figure 2.1, and 

reflector group constants do not have a dependency on burnup. 

 

Figure 2.1 Fuel-reflector local configurations. 

 

After generating a group constant file for a single assembly through nTRACER 

calculations, the pinwise and groupwise SuperHomogenization (SPH) factors for 
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alleviating the homogenization errors are also generated from the combined 

nTRACER/VANGARD lattice calculations for each assembly. Given the reference 

pinwise flux information and pin-homogenized cross sections provided by the 

nTRACER lattice calculations, VANGARD runs iterations to determine the SPH 

factors for all the burnup points and branch points. This procedure is done only once 

for each assembly type, and the SPH factors are stored in the pre-generated group 

constant file.   

 

2.2 List of Nuclides in VANGARD 
 

VANGARD group constant considers 32 nuclides, whose list is shown in Table 

2.1. There are a few nuclides specially treated in the VANGARD cross section 

system that require explanations. First of all, the B-10 nuclide is separately defined 

depending on whether it is used as soluble boron (5000) or burnable absorber (5010) 

as they require separate treatments in T/H feedback, critical boron search, and 

depletion calculations. The lumped nuclides are imaginary nuclides that represent 

more than one elementary nuclide. Three lumped nuclides are for specific materials, 

and the remaining one (0) incorporates all the other auxiliary nuclides of nTRACER 

that are not explicitly considered in VANGARD. 

 

Table 2.1 List of the nuclides considered in the VANGARD group constant. 

Type ZID 

Boron 
5000 (B-10 in soluble boron),  

5010 (B-10 in burnable poison) 

Poison 53135, 54135, 60147, 61147, 61148, 61149, 62149 

Actinide 

92234, 92235, 92236, 92237, 92238 

93237, 93238, 93239 

94238, 94239, 94240, 94241, 94242 

95241, 95242, 95243 

96242, 96243, 96244 

Lumped 
0 (Other), 1000 (Moderator), 40000 (Zirconium),  

64000 (Gadolinium) 
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The lumped nuclide for moderator (1000) represents the H2O molecule. It is 

defined to separately treat the scattering matrix of the moderator. In the VANGARD 

group constant, scattering matrices of every nuclide but H2O are merged and stored 

as a single macroscopic scattering matrix in order to reduce memory usage and 

enhance computational efficiency. It is valid because the energy migration of 

neutrons through scattering in LWRs is dominated by the light nuclides in the 

moderator, especially hydrogen. Namely, it is a waste to store all the microscopic 

scattering matrices of heavy nuclides to accurately calculate their scattering matrices 

that are insignificant. 

The lumped nuclide for zirconium (40000) incorporates all the zirconium isotopes. 

It is defined to simulate the removal of burnable poison rods during reloading. In 

many commercial PWRs, removable burnable poison rods such as Pyrex or WABA 

are inserted for excess reactivity control which have the lifetime of a single cycle 

and are removed in the subsequent cycle. However, the group constants for an 

assembly are generated for the lifetime of the assembly which usually spans three 

cycles, and it is difficult to consider the extraction of burnable poison rods in the 

group constants in advance. In VANGARD, therefore, the removal of burnable 

poison rods is modeled by forcing the number density of the lumped nuclide as well 

as 5010 to zero during reloading, which is equivalent to removing all the poison and 

structural materials contained in the burnable poison rods. In order to prevent the 

guide tube material from being removed together as lumped nuclide, therefore, 

zirconium is separately treated. 

Finally, the lumped nuclide for gadolinium (64000) incorporates all the 

gadolinium isotopes. A gadolinia fuel presents highly heterogeneous depletion 

behaviors that cannot be accurately modeled in the pinwise two-step calculations due 

to spatial homogenization. As the result, a special treatment for gadolinia fuels is 

introduced in VANGARD in which the gadolinium isotopes are treated as a single 

fictitious nuclide that is not depleted, which will be elaborated in Section 6.1.2. 
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2.3 Hierarchical Data Format for Group Constants 
 

The VANGARD group constants are stored in the Hierarchical Data Format (HDF) 

[16] in single precision, although they are cast into double precision in calculations 

for accuracy. Pinwise group constants are significantly larger in size than the 

conventional assemblywise group constants, so efficient storing and parsing are 

important. The HDF format is basically a binary format, so it has a smaller size and 

much faster parsing speed than the ASCII format. In addition, the HDF format has a 

hierarchical structure that resembles a file system and allows random access to a 

specific data, whereas the ASCII format or the ordinary binary format needs to be 

processed sequentially. Furthermore, the HDF format is readable via external 

programs unlike the ordinary binary format, which makes troubleshooting easier for 

programmers and users. Thus, the HDF format is appropriate for dealing with large, 

hierarchical, and jagged data including the pinwise group constants. Figure 2.2 

illustrates the layout of a group constant file of VANGARD visualized by an HDF 

viewer program. 
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Figure 2.2 Layout of a group constant file. 
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Chapter 3. Steady-State Calculation Capability 
 

This chapter introduces the full implementation details of the steady-state 

calculation capabilities of VANGARD. Section 3.1 covers the flux solvers which are 

most primary in the code. VANGARD employs the one-node simplified P3 (SP3) 

source expansion nodal method (SENM) as the main nodal kernel while the 4-mesh 

per assembly coarse mesh finite difference (CMFD) formulation is used as the 

overall framework. This section presents the pinwise nodal solution method 

including the selection of the nodal kernel and the CMFD acceleration scheme. 

Section 3.2 introduces the feedback algorithm. In this section, the solution scheme 

of a lightweight, inline thermal-hydraulic solver for practical applications is 

explained, which comprises the solution of the heat convection equation for the 

coolant channel and the heat conduction equation for the fuel pellet. In addition, this 

section also explains the xenon transient/equilibrium feedback algorithm. In Section 

3.3, the depletion algorithm is described. VANGARD employs pinwise microscopic 

depletion scheme using a depletion chain consisting of 44 nuclides which is extracted 

from nTRACER such that only important nuclides are explicitly traced and the 

others are treated macroscopically as a lumped nuclide. This section explains the 

burnup system solutions for the Bateman equation as well as the B-10 depletion 

scheme for considering the soluble boron depletion. Section 3.4 presents the overall 

flowchart of the steady-state calculation for a cycle depletion. 
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3.1 Flux Solvers 
 

This section presents the rationale for determining the one-node SP3 SENM kernel 

as the optimal pinwise nodal kernel, followed by the derivation of it. In addition, the 

coarse mesh finite difference method for accelerating the fission source distribution 

convergence is presented. All these elements constitute the efficient and accurate 

neutronics solver of VANGARD. 

 

3.1.1 Selection of the Pinwise Nodal Kernel 

 

The SENM [17] is employed to solve the SP3 equation in VANGARD in that it 

can capture severe flux gradients more accurately than other nodal methods owing 

to the use of hyperbolic functions as well as polynomials for flux expansion. Because 

the intra-assembly heterogeneities are explicitly considered in the pinwise 

calculations and the intra-pin flux shapes change severely in low energy groups, the 

SENM is suitable for the accurate representation of the flux shapes even in pinwise 

calculations.  

VANGARD is based on the SP3 transport approximation in that it is superior in 

capturing the transport effects to the diffusion approximation by accounting for 

higher order of the angular flux expansion. Therefore, the SP3 calculation can 

produce more accurate solutions than the diffusion calculation especially in 

problems where spatial flux variation is severe, which is challenging for the diffusion 

approximation.  

The superiority of the SENM to the NEM and of the SP3 to the diffusion were 

confirmed through the actual core calculations. The BEVRS [18] benchmark cores 

with ARO and with the control rod bank D, C, B, and A in under the HZP condition 

were simulated, and the pin power distributions were compared with the nTRACER 

transport solutions. Note that for all calculations, the pinwise and groupwise SPH 
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factors are employed. As shown in Figure 3.1 and Table 3.1, the SENM solution 

shows definitely better accuracy than the NEM solution. Especially, in the rodded 

case where the flux gradients are severe, the NEM solver cannot catch the flux 

variation accurately to have the maximum and RMS pin power error of 7.1% and 

2.6%, respectively, while those in the SENM calculation are only 2.6% and 0.8%. 

The accuracy superiority of the SP3 solution over the diffusion solution is also clearly 

confirmed, as presented in Figure 3.2 and Table 3.2. For both unrodded and rodded 

cases, the SP3 solutions show better accuracy than the diffusion solutions. 

The one-node kernel was chosen to avoid the use of a pinwise SP3 CMFD solver. 

Although the two-node kernel has better convergence characteristics by reflecting 

the relations between the interface current and the two node average fluxes 

simultaneously, it is not favorable in the pinwise SP3 core calculations since it relies 

on the CMFD updates of the pinwise node average values of the second angular flux 

moment which can cause numerical instability due to its potential negativity. 

Furthermore, pinwise SP3 CMFD is computationally expensive. In this regard, the 

pin-level one-node SP3 SENM kernel is finally chosen as the optimal nodal solution 

employed within the assembly-level diffusion CMFD formulation with 4 meshes per 

assembly. 

 

Figure 3.1 Pin power error (%) distribution comparison between NEM and SENM 

calculations. 
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Table 3.1 Comparison of maximum and RMS pin power errors between NEM and 

SENM calculations. 

Case 
Pin power error 

(%) 
NEM SENM 

ARO 
Max 3.9 1.4 

RMS 2.0 0.6 

D, C, B, A in 
Max 7.1 2.6 

RMS 2.6 0.8 

 

 

Figure 3.2 Pin power error (%) distribution comparison between diffusion and SP3 

calculations. 

 

Table 3.2 Comparison of maximum and RMS pin power errors between diffusion 

and SP3 calculations. 

Case 
Pin power error 

(%) 
Diffusion SP3 

ARO 
Max 6.7 1.4 

RMS 3.1 0.6 

D, C, B, A in 
Max 10.3 2.6 

RMS 4.7 0.8 
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3.1.2 Derivation of the One-node SP3 SENM Kernel 

 

The derivation of the one-node SENM kernel starts from the transverse-integrated 

one-dimensional within-group neutron diffusion equation in the following: 
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where 
uh   denotes the node size in the u-direction and 

u   represents the 

coordinate variable normalized in the range of [-1, 1] such that the origin of the 

coordinate is located at the center of the node; namely 
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For brevity, the subscript for the direction will be omitted in the following. In the 4th 

order SENM, the source term Q  determined as the sum of the fission, scattering, 

and transverse leakage sources is expanded up to 4th order using the Legendre 

polynomials as: 
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Note that the transverse leakage is approximated as a quadratic function using the 

node-average leakages of three adjacent nodes, which is the conventional way. By 

inserting Eq. (3.3) into Eq. (3.1) and solving for the flux, the analytic solution for 

the flux can be obtained as follows: 

 4

0

( ) ( ) ( )

sinh( ) cosh( ) ( )

H P

i i

i

A B c P

     

  


 

  
 (3.4) 



 

 
19 

where the subscripts H and P  denote the homogeneous solutions with hyperbolic 

functions and particular solutions with 4th order polynomials, respectively, and 
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The flux in Eq. (3.4) is also expanded by approximating the homogeneous solutions 

using the Legendre polynomials, which yields the following expression for the flux: 
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From the orthogonality of the Legendre polynomials, the flux expansion coefficients 

are obtained as follows: 
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By imposing the partial incoming currents as the boundary conditions at the two 

surfaces of the node, the coefficients A  and B  of the homogeneous solution are 

determined as: 
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where 
lJ 

 and 
rJ 

represent the incoming currents at the left and right surfaces of 
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the node, respectively, and    is the surface even moment fraction which is 

differently determined for the summed flux and the 2nd flux moment in the SP3 

SENM equations. Once the homogeneous solution is determined, the net current can 

be obtained by taking the derivative of the node average flux as follows: 
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Substitution of the net current to the nodal balance equation yields the final solution 

for the node average flux as: 
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where 
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Using the updated node average flux, the outgoing currents can be obtained as 

follows: 
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The SP3 formulation for SENM [19] is derived in the analogous manner to the 

diffusion formulation starting from the following transverse integrated SP3 equations: 
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The source terms in Eq. (3.14) are also separately defined for the summed flux ( 0̂ ) 

and 2nd flux moment (
2 ) equations using the node average source ( s ) induced from 

the 0th flux moment, namely the node average flux, as: 
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The SP3 SENM equations are solved for the summed flux and the 2nd flux moment 

with differently defined coefficients: diffusion coefficients, removal cross sections, 

and surface even moment fraction  . The value of   is set to 1/4 and 7/16 for the 

summed flux and the 2nd flux moment equations, respectively.  

Note that the equations for the summed flux and the 2nd flux moment are written 

in the same form. Only the specific data – diffusion coefficients, removal cross 

sections, and source terms – are different. Namely, the solution schemes for the two 

equations are identical. It allows to share the same compute kernels across the two 

coupled equations in the SP3 formulation, which is favorable for the vectorization on 

a GPU that is optimized for the operations exploiting SIMD parallelism. 

Figure 3.3 shows the within-group solution sequence of the one-node SENM 

kernel. Operations colored in blue are performed for each direction, and they are 

implemented such that the operation for one direction is independent from others. 

Namely, it is possible to use different types of nodal kernels and expansion orders 

across different directions. In case of the expansion order, 2nd order is applied to the 

radial direction while 4th order is applied to the axial direction. For the radial 

direction, applying 4th order expansion to the pin-sized fine mesh incurs stability 

issues [19] and is basically overkill. On the other hand, the axial solution requires 

full 4th order expansion since the axial mesh size is relatively large. In this manner, 

kernels of different orders are adaptively used in different directions for efficient 

pinwise nodal core calculations. 
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Figure 3.3 Solution sequence for each group in the one-node SENM kernel. 

 

 

3.1.3 Coarse Mesh Finite Difference Acceleration 

 

In VANGARD, the assembly-level multi-group (MG) diffusion CMFD 

calculation is performed with the 4-mesh per assembly to accelerate the convergence 

of fission source distribution. The conventional CMFD acceleration method is 

employed where the linear system is set for the homogenized coarse meshes and the 

unknown is the global 3D coarse mesh scalar fluxes. The CMFD calculation begins 

with generating spatially homogenized MG cross sections and fission spectra on the 

coarse meshes. The coarse mesh cross sections are calculated as the flux-volume-

weighted average of the fine mesh cross sections while the coarse mesh fission 

spectra are computed by using the fission source distribution instead of the flux 

distribution. Thus, for each energy group (g), the spatially homogenized macroscopic 

cross section for the reaction type of x and the fission spectra are obtained as follows: 
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where I is the coarse mesh index, and i is the fine mesh index.  

The current correction coefficient ( D̂ ) is introduced so that it preserves the net 

current at the interface between two coarse meshes, which makes equivalent between 

CMFD and nodal solutions, as follows: 

 1/2 1/2 1 1/2 1
ˆ( ) ( ).net

I I I I I I IJ D D             (3.19) 

From the correlation between the net current at the interface which can be obtained 

from the high-order solution, in this case the nodal solution, and the two coarse mesh 

scalar fluxes, the correction coefficient of each coarse mesh is computed for each 

direction as follows:  

 1/2 1 1/2
1/2
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I I I I
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I I

D J
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 
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
 (3.20) 

With the net current relation in Eq. (3.19), the finite difference form of the diffusion 

equation for each coarse mesh (I) of each energy group (g) is represented as follows:  
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(3.21) 

where Au is the coarse mesh area at the u-th surface, and V is the coarse mesh volume.  

Resultantly, the global 3D CMFD linear system is setup in the matrix form as: 

 
1

( )s

effk
 M Σ φ χFφ  (3.22) 

Here, the node major ordering scheme is used so that a G×G block matrix is formed 
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for each coarse mesh and the overall structure becomes a block septa diagonal matrix. 

The solutions obtained from the CMFD power iteration are the global 3D coarse 

mesh fluxes, which are fed back to the nodal solver by modulating the fine mesh 

fluxes using the ratio of the coarse mesh fluxes determined in the previous nodal – 

CMFD calculation as follows: 
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 (3.23) 

where 
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3.2 Feedback Calculations 
 

Consideration of the T/H feedback effects is essential in analyzing operating 

reactors, but it is typically achieved by coupling an independent T/H code with the 

neutronics code, which is cumbersome. VANGARD has a lightweight built-in T/H 

solver that uses a simplified yet reasonably accurate model suited for practical 

applications. Equilibrium and transient xenon feedback schemes were also 

introduced to prevent numerical xenon oscillations. This section spells out the T/H 

feedback and xenon feedback calculations. 

 

3.2.1 T/H Feedback 

 

In the simplified T/H model employed in VANGARD, it is assumed that each axial 

segment of a fuel rod is an axially infinite and azimuthally symmetric cylinder. 

Namely, the axial heat conduction between the segments is neglected and only the 
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radial 1D heat conduction within each segment is solved. This is valid because the 

axial temperature distribution in a fuel rod presents much milder variations than the 

radial one so the axial heat flux is small. For the coolant, each flow channel is treated 

as closed so that there is no flow mixing between the flow channels. All the other 

hydraulic effects of coolant such as the pressure drop are also neglected, and only 

the axial enthalpy rise by the heat transferred from the contained fuel rods is 

considered. 

Under these assumptions, the steady-state heat conduction equation for the fuel 

and cladding is given as: 

 
1

( ) (1 )
T

rk r q
r r r


  

   
  

 (3.24) 

where q  is the volumetric heat generation and   denotes the direct heating ratio 

which is the fraction of the heat directly released to the coolant as gamma rays. The 

correlations for the thermal conductivity k  of fuel and cladding are adopted from 

the fuel performance analysis code FRAPCON [20]. 

The heat convection equation for the gas gap is given as: 

 .gq h T    (3.25) 

The gap conductance 
gh  can be either specified by the user as a single value or 

computed using a look-up table derived from the fuel performance analysis code 

ROPER [21] in which the gap conductance is given as a function of linear power 

rate and burnup. 

The heat conduction equations are numerically solved with the finite difference 

method. Figure 3.4 illustrates the discretization schematics of a fuel rod for the finite 

difference calculation. Points are positioned with equidistance in each region. The 

number of points in the fuel pellet n  excluding the center point can be arbitrarily 

determined by the user, and two and three points are used for the gap and cladding, 
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respectively. 

 

Figure 3.4. Discretization of a fuel rod for the finite difference scheme. 

 

The discretized equations for solving the heat conduction equations are shown 

through Eq. (3.26) to Eq. (3.31). Boundary conditions are imposed by the zero 

temperature gradient condition at the center and the coolant temperature 
bulkT  at the 

periphery. The equations at the region interfaces are derived by the assumption that 

the temperature profiles in the pellet and cladding can be expressed as quadratic 

functions. 
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At the center of a pellet ( 0)i  : 

  0
0 12

4
(1 )

f

k
T T q

r
   


 (3.26) 

At the interior of a pellet (1 )i n  : 

1 1 1 1 1 1 1 12

2 2 2 2 2 2

1
1 1 (1 )

2 2 2

f f f

i i i
i i i i i i

f i i i

r r r
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r r r r
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     
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                        

 (3.27) 

At the surface of a pellet ( )i n : 

1 1
1 12

1 1 1
2 2 3 3 (1 )n n

n n n g f n g f n

f n n

k k
k T k h r T h r T q

r n k n k
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 

     
                        

 (3.28) 

At the gap side of a cladding ( 1)i n  : 
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     

 (3.29) 
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At the middle of a cladding ( 2)i n  : 

1 1 1 1 1 1 2 1 32
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 (3.30) 

At the wall side of a cladding ( 3)i n  : 
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            
 (3.31) 

where 

wh  =   wall heat transfer coefficient, 

ct  =   thickness of the cladding, 

fr  =   size of meshes in the pellet, 

cr  =   size of meshes in the cladding, 

1

2
i

k


 =   average thermal conductivity of point i  and 1i  . 
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The fuel temperature of each cell used to determine the cross sections is defined 

by the Doppler temperature, which is expressed as the weighted sum of the centerline 

and surface temperatures as described in Eq. (3.32). The weighting factor   is set 

to 
5

9
 [22] by default, while it can be specified by the user. 

 0(1 ) .Doppler nT T T     (3.32) 

The coolant temperature of each axial segment of a channel is determined by the 

simple enthalpy conservation equation in the axial direction with the constant mass 

flux assumption, which is given as: 

    
out in

hv hv q z      (3.33) 

where q  and z  are the linear heat generation rate and the thickness of the axial 

segment, respectively. The average enthalpy of inlet and outlet is used to determine 

the coolant temperature of the level. 

To compensate the lack of cross-flow mixing effects between channels in the 

closed-channel model, pinwise channels are lumped into coarser channels called 

macro-channels, as described in Figure 3.5. All the fuel rods belonging to the same 

macro-channel share the same coolant temperature. VANGARD can divide each 

assembly into arbitrary N N   macro-channels. The number of divisions can be 

specified by the user, and 2 2  division is used as default.  

 

Figure 3.5. Pinwise channels (left) and macro-channels (right). 
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3.2.2 Xenon Feedback 

 

Since the depletion calculation proceeds with relatively large time steps, short-

time xenon transient cannot be taken into account properly, which incurs xenon 

oscillations that lead to severe changes in flux and power distributions between 

burnup steps. To prevent this, the number density of xenon is not calculated by the 

depletion solver but is determined by a nonlinear iteration between the neutronics 

solution and the analytic solution of the xenon-iodine chain in the following: 
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( ),
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( ) ( ) ( )
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I f I I
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 (3.34) 

where   is the fission product yield. 

The widely used assumption is the equilibrium xenon assumption in which the 

number density of xenon is always at the equilibrium state. The equilibrium number 

densities of xenon and iodine can be calculated by forcing the time derivative terms 

to zero in Eq. (3.34), which yields: 
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 (3.35) 

However, in conditions where the reactor power level changes over time, the 

equilibrium xenon assumption is not valid. In such cases, VANGARD can employ a 

transient xenon assumption as well. Keeping the time derivative terms remained in 

Eq. (3.34) and solving the system of ODEs yields: 
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where t  is the time step and 
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 (3.37) 

Note that the flux solution used for the transient xenon is that of the current burnup 

step, but the flux level normalizer is calculated using the average power level of the 

two burnup steps. 

 

 

3.3 Depletion Solvers 
 

Depletion calculation is crucial for predicting the long-term behavior of a reactor. 

For an accurate depletion, a pinwise microscopic depletion solver is implemented in 

VANGARD which employs a simplified burnup chain derived from nTRACER. The 

VANGARD depletion solver can model not only the transmutation of nuclides 

during operation but also the long-term cooling effect during inspection and 

reloading by nuclide decay. This section introduces the depletion calculation 

algorithm of VANGARD, which encompasses the solution scheme for the burnup 

chain and B-10 depletion model to track the isotopic changes in the soluble boron 

during operation. 
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3.3.1 Solution of Burnup Systems 

 

The burnup chain of VANGARD consists of 44 nuclides. For actinides, 29 major 

nuclides from uranium (Z=92) to curium (Z=96) are considered. Figure 3.6 

illustrates the burnup chain of actinides where only important decay and reaction are 

shown. The remaining 15 nuclides include B-10 in burnable poison (5010) and 

fission products related to xenon/samarium poisoning (I, Xe, Nd, Pm, and Sm). Only 

four major fissile nuclides (U-235, U-238, Pu-239, and Pu-241) have fission product 

yield information. 

 

Figure 3.6 Burnup chain of actinides in VANGARD. 

 

The depletion calculation is governed by the Bateman equation which is written 

as follows: 

 
1 1

( )
( ) ( ) ( ) ( )

N N
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dN t
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dt
      

 
 

      (3.38) 

where 

 ( )iN t  =   Atomic number density of nuclide i, 

 ijl
 =   Yield fraction of nuclide i from the decay of nuclide j, 

 ij
 =   Yield fraction of nuclide i from the reaction of nuclide j, 
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 i  =   Decay constant of nuclide i, 

 i  =   One-group absorption cross section of nuclide i, 

   =   One-group neutron flux. 

Eq. (3.38) can be expressed as a system of ordinary differential equations (ODE) in 

a matrix form: 

 
( )

( )
d t

t
dt


N

AN  (3.39) 

whose solution is expressed in terms of matrix exponential: 

 ( ) (0).tt e A
N N  (3.40) 

Eq. (3.40) is solved by the Chebyshev Rational Approximation Method (CRAM) 

[23], which reduces it to: 

  
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( ) (0) 2Re (0)
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j j
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



 
   

 
N N A I N  (3.41) 

where k  is the order of the CRAM, which is set to 16 as default in VANGARD, 

and   and   are the complex residues and poles, respectively.  

To obtain the solution of Eq. (3.41) which entails matrix inversion, iterative linear 

system solution schemes are employed in VANGARD. In the CPU calculation, C++ 

Eigen linear algebra package [24] is utilized for the complex matrix and vector 

operations. The Gauss-Seidel iteration method is employed for the matrix inversion 

and the burnup system of each cell is solved independently by OpenMP 

parallelization. However, the CRAM solver is implemented manually for GPUs due 

to the lack of library support.  
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3.3.2 B-10 Depletion 

 

The soluble boron is commonly utilized to control the excess reactivity of reactors. 

It is dissolved in the Reactor Coolant System (RCS) by the Chemical and Volume 

Control System (CVCS) in the form of boric acid. The natural boron consists of B-

10 and B-11, and B-10 takes approximately 20% of isotopic fraction. Since B-10 has 

a significantly larger absorption cross section than B-11, B-10 is mostly removed 

while the content of B-11 remains constant during the operation. For this reason, the 

boron depletion in the RCS is implemented only for the B-10 with the change of B-

11 regarded negligible. The variation of the number density of B-10 is given as 

follows: 
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 (3.42) 

which can be analytically solved as:  

 

10

10 10

( , ) ( , )
( ) (0)exp Core

B

a
V

B B

RCS

E E dEd
N t N t

V

  
  
  
 

  r r r

 (3.43) 

where 
10BN  is the number density of B-10 and 

CoreV  and 
RCSV  are the volume of 

the coolant in the core and the RCS, respectively. 
CoreV  is calculated by the code, 

and 
RCSV  is derived from the user-specified relative volume of the core coolant to 

the RCS coolant. 

It should be noted that performing B-10 depletion requires a caution in the cross 

section treatment, because the lattice calculations for the group constant generation 

are performed with the natural boron composition. Namely, the boron concentrations 

in the group constants become inconsistent with the simulation value when B-10 is 
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depleted. Thus, assuming the impact of B-11 is negligible, the simulated boron 

concentration is adjusted to the equivalent value in the group constants as follows: 

 10

10

ppm : ppm
depleted

B

natural

B

f

f
   (3.44) 

where 
10

natural

Bf   and 
10

depleted

Bf   are the abundance of B-10 in natural and depleted 

boron, respectively. Note that the adjusted value is only used internally for the cross 

section interpolation and not shown in the output. 

 

 

3.4 Overall Flowchart of Steady-State Calculation 
 

Figure 3.7 illustrates the overall calculation flow of VANGARD employing GPUs. 

Calculations accelerated by GPU are colored in green and calculations performed on 

CPU are colored in blue. Note that almost all of the calculation modules were 

offloaded to GPU. Only the table setup which determines the burnup range required 

for the core state of each burnup step and organizes a sub-table containing group 

constants of the specified burnup points is performed on CPU, which will be 

elaborated in Section 6.2.1. 

The calculation begins with initializing the burnup table and cross sections, 

followed by the initial CMFD calculation which provides the initial guess. If the core 

is fresh, namely not reloaded, the burnup table will contain only one burnup point. 

After the initial CMFD calculation, the neutronics iteration loop is initiated. First, 

each nodal sweep performs 5 outer iterations where each outer iteration is again 

composed of 6 inner iterations. The iteration counts were empirically chosen to be 

optimal. After the nodal sweep, T/H feedback, boron update, and Xenon update are 

carried out consecutively. Then, the cross sections are newly calculated and the 

CMFD calculation is performed to accelerate the convergence. This procedure is 

repeated until the neutronics iteration is converged. The converged neutronics 
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solution is then fed to the depletion solver and used to update the core compositions. 

The updated core compositions are again fed back to the neutronics solver, which 

constitutes the global iteration loop involving successive feedbacks between the 

neutronics and the depletion solvers. 

 

Figure 3.7 Steady-state calculation flow chart of VANGARD. 
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Chapter 4. Transient Calculation Capability 
 

The need for a fast and accurate pin-level core analysis is particularly emphasized 

in the transient analysis. The assemblywise two-step calculation employing 

assembly-homogenized cross sections cannot catch the severe intra-assembly flux 

gradients occurring near the perturbed rod during a transient, therefore, the use of 

detailed pin-level solutions is essential in the transient analysis. Furthermore, one of 

the significant challenges of transient analysis is excessive computational burdens 

because it requires repetitive core calculations for more than hundreds of time steps.  

In this respect, as a part of the development to make VANGARD a practical 

pinwise core design code, the transient calculation capabilities have been developed. 

VANGARD can be a completely suitable core transient analysis tool in terms of 

accuracy and practicality in that it targets to achieve tolerable computing time even 

on a PC by exploiting gaming GPUs while yielding accurate pin-level solutions.  

Basically, the transient solutions are originated from the same governing equations 

with the steady-state solutions, but the time derivative term which has been imposed 

to be zero in the steady-state solution is retained. Therefore, efficient implementation 

is possible without modifying the pre-established solvers for steady-state analysis. 

Once the steady-state solvers are implemented, only a few modifications are 

additionally needed to account for the time-dependent characteristics. 

This chapter covers the solvers of time-dependent equations for the flux and T/H 

feedback. In Section 4.1, the time-dependent SP3 formulation is derived and the 

CMFD linear system for the time-dependent diffusion equation is presented. In 

Section 4.2, the solution of the time-dependent heat convection equation for the 

coolant channel and the solution of the time-dependent heat conduction equation for 

the fuel pellet are described in detail.  
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4.1 Flux Solvers 
 

4.1.1 Time-dependent SP3 Formulation 

 

In this section, the time-dependent nodal solution of the diffusion and SP3 

equations are derived briefly. The detailed derivations including definitions of the 

terms can be found in [25][26].  

The time-dependent multi-group neutron diffusion equation as well as the 

precursor balance equation are written as follows: 
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     (4.2) 

For the temporal discretization, the theta method is applied, which writes Eq. (4.3) 

where n

gR  denotes the RHS terms of Eq. (4.1) at the time step n. 
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In order to obtain the precursor density of the new time step (n+1), a quadratic 

variation of the fission source is assumed, which expresses it in terms of the two 

known fission sources of the previous and current time step and the one unknown 

fission source of the new time step as follows: 
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where 
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 (4.5) 

By combining Eq. (4.1), (4.3), and (4.4), the transverse-integrated time-dependent 

neutron diffusion equation for each direction can be represented as follows: 
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where 
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For the efficient implementations, the equation is rearranged to have the same form 

as the steady-state equation, and the final form of the time-dependent transverse-

integrated neutron diffusion equation is represented as Eq. (4.8). The only difference 

from the steady-state solution is that the transient source ( 1

,

n

tr gs   ) needs to be 

additionally calculated. This reformulation enables most of the pre-established nodal 

solvers for the steady-state solutions to be directly used for the transient solutions 

without any modifications. 
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where 
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Note that the fixed source ( ,

n

fixed gs  ) is determined only by the current time step 

solutions which are known so that it is constant during the current time step. 

Therefore, it is calculated only once per each time step.  

The SP3 formulation is derived in an analogous manner with the diffusion 

formulation. The equations are defined for the summed flux and 2nd flux moment 

with differently defined diffusion coefficients and removal cross sections.  
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where 
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As in the steady-state formulation, the source terms are also separately defined. In 

the same manner as the diffusion equation, the total source terms in the SP3 equations 

are easily obtained by the addition of the transient sources to the steady-state 

formulations as follows: 
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4.1.2 CMFD for Transient Calculation 

 

In the steady-state CMFD calculation, the fission source calculated in the previous 

CMFD power iteration serves as the fixed source. The fixed source is updated during 

iterations at a CMFD calculation, therefore, it runs iterations until it meets the 

convergence criteria. In the transient calculation, on the other hand, the fission source 

is included in LHS for better convergence, and the CMFD linear system for the new 

time step (n+1) sets the transient fixed source in RHS which comprises the current 

time step (n) solutions. Resultantly, the final CMFD fixed source problem is set as 

Eq. (4.13). Since the fixed source is determined only once per each time step and is 

not variant during the current time step, the linear system is solved only once per 

each CMFD calculation. 
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4.2 T/H Feedback 
 

4.2.1 Transient Heat Convection Solution for Channel 

 

As in the steady-state solution, the heat convection equations are solved for each 

axial segment of a channel. The derivation of the transient heat convection solution 

is started from the mass conservation and energy conservation equations as follows:  

 0
v

t z
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 (4.15) 
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 (4.16) 

The volume-integrated mass conservation and energy conservation equations with 

temporal differencing by the Theta method are represented as follows: 
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Note that the variables without any subscript denoting inlet or outlet represent the 

node-averaged quantities. The volumetric heat source ( q ) of each axial segment of 

a channel is defined as the sum of the heat provided through the wall and the direct 

heating as follows: 
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By dividing by 
z




 and setting all the knowns to the RHS except for the time 
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derivative terms, Eq. (4.17) and (4.18) are represented as follows: 
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Here, five variables are unknown including two average values (  , h ) and three 

outlet values ( , ,out out outh v ) of the time step (n+1), which are the targets to be solved. 

Using auxiliary state equations as  
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the time derivative terms in LHS of the Eq. (4.20) can be expressed in terms of 

volume enthalpy change as: 
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where 

 
( 1) ( ) .n nX h h   (4.25) 

By assuming the node-averaged enthalpy to be the average of the inlet and outlet 

enthalpies and combining with Eq. (4.24) and (4.25),  
( 1)n

out
hv


can be represented 

as a quadratic equation in terms of the enthalpy change ( X ) as follows: 
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A pair of the analytic solutions of Eq. (4.26) can be easily obtained. To choose the 

final solution out of the two ones, a linear formulation is introduced which starts 

from approximating the outlet enthalpy of the time step (n+1) to that of the time step 

(n) so that  
( 1)n

out
hv


  is expressed as a linear equation in terms of the enthalpy 

change as: 
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With the above relation and additionally introduced auxiliary state equation as  
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the LHS of Eq. (4.21) which consists only of the unknowns can be reformulated as 

a linear equation in terms of enthalpy change, the solution of which also can be 

directly obtained. 

Out of the two solutions of Eq. (4.26), the one closer to the solution of the linear 

formulation is selected as the final solution. Finally, the volume enthalpy change is 

obtained and it resultantly updates the enthalpy of the new time step (n+1), with 

which the two average unknowns of the new time step composing the time derivative 

terms of the Eq. (4.20) and (4.21) are updated as follows: 
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The final solutions for the mass conservation and energy conservation equations are 

then obtained as follows: 
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By dividing Eq. (4.32) by Eq. (4.31), the outgoing enthalpy of the time step (n+1) 

can be updated, with which the average enthalpy is subsequently updated. From the 

average enthalpy, the node average channel bulk temperature can be calculated, from 

which the heat transfer coefficient can be updated. All of them are then fed back to 

the calculation of the fuel pellet temperature profile. 

 

 

4.2.2 Transient Heat Conduction Solution for Fuel 

  

As in the steady-state calculation, one-dimensional cylindrical finite difference 

heat conduction equation is solved for each axial plane. The time-dependent heat 

conduction equation is described as Eq. (4.33) where q  is the volumetric heat 

generation rate. 
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With temporal differencing by the Theta method, the heat conduction equation can 

be expressed as follows: 
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Here, the spatial derivative term of f is identical to that in the steady-state calculation.  

This equation is setup for each fuel region with finite difference approximation. 

As in the channel equations, all the known values are set on RHS which results in a 

tridiagonal linear system as Eq. (4.35). Note that the spatial derivative term of f 

which determines the lower and upper diagonal elements, 
il  and 

iu  respectively, 

as well as 
id  is identical with those in the steady-state calculation, so most of the 

steady-state calculation routines can be reused. Only the time derivatives applied to 

the target fuel mesh (i) need to be additionally considered. 
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Chapter 5. GPU Acceleration Strategies 
 

GPU can be a desirable computing resource to substitute multi-core CPU parallelism 

in that they contain a substantial number of simple arithmetic cores which can deliver 

significant floating point computing power, enabling massive parallelism. In 

particular, this characteristic can be a great remedy for the critical downside of the 

pinwise two-step calculation that a tremendous amount of pinwise data should be 

treated. In this research, the NVIDIA CUDA [5] was chosen as the GPU 

programming tool kit to take advantages of its general applicability and ease of 

coding. In order to achieve high performance of GPU, memory optimization is 

particularly important. Three fundamental optimization requirements are presented 

in the following, which all the GPU calculation modules in VANGARD are 

developed to meet as far as possible. 

1) Vectorization:  

GPU is a subset of vector processors and is specialized in SIMD (Single 

Instruction Multiple Data) parallelisms, namely, the efficiency is maximized 

when threads in each warp perform SIMD operation. Therefore, braches that 

can make a part of threads inactive should be minimized.  

2) Local memory use: 

A GPU contains a substantial number of simple arithmetic cores, which can 

deliver significant floating point computing power. However, it is bounded 

by the performance of the relatively slow main memory, so a GPU contains 

several types of small but fast local memories to buffer the main memory 

accesses. Therefore, access to the main global memory should be minimized 

and frequently used data should be saved in high-bandwidth memories such 

as cache and register to have high performance. 
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3) Memory coalescing: 

Even though the global memory access is required to be minimized due to 

its poor bandwidth, it is inevitable. In this case, a group of threads should 

read and write contiguous memory, which is called memory coalescing, so 

that the memory access in a warp that is the computational unit for the 

memory read and write operations should be concentrated. 

Besides, numerous strategies were devised and introduced for the optimal and 

efficient GPU calculation for each solver. This chapter describes all details of the 

GPU acceleration strategies for the computational hotspots – nodal, CMFD, T/H, 

and depletion calculations – which take most parts of the total computing time. 

 

 

5.1 Nodal Calculation 
 

The characteristics of the nodal method make it suitable for GPU acceleration. 

First of all, the iteration scheme is highly regular and parallelizable in that every cell 

and energy group are solved independently with the same algorithm. The memory 

layout is also very much regular and contiguous, which enables coalesced memory 

accesses. In addition, the nodal kernel involves a lot of arithmetic operations for the 

calculation of expansion coefficients, and these variables are stored as local variables. 

Namely, the operational intensity and the local memory utilization are high. Costly 

exponential calculations in the SENM that were considered as a drawback can also 

be effectively handled on GPUs by exploiting the Special Function Units (SFU) of 

GPUs which provide hardware-level fast approximate single precision evaluations 

of some special math functions including exponentials. 

In GPU implementation, exploiting single precision is highly desirable in terms of 

arithmetic performance and memory utilization. One of the key characteristics of the 

consumer-grade GPUs on which VAGNARD targets to be executed is that they are 
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dedicated to single precision arithmetic, while the support for double precision 

arithmetic is minimal. Hence, every arithmetic operation of the GPU nodal kernel 

needs to use single precision to achieve the maximum performance. However, using 

single precision can harm the accuracy and lead to numerical instabilities when 

handling large exponential terms which arise in the axial solution. To elaborate, the 

problem occurs when calculating the flux expansion coefficients in Eq. (3.7) where 

hyperbolic terms are involved. The term inserted to the hyperbolic functions is 

proportional to the mesh size, and it can lead to extremely large hyperbolic values 

when solving the axial direction which has a relatively large mesh size. To resolve 

this, a mixed precision scheme is employed, in which precisions are mixed in the 

axial 4th order kernel while single precision is employed entirely for the radial 2nd 

order kernel that does not suffer from the instability issues. In the axial kernel, double 

precision is employed for the ordinary arithmetic – namely the coefficients 

calculations – where a cascade effect of round-off errors may occur, while expensive 

hyperbolic functions are still computed in single precision. In this way, an optimal 

combination of precision is found with respect to performance, accuracy, and 

stability. 

To confirm if this mixed precision technique is optimal, a sensitivity study was 

carried out with the APR1400 3D core problem, in which five different combinations 

of precisions are tested. The combinations of precisions for each test case are shown 

in Table 5.1. In the table, ‘arithmetic’ denotes the plain arithmetic operations other 

than the hyperbolic function calculations. Figure 5.1 presents the relative nodal 

computing time of each case with respect to the full single precision case (Case 1) 

and the maximum pin power error of each case compared to the results of the full 

double precision case (Case 5). In all cases, the impact of the choice of precisions on 

the accuracy is negligible, where the maximum pin power errors are way less than 

0.0001%. This verifies that the mixed precision approach is valid. Regarding the 

performance, the case in which double precision is used only for the arithmetic in 
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the axial kernel (Case 2) is the optimal except for Case 1, which can be easily 

expected. It can be also seen that employing single precision selectively for the 

hyperbolic functions renders much better performance than blindly using double 

precision. Thus, it is proved that Case 2 which is the current mixed precision 

approach is optimal since Case 1 incurs a stability problem. 

  

Table 5.1 Tested combinations of precisions. 

 Case 1 Case 2 Case 3 Case 4 Case 5 

Radial 

Arithmetic 
FP32 FP32 FP64 FP32 FP64 

Axial 

Arithmetic 
FP32 FP64 FP64 FP64 FP64 

Radial 

Hyperbolic 
FP32 FP32 FP32 FP32 FP64 

Axial 

Hyperbolic 
FP32 FP32 FP32 FP64 FP64 

 

 

Figure 5.1 Relative nodal computing time and maximum pin power error of each 

case. 
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5.2 CMFD Calculation 
 

All of the CMFD calculation modules are offloaded to GPU. Homogenization, 

linear system setup, power iteration, and pinwise solution update are all performed 

on GPU. Note that the CMFD calculation on GPU is performed entirely in double 

precision for the numerical stability of linear system solution. For the linear system 

solver, a preconditioned BiCGSTAB solver developed with the cuBLAS [27] and 

cuSPARSE [28] libraries are used, where the zero fill-in incomplete LU (ILU0) 

preconditioner provided by the cuSPARSE library is applied. The linear system 

matrix is stored in the Block Compressed Sparse Row (BSR) format whose block 

size is the number of energy groups. The BSR format inevitably contains some zeros 

and may result in a waste of memory and computations compared to the ordinary 

Compressed Sparse Row (CSR) format, but it makes the parallel matrix construction 

on GPU easier and may expose more parallelism to the libraries due to its more 

explicit block structure. 

 

 

5.3 T/H Feedback Calculation 
 

In the steady-state calculation, the T/H feedback calculation is very cheap because 

it uses a simplified model and it solves the coolant heat transfer equation only once 

per T/H calculation, owing to the fixed heat source with the concept that all heat 

generated in the pellet must be delivered to the coolant without accumulation in the 

fuel. As the result, T/H calculation takes only a little part of the total computing time.  

On the contrary, in the transient calculation, the heat source for the coolant transfer 

equation is determined by the fuel temperature profile. It requires coupled iterative 

solutions, leading to repetitive steam table calculations for the coolant channel as 

well as linear system solutions for the intra-pellet temperature of each pin. Thus, the 
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T/H calculation time in the transient core analysis is non-negligible. Actually, when 

the T/H calculation was still performed on CPUs while the other time-consuming 

calculations such as nodal and cross section calculations were performed on a GPU, 

it was observed that the portion of the T/H calculation becomes significantly large, 

taking the largest portion of the total computing time in transient analysis. For this 

reason, the T/H modules were ported on GPU. 

For the fuel heat conduction solution, a linear system is set up for each fuel cell 

and directly solved by the manually implemented tri-diagonal LU linear system 

solver by taking advantage of the pre-described tri-diagonal matrix format of the heat 

conduction equation solution. Since the linear system is solved independently for 

each fuel cell, straightforward parallelization is possible such that each thread solves 

a linear system of each fuel cell. Given the coolant bulk temperature as the boundary 

condition, intra-pellet temperature profile of each fuel cell is obtained by each thread.  

For the coolant channel heat transfer solution, on the other hand, the fine-grained 

parallelization cannot be applied. The axial heat transfer calculation for a coolant 

channel is the representative sequential calculation which requires the solutions of 

the lower channel mesh as the boundary conditions. Therefore, it is not desired to 

parallelize the axial planes. Considering that VANGARD uses the assembly-level 

macro channel, as the result, the target mesh of the coolant channel calculation would 

be 3D assembly-level mesh. With coarse-grained parallelism, the GPU acceleration 

is not much effective. On the contrary, it was noted in Figure 5.2, which shows the 

speedup of a single GPU calculation time over 10-core CPU calculation time for the 

NEACRP HZP rod ejection problem on the quarter core, that the GPU calculation 

took more computing time than the 10-core CPU calculation for the assembly 

channel and 4-box mesh channel which VANGARD adopts as the default channel 

option. Moreover, offloading the T/H channel calculation on GPU is cumbersome 

due to the lack of library support for the steam table which is readily usable in the 

CPU calculation. 
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For all of these reasons, the fuel pellet calculation is accelerated by GPU while the 

coolant channel calculation remained to be performed on CPU multi cores even in 

the GPU calculation mode. This kind of hybrid calculation requires the data transfer 

between the host and GPU device for the coupled heat conduction for fuel pellet – 

heat convection for coolant channel equation solutions. Specifically, the coolant bulk 

temperature obtained in the channel calculation should be fed back to the pellet 

conduction solution as the boundary condition, and the heat flux obtained by the 

solution of the pellet fuel temperature profile should be transferred to the channel 

calculation to compose the heat source. In spite of the repetitive data transfer, the 

additional time for this is not that significant because the data size is small, which is 

dependent on the macro-level coolant channel meshes.  

 

Figure 5.2 Speedup of coolant channel calculation time according to the number of 

divisions per assembly. 

 

 

5.4 Depletion Calculation 
 

The entire procedure of depletion calculation, including one-group reaction rate 

calculation and burnup system construction as well as the CRAM solver, is fully 

parallelized on GPU. All the operations on GPU employ double precision as the 
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range of the values treated in the depletion calculation is too wide for single precision 

to cover. The primary operation in the CRAM is the matrix inversion in Eq. (3.41), 

and VANGARD utilizes the Gauss-Seidel method for efficient inversion. The 

depletion calculation is essentially solving a large batch of cell-wise independent 

burnup systems possessing the same sparsity pattern, which is highly parallelizable 

and vectorizable. Thus, parallelization is applied to the cells, and each thread runs 

the Gauss-Seidel iteration for its cell for a prescribed number of times. The burnup 

matrices are stored in the non-zero major ordering scheme [29], which takes 

advantage of the common sparsity pattern and contiguously stores the matrix 

elements of all cells for each non-zero position, as described in Figure 5.3. As the 

result, accesses to the burnup matrices across the cells are fully coalesced. The 

matrices are stored in the CSR format except the diagonals whose inverses are 

separately stored as vectors for efficient Gauss-Seidel calculation, and the sparsity 

pattern is searched only once at the initialization stage. The vectors for representing 

the sparsity pattern are stored in a common and fast-access memory of GPU such as 

constant memory. 

 

Figure 5.3 Schematics of the non-zero major ordering scheme for burnup matrices. 
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Chapter 6. Challenges of Pinwise Two-Step 

Core Calculation and Resolutions 
 

 

6.1 Resolutions of Numerical Instability and 

Inaccuracy 
 

There are many issues apparently observed in the pinwise two-step core 

calculation which have not been problematic in the conventional assemblywise two-

step core calculation. This section will cover two methodological issues and the 

resolutions for them for practical and accurate pin-level core analyses.  

One is numerical instability in the one-node pinwise nodal – assemblywise CMFD 

coupled calculation. The one-node nodal kernel requires both incoming currents and 

node average flux as the boundary conditions. However, the pinwise incoming 

currents cannot be directly updated from the assembly-level CMFD calculation 

while the pinwise average fluxes can be readily obtained by the CMFD solutions. It 

causes a lagging between the pinwise flux and the pinwise incoming currents, which 

in turn deteriorates the convergence and often incurs instability. To resolve this, the 

CMFD-Based Partial Current Update Scheme was devised which recalculates the 

pinwise partial currents using the CMFD solution so that not only the pinwise fluxes 

but also the pinwise partial currents reflect the CMFD calculation results.  

The other is the depletion inaccuracy of gadolinia fuel. It originates from retaining 

the intra-assembly heterogeneities. Gadolinia fuels exhibit highly heterogeneous 

depletion behaviors inside the pellet which is induced by the large spatial self-

shielding effect of Gadolinium (Gd). Since the heterogeneity information is 

completely lost during the homogenization process, naively depleting the Gd 

isotopes using the pin-homogenized quantities induces nonacceptable errors. To 

accurately predict the depletion of gadolinia fuels in the pinwise two-step core 
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calculations, a simple yet effective scheme was proposed. This scheme makes a 

correction of burnups of gadolinia fuel pins using the information of neighboring 

general fuel pins so that accurate cross sections can be used in the gadolinia fuels. 

In the following subsections, these two methodological issues and resolutions for 

each are addressed in detail. The effectiveness of each resolution is also examined 

with the APR1400 [30] 2D core depletion calculation results.  

 

6.1.1 CMFD-Based Partial Current Update Scheme 

 

Methodology 

 

In the conventional assemblywise nodal codes, the nodal mesh and the CMFD 

mesh are neatly aligned, and two-node kernels whose only boundary condition is the 

node average flux are typically used. Therefore, the CMFD solver does not have to 

update the surface currents. In VANGARD, however, the radial CMFD mesh size is 

chosen much bigger than the nodal meshes to achieve higher computational 

efficiency in three-dimensional (3D) CMFD calculation. Specifically, a quarter of an 

assembly is taken as the radial CMFD mesh size so that a CMFD mesh consists of 

several tens of pin-sized nodal meshes. The linear system is set for the coarse meshes 

and the solutions obtained from the CMFD power iteration are the coarse mesh 

fluxes. Since the one-node kernel requires incoming partial currents which are to be 

updated by the CMFD solution, a special measure has to be devised to determine the 

nodewise partial current from the coarse mesh fluxes. Note that updating the pinwise 

average fluxes is trivial since the level of the pinwise fluxes can be adjusted by the 

ratio of the updated coarse mesh flux to the previous one. However, the pinwise 

incoming currents cannot be updated directly from the coarse mesh CMFD results.  

To reflect the CMFD solution in the update of pinwise partial current, two types 

of CMFD current correction factors are employed. One is the standard CMFD net 
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current correction factor which is determined at the coarse mesh interface using the 

homogenized nodal solutions and is used for constructing the CMFD linear system 

for power iteration: 
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The other is the outgoing partial current correction factor defined in the modified 

partial current based CMFD formulation, mp-CMFD [31], calculated at the fine 

mesh: 
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Note that the mp-CMFD correction factor is not used in the CMFD power iteration. 

It is only used to determine the pinwise outgoing currents from the modulated 

pinwise fluxes determined from the CMFD coarse mesh flux update. Namely, the 

pinwise outgoing partial current is not incorporated in the CMFD linear system but 

is used only for the subsequent nodal calculation. The following relation is used for 

the partial current update: 

 1/2 1/2 1 1 1/2

1 1 ˆ̂
( ) ( (1 ) ) .

2 4
i i i i i i i i i iJ D D      

            (6.3) 

Figure 6.1 schematically describes the two-level correction of surface partial currents 

where the detailed calculation procedure is given as follows: 

1) Calculate the mp-CMFD outgoing partial current correction factors at the 

surfaces of each pin. 

2) Homogenize pins into coarse meshes and calculate the standard CMFD net 

current correction factors for each coarse mesh. 

3) Perform 3D CMFD calculation and update coarse mesh fluxes. 

4) Modulate the pinwise fluxes using the updated coarse mesh fluxes. 
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5) Recalculate the outgoing currents for each pin using the pinwise mp-CMFD 

outgoing partial current correction factors and the modulated pinwise fluxes. 

 

Figure 6.1 Schematic procedure of the two-level correction in the CMFD 

acceleration. 

 

Figure 6.2 describes the overall algorithm of the nodal – CMFD iteration. The 

nodal sweep is done in red-black ordering in space and Jacobi in energy to expose a 

high degree of parallelism. The transverse leakage update is performed at each outer 

iteration instead of each inner iteration for stability, which turned out to have a 

negligible impact on the convergence rate. The nodal sweeper performs a fixed 

number of iterations at each nodal solve: 5 times of outer iterations with 6 times of 

inner iterations per outer iteration. On the other hand, the CMFD convergence 

criteria are imposed on error reductions. For the inner iteration in which the 

BiCGSTAB method is utilized as the linear system solver, relative residual reduction 

of 0.01 is used as the escape criterion. The outer iteration escapes when the l2-norm 

of the relative fission source change reduces to below 0.5 times of its initial value 
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with minimum of 5 iterations, and the Wielandt shift scheme is applied. All the 

criteria were empirically determined to be optimal. 

    

Figure 6.2 Nodal – CMFD iteration algorithm. 

 

 

Effects of CMFD-Based Partial Current Update Scheme 

 

The effect of the partial current update was examined with an APR1400 2D core 

depletion calculation. T/H feedback and CBC search were not carried out to prevent 

them from affecting the convergence. Figure 6.3 shows the fission source error at 

each nodal outer iteration at the beginning of cycle (BOC) with and without the 

partial current update. Note that in both cases the pinwise fluxes are updated by the 
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CMFD calculation. The CMFD calculation is performed for every 5 nodal outer 

iterations, and the partial current update follows after each CMFD calculation. It can 

be seen that the convergence rate is significantly improved with the partial current 

update, and as the result, the total number of the nodal and CMFD outer iterations 

for the entire depletion calculation are also substantially reduced, as presented in 

Table 6.1 which shows the total number of outer iterations during a depletion 

calculation consisting of 22 steps. In the table, the average number of outer iterations 

per step is given in parentheses. Approximately 60% of the iterations could be 

reduced by the partial current update. 

 

Figure 6.3 Comparison of nodal outer fission source error reduction at the BOC. 

 

Table 6.1 Comparison of the number of outer iterations in the depletion 

calculations. 

CMFD-based  

partial current update 
Nodal CMFD 

Ratio 

Nodal CMFD 

off 1135 (51.6) 4549 (207) 1.0 1.0 

on 485 (22.0) 1901 (86.4) 0.43 0.42 
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6.1.2 Neighbor-Informed Burnup Correction Method 

 

For the accurate prediction of Gd pin depletion, using the correct burnup of the 

Gd pin is very important. Since the capture reaction rates of Gd isotopes change 

sensitively with burnup, a small difference in burnup can significantly change the 

result. However, it is quite difficult to determine the burnup of a Gd pin correctly so 

that nontrivial errors can be induced in the core depletion calculation. In this regard, 

the so-called neighbor-informed burnup correction (NIBC) method is introduced in 

this section. The problem of using the own burnup of a Gd pin is identified in the 

next subsection and the rationale and procedure of the NIBC method will be 

presented in the second subsection. 

 

Problem Identification 

 

In order to demonstrate the problem associated with Gd depletion, a 2D model of 

the APR1400 core, which is a commercial core loaded with a large amount of 

gadolinia for reactivity control, is analyzed under a fixed thermal-hydraulic (T/H) 

and boron condition. The core configuration is shown in Figure 6.4. The pin burnup 

distributions of VANGARD are compared with those of nTRACER whole-core 

transport calculation results.  

 

Figure 6.4 Core configuration of APR1400 [32] 
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Figure 6.5 shows the maximum relative pin burnup errors for the APR1400 core. 

One is for all fuel pins, and the other is only for ordinary fuel pins while excluding 

Gd pins in the same core. This figure demonstrates that the maximum pin burnup 

errors occur at the Gd pins at most burnup steps. Figure 6.6 illustrates the pin burnup 

error distributions at the burnup of 0.05 MWD/kg, 10 MWD/kg, and 18 MWD/kg, 

which correspond to the beginning-of-cycle (BOC), middle-of-cycle (MOC), and 

end-of-cycle (EOC) steps, respectively. In early burnup steps, large errors occur at 

the ordinary fuel pins located at the core periphery while the errors at Gd pins are 

not noticeable. Only the environmental effects are dominant. However, the errors at 

Gd pins continuously grow as the core depletes. It is most dominant at MOC which 

involves a global tilt in the error distribution. Even with the global tilt, however, the 

maximum errors of the ordinary fuel pins remain below 3%. 

The opposite depletion behaviors of gadolinia and ordinary fuel pins can be 

explained by the self-regulation mechanism between burnup and power. In an 

ordinary fuel pin, lower burnup results in more fissile materials left, thereby leading 

to higher power. As the result, if an ordinary fuel pin was predicted to have less 

power than the normal value at a certain burnup step, the burnup is underestimated 

and it would increase the power at the next burnup step, which in turn increases 

burnup and suppresses power sequentially. In this manner, the burnup and power are 

continuously self-regulated by negative feedback during depletion in the case of 

ordinary fuel pins. In contrast, a lower burnup in a Gd pin results in more absorber 

materials left which would further suppress power. As the result, positive feedback 

occurs in the Gd pins: if a Gd pin is less depleted at a certain burnup step, not only 

the burnup but also the power is reduced in the next burnup step, and this continues 

until all the absorber materials are exhausted. In short, the burnup error of a Gd pin 

at the beginning is propagated throughout depletion and accumulated in a 

monotonous way. 
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Figure 6.5. Maximum relative pin burnup errors (%) computed with and without 

gadolinia fuel pins at each burnup step. 

 

 

Figure 6.6. Relative pin burnup error (%) distributions at BOC (left),  

MOC (middle), and EOC (right). 

 

Rationale and Procedure of NIBC 

 

Based on the above observation, it can be concluded that an accurate estimation 

of the Gd pin burnup using its own power history cannot be achieved due to the 

underlying physics and that it is necessary to introduce an external correction. In this 

regard, the NIBC method which is to utilize the average burnup of the neighboring 
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ordinary fuel pins in representing the burnup state of a Gd pin is devised in this work. 

The rationale is that the Gd pin and its neighboring fuel pins would have been 

depleted under a similar environment, and the burnups of ordinary fuel pins can be 

predicted with high accuracy. Thus, the average burnup of its neighboring fuel pins 

can be a reliable indicator of the depletion state. The procedure for applying the 

NIBC method is set as follows: 

1) In the group constant table, the XSs of each Gd pin are functionalized with 

the average burnup of its surrounding 8 ordinary fuel pins instead of its own 

burnup. If a neighboring pin is not an ordinary fuel pin, it is excluded from 

the average. 

2) In the depletion calculation, the burnup of every pin is first updated normally. 

For the Gd pins, however, their own burnups are overridden by the average 

of the updated burnups of their neighboring fuel pins in the XS interpolation. 

 

Effects of the NIBC 

 

As noted in Figure 6.7 which shows the reference multiplication factors of 

nTRACER and the errors of VANGARD solutions and Figure 6.8 which shows the 

maximum and RMS pin power errors at each burnup step, the NIBC method 

noticeably reduces the errors in the gadolinia depletion for both multiplication factor 

and pin powers. The negative biases in the multiplication factor which is as large as 

nearly 200 pcm at the MOC are clearly reduced to less than 20 pcm throughout the 

cycle. The improvements in the pin power errors are also meaningful in that the 

maximum pin power error of nearly 8% is reduced to well below 3% and the largest 

RMS error of over 2% is reduced to 0.7%. Figure 6.9 illustrates the pin power error 

distributions at 9 MWD/kg where the peak pin power errors are observed. The 

peculiar errors at the Gd pins mostly disappear with the NIBC method. As the 

consequence, global error tilt is considerably reduced as well. 
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Figure 6.7 Comparison of multiplication factors. 

 

 

Figure 6.8 Comparison of pin power errors between with and without NIBC. 
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Figure 6.9 Pin power error distributions (%) at 9 MWD/kgHM. 

 

 

6.2 Resolutions of Memory Limitation 
 

One of the significant issues accompanied with the pinwise two-step core 

calculation is the considerable memory requirement by the group constant (GC) data. 

The microscopic cross sections are tabulated for each pin, reaction type, energy 

group, and nuclide at each burnup step, and at some selected burnup steps, extra 

tabulations for branch points are further required. Therefore, the 8G pinwise 

microscopic GC tables adopted in VANGARD result in tremendous data size. 

Actually, the size is more than 1,000 times larger than the 2G assemblywise GC data. 

It thus imposes a significant restriction on offloading onto a GPU of which the 

available memory capacity is limited, and extremely deteriorates the practicality of 

the code. Thus, it is necessary to overcome the significant memory limitation of the 

GPU to exploit it to achieve feasible computing time. 

This section describes two methods to reduce the memory burden and effectively 
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offload the pinwise group constant data to the limited memory of the GPU. One is 

the burnup window scheme with adaptively resizing sub-table which offload the 

group constant data only for the required burnup points for the current core state, and 

the other is the GC data compression scheme by the dimensionality reduction 

technique utilizing Singular Value Decomposition (SVD) and Low Rank 

Approximation (LAR). 

 

6.2.1 Burnup Window Scheme with Adaptively Resizing Sub-table 

 

It is practically impossible to store the entire group constant data on a GPU whose 

memory is very much limited, which prevents achieving the goal of VANGARD to 

be executed on PCs with consumer-grade GPUs. Thus, the burnup window scheme 

is introduced for an efficient porting of the group constant data to GPUs. In this 

scheme, a burnup window and a cross section sub-table are defined for each 

assembly type. In a core, assemblies of the same type are located at multiple positions 

and will have different burnup exposure with each other, but they will still share the 

same group constant data. The burnup window of an assembly type is defined by the 

minimum and maximum burnup exposures of the assemblies of that type in the core. 

Then, the cross section sub-table of the assembly type is defined such that it only 

contains the cross sections of the burnup range specified by the burnup window, 

which is then ported to GPU. As the result, only the cross section data of the burnup 

points necessary at the current core state are ported. The burnup windows and 

accordingly the cross section sub-tables are updated at each burnup step by scanning 

the burnup exposures of assemblies. Figure 6.10 shows an example of the burnup 

window of an arbitrary group constant data. 
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Figure 6.10 Example of burnup window (indicated as red-dotted box). 

  

In the implementation of the cross section sub-table, the double-ended queue 

(deque) container of the C++ Standard Template Library (STL) is utilized, which can 

be flexibly resized by adding and deleting elements at both front and back. It is 

preferred to the standard queue as a burnup window can occasionally move “forward” 

between predictor and corrector steps within a burnup step. Figure 6.11 

schematically illustrates the adaptive resizing of a cross section sub-table by drawing 

necessary data from the group constant table and dropping unused data. The cross 

section data of each burnup point are first wrapped into a class object (packet) and 

pushed to the sub-table. When a packet is being pushed, its internal data are ported 

to GPU and only the pointers to the GPU data are kept in the sub-table. When a 

packet is being popped, its destructor is invoked which automatically wipes out its 

containing GPU data. Once the sub-table for a burnup step is established, its elements 

are cast into plain arrays of device pointers and provided to GPU because the deque 

container is not directly usable on the GPU side. 
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Figure 6.11 Implementation of a cross section sub-table with the deque container of 

the C++ STL. 

 

Even though the burnup window scheme alleviates the memory burden of GPUs, 

however, its effectiveness is decreased in the later burnup steps where the required 

burnup range is widened due to the non-uniform depletion of fuels across the core. 

It is apparent for the types of assemblies which are loaded in both interior and 

periphery of the core. The interior assemblies have high burnups while the peripheral 

ones have low burnups, but because they utilize the same group constant data, the 

burnup window has to cover both low and high burnups. 

 

 

6.2.2 Cross Section Data Compression by Dimensionality Reduction 

 

The burnup window scheme can alleviate the memory burden of GPUs by 

selectively porting only the necessary data at each burnup step, but it does not resolve 

the storage burden completely. In this regard, another measure to reduce the memory 

for GC table storage is implemented in VANGARD. It is the XS data compression 

technique proposed by Yamamoto et al. [33]. This technique makes an algebraic 

compression of the microscopic XS matrix off-line by an LRA and reconstructs the 

microscopic XSs on-the-fly. Note that the group constant data such as the 
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macroscopic scattering matrices, SPH factors, and fission spectra, which are defined 

macroscopically, are not compressed because their data sizes are not that large. 

Consider an arbitrary m n  matrix A  where m n . The SVD of a matrix A  

is expressed as: 

 
TA UΣV  (6.4) 

where U ( )m m  and V ( )n n  are the orthogonal matrices whose columns are 

the left and right singular vectors of A  , respectively, and Σ   ( )m n  is the 

diagonal matrix whose elements are the singular values arranged in the descending 

order. The magnitude of a singular value is related to the contribution of the 

corresponding singular vectors to the original matrix and typically the first a few 

singular values are dominant. This implies that the singular vectors corresponding to 

small singular values can be neglected. Using this fact, the LRA reduces the size of 

U , V , and Σ  by eliminating the singular values smaller than the k-th singular 

value, where k   is the reduced rank, and their corresponding singular vectors. 

Consequently, the low-rank approximated matrix Ak
 is represented as: 

 .T

k k k kA U Σ V  (6.5) 

By multiplying the left singular vector matrix Uk
( )m k  and the singular value 

matrix Σk
( )k k , the coefficient matrix Fk

 ( )m k can be defined as: 
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F  (6.6) 

Thus, Ak
  can be expressed as the multiplication of Fk

  and the right singular 

vector matrix Vk
( )n k  as: 
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In consequence, each row vector of Ak
  can be represented as the linear 

combination of the coefficients and the right singular vectors as follows: 

 ,1 1 , .T T

i i i k kf f  a v v  (6.8) 

It is important to note that only Fk
 depends on the pins and state points since Vk

 

can be constructed such that it depends only on the XS type, the energy group, and 

the nuclide type. Once Vk
  is constructed, the singular vectors can be reused at 

every pin and state point. This is a good feature for vectorization. The linear 

combination coefficients in Eq. (6.8) are recalculated by interpolating the 

coefficients in Fk
 at every iteration in which the core state is changed. It is assumed 

that the coefficients will have a similar dependency on the state point parameters as 

the XSs do. Thus, the conventional XS interpolation method is applied directly to 

the coefficients as well to yield: 
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(6.9) 

For the decomposition, all the microscopic cross section data are first weighted by 

the corresponding flux and number densities and then cast into a single cross section 

matrix. Each row of the matrix contains the weighted microscopic cross sections of 

all the nuclides, energy groups, and reaction types at each pin and state point. The 

reason for weighting is to reflect the importance of each cross section element in 

terms of the actual contribution to the reaction rates so that the quality of the LRA is 
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improved. Also, it is important to note that
f , where   is the energy release per 

fission, should not be included in the matrix, as it is extremely prone to numerical 

errors due to its small magnitude which is lower by several orders than those of other 

cross sections. Errors in 
f  lead to inaccurate power calculation and can have a 

substantial impact on depletion calculations as the flux normalization factors used in 

the depletion calculations rely on the calculated power. Therefore,    is stored 

separately and only 
f  and 

f  are included in the matrix for the decomposition. 

The XS matrix is constructed to be optimal considering the access patterns of Fk
 

and Vk
 on GPU, as described in Figure 6.12 and Figure 6.13. The order of elements 

in each column, which determines the order of rows in Fk
, is arranged such that the 

outermost parameter is the burnup point, and for each burnup point, the XS vectors 

of the base condition and the branch conditions, if available, are arranged. In each 

XS vector, pins are arranged sequentially. They are located innermost because the 

interpolation of coefficients described by Eq. (6.9) is pinwise parallelized and it is 

desired to have adjacent threads access contiguous memory for coalescing on a GPU. 

The order of elements in each row, which determines the order of rows in Vk
, is 

arranged such that the outermost parameter is the reaction type, followed by the 

energy groups and nuclides. The linear combination in Eq. (6.8) is fully 

parallelizable over reaction types, energy groups, and nuclides although there are 

cases where only the XSs of a specific reaction type are required or energy groups 

need to be swept sequentially for one-group reaction rate calculation. However, the 

operations on the nuclides are always parallelizable in any case, thus it is desirable 

to locate the nuclides innermost. 
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Figure 6.12 Column structure of the cross section matrix. 

 

Figure 6.13 Row structure of the cross section matrix. 

 

For a VANGARD group constant file containing 256 pins and 138 state points, the 

dimension of the XS matrix would be: 

256 [pins]  138 [state points] 35,328,

32 [nuclides]  8 [groups]  5 [reactions] 1,280

m

n

  

     

which would require 172.5 MB of memory in single precision. After applying the 

compression technique with the reduced rank of 128, only Fk
 and Vk

 need to be 

stored, whose dimensions are: 

: 35,328 128,

: 1,280 128

F

V

k

k

m k

n k

  

  
 

which would require only 17.9MB of memory. Consequently, nearly 90% of memory 

is reduced. 
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Determination of the SVD Rank 

 

In the dimensionality reduction technique employing the SVD and the LRA, the 

reduced rank for the LRA should be pre-determined. We have set the criterion to 

determine the reduced rank such that the sum of the cutoff singular values becomes 

less than 610  of the total, and the criterion was examined with the APR1400 basic 

fuel assembly group constants, whose results are shown in Figure 6.14. Following 

the result, we determined to globally use the first 128 singular values, which is the 

smallest multiple of 32 (the size of warp in CUDA) that satisfies the criteria of all 

types of assemblies. 

 

Figure 6.14 Required rank of each assembly type. 

 

Effects of the Microscopic Cross Section Compression 

 

The accuracy of the cross section reconstruction after the compression was 

investigated by comparing the APR1400 core depletion calculation results with the 

reference solutions obtained by using the original cross sections. Figure 6.15 presents 

the difference in critical boron concentration (CBC) and the maximum pin power 
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error at each burnup step in the core depletion calculation. Here, the group constants 

of not only the basic fuel assemblies but also the assemblies with spacer grids and 

the radial and axial reflector assemblies were compressed. In all burnup steps, the 

differences of CBC were less than 0.002 ppm, and the maximum pin power errors 

are of 0.0001% order. It confirms that the solution accuracy is unchanged after the 

compression even in core calculations. 

 

Figure 6.15 CBC and pin power differences in the core depletion calculations. 

 

Figure 6.16 shows the comparison of GPU memory usage at each burnup step. 

The memory usage changes at each burnup step due to the burnup window scheme. 

However, it should be noted that the burnup window scheme is not applied to the 

compressed cross sections; namely, the coefficient matrix of the entire burnup range 

and the right singular vector matrix are stored on GPU as a whole, and only the 

uncompressed group constant data such as the macroscopic scattering cross section 

matrices, SPH factors, and fission spectra are subject to the burnup window scheme 

and ported adaptively. Nevertheless, it does not serve as a large memory burden as 

the compression is done very effectively. On the contrary, as the decomposed 

matrices are ported only once at the initialization stage and employed throughout the 

rest of the calculation, the overhead of constructing the cross section sub-tables at 
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each burnup step is reduced. In addition, the GPU memory usage becomes stable and 

predictable as most of the required memory is reserved at the initialization stage, 

which eliminates the risk of running out of memory during calculation. Consequently, 

the peak GPU memory usage is reduced from ~ 17 GB to ~ 9.2 GB. As shown in 

Table 6.2, the group constant file size for each fuel assembly type is also substantially 

reduced by the compression technique to yield a 73% reduction in memory. 

 

Figure 6.16. Comparison of GPU memory usages. 

 

Table 6.2 Comparison of group constant file sizes. 

 Original Compressed 

File Size (MB) 236.8 64.8 
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Chapter 7. Verifications and Validations 
 

The solution accuracy and simulation capabilities of VANGARD were 

comprehensively examined through cycle depletion calculations for a series of real 

cores of APR1400 [30], AP1000 [34], and BEAVRS benchmark [18] problems. For 

all core problems, nTRACER direct whole core depletion calculations were 

performed to generate the reference solution such that consistent comparisons are 

possible with the same multi-group cross section library for both VANGARD and 

nTRACER calculations. In the VANGARD calculations, the pinwise and groupwise 

SPH factors are employed which are functionalized in the same way as the regular 

cross sections. In the following sections through 7.1 – 7.3, the specification of each 

core is given and the accuracy of VANGARD is then assessed by the comparison 

with the nTRACER direct whole core calculation results and, if needed, measured 

data and the PRAGMA Monte Carlo calculation results are also used as the reference. 

For all cores, the axial structures were explicitly modeled as precisely as possible. 

Group constants for the assemblies bearing spacer grids and the axial reflector 

assemblies were separately generated and used. The transient solution accuracy was 

examined by the HZP rod ejection problems of the NEACRP benchmark in Section 

7.4. As in the core cycle depletions, the results of VANGARD are compared with the 

nTRACER solutions. 

 

7.1 APR1400 Initial Core Depletion 
 

APR1400 is a Generation III large power reactor of Korea. The core is loaded with 

241 fuel assemblies of 16 × 16 lattice and extensively utilizes the gadolinia burnable 

absorbers to control excess reactivity. The initial core of APR1400 is loaded with 

nine types of fuel assemblies that are classified according to the fuel enrichment and 
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the gadolinia content, as illustrated in Figure 7.1 along with the loading pattern. This 

core was chosen as the target problem for the verification of VANGARD due to its 

representativeness of typical PWRs, its large size that increases the computational 

complexity, and the existence of gadolinia fuels that enables to examine the gadolinia 

fuel depletion scheme of VANGARD. 

 

  

Figure 7.1 Initial core loading pattern of the APR1400 core [32]. 

 

 The core was depleted up to 18 MWD/kgHM, and 21 burnup steps including the 

BOC were simulated in total with and without the NIBC option. Figure 7.2 shows 

the 3D power distributions calculated by VANGARD with NIBC at the BOC, MOC 

(8 MWD/kgHM), and EOC. 

The CBC letdown curves ant the errors are shown in Figure 7.3. It seems that the 

CBC errors are larger with the NIBC method, however, it can be easily found that it 

is merely due to error cancellation. Without NIBC, the gadolinia burnable absorbers 

are depleted slower than they should be, which can be confirmed by the large 

negative pin power errors noted for the Gd pins at the MOC illustrated in Figure 7.4. 

This introduces a significant negative bias in reactivity, which cancels out with the 

baseline positive reactivity errors. In terms of the power distributions, the 

improvement of errors with the burnup correction is clearer. At the MOC where the 
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peak pin power error occurs, the maximum and RMS pin power errors are 

substantially reduced from 4.3% and 0.9% to 1.7% and 0.5%, respectively, as 

presented in Figure 7.5. As the peculiar errors at the gadolinia fuel pins are removed, 

global power distributions are improved as well, which can be seen clearly by the 

notable reduction of the global power error tilt at the MOC shown in Figure 7.4. The 

axial power distributions and error distributions with NIBC are shown in Figure 7.6. 

The axial power distributions are also significantly improved where the peak 

maximum and RMS errors are reduced from 8% and 4.8% to 2.9% and 1.8%, 

respectively, as shown in Figure 7.7. 

As a whole, VANGARD presents fairly good agreements with nTRACER. CBC 

differences are kept below 15 ppm, and the maximum and RMS pin power errors do 

not exceed 2% and 0.5%, respectively. The axial power demonstrates slightly higher 

degree of errors, as the maximum and RMS errors reach 4% and 2%, respectively. 

Nonetheless, considering that the axial core structures were explicitly modeled in 

detail which tend to be smeared in the conventional design codes, the errors are 

considered acceptable. 

 

 

Figure 7.2. APR1400 power distributions at BOC, MOC, and EOC. 
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Figure 7.3. CBC letdown curves and errors for the APR1400 initial core. 

 

 

 

Figure 7.4. Pin power error (%) distributions at BOC (left), MOC (middle), and 

EOC (right) for the APR1400 initial core. 
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Figure 7.5. Maximum and RMS pin power errors at each burnup step for  

the APR1400 initial core. 

 

 

Figure 7.6 Axial power and error (%) distributions with NIBC at BOC (left), MOC 

(middle), and EOC (right). 
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Figure 7.7. Maximum and RMS axial power errors at each burnup step for the 

APR1400 initial core. 

 

 

7.2 AP1000 Initial Core Depletion 
 

AP1000 is the representative Generation III+ advanced nuclear power plant 

developed by the Westinghouse Electric Company. Its core employs many advanced 

design concepts such as fuel enrichment zoning, axial blankets with annular fuels for 

accommodating fission gas release, and combination of multiple types of burnable 

absorbers: Wet Annular Burnable Absorbers (WABA) of different axial lengths and 

Integral Fuel Burnable Absorbers (IFBA). The initial core loading pattern is 

illustrated in Figure 7.8. The core is loaded with 157 fuel assemblies of 17 × 17 

lattice which are grouped into five regions according to the enrichment ranging 

widely from 0.74 to 4.8 wt%. IFBAs and WABAs are contained in the region 4 and 

5 where high-enriched fuels are loaded. The WABAs are classified as short, 

intermediate, and long WABAs depending on the length of the absorber regions, as 

described in Figure 7.9, and they are all inserted at the same time, which causes 

severe heterogeneity in the axial direction. As the result, the core is highly 
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heterogeneous in both radial and axial directions, posing challenges in modeling and 

simulation. Such complexity makes the core suitable for verifying the solution 

capability of VANGARD. 

 

Figure 7.8 Initial core loading pattern of the AP1000 core [35]. 

 

Figure 7.9 Axial configurations of fuel rods and WABAs of the AP1000 core [35]. 

 

The core was depleted up to 18 MWD/kgHM using 23 burnup steps including the 

BOC. Figure 7.10 shows the 3D power distributions calculated by VANGARD at the 

BOC, MOC, and EOC. The CBCs match closely within 14 ppm as shown in Figure 

7.11, and the agreement in the pin power distributions is also quite good as shown in 

Figure 7.12 and Figure 7.13 in that the largest maximum and RMS errors which 

occur at BOC are only 1.76% and 0.54%, respectively. The errors smoothly decrease 

by annealing to nearly 0.9% and 0.3% at the EOC, respectively. The axial power 

reveals slightly larger errors than radial pin power, especially at the early stage of the 
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cycle where the maximum and RMS errors reach 3.8% and 2.3%, respectively, as 

seen in Figure 7.14 and Figure 7.15. However, given the extreme axial heterogeneity 

introduced by the WABAs of different lengths, the errors are within an acceptable 

level for a two-step design code. Rather, it should be emphasized that such detailed 

axial representation is possible with VANGARD to yield reasonable accuracy. 

 

Figure 7.10 AP1000 power distributions at BOC, MOC, and EOC. 

 

 

Figure 7.11. CBC letdown curves and errors for the AP1000 initial core. 
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Figure 7.12. Maximum and RMS pin power errors at each burnup step for the 

AP1000 initial core. 

 

 

Figure 7.13. Pin power error (%) distributions at BOC (left), MOC (middle), and 

EOC (right) for the AP1000 initial core. 
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Figure 7.14. Maximum and RMS axial power errors at each burnup step for the 

AP1000 initial core. 

 

 

Figure 7.15. Axial power and error (%) distributions at BOC (left), MOC (middle), 

and EOC (right) for the AP1000 initial core. 
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7.3 BEAVRS Benchmark Problems 
 

BEAVRS (Benchmark for Evaluation And Validation of Reactor Simulations) [18] 

benchmark provides detailed descriptions of the two operational cycles of a 

commercial nuclear power reactor as well as the measured data including HZP 

physics test results, boron letdown curves, and detector signals. A series of problems 

of BEAVRS benchmark is quite suitable for comprehensively verifying the extensive 

capabilities of VANGARD such as the restart/reloading, control rod movements 

during depletion, and load follow calculation capabilities. 

The BEAVRS cores are loaded with 193 fuel assemblies of 17 × 17 lattice which 

are specified according to the enrichments and burnable absorber (BA) 

configurations. The fuel loading pattern of the Cycle 1 is shown in Figure 7.16 where 

the indices on several assemblies denote the number of BA pins. The shuffling 

pattern for the Cycle 2 core is shown in Figure 7.17.  

As in the previous two core cases, the comparisons were made mainly against the 

nTRACER transport solutions, however, in the case that nTRACER cannot provide 

the reference solutions due to the lack of simulation capabilities such as control rod 

movements and load follow operation, PRAGMA solutions were used as the 

reference. Furthermore, BEAVRS provides measurements, therefore, if 

measurements are available, they were also used as the references. This section 

covers the HZP physics tests, HFP depletion, and load follow operation for each 

cycle. 

 



 

 
89 

 

Figure 7.16 Loading pattern of the BEAVRS Cycle 1 core [18]. 

 

 

Figure 7.17 Shuffling pattern of the BEAVRS Cycle 2 core [18]. 
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7.3.1 Hot Zero Power Physics Tests 

 

The critical boron concentrations under various control rod bank insertion 

conditions for the Cycle 1 are compared in Table 7.1. The estimated CBC of 

VANGARD matches well with measurements in that the maximum difference 

occurring in the most intensely rodded case is only 24 ppm. Considering that the 

design review criterion (DRC) of the CBC in a typical HZP physics test is 50 ppm 

[36], this difference is quite acceptable. In code-to-code comparisons with 

PRAGMA and nTRACER, it shows much better accuracy for all cases. Especially 

compared with nTRACER solutions, the differences for all cases are within 2 ppm.  

The control rod bank worth (CRBW) for the full insertion sequence is calculated 

by the difference of reactivity between before and after inserting the target control 

rod in the core with the earlier inserted rods loaded under the critical condition made 

by the pre-calculated CBC for each rodded case. The VANGARD solutions for the 

Cycle 1 are compared with those of nTRACER and PRAGAM as well as 

measurements, as shown in Table 7.2. Compared with the measurements, the 

estimated CRBWs show good agreements. For all cases, the maximum absolute and 

relative errors do not exceed 50 pcm and 5.0%, respectively. They are far less than 

the DRC for the individual bank worths which are defined as the smaller one between 

100 pcm and 15%. As in the CBC comparisons, VANGARD solutions for CRBW 

agree well with those of PRAGMA and nTRACER within 20 pcm and 3.0%.  

The isothermal temperature coefficient (ITC) is compared in Table 7.3. In all 

codes, it is calculated in the same manner by making the 5℉ perturbation to the inlet 

temperature. On the contrary to the CBCs and CRBWs, VANGARD shows 

significantly large differences in the ITCs from the measurements. VANGARD tends 

to underestimate the ITCs, but this tendency is observed in two other code 

calculation results. Meanwhile, it still shows good agreements with the solutions of 

PRAGMA and nTRACER with negligible errors.  
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Table 7.1 Comparison of HZP critical boron concentrations (ppm) of BEAVRS Cycle 1. 

Case 
Measured 

(M) 

PRAGMA 

(p) 

nTRACER 

(n) 

VANGARD 

(V) 
V - M V - P V - n 

ARO 975 978 969.43 967.90 -7 -10 -1.53 

D in 902 917 908.67 907.06 5 -10 -1.61 

C, D in 810 817 810.24 809.16 -1 -8 -1.08 

B, C, D in - 725 719.14 717.39 - -8 -1.75 

A, B, C, D in 686 679 673.46 672.69 -13 -6 -0.77 

A, B, C, D, SE, in - 638 633.45 633.63 - -4 0.18 

A, B, C, D, SE, SD in - 575 570.92 571.15 - -4 0.23 

A, B, C, D, SE, SD, SC in 508 486 484.36 483.77 -24 -2 -0.59 
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Table 7.2 Comparison of HZP control rod bank worths (pcm) of BEAVRS Cycle 1. 

Case 
Measured 

(M) 

PRAGMA 

(p) 

nTRACER 

(n) 

VANGARD 

(V) 
V - M V - P V - n 

D in 788 783 781 781 
-7 

(-0.9%) 

-2 

(-0.2%) 

0 

(0.0%) 

C with D in 1203 1255 1246 1239 
36 

(3.0%) 

-16 

(-1.3%) 

-7 

(-0.6%) 

B with D, C in 1171 1220 1210 1217 
46 

(3.9%) 

-3 

(-0.3%) 

6 

(0.5%) 

A with D, C, B in 548 587 585 570 
22 

(4.1%) 

-17 

(-2.9%) 

-15 

(-2.6%) 

SE with D, C, B, A in 461 497 494 482 
21 

(4.6%) 

-15 

(-3.0%) 

-12 

(-2.5%) 

SD with D, C, B, A, SE in 772 784 778 777 
5 

(0.6%) 

-7 

(-0.9%) 

-1 

(-0.1%) 

SC with D, C, B, A, SE, SD in 1099 1115 1097 1104 
5 

(0.5%) 

-11 

(-1.0%) 

7 

(0.7%) 

 

Table 7.3 Comparison of HZP isothermal temperature coefficients (pcm/℉) of BEAVRS Cycle 1. 

Case 
Measured 

(M) 

PRAGMA 

(p) 

nTRACER 

(n) 

VANGARD 

(V) 
V - M V - P V - n 

ARO -1.75 -2.98 -2.80 -3.00 -1.25 -0.02 -0.20 

D in -2.75 -4.56 -4.40 -4.40 -1.65 0.16 0.00 

D, C in -8.01 -9.43 -9.40 -9.40 -1.39 0.03 0.00 
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Since the nTRACER code is not capable of elaborate load follow calculation and 

control rod movements during depletion, the comparisons against nTRACER 

solutions cannot be made for the Cycle 2. Instead, the VANGARD solutions were 

compared with the measurements and the PRAGMA solutions, which are shown in 

Table 7.4 – Table 7.6. In the reloaded cores as well, the CBC differences from the 

measurements are sufficiently small within 20 pcm. The differences from PRAGMA 

solutions are entirely negligible. In the case of CRBWs, the errors from the 

measurements were still within the design criterion in that for all cases the absolute 

and relative errors are smaller than 50 pcm and 15%. The error of total CRBW of 

4.1% is also smaller than the DRC of 8.0%. The ITC for the Cycle 2 ARO case was 

estimated larger than the measurement by 0.9 pcm/℉, but the difference from the 

PRAMGA solutions is sufficiently small.  

 

Table 7.4 Comparison of HZP critical boron concentrations (ppm) of BEAVRS 

Cycle 2. 

Case 
Measured 

(M) 

PRAGMA 

(P) 

VANGARD 

(V) 
V - M V - P 

ARO 1405 1390.5 1390.8 -14.3 0.3 

C in 1273 1289.3 1289.5 16.5 0.2 
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Table 7.5 Comparison of HZP control rod bank worths (pcm) of BEAVRS Cycle 2. 

Case 
Measured 

(M) 

PRAGMA 

(P) 

VANGARD 

(V) 
V - M V - P 

D in 426 480.3 475.2 
49.2 

(11.6%) 

-5.0 

(-1.1%) 

C in 1014 1027.4 1027.4 
13.4 

(1.3%) 

0.0 

(0.0%) 

B in 716 734.4 711.0 
-5.0 

(-0.7%) 

-23.3 

(-3.2%) 

A in 420 399.6 408.7 
-11.3 

(-2.7%) 

9.1 

(2.3%) 

SE in 438 440.9 444.0 
6.0 

(1.4%) 

3.0 

(0.7%) 

SD in 305 360.3 348.2 
43.2 

(14.2%) 

-12.1 

(-3.4%) 

SC in 307 358.3 346.2 
39.2 

(12.8%) 

-12.1 

(-3.4%) 

SB in 781 821.7 808.5 
27.5 

(3.5%) 

-13.2 

(-1.6%) 

SA in 326 374.4 359.3 
33.3 

(10.2%) 

-15.1 

(-4.0%) 

Total 4733 4997.3 4928.5 
195.5 

(4.1%) 

-68.8 

(-1.4%) 

 

Table 7.6 Comparison of HZP isothermal temperature coefficients (pcm/℉) of 

BEAVRS Cycle 2. 

Case 
Measured 

(M) 

PRAGMA 

(P) 

VANGARD 

(V) 
V - M V - P 

ARO 1.71 0.69 0.80 -0.91 0.11 
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7.3.2 Hot Full Power Depletions 

 

The Cycle 1 and 2 depletion calculations under the constant power level of 100% 

were performed. Since the measured data for CBC are provided, the CBC at each 

burnup step of both cycles was compared with measurements as well as with the 

nTRACER solution.  

Figure 7.18 shows the 3D power distributions calculated by VANGARD at the 

BOC, MOC, and EOC. For the Cycle 1, both nTRACER and VANGARD estimate 

CBCs lower than the measurement with the maximum difference of 37 ppm, as 

presented in Figure 7.19. However, it is still in an acceptable range. On the other 

hand, the CBC differences between VANGARD and nTRACER are negligible 

throughout the whole burnup steps where the largest difference is only 6 ppm. 

The pin power distributions and the axial power distributions were compared with 

those of nTRACER. The maximum and RMS pin power error trends along the 

burnup are shown in Figure 7.20, and the pin power error distributions at BOC, MOC, 

and EOC are demonstrated in Figure 7.21. The excellent agreements between the 

two codes are verified in the pin power comparisons where the maximum and RMS 

pin power errors are kept below 0.8% and 0.3%, respectively, during the depletion 

except for at the BOC. The axial power distributions are also estimated close to those 

of nTRACER, as demonstrated in Figure 7.22 and Figure 7.23. At all burnup steps, 

the maximum and RMS axial power errors are within 3% and 1%. However, the 

axial power errors are increasing with significant oscillation especially near the EOC, 

which turned out to be caused by the xenon oscillation. Thus, further investigation 

to alleviate this effect is needed to ensure consistently high accuracy in axial power 

distributions.  
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Figure 7.18 BEAVRS Cycle 1 power distributions at BOC, MOC, and EOC 

under the HFP condition. 

 

 

Figure 7.19 CBC letdown curves and errors for the BEAVRS Cycle 1 core  

under the HFP condition. 
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Figure 7.20 Maximum and RMS pin power errors at each burnup step for the 

BEAVRS Cycle 1 core under the HFP condition. 

 

 

Figure 7.21 Pin power error (%) distributions at BOC (left), MOC (middle), and 

EOC (right) for the BEAVRS Cycle 1 core under HFP condition. 

 



 

 
98 

 

Figure 7.22 Maximum and RMS axial power errors at each burnup step for the 

BEAVRS Cycle 1 core under the HFP condition. 

 

Figure 7.23 Axial power and error (%) distributions at BOC (left), MOC (middle), 

and EOC (right) for the BEAVRS Cycle 1 core under HFP condition. 
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The 3D power distributions and burnup distributions of the Cycle 2 calculated by 

VANGARD at the BOC, MOC, and EOC are illustrated in Figure 7.24 and Figure 

7.25, respectively. For the Cycle 2 as well, The CBCs estimated by VANGARD 

match well with the measurements and with the nTRACER solutions within 20 ppm 

and 15 ppm, respectively, as shown in Figure 7.26. The pin powers are in good 

agreement with nTRACER as demonstrated in Figure 7.27 and Figure 7.28. At all 

burnup steps except for the BOC, the maximum and RMS pin power errors are within 

1.5% and 0.5%, respectively. The axial power distributions are also in good 

agreement with nTRACER throughout the whole burnup steps, as shown in Figure 

7.29 and Figure 7.30. For most burnup steps, the maximum and RMS axial power 

errors are lower than 3% and 1%, respectively. The high solution accuracy for the 

Cycle 2 calculation proves the soundness of the restart and reloading capability of 

VANGARD. 

There are many factors to cause the large pin power errors at the BOC for the 

reloaded core in two-step calculations because it is unlikely that each fuel pin will 

be depleted in the same condition with the lattice calculation. The most significant 

factor is the environment effect caused by inter-assembly heterogeneity. This effect 

is introduced more severely in the Cycle 2 core where high-enriched fresh fuel 

assemblies are loaded between shuffled assemblies from the Cycle 1. As noted in 

Figure 7.25, there must be severe gradients in burnup in the reloaded core. However, 

this cannot be elaborately predicted in two-step core calculations which employ pre-

generated pin-homogenized cross sections from lattice calculations. Another factor 

to cause errors only to reloaded cores is the inability to rigorously consider the 

history effect of BA-withdrawn assemblies where the BA rods are loaded in the 

Cycle 1 core but withdrawn in the Cycle 2 core. In order to rigorously simulate the 

extraction of BA rods between cycles, it should use group constants generated from 

an unnatural lattice calculation where an assembly is depleted with BA rods until a 

certain burnup corresponding to the end of Cycle 1 and then depleted without BA 
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rods. However, it is practically impossible because the group constants for an 

assembly are generated for the lifetime of the assembly which spans three cycles at 

once. Therefore, in VANGARD, for the Cycle 2 calculation of those BA-withdrawn 

assemblies, the group constants of the corresponding base assembly which has the 

same enrichment but does not contain BA rods are used. It entails an inevitable 

limitation that the depletion history with BA rods loaded of the previous cycle cannot 

be incorporated in the group constants. 

 

 

Figure 7.24 BEAVRS Cycle 2 power distributions at BOC, MOC, and EOC  

under the HFP condition. 

 

 

Figure 7.25 BEAVRS Cycle 2 burnup distributions at BOC, MOC, and EOC  

under the HFP condition. 
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Figure 7.26 CBC letdown curves and errors for the BEAVRS Cycle 2 core  

under the HFP condition. 
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Figure 7.27 Maximum and RMS pin power errors at each burnup step for the 

BEAVRS Cycle 2 core under the HFP condition. 

 

 

Figure 7.28 Pin power error (%) distributions at BOC (left), MOC (middle), and 

EOC (right) for the BEAVRS Cycle 2 core under the HFP condition. 

 

 



 

 
103 

 

Figure 7.29 Maximum and RMS axial power errors at each burnup step for the 

BEAVRS Cycle 2 core under the HFP condition. 

 

 

Figure 7.30 Axial power and error (%) distributions at BOC (left), MOC (middle), 

and EOC (right) for the BEAVRS Cycle 2 core under the HFP condition. 
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7.3.3 Load Follow Calculations 

 

BEAVRS benchmark provides measured data for boron letdown curves and 

detector signals along with power history and the control rod bank positions at each 

burnup step. Due to the lack of capability of control rod movement during depletion 

and load follow calculation of nTRACER, the code-to-code comparisons in this 

section were made with PRAGMA solutions.  

Based on the actual power history, the power level model was simplified so that 

total 31 burnup points were determined to be simulated which consists of burnup 

points at which the measured data are provided and the burnup points right before 

and after the reactor trip where the power level drastically changes, as presented in 

Figure 7.31. Note that for the T/H feedback and xenon feedback calculation within 

a specific burnup step, the core power provided at that burnup point is used, and for 

the depletion calculation, the average core power during the burnup step is used. 

The CBC letdown curves are compared in Figure 7.32. Compared to the 

measurements, the non-negligible differences are observed at the later burnup steps, 

which exceeds the acceptance criterion, 50 ppm, but this trend is observed in 

PRAGMA results as well. The large errors at the later burnup steps are also noted in 

the core follow results of another deterministic transport code nTER [37]. 

Considering that the large differences from the measurements at the later burnup 

steps are commonly observed in the various code calculations, these errors might be 

originated from the uncertainties of measurements and the inability to simulate the 

actual power history accurately. Meanwhile, the differences between VANGARD 

and PRAGMA solutions are kept below 15 ppm during depletion. Not only in CBCs 

but also in pin powers, VANGARD shows excellent agreements with PRAGMA as 

shown in Figure 7.33 and Figure 7.34. The largest maximum and RMS pin power 

errors during the depletion are only 2.2% and 0.5%, respectively. 
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The comparisons of detector signals at BOC, MOC, and EOC are demonstrated 

through Figure 7.35 - Figure 7.37, and those at all burnup steps are summarized in 

Table 7.7. As in the CBC comparisons, large differences from the measurements are 

observed at the later burnup steps in which the maximum error of the detector signal 

reaches nearly 7.5%. Nonetheless, the maximum errors do not exceed 5% except for 

the EOC, and the RMS errors are kept below 2.5%, which results in the average RMS 

error throughout the whole burnup steps of 1.6%. Through the code-to-code 

comparison with PRAGMA, the high accuracy was confirmed in that the maximum 

errors are within 2.5%, and the average RMS error of all burnup steps is only 0.6%.  

 

 

Figure 7.31 Power history and control rod bank positions of the Cycle 1 load 

follow operation. 
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Figure 7.32 CBC letdown curves and errors for the BEAVRS Cycle 1 core under 

the load follow operation. 

 

 

Figure 7.33 Maximum and RMS pin power errors at each burnup step for the 

BEAVRS Cycle 1 core under the load follow operation (ref.: PRAGMA). 
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Figure 7.34 Pin power error (%) distributions at BOC (left), MOC (middle), and 

EOC (right) for the BEAVRS Cycle 1 core under the load follow operation  

(ref.: PRAGMA). 

 

 

Figure 7.35 Comparisons of the Cycle 1 detector signals at BOC. 
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0.7796 1.0303 VANGARD 0.7804 1.0314 VANGARD

0.07% 1.90% Diff. -0.41% -0.54% Diff.

1.0652 0.8972 1.1377 1.0836 0.9075 1.1597

1.0802 0.9035 1.1572 RMS 1.86% 1.0814 0.9044 1.1585 RMS 0.34%
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1.66% -1.14% -0.06% -3.26% 0.09% -0.18% -0.20% -0.12% 1.16%

0.9353 1.1681 0.9838 1.3070 1.1956 0.8516 0.9352 1.1993 0.9722 1.3510 1.1836 0.8381
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Figure 7.36 Comparisons of the Cycle 1 detector signals at MOC. 

 

 

Figure 7.37 Comparisons of the Cycle 1 detector signals at EOC. 

 

 

 

 

 

 

 

H G F E D C H G F E D C

1.2083

1.2314 1.2231

1.48%

1.0894 1.2922 Measured 1.0645 1.2891 PRAGMA

1.0694 1.2933 VANGARD 1.0621 1.2845 VANGARD

-2.00% 0.11% Diff. -0.23% -0.46% Diff.

1.2938 1.1058 1.3007 1.2815 1.1031 1.2889

1.3015 1.1048 1.3085 RMS 0.98% 1.2927 1.0973 1.2996 RMS 0.65%

0.77% -0.11% 0.78% Max 2.50% 1.11% -0.58% 1.07% Max 1.48%
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0.86% -1.59% 1.20% -2.12% 1.00% -0.49% -0.54% -0.24% 1.08%

1.0494 1.2550 1.0304 1.0286 0.7459 1.0407 1.2377 1.0286 1.2202 1.0164 0.7188

1.0477 1.2583 1.0349 1.2408 1.0218 0.7209 1.0406 1.2497 1.0279 1.2323 1.0149 0.7160

-0.17% 0.33% 0.45% -0.68% -2.50% -0.02% 1.20% -0.08% 1.21% -0.16% -0.27%

1.1843 0.8613 1.1422 0.7321 0.5356 1.1754 0.8519 1.1374 0.8110 0.7186 0.5299

1.1948 0.8562 1.1552 0.8152 0.7309 0.5335 1.1866 0.8503 1.1474 0.8097 0.7259 0.5299

1.05% -0.52% 1.30% -0.12% -0.21% 1.13% -0.16% 1.00% -0.13% 0.73% 0.00%
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H G F E D C H G F E D C

1.1144

1.1465 1.1348

2.04%

0.9934 1.1199 Measured 1.0178 1.1971 PRAGMA

1.0189 1.1944 VANGARD 1.0085 1.1822 VANGARD

2.55% 7.45% Diff. -0.93% -1.49% Diff.

1.1609 1.0167 1.1751 1.1677 1.0413 1.1788

1.1993 1.0389 1.2089 RMS 2.49% 1.1871 1.0283 1.1966 RMS 1.40%

3.84% 2.21% 3.38% Max 7.45% 1.94% -1.31% 1.78% Max 2.48%
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Table 7.7 Summary of the detector signal comparisons of the Cycle 1 load follow 

calculation. 

Measured Point Power 

(%) 

VANGARD vs. 

Measured (%) 

VANGARD vs. 

PRAGMA (%) 

Day EFPD Max RMS Max RMS 

0 0.00 0.71 4.62 1.86 1.16 0.34 

18 1.15 20.31 4.14 1.70 0.71 0.30 

54 4.36 32.42 3.65 1.67 0.64 0.28 

62 7.52 48.69 3.68 2.11 0.98 0.42 

66 9.09 48.90 3.03 1.47 1.15 0.36 

81 17.02 74.04 3.52 1.25 0.80 0.35 

82 17.76 73.17 3.57 1.73 0.74 0.32 

88 22.40 89.47 2.74 1.17 1.08 0.46 

92 26.03 98.67 4.60 2.21 0.97 0.45 

161 33.76 64.66 4.38 2.04 1.07 0.35 

169 40.07 99.78 3.11 1.25 0.95 0.44 

187 56.33 99.98 2.67 1.20 0.98 0.43 

218 82.55 93.78 2.31 1.13 1.00 0.46 

251 114.50 99.60 2.14 1.14 1.13 0.54 

323 147.79 63.65 4.92 2.12 1.08 0.51 

339 159.56 99.70 2.50 0.98 1.48 0.65 

368 184.14 99.30 2.41 1.25 1.76 0.77 

403 212.61 99.86 3.78 1.46 1.65 0.88 

434 238.90 99.51 2.54 1.26 1.60 0.88 

468 269.85 99.91 3.12 1.41 2.04 1.11 

504 301.55 99.79 2.79 1.44 2.18 1.21 

551 314.91 84.48 4.53 2.20 2.35 1.32 

573 331.80 69.86 7.45 2.49 2.48 1.40 

  

Average RMS Error: 

1.59% 

Average RMS Error: 

0.62%  

 

For the Cycle 2 load follow calculation, VANGARD solutions show excellent 

agreements with references. For CBCs as noted in Figure 7.38, the differences from 

the measurements and PRAGMA are within 60 ppm and 4 ppm, respectively. In the 

case of pin powers, as shown in Figure 7.39 and Figure 7.40, the maximum and RMS 

pin power errors are consistently lower than 2% and 0.5%, respectively, except for 

at BOC, which shows the same behavior in the Cycle 2 HFP calculation. For the 

detector signal comparisons as well, as presented through Figure 7.41 - Figure 7.43 

and in Table 7.8, the high accuracy of VANGARD solutions is confirmed where the 

average RMS errors are at the level of 1%. 
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Figure 7.38 CBC letdown curves and errors for the BEAVRS Cycle 2 core under 

the load follow operation. 

 

Figure 7.39 Maximum and RMS pin power errors at each burnup step for the 

BEAVRS Cycle 2 core under the load follow operation (ref.: PRAGMA). 
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Figure 7.40 Pin power error (%) distributions at BOC (left), MOC (middle), and 

EOC (right) for the BEAVRS Cycle 2 core under the load follow operation  

(ref.: PRAGMA). 

 

 

Figure 7.41 Comparisons of the Cycle 2 detector signals at BOC. 

 

H G F E D C H G F E D C
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0.12%

1.1265 1.1161 Measured 1.1334 1.1193 PRAGMA

1.1135 1.0917 VANGARD 1.1100 1.0883 VANGARD

-1.30% -2.44% Diff. -2.33% -3.10% Diff.

1.0981 1.1317 1.1466 1.0864 1.1330 1.1562

1.0827 1.1145 1.1570 RMS 2.07% 1.0794 1.1111 1.1534 RMS 1.25%

-1.53% -1.72% 1.04% Max 5.33% -0.70% -2.20% -0.27% Max 3.10%
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2.83% 2.78% 0.01% 3.75% 0.01% -0.75% -1.44% 0.36% 1.17%

1.0626 1.1590 1.0470 1.1070 1.0685 0.9868 1.0713 1.1013 1.0623 1.0778 1.0288 0.9726

1.0714 1.1057 1.0674 1.0932 1.0425 0.9915 1.0681 1.1023 1.0641 1.0899 1.0393 0.9884

0.88% -5.33% 2.03% -1.38% -2.60% 0.47% -0.32% 0.10% 0.18% 1.20% 1.05% 1.59%

1.1014 1.0769 1.0753 0.8564 0.4638 1.0575 1.0880 1.0336 1.0595 0.8379 0.4526

1.0755 1.0876 1.0494 1.0738 0.8621 0.4541 1.0722 1.0843 1.0462 1.0705 0.8595 0.4527

-2.59% 1.07% -2.58% 0.57% -0.97% 1.47% -0.38% 1.26% 1.10% 2.16% 0.00%

0.9588 0.9793 0.8027 0.4733 0.9586 0.9544 0.8007 0.4770

0.9766 0.9679 0.8128 0.4775 0.9736 0.9650 0.8102 0.4760

1.78% -1.13% 1.01% 0.42% 1.50% 1.06% 0.96% -0.09%
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15 15

11 11

12 12

13 13
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9 9

10 10
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Figure 7.42 Comparisons of the Cycle 2 detector signals at MOC. 

 

 

Figure 7.43 Comparisons of the Cycle 2 detector signals at EOC. 

 

 

 

 

 

 

 

H G F E D C H G F E D C

1.185

1.2126 1.2067

2.17%

1.0516 1.0481 Measured 1.0572 1.0623 PRAGMA

1.0551 1.0503 VANGARD 1.0500 1.0452 VANGARD

0.35% 0.22% Diff. -0.72% -1.70% Diff.

1.0471 1.0891 1.2150 1.0322 1.0906 1.1992

1.0496 1.0853 1.2164 RMS 0.78% 1.0445 1.0800 1.2105 RMS 1.01%

0.26% -0.38% 0.14% Max 1.83% 1.23% -1.05% 1.12% Max 2.17%

1.0706 1.1763 1.0853 1.2548 1.0730 1.1925 1.0778 1.2580

1.0661 1.1867 1.0757 1.2482 1.0609 1.1809 1.0705 1.2422

-0.46% 1.04% -0.96% -0.66% -1.21% -1.16% -0.73% -1.58%

1.1170 1.0923 1.2276 1.1426 1.1146 1.0921 1.2334 1.0394 1.1274

1.1353 1.0901 1.2244 1.0414 1.1493 1.1298 1.0849 1.2185 1.0364 1.1438

1.83% -0.22% -0.31% 0.67% 1.52% -0.72% -1.50% -0.30% 1.64%

1.0369 1.1485 1.0655 1.1921 1.0657 0.9190 1.0400 1.1264 1.0505 1.1702 1.0543 0.9174

1.0421 1.1416 1.0526 1.1914 1.0603 0.9251 1.0370 1.1361 1.0475 1.1856 1.0551 0.9206

0.52% -0.69% -1.29% -0.07% -0.54% 0.61% -0.30% 0.97% -0.31% 1.54% 0.08% 0.33%

1.0148 1.0533 0.8192 0.5131 0.9880 1.0390 1.0250 1.0003 0.8103 0.5085

1.0089 1.0379 1.0421 1.0084 0.8315 0.5095 1.0040 1.0328 1.0371 1.0035 0.8274 0.5070

-0.59% -1.12% 1.23% -0.37% 1.60% -0.61% 1.21% 0.32% 1.71% -0.15%

0.8168 0.8321 0.7429 0.5299 0.8212 0.8351 0.7368 0.5262

0.8304 0.8428 0.7461 0.5272 0.8263 0.8387 0.7425 0.5246

1.36% 1.07% 0.32% -0.27% 0.51% 0.37% 0.56% -0.16%

14 14

15 15

11 11

12 12

13 13

8 8

9 9

10 10

H G F E D C H G F E D C

1.1917

1.2302 1.2175

2.57%

1.0393 1.0423 Measured 1.0516 1.0573 PRAGMA

1.0476 1.0474 VANGARD 1.0368 1.0366 VANGARD

0.83% 0.50% Diff. -1.48% -2.07% Diff.

1.0473 1.0756 1.2295 1.0196 1.0843 1.2053

1.0468 1.0802 1.2374 RMS 0.84% 1.0360 1.0691 1.2246 RMS 1.46%

-0.05% 0.46% 0.79% Max 2.08% 1.65% -1.52% 1.93% Max 2.59%

1.0627 1.1889 1.0914 1.3230 1.0639 1.2036 1.0858 1.3162

1.0606 1.2003 1.0830 1.3122 1.0496 1.1880 1.0718 1.2987

-0.21% 1.14% -0.84% -1.09% -1.43% -1.56% -1.40% -1.75%

1.1283 1.0975 1.2672 1.2125 1.1131 1.0906 1.2730 1.0726 1.1766

1.1474 1.0893 1.2693 1.0774 1.2130 1.1356 1.0781 1.2562 1.0663 1.2005

1.91% -0.82% 0.21% 0.04% 2.25% -1.25% -1.68% -0.63% 2.39%

1.0352 1.0773 1.2326 1.0766 0.8960 1.0317 1.1283 1.0507 1.1938 1.0588 0.8876

1.0390 1.1605 1.0565 1.2324 1.0691 0.8938 1.0283 1.1485 1.0456 1.2197 1.0581 0.8846

0.38% -2.08% -0.02% -0.75% -0.22% -0.34% 2.02% -0.51% 2.59% -0.07% -0.30%

1.0036 1.0313 1.0595 0.8010 0.5386 0.9681 1.0277 1.0175 0.9697 0.7800 0.5327

1.0005 1.0322 1.0504 0.9807 0.8105 0.5359 0.9901 1.0215 1.0396 0.9706 0.8021 0.5303

-0.32% 0.08% -0.91% 0.95% -0.27% 2.21% -0.61% 2.21% 0.09% 2.22% -0.24%

0.7713 0.7904 0.7181 0.5584 0.7718 0.7909 0.7106 0.5502

0.7828 0.8003 0.7216 0.5554 0.7747 0.7921 0.7141 0.5497

1.15% 1.00% 0.34% -0.30% 0.29% 0.12% 0.35% -0.05%

14 14

15 15

11 11

12 12

13 13

8 8

9 9

10 10
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Table 7.8 Summary of the detector signal comparisons of the Cycle 2 load follow 

calculation. 

Measured Point Power 

(%) 

VANGARD vs. 

Measured (%) 

VANGARD vs. 

PRAGMA (%) 

Day EFPD Max RMS Max RMS 

5 0.43 29.11 5.33 2.07 3.10 1.25 

10 3.01 80.47 5.47 1.78 2.50 1.01 

13 5.49 99.99 4.69 1.83 2.25 0.95 

35 27.25 99.68 2.34 1.13 2.67 0.81 

42 34.25 65.00 3.83 1.85 1.57 0.72 

65 51.31 100.16 1.87 0.95 1.90 0.94 

93 77.17 99.90 1.58 0.85 1.93 0.88 

126 97.48 100.08 1.80 0.92 2.20 0.98 

156 125.78 99.75 1.83 0.78 2.17 1.01 

191 156.89 99.91 1.83 0.85 2.23 1.12 

220 185.78 99.96 3.35 1.07 2.47 1.16 

251 209.85 99.55 1.97 0.89 2.28 1.23 

266 224.83 99.91 2.51 0.98 2.28 1.30 

296 251.30 99.92 2.08 0.84 2.59 1.46 

  

Average RMS Error: 

1.20% 

Average RMS Error: 

1.06%  

 

7.4 NEACRP Rod Ejection Problems 
 

The NEACRP benchmark [38] core is composed of 157 fuel assemblies. Each 

assembly contains 264 fuel rods arranged in 17 × 17 array, and consists of 18 axial 

planes including axial reflectors. For all cases, the rod ejection time is 0.1 seconds. 

First of all, sensitivity tests were performed on time step size for VANGARD. The 

results obtained from VANGARD employing the fully implicit method for temporal 

discretization with time step size of 1ms were used as reference solutions. As 

demonstrated in Figure 7.44, the transient solutions obtained from the Crank-

Nicholson (CN) method with time step size of 5ms and 10ms match well with the 

reference solutions for all problems. Thus, the time step size of VANGARD 

calculation is set to 10ms, and the Crank-Nicolson method is employed for the 

temporal discretization. In nTRACER calculation, on the other hand, the fully 

implicit method is employed with time step size of 5ms. 
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Figure 7.44 Comparison of core power behavior according to time step sizes. 

 

 

Figure 7.45 - Figure 7.47 show the 3D power distributions of the A1, B1, and C1 

problem calculated by VANGARD at the steady-state, at the time of core power peak 

and also at 1.0 second. They clearly show the significant localized pinwise power 

increase near the rod-ejected position during the transient, which demonstrates the 
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transient simulation capability of VANGARD. Table 7.9 summarizes the calculation 

results of VANGARD compared with those of nTRACER. Figure 7.48 shows the 

core power behaviors of each problem, and the maximum Doppler temperature and 

the maximum moderator temperature behaviors of each problem are in Figure 7.49. 

Prior to the analysis of transient results, the steady-state solutions were assessed 

for the ejected rod worth. For the B1 and C1 problems, the rod worth of VANGARD 

agrees with that of nTRACER within 1 pcm. For the A1 problem, however, a 

relatively large overestimation of 3 pcm is noted due to the severe heterogeneity 

which leads to a much earlier peak in the core power. Even the small difference has 

a nontrivial impact on core power because the transient core power behavior is 

strongly dependent on the ejected rod worth [26].  

Meanwhile, for the other cases which do not suffer from the mismatch of the initial 

condition, all the transient results including the core power and T/H parameters are 

quite close to the nTRACER results, which verifies the soundness of the transient 

simulation capability of VANGARD. 

 

 

Figure 7.45 Power distributions of A1 problem at the steady state (left), core power 

peak (middle), and 1.0 s (right). 
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Figure 7.46 Power distributions of B1 problem at the steady state (left), core power 

peak (middle), and 1.0 s (right). 

 

 

Figure 7.47 Power distributions of C1 problem at the steady state (left), core power 

peak (middle), and 1.0 s (right). 
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Table 7.9 Comparison between VANGARD and nTRACER results for the 

NEACRP HZP rod ejection cases. 

Parameter Solver A1 B1 C1 

Ejected Rod 

worth 

(pcm) 

nTRACER 792.67 824.15 945.97 

VANGARD 795.62 824.15 946.95 

Diff. 2.95 - 0.98 

Max. Core 

Power (%) 

nTRACER 69.07 236.70 397.42 

VANGARD 77.87 257.76 454.18 

Diff. 8.80 21.06 56.76 

Peak Time (s) 

nTRACER 0.715 0.515 0.265 

VANGARD 0.700 0.520 0.260 

Diff. -0.015 0.005 -0.005 

Max. 

Doppler 

Temperature 

at 5s (℃) 

nTRACER 483.12 445.70 519.28 

VANGARD 477.15 451.57 524.32 

Diff. -5.97 5.87 5.87 

Max. 

Moderator 

Temperature 

at 5s (℃) 

nTRACER 307.39 302.68 308.19 

VANGARD 307.91 303.04 308.71 

Diff. 0.52 0.36 0.52 
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Figure 7.48 Comparison of core power behaviors. 
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Figure 7.49 Comparison of maximum Doppler temperature behaviors (left) and 

maximum moderator temperature behaviors (right). 
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Chapter 8. Computing Time Assessments 
 

The soundness and performance of the GPU calculation modules were examined 

with a series of core cycle depletion problems and NEACRP control rod ejection 

problems. The core features and the calculation conditions are all the same as those 

introduced in Chapter 7 for verifications and validations. In the CPU calculation 

modules, OpenMP multi-core parallelization is applied and the Eigen [24] linear 

algebra package is utilized for the matrix and vector operations in the CMFD and 

depletion calculations. The soundness of the GPU calculation modules was verified 

by comparing the CBCs and pin powers with those of the CPU calculation modules, 

and the performance of the GPU calculation modules was evaluated against the 

multi-core CPU parallel calculation performance. For the CPU calculations, a single 

Intel i9-10900X CPU with 10 cores was used, and a single NVIDIA GeForce RTX 

3090 GPU was used for the GPU calculations. The specifications of the computing 

resources are shown in Table 8.1. 

 

Table 8.1 Specifications of the computing resources. 

Processor Type GPU CPU 

Name 
NVIDIA GeForce  

RTX 3090 
Intel i9-10900X 

# of Cores 
10,496 for FP32 

164 for FP64 
10 

Base Core Frequency 1.40 GHz 3.70 GHz 

DRAM Bandwidth 
936 GB/s 

(GDDR6X) 

42 GB/s 

(Dual Channel  

DDR4-2666) 

FP32 Performance 29,389 GFLOPS 1,184 GFLOPS 

FP64 Performance 459 GFLOPS 592 GFLOPS 

MSRP $ 1,499 $ 648 - $ 658 
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8.1 APR1400 Initial Core Depletion 
 

Figure 8.1 presents the CBC letdown curves of the CPU and GPU calculations, 

and Figure 8.2 shows the pin power differences between the CPU and GPU 

calculations at the BOC, MOC, and EOC. For a rigorous comparison, tightly 

converged solutions were obtained with the fission source convergence criterion of 

710

. Throughout the results, it is confirmed that the GPU calculation modules yield 

equivalent results to the CPU calculation modules, as the calculated CBCs and pin 

power distributions are virtually the same. The CBC differences over the entire 

burnup steps do not exceed 0.01 ppm, and the maximum pin power differences 

steadily remain below 0.0003%. Additionally, this is another proof of that the mixed 

precision technique used in the nodal solver does not deteriorate the solution 

accuracy. 

 

 

Figure 8.1 Comparison of CBC letdown curves for the APR1400 core case. 
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Figure 8.2. Pin power error (%) distributions at BOC (left), MOC (middle), and 

EOC (right) for the APR1400. 

 

On the other hand, the performance difference between the CPU and GPU 

calculations is significant. In the CPU calculation, the three major modules take up 

to 98% of the total computing time as shown in Figure 8.3. Substantial speedups for 

these were achieved with GPU. As summarized in Table 8.2, the nodal, cross section, 

and depletion calculations were accelerated by 22, 44, and 11 times, respectively. As 

the result, the total calculation time was reduced from about 75 minutes with 10 CPU 

cores to the level of 3 minutes with a single GPU. This demonstrates that the GPU 

accelerations modules of VANGARD were highly efficiently implemented and that 

the pinwise two-step nodal core calculation can be done with a feasible computing 

time for the application to routine core design analyses by GPU acceleration. 

Meanwhile, an important observation from the results is that reconstructing the 

compressed XSs is faster than directly interpolating the raw XSs on GPU. It is 

because the reconstruction calculation has highly regular memory access pattern 

which is merely composed of element-wise matrix and vector operations, while the 

raw XS interpolation involves very irregular memory accesses that hinder the 

coalescing on GPU. Namely, the XS compression technique brings an additional 

advantage in terms of computing time due to the special characteristics of GPUs. 
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Figure 8.3 Computing time shares for the APR1400 core depletion case. 

 

Table 8.2 Computing time of the major hotspots and total computing time for the 

APR1400 core depletion case. 

Calculation CPU (s) 
GPU (Original) GPU (w/ Compression) 

Time (s) Speedup Time (s) Speedup 

Nodal 1586.9 72.4 21.9 72.9 21.8 

XS 2450.2 55.9 43.8 29.1 84.2 

Depletion 348.5 31.2 11.2 22.1 15.8 

Total 4488.3 196.6 22.8 158.9 28.2 

 

 

8.2 AP1000 Initial Core Depletion 
 

The significant performance of the GPU calculation modules was also reproduced 

in the AP1000 core case. Figure 8.4 illustrates the computing time shares of the CPU 

and GPU calculations, and Table 8.3 presents the computing time of the three major 

hotspots and the total computing time, along with the speedup factors. The nodal, 

cross section, and depletion calculations were accelerated by 21, 57, and 15 times, 

respectively, and as the result, the entire cycle depletion calculation for the AP1000 

initial core could be carried out within 2.5 minutes with a single GPU which had 

initially taken about 55 minutes with a deca-core CPU. 
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Figure 8.4 Computing time shares for the AP1000 core depletion case. 

 

Table 8.3 Computing time of the major hotspots and total computing time for the 

AP1000 core depletion case. 

Calculation CPU (s) 
GPU (Original) GPU (w/ Compression) 

Time (s) Speedup Time (s) Speedup 

Nodal 1457.1 70.3 20.7 70.1 20.8 

XS 1518.1 47.9 31.7 26.6 57.1 

Depletion 247.8 22.4 11.1 16.3 15.2 

Total 3305.2 168.8 19.6 143.2 23.1 

 

 

8.3 BEAVRS Cycle 1 Core Depletion 
 

The computing times and speedup factors of the computational hotspots and total 

computing time are summarized in Table 8.4, and the computing time shares of CPU 

and GPU calculations are presented in Figure 8.5. The nodal calculation and the cross 

section update were accelerated by 25 and 37 times, respectively, and the depletion 

calculation was also sped up by over 11 times. Consequently, the total computing 

time was reduced from about 1 hour 20 minutes to within 3.5 minutes. This 

computing time is equivalent to that a core calculation for a state can be performed 

in 6.8 seconds, which is fast enough to be industrially executed. 
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Table 8.4 Computing time of the major hotspots and total computing time for the 

BEAVRS Cycle 1 core HFP depletion case. 

Calculation CPU (s) 
GPU (Original) GPU (w/ Compression) 

Time (s) Speedup Time (s) Speedup 

Nodal 2157.5 86.5 24.9 86.2 25.0 

XS 2132.6 58.3 36.6 32.6 65.5 

Depletion 339.6 30.2 11.3 26.9 12.6 

Total 4740.0 212.6 22.3 187.7 25.3 

 

 

Figure 8.5 Computing time shares for the BEAVRS Cycle 1 core HFP depletion 

case. 

 

 

8.4 NEACRP Rod Ejection Problems 
 

The soundness of the GPU-accelerated modules for transient analyses was 

assessed by the comparison with CPU results for the C1 problem which was 

calculated with full core geometry so that it takes the most computing time among 

the three target problems. Figure 8.6 shows the core power behaviors from the CPU 

and GPU calculations and the relative errors between the two calculations. The GPU 

calculation result was confirmed to agree with the CPU calculation result, showing 

the relative error kept below 0.01%.  

Table 8.5 and Table 8.6 summarizes the computing times and speedup ratios of 

the four major GPU-accelerated parts of A1 quarter core problem and C1 full core 

problem, respectively. The computing time share comparisons for them are 
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demonstrated in Figure 8.7 and Figure 8.8. All the calculations involve 100 transient 

steps with time step size of 10 ms. With GPU acceleration, substantial speedups were 

achieved, especially in the nodal solver which took 96% of the total computing time 

in the CPU calculation. Owing to this, the total computing time was reduced from 

20 minutes to 50 seconds for A1 quarter core problem, and from 75 minutes to 2.5 

minutes for C1 full core problem.  

 

 

Figure 8.6 Core power comparison between CPU and GPU calculations for the C1 

problem. 

 

Table 8.5 Computing time (s) of the major hotspots and total computing time (s) 

for the NEACRP A1 problem. 

Calculation 
CPU 

(10 cores) 

GPU 

(single) 
Speedup 

Nodal 1225.8 24.7 49.7 

CMFD 15.6 3.3 4.7 

XS 2.7 0.2 15.2 

TH 27.7 14.6 1.9 

Total 1285.2 50.9 25.2 
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Figure 8.7 Computing time shares for the NEACRP A1 problem. 

 

Table 8.6 Computing time (s) of the major hotspots and total computing time (s) 

for the NEACRP C1 problem. 

Calculation 
CPU 

(10 cores) 

GPU 

(single) 
Speedup 

Nodal 4420.0 78.1 56.6 

CMFD 55.9 6.3 8.8 

XS 9.7 0.5 18.7 

TH 83.9 44.0 1.9 

Total 4612.1 154.4 29.9 

 

 

Figure 8.8 Computing time shares for the NEACRP C1 problem. 
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Chapter 9. Summary and Conclusions 
 

The pioneering GPU-based pinwise two-step nodal core calculation code 

VANAGARD has been developed, which leverages modern GPU computing 

capabilities to realize practical next-generation nuclear designs. As VANGARD 

targets to be used in commercial nuclear design analyses, a consumer-grade GPU 

that can be mounted on PCs was adopted as the main computing resource, which 

ensures affordability and practicality. Since VANGARD has been developed to fully 

exploit GPU performance from the scratch, almost all parts of the calculation 

modules including the three major computational hotspots – nodal solver, cross 

section treatment, and depletion solver – have been ported to GPU. Therefore, 

unnecessary overheads caused by the data transfer between CPU and GPU, which 

were not negligible, were minimized.  

In VANGARD, the pin-level one-node SP3 SENM was chosen as the primary 

nodal kernel. SENM was chosen owing to its capability to capture severe flux 

gradients occurring in the pinwise multi-group calculations with use of its hyperbolic 

terms. One-node kernel is selected to avoid the pinwise SP3 CMFD calculation which 

will lead to deterioration of stability and computing performance. In order to retain 

both accuracy and computational efficiency, radial 2nd – axial 4th order hybrid flux 

expansion was used. Besides, a mixed precision technique was devised to maximize 

the exploitation of powerful single precision computing power of consumer-grade 

GPU, in which only the simple arithmetic operations in the axial kernel are 

selectively done in double precision while the rest of operations of the nodal solver 

are done in single precision. By the sensitivity test, it was demonstrated to be the 

optimal combination in terms of stability, accuracy, and computing performance.  

For the acceleration of fission source distribution convergence, assembly-level 

diffusion CMFD solver was paired with the nodal kernel. In order to resolve the 
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instability revealed in one-node pinwise nodal – assemblywise CMFD coupled 

calculation, CMFD-based partial current update scheme was developed. This method 

is to reflect the CMFD solutions in the update of pinwise partial currents by using 

mp-CMFD relation and the modulated pinwise fluxes which are updated from the 

CMFD coarse mesh flux update. Through the parametric study, the significant 

effectiveness of the pinwise partial current update was demonstrated. 

VANGARD employs 8-group microscopic group constants which are generated 

by the lattice calculations of the whole-core transport code nTRACER. To resolve 

too significant memory burden of the pinwise group constants, two measures were 

introduced to fit into the limited memory capacity of consumer-grade GPUs. The 

first one is the burnup window scheme which ports only the group constants which 

are necessary at each burnup step. The second one is the cross section compression 

technique which reduces the dimension of the microscopic cross section matrix 

algebraically by employing the SVD and LRA. This compression technique was 

confirmed not to harm the accuracy for the 2D core depletion calculation, 

furthermore, it turned out that not only it reduced the memory usage but also it 

reduced the computing time on GPU noticeably owing to the regular memory access 

pattern. 

In depletion calculation, an efficient and massively parallel solution of batched 

burnup system with the CRAM was achieved by employing the cheap Gauss-Seidel 

method for the matrix inversion. The non-zero major ordering scheme for the matrix 

storage maximizes the coalescing on GPU. The inaccuracy of gadolinia fuel 

depletion, which is apparently observed in pinwise two-step core calculations, was 

resolved by introducing the neighbor-informed burnup correction scheme in which 

the cross sections of gadolinia fuel pins are functionalized by the average burnup of 

neighboring general fuel pins, not using their own burnups. The significant accuracy 

improvement was confirmed by the APR1400 core depletion calculation which is 

highly loaded with gadolinia fuels. 
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To constitute a fully capable core analysis system, VANGARD is not limited to 

developing individual modules but integrates them, and implements various 

auxiliary capabilities for practical applications, including the inline T/H feedback 

module with the simplified model and the features like CBC search, B-10 depletion, 

and xenon equilibrium and transient feedback. In addition, the transient calculation 

capability was also developed.  

The high solution accuracy and execution performance of VANGARD were 

confirmed by the cycle depletion calculations for two commercial PWR cores of 

APR1400 and AP1000 and the BEAVRS multi-cycle benchmark problems. In terms 

of accuracy, VANGARD solutions presented excellent agreements with nTRACER 

transport solutions in both CBCs and power distributions. For all target problems, 

CBC differences were within 15 ppm, and the maximum and RMS pin power errors 

were within 2.0% and 0.6%, respectively, throughout the whole burnup steps. 

Meanwhile, substantial speedups were achieved by GPU acceleration in every 

calculation module. Finally, for all the target problems, a cycle depletion calculation 

which took more than an hour with 10 CPU cores could be completed within 3 

minutes on a consumer-grade GPU. It is corresponding to less than 10 seconds per 

state. These results ensure that VANGARD satisfies both accuracy and computing 

time requirements for commercial nuclear designs, which confirms the feasibility of 

practical pinwise core designs.  

For the verification of transient calculation capabilities, NEACRP rod ejection 

problems were analyzed. All the transient results including the core power and T/H 

parameters were confirmed to be quite close to the nTRACER results. In terms of 

computing performance, a single consumer-grade GPU achieved substantial 

speedups over the 10-core CPU calculation with 50 and 57 times speedup in the 

nodal calculation time and 25 and 30 times speedup in the total calculation time, 

which results in the total calculation time reduced to 50 seconds and 2.5 minutes to 
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simulate 100 times steps for the A1 quarter core and C1 full core problem, 

respectively.  

Through all of these works, VANGARD has become the first and the only GPU-

based full-featured pinwise two-step nodal core calculation code that can satisfy both 

accuracy and computing time requirements to the practical level. Moreover, this 

research is of value in that it resolved many issues and overcome challenges revealed 

in performing the pinwise two-step nodal core calculations on GPU, which have not 

been tackled or even known previously, and in that it suggested resolutions for them 

with newly developed elaborate methods and schemes. All of these achievements 

presented the high potential of practical pinwise nuclear designs, and this research 

can serve as a good precedent for future developments of pinwise two-step core 

calculation systems which will become a trend in the worldwide reactor core design 

analysis institutes. 
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초  록 
 

 

 

본 연구에서는 실용적 핵설계 적용을 위한 신속하고 정확한 GPU 기반의 

봉단위 2단계 노달 노심 해석 코드 VANGARD를 개발하였다. GPU 

가속을 특징으로 하는 이 코드는 PC에 장착 가능한 소비자용 GPU를 

활용함으로써 실용적인 차세대 봉단위 핵설계를 실현한다. 

 

본 연구는 실제 핵설계에 필요한 필수 기능들을 개발하고 통합하는 

과정에서부터 시작한다. 이에 따라 정확한 중성자 해석을 위한 노달 

해법을 비롯하여 봉단위 열궤환 계산, 연소 계산 기능을 구현하였고, 

다주기 계산을 위한 재장전 및 재시작 기능, 사고 해석을 위한 과도 

계산 기능을 구현하였다. 뿐만 아니라 SMR과 같은 차세대 원전 설계 및 

해석에 필수적으로 요구되는 제어봉 조정 기능과 부하추종운전 기능을 

구현함으로써, 노심 설계 및 해석에 필요한 모든 기능들을 갖춘 봉단위 

노심 계산 체계를 구축하였다. 

 

본 연구에서는 SP3 이론 기반의 선원확장노달법(SENM)을 봉단위 다군 

계산을 위한 최적의 해법으로 선정하고 구현하였다. SENM의 

쌍곡선함수를 이용하여 핀 내부의 극심한 중성자속을 효과적으로 

고려함으로써 코드의 정확도를 확보하고, 집합체 당 4개의 격자를 

사용하는 소격격자 유한차분 가속법을 결합하여 중성자속 계산 체제의 

신속성을 확보하였다. 열 궤환 계산에서는 집합체 당 4개의 격자를 

기반으로 하는 1차원 단상 폐유로 모델을 채택함으로써 실용적 적용이 

가능하도록 하였다. 또한, 효율적인 봉단위 연소 계산을 위해 Chebyshev 

Rational Approximation Method (CRAM) 기반의 대규모 병렬화 연소 기법을 
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구현하였다. 대부분의 계산 시간을 차지하는 중성자속 계산, 단면적 계산, 

열 궤환 계산, 연소 계산을 비롯한 모든 주요 계산 모듈에 GPU 가속을 

적용함으로써 상용 수준의 계산 시간을 달성하는 데 성공하였다. 

 

핵설계 필수 계산 기능의 구현과 GPU 가속 기법의 도입에 그치지 않고, 

본 연구는 그 동안 해결되지 않았거나 혹은 알려지지 않았던 GPU를 

활용한 봉단위 2단계 노달 노심 계산을 수행함에 있어 드러나게 되는 

다양한 문제들을 해결하고, 새롭게 개발된 정교한 방법론과 체계로 이에 

대한 해결책을 제시한다. 제한된 GPU 디바이스 메모리에 방대한 양의 

봉단위 군정수를 효과적으로 포팅하기 위해 연소 테이블 방법을 개발 및 

적용하였으며, SVD와 LRA를 이용한 차원 축소 기법을 통해 미시 단면적 

데이터를 효과적으로 압축하였다. 계산의 전반적인 수렴을 안정화 

시키기 위해 봉단위 중성자속뿐만 아니라 봉단위 부분 중성자류 또한 

CMFD의 해를 이용하여 재계산 하는 CMFD 기반 부분중성자류 

갱신법을 개발 및 적용함으로써 노달 계산의 반복 수와 전체 계산 

시간을 효과적으로 감축하였다. 봉단위 2단계 계산에서 드러나게 되는 

극심한 가돌리니아 연료봉 연소 부정확도를 해결하기 위해서는 

간단하지만 효과적인 보정 기법인 Neighbor-Informed Burnup Correction 

기법을 개발하였고, 성공적으로 적용됨을 확인하였다.  

 

계산의 정확도와 계산 시간에 대한 검증은 상용로 APR1400과 AP1000 

초기 노심 및 BEAVRS 검증문제 1주기, 2주기 노심에 대한 3차원 연소 

계산을 통해 수행하였다. 검증 결과, nTRACER의 수송해와 비교했을 때, 

모든 문제에 대해서, 모든 연소 스텝에서 임계붕소농도 오차가 15ppm 

이내, 봉 출력 최대 오차와 RMS 오차가 각각 2.0%와 0.6% 이내로 
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나타나며 VANGARD의 높은 정확도를 입증하였다. 반면 GPU 가속을 

통해 압도적인 계산 성능 향상을 이루어 냄으로써, 모든 검증 문제 대해 

멀티 코어 CPU 계산을 통해 한 시간이 넘게 소요 되었던 1주기 연소 

계산을 3분 내로 수행하는 데 성공하였고, 결과적으로 한 연소 스텝 당 

10초 이내의 계산시간을 달성하였다.  

 

본 연구는 GPU 기반의 봉단위 계산에서 나타나는 여러 난제들을 

효과적으로 해결하여 실용적이고 정확한 봉단위 핵설계의 실현이 

가능함을 입증했다는 점에서 큰 가치가 있다. 이 연구를 통해 제시된 

여러 난제 해결책은 향후 세계 원자로 노심 설계 해석 기관에서 대세가 

될 봉단위 2단계 계산 체제 개발 과정에 좋은 선례로 활용될 수 있을 

것이다. 
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