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Abstract

In this work, the hexagonal ray tracing module and coarse mesh finite difference
(CMFD) acceleration, which are capable of explicitly modeling hexagonal geometry
cores are developed in a direct whole core calculation code, nTRACER. The
hexagonal ray tracing module employs the elongated model to explicitly model the
unusual structures of a water-water energetic reactor (VVER) and sodium-cooled
fast reactor (SFR) core. The assembly-wise modular rays are used in the hexagonal
ray tracing calculation to reduce the tracking ray information to be stored. The coarse
mesh finite difference (CMFD) formulation is expanded to the unstructured
geometry to handle the irregular method of characteristics (MOC) cells in hexagonal
assemblies. The CMFD calculation time and total computing time for the 2D VVER
core problems are reduced by up to 39 % and 17 %, respectively, by using the super
pin scheme.

The hexagonal ray tracing calculation in nTRACER is parallelized efficiently
by employing the assembly-wise domain decomposition (ADD) scheme. Memory
reduction and consequent reduction in computing time are possible by using the
ADD scheme since the storage of the flat source region information is needed only
for the assemblies being computed currently. The deterioration in the convergence
of MOC calculations induced by using the ADD scheme is relaxed by updating the
angular fluxes after CMFD calculations and by using the three-color scheme. The
total computing time is reduced by up to 13 % and 23 % by using the three-color
scheme and the angular flux storage scheme, respectively.

The hexagonal assembly-wise nodal solution is expanded to the unstructured
geometry so that the high-fidelity analyses of SFR core deformations can be
conducted in a practical time. The method to calculate the curvilinear and surface
integrals of polynomials in arbitrary geometry is suggested. The triangle-based
polynomial expansion nodal method and corner point balance calculation in a nodal
code, RENUS are expanded to the unstructured geometry by using this method. The
CMFD formulation in RENUS is expanded to the unstructured geometry similarly
to nTRACER.

The solution accuracy of nTRACER is verified by comparing its calculation
results against the McCARD results for the various hexagonal geometry core
problems. The reactivity difference and the maximum and root-mean-square 3D pin
power differences do not exceed 7 pcm, 6.41 %, and 0.44 %, respectively, for the
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three 3D C5G7 H benchmark problems. The solution differences for the nine 2D
KAERI VVER-1000 core problems do not exceed 106 pcm, 2.24 %, and 0.95 %,
respectively, by using the PO option. The two solutions for the 2D ‘Full-core’ VVER-
440 and MET-1000 SFR core problems also match each other well. The solution
differences are reduced by using the P2 option by up to 70 pcm in reactivity and
0.90 % in pin power distribution. It is demonstrated that nTRACER achieved
satisfactory solution accuracy for hexagonal geometry core problems.

The ADD performance is examined by comparing the ray tracing time with and
without the ADD scheme for the various VVER core problems. The ray tracing time
and total computing time for the 2D full core problems are reduced by up to 48 %
and 38 %, respectively. The two computing times for the 3D full core problems are
reduced by up to 53 % and 45 %, respectively. It is verified that the hexagonal ray
tracing calculation in nTRACER is parallelized efficiently by employing the ADD
scheme.

The performance of the unstructured hexagonal nodal solution in RENUS is
verified by comparing its calculation results against the McCARD results for the 2D
schneller natriumgekiihlter reaktor-300 core problems. Arbitrary core deformations,
contrived states were applied to the core problems to expose the RENUS solution
accuracy for unstructured geometry. The solution differences for the changes in
reactivities and assembly power distribution induced by contrived states on the fuel
region do not exceed 7 pcm and 0.46 %, respectively. In contrast, the reference
reactivity and assembly power change by up to 240 pcm and 47.76 %, respectively.
The RENUS solutions were further verified by decomposing the deformed core
problem with uniform expansion into the deformed core problems with assembly-
wise expansion. The verification results reveal that excellent agreements between
the two solutions for deformed core problems do not owe to any error cancellation.
Thus, it is concluded that RENUS attained significantly high accuracy in predicting
the changes in nuclear characteristics induced by core deformations by using the
unstructured nodal method.

Keyword : hexagonal geometry core, ray tracing calculation, coarse mesh finite
difference formulation, assembly-wise domain decomposition, thermal core
expansion, unstructured nodal solution
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Chapter 1. Introduction

In this work, the hexagonal ray tracing module and coarse mesh finite difference
(CMFD) acceleration, which are capable of explicitly modeling hexagonal geometry
cores including complicated structures, are developed in a direct whole core
calculation (DWCC) code, nTRACER. The hexagonal assembly-wise nodal solution
is expanded to the unstructured geometry so that the high-fidelity analyses of
sodium-cooled fast reactor (SFR) core deformations can be conducted in a practical

time.

Two-step core calculation (TSCC) code systems are to employ lower-order
solution methods to analyze the core of a nuclear reactor using the group constants
generated from the higher order solution for each typical assembly. The nuclear
characteristics of reactor cores have been generally simulated by a TSCC code due
to its advantage of low computing cost. With astonishing progress in computational
processing units and storage devices in recent times, however, the need for the whole
core solution with high resolution and transport-based accuracy has got increased
justification. DWCC methods, which are to enhance solution fidelity by eliminating
the advance procedure of generating homogenized assembly or pin cross-sections,
have been extensively used in numerous codes [1]-[3] dealing with Cartesian
geometry cores.

Water-water energetic reactors (VVERS), which are pressurized water reactors
with hexagonal fuel assemblies, have spread in the East-European bloc and
developing countries for several decades. Neutron moderation in the VVER core is
complicated by unusual structures such as Vygorodka, the corner stiffener, and the
water channels at the core basket. The complication undermines the assumptions of
the diffusion equation and assembly or pin homogenization. Thus, it is expected that
the DWCC method performing the sub-pin level transport calculation would
outperform the assembly-wise or pin-wise nodal methods for VVER cores.

Currently, several codes have the hexagonal geometry handling feature in
DWCC calculation. DeCART and STREAM are incorporated in TSCC code systems
solving VVER core problems.[5]-[6] DeCART achieved the abundant analyses of
high-temperature gas-cooled cores [7], and STREAM conducted verifications for 2D
SFR core problems.[8§] MPACT and NECP-X are also equipped with hexagonal ray
tracing modules in recent years.[9]-[10] nTRACER has been coupled with T/H
codes in the multi-physics analyses of VVER cores.[11]-[12]
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Efficient application of parallel computation is necessary for the DWCC code,
which performs large-scale calculations on millions of flat source regions (FSRs).
The angle-wise parallelization, where threads trace the bunches of tracking rays in
parallel across the whole problem domain, can be easily implemented while it has
drawbacks in that the number of parallel processors is limited and a huge amount of
memory is required. The assembly-wise domain decomposition (ADD) scheme was
introduced in the DWCC codes for Cartesian geometry [13]-[14] to effectively
exploit massively parallel computing platforms involving thousands of processors.
In the plane-wise parallelization which is to assign a group of planes to different
computing nodes, the ADD scheme using the OpenMP constructs can effectively
reduce computing time by alleviating fetching overhead due to memory access
bottleneck.

SFRs are estimated to have the highest feasibility of commercial operations
among Generation-VI reactors due to their high efficiency in nuclear fuel usage.[15]
SFRs also include hexagonal fuel assemblies. The complication is further increased
by employing the double assembly duct and non-fuel assemblies with different rod
sizes. The critical characteristic of SFR cores is the thermal core expansion induced
by high power density and steep temperature gradient, which significantly impact
reactivity and power distribution. The DWCC method using millions of FSRs is not
adequate to deal with moving geometries. A low-scale computing resource is
exploited in a nodal method employing fuel assembly size coarse meshes while its
governing equations have been established only for regularly structured geometries
so far.

Many codes, e.g., BOWPERT [16], RHOBOW [17], and BISTRO [18] have
been carried out the analyses of SFR core deformations based on the perturbation
theory. Those codes, which are to predict reactivity change induced by sufficiently
small deviation from the reference state, have a weakness in analyzing a large-scale
core deformation and consequent power distribution change. GeN-Foam [19] and
PROTEUS-SN [20] explicitly model SFR core deformations by employing the finite
difference method (FDM) and finite element method (FEM), respectively, on
unstructured meshes. Those methods require a huge computing cost as mesh size is
decreased to reduce discretization error.

The flux expression of a nodal solution is uniquely determined by reducing the
number of unknown variables in physical constraints as the number of flux
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expansion coefficients. The unknown variable can be specified by being substituted
with the input determined from previous calculations or an equation of other
unknown variables. Thus, the nodal method can be expanded to the unstructured
geometry by deriving the variable expressions incorporating the curvilinear and
surface integrals of functions used to approximate the flux distribution in an
unstructured mesh.

1.1. Purpose and Scope of the Research

The unusual structures of VVER and SFR cores undermine the assumptions of
the diffusion equation and assembly or pin homogenization adopted in the
conventional TSCC code system. One of the purposes of this research is to develop
the hexagonal ray tracing module and CMFD acceleration in nTRACER, which is
capable of explicitly modeling hexagonal geometry cores. There needs to be more
than the prediction of reactivity change based on the perturbation theory to grasp the
entire characteristics of SFR thermal core expansions. ADWCC method, FDM, FEM,
and Monte Carlo method require a large-scale computing resource to model core
deformations. The other purpose of this research is to expand the hexagonal
assembly-wise nodal solution to the unstructured geometry so that the high-fidelity
analyses of SFR core deformations can be conducted in a practical time.

The hexagonal ray tracing module is developed in nTRACER by using the
elongated model and assembly-wise modular ray scheme to model hexagonal
geometry cores explicitly. The hexagonal ray tracing calculation using cells of
different shapes is accelerated by the CMFD formulation expanded to the
unstructured geometry. The computing time of nTRACER calculations for
hexagonal geometry core problems is reduced by employing the super pin scheme
in the CMFD formulation.

The hexagonal ray tracing calculation in nTRACER is parallelized efficiently
by employing the ADD scheme. A significant drawback in the ADD scheme is that
the lag in updating the incoming angular fluxes at the assembly surface would
deteriorate the convergence of the method of characteristics calculation. The
incoming partial current at the assembly surface is updated by using the incoming
partial current change determined by the CMFD calculation. The three-color scheme
and angular flux storage scheme (AFSS) are employed to enhance the ADD

performance.



The method to calculate the curvilinear and surface integrals of polynomials in
arbitrary geometry by using the look-up table is suggested. A nodal code, RENUS
[21] solves 3D hexagonal geometry core problems by employing the triangle-based
polynomial expansion nodal (T-PEN) method [22], corner point balance (CPB)
solution, nodal expansion method (NEM), and approximation to the axial leakage
source distribution. The polynomial expressions of the areal fluxes and flux moments,
surface fluxes, and currents are established in arbitrary geometry. RENUS is capable
of solving 2D deformed hexagonal geometry core problems by incorporating those
expressions in the governing equations in the T-PEN method and CPB solution.

In this work, the application scope is limited to the steady-states of hexagonal
geometry cores rather than transients or depletions. The nTRACER solution
accuracy is verified by comparing its solutions against the reference solutions for the
3D hexagonal variation benchmark problems and 2D VVER and SFR core problems.
The ADD performance is examined by comparing the ray tracing time with or
without the ADD scheme for the 2D and 3D VVER core problems. The accurate
analysis of SFR core deformations requires considering millions of interactions
between core components in neutronics, thermal-hydraulics, thermal-mechanics, and
radiologics, which exceeds the scope of this thesis. Thus, this work focuses on the
hypothetical deformation states of the 2D SFR benchmark problems in verifying the
unstructured nodal solution in RENUS.

1.2. Outline of the Thesis

Chapter 2 presents the comprehensive descriptions of code development of
nTRACER for a hexagonal geometry core. The complicated geometries of VVER
and SFR cores are illustrated. The cell and modular ray schemes are selected to
model hexagonal geometry cores explicitly. The CMFD formulation in unstructured
geometry and the super pin scheme used in the CMFD update are described.

Parallelization of hexagonal ray tracing calculations with the ADD scheme is
described in Chapter 3. The principle of the ADD scheme which renders a reduction
in computing time is presented. The equation to update the assembly incoming
angular flux in the ADD scheme is derived. Performance examinations for the three-
color scheme and AFSS are carried out by comparing the computing time between
different schemes.

Chapter 4 presents the detailed descriptions of the RENUS nodal solutions for
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unstructured geometry. The method to calculate the curvilinear and surface integrals
of polynomials in arbitrary geometry is described. The governing equations for
regular hexagonal geometry are introduced first, and subsequently, the expansion of
these equations to the unstructured hexagonal geometry is described.

Chapter 5 deals with verifications of the nTRACER solutions for the various
hexagonal geometry core problems and performance examinations of the hexagonal
ray tracing calculations with the ADD scheme. The RENUS unstructured nodal
solutions for the 2D irregularly deformed hexagonal geometry core problems are
compared against the reference solutions produced by McCARD. Chapter 6
concludes the thesis.



Chapter 2. Development of the Hexagonal Ray
Tracing Module and CMFD acceleration in
nTRACER

One of the purposes of this research is to develop the hexagonal ray tracing
module and coarse mesh finite difference (CMFD) acceleration in nTRACER, which
is capable of explicitly modeling hexagonal geometry cores. Thus, the core
configurations of Water-water energetic reactor (VVER) cores and sodium-cooled
fast reactor (SFR) cores including the unusual structures to be modeled by
nTRACER are presented first. In the subsequent subsection, the cell and modular
ray schemes employed in the hexagonal ray tracing calculation in nTRACER are
carefully selected by considering hexagonal geometries. The last subsection
describes the expansion of CMFD formulation to the unstructured geometry required
to solve method of characteristics (MOC) cells in hexagonal assemblies.
Improvement in the performance of CMFD calculations by using the super pin
scheme is verified for the 2D VVER core problems.

2.1. Descriptions of the Hexagonal Geometry Core Problems

Before developing the necessary geometry extension of nTRACER for the
accurate modeling of VVERs, various hexagonal benchmark specifications need to
be checked thoroughly. In this regard, the four benchmark problems to be solved by
nTRACER are described with the approximations introduced in the nTRACER
modeling.

The VVER-1000 reactor benchmark problems were proposed by korea atomic
energy research institute (KAERI) to verify the code capability in the US/ROK I-
NERI program.[23] This benchmark is referred to as ‘KAERI benchmark’ in the
following. The benchmark set consists of 5 parts: a pin cell, an assembly with and
without control rod insertion, a 2D whole core, and a 3D whole core. The fuel loading
pattern shown in Figure 2.1 is originated from the first cycle of Kozloduy Unit 6
with the fuel assembly TVS and TVSM. The assembly and pin pitches are 23.6 cm
and 1.275 cm, respectively. Each part is divided into sub-problems with different

fuel enrichments, fuel and moderator temperatures, and boron concentrations.
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Figure 2.1. (a) Radial core configuration and (b) pin layout of FS 32 in the KAERI
benchmark problem.

The axial configuration of the core is depicted in Figure 2.2.a. Since the 3cm
thin plane of spacer grids would cause instability in the nTRACER calculation, the
spacer grid is approximated as a single cylindrical tube within the active fuel region
as shown in Figure 2.2.c. While the spacer grid volume is conserved, the outer radius
is reduced from 0.5769 cm to 0.5535 cm.

Z [cm]

32.0 Top Reflector

P!

23.2

280.5

225 |

3.0}
20.8
29.0 Bottom Reflector

(2) (b) ()

Figure 2.2. (a) Axial core configuration and (b) spacer grid in the KAERI
benchmark problem (c) nTRACER modeling.

Based on the operational data of the second VVER-1000 Unit of the Ukrainian
nuclear power plant Khmelnitsky, the X2 VVER-1000 benchmark problem was
proposed for further validation and verification of VVER-1000 reactors with the
TVSA fuel assembly.[24] Tasks for steady-state, transient, and burn-up calculations
are provided in this benchmark problem. The experimental values and reference
Monte Carlo solutions for reactivity and power distribution are also provided. The
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radial core configuration and the pin layout of the fuel assembly types are depicted
in Figure 2.3. Compared to the KAERI benchmark problem, the fuel assembly types
are more complicated with the burnable Gd>O; absorber. The core basket with the
groove region and the water channels are added to the X2 benchmark problem. The
inner three fuel pins with the burnable absorber in 39AWU change their position
when reflected or rotated in the azimuthal direction. Due to this asymmetry, the
solution for the one-sixth core problem with any azimuthal boundary condition
cannot be identical to that for the full core problem.

RPV (Steel) ——
13AU
© 4.0 wt% Fuel pin
22AU0
© 3.6 wt% Fuel pin
3.3 wt% Fuel pin
S0AVS with 5.0 % Gd,0,
O Central guide tube
390GO
© Guide tube
J9AWU

Basket groove (Steel & Coolant)
(@) (b)

Figure 2.3. (a) Radial core configuration and (b) pin layout of FA 39 AWU in the
X2 benchmark problem.

The X2 benchmark problem is explicitly modeled in nTRACER following the
revised benchmark specifications [25] except for several approximations. The
double rings in the coolant channel are approximated as a single ring with a radius
of 5.59 cm while the coolant volume is conserved. The dent in the groove region is
neglected. Since the central guide tube exceeds the hexagonal MOC cell in
nTRACER, its radius is reduced from 0.65 cm to 0.633 cm. The temperature of all
elements, coolant density, and boron concentration in the coolant are set to 281.0 °C,
0.7626 g/cc, and 1077 ppm, respectively.

The VVER-440 ‘Full-core’ benchmark problem is a 2D calculation benchmark
problem based on a VVER-440 reactor core set at the cold state with explicit
modeling of the radial reflector.[26] This benchmark problem is referred to as
VVER440FC in the following. The radial core configuration and the pin layout of
the fuel assembly are depicted in Figure 2.4. The assembly and pin pitches are 14.7
cm and 1.23 cm, respectively. The fuel assembly is enclosed with the assembly duct,
and the outer-most fuel assemblies are wrapped with ‘Vygorodka’, a kind of shroud,
in the VVER-440 core. The temperature of all elements, coolant density, and content
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of the absorbing material (H3BO3) in the coolant are set to 543.15 K, 0.7775 g/cc,
and 3.0 g/kg, respectively.

0%
0%
0%2e%o
0%0%
020%%0
0%20%o
09020
0%
20

@ (b)

Coolant O Central guide tube

Vygorodka —— (

FAL6[ | () 3.6 wt% Fuel pin

@ 4.0 wt% Fuel pin

4.0 wt% Fuel pin
with 3.35 % Gd,0,

@ 4.4wt% Fuel pin

Figure 2.4. (a) Radial core configuration and (b) pin lay out of FA 4.25 in the
VVER440FC benchmark problem.

The VVER440FC benchmark problem is limited to the planar core while the
simple axial configuration shown in Figure 2.5 is represented in the 180° benchmark
problem.[27] In the examination for VVER-440 3D cores, the planar core of the
VVER440FC benchmark is extended axially with an active height of 250 cm. The
two axial reflectors are filled with the material identical to that of the radial
moderator.

z [cm]

300 —

275 —
D Fuel assembly
|:| Absorber

150 —
D Radial reflector
D Axial reflector

25 —

0 S—

Figure 2.5. Axial core configuration in the 180° benchmark problem.

The advanced burner reactor (ABR) core was designed for the study of future
fast reactor designs.[28] The MET-1000 benchmark includes the 1000 MWth
medium-size core incorporating a ternary metallic fuel and mixed-oxide fuel. The
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fuel loading pattern of an assembly pitch of 16.2471 cm is depicted in Figure 2.6.
The distinctive geometries of this benchmark problem are the different pin radii
ranging from 0.3857 cm to 2.3606 cm and the double-layered duct at the control
assemblies as shown in Figure 2.7. The fuel and non-fuel are at uniform temperatures
0f'432.5 °C and 534 °C, respectively. The complicated axial configuration of the core
of a height of 480.2 cm is described in this benchmark problem. Nonetheless, only
the 2D core problem established from the middle plane of the core is solved in this
work due to a calculation instability in nTRACER induced by the severe axial
gradient of flux and temperature in the core.

Inner Core O
Outer Core O
Control Rod ‘
Reflector ‘
Shield

N N
Fuel Assembly Reflector Assembly Shield Assembly Control Rod Assembly

Figure 2.7. Radial assembly configurations in the MET-1000 benchmark problem.

2.2. Ray Tracing Calculation Using the Modular Ray in a
Hexagonal Assembly

The features of handling hexagonal geometry in nTRACER had to be extended
to model the VVER cores explicitly. This section briefly describes the basic general
calculation scheme of nTRACER, and the specific extensions for VVER geometries
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are then followed.

nTRACER solves 3D core problems by iterating the calculations with different
resolutions and geometries. The sub-pin level planar MOC solution is used to
determine the homogenized group constants in pin level to be used in the 3D CMFD
formulation. During the outer iterations in the CMFD calculation, the axial MOC
calculation is invoked. Given the flux, flux form function, and radial transverse
leakage, the axial MOC calculation is performed to update the axial current between
the axial nodes of each pin. The solvers of planar MOC and 3D CMFD for hexagonal
geometries were newly developed to solve hexagonal geometry core problems while
the axial MOC solver was modified with minor changes for summing the transverse
leakage in hexagonal geometry.

The planar MOC cell can be easily constructed in rectangular geometry since
both fuel rods and moderator gaps can be modeled similarly to a rectangular cell.
However, the moderator gap in hexagonal geometry cannot be easily modeled as a
hexagonal cell like a fuel rod. There can be two available models to fill up the
hexagonal assembly with cells as shown in Figure 2.8. In the chopped model, all the
fuel rods in a hexagonal assembly are modeled as a hexagonal cell, and the zigzag-
shaped residual region is chopped at the hexagonal cell vertex. On the contrary, the
fuel rods along the assembly periphery are modeled as an outward-elongated
pentagon cell in the elongated model. As a consequence, the moderator gap is
modeled as a trapezoidal cell. The rectangular gap cell is divided in half in case of
solving one-sixth core problems. While DeCART, the direct whole core calculation
(DWCC) code of KAERI, adopts the chopped model,[1] nTRACER adopts the
elongated model. In the latter model, a computing resource for tracking cells in MOC
and CMFD solutions can be increased with more cell types, and the accuracy of the
planar MOC solution might be deteriorated by uneven fuel cell area. However,
hexagonal-annulus structures along the assembly periphery such as Vygorodka of
VVER-440,[26] the assembly duct of SFR,[28] and the corner stiffener of VVER-
1000 [24] can be modeled explicitly by using the latter model whereas the former

model cannot.
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Figure 2.8. (a) Chopped model and (b) Elongated model for the hexagonal
assembly.

In the ray tracing calculation, the outgoing angular flux at each source region is
updated based on the solution of the Boltzmann transport equation following a ray
across the problem plane. Rays are constructed in a hierarchical structure prior to the
ray tracing calculation. A cyclic ray or rotational ray starts and ends at the core outer
boundary, respectively. It is reflected on the core azimuthal boundary if exists. The
cyclic ray can be decomposed into assembly rays, which start and end at the
assembly surface, respectively. Ray tracing parameters such as the ray spacing, the
number of azimuthal angles, and the number of polar angles are specified in the user
input. The ray spacing, azimuthal angle, and weight of cyclic ray are adjusted so that
all assembly rays on the problem plane belong to a set of basis rays, so-called
modular rays in a unit assembly to save computing resource. The modular ray passes
through the flat source regions (FSRs), of which the region index and segment length
are stored for the ray tracing calculation. In DeCART, the modular ray is
approximated by linking cell rays to reduce the segment information to be stored.
However, the memory for modular rays is insignificant compared to others, e.g., the
memory needed for the scalar flux storage at FSRs. Therefore, the modular rays are
modeled explicitly in nTRACER to prevent losing solution accuracy.

At each imaginary assembly filled with MOC cells of a single type, the
segments of modular rays are stored in the unit of a cell as shown in Figure 2.9.a.
Sub-divisions among FSRs along the radial direction and azimuthal direction in
MOC cells are omitted here, and the ray spacing is exaggerated for brevity. During
the ray tracing calculation, the cyclic ray is swept in the unit of a cell by looking up

the segment information from the corresponding cell ray in the modular ray as shown
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in Figure 2.9.b.

Figure 2.9. (a) Modular ray at the imaginary assembly (b) cyclic ray on the
problem plane.

Vygorodka is a steel reflector which wraps the outer-most fuel assembly in the
VVER-440 core as shown in Figure 2.10.a. The elongated model cannot model the
protruded corner of Vygorodka explicitly. Thus, the moderator and steel materials
are homogenized into a mixture as an area-weighted average at the gap cell colored
red in Figure 2.10.b. Note that the dimensions of the fuel cells and moderator cells
are different in this figure. The hexagonal version of nTRACER is capable of
modeling the problem with cells of different dimensions, which is a significant
characteristic of an SFR.
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Figure 2.10. (a) Vygorodka in the VVER440FC benchmark problem (b) planar
MOC cells in nTRACER.

As for modeling the outer structure, it is reasonable to fill a MOC cell with the
structural material if the center of mass belongs to the structure. Otherwise, with the
surrounding material. The groove region in the X2 benchmark problem, which is
described by a homogeneous mixture of the coolant and steel, is approximated
following this modeling as shown in Figure 2.11. The fuel assembly is simply
represented as a single hexagon in Figure 2.11.a. Figure 2.11.b is a magnified view
of the red square region in Figure 2.11.a while the gap cell is omitted.

(a) )

Figure 2.11. (a) Groove region in the X2 benchmark problem (b) nTRACER
modelling.

2.3. CMFD Formulation for the Unstructured Geometry

Unlike rectangular geometry, cell shapes differ among CMFD meshes in
hexagonal geometry. Following the definitions of the coupling coefficient and
current correction coefficient,[29] the finite difference formulation at an unstructured
CMFD mesh can be written as follows:
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ng{(ﬁk - ﬁk)sk¢s - (Ijk + ﬁk)sk¢k} + 2:tsqbsVs = QsVsa (2'1)

where D, and Dy are the coupling coefficient and current correction
coefficient with the k-th neighboring mesh, respectively, given as:

DDy,

Dk - Dslkn"'Dklks’ (22)
= ~Jk—Di(Pr—ds)
D e e < 2.3
k I (2.3)

and Ji, @i, and ¢, are the net current and two cell-averaged fluxes at the k-
th surface of the mesh determined from the previous MOC solution; ¢, and D
are the mesh-averaged flux and mesh-averaged diffusion coefficient in the k-th
neighboring mesh; Ng, X5, ¢, D, Vi, and Qg are the number of surfaces, mesh-
averaged total macroscopic cross-section, mesh-averaged flux, mesh-averaged
diffusion coefficient, area, and mesh-averaged neutron source in the mesh,
respectively; s is the length of the k-th surface of the mesh, and [, and [, are
the shortest length from the k-th surface to the mesh center and the neighboring
mesh center, respectively. The notation of the energy group is omitted here. The
unstructured CMFD formulation is enabled by applying flexibility to the surface
length, mesh width, and the number of neighboring meshes. In Figure 2.12, the
construction of the CMFD formulation parameters for the super-cell split by the core
boundary is represented.

O
S
81 i¢s l3s O 3 l3n ¢3
big R S I
@y ..~ L : las S2

- o
1
1
1

i Loy,
i
'
(03

Figure 2.12. Construction of the CMFD formulation parameters for the boundary
mesh in hexagonal geometry.

The gap cell thicknesses in the VVER440FC and KAERI benchmark problems
are 0.25 cm and 0.02 cm, respectively, while the fuel pin pitches in the two problems
are 1.23 cm and 1.275 cm, respectively. Neutron moderation in the gap cells, where
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the pure moderator is filled, has less significance in the analyses of VVER cores due
to its relatively small cell area. On the other hand, the number of CMFD meshes for
the gap cells counts six times the number of fuel pins along the assembly surface in
the elongated model as shown in Figure 2.13.a. Inefficiency would occur in CMFD
calculations by incorporating CMFD meshes for the gap cells in that a significant
computing resource is consumed additionally while solution accuracy is improved
little. Thus, the super pin scheme, which is to homogenize the periphery fuel cell and
gap cell into one cell in the CMFD calculation as shown in Figure 2.13.b., is
examined in nTRACER. The homogenized macroscopic cross-section in super pins
used in the CMFD calculation is obtained as the average value of reaction rate
divided by flux. This value is calculated by using the area weight of the FSRs
incorporated in the super pin. The flux change in the super pin determined by the
CMEFD calculation is used uniformly in the flux update for those FSRs.

Figure 2.13. Construction of CMFD meshes with (a) MOC pins and (b) Super pins.

The performance of CMFD calculations with two mesh schemes and two
scattering order options are compared for the 2D VVER core problems. The
comparison results are summarized in Table 2.1 and Table 2.2, where ‘MP’ and ‘SP’
are the MOC pin scheme and super pin scheme, respectively; ‘V10’ and V4’ are the
KAERI and VVER440FC benchmark problems, respectively; and ‘RT’, ‘CMFD’
and ‘Total’ are the ray tracing time, CMFD calculation time, and total computing
time, respectively. The total computing time is reduced due to the significant
reduction in CMFD calculation time while the ray tracing time does not change. The
reduction in CMFD calculation time does not change by the scattering order option
nor geometric symmetry of the problem while it increases in the problems of smaller
core size. The reduction in total computing time is decreased in the solutions using
the P2 option since the ray tracing time accounts mainly for the total computing time.
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The CMFD calculation time and total computing time are reduced by up to 39 % and

17 %, respectively, by using the super pin scheme. Thus, the super pin scheme is

employed in nTRACER for the hexagonal geometry core problems in the following.

Table 2.1. Comparison results for the 2D VVER core problems with the PO option

between two CMFD pin schemes.

Case MP computing time (s) Reduction by SP (%)
RT CMFD  Total RT  CMFD Total
V10 V01 513 697 1,322 0 24 13
1/6 Core V10 V05 418 538 1,063 0 27 9
V10 V09 410 492 1,007 0 25 12
V4 285 87 439 0 37 7
V10 VOl | 2,770 3,776 7,078 -2 24 12
Full Core V10 V05 | 2,242 2,875 5,644 3 30 17
V10 V09 | 2,209 2,622 5,355 -1 27 13
V4 1,402 467 2,206 1 39 9

Table 2.2. Comparison results for the 2D VVER core problems with the P2 option

between two CMFD pin schemes.

Case MP Computing time (s) Reduction by SP (%)
RT CMFD  Total RT  CMFD Total
V10 V01 1,481 533 2,124 -1 22 5
1/6 Core V10 V05 1,460 566 2,134 -1 24 6
V10 V09 | 1,509 515 2,133 1 28 8
V4 763 87 920 0 38 4
V10 Vo1 | 9,517 3,052 13,131 1 28 7
Full Core V10 V05 | 8,657 3,128 12,336 0 27 7
V10 V09 | 8,808 2,756 12,115 0 28 6
V4 4,410 461 5,219 -1 39 3
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Chapter 3. Parallelization of the Hexagonal Ray
Tracing Calculation with the ADD Scheme

With the original parallelization scheme of the nTRACER code, which is to
divide the time-consuming entire ray tracing task into smaller tasks by grouping rays
in the azimuthal direction, some large 3D core problems cannot be solved in a
computing cluster with limited memory. This limitation is because the rays
encompass the entire core region, and each thread tracing a group of the rays requires
the ray segment information across the core. Memory for this information can be
huge in hexagonal ray tracing involving much more complicated FSR structures than
the rectangular cases. This excessive memory burden can be resolved by employing
the assembly-wise domain decomposition (ADD), which is to let each thread trace
only the rays belonging to an assembly. In the following, the overall parallelization
scheme of the nTRACER ray tracing calculation with the hexagonal ADD scheme is
described first. Then the specific methods to enable the ADD scheme including the
angular flux update method at the assembly surface, three-color method, and angular
flux storage scheme (AFSS) are detailed in the subsequent subsections.

3.1. Assembly-wise Decomposition of the Planar Ray Tracing
Domain

The MOC ray tracing calculation outlined in the previous section requires
considerable computing time associated with the tremendous number of ray
segments. Incorporating the effect of anisotropic scattering, which is needed for
enhancing solution accuracy, is the additional factor to increase computing time.
With the P, scattering source, the memory for FSRs is increased six times to store
the region-averaged angular fluxes. This memory can be tremendous because the
number of FSRs is huge (about 1,800,000 in the 2D KAERI one-sixth core problem
and six times it for the full core problem).

In the angle-wise parallelization for the ray tracing calculation, which was the
original nTRACER parallel computing scheme, a group of cyclic rays are swept in
parallel by different CPU threads. It is necessary to allocate the memory for the FSRs
in the whole core to each thread since every FSR should be swept during the ray
tracing. Thus, some large problems with limited memory cannot be solved with
angle-wise parallelization. This limitation is worsened by the AFSS needed for
anisotropic scattering treatment. In this regard, the ADD scheme to let each thread
trace rays in one assembly is tried here so that the storage of FSR information is
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needed only for the assemblies being computed currently, and thus memory
reduction is possible. While the ADD is performed originally by using the distributed
parallelism,[30]—[31] the shared memory parallelism using the OpenMP constructs
is exploited here following the nTRACER parallelism. The algorithm of the
nTRACER MOC sweeps with the ADD scheme is presented in Figure 3.1. The
nTRACER ray tracing calculation for a 3D VVER core problem is performed plane-
by-plane using MPI for the distributed memory parallelism. In the ADD calculation,
the ray tracing domain at each plane is decomposed into assemblies using OpenMP
for the shared memory parallelism. Each thread sweeps several assemblies since the
number of assemblies is usually larger than the number of available threads. Load
balancing is achieved by using the OpenMP guided scheduling.

Algorithm MOC sweep for n'TRACER
do Energy group iterations
do Energy groups
== do Planes ! MPI parallelization
do Inner iterations
Update PO scattering source and higher-order scattering source moment
= o Assemblies ! OpenMP parallelization (ADD)
Update anisotropic scaftering source
do Forward & Backward
do Assembly rays
do Cells
do Segments
do Polar angles
Calculate segment angular flux change
Update segment outgoing angular flux
Calculate FSR scalar flux
end do
Calculate cell current
end do
end do
end do
end do
= ¢nd do
Update assembly angular flux
end do
- cd do
end do
end do

Figure 3.1. Algorithm of the nTRACER MOC sweeps with the ADD scheme.

The ADD is implemented with dynamic memory allocation, which is to allocate
the memory needed for ray tracing for an assembly only when a thread for that
assembly performs ray tracing. This memory is deallocated once the ray tracing is
done. Parallel computing is done by assigning one thread to one assembly such that
the number of simultaneously calculated assemblies is the same as the number of
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threads available on each node. The total memory allocated at a time during the ray
tracing calculation is thus proportional to the number of available threads, which is
usually much fewer than the number of assemblies in a plane. By this method, the
memory requirement for simultaneous ray tracing with the ADD scheme can be
significantly less than the angle-wise parallelization. However, the actual reduction
cannot be that much because additional nontrivial memory to save the incoming
angular flux shape at the assembly surfaces is required. Nonetheless, considerable
memory saving is possible with the ADD scheme. Updating the assembly incoming
angular flux is described in the following sub-section.

3.2. Assembly Incoming Angular Flux Update

A significant drawback in the ADD is that a ray cannot be traced continuously
throughout the core since the ray within an assembly should start from the assembly
surface. Thus, the incoming angular flux at the assembly surface cannot be taken as
the outgoing angular flux of its neighboring assembly. The incoming angular flux at
each assembly surface should be taken from the previous MOC iteration, and it
requires storing the angular flux information at the assembly surfaces, which is
another drawback to increase memory requirement. The lag in updating the incoming
angular fluxes at the assembly surfaces would deteriorate the convergence of the
MOC calculation. However, this deterioration can be relaxed by updating the
incoming angular fluxes by using the CMFD calculation results. There are three
variables of which the change by the CMFD calculation can be used for this update:
the scalar flux, partial current, and P1 approximation of the angular flux. The partial
currents, which can be determined by two node average fluxes and the interface
surface flux obtained from the CMFD calculation, are used to update the incoming
angular fluxes at the assembly surface similarly to the method implemented in
MPACT.[31]-[32] Specifically, the stored incoming angular flux @ of the previous
MOC calculation at the surface of each assembly for each energy group is used to
determine the new angular flux ¢y by using the scalar flux and net current
determined at the surface between the i-th and the i + 1-th CMFD mesh as:

CMFD
I

Qs = W‘Ps, (.1
1 1
MoC+ — Z(I)zswoc + EIISVIOC’ (3.2)
1 1
CMFD+ _ Z(155M1~"D + ElgMFD’ (3.3)
M = @M + (1 — ap g + a(ofM + pE ). (34)
N a;pMo+(1-a) pM 9 -pMOC
a; = — ¢gaoc+¢ﬁ+o; > (3.5)
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~ Di/hi

@ = Di/hi+Dj+1/hi+1’ (3.6)

where ¢pMOC JMOCand pMOC are the surface scalar flux, surface net current
and cell-averaged scalar flux at the i-th mesh, respectively, determined from the
previous MOC calculation; and D; and h; are the diffusion coefficient and size of
the i-th mesh, respectively. The CMFD surface current, J$MFP | is obtained by the
ordinary CMFD net current relation involving the current correction coefficient D;.
Note that the similar correction coefficient @; is introduced for the surface flux
calculation from the mesh average flux. The plus sign appearing in Egs. (3.2) and
(3.3) changes to the minus sign if the incoming angular flux is in the opposite
direction, namely from mesh i+ to i. In the hexagonal CMFD calculation with the
elongated model, the CMFD meshes have different shapes. Therefore, the @;
calculation represented in Eq. (3.6) is extended to use two different mesh sizes.

3.3. Three-color Scheme

The STREAM DWCC code developed at UNIST uses the red-black scheme to
achieve high efficiency in angular flux communication.[33] This scheme arranges
the surfaces and directions in the assembly angular flux update with an index
determined on a checkerboard. On the other hand, the color scheme used in
nTRACER is to perform simultaneous ray tracing calculations for a group of
assemblies belonging to the same color group. After all assemblies belonging to one
color are swept, assemblies belonging to the next color are swept in sequence. Note
that assemblies belonging to a color are swept in parallel by threads. This scheme
provides an important advantage in that the outgoing angular fluxes of one colored
assembly can be used in updating the incoming angular fluxes of the other colored

assemblies.

Possible color schemes in hexagonal geometry are illustrated in Figure 3.2:
none, two red/black schemes, and the three-color scheme. All assemblies are swept
at once by using threads in a random order without any color scheme (‘w/o C.”). On
the other hand, the update of angular fluxes in the assembly surface is invoked
between sweeping assemblies belonging to different colors in case of using a color
scheme. Red and black in the red/black scheme might be alternately assigned to
assemblies (‘RB 1°) or arranged in a strip (‘RB 2’). Three groups of assemblies in
the three-color scheme can be swept by following two iteration patterns (‘RGB1’ and
‘RGB2’) as described in Table 3.1.
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Figure 3.2. Color schemes in hexagonal geometry.

Table 3.1. Iteration patterns in the RGB scheme.

Iterations | 1 2 3 4
RGB 1 R,G,B) B,G,R) [RGB B,GR)
RGB 2 R,G,B) (G,B,R) (B,R,G) ([R,G,B)

The ADD performance with different color schemes is examined for the small
VVER core problems, which employ the assemblies and problem cases of the
KAERI benchmark and follow the loading pattern of the C5G7 H benchmark
problem. The examination results are summarized in Table 3.2, and error reductions
in the ADD calculations with different color schemes are illustrated in Figure 3.3 and
Figure 3.4. The ray tracing time is increased in most cases since sweeping assemblies
in a sequence of color deteriorates calculation parallelization. This drawback is
aggravated for the one-sixth core problems due to unevenness in assembly area.
However, a necessity to mitigate the instability in ADD calculations justifies a few
increase in computing time. Thus, it is concluded to employ the three-color scheme
in hexagonal ADD calculations for the full core since one MOC iteration is saved for
the VO1 full core problem only by using the three-color scheme. The first iteration
pattern of the three-color scheme is employed in the following though the difference
between the two patterns is negligible.[34]
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Table 3.2. Ray tracing time (s) for the small core problem with color schemes.

Cases w/o C. RBI1 RB2 RGBI1 RGB2
Vol 845 1,283 1.270 1,890 1.897
1/6 Core VOS5 605 1,063 1,057 1,560 1,563
V09 610 1,050 1,050 1,550 1,567
Full Vol 2.363 2.570 2.560 2.210 2.220
Cor V05 1,683 2,120 2,123 1,883 1,857
ore V09 1,670 2,113 2,100 1,827 1,830
1E-2 ‘,0 l 1E-2 \’05 1E-2 “09
, 1B \ . i 1E-3 1\\.
E; 1E-4 \\ \ f; E 1E-4 \
. 1E- \\\ 2 = ks \

Figure 3.3. Error reduction with different color schemes for one-sixth core
problems.

V09

Vo1

Residual Error

Residual Error
Residual Error

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
# of RT OQuter Iterations # of RT Quter Iterations #of RT Quter Iterations

~wfoC. ~RB1 —RB2 RGB1 ~RGB2 ~-w/oC. —=RB1 —RB2 RGB1 ~RGB2 ~wlo C. RB1 -RB2 ~RGB1 ~RGB2
Figure 3.4. Error reduction with different color schemes for full core problems.

The impact of the three-color scheme on the ray tracing calculation with the
hexagonal ADD scheme is examined for the 2D VVER core problems as shown in
Figure 3.5, where ‘RGB?’ is the three-color scheme. In the one-sixth symmetry case,
the total ray tracing time is increased since OpenMP load balancing for the ray
tracing calculation is deteriorated by adding three-color iterations to assembly
iterations. On the other hand, the total ray tracing time for the 2D KAERI V06, V09
full core problem is reduced by 9~13 % by saving one ray tracing iteration. Thus,
the three-color scheme is used only for the full core problems in the following.
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Figure 3.5. Total ray tracing time for the 2D VVER core problems with and without
the three-color scheme.

3.4. Angular Flux Storage Scheme

The [-th order Legendre angular expanded m-th flux moment ¢;* for the
energy group g at the position 7 in the planar MOC calculation with anisotropic
scattering is obtained as follows:

OIS

P01 = 5 2@ T Ty’ 3.7
d5(T) =Ypwysinb A ( n(7,2) — (s, T, TZ)) Y™ (Q), (3.8)
Qg l(r) - 6OIQfg(r) + Z 2-"s gr—»g(r)d)p”]m( )7 (39)

where X, is the total cross-section; A is the source mesh area in ray tracing;
w is the weighting of solid angle 2; @ is the polar angle; A is the ray spacing; a

out s the outgoing

is the azimuthal angle; ¢ is the incoming angular flux; ¢
angular flux; s is the segment length; Qf is the fission source; Z! is the [-th

order Legendre angular expanded scattering cross-section; ¢P™ is the angular flux
moment obtained from the previous step.

In the flux moment storage scheme (FMSS), qﬁgfl is accumulated in the course
of tracing each ray segment. This scheme is quite intuitive and especially effective
in the PO calculation. It requires, however, enormous multiplication operations in the
P2 calculation. On the contrary, @;"’l is calculated as the weighted sum of @, the
difference between two angular fluxes in the AFSS.[35]

Py (F) = Tgwy sin 6 4,9 4(s, 7. 2)Y7 (2), (3.10)
Py(s7.2) = (7. 2) — 93 (s, 7. 2). (3.11)

This scheme requires storing the average angular flux information during ray

* ,»H-,J”aﬂ T



tracing. The moment calculation is done at the end of the ray tracing calculation in
this scheme. The benefit of computing time saving attainable by avoiding expensive
moment calculations during the ray tracing calculation justifies the increased
memory usage.

The impact of the AFSS on computing time for the two ray tracing calculations
with and without the ADD scheme, which are examined for the 2D VVER core
problems, is exactly the opposite as shown in Figure 3.6. The total ray tracing time
is increased significantly in the calculation without the ADD scheme due to a huge
fetching overhead induced by the enormous memory size of the angular flux change.
On the other hand, the total ray tracing time is reduced by 10~26% in the calculation

with the ADD scheme by saving multiplication operations in the P2 calculation. Thus,

the AFSS is used only in the calculation with the ADD scheme in the following.
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Figure 3.6. Total ray tracing time for the 2D VVER core problems with and without
the AFSS.

The algorithm of the nTRACER MOC sweeps with the hexagonal ADD scheme,

three-color scheme, and AFSS is represented in Figure 3.7. Compared to Figure 3.1,
color iterations are added to assembly iterations, and the scalar flux is calculated
once all assembly rays are swept.
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Algorithm MOC sweep for n-TRACER

do Energy group iterations
do Energy groups
e= do Planes | MPI parallelization
do Inner iterations
Update PO scattering source and higher-order scattering source moment
do Colors! 3 color scheme
= do Assemblies ! OpenMP parallelization (ADD)
Update anisotropic scattering source
do Forward & Backward
do Assembly rays
do Cells
do Segments
do Polar angles
Calculate segment angular flux change
Update segment outgoing angular flux

end do
Calculate cell current
end do
end do
end do
end do
Calculate scalar flux ! AFSS
= end do
Update assembly angular flux
end do
end do
e end do
end do
end do

Figure 3.7. Algorithm of the nTRACER MOC sweeps with the ADD scheme,
three-color scheme, and AFSS.
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Chapter 4. Development of the Unstructured Nodal
Method in RENUS

So far, the capability of handling geometric deformation of a core has been
attained only in the finite difference method, finite element method, and Monte Carlo
solutions, which require dividing the problem domain into substantial meshes to
obtain sufficient accuracy. Meanwhile, the nodal solution based on polynomial
expansions, which exploits a smaller computing resource, can also be expanded to
the unstructured geometry by calculating the integrals of the polynomial expressions

within the given domain.

A nodal code, RENUS analyzes the neutronic characteristics of a 3D hexagonal
geometry core by employing the planar solutions and axial solution as shown in
Figure 4.1. For each plane, the triangle-based polynomial expansion nodal (T-PEN)
method and corner point balance (CPB) solution are alternately invoked to solve the
decoupled planar diffusion equations. The point fluxes used in the T-PEN
calculations are updated from the CPB solutions while the surface currents and
assembly fluxes used in the CPB calculations are updated from the T-PEN solutions
again. The axial coupling between planes is resolved by the 1D nodal expansion
method (NEM) solution. The axial leakages used in the T-PEN calculations are
updated from the NEM solutions while the transverse leakages and assembly fluxes
used in the NEM calculations are updated from the T-PEN solutions again. The axial
leakage source distribution approximated as the third polynomial expression for each
assembly is inputted to the T-PEN calculations. The nodal calculations are
accelerated by updating the assembly fluxes by using the 3D CMFD formulation.
The 3D CMFD formulation uses the surface currents determined by the nodal

solutions again.
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Axial | Planar
| Surface current

Axial leakage source | A bly flux
| >
NEM | T-PEN CPB
Transverse leakage source ! Point flux
Assembly flux :
Assembly flux | Radial/Axial current

3D CMFD

Figure 4.1. Code flow of RENUS.

This section introduces the method to calculate the curvilinear and surface
integrals of polynomials in arbitrary geometry. In the subsequent subsections, the T-
PEN method and CPB solution in regularly structured geometry are introduced, and
the expansion of those calculations to the unstructured geometry by using the method
described in Subsection 4.1. is described.

4.1. Polynomial Integral Calculations in Arbitrary Geometry

The nodal method is to approximate the flux distribution in a fuel assembly size
coarse mesh, into which the cross-sections are homogenized, as an expression of
continuous functions such as polynomial, exponential and trigonometrical functions.
The physical constraints, e.g., the diffusion equation, flux and current continuity, and
leakage balance are employed in each mesh to determine the unknown coefficients
in the flux expression. The system of the physical constraints can be established by
incorporating the physical variables including the mesh-averaged flux and current,
of which the expressions are determined from the flux expression. The number of
unknowns in the system can be reduced by substituting the unknown variables with
the inputs determined from previous calculations or equations of other unknown
variables. The flux expression can be uniquely determined by solving the system as
the number of unknowns becomes equal to the number of flux expansion coefficients.
Thus, the nodal method can be expanded to the irregularly deformed geometry by
expressing edge-averaged and area-averaged variables as an equation of other
variables in an unstructured mesh. It needs to calculate the curvilinear and surface
integrals of basic functions in arbitrary geometry since those integrals are

incorporated in variable expressions.

In the two arbitrary segments stretching from (xq,y;) to (x,y,) which are
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parallel to the y-axis or not, respectively, shown in Figure 4.2, the surface flux ¢,
and current J; are defined as follows:

(xl;YZ)I (xz.yz) ‘,'/

L:ix=xq

-—— e m—————————————
—~

(X1, y1)d -
(a) (b)

Figure 4.2. Arbitrary segments (a) parallel to the y-axis or (b) not.

- Yy
1= - [2P(x, )l aery dx while 2, = x5, (.1
¢ = _j:lzq}(x Y)ly—ax+[3dx while x1 # x2, 4.2)
— ad :
Ji = —p ¥t fyyf axqb(x y)| dy while x; = x, (4.3)
@y
— x a
= pmel T ™) e
+ 122 p(x,y)|
y y= ax+B

where sgn is a sign function; D is the homogeneous diffusion coefficient; [
is the segment length; and ¢(x,y) is the flux expression.

The surface flux of ¢(x,y) polynomials used in the T-PEN method and CPB
solution can be obtained by using Table 4.1, in which u,p,v and q are defined as
follows:

29 2



Table 4.1. Polynomial curvilinear integrals in arbitrary segment.

[
1

x1+x2
yity2
u1+u2
P1t+Dp2
V1+v2
q,+qz
xf + x1x5 + x%
i+ Yz +y3
ud + uyu, + u
pi +p1p2 + P3
vi + vz + v%
qi+ 9192 + 43
(xq + xz){xf + x%)
(y1 +y2)(¥i +3)
(ug + uz)(uf +uf)
(p1+ p2)(PT + p3)
(vy +v2)(vf +v§)
(g1 +92)(qi + q3)
x‘f + xixz + xfx% + xlxg + xg
4, .3 2.2 3, .4
YityiyYztyiyz ty1yztyz
uf + wdu, + vl + ugud + ud
pi+pip: +pivi + P + P}
vi +viv, + vivi + vyvd + v
a1+ qiq: + qiq3 + 4,193 + a3

RE,R,aem R R(m
B | =

| S
W =

=TT~
]

e
w

w w w w
I

=TT~ T~
(5]

=
'S

RS
v =

-]

S

u=— % (x ++/3y), (4.5)
p= —%(x—\/§y), (4.6)
v=—2(y—3x), 4.7)
q= —%(y+\/§x). (4.8)

Note that the equations in the table are valid whether the segment is parallel to
the y-axis or not. For example, the surface flux in arbitrary segment with the flux
shape of x3 is obtained as follows:

o ) |
1= f;;z x3dx = (xg +x)(xf +x}) while xq = x3, (4.9)
1= [ adn =100+ x) (6 + 23) while xy £ xy (4.10)

The curvilinear integral terms in Eq. (4.3) and Eq. (4.4) can be obtained by
multiplying their coefficients to the surface flux of %qb(x, y) and %qf)(x, y)

polynomials, respectively, which can be determined by using Table 4.1.
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The areal flux ¢y, flux moments ¢, and éy, flux Laplacian operator V2¢y,
and flux Laplacian operator moments V2¢, and Vzéy in an arbitrary closed

polygon with an area of A are defined as follows:

v= ifqb(x, y)ds, 4.11)
by = 7 [ xp(x,y)ds, (4.12)
by = [ yb(x,y)ds, (4.13)

27 1 a? a?
Vigy = _f(ﬁ a—z) ¢ (x,y)ds, (4.14)
Vg =3[ x (57 + 7z) $(x.y)dS. @15
Vg, =11y (2 + o) G y)ds, (4.16)

The arbitrary closed polygon shown in Figure 4.3 can be split into
parallelograms or triangles divided by lines parallel to the y-axis. The areal
variables of Egs. (4.11)—(4.16) in this polygon can be obtained by averaging the areal

variables in parallelograms or triangles with volume weight.

2 Pis

Ppe = Pes

PR - Vi ———

e e ()

Pps)

o v e o

Figure 4.3. Arbitrary polygon divided by lines parallel to the y-axis.

The areal flux in one parallelogram shown in Figure 4.4 can be obtained as
follows:
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Figure 4.4. Parallelogram parallel to the y-axis.

by = d(x,y)ds =1 [ [ p(x,y) dydx, 4.17)
A=30x, —x)(v - ¥8) (vs - ¥2). (4.18)
fLLb‘ d(x,y)dy = Fy(x,L(x)) — F)(x,Ly(x)), (4.19)
F)
oy YY) = 0(xy), (4.20)
f;lz (Fy(X, Lt(x)) - Fy(x, Lb(x))) dx = (Gxt(xz) — Gxt(x1)) - @21
(be(xz) - be(xl))v
% Gre(x) = Fy(x, Le(x)), (4.22)
72 G (0) = Fy (%, Ly, (), (4.23)
Bv =3 (62 (x2) = G (x)) = (G (x2) — G (x1)) ) (4.24)

The surface integral function G,;(x) in the arbitrary line L:y = ax+ b for
x,y polynomials used in the T-PEN method and CPB solution can be obtained by
using Table 4.2. G,;(x) for u,p,v and q polynomials can be obtained as a linear
combination of G,;(x) for x,y polynomials.
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Table 4.2. Polynomial surface integral functions in arbitrary line.

o(x,y) Gy(x)
1
1 Eaxz + bx
1
x §M3 +£.[:r:c2
1 1
_‘(2 %M‘l‘-i-?bxa
X3 _ 3 +—h 4
N
x* Eax5+§bx5
1 1 1
y gazxs +£abx2 + = bx
1 1 1 1
2 Easx"-i-gaszs +Eabzx2 +§be
1 1 1 1 1
y? ﬁa‘ﬁ + Ea3bx“‘+ia2b2x3 +Eab3x2 +=b*x
1 1 1
yi ﬁan(’ R ga*be + Eaabzx" T §a2b3x3 i Eab‘*xz 1 Ebsx
1 1 1
xy Eazx.‘ +§abx3 +1b2x2
1 1 1
2y Eazﬂ + Eabx‘* + Eb2x3
1 1 1 1
xy? —a’x® + —a’bx* + = ab®x® + —b3x?
15 1 4 1 3 1 6
3 x5 4 = abx’ + —hPxt
¥y lzalx 511.:1 +8b:¢1
x2y? Easxs—i—gazbﬂ +Eabzx‘*+§b3x3
1 1 3 1 1
3 @t 4+ —a@dhS + o Bt + = ab? 2pa2
y 5% X +gathx Babx +3abx3+8bx

Note that the equations in the table are also valid in a triangle by inputting same

y! and y? or same y5 and y?2. The areal flux moments, flux Laplacian operator

and flux Laplacian operator moments of ¢(x,y) polynomials can be obtained by
2

repeating the areal flux calculation for  x¢(x,y),yp(x,y), (% +

a2 a2 a2 a2 a2 .
W) d(x,y),x (@ + W) ¢(x,y) and y (@ + W) ¢(x,y) polynomials,

respectively, which can be determined by using Table 4.2.

4.2. Expansion of the T-PEN Method to the Unstructured
Geo