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Abstract

In this work, the hexagonal ray tracing module and coarse mesh finite difference

(CMFD) acceleration, which are capable of explicitly modeling hexagonal geometry 

cores are developed in a direct whole core calculation code, nTRACER. The 

hexagonal ray tracing module employs the elongated model to explicitly model the 

unusual structures of a water-water energetic reactor (VVER) and sodium-cooled 

fast reactor (SFR) core. The assembly-wise modular rays are used in the hexagonal 

ray tracing calculation to reduce the tracking ray information to be stored. The coarse 

mesh finite difference (CMFD) formulation is expanded to the unstructured 

geometry to handle the irregular method of characteristics (MOC) cells in hexagonal 

assemblies. The CMFD calculation time and total computing time for the 2D VVER 

core problems are reduced by up to 39 % and 17 %, respectively, by using the super 

pin scheme.

The hexagonal ray tracing calculation in nTRACER is parallelized efficiently 

by employing the assembly-wise domain decomposition (ADD) scheme. Memory 

reduction and consequent reduction in computing time are possible by using the 

ADD scheme since the storage of the flat source region information is needed only 

for the assemblies being computed currently. The deterioration in the convergence 

of MOC calculations induced by using the ADD scheme is relaxed by updating the 

angular fluxes after CMFD calculations and by using the three-color scheme. The 

total computing time is reduced by up to 13 % and 23 % by using the three-color 

scheme and the angular flux storage scheme, respectively.

The hexagonal assembly-wise nodal solution is expanded to the unstructured 

geometry so that the high-fidelity analyses of SFR core deformations can be 

conducted in a practical time. The method to calculate the curvilinear and surface 

integrals of polynomials in arbitrary geometry is suggested. The triangle-based 

polynomial expansion nodal method and corner point balance calculation in a nodal 

code, RENUS are expanded to the unstructured geometry by using this method. The 

CMFD formulation in RENUS is expanded to the unstructured geometry similarly 

to nTRACER.

The solution accuracy of nTRACER is verified by comparing its calculation 

results against the McCARD results for the various hexagonal geometry core 

problems. The reactivity difference and the maximum and root-mean-square 3D pin 

power differences do not exceed 7 pcm, 6.41 %, and 0.44 %, respectively, for the 
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three 3D C5G7 H benchmark problems. The solution differences for the nine 2D 

KAERI VVER-1000 core problems do not exceed 106 pcm, 2.24 %, and 0.95 %, 

respectively, by using the P0 option. The two solutions for the 2D ‘Full-core’ VVER-

440 and MET-1000 SFR core problems also match each other well. The solution 

differences are reduced by using the P2 option by up to 70 pcm in reactivity and 

0.90 % in pin power distribution. It is demonstrated that nTRACER achieved

satisfactory solution accuracy for hexagonal geometry core problems.

The ADD performance is examined by comparing the ray tracing time with and 

without the ADD scheme for the various VVER core problems. The ray tracing time 

and total computing time for the 2D full core problems are reduced by up to 48 %

and 38 %, respectively. The two computing times for the 3D full core problems are 

reduced by up to 53 % and 45 %, respectively. It is verified that the hexagonal ray 

tracing calculation in nTRACER is parallelized efficiently by employing the ADD 

scheme.

The performance of the unstructured hexagonal nodal solution in RENUS is 

verified by comparing its calculation results against the McCARD results for the 2D 

schneller natriumgekühlter reaktor-300 core problems. Arbitrary core deformations,

contrived states were applied to the core problems to expose the RENUS solution 

accuracy for unstructured geometry. The solution differences for the changes in 

reactivities and assembly power distribution induced by contrived states on the fuel 

region do not exceed 7 pcm and 0.46 %, respectively. In contrast, the reference 

reactivity and assembly power change by up to 240 pcm and 47.76 %, respectively.

The RENUS solutions were further verified by decomposing the deformed core 

problem with uniform expansion into the deformed core problems with assembly-

wise expansion. The verification results reveal that excellent agreements between 

the two solutions for deformed core problems do not owe to any error cancellation. 

Thus, it is concluded that RENUS attained significantly high accuracy in predicting

the changes in nuclear characteristics induced by core deformations by using the 

unstructured nodal method.

Keyword : hexagonal geometry core, ray tracing calculation, coarse mesh finite 
difference formulation, assembly-wise domain decomposition, thermal core 
expansion, unstructured nodal solution
Student Number : 2016-21288
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Chapter 1. Introduction

In this work, the hexagonal ray tracing module and coarse mesh finite difference 

(CMFD) acceleration, which are capable of explicitly modeling hexagonal geometry 

cores including complicated structures, are developed in a direct whole core 

calculation (DWCC) code, nTRACER. The hexagonal assembly-wise nodal solution 

is expanded to the unstructured geometry so that the high-fidelity analyses of 

sodium-cooled fast reactor (SFR) core deformations can be conducted in a practical 

time.

Two-step core calculation (TSCC) code systems are to employ lower-order 

solution methods to analyze the core of a nuclear reactor using the group constants

generated from the higher order solution for each typical assembly. The nuclear 

characteristics of reactor cores have been generally simulated by a TSCC code due 

to its advantage of low computing cost. With astonishing progress in computational 

processing units and storage devices in recent times, however, the need for the whole 

core solution with high resolution and transport-based accuracy has got increased 

justification. DWCC methods, which are to enhance solution fidelity by eliminating 

the advance procedure of generating homogenized assembly or pin cross-sections, 

have been extensively used in numerous codes [1]–[3] dealing with Cartesian 

geometry cores.

Water-water energetic reactors (VVERs), which are pressurized water reactors 

with hexagonal fuel assemblies, have spread in the East-European bloc and 

developing countries for several decades. Neutron moderation in the VVER core is 

complicated by unusual structures such as Vygorodka, the corner stiffener, and the 

water channels at the core basket. The complication undermines the assumptions of 

the diffusion equation and assembly or pin homogenization. Thus, it is expected that

the DWCC method performing the sub-pin level transport calculation would 

outperform the assembly-wise or pin-wise nodal methods for VVER cores.

Currently, several codes have the hexagonal geometry handling feature in 

DWCC calculation. DeCART and STREAM are incorporated in TSCC code systems

solving VVER core problems.[5]–[6] DeCART achieved the abundant analyses of 

high-temperature gas-cooled cores [7], and STREAM conducted verifications for 2D 

SFR core problems.[8] MPACT and NECP-X are also equipped with hexagonal ray 

tracing modules in recent years.[9]–[10] nTRACER has been coupled with T/H 

codes in the multi-physics analyses of VVER cores.[11]–[12]
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Efficient application of parallel computation is necessary for the DWCC code,

which performs large-scale calculations on millions of flat source regions (FSRs).

The angle-wise parallelization, where threads trace the bunches of tracking rays in 

parallel across the whole problem domain, can be easily implemented while it has 

drawbacks in that the number of parallel processors is limited and a huge amount of 

memory is required. The assembly-wise domain decomposition (ADD) scheme was 

introduced in the DWCC codes for Cartesian geometry [13]–[14] to effectively 

exploit massively parallel computing platforms involving thousands of processors.

In the plane-wise parallelization which is to assign a group of planes to different 

computing nodes, the ADD scheme using the OpenMP constructs can effectively 

reduce computing time by alleviating fetching overhead due to memory access 

bottleneck.

SFRs are estimated to have the highest feasibility of commercial operations 

among Generation-Ⅵ reactors due to their high efficiency in nuclear fuel usage.[15]

SFRs also include hexagonal fuel assemblies. The complication is further increased

by employing the double assembly duct and non-fuel assemblies with different rod 

sizes. The critical characteristic of SFR cores is the thermal core expansion induced 

by high power density and steep temperature gradient, which significantly impact 

reactivity and power distribution. The DWCC method using millions of FSRs is not 

adequate to deal with moving geometries. A low-scale computing resource is 

exploited in a nodal method employing fuel assembly size coarse meshes while its

governing equations have been established only for regularly structured geometries

so far.

Many codes, e.g., BOWPERT [16], RHOBOW [17], and BISTRO [18] have 

been carried out the analyses of SFR core deformations based on the perturbation 

theory. Those codes, which are to predict reactivity change induced by sufficiently 

small deviation from the reference state, have a weakness in analyzing a large-scale 

core deformation and consequent power distribution change. GeN-Foam [19] and 

PROTEUS-SN [20] explicitly model SFR core deformations by employing the finite 

difference method (FDM) and finite element method (FEM), respectively, on

unstructured meshes. Those methods require a huge computing cost as mesh size is 

decreased to reduce discretization error.

The flux expression of a nodal solution is uniquely determined by reducing the 

number of unknown variables in physical constraints as the number of flux 
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expansion coefficients. The unknown variable can be specified by being substituted 

with the input determined from previous calculations or an equation of other 

unknown variables. Thus, the nodal method can be expanded to the unstructured 

geometry by deriving the variable expressions incorporating the curvilinear and 

surface integrals of functions used to approximate the flux distribution in an 

unstructured mesh.

1.1. Purpose and Scope of the Research

The unusual structures of VVER and SFR cores undermine the assumptions of 

the diffusion equation and assembly or pin homogenization adopted in the 

conventional TSCC code system. One of the purposes of this research is to develop 

the hexagonal ray tracing module and CMFD acceleration in nTRACER, which is 

capable of explicitly modeling hexagonal geometry cores. There needs to be more 

than the prediction of reactivity change based on the perturbation theory to grasp the 

entire characteristics of SFR thermal core expansions. A DWCC method, FDM, FEM, 

and Monte Carlo method require a large-scale computing resource to model core 

deformations. The other purpose of this research is to expand the hexagonal 

assembly-wise nodal solution to the unstructured geometry so that the high-fidelity 

analyses of SFR core deformations can be conducted in a practical time.

The hexagonal ray tracing module is developed in nTRACER by using the 

elongated model and assembly-wise modular ray scheme to model hexagonal 

geometry cores explicitly. The hexagonal ray tracing calculation using cells of 

different shapes is accelerated by the CMFD formulation expanded to the 

unstructured geometry. The computing time of nTRACER calculations for 

hexagonal geometry core problems is reduced by employing the super pin scheme 

in the CMFD formulation.

The hexagonal ray tracing calculation in nTRACER is parallelized efficiently 

by employing the ADD scheme. A significant drawback in the ADD scheme is that 

the lag in updating the incoming angular fluxes at the assembly surface would 

deteriorate the convergence of the method of characteristics calculation. The 

incoming partial current at the assembly surface is updated by using the incoming 

partial current change determined by the CMFD calculation. The three-color scheme 

and angular flux storage scheme (AFSS) are employed to enhance the ADD 

performance.
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The method to calculate the curvilinear and surface integrals of polynomials in 

arbitrary geometry by using the look-up table is suggested. A nodal code, RENUS

[21] solves 3D hexagonal geometry core problems by employing the triangle-based 

polynomial expansion nodal (T-PEN) method [22], corner point balance (CPB)

solution, nodal expansion method (NEM), and approximation to the axial leakage 

source distribution. The polynomial expressions of the areal fluxes and flux moments, 

surface fluxes, and currents are established in arbitrary geometry. RENUS is capable 

of solving 2D deformed hexagonal geometry core problems by incorporating those 

expressions in the governing equations in the T-PEN method and CPB solution.

In this work, the application scope is limited to the steady-states of hexagonal 

geometry cores rather than transients or depletions. The nTRACER solution 

accuracy is verified by comparing its solutions against the reference solutions for the 

3D hexagonal variation benchmark problems and 2D VVER and SFR core problems.

The ADD performance is examined by comparing the ray tracing time with or 

without the ADD scheme for the 2D and 3D VVER core problems. The accurate

analysis of SFR core deformations requires considering millions of interactions 

between core components in neutronics, thermal-hydraulics, thermal-mechanics, and 

radiologics, which exceeds the scope of this thesis. Thus, this work focuses on the 

hypothetical deformation states of the 2D SFR benchmark problems in verifying the 

unstructured nodal solution in RENUS.

1.2. Outline of the Thesis

Chapter 2 presents the comprehensive descriptions of code development of 

nTRACER for a hexagonal geometry core. The complicated geometries of VVER 

and SFR cores are illustrated. The cell and modular ray schemes are selected to 

model hexagonal geometry cores explicitly. The CMFD formulation in unstructured 

geometry and the super pin scheme used in the CMFD update are described.

Parallelization of hexagonal ray tracing calculations with the ADD scheme is 

described in Chapter 3. The principle of the ADD scheme which renders a reduction 

in computing time is presented. The equation to update the assembly incoming 

angular flux in the ADD scheme is derived. Performance examinations for the three-

color scheme and AFSS are carried out by comparing the computing time between

different schemes.

Chapter 4 presents the detailed descriptions of the RENUS nodal solutions for
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unstructured geometry. The method to calculate the curvilinear and surface integrals

of polynomials in arbitrary geometry is described. The governing equations for 

regular hexagonal geometry are introduced first, and subsequently, the expansion of 

these equations to the unstructured hexagonal geometry is described.

Chapter 5 deals with verifications of the nTRACER solutions for the various 

hexagonal geometry core problems and performance examinations of the hexagonal 

ray tracing calculations with the ADD scheme. The RENUS unstructured nodal 

solutions for the 2D irregularly deformed hexagonal geometry core problems are

compared against the reference solutions produced by McCARD. Chapter 6 

concludes the thesis.
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Chapter 2. Development of the Hexagonal Ray 
Tracing Module and CMFD acceleration in 

nTRACER

One of the purposes of this research is to develop the hexagonal ray tracing 

module and coarse mesh finite difference (CMFD) acceleration in nTRACER, which 

is capable of explicitly modeling hexagonal geometry cores. Thus, the core 

configurations of Water-water energetic reactor (VVER) cores and sodium-cooled 

fast reactor (SFR) cores including the unusual structures to be modeled by 

nTRACER are presented first. In the subsequent subsection, the cell and modular

ray schemes employed in the hexagonal ray tracing calculation in nTRACER are 

carefully selected by considering hexagonal geometries. The last subsection 

describes the expansion of CMFD formulation to the unstructured geometry required 

to solve method of characteristics (MOC) cells in hexagonal assemblies. 

Improvement in the performance of CMFD calculations by using the super pin 

scheme is verified for the 2D VVER core problems.

2.1. Descriptions of the Hexagonal Geometry Core Problems

Before developing the necessary geometry extension of nTRACER for the 

accurate modeling of VVERs, various hexagonal benchmark specifications need to 

be checked thoroughly. In this regard, the four benchmark problems to be solved by 

nTRACER are described with the approximations introduced in the nTRACER 

modeling.

The VVER-1000 reactor benchmark problems were proposed by korea atomic 

energy research institute (KAERI) to verify the code capability in the US/ROK I-

NERI program.[23] This benchmark is referred to as ‘KAERI benchmark’ in the 

following. The benchmark set consists of 5 parts: a pin cell, an assembly with and 

without control rod insertion, a 2D whole core, and a 3D whole core. The fuel loading 

pattern shown in Figure 2.1 is originated from the first cycle of Kozloduy Unit 6 

with the fuel assembly TVS and TVSM. The assembly and pin pitches are 23.6 cm 

and 1.275 cm, respectively. Each part is divided into sub-problems with different 

fuel enrichments, fuel and moderator temperatures, and boron concentrations.
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Figure 2.1. (a) Radial core configuration and (b) pin layout of FS 32 in the KAERI 
benchmark problem.

The axial configuration of the core is depicted in Figure 2.2.a. Since the 3cm 

thin plane of spacer grids would cause instability in the nTRACER calculation, the 

spacer grid is approximated as a single cylindrical tube within the active fuel region 

as shown in Figure 2.2.c. While the spacer grid volume is conserved, the outer radius 

is reduced from 0.5769 cm to 0.5535 cm.

Figure 2.2. (a) Axial core configuration and (b) spacer grid in the KAERI 
benchmark problem (c) nTRACER modeling.

Based on the operational data of the second VVER-1000 Unit of the Ukrainian 

nuclear power plant Khmelnitsky, the X2 VVER-1000 benchmark problem was 

proposed for further validation and verification of VVER-1000 reactors with the 

TVSA fuel assembly.[24] Tasks for steady-state, transient, and burn-up calculations

are provided in this benchmark problem. The experimental values and reference 

Monte Carlo solutions for reactivity and power distribution are also provided. The 
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radial core configuration and the pin layout of the fuel assembly types are depicted 

in Figure 2.3. Compared to the KAERI benchmark problem, the fuel assembly types 

are more complicated with the burnable Gd2O3 absorber. The core basket with the 

groove region and the water channels are added to the X2 benchmark problem. The 

inner three fuel pins with the burnable absorber in 39AWU change their position 

when reflected or rotated in the azimuthal direction. Due to this asymmetry, the 

solution for the one-sixth core problem with any azimuthal boundary condition

cannot be identical to that for the full core problem.

Figure 2.3. (a) Radial core configuration and (b) pin layout of FA 39 AWU in the 
X2 benchmark problem.

The X2 benchmark problem is explicitly modeled in nTRACER following the 

revised benchmark specifications [25] except for several approximations. The 

double rings in the coolant channel are approximated as a single ring with a radius 

of 5.59 cm while the coolant volume is conserved. The dent in the groove region is 

neglected. Since the central guide tube exceeds the hexagonal MOC cell in 

nTRACER, its radius is reduced from 0.65 cm to 0.633 cm. The temperature of all 

elements, coolant density, and boron concentration in the coolant are set to 281.0 ℃, 

0.7626 g/cc, and 1077 ppm, respectively.

The VVER-440 ‘Full-core’ benchmark problem is a 2D calculation benchmark 

problem based on a VVER-440 reactor core set at the cold state with explicit 

modeling of the radial reflector.[26] This benchmark problem is referred to as 

VVER440FC in the following. The radial core configuration and the pin layout of 

the fuel assembly are depicted in Figure 2.4. The assembly and pin pitches are 14.7 

cm and 1.23 cm, respectively. The fuel assembly is enclosed with the assembly duct, 

and the outer-most fuel assemblies are wrapped with ‘Vygorodka’, a kind of shroud, 

in the VVER-440 core. The temperature of all elements, coolant density, and content 
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of the absorbing material (H3BO3) in the coolant are set to 543.15 K, 0.7775 g/cc, 

and 3.0 g/kg, respectively.

Figure 2.4. (a) Radial core configuration and (b) pin lay out of FA 4.25 in the 
VVER440FC benchmark problem.

The VVER440FC benchmark problem is limited to the planar core while the 

simple axial configuration shown in Figure 2.5 is represented in the 180° benchmark

problem.[27] In the examination for VVER-440 3D cores, the planar core of the 

VVER440FC benchmark is extended axially with an active height of 250 cm. The 

two axial reflectors are filled with the material identical to that of the radial 

moderator.

Figure 2.5. Axial core configuration in the 180° benchmark problem.

The advanced burner reactor (ABR) core was designed for the study of future 

fast reactor designs.[28] The MET-1000 benchmark includes the 1000 MWth 

medium-size core incorporating a ternary metallic fuel and mixed-oxide fuel. The 
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fuel loading pattern of an assembly pitch of 16.2471 cm is depicted in Figure 2.6. 

The distinctive geometries of this benchmark problem are the different pin radii

ranging from 0.3857 cm to 2.3606 cm and the double-layered duct at the control 

assemblies as shown in Figure 2.7. The fuel and non-fuel are at uniform temperatures 

of 432.5 ℃ and 534 ℃, respectively. The complicated axial configuration of the core 

of a height of 480.2 cm is described in this benchmark problem. Nonetheless, only 

the 2D core problem established from the middle plane of the core is solved in this 

work due to a calculation instability in nTRACER induced by the severe axial 

gradient of flux and temperature in the core.

Figure 2.6. Radial core configuration in the MET-1000 benchmark problem.

Figure 2.7. Radial assembly configurations in the MET-1000 benchmark problem.

2.2. Ray Tracing Calculation Using the Modular Ray in a 
Hexagonal Assembly

The features of handling hexagonal geometry in nTRACER had to be extended 

to model the VVER cores explicitly. This section briefly describes the basic general 

calculation scheme of nTRACER, and the specific extensions for VVER geometries 
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are then followed.

nTRACER solves 3D core problems by iterating the calculations with different 

resolutions and geometries. The sub-pin level planar MOC solution is used to 

determine the homogenized group constants in pin level to be used in the 3D CMFD 

formulation. During the outer iterations in the CMFD calculation, the axial MOC 

calculation is invoked. Given the flux, flux form function, and radial transverse 

leakage, the axial MOC calculation is performed to update the axial current between 

the axial nodes of each pin. The solvers of planar MOC and 3D CMFD for hexagonal 

geometries were newly developed to solve hexagonal geometry core problems while 

the axial MOC solver was modified with minor changes for summing the transverse 

leakage in hexagonal geometry.

The planar MOC cell can be easily constructed in rectangular geometry since 

both fuel rods and moderator gaps can be modeled similarly to a rectangular cell. 

However, the moderator gap in hexagonal geometry cannot be easily modeled as a 

hexagonal cell like a fuel rod. There can be two available models to fill up the 

hexagonal assembly with cells as shown in Figure 2.8. In the chopped model, all the 

fuel rods in a hexagonal assembly are modeled as a hexagonal cell, and the zigzag-

shaped residual region is chopped at the hexagonal cell vertex. On the contrary, the 

fuel rods along the assembly periphery are modeled as an outward-elongated 

pentagon cell in the elongated model. As a consequence, the moderator gap is 

modeled as a trapezoidal cell. The rectangular gap cell is divided in half in case of 

solving one-sixth core problems. While DeCART, the direct whole core calculation 

(DWCC) code of KAERI, adopts the chopped model,[1] nTRACER adopts the 

elongated model. In the latter model, a computing resource for tracking cells in MOC 

and CMFD solutions can be increased with more cell types, and the accuracy of the 

planar MOC solution might be deteriorated by uneven fuel cell area. However, 

hexagonal-annulus structures along the assembly periphery such as Vygorodka of 

VVER-440,[26] the assembly duct of SFR,[28] and the corner stiffener of VVER-

1000 [24] can be modeled explicitly by using the latter model whereas the former 

model cannot.
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Figure 2.8. (a) Chopped model and (b) Elongated model for the hexagonal 
assembly.

In the ray tracing calculation, the outgoing angular flux at each source region is 

updated based on the solution of the Boltzmann transport equation following a ray 

across the problem plane. Rays are constructed in a hierarchical structure prior to the 

ray tracing calculation. A cyclic ray or rotational ray starts and ends at the core outer 

boundary, respectively. It is reflected on the core azimuthal boundary if exists. The 

cyclic ray can be decomposed into assembly rays, which start and end at the 

assembly surface, respectively. Ray tracing parameters such as the ray spacing, the 

number of azimuthal angles, and the number of polar angles are specified in the user 

input. The ray spacing, azimuthal angle, and weight of cyclic ray are adjusted so that 

all assembly rays on the problem plane belong to a set of basis rays, so-called 

modular rays in a unit assembly to save computing resource. The modular ray passes 

through the flat source regions (FSRs), of which the region index and segment length 

are stored for the ray tracing calculation. In DeCART, the modular ray is 

approximated by linking cell rays to reduce the segment information to be stored. 

However, the memory for modular rays is insignificant compared to others, e.g., the 

memory needed for the scalar flux storage at FSRs. Therefore, the modular rays are 

modeled explicitly in nTRACER to prevent losing solution accuracy.

At each imaginary assembly filled with MOC cells of a single type, the 

segments of modular rays are stored in the unit of a cell as shown in Figure 2.9.a.

Sub-divisions among FSRs along the radial direction and azimuthal direction in 

MOC cells are omitted here, and the ray spacing is exaggerated for brevity. During 

the ray tracing calculation, the cyclic ray is swept in the unit of a cell by looking up 

the segment information from the corresponding cell ray in the modular ray as shown 
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in Figure 2.9.b.

Figure 2.9. (a) Modular ray at the imaginary assembly (b) cyclic ray on the 
problem plane.

Vygorodka is a steel reflector which wraps the outer-most fuel assembly in the 

VVER-440 core as shown in Figure 2.10.a. The elongated model cannot model the 

protruded corner of Vygorodka explicitly. Thus, the moderator and steel materials 

are homogenized into a mixture as an area-weighted average at the gap cell colored 

red in Figure 2.10.b. Note that the dimensions of the fuel cells and moderator cells 

are different in this figure. The hexagonal version of nTRACER is capable of

modeling the problem with cells of different dimensions, which is a significant 

characteristic of an SFR.



14

Figure 2.10. (a) Vygorodka in the VVER440FC benchmark problem (b) planar 
MOC cells in nTRACER.

As for modeling the outer structure, it is reasonable to fill a MOC cell with the 

structural material if the center of mass belongs to the structure. Otherwise, with the 

surrounding material. The groove region in the X2 benchmark problem, which is 

described by a homogeneous mixture of the coolant and steel, is approximated 

following this modeling as shown in Figure 2.11. The fuel assembly is simply 

represented as a single hexagon in Figure 2.11.a. Figure 2.11.b is a magnified view 

of the red square region in Figure 2.11.a while the gap cell is omitted.

Figure 2.11. (a) Groove region in the X2 benchmark problem (b) nTRACER 
modelling.

2.3. CMFD Formulation for the Unstructured Geometry

Unlike rectangular geometry, cell shapes differ among CMFD meshes in 

hexagonal geometry. Following the definitions of the coupling coefficient and 

current correction coefficient,[29] the finite difference formulation at an unstructured 

CMFD mesh can be written as follows:
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∑ ����� −�������� − ���� +���������
��
� + ������� = ����, (2.1)

where ���  and ���  are the coupling coefficient and current correction 

coefficient with the �-th neighboring mesh, respectively, given as:

��� =
����

�����������
, (2.2)

��� =
�����������������

�� �����
, (2.3)

and ���, ���, and ��� are the net current and two cell-averaged fluxes at the �-

th surface of the mesh determined from the previous MOC solution; �� and �� 

are the mesh-averaged flux and mesh-averaged diffusion coefficient in the � -th 

neighboring mesh; ��, Σ��, ��, ��, ��, and �� are the number of surfaces, mesh-

averaged total macroscopic cross-section, mesh-averaged flux, mesh-averaged 

diffusion coefficient, area, and mesh-averaged neutron source in the mesh, 

respectively; �� is the length of the �-th surface of the mesh, and ��� and ��� are 

the shortest length from the �-th surface to the mesh center and the neighboring 

mesh center, respectively. The notation of the energy group is omitted here. The 

unstructured CMFD formulation is enabled by applying flexibility to the surface 

length, mesh width, and the number of neighboring meshes. In Figure 2.12, the 

construction of the CMFD formulation parameters for the super-cell split by the core 

boundary is represented.

Figure 2.12. Construction of the CMFD formulation parameters for the boundary 
mesh in hexagonal geometry.

The gap cell thicknesses in the VVER440FC and KAERI benchmark problems 

are 0.25 cm and 0.02 cm, respectively, while the fuel pin pitches in the two problems 

are 1.23 cm and 1.275 cm, respectively. Neutron moderation in the gap cells, where 
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the pure moderator is filled, has less significance in the analyses of VVER cores due 

to its relatively small cell area. On the other hand, the number of CMFD meshes for 

the gap cells counts six times the number of fuel pins along the assembly surface in

the elongated model as shown in Figure 2.13.a. Inefficiency would occur in CMFD 

calculations by incorporating CMFD meshes for the gap cells in that a significant

computing resource is consumed additionally while solution accuracy is improved 

little. Thus, the super pin scheme, which is to homogenize the periphery fuel cell and 

gap cell into one cell in the CMFD calculation as shown in Figure 2.13.b., is 

examined in nTRACER. The homogenized macroscopic cross-section in super pins 

used in the CMFD calculation is obtained as the average value of reaction rate 

divided by flux. This value is calculated by using the area weight of the FSRs 

incorporated in the super pin. The flux change in the super pin determined by the 

CMFD calculation is used uniformly in the flux update for those FSRs.

Figure 2.13. Construction of CMFD meshes with (a) MOC pins and (b) Super pins.

The performance of CMFD calculations with two mesh schemes and two 

scattering order options are compared for the 2D VVER core problems. The 

comparison results are summarized in Table 2.1 and Table 2.2, where ‘MP’ and ‘SP’

are the MOC pin scheme and super pin scheme, respectively; ‘V10’ and ‘V4’ are the 

KAERI and VVER440FC benchmark problems, respectively; and ‘RT’, ‘CMFD’ 

and ‘Total’ are the ray tracing time, CMFD calculation time, and total computing

time, respectively. The total computing time is reduced due to the significant 

reduction in CMFD calculation time while the ray tracing time does not change. The 

reduction in CMFD calculation time does not change by the scattering order option 

nor geometric symmetry of the problem while it increases in the problems of smaller 

core size. The reduction in total computing time is decreased in the solutions using

the P2 option since the ray tracing time accounts mainly for the total computing time.
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The CMFD calculation time and total computing time are reduced by up to 39 % and 

17 %, respectively, by using the super pin scheme. Thus, the super pin scheme is 

employed in nTRACER for the hexagonal geometry core problems in the following.

Table 2.1. Comparison results for the 2D VVER core problems with the P0 option 
between two CMFD pin schemes.

Case
MP computing time (s) Reduction by SP (%)

RT CMFD Total RT CMFD Total

1/6 Core

V10 V01 513 697 1,322 0 24 13
V10 V05 418 538 1,063 0 27 9
V10 V09 410 492 1,007 0 25 12

V4 285 87 439 0 37 7

Full Core

V10 V01 2,770 3,776 7,078 -2 24 12
V10 V05 2,242 2,875 5,644 3 30 17
V10 V09 2,209 2,622 5,355 -1 27 13

V4 1,402 467 2,206 1 39 9

Table 2.2. Comparison results for the 2D VVER core problems with the P2 option 
between two CMFD pin schemes.

Case
MP Computing time (s) Reduction by SP (%)
RT CMFD Total RT CMFD Total

1/6 Core

V10 V01 1,481 533 2,124 -1 22 5
V10 V05 1,460 566 2,134 -1 24 6
V10 V09 1,509 515 2,133 1 28 8

V4 763 87 920 0 38 4

Full Core

V10 V01 9,517 3,052 13,131 1 28 7
V10 V05 8,657 3,128 12,336 0 27 7
V10 V09 8,808 2,756 12,115 0 28 6

V4 4,410 461 5,219 -1 39 3
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Chapter 3. Parallelization of the Hexagonal Ray 
Tracing Calculation with the ADD Scheme

With the original parallelization scheme of the nTRACER code, which is to 

divide the time-consuming entire ray tracing task into smaller tasks by grouping rays

in the azimuthal direction, some large 3D core problems cannot be solved in a 

computing cluster with limited memory. This limitation is because the rays 

encompass the entire core region, and each thread tracing a group of the rays requires 

the ray segment information across the core. Memory for this information can be 

huge in hexagonal ray tracing involving much more complicated FSR structures than 

the rectangular cases. This excessive memory burden can be resolved by employing 

the assembly-wise domain decomposition (ADD), which is to let each thread trace 

only the rays belonging to an assembly. In the following, the overall parallelization 

scheme of the nTRACER ray tracing calculation with the hexagonal ADD scheme is 

described first. Then the specific methods to enable the ADD scheme including the 

angular flux update method at the assembly surface, three-color method, and angular 

flux storage scheme (AFSS) are detailed in the subsequent subsections.

3.1. Assembly-wise Decomposition of the Planar Ray Tracing 
Domain

The MOC ray tracing calculation outlined in the previous section requires 

considerable computing time associated with the tremendous number of ray 

segments. Incorporating the effect of anisotropic scattering, which is needed for 

enhancing solution accuracy, is the additional factor to increase computing time. 

With the P2 scattering source, the memory for FSRs is increased six times to store 

the region-averaged angular fluxes. This memory can be tremendous because the 

number of FSRs is huge (about 1,800,000 in the 2D KAERI one-sixth core problem 

and six times it for the full core problem).

In the angle-wise parallelization for the ray tracing calculation, which was the 

original nTRACER parallel computing scheme, a group of cyclic rays are swept in 

parallel by different CPU threads. It is necessary to allocate the memory for the FSRs 

in the whole core to each thread since every FSR should be swept during the ray 

tracing. Thus, some large problems with limited memory cannot be solved with 

angle-wise parallelization. This limitation is worsened by the AFSS needed for 

anisotropic scattering treatment. In this regard, the ADD scheme to let each thread 

trace rays in one assembly is tried here so that the storage of FSR information is 
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needed only for the assemblies being computed currently, and thus memory 

reduction is possible. While the ADD is performed originally by using the distributed 

parallelism,[30]–[31] the shared memory parallelism using the OpenMP constructs

is exploited here following the nTRACER parallelism. The algorithm of the 

nTRACER MOC sweeps with the ADD scheme is presented in Figure 3.1. The 

nTRACER ray tracing calculation for a 3D VVER core problem is performed plane-

by-plane using MPI for the distributed memory parallelism. In the ADD calculation, 

the ray tracing domain at each plane is decomposed into assemblies using OpenMP 

for the shared memory parallelism. Each thread sweeps several assemblies since the 

number of assemblies is usually larger than the number of available threads. Load 

balancing is achieved by using the OpenMP guided scheduling.

Figure 3.1. Algorithm of the nTRACER MOC sweeps with the ADD scheme.

The ADD is implemented with dynamic memory allocation, which is to allocate 

the memory needed for ray tracing for an assembly only when a thread for that 

assembly performs ray tracing. This memory is deallocated once the ray tracing is 

done. Parallel computing is done by assigning one thread to one assembly such that 

the number of simultaneously calculated assemblies is the same as the number of 
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threads available on each node. The total memory allocated at a time during the ray 

tracing calculation is thus proportional to the number of available threads, which is 

usually much fewer than the number of assemblies in a plane. By this method, the 

memory requirement for simultaneous ray tracing with the ADD scheme can be 

significantly less than the angle-wise parallelization. However, the actual reduction 

cannot be that much because additional nontrivial memory to save the incoming 

angular flux shape at the assembly surfaces is required. Nonetheless, considerable 

memory saving is possible with the ADD scheme. Updating the assembly incoming 

angular flux is described in the following sub-section.

3.2. Assembly Incoming Angular Flux Update

A significant drawback in the ADD is that a ray cannot be traced continuously 

throughout the core since the ray within an assembly should start from the assembly 

surface. Thus, the incoming angular flux at the assembly surface cannot be taken as 

the outgoing angular flux of its neighboring assembly. The incoming angular flux at 

each assembly surface should be taken from the previous MOC iteration, and it 

requires storing the angular flux information at the assembly surfaces, which is 

another drawback to increase memory requirement. The lag in updating the incoming 

angular fluxes at the assembly surfaces would deteriorate the convergence of the 

MOC calculation. However, this deterioration can be relaxed by updating the 

incoming angular fluxes by using the CMFD calculation results. There are three 

variables of which the change by the CMFD calculation can be used for this update: 

the scalar flux, partial current, and P1 approximation of the angular flux. The partial 

currents, which can be determined by two node average fluxes and the interface 

surface flux obtained from the CMFD calculation, are used to update the incoming 

angular fluxes at the assembly surface similarly to the method implemented in 

MPACT.[31]–[32] Specifically, the stored incoming angular flux ��� of the previous 

MOC calculation at the surface of each assembly for each energy group is used to 

determine the new angular flux ��  by using the scalar flux and net current 

determined at the surface between the �-th and the � + 1-th CMFD mesh as:

�� =
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��� =
�� ��⁄

�� ��⁄ ����� ����⁄
, (3.6)

where ��
��� , ��

���and ��
��� are the surface scalar flux, surface net current 

and cell-averaged scalar flux at the � -th mesh, respectively, determined from the 

previous MOC calculation; and �� and ℎ� are the diffusion coefficient and size of 

the �-th mesh, respectively. The CMFD surface current, ��
����, is obtained by the 

ordinary CMFD net current relation involving the current correction coefficient ���. 

Note that the similar correction coefficient ���  is introduced for the surface flux 

calculation from the mesh average flux. The plus sign appearing in Eqs. (3.2) and 

(3.3) changes to the minus sign if the incoming angular flux is in the opposite 

direction, namely from mesh i+1 to i. In the hexagonal CMFD calculation with the 

elongated model, the CMFD meshes have different shapes. Therefore, the ���
calculation represented in Eq. (3.6) is extended to use two different mesh sizes.

3.3. Three-color Scheme

The STREAM DWCC code developed at UNIST uses the red-black scheme to 

achieve high efficiency in angular flux communication.[33] This scheme arranges 

the surfaces and directions in the assembly angular flux update with an index 

determined on a checkerboard. On the other hand, the color scheme used in 

nTRACER is to perform simultaneous ray tracing calculations for a group of 

assemblies belonging to the same color group. After all assemblies belonging to one 

color are swept, assemblies belonging to the next color are swept in sequence. Note 

that assemblies belonging to a color are swept in parallel by threads. This scheme 

provides an important advantage in that the outgoing angular fluxes of one colored 

assembly can be used in updating the incoming angular fluxes of the other colored 

assemblies.

Possible color schemes in hexagonal geometry are illustrated in Figure 3.2:

none, two red/black schemes, and the three-color scheme. All assemblies are swept 

at once by using threads in a random order without any color scheme (‘w/o C.’). On 

the other hand, the update of angular fluxes in the assembly surface is invoked 

between sweeping assemblies belonging to different colors in case of using a color 

scheme. Red and black in the red/black scheme might be alternately assigned to 

assemblies (‘RB 1’) or arranged in a strip (‘RB 2’). Three groups of assemblies in 

the three-color scheme can be swept by following two iteration patterns (‘RGB1’ and 

‘RGB2’) as described in Table 3.1.
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Figure 3.2. Color schemes in hexagonal geometry.

Table 3.1. Iteration patterns in the RGB scheme.

Iterations 1 2 3 4 …
RGB 1 (R, G, B) (B, G, R) (R, G, B) (B, G, R) …
RGB 2 (R, G, B) (G, B, R) (B, R, G) (R, G, B) …

The ADD performance with different color schemes is examined for the small 

VVER core problems, which employ the assemblies and problem cases of the 

KAERI benchmark and follow the loading pattern of the C5G7 H benchmark

problem. The examination results are summarized in Table 3.2, and error reductions 

in the ADD calculations with different color schemes are illustrated in Figure 3.3 and 

Figure 3.4. The ray tracing time is increased in most cases since sweeping assemblies 

in a sequence of color deteriorates calculation parallelization. This drawback is 

aggravated for the one-sixth core problems due to unevenness in assembly area. 

However, a necessity to mitigate the instability in ADD calculations justifies a few 

increase in computing time. Thus, it is concluded to employ the three-color scheme 

in hexagonal ADD calculations for the full core since one MOC iteration is saved for

the V01 full core problem only by using the three-color scheme. The first iteration 

pattern of the three-color scheme is employed in the following though the difference

between the two patterns is negligible.[34]
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Table 3.2. Ray tracing time (s) for the small core problem with color schemes.

Cases w/o C. RB1 RB2 RGB1 RGB2

1/6 Core
V01 845 1,283 1,270 1,890 1,897
V05 605 1,063 1,057 1,560 1,563
V09 610 1,050 1,050 1,550 1,567

Full 
Core

V01 2,363 2,570 2,560 2,210 2,220
V05 1,683 2,120 2,123 1,883 1,857
V09 1,670 2,113 2,100 1,827 1,830

Figure 3.3. Error reduction with different color schemes for one-sixth core 
problems.

Figure 3.4. Error reduction with different color schemes for full core problems.

The impact of the three-color scheme on the ray tracing calculation with the 

hexagonal ADD scheme is examined for the 2D VVER core problems as shown in 

Figure 3.5, where ‘RGB’ is the three-color scheme. In the one-sixth symmetry case, 

the total ray tracing time is increased since OpenMP load balancing for the ray 

tracing calculation is deteriorated by adding three-color iterations to assembly 

iterations. On the other hand, the total ray tracing time for the 2D KAERI V06, V09 

full core problem is reduced by 9~13 % by saving one ray tracing iteration. Thus, 

the three-color scheme is used only for the full core problems in the following.
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Figure 3.5. Total ray tracing time for the 2D VVER core problems with and without
the three-color scheme.

3.4. Angular Flux Storage Scheme

The � -th order Legendre angular expanded � -th flux moment ��
�  for the 

energy group � at the position �⃑ in the planar MOC calculation with anisotropic 

scattering is obtained as follows:

��,�
� (��⃑ ) =

���,�
� (��⃑ )

���(��⃑ )�(��⃑ )
+

��,�
� (��⃑ )

���(��⃑ )
, (3.7)

���,�
� (��⃑ ) = ∑ ��� ������ ���

�����⃑ ,��� − ��
�����, ��⃑ ,������

�∗������ , (3.8)

��,�
� (��⃑ ) = ������(��⃑ ) + ∑ ��,��→�

� (��⃑ )��;,�
���,�(��⃑ )

�′ , (3.9)

where �� is the total cross-section; � is the source mesh area in ray tracing; 

� is the weighting of solid angle ��; � is the polar angle; � is the ray spacing; �

is the azimuthal angle; ���  is the incoming angular flux; ����   is the outgoing 

angular flux; �  is the segment length; ��  is the fission source; ��
�   is the � -th 

order Legendre angular expanded scattering cross-section; ���� is the angular flux 

moment obtained from the previous step.

In the flux moment storage scheme (FMSS), ���,�
� is accumulated in the course 

of tracing each ray segment. This scheme is quite intuitive and especially effective 

in the P0 calculation. It requires, however, enormous multiplication operations in the 

P2 calculation. On the contrary, ���,�
� is calculated as the weighted sum of ���, the 

difference between two angular fluxes in the AFSS.[35]

���,�
� (��⃑ ) = ∑ ��� �����������, ��⃑ ,�����

�∗������ , (3.10)

�����, ��⃑ ,��� = ��
�����⃑ ,��� − ��

�����, ��⃑ ,���. (3.11)

This scheme requires storing the average angular flux information during ray 
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tracing. The moment calculation is done at the end of the ray tracing calculation in 

this scheme. The benefit of computing time saving attainable by avoiding expensive 

moment calculations during the ray tracing calculation justifies the increased 

memory usage.

The impact of the AFSS on computing time for the two ray tracing calculations 

with and without the ADD scheme, which are examined for the 2D VVER core 

problems, is exactly the opposite as shown in Figure 3.6. The total ray tracing time 

is increased significantly in the calculation without the ADD scheme due to a huge 

fetching overhead induced by the enormous memory size of the angular flux change. 

On the other hand, the total ray tracing time is reduced by 10~26% in the calculation 

with the ADD scheme by saving multiplication operations in the P2 calculation. Thus, 

the AFSS is used only in the calculation with the ADD scheme in the following.

Figure 3.6. Total ray tracing time for the 2D VVER core problems with and without
the AFSS.

The algorithm of the nTRACER MOC sweeps with the hexagonal ADD scheme, 

three-color scheme, and AFSS is represented in Figure 3.7. Compared to Figure 3.1, 

color iterations are added to assembly iterations, and the scalar flux is calculated 

once all assembly rays are swept.
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Figure 3.7. Algorithm of the nTRACER MOC sweeps with the ADD scheme, 
three-color scheme, and AFSS.
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Chapter 4. Development of the Unstructured Nodal 
Method in RENUS

So far, the capability of handling geometric deformation of a core has been

attained only in the finite difference method, finite element method, and Monte Carlo 

solutions, which require dividing the problem domain into substantial meshes to 

obtain sufficient accuracy. Meanwhile, the nodal solution based on polynomial 

expansions, which exploits a smaller computing resource, can also be expanded to 

the unstructured geometry by calculating the integrals of the polynomial expressions

within the given domain.

A nodal code, RENUS analyzes the neutronic characteristics of a 3D hexagonal 

geometry core by employing the planar solutions and axial solution as shown in

Figure 4.1. For each plane, the triangle-based polynomial expansion nodal (T-PEN)

method and corner point balance (CPB) solution are alternately invoked to solve the 

decoupled planar diffusion equations. The point fluxes used in the T-PEN 

calculations are updated from the CPB solutions while the surface currents and 

assembly fluxes used in the CPB calculations are updated from the T-PEN solutions

again. The axial coupling between planes is resolved by the 1D nodal expansion 

method (NEM) solution. The axial leakages used in the T-PEN calculations are

updated from the NEM solutions while the transverse leakages and assembly fluxes

used in the NEM calculations are updated from the T-PEN solutions again. The axial 

leakage source distribution approximated as the third polynomial expression for each 

assembly is inputted to the T-PEN calculations. The nodal calculations are

accelerated by updating the assembly fluxes by using the 3D CMFD formulation. 

The 3D CMFD formulation uses the surface currents determined by the nodal 

solutions again.
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Figure 4.1. Code flow of RENUS.

This section introduces the method to calculate the curvilinear and surface 

integrals of polynomials in arbitrary geometry. In the subsequent subsections, the T-

PEN method and CPB solution in regularly structured geometry are introduced, and

the expansion of those calculations to the unstructured geometry by using the method

described in Subsection 4.1. is described.

4.1. Polynomial Integral Calculations in Arbitrary Geometry

The nodal method is to approximate the flux distribution in a fuel assembly size 

coarse mesh, into which the cross-sections are homogenized, as an expression of 

continuous functions such as polynomial, exponential and trigonometrical functions. 

The physical constraints, e.g., the diffusion equation, flux and current continuity, and 

leakage balance are employed in each mesh to determine the unknown coefficients 

in the flux expression. The system of the physical constraints can be established by 

incorporating the physical variables including the mesh-averaged flux and current,

of which the expressions are determined from the flux expression. The number of 

unknowns in the system can be reduced by substituting the unknown variables with

the inputs determined from previous calculations or equations of other unknown 

variables. The flux expression can be uniquely determined by solving the system as 

the number of unknowns becomes equal to the number of flux expansion coefficients. 

Thus, the nodal method can be expanded to the irregularly deformed geometry by 

expressing edge-averaged and area-averaged variables as an equation of other 

variables in an unstructured mesh. It needs to calculate the curvilinear and surface 

integrals of basic functions in arbitrary geometry since those integrals are

incorporated in variable expressions.

In the two arbitrary segments stretching from (�� , ��) to (�� , ��) which are
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parallel to the y-axis or not, respectively, shown in Figure 4.2, the surface flux ���

and current ��̅ are defined as follows:

Figure 4.2. Arbitrary segments (a) parallel to the y-axis or (b) not.

�� � =
�

�����
∫ �(�, �)|������
��
��

while �� = ��, (4.1)

�� � =
�

�����
∫ �(�, �)|��������
��
��

while �� ≠ ��, (4.2)

��̅ = −�
���(��)

�
∫

�

��
�(�, �)�

����
��

��
��

while �� = ��, (4.3)

��̅ = −�
���(�)

�
�

−�∫
�

��
�(�,�)�

������
��

��
��

+∫
�

��
�(�, �)�

������
��

��
��

� while �� ≠ ��, (4.4)

where sgn is a sign function; � is the homogeneous diffusion coefficient; �

is the segment length; and �(�, �) is the flux expression.

The surface flux of �(�, �) polynomials used in the T-PEN method and CPB 

solution can be obtained by using Table 4.1, in which �, �, � and � are defined as 

follows:
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Table 4.1. Polynomial curvilinear integrals in arbitrary segment.

� = −
�

�
�� + √���, (4.5)

� = −
�

�
�� − √���, (4.6)

� = −
�

�
�� − √���, (4.7)

� = −
�

�
�� + √���. (4.8)

Note that the equations in the table are valid whether the segment is parallel to 

the y-axis or not. For example, the surface flux in arbitrary segment with the flux

shape of �� is obtained as follows:

�� � =
�

�����
∫ ����
��
��

=
�

�
(�� + ��)���

� + ��
�� while �� = ��, (4.9)

�� � =
�

�����
∫ ����
��
��

=
�

�
(�� + ��)���

� + ��
�� while �� ≠ ��. (4.10)

The curvilinear integral terms in Eq. (4.3) and Eq. (4.4) can be obtained by 

multiplying their coefficients to the surface flux of
�

��
�(�, �)  and 

�

��
�(�, �)

polynomials, respectively, which can be determined by using Table 4.1.
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The areal flux ��� , flux moments ���  and ���, flux Laplacian operator ∇����, 

and flux Laplacian operator moments ∇����   and ∇����   in an arbitrary closed 

polygon with an area of � are defined as follows:

��� =
�

�
∫�(�, �)��, (4.11)

��� =
�

�
∫��(�,�)��, (4.12)

��� =
�

�
∫��(�,�)��, (4.13)

����� =
�

�
∫�

��

���
+

��

���
��(�, �)��, (4.14)

����� =
�

�
∫ � �

��

���
+

��

���
��(�, �)��, (4.15)

����� =
�

�
∫� �

��

���
+

��

���
��(�,�)��, (4.16)

The arbitrary closed polygon shown in Figure 4.3 can be split into 

parallelograms or triangles divided by lines parallel to the � -axis. The areal 

variables of Eqs. (4.11)–(4.16) in this polygon can be obtained by averaging the areal 

variables in parallelograms or triangles with volume weight.

Figure 4.3. Arbitrary polygon divided by lines parallel to the y-axis.

The areal flux in one parallelogram shown in Figure 4.4 can be obtained as 

follows:
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Figure 4.4. Parallelogram parallel to the y-axis.

��� =
�

�
∫�(�, �)�� =

�

�
∫ ∫ �(�,�)

��
��

����
��
��

, (4.17)

� =
�

�
(�� − ��)���

� − ��
�����

� − ��
��, (4.18)

∫ �(�, �)
��
��

�� = ����, ��(�)� − ����, ��(�)�, (4.19)

�

��
��(�, �) = �(�,�), (4.20)

∫ �����, ��(�)� − ����, ��(�)����
��
��

= ����(��) − ���(��)� −

����(��) − ���(��)�,
(4.21)

�

��
���(�) = ����, ��(�)�, (4.22)

�

��
���(�) = ����, ��(�)�, (4.23)

��� =
�

�
�����(��) − ���(��)� − ����(��) − ���(��)��. (4.24)

The surface integral function ���(�) in the arbitrary line �: � = �� + � for

�, � polynomials used in the T-PEN method and CPB solution can be obtained by 

using Table 4.2. ���(�) for �, �, � and � polynomials can be obtained as a linear 

combination of ���(�) for �, � polynomials.
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Table 4.2. Polynomial surface integral functions in arbitrary line.

Note that the equations in the table are also valid in a triangle by inputting same 

��
� and ��

� or same ��
� and ��

�. The areal flux moments, flux Laplacian operator

and flux Laplacian operator moments of �(�, �) polynomials can be obtained by 

repeating the areal flux calculation for ��(�, �), ��(�, �), �
��

���
+

��

���
��(�, �), � �

��

���
+

��

���
��(�, �)  and � �

��

���
+

��

���
��(�, �)  polynomials, 

respectively, which can be determined by using Table 4.2.

4.2. Expansion of the T-PEN Method to the Unstructured 
Geometry

The T-PEN method [22] is to approximate the flux distribution in a triangle 

node of hexagonal assembly as a linear combination of nine polynomials as follows:

�(�,�) = �� + ��� + ��� + ���
� + ���

� + ���
� + ���

� + ���
� + (4.25)
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���
�,

where the notation of the energy group is omitted here.

The physical variables used in the T-PEN method can be categorized into the

representative group and the derived group. Each variable in the representative group 

including one areal flux ��� , two areal flux moments ���  and ��� , three surface 

fluxes ��� , ��� , ���, and three corner point fluxes �� , �� , �� can be expressed as a 

linear combination of nine flux expansion coefficients, and vice versa. Seven 

variables in the derived group including one areal leakage ���
�, two areal leakage 

moments ���
� and ���

�, three surface currents ��̅ , ��̅, ��̅, and one central leakage ��

are incorporated in the physical constraints employed to establish the response 

matrix. The T-PEN variables in the regular triangle node shown in Figure 4.5 are 

defined as follows:

Figure 4.5. Construction of the T-PEN variables in the regular triangle node.

��� =
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√���
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��� =
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∫ ��(�,�)��
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, (4.28)

��� =
�

�
∫ �(�,�)|

��
√�

�
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�
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�
�

�
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, (4.29)
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�
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�
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, (4.37)
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��̅ = −
�
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∫ ���⃑ � ∙ ���⃑ �(�,�)��

���
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�
��
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, (4.40)

�� = −����⃑ � ∙ ���⃑ �(�,�)��
��

�

√�
�,��

, (4.41)

where ℎ  is the side length; �  is the triangle area; �  is the homogeneous 

diffusion coefficient in the triangle node. The notation of the energy group is omitted 

here.

The derived group variables can be expressed as a linear combination of the 

representative group variables by using the following procedures: First, express all

T-PEN variables as a linear combination of the nine flux expansion coefficients by 

substituting Eq. (4.25) into Eqs. (4.26)–(4.41). Then, reverse the expressions of the 

representative group variables to express the nine flux expansion coefficients as a 

linear combination of the nine representative group variables. Finally, multiply the 

expressions of the derived group variables by the expressions of the flux expansion 

coefficients to express seven derived group variables as a linear combination of the 

nine representative group variables. The final expressions in a regular triangle are 

obtained as follows:

��� =
�

��
����� − ������ +��� + ���� +

��

�
��� +�� +����, (4.42)
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���
� =

�

��
������ −

��

�
��� +

�

�
���� + ���� +

�

�
���� −�� −����, (4.43)

���
� =

�

��
������ + ����� −���� −

�

�
��� −����, (4.44)

��̅ = −
�

√��
����� + ������ − ����� + ��� +�� +���, (4.45)

��̅ = −
�

√��
����� − ������ + ������ − ����� + �� + ��� +���, (4.46)

��̅ = −
�

√��
����� − ������ −���� − ����� +�� +�� + ����, (4.47)

�� = −
√��

�
������ − ���� + ����. (4.48)

For the hexagonal assembly including six triangle nodes shown in Figure 4.6, 

the T-PEN method employs 31 physical constrains for each energy group. These 

constraints include three diffusion equations in each triangle node including two 

weighted residual methods of � and �, two current continuity equations at each 

inner and outer surfaces, and one leakage balance equation at the center to construct

the linear system as follows:

Figure 4.6. Construction of the T-PEN variables in the regular hexagonal assembly.

���� + ������
� =

��

����
∑ ����������

�
�� + ∑ ���������

�
�� + ���

��, (4.49)

���
�� + �������

� =
��

����
∑ �����������

�
�� +∑ ����������

�
�� + ����

�� , (4.50)

���
�� + �������

� =
��

����
∑ ����������

�
�� + ∑ ���������

�
�� + ����

�� , (4.51)
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��̅
� = ��̅

�� − ��̅
��, (4.52)

��̅
� = −��̅

���, (4.53)

∑ ��
��

��� = �, (4.54)

where Σ�, Σ�   and Σ�  are the assembly macroscopic cross-sections of the 

removal, fission, and scattering reaction, respectively; � is the fission spectrum; �

is the average number of neutrons generated by fission; ���� is the multiplication 

factor; � �̅ , ���
� , and ���

� are the axial leakage source and two axial leakage source 

moments, respectively; and ��̅
�  and ��̅

�   are the outgoing and incoming partial 

currents, respectively.

The T-PEN response matrix can be constructed by substituting Eqs. (4.42)–

(4.48) into Eqs. (4.49)–(4.54) as follows:

Figure 4.7. T-PEN Response matrix for a regular hexagonal assembly.

In this work, the definitions of the T-PEN variables described in Eqs. (4.26)–

(4.41), except for the areal variables, are expanded to the unstructured triangle node 

shown in Figure 4.8 as follows:
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Figure 4.8. Construction of the T-PEN variables in the irregularly deformed
triangle node.
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�� = �����⃑ ��, (4.61)

�� = �����⃑ ��, (4.62)

�� = �����⃑ ��, (4.63)

��� = −
��

�
���⃑ � ∙ ���⃑ �(�,�)��

����⃑ ��
. (4.64)

The linear combination expressions of the nine flux expansion coefficients for 

the corner fluxes and central leakage described in Eqs. (4.61)–(4.64) can be easily 

obtained by simple substitution. The expressions of the surface fluxes and currents 

in Eqs. (4.55)–(4.60) can be obtained by using the look-up table presented in Table 

4.1. The expressions of the areal flux, flux moments, leakage, and leakage moments 

can be obtained by dividing the deformed assembly into parallelograms and 

calculating the surface integral functions for each parallelogram by using the look-

up table presented in Table 4.2. Consequently, the derived group variables in the 

deformed triangle node can be expressed as linear combinations of the representative

group variables by repeating the procedures described for the regular triangle node.

The T-PEN response matrix for the deformed assembly can be constructed by 
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substituting the derived group variables with those expressions. Note that the 

curvilinear and surface integrals of nine polynomials are different for six triangle 

nodes of the deformed assembly as node shapes differ from each other. The 

diagonality of the response matrix can be decreased since all representative group 

variables are incorporated in the expressions of the derived group variables while the 

response matrix in regularly structured geometry is quite sparse. This decrease can 

deteriorate the performance of the T-PEN calculations for deformed hexagonal 

geometry problems.

In contrast with Eq. (4.41), the central leakage is multiplied by the length-

weight in Eq. (4.64). This difference is because the leakage at one edge of an

infinitesimal hexagon is a product of the leakage normal to the edge and the edge 

length as shown in Figure 4.9. The leakage balance at the center of the irregularly 

deformed hexagonal assembly is described as follows:

Figure 4.9. Leakage balance at the center of the irregularly deformed hexagonal 
assembly.

∑ ���
��

��� = �. (4.65)

4.3. Expansion of the CPB solution to the Unstructured 
Geometry

The CPB solution is to approximate the flux distribution in a hexagonal 

assembly as a linear combination of fifteen polynomials as shown in Figure 4.10 as 

follows:
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Figure 4.10. Construction of the CPB variables in the regular hexagonal assembly.
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where the notation of the energy group is omitted here.

The CPB variables represented in Figure 4.10 are defined similarly to the T-

PEN method. The corner flux, surface flux, and areal flux belong to the 

representative group, and the corner leakage belongs to the derived group in the CPB 

solution. The expressions of three corner leakages as a linear combination of the 

fifteen flux expansion coefficients can be obtained as follows:
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(4.67)
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Three corner leakages can be expressed as linear combinations of the fifteen 

flux variables by repeating the converting procedures described in the previous 

subsection. Note that the coefficients in the expressions change with the assembly 

pitch while it does not in the T-PEN method. The corner leakages are substituted 

with these expressions in the leakage balance equation at the intersection of three 

assemblies shown in Figure 4.11. As a result, the intersection flux can be expressed 

as a linear combination of thirty flux variables as follows:

Figure 4.11. Construction of the CPB parameters in the regular hexagonal 
assemblies.

∑ ���
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where �  is the weighting factor changing with the assembly pitch. The 

weighting factors in the case of an assembly pitch of 4 (cm) are presented as follows:
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The linear system of the point fluxes in the core can be constructed by applying

Eq. (4.71), where the surface fluxes and assembly fluxes determined from the T-PEN 

calculation are moved to the right-hand side, to all corner points. This linear system 

can be solved easily by using the plain Gauss-Seidal iteration scheme since it is 

strongly diagonally dominant.

In this work, the definitions of the CPB variables with the flux shape of Eq.

(4.66) are expanded to the unstructured geometry similarly to the T-PEN method.

The physical variables in the irregularly deformed hexagonal assembly shown in

Figure 4.12 are expressed as linear combinations of the fifteen flux expansion 

coefficients by using Table 4.1 and Table 4.2. Three corner leakages in the leakage 

balance equation at the center are substituted with linear combinations of the fifteen 

flux variables by using the same converting procedures described in the previous 

subsection. The point fluxes in a deformed hexagonal geometry core are determined 

by solving the linear system employing the leakage balance equations at corner 

points including deviated ones. Note that the leakage balance equation at a deviated 

point employs the weighted sum of length between two neighboring corner points as 

shown in Figure 4.13.
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Figure 4.12. Construction of the CPB variables in the irregularly deformed 
hexagonal assemblies.

Figure 4.13. Leakage balance at the deviated point.
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Chapter 5. Validation of the Solution Methods

The newly developed methods and schemes in nTRACER and RENUS 

described in the previous sections need to be verified to determine whether this 

research’s purposes are achieved. The solution accuracy of nTRACER is verified 

first by comparing its calculation results for the various hexagonal geometry core 

problems against the McCARD results. In the subsequent subsection, the ADD 

performance is examined by comparing the ray tracing time with and without the 

ADD scheme for the various VVER core problems. The performance of the 

unstructured hexagonal nodal solution in RENUS is verified in the last subsection 

by comparing its calculation results for the arbitrarily deformed 2D SFR benchmark 

problems against the McCARD results.

The nTRACER calculation options proved to ensure sufficient solution 

accuracy by conducting sensitivity tests are used in this section. The ray parameters 

of 0.05 cm ray spacing, 12 azimuthal angles in [0, π], 4 polar angles in [0, π/2] are 

employed. The fuel of the fuel rod is divided into four regions in the radial direction. 

In contrast, the fuel with the gadolinium absorber is divided into seven regions. The 

outer iteration on ray tracing is terminated when the pseudo fission source error and 

residual error are reduced below 5x10-5.

In all nTRACER calculations in this section, pin power errors are examined in 

the absolute value, and the number of energy groups for VVER and SFR core 

problems are 47 and 33, respectively.

5.1. nTRACER Calculations for the Hexagonal Geometry 
Core Problems

For accuracy assessment, the nTRACER solutions for the hexagonal variant 

light water reactor (LWR) core problems, and 2D VVER and SFR core problems are 

compared with the McCARD [39] Monte Carlo reference solutions. The effect of P2 

anisotropic scattering treatment on solution accuracy is also examined.

5.1.1. C5G7 H Benchmark Problem

The C5G7 H benchmark problems are the hexagonal variants of the C5G7 

benchmark problems established for rectangular geometry LWR cores without 

spatial homogenization.[1] The core consist of nine materials including one UOX, 
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three MOX fuels, one fission chamber, one guide tube, one moderator, and one 

control rod. The seven-group macroscopic cross-section set for these materials is 

provided in this benchmark. The fuel loading pattern in the radial direction and axial 

configuration with three types of control rod insertion are illustrated in Figure 5.1.

Fuel assemblies of a pitch of 11.9 cm shown in Figure 5.2 consist of fuel pins of a 

radius of 0.54 cm. One 2D core problem, where all control rods are withdrawn, and 

three 3D core problems with different control rod insertions in UA assemblies

indicated in Table 5.1 are included in this benchmark.

Figure 5.1. (a) Radial and (b) axial core configurations in the C5G7 H benchmark
problem.

Figure 5.2. (a) UA and (b) MA in the C5G7 H benchmark problem.
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Table 5.1. Control rod insertion in the C5G7 H benchmark problems.

Problems UA-1 UA-2 MA
Unrodded TA TA TA
Rodded A TB TA TA
Rodded B TC TB TA

The McCARD solution for these benchmark problems was determined as an 

average of three calculation results for the same problem with different random 

number seeds. Each McCARD calculation was conducted by using 100 inactive 

cycles, 500 active cycles, and 20 million particles per cycle. The standard deviation 

of pin power distribution does not exceed 0.19 %.

The solution accuracy of nTRACER for the 2D C5G7 H problem is sufficiently 

high in that the reactivity difference is 12 pcm and the maximum and root-mean-

square (RMS) pin power differences are 1.02 % and 0.24 %, respectively, as 

presented in Table 5.2 and Figure 5.3.

Table 5.2. Comparison of two solutions for the 2D C5G7 H core problem.

McCARD nTRACER
k-eff σ (pcm) Δρ (pcm) Max. ΔP (%) RMS ΔP (%)

1.16241 2 12 1.02 0.24

Figure 5.3. Pin power difference distribution for the 2D C5G7 H core problem.

The solution differences for the three 3D C5G7 H problems are summarized in

Table 5.3, and the pin power difference for the Rodded A case in the radial and axial 
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directions are depicted in Figure 5.4 and Figure 5.5, respectively. The maximum 

difference in reactivity and 3D pin power distribution are 7 pcm and 6.41 %, 

respectively. The 3D pin power difference is somewhat high. However, the radial 

and axial pin power differences do not exceed a tolerance range. Thus, it is concluded 

that nTRACER reproduces the reference solutions for all C5G7 H benchmark 

problems with high accuracy.

Table 5.3. Comparison of two solutions for the 3D C5G7 H core problems.

Unrodded Rodded A Rodded B

McCARD
k-eff 1.12273 1.11891 1.10264

σ (pcm) 1

nTRACER

Δρ (pcm) 7 3 -2

3D ΔP (%)
Max. 6.41 5.98 5.36
RMS 0.43 0.44 0.44

Rad. ΔP 
(%)

Max. 0.93 0.98 0.89
RMS 0.24 0.26 0.24

Ax. ΔP (%)
Max. 0.86 0.76 0.84
RMS 0.23 0.17 0.23

Figure 5.4. Radial pin power difference distribution for the C5G7 H Rodded A
problem.
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Figure 5.5. Axial plane power difference distribution for the C5G7 H Rodded A 
problem.

5.1.2. KAERI Benchmark Problem (VVER-1000)

The core configuration of the KAERI benchmark problem is illustrated in 

Subsection 2.1. All cases of the 2D KAERI benchmark problem described in Table 

5.4 are solved by nTRACER and McCARD. The same McCARD options in the 

previous verification are also used for this problem.

Table 5.4. Benchmark cases of the 2D KAERI benchmark problem.

Case
Temperature (K) Boron concentration

(ppm)Fuel Cladding, Coolant
V01 300 300 0
V02 600 600 0
V03 900 600 0
V04 300 300 1,000
V05 600 600 1,000
V06 900 600 1,000
V07 300 300 2,000
V08 600 600 2,000
V09 900 600 2,000

nTRACER solved the 2D KAERI core problem by using the P0 option. The 

solution differences calculated by comparing the nTRACER calculation results

against the McCARD results are presented in Table 5.5. The solution differences are 

somewhat high for the V01, V04, and V07 cases, where all materials are at 300 K.

This is because the SNURPL 47G library used in the nTRACER calculations were 

generated targeting operation states with high temperature. On the other hand, the 

high solution accuracy of nTRACER is demonstrated for other cases as shown in
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Figure 5.6 while it does not change significantly by fuel temperature nor boron 

concentration.

Table 5.5. Comparison of the two solutions for the 2D KAERI core problem with 
the P0 option.

P0
McCARD nTRACER

k-eff σ (pcm) Δρ (pcm) Max. ΔP (%) RMS ΔP (%)
V01 1.28365

1

-34 2.24 0.95
V02 1.22097 -8 0.72 0.19
V03 1.21116 -38 0.68 0.20
V04 1.08154 -72 1.52 0.61
V05 1.08246 -23 0.58 0.22
V06 1.07377 -55 0.62 0.22
V07 0.94263 -106 1.54 0.53
V08 0.97712 -32 0.63 0.23
V09 0.96935 -68 0.70 0.27

Figure 5.6. Radial pin power difference distribution for the KAERI V03 problem 
with the P0 option.

The effect of P2 anisotropic scattering treatment on solution accuracy is 

examined by comparing the solution differences between the P0 and P2 options. 

Table 5.6 and Figure 5.7 represent the solution difference with the P2 option. The 

reduction in solution difference is presented with a positive sign in Table 5.7. The 

reactivity difference is significantly reduced in most cases by using the P2 option. 

On the other hand, the pin power difference is increased for all cases at room 

temperature. It is also increased as boron concentration increases. It is demonstrated

that the SNURPL 47G library needs to employ improved P2 anisotropic scattering 

treatment for problems at room temperature with high boron concentration.
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Nonetheless, the increase in solution accuracy of nTRACER by using the P2 option 

for the core problems in operation state with low boron concentration is verified in

this benchmark.

Table 5.6. Comparison of the two solutions for the 2D KAERI core problem with 
the P2 option.

P2
McCARD nTRACER

k-eff σ (pcm) Δρ (pcm) Max. ΔP (%) RMS ΔP (%)
V01 1.28365

1

5 2.33 0.89
V02 1.22097 22 0.47 0.14
V03 1.21116 -7 0.50 0.18
V04 1.08154 23 1.85 0.80
V05 1.08246 31 0.58 0.20
V06 1.07377 -1 0.54 0.10
V07 0.94263 36 1.82 0.67
V08 0.97712 46 0.82 0.35
V09 0.96935 11 0.99 0.41

Figure 5.7. Radial pin power difference distribution for the KAERI V03 problem 
with the P2 option.
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Table 5.7. Reduction in solution differences for the 2D KAERI core problem by 
using the P2 option.

P0-P2 Abs. Δρ (pcm) Max. ΔP (%) RMS ΔP (%)
V01 29 -0.09 0.06
V02 -14 0.25 0.05
V03 31 0.18 0.02
V04 49 -0.33 -0.19
V05 -8 0 0.02
V06 54 0.08 0.12
V07 70 -0.28 -0.14
V08 -14 -0.19 -0.12
V09 57 -0.29 -0.14

5.1.3. VVER440 ‘Full-core’ Benchmark Problem

nTRACER solved the VVER440FC benchmark problem by using both P0 and 

P2 options. The same McCARD options in the previous verification are also used 

for this problem. The solution differences are presented in Table 5.8, Figure 5.8, and 

Figure 5.9. The solution accuracy of nTRACER is increased significantly by using 

the P2 option. These verification results correspond to the previous subsection since 

the benchmark problem is in operation state with low boron concentration. It is 

concluded that nTRACER reproduces the reference solutions for VVER core 

problems with high accuracy, which is improved by using the P2 option for problems

in operation state with low boron concentration.

Table 5.8. Comparison of the two solutions for the VVER440FC core problem.

McCARD nTRACER
k-eff σ (pcm) Δρ (pcm) Max. ΔP (%) RMS ΔP (%)

P0
1.08834 1

-116 1.42 0.81
P2 -52 0.52 0.32
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Figure 5.8. Radial pin power difference distribution for the VVER440FC problem
with the P0 option.

Figure 5.9. Radial pin power difference distribution for the VVER440FC problem 
with the P2 option.

5.1.4. MET-1000 Benchmark Problem

nTRACER solved the 2D MET-1000 benchmark problem by using the P2 

option. The McCARD calculation result for this problem was obtained by using 500 

inactive cycles, 2,000 active cycles, and 200 thousand particles per cycle. The 

solution difference is presented in Table 5.9 and Figure 5.10. The reactivity

difference and the maximum and RMS pin power differences are 150 pcm, 2.17 %, 

and 0.76, respectively, which are in a tolerance range.[40] Thus, it is concluded that 

nTRACER attained satisfactory accuracy for solving SFR core problems.
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Table 5.9. Comparison of the two solutions for the 2D MET-1000 core problem.

McCARD nTRACER
k-eff σ (pcm) Δρ (pcm) Max. ΔP (%) RMS ΔP (%)

1.22141 2 150 2.17 0.76

Figure 5.10. Radial pin power difference distribution for the 2D MET-1000 
problem.

5.2. Performance Examination of the nTRACER Hexagonal 
Ray Tracing Calculation with the ADD scheme

The parallel execution performance of the new hexagonal version of nTRACER 

is examined by comparing the two solutions obtained with and without the ADD 

scheme. Considering practical operating conditions, only V03, V06, and V09 in the 

KAERI benchmark problem are solved. In these cases, the fuel and coolant 

temperatures are 900 K and 600 K, respectively, and the boron concentration ranges 

from 0 ppm to 2,000 ppm. The calculation options including the ray parameters and 

mesh structures in the previous section are also used in this section. For the 3D core 

problems, the active fuel region is equally divided into eighteen planes in the KAERI 

problem and into twelve planes in the VVER440FC problem, respectively. The axial 

reflectors in the 3D VVER440FC problem are also divided in half. As a consequence, 

eight computing nodes are exploited to solve sixteen and twenty-four planes of the 

VVER440FC and KAERI problems, respectively. The nTRACER calculations were 

performed on a ten-nodes computing platform, of which each node is equipped with 

two 26-core CPUs of Intel Xeon Gold 6230 R with 2.10 GHz clocks and 540 GB 
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RAM. The nodes are connected by 100 Gbps InfiniBand, which transfers calculation 

results between each node.

5.2.1. 2D VVER Core Problems

In the ADD scheme, the incoming angular flux at the assembly surface is 

updated by using the partial current information determined by the CMFD 

calculation by following Eq. (3.1). If the surface of a CMFD mesh adjoins more than 

two CMFD meshes, the length-weighted sum of CMFD fluxes should be employed 

in the partial incoming current update. This approximation might deteriorate neutron 

balance in CMFD meshes, consequently, and calculation convergence. In this regard, 

the nTRACER modeling of Vygorodka in the VVER440FC benchmark problem is 

modified from one shown in Figure 2.10.b to the other shown in Figure 5.11.a such 

that CMFD mesh boundaries are aligned, but Vygorodka is modeled with a jagged 

edge. Here the dimensions of the fuel and moderator cells are the same unlike in

Figure 2.10.b. The cells representing Vygorodka are filled with a homogeneous 

mixture of steel and moderator materials, which conserves the total mass of 

Vygorodka. The error associated with this approximation of Vygorodka was assessed 

by the nTRACER runs with the angle-wise parallel computing option. The difference 

in power distribution between the two models is given in Figure 5.11.b., which 

reveals the maximum error of about 1 % at the core periphery. The reactivity error 

and RMS pin power difference are negligible. Thus, it is expected that the 

approximated Vygorodka modeling to enable the ADD would have a negligible 

impact on solution accuracy.

Figure 5.11. (a) nTRACER modeling for Vygorodka with the ADD scheme (b) Pin 
power difference for the 2D VVER440FC core problem.

For the 2D KAERI V09 core calculations with and without the ADD scheme, 
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the OpenMP parallel speedup in the ray tracing calculation is examined as shown in

Figure 5.12. As the number of threads increases, the actual parallel speedup falls 

behind the ideal one. This gap is induced by load imbalance and thread 

communication. The ray tracing calculation for the full core with the ADD scheme

has good load balancing since all assemblies have tracking rays of the same size. 

Thus, this case has a high parallel speedup of about 21 using twenty-six threads. The 

parallel speedups in other cases are less than 16 since imbalance exists in the 

assembly area or tracking ray length. Twenty-six threads of each processor are used 

for the planar MOC calculations in the following.

Figure 5.12. OpenMP parallel speedup of the ray tracing calculation for the 2D 
KAERI V09 core problems.

For each of the 2D core problems, the two solutions with and without the ADD 

scheme were compared as summarized in Table 5.10. The solution differences must 

be small because both solutions were obtained after satisfying the same convergence 

criterion. The convergence behaviors shown in Figure 5.13 indicate that convergence

is slower with the ADD scheme. This drawback is because the incoming angular

fluxes had to be approximated even with the CMFD partial current update scheme

of Eq. (3.1). Nonetheless, the number of ray tracing iterations needed for satisfying

the convergence criterion increases only by one for the one-sixth symmetry cases 

while it does not essentially increase for the full core cases. The comparison results 

for calculation performance are presented in Table 5.11 including the computing

times, where ‘# of RT’ and ‘Total RT’ are the number of ray tracing iterations and 

total ray tracing time, respectively.
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Table 5.10. Calculation error with the ADD scheme for the 2D VVER core 
problems.

Problem Δρ (pcm)
ΔP (%)

Max. RMS

1/6 Core

KAERI V03 0 0.34 0.10
KAERI V06 0 0.32 0.10
KAERI V09 0 0.25 0.08
VVER440FC 0 0.32 0.11

Full Core

KAERI V03 0 0.31 0.11
KAERI V06 0 0.30 0.10
KAERI V09 -1 0.17 0.07

X2 0 0.31 0.10
VVER440FC 0 0.05 0.01

Figure 5.13. Residual error reduction for the 2D VVER core problems.

Table 5.11. Calculation performance with the ADD scheme assessed for the 2D 
VVER core problems.

Problems
w/o ADD w/ ADD

# of RT Total RT # of RT Total RT

1/6 Core

KAERI V03 5 22m 6 19m
KAERI V06 5 22m 6 20m
KAERI V09 5 22m 6 20m
VVER440FC 4 12m 5 10m

Full Core

KAERI V03 5 2h 7m 5 1h 8m
KAERI V06 5 2h 8m 5 1h 7m
KAERI V09 5 2h 9m 5 1h 7m

X2 5 1h 59m 5 1h 8m 
VVER440FC 4 67m 5 43m

Computing time decreases significantly for the 2D full core problems as 

summarized in Table 5.12. The total computing time is reduced by 26~38%, and
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higher reductions of 43~49% are possible for each ray tracing calculation. This

significant reduction is possible because memory access traffic is significantly

reduced by reducing the memory size needed for each thread. In the original angle-

wise parallelization without the ADD scheme, all threads have to access the 

geometry information of the entire core. Thus, there could be a serious fetching

overhead due to a memory access bottleneck, which deteriorates calculation

performance. This fetching overhead is significantly reduced by using the ADD 

scheme, which requires fetching local geometry information by each thread. For the 

2D KAERI full core problem, the memory needed for the angle-wise parallelization 

(without the ADD scheme) and the ADD scheme turned out to be 100 GB and 82 

GB, respectively. 18 GB reduction in memory was possible by using the ADD 

scheme even though additional memory was required to store the incoming angular 

fluxes at each assembly surface. For the one-sixth core problem, the single ray 

tracing time reduction is deteriorated due to an imbalance in sweeping assemblies 

and an increase in ray tracing iterations.

Table 5.12. Computing time reduction (%) with the ADD scheme for the 2D VVER 
core problems.

Problems Single RT Total RT Total

1/6 Core

KAERI V03 29 15 3
KAERI V06 25 10 0
KAERI V09 26 11 1
VVER440FC 34 18 6

Full Core

KAERI V03 47 47 35
KAERI V06 48 48 36
KAERI V09 48 48 38

X2 43 43 33
VVER440FC 49 36 26

5.2.2. 3D VVER Core Problems

The 3D core calculation is decomposed first axially by assigning a certain 

number of planes to each computing node. Eight computing nodes in the ten-nodes 

computing platform were exploited in the calculations for the 3D VVER440FC and 

KAERI core problems with sixteen and twenty-four planes, respectively. For the 3D 

VVER440FC core calculations with and without the ADD scheme, the MPI parallel 

speedup in the ray tracing calculation is examined as shown in Figure 5.14. The 

memory size required for the 3D VVER440FC full core calculation exceeds memory 

limitation when less than four computing nodes are exploited. nTRACER has good 

MPI parallel performance, which is better in the calculations with the ADD scheme. 
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In the following, two processors of each computing node are used for the 3D 

VVER440FC core problems while only one is used for the 3D KAERI core problems 

due to a memory size restriction. Thus, each processor solves one planar MOC 

problem of the 3D VVER440FC core while it solves four planar MOC problems of 

the 3D KAERI cores.

Figure 5.14. MPI parallel speedup of the ray tracing calculation for the 3D KAERI 
V09 core problems.

The solution accuracy summarized in Table 5.13-Table 5.14 and the 

convergence behavior shown in Figure 5.15 reveal the same tendency as the 2D 

problems.

Table 5.13. Calculation error with the ADD scheme for the 3D VVER one-sixth 
core problems.

Problem
Δρ 

(pcm)

ΔP (%)
3D 2D 1D

Max. RMS Max. RMS Max. RMS
KAERI V03 0 0.60 0.18 0.26 0.09 0.26 0.14
KAERI V06 0 0.78 0.23 0.54 0.21 0.07 0.04
KAERI V09 -1 0.25 0.05 0.12 0.04 0.06 0.03
VVER440FC -1 0.35 0.09 0.21 0.08 0.05 0.03

Table 5.14. Calculation error with the ADD scheme for the 3D VVER full core 
problems.

Problem
Δρ 

(pcm)

ΔP (%)
3D 2D 1D

Max. RMS Max. RMS Max. RMS
KAERI V03 0 0.47 0.16 0.14 0.06 0.25 0.14
KAERI V06 0 0.14 0.05 0.07 0.03 0.06 0.03
KAERI V09 0 0.17 0.05 0.07 0.03 0.06 0.04
VVER440FC -1 0.30 0.06 0.12 0.03 0.07 0.05
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Figure 5.15. Residual error reduction for the 3D VVER core problems.

The calculation performance and reduction in computing time with the ADD

scheme assessed for the 3D core problems are summarized in Table 5.15-Table 5.17,

where the computing time for the axial MOC calculation is included under ‘Total 

Ax.’ Compared to the 2D full core problems, the reduction in radial ray tracing time 

is better in that the 27~53% reduction is possible in the single ray tracing time. This 

improvement is because the fetching overhead in the angle-wise parallelization is 

further increased by allocating four planes to each computing node in the 3D core 

problems. For the same reason, the 4~45% reduction in total computing time is 

possible for the 3D core problems. The axial MOC solver in nTRACER incorporates 

the effect of anisotropic scattering in the axial reflectors filled with the pure 

moderator to stabilize 3D core calculations. Some instability was noted in the axial 

MOC solution for the VVER440FC problem with the ADD scheme. This instability

leads to performing more axial MOC calculations and increasing the axial MOC 

calculation time. This drawback offsets the gain for the computing time reduction in 

the radial MOC calculation, which is the main target of the ADD scheme. 

Nonetheless, the total computing time is reduced by up to 45%, which demonstrates 

the advantage of the ADD scheme in the computing time reduction.

Note that the capability of solving a 3D VVER full core is a crucial feature of 

a DWCC code because it is necessary for solving the asymmetric core, e.g., the X2 

benchmark problem or for analyzing the depletion in the core with an asymmetric 

burn-up distribution. The ADD scheme can be exploited to reduce computing time 

for those 3D VVER full core calculations.
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Table 5.15. Calculation performance assessed for the 3D VVER one-sixth core 
problems.

Problems
w/o ADD w/ ADD

# of RT
Total RT Total Ax

# of RT
Total RT Total 

Ax.
KAERI V03 4 1h 36m 5m 5 1h 10m 5m
KAERI V06 5 2h 9m 5m 5 1h 12m 5m
KAERI V09 5 2h 5m 6 1h 20m 5m
VVER440FC 4 15m 17m 5 13m 17m

Table 5.16. Calculation performance assessed for the 3D VVER full core problems

Problems
w/o ADD w/ ADD

# of RT
Total RT Total Ax

# of RT
Total RT Total 

Ax.
KAERI V03 4 10h 39m 39m 5 6h 18m 40m
KAERI V06 5 13h 19m 40m 5 6h 20m 40m
KAERI V09 5 13h 31m 40m 5 6h 19m 40m
VVER440FC 4 1h 32m 1h 47m 5 1h 8m 1h 55m

Table 5.17. Computing time reduction (%) with the ADD scheme for the 3D VVER 
core problems.

Problems Single RT Total RT Total

1/6 Core

KAERI V03 41 27 19
KAERI V06 44 44 36
KAERI V09 44 33 26
VVER440FC 32 15 4

Full Core

KAERI V03 53 41 31
KAERI V06 52 52 44
KAERI V09 53 53 45
VVER440FC 41 27 5

5.3. RENUS Calculations for the Arbitrarily Deformed Core 
Problems

Considering the physical backgrounds of an SFR core deformation, it is 

necessary to employ contrived states to verify the unstructured nodal solution in 

RENUS. The definition of the contrived state is suggested first. In the subsequent 

subsection, the benchmark for a sodium-cooled fast breeder reactor is introduced,

and the RENUS solutions are verified for the benchmark core problems with 

regularly structured geometry against the reference solution provided by McCARD. 

The RENUS verification results for the arbitrarily deformed 2D core problems with

uniform and assembly-wise expansion are then followed.
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5.3.1. Definition of the Contrived State

The physical backgrounds of an SFR core deformation can be grasped from the 

limited free bow illustrated in Figure 5.16.[41] As the thermal gradient develops 

during reactor operation, the assembly ducts begin to bow outward. After the 

outermost top load pad touches the restraint ring, the assembly ducts begin to bow 

inward. Note that the assembly inner components retain shape while the assembly 

duct moves laterally. This core deformation is a problem with millions of degrees of 

freedom due to thousands of mechanical interactions between the assembly ducts, 

supporting structure, restraint system, etc., induced by neutron irradiation, thermal 

expansion, and sodium coolant pressure. Dealing with the entire quality of the 

information provided to SFR core deformations must exceed the scope of this 

research.

Figure 5.16. Axial and radial configurations of the limited free bow in an SFR core.

The contrived state, a hypothetical deformation state not claimed to be true 

deformation state in the reactor, is introduced to expose the weaknesses and strengths 

of calculation methods under different conditions.[42] Considering the lateral

displacements of assemblies shown in Figure 5.16, contrived states are defined in 

this work as assembly deformations depicted in Figure 5.17. Each corner point

colored grey deviates to the outward position colored red along the dashed line 

passing through the core center. The maximum x and y displacements of the 

assembly duct in the experimental breeder reactor-2 are 0.42 cm and 0.35 cm,

respectively, in Reference [43]. The root-sum-squared displacement reaches about

9 % of the assembly pitch of the core. Thus, the displacement of assembly corner 

points with contrived states is determined as 9 % of the assembly pitch in this work.
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Figure 5.17. Radial core configuration with contrived states on one assembly.

5.3.2. SNR-300 Benchmark Problem with regularly structured geometry

The schneller natriumgekühlter reaktor-300 (SNR-300) is a sodium-cooled fast 

breeder reactor with 730 MW thermal power. The benchmark for this reactor 

provides the descriptions of the 3D core geometry and 4G macroscopic cross-section 

set.[44] The radial and axial core configurations are depicted in Figure 5.18 and 

Figure 5.19, respectively. Two 2D core problems including the upper core (UC) and 

lower core (LC) problems are incorporated in this benchmark. The outer control rod 

assembly is filled with the absorber and follower in the UC and LC problem, 

respectively, following the axial control rod insertion illustrated in Figure 5.19.

Figure 5.18. Radial core configuration of the SNR-300 benchmark problem.
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Figure 5.19. Axial core configuration of the SNR-300 benchmark problem.

The comparison results of the RENUS nodal solutions for the two 2D SNR-300 

core problems with regularly structured geometry against the reference solutions 

produced by McCARD are summarized in Table 5.18. Each McCARD solution was

determined as an average of three calculation results for the same problem with 

different random number seeds. Each McCARD calculation was conducted by using

100 inactive cycles, 300 active cycles, and 10 million particles per cycle. The 

standard deviation of assembly power distribution does not exceed 0.15 %. The 

solution differences in the UC problem with 508 pcm in reactivity and the maximum 

3.38 % in assembly power distribution are larger than those in the LC problem due 

to the higher flux gradient in the core induced by the absorber in the outer control 

assembly. The McCARD assembly power and assembly power difference

distributions are depicted in Figure 5.20 and Figure 5.21, respectively.

Table 5.18. Comparison of the RENUS solution for two 2D SNR-300 core
problems with regularly structured geometry against the reference solution.

Case Δρ (pcm) Max. ΔP (%) RMS ΔP (%)
UC -508 3.38 1.71
LC -270 2.40 1.34
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Figure 5.20. McCARD assembly power distribution for the two 2D SNR-300 core 
problems.

Figure 5.21. Assembly power difference distribution for the two 2D SNR-300 core 
problems.

In this work, the level of assembly power distribution is adjusted by dividing 

the power per volume for each assembly by the power per volume for the core. 

Concretely, the assembly power ���
� is adjusted as follows:

�� = ∑ ∑ ��
� ����

� ���
�

���
�

∑ ��
���
�

� , (5.1)

���
� = ∑ ��

� ����
��

� ��⁄ , (5.2)

where ���  and �  are the number of fuel assemblies and energy groups, 

respectively; ��
�   and �Σ��

�   are the flux and kappa-fission macroscopic cross-

section for the �-th assembly and �-th energy group, respectively; �� is the �-th 

assembly volume.
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5.3.3. 2D deformed SNR-300 core problems with uniform expansion

The masses of the fuel and structural materials are conserved after core

deformations while the sodium coolant can backfill into the deformed domain. The 

factor ��� is introduced in this work to deal with diverse cross-section changes as 

follows:

�′ = � ×
�

�����
����

�

, (5.3)

where Σ and Σ′ are the macroscopic cross-sections before and after assembly 

deformation, respectively; �  and �′  are the assembly volumes before and after 

assembly deformation, respectively. Note that the cross-section remains the same 

when ��� is 0 %. It changes in inverse proportion to volume change when ��� is 

100 %. In this verification, the core problems with contrived states are solved with

three different ��� of 0 %, 50 %, and 100 %.

The arbitrarily deformed 2D SNR-300 core problems with uniform expansion 

are established in this work by applying contrived states on assemblies in the fuel 

region as depicted in Figure 5.22. The fuel assemblies are uniformly expanded in 

these problems except for the radial blanket of which the assembly power is 

negligible. For the two 2D SNR-300 core problems with three ��� , six deformed 

2D core problems were solved.

Figure 5.22. Contrived states on the fuel region.

The comparison results of k-eff values between RENUS and McCARD for the 



66

deformed core problems are summarized in Table 5.19 and Table 5.20, respectively.

The McCARD options for regularly structured geometry were also used here. Huge 

reactivity differences between the two solutions shown for regularly structured

geometry remain almost the same after applying core deformation regardless of ��� .

The reactivity changes of the two solutions for the deformed core problem compared 

to the problem with regularly structured geometry match each other within 7 pcm. 

In contrast, the reference reactivity changes from -240 pcm to 192 pcm. It is 

demonstrated that RENUS reproduces reactivity changes in the reference solution 

induced by core deformations with high accuracy.

Table 5.19. Comparison of the k-eff values for the deformed 2D SNR-300 core 
problems with uniform expansion.

k-eff Regular
Deformed (Rxs)

0 % 50 % 100 %

UC

McCARD 1.13258 1.13496 1.13226 1.12960
RENUS 1.12610 1.12854 1.12574 1.12307
Δρ (pcm) -508 -501 -512 -515

LC

McCARD 1.23297 1.23399 1.23221 1.23046
RENUS 1.22888 1.22987 1.22807 1.22632
Δρ (pcm) -270 -271 -274 -274

Table 5.20. Comparison of the reactivity changes for the deformed 2D SNR-300 
core problems with uniform expansion.

Δρ (pcm) vs. Regular
Deformed (Rxs)

0 % 50 % 100 %

UC

McCARD 185 -25 -233
RENUS 192 -28 -240

del 7 -3 -7

LC
McCARD 67 -50 -165
RENUS 66 -54 -170

del -2 -4 -4

The comparison results of assembly power and assembly power change

distributions between the two solutions for the deformed core problems are 

summarized in Table 5.21 and Table 5.22. The assembly power differences between 

the two solutions for the LC problem after core deformation remain almost the same. 

Those for the UC problem are even decreased. The changes in assembly power 

distribution of the two solutions for the deformed core problem compared to the 

problem with regularly structured geometry match each other within 0.46 %. In 

contrast, the reference assembly power changes by up to 47.76 %. The McCARD 

assembly power, McCARD assembly power changes, and assembly power change
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del distributions for the deformed LC problem with 0 % ��� and the deformed UC 

problem with 100 % ��� are presented in Figure 5.23-Figure 5.25, respectively.

The assembly power change del is defined in this work as the RENUS and McCARD 

difference of the assembly power change in the deformed core problem. For example, 

the McCARD and RENUS assembly power at the core center change by about -

47.76 % and -48.22 %, respectively, in the deformed UC problem with 100 % ��� .

Therefore, the assembly power change del at the core center is 0.46 % in this problem.

All assembly power change del distribution for the six core problems are small 

enough compared to assembly power change distributions. These results reveal that 

the RENUS unstructured nodal solution and the reference solution match each other 

well in assembly power changes induced by core deformations.

Table 5.21. Comparison of the assembly power distribution for the deformed 2D 
SNR-300 core problems with uniform expansion.

Abs. ΔP (%) Regular
Deformed (Rxs)

0 % 50 % 100 %

UC
Max. 3.38 3.47 3.11 2.96
RMS 1.71 1.72 1.69 1.68

LC
Max. 2.44 2.41 2.41 2.40
RMS 1.34 1.34 1.33 1.33

Table 5.22. Comparison of the assembly power change distribution for the 
deformed 2D SNR-300 core problems with uniform expansion.

Abs. ΔP (%) vs. Regular
Deformed (Rxs)

0 % 50 % 100 %

UC

McCARD
Max. 3.79 27.13 47.76
RMS 2.33 3.14 4.64

RENUS
Max. 3.72 27.4 48.22
RMS 2.33 3.17 4.7

del
Max. 0.09 0.27 0.46
RMS 0.03 0.04 0.06

LC

McCARD
Max. 3.61 20.94 36.63
RMS 2.15 2.61 3.58

RENUS
Max. 3.56 21.08 36.9
RMS 2.15 2.62 3.61

del
Max. 0.06 0.13 0.27
RMS 0.02 0.03 0.05
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Figure 5.23. McCARD assembly power distribution for the deformed 2D SNR-300 
core problems with uniform expansion.

Figure 5.24. McCARD assembly power change distribution for the deformed 2D 
SNR-300 core problems with uniform expansion.

Figure 5.25. Assembly power change del distribution for the deformed 2D SNR-
300 core problems with uniform expansion.
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5.3.4. 2D deformed SNR-300 core problems with assembly-wise expansion

The excellent agreements for the changes in nuclear characteristics between the 

two solutions for the deformed core problems presented in the previous subsection 

can result from a cancellation between opposite solution errors in assemblies.

Therefore, it needs to investigate the cores with contrived states on each assembly. 

In this work, twenty-two core problems were established additionally for the UC and 

LC problems, respectively, by applying contrived states to a group of assemblies. 

Concretely, contrived states were applied to one of the assemblies shown in Figure 

5.26. Contrived states were also applied to the assemblies, which overlaps with the 

assembly when reflected on the 30-degree lines passing through the core center. For 

example, contrived states are applied to the twelve assemblies expressed as diagonal 

lines in Figure 5.27 in case 17. By duplicating assembly deformations in the 

azimuthal direction, the changes in nuclear characteristics are amplified, and the 

resolution of solution differences is increased. One hundred and twenty-six core 

problems were solved with the twenty-one cases, UC and LC problems, and three 

different ��� . The McCARD solutions exploited in the following verifications were 

obtained by using the same options described in Subsection 5.3.2.

Figure 5.26. Radial core configuration of the SNR-300 benchmark problem in the 
range of 30-degree.
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Figure 5.27. Deformed assemblies (expressed as diagonal lines) in the deformed 
2D SNR-300 core problem with assembly-wise expansion (case 17).

The comparison results of the reactivity changes between the two solutions for 

the deformed core problems are presented in Figure 5.28-Figure 5.33. The values in 

each assembly are the calculation results for the deformed core problem with 

contrived states on the assembly. Those values are the McCARD and RENUS 

reactivity changes and the reactivity change del between the two solutions. The 

reference reactivity changes by up to 383 pcm in the UC problem case 10 with 0 % 

��� . The reactivity changes of the two solutions match each other within 18 pcm.

The comparison results of the assembly power change distribution between the 

two solutions for the deformed core problems are presented in Figure 5.34-Figure 

5.39. The values in each assembly are the calculation results for the deformed core 

problem with contrived states on the assembly. The McCARD and RENUS assembly 

power changes and the assembly power change del between the two solutions are 

represented in columns at each assembly. The maximum and RMS values are 

represented in rows at each column. The reference assembly power changes by up to 

45.52 % in the UC problem case 2 with 100 % ��� . The assembly power changes

of the two solutions match each other within 0.40 %.
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Figure 5.28. Comparison of the reactivity changes for the deformed UC problems 
with assembly-wise expansion and 0 % ��� .

Figure 5.29. Comparison of the reactivity changes for the deformed LC problems 
with assembly-wise expansion and 0 % ��� .
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Figure 5.30. Comparison of the reactivity changes for the deformed UC problems 
with assembly-wise expansion and 50 % ��� .

Figure 5.31. Comparison of the reactivity changes for the deformed LC problems 
with assembly-wise expansion and 50 % ��� .
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Figure 5.32. Comparison of the reactivity changes for the deformed UC problems 
with assembly-wise expansion and 100 % ��� .

Figure 5.33. Comparison of the reactivity changes for the deformed LC problems 
with assembly-wise expansion and 100 % ��� .
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Figure 5.34. Comparison of the assembly power change distribution for the 
deformed UC problems with assembly-wise expansion and 0 % ��� .

Figure 5.35. Comparison of the assembly power change distribution for the 
deformed LC problems with assembly-wise expansion and 0 % ��� .
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Figure 5.36. Comparison of the assembly power change distribution for the 
deformed UC problems with assembly-wise expansion and 50 % ��� .

Figure 5.37. Comparison of the assembly power change distribution for the 
deformed LC problems with assembly-wise expansion and 50 % ��� .
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Figure 5.38. Comparison of the assembly power change distribution for the 
deformed UC problems with assembly-wise expansion and 100 % ��� .

Figure 5.39. Comparison of the assembly power change distribution for the 
deformed LC problems with assembly-wise expansion and 100 % ��� .

The McCARD assembly power, McCARD assembly power changes, and 

assembly power change del distributions for the deformed LC problem case 18 with 

0 % ��� and the deformed UC problem case 02 with 100 % ��� are depicted in 

Figure 5.40-Figure 5.42, respectively.
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Figure 5.40. McCARD assembly power distribution for the deformed 2D SNR-300 
core problems with assembly-wise expansion.

Figure 5.41. McCARD assembly power change distribution for the deformed 2D 
SNR-300 core problems with assembly-wise expansion.

Figure 5.42. Assembly power change del distribution for the deformed 2D SNR-
300 core problems with assembly-wise expansion.
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The reactivity dels and assembly power change del distributions for all

deformed core problems with assembly-wise expansion are small enough compared 

to the reference reactivity changes and assembly power change distributions, 

respectively. Therefore, it is concluded that the highly accurate RENUS solutions for 

predicting the changes in nuclear characteristics induced by uniform expansion on 

the fuel region do not owe to any error cancellation.
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Summary and Conclusions

In this work, the hexagonal ray tracing module and coarse mesh finite difference

(CMFD) acceleration, which are capable of explicitly modeling hexagonal geometry 

cores including complicated structures, are developed in a direct whole core 

calculation (DWCC) code, nTRACER. The hexagonal ray tracing calculation in 

nTRACER is parallelized efficiently by employing the assembly-wise domain 

decomposition (ADD) scheme. The hexagonal assembly-wise nodal solution is 

expanded to the unstructured geometry so that the high-fidelity analyses of sodium-

cooled fast reactor (SFR) core deformations can be conducted in a practical time.

The nTRACER solution accuracy is verified by comparing its calculation results for 

the various hexagonal geometry core problems against the reference solutions. The 

ADD performance is examined by comparing the ray tracing time with or without

the ADD scheme for the water-water energetic reactor (VVER) core problems. The 

accuracy of the unstructured hexagonal nodal solution in RENUS is verified by 

comparing its calculation results for the arbitrarily deformed 2D SFR core problems 

against the McCARD results.

Both VVERs, which have spread widely in the East-European bloc and 

developing countries for several decades, and SFRs, which are estimated to have the 

highest feasibility of commercial operations among Generation-Ⅵ reactors, have a 

hexagonal geometry core. The unusual structures such as Vygorodka and the corner 

stiffener in VVERs and assemblies with different rod sizes in SFRs undermine the 

assumptions of the diffusion equation and assembly or pin homogenization, on 

which the two-step core calculation (TSCC) code systems base. Thus, the hexagonal 

ray tracing module and CMFD acceleration are developed in nTRACER to attain the 

solution for VVER and SFR core problems with high accuracy in this research. The 

elongated model is employed in the hexagonal ray tracing module to explicitly 

model Vygorodka and the assembly duct of VVER cores. This model expands the 

periphery fuel cell into a pentagon so that the gap cell becomes a parallelogram. The 

memory required to construct cell-wise module rays increases in this model due to 

the various cell types in hexagonal geometry. Thus, the hexagonal ray calculation in 

nTRACER is conducted by using the assembly-wise modular rays.

The CMFD formulation for regular square cells cannot solve the various cell 

types in the elongated model. Thus, the CMFD formulation is expanded to the 

unstructured geometry by applying flexibility to the surface length, mesh width, and 

the number of neighboring meshes. The performance of CMFD calculations would
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be deteriorated by incorporating CMFD meshes for the tiny gap cells in VVER cores 

in that a significant computing resource is consumed additionally while solution 

accuracy improvement is negligible. Thus, the super pin scheme, which is to 

homogenize the periphery fuel cell and gap cell into one cell in the CMFD 

calculation, is employed in nTRACER. Consequently, the CMFD calculation time 

and total computing time for the 2D VVER core problems are reduced by up to 39 % 

and 17 %, respectively.

DWCC solutions have higher accuracy and resolution compared to TSCC 

solutions while they require an enormous computing resource and time. Thus, it is 

necessary for DWCC solutions to reduce memory usage and improve parallel 

efficiency. nTRACER divides a 3D core into several planes, on which ray tracing 

calculations are conducted in parallel by using processors of computing nodes. Each 

planar ray tracing calculation is also conducted in parallel by using threads of CPUs. 

The angle-wise parallelization, where threads trace tracking rays in parallel across 

the whole problem domain, requires an enormous memory, which increases 

computing time by inducing high fetching overhead. This problem is alleviated by 

using the ADD scheme to let each thread trace the rays in one assembly. Memory 

reduction and consequent reduction in computing time are possible since storing the 

flat source region (FSR) information is needed only for the assemblies being 

computed currently. On the other hand, the convergence of method of characteristics 

(MOC) calculations would be deteriorated in ADD calculations due to the lag in 

updating the incoming angular fluxes at the assembly surface. This deterioration is 

relaxed by updating the angular fluxes after CMFD calculations and by using the 

three-color scheme. The three-color scheme is to sweep all assemblies belonging to 

one color and then use the outgoing angular fluxes of those assemblies in updating

the incoming angular fluxes of the other colored assemblies. The total computing 

time for the 2D VVER core problems is reduced by up to 13 % by reducing the 

number of MOC iterations. The angular flux storage scheme (AFSS), which is to 

store the angular flux changes and conduct moment calculations at the end of the ray 

tracing calculation, is also used in nTRACER. The total computing time for the 2D 

VVER core problems is reduced by up to 23 % by avoiding expensive moment 

calculations during ray tracing calculations.

The critical characteristic of an SFR core is the thermal core expansion induced 

by high power density and steep temperature gradient, which significantly impacts

reactivity and power distribution. A finite difference method, finite element method, 

and Monte Carlo method, which have been used in the analyses of SFR core 
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deformations, have a drawback in that they require an enormous computing resource 

to attain sufficient solution accuracy. On the other hand, a nodal solution requiring

the smallest calculation burden has been established only for regularly structured

geometries so far. In this work, the unstructured nodal solution is developed in 

RENUS to overcome this problem. The triangle-based polynomial expansion nodal 

(T-PEN) method, corner point balance (CPB) solution, and CMFD formulation are 

expanded to the irregularly deformed hexagonal geometry. The linear systems in the 

T-PEN method and CPB solution are constructed by substituting the derived group 

variables with an equation of the representative group variables in the physical 

constraints. The curvilinear and surface integrals of basic functions incorporated in 

the variable expressions need to be calculated for unstructured geometry to conduct 

this conversion. The method, which is to split a polygon into several parallelograms

and calculate the polynomial integrals in each parallelogram by using the look-up 

table formulated in advance, is suggested. The unstructured nodal solution is 

implemented in RENUS by expressing the surface and areal variables in arbitrary 

geometry as linear combination of polynomials by using this method. The CMFD

formulation in RENUS is expanded to the unstructured geometry similarly to

nTRACER.

The solution accuracy of nTRACER is verified by comparing its calculation 

results for the various hexagonal geometry core problems against the McCARD 

results. The reactivity difference and the maximum and root-mean-square 3D pin 

power differences do not exceed 7 pcm, 6.41 %, and 0.44 %, respectively, for the 

three 3D C5G7 H benchmark problems with different control rod insertions. For the 

nine 2D VVER-1000 core problems proposed by KAERI with different fuel and 

coolant temperatures and boron concentrations, the solution differences do not 

exceed 106 pcm, 2.24 %, and 0.95 %, respectively, by using the P0 option. It is 

demonstrated that the nTRACER solution difference is reduced by using the P2 

option, especially for the problems in operation state with low boron concentration. 

The solution differences are reduced by up to 70 pcm, 0.25 %, and 0.12 %, 

respectively, by using the P2 option. The nTRACER and McCARD solutions for the 

2D ‘Full-core’ VVER-440 and MET-1000 SFR core problems also match each other 

well by using the P2 option. It is demonstrated that nTRACER achieved satisfactory 

solution accuracy for hexagonal geometry core problems.

The ADD performance is examined by comparing the ray tracing time with and 

without the ADD scheme for the various VVER core problems. The maximum 

difference in reactivity and pin power distribution induced by the ADD scheme do
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not exceed 1 % and 0.78 %, respectively. For the 2D one-sixth and full core problems, 

the ray tracing time is reduced by up to 18 % and 48 %, respectively. The total 

computing time is reduced by up to 6 % and 38 %, respectively. For the 3D one-sixth 

and full core problems, the ray tracing time is reduced by up to 44 % and 53 %, 

respectively. The total computing time is reduced by up to 36 % and 45 %, 

respectively. It is verified that the hexagonal ray tracing calculation in nTRACER is 

parallelized efficiently by employing the ADD scheme.

The performance of the unstructured hexagonal nodal solution in RENUS is 

verified by comparing its calculation results for the 2D arbitrarily deformed schneller 

natriumgekühlter reaktor-300 (SNR-300) core problems against the McCARD 

results. The contrived state is defined here as an arbitrary core deformation to deviate

assembly corner points outward by 9 % of the assembly pitch. The solution 

differences for the 2D SNR-300 core problems with regularly structured geometry 

are somewhat large, up to 508 pcm in reactivity and 3.38 % in assembly power

distribution. Nonetheless, RENUS reproduces the changes in reactivity and 

assembly power distribution in the reference solution induced by contrived states on 

the fuel region within 7 pcm and 0.46 %, respectively. In contrast, the reference 

reactivity and assembly power change by up to 240 pcm and 47.76 %, respectively.

A cancellation between opposite solution errors in assemblies may exist for the 

deformed core problem with uniform expansion. Therefore, the RENUS solutions 

were further verified by decomposing the deformed core problem with uniform 

expansion into the deformed core problems with assembly-wise expansion. The 

reactivity and assembly power changes of the two solutions match each other within 

18 pcm and 0.40 %, respectively, while they change by up to 383 pcm and 45.52 %, 

respectively. It is demonstrated by these verification results that excellent agreements 

between the two solutions for the deformed core problems do not owe to any error 

cancellation. Thus, it is concluded that RENUS attained significantly high accuracy 

in predicting the changes in nuclear characteristics induced by core deformations by 

using the unstructured nodal solution.

In this work, the high-fidelity hexagonal geometry core analysis system capable 

of diverse applications is facilitated by developing the hexagonal ray tracing module 

and CMFD acceleration in nTRACER and by expanding the nodal solution in 

RENUS to the unstructured geometry. nTRACER reproduces the reference solution 

for hexagonal geometry core problems with high accuracy by explicitly modeling

the complicated geometries of VVER and SFR cores. The practicality of the 

nTRACER solution is improved as the ray tracing time is reduced by employing the 
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ADD scheme. RENUS reproduces the McCARD solution changes for the 2D 

arbitrarily deformed hexagonal geometry core problems with high accuracy by using

the unstructured nodal solution. Due to its accuracy and practicality, nTRACER 

coupled with T/H codes is currently used in the multi-physics analyses of VVER 

cores. It is expected that this hexagonal geometry core analysis system would also 

provide the comprehensive analyses of SFR cores including thermal core expansion.
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요약 및 결론

이 연구에서는 VVER (Water-Water Energetic Reactor) 및 SFR (Sodium-

cooled Fast Reactor) 노심에서의 불규칙적인 기하 구조를 정확히 모사하는

육방형 집합체 기반 선추적 해석 및 CMFD (Coarse Mesh Finite Difference) 

계산 모듈을 직접전노심수송해석코드 nTRACER에 구현했다. 병렬

계산을 통한 계산 신속화를 위해서는 ADD (Assembly-wise Domain 

Decomposition)를 사용하여 육방형 집합체 기반 선추적 계산을

효과적으로 가속시켰다. 한편 SFR에서의 비균일 노심 열팽창을

효과적으로 모사하기 위해 노달코드 RENUS에 가변 구조에 대한 노달법

계산 모듈을 구현했다. 새로 구현한 nTRACER의 계산 모듈은 다양한

육방형 집합체 기반 벤치마크 문제에 대해 McCARD 표준해와

비교함으로써 계산 정확도를 검증했다. ADD의 효과는 병렬계산법에

따른 VVER 노심 문제에 대한 선추적 계산 시간을 비교함으로써

평가했다. 가변 구조 노달법 RENUS 계산 모듈은 임의로 변형된 2차원

SFR 벤치마크 문제에 대해 McCARD 표준해와 비교함으로써 계산

정확도를 검증했다.

동구권과 개도국에서 다수 운영되고 신설되고 있는 VVER과 4세대

원자로로서 활발하게 연구되고 있는 SFR은 공통적으로 육방형 집합체

기반 노심을 가진다. VVER 노심에서 Barrel, Vygorodka와 집합체 관, SFR 

노심에서의 이중 집합체 관 및 다양한 집합체 내부 구조 등의 복잡한

구조물은 집합체 단위 균질화와 확산 방정식에 기초하는 2단계 계산

방법의 정확도를 상당히 저하시킨다. 이러한 배경하에 이 연구에서는

VVER과 SFR 노심 해석의 정확도를 제고하기 위해 전노심계산코드

nTRACER에 육방형 집합체 기반 노심 계산 기능을 구현하는 것을

목표로 삼았다. 집합체관과 Vygorodka를 그대로 모사하기 위해 육방형

집합체 기반 선추적 모듈에 Elongated 모델을 도입했다. 이 모델은 바깥

연료 셀을 오각형으로 확장함으로써 간극 셀을 평행사변형으로 모사한다. 

이 모델에서 육방형 집합체가 다양한 기하 구조의 셀을 가지므로 셀

단위 모듈러 선을 구성할 때 필요한 메모리가 증가한다. 따라서

nTRACER는 육방형 집합체 단위 모듈러 선을 구성하여 선추적 계산을

수행했다.
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기존 nTRACER의 CMFD 계산 모듈은 고정된 정방형 메쉬에서의

확산 방정식에 기초하여 구현되었으므로 Elongated 모델에서의 다양한

기하 구조의 메쉬를 해석할 수 없다. 따라서 확산 방정식에서의 메쉬

경계면 길이, 중심과 경계면과의 수직 거리 및 인접 메쉬 개수에

자유도를 부여함으로써 CMFD 계산 모듈이 가변 구조에 대해 적용될 수

있도록 기능을 확장했다. VVER 노심에서의 간극 셀은 연료 셀에 비해

크기가 매우 작으므로 CMFD 계산에서 이 간극 셀을 그대로 모사하는

것은 비효율적이다. 따라서 간극 셀 및 간극 셀과 인접한 연료 셀을

하나의 메쉬로 균질화한 후 CMFD 계산을 수행하는 Super pin 계산법을

도입했다. 이 방법에 의해 2차원 VVER 노심 문제에 대한 CMFD 계산

시간과 총 계산 시간이 각각 최대 39 %, 17 % 감소했다.

직접전노심계산법은 2단계 해석법에 비해 높은 정확도와 해상도를

가지는 반면 막대한 계산 자원과 계산 시간을 필요로 한다. 따라서

직접전노심수송해석법에는 메모리 사용량을 줄이고 병렬계산능을 높이는

최적화가 필수적이다. nTRACER는 3차원 노심을 여러 평면으로 나눈 후

컴퓨팅 노드의 CPU들을 사용하여 각 평면에서의 선추적 계산을

병렬적으로 수행하며, 평면에서의 선추적 계산 또한 CPU 코어들을

사용하여 병렬적으로 수행한다. CPU 코어들이 노심에서의 추적선을

병렬적으로 추적하는 기존 nTRACER 병렬계산법은 각 코어가 노심 전체

FSR (Flat Source Region) 정보를 저장하며 이에 따라 메모리 접근 연산에

막대한 계산 시간이 소요된다. 이 문제를 해결하기 위해 이 연구에서는

nTRACER의 육방형 집합체 기반 선추적 모듈의 병렬계산법으로서

CPU의 코어들이 각 집합체에서의 선추적 계산을 병렬적으로 수행하는

ADD를 구현했다. 이를 통해 각 CPU 코어에서 선추적 계산에 필요한

FSR 메모리가 크게 감소하고 이에 따라 선추적 계산 시간 상당히

감소했다. 한편, ADD 선추적 계산에서는 집합체 경계에서의 인입 부분

각중성자속가 불연속적으로 갱신되며 이에 따라 MOC (Method of 

Characteristics) 계산 수렴성이 악화된다. 이러한 불연속성을 완화하기

위해 CMFD 계산 전후 인입 부분 각중성자속의 변화율로 인입 부분

각중성자속을 보정하는 방법과 3색 계산법을 도입했다. 3색 계산법이란

노심에서의 육각형 집합체를 세 가지 그룹으로 나누고 한 그룹에서의

선추적 계산 이후 집합체 경계면에서의 외행 부분 각중성자속을 다른

그룹에서의 인입 부분 각중성자속으로 사용하는 방법이다. 이를 통해
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선추적 반복 횟수를 줄임으로써 2차원 VVER 노심 문제에 대한 총 계산

시간이 최대 13 % 감소했다. 한편 AFSS (Angular Flux Storage Scheme)를

사용하여 ADD 선추적 계산 시간을 추가적으로 단축시켰다. AFSS란

Segment에서의 각중성자속 변화를 별도로 저장하여 선추적이 끝난 후

중성자속을 한번에 계산하는 방법이다. 이를 통해 중성자속 모먼트

계산에서의 수학적 연산수를 줄임으로써 2차원 VVER 노심 문제에 대한

총 계산 시간이 최대 26 % 감소했다.

SFR 노심에선 높은 열출력 밀도와 급격한 온도 변화에 의해 집합체

관에 변형이 발생하며 이에 따라 연료와 냉각재의 부피비가 달라지므로

노심 반응도 및 열출력 분포 또한 크게 변한다. 기존 연구에서 이러한

비균일 노심 열팽창을 해석하기 위해 사용한 유한차분법, 유한요소법 및

몬테칼로 방법은 모두 적절한 정확도를 달성하기 위해 상당한 계산

자원을 필요로 한다. 반면 계산 자원을 가장 적게 사용하는 노달법은

지금까지 규칙적인 기하 구조에 대해서만 계산식이 유도되었다. 이러한

배경으로부터 이 연구에서는 노달코드 RENUS에 가변 구조 노달법 해석

모듈을 구현했다. 구체적으로는 횡 방향 T-PEN (Triangle-based Polynomial 

Expansion Nodal) 방법과 CPB (Corner Point Balance) 계산 및 CMFD 계산을

가변 구조에 대해 확장했다. T-PEN과 CPB 방법은 유도 변수를 표현

변수의 식으로 표현한 후 물리적 제한식에 이 식을 대입함으로써

선형계를 구성한다. 이 변수들에는 경계면과 메쉬에서의 중성자속

평균값 등이 포함된다. 따라서 가변 구조 노달법을 구현하기 위해서는

가변 경계면과 가변 영역에서의 다항식 선적분 및 면적분을 계산해야

한다. 이 연구에서는 다각형을 여러 평행사변형으로 나눈 후 미리

계산된 순람표를 사용하여 적분값을 계산하는 방법을 고안했다. 

RENUS는 이 방법을 사용하여 변형된 집합체에서의 변수들을

다항식으로 표현하며 이를 통해 선형계를 수립하고 노달계산을 수행한다. 

가변 구조에 대한 RENUS의 CMFD 계산 모듈은 nTRACER에서의 CMFD 

계산 모듈과 같은 방법으로 구현했다.

nTRACER의 계산 정확도는 다양한 육방형 집합체 기반 노심 문제에

대해 nTRACER 계산 결과와 McCARD 표준해를 비교함으로써 검증했다. 

기존 C5G7 벤치마크를 육방형 집합체 기반 노심으로 변형한 C5G7 H 

벤치마크에서 제어봉 삽입 정도를 달리한 세 개의 3차원 노심 문제에
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대해 반응도 오차는 7 pcm 이하며, 3차원 봉 출력 오차의 최댓값과 RMS

(Root-mean-square) 값은 각각 6.41 %, 0.44 % 이하였다. KAERI에서 제안한

VVER-1000 벤치마크에서 핵연료와 감속재의 온도 및 붕산 농도를

달리한 9 개의 2차원 노심 문제에 대해 nTRACER가 P0 옵션을 사용할

때 반응도 오차는 106 pcm 이하며, 봉 출력 오차의 최댓값과 RMS 값은

각각 2.24 %, 0.95 % 이하였다. 온도가 높고 붕산 농도가 낮은 노심

문제에 대해 nTRACER가 P2 옵션을 사용할 때 계산 결과 오차가

효과적으로 감소했다. nTRACER가 P2 옵션을 사용함으로써 반응도

오차는 최대 70 pcm 감소하며, 봉 출력 오차의 최댓값과 RMS 값은 각각

최대 0.25 %, 0.12 % 감소했다. VVER-440 ‘Full-core’ 2차원 노심 문제 및

MER-1000 SFR 2차원 노심 문제에 대해서도 P2 옵션을 사용할 때

nTRACER와 McCARD 계산 결과가 잘 일치했다. 이러한 검증 결과를

바탕으로 하여 nTRACER의 육각형 집합체 기반 노심 해석 모듈이 높은

계산 정확도를 가진다는 결론을 얻었다.

nTRACER ADD의 선추적 계산 가속 효과는 다양한 VVER 노심에

대해 ADD 사용 전후 선추적 계산 시간을 비교함으로써 검증했다. 

ADD에 의해 발생한 계산 결과의 반응도 오차와 봉 출력 오차는 각각

최대 1 pcm, 0.78 %였으며 이를 통해 ADD가 계산 정확도를 저해하지

않음을 확인했다. 2차원 노심 문제에 대해 ADD를 사용할 때 총 선추적

계산 시간은 1/6 노심과 전노심에서 각각 최대 18 %, 48 % 감소하며, 총

계산 시간은 1/6 노심과 전노심에서 각각 최대 6 %, 38 % 감소했다. 3차원

노심 문제에 대해 ADD를 사용할 때 총 선추적 계산 시간은 1/6 노심과

전노심에서 각각 최대 44 %, 53 % 감소하며, 총 계산 시간은 1/6 노심과

전노심에서 각각 최대 36 %, 45 % 감소했다. 이러한 검증 결과를

바탕으로 하여 ADD에 의해 nTRACER 육각형 집합체 기반 선추적

계산이 효과적으로 가속된다는 결론을 얻었다.

RENUS 가변 구조 노달법의 계산 정확도는 SNR-300 (schneller 

natriumgekühlter reaktor-300) 2차원 변형 노심 문제에 대해 RENUS 계산

결과와 McCARD 표준해를 비교함으로써 검증했다. 이 연구에서는 임의

노심 변형인 국부 변형 상태를 각 집합체 꼭짓점을 노심 바깥 방향으로

집합체 길이의 9 %만큼 이동시키는 것으로 정의했다. 기존 SNR-300 

2차원 노심 문제에 대해 RENUS는 McCARD와 비교하여 최대 508 pcm 
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반응도 오차 및 3.38 % 집합체 열출력 오차로 다소 큰 계산 오차를

가진다. 반면 국부 변형에 의해 McCARD 반응도 및 집합체 열출력이

최대 240 pcm 및 47.76 %만큼 변할 때 각 변화에 대한 RENUS와

McCARD의 계산 오차는 각각 7 pcm와 0.46 % 이내였다. 연료

영역에서의 균일한 팽창에 의한 노심 변형 문제에선 반대 부호를 가지는

각 집합체에서의 계산 오차가 서로 상쇄될 수 있다. 따라서 집합체 단위

팽창에 의한 노심 변형 문제들에 대해서도 RENUS 검증을 수행했다. 이

노심 문제들에 대해 McCARD 반응도 및 집합체 열출력이 최대 383 pcm

및 45.52 %만큼 변할 때 각 변화에 대한 RENUS와 McCARD의 계산

오차는 각각 18 pcm와 0.40 % 이내였다. 이러한 검증 결과는 RENUS와

McCARD의 적은 계산 오차가 어떠한 오류 상쇄에도 의존하지 않음을

보인다. 따라서 RENUS가 가변 구조 노달법을 사용하여 노심 변형에

의한 노심 핵특성 변화를 높은 정확도로 예측한다는 결론을 얻었다.

이 연구에서는 직접전노심수송해석코드 nTRACER에 육방형 집합체

기반 선추적 해석 및 CMFD 계산 모듈을 구현하고 노달코드 RENUS에

가변 구조 노달법 해석 모듈을 구현함으로써 다양한 활용이 가능한

고신뢰도 육방형 노심해석체계를 개발했다. nTRACER는 VVER과 SFR 

노심의 복잡한 구조물을 정확하게 모사함으로써 육방형 집합체 기반

노심에 대해 McCARD 표준해와 잘 일치하는 계산 결과를 생산했다. 

육방형 집합체 기반 선추적 계산의 병렬계산법으로 ADD를

사용함으로써 nTRACER의 계산 효율성을 향상시켰다. RENUS는 임의로

변형된 육방형 집합체 기반 노심에 대해 가변 구조 노달법을 사용하여

McCARD 표준해와 잘 일치하는 계산 결과를 생산했다. nTRACER는 높은

계산 정확도와 계산 효율성으로 인해 이미 여러 T/H 코드와 연계되어

VVER 노심에 대한 다물리 해석에 사용되고 있다. 이 연구에서 개발한

고신뢰도 육방형 노심해석체계는 향후 비균일 노심 열팽창을 포함하는

총체적 SFR 노심 해석에도 유용하게 사용될 것으로 기대된다.
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초 록

이 연구에서는 VVER (Water-Water Energetic Reactor) 및 SFR (Sodium-

cooled Fast Reactor) 노심에서의 불규칙적인 기하 구조를 정확히 모사하는

육방형 집합체 기반 선추적 해석 및 CMFD (Coarse Mesh Finite Difference) 

계산 모듈을 직접전노심수송해석코드 nTRACER에 구현했다. VVER 

노심의 집합체관과 Vygorodka를 그대로 모사하기 위해 육방형 집합체

기반 선추적 모듈은 Elongated 모델을 도입했다. 이때 육방형 집합체

단위 모듈러 선을 구성하여 선추적 계산을 수행함으로써 노심 추적선

저장에 필요한 메모리를 줄였다. Elongated 모델에서의 다양한 기하

구조의 메쉬를 해석하기 위해 CMFD 계산 모듈의 기능을 가변 구조에

대해 확장했다. 이때 Super pin 해법을 사용함으로써 2차원 VVER 노심

문제에 대해 nTRACER의 CMFD 계산 시간 및 총 계산 시간이 각각

최대 39 % 및 17 % 감소했다.

병렬 계산을 통한 계산 신속화를 위해 ADD (Assembly-wise Domain 

Decomposition)를 사용하여 육방형 집합체 기반 선추적 계산을

효과적으로 가속시켰다. ADD에 의해 각 CPU 코어에서 선추적 계산에

필요한 FSR (Flat Source Region) 메모리가 집합체 범위만큼으로 크게

감소하고 이에 따라 선추적 계산 시간이 상당히 감소했다. 이때 MOC 

(Method of Characteristics) 계산 수렴성이 악화되는 문제를 완화하기 위해

CMFD 계산 전후 인입 부분 각중성자속의 변화율로 인입 부분

각중성자속을 보정하는 방법과 3색 계산법을 도입했다. 3색 계산법과

AFSS (Angular Flux Storage Scheme)를 사용함으로써 2차원 VVER 노심

문제에 대한 총 계산 시간이 각각 최대 13 % 및 23 % 감소했다.

SFR에서의 비균일 노심 열팽창을 효과적으로 모사하기 위해

노달코드 RENUS에 가변 구조 노달법 계산 모듈을 구현했다. 우선 가변

구조 다각형을 여러 평행사변형으로 나눈 후 미리 계산된 순람표를

사용하여 적분값을 계산하는 방법을 고안했다. 이 방법을 사용하여 횡

방향 T-PEN (Triangle-based Polynomial Expansion Nodal) 방법과 CPB (Corner 

Point Balance) 계산을 가변 구조에 대해 확장했다. RENUS의 3차원 CMFD 

계산 모듈은 nTRACER에서와 같은 방법으로 가변 구조에 대해

확장되었다.
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nTRACER의 계산 정확도는 다양한 육방형 집합체 기반 노심 문제에

대해 nTRACER 계산 결과와 McCARD 표준해를 비교함으로써 검증했다. 

세 개의 3차원 C5G7 H 벤치마크 노심 문제에 대해 반응도 오차는 7 pcm 

이하며, 3차원 봉 출력 오차의 최대값과 RMS (Root-mean-square) 값은

각각 6.41 %, 0.44 % 이하였다. 9 개의 2차원 KAERI VVER-1000 노심

문제에 대해 nTRACER가 P0 옵션을 사용할 때 반응도 오차는 106 pcm 

이하며, 봉 출력 오차의 최대값과 RMS 값은 각각 2.24 %, 0.95 % 

이하였다. 2차원 ‘Full-core’ VVER-440 및 MET-1000 SFR 노심 문제에

대해서도 nTRACER와 McCARD 계산 결과는 잘 일치했다. nTRACER가

P2 옵션을 사용함으로써 반응도 오차와 봉 출력 오차의 최댓값은 각각

최대 70 pcm 및 0.90 % 감소했다. 이러한 검증 결과를 바탕으로 하여

nTRACER의 육각형 집합체 기반 노심 해석 모듈이 높은 계산 정확도를

가진다는 결론을 얻었다.

nTRACER ADD의 선추적 계산 가속 효과는 다양한 VVER 노심에

대해 ADD 사용 전후 선추적 계산 시간을 비교함으로써 검증하였다. 

2차원 전노심 문제에 대해 ADD를 사용할 때 총 선추적 계산 시간과 총

계산 시간은 각각 최대 48 % 및 38 % 감소했다. 3차원 전노심 문제에

대해 ADD를 사용할 때 총 선추적 계산 시간과 총 계산 시간은 각각

최대 53 % 및 45 % 감소했다. 이러한 검증 결과를 바탕으로 하여 ADD에

의해 nTRACER 육각형 집합체 기반 선추적 계산이 효과적으로

가속된다는 결론을 얻었다.

RENUS 가변 구조 노달법의 계산 정확도는 SNR-300 (schneller 

natriumgekühlter reaktor-300) 2차원 변형 노심 문제에 대해 RENUS 계산

결과와 McCARD 표준해를 비교함으로써 검증했다. 이 연구에서는 가변

구조 노달법의 계산 정확도를 검증하기 위해 노심 문제에 국부 변형

상태를 도입했다. 연료 영역에 대한 국부 변형에 의해 반응도 및 집합체

열출력이 각각 최대 240 pcm 및 47.76 %만큼 변할 때 각 변화에 대한

RENUS와 McCARD의 계산 오차는 각각 7 pcm와 0.46 % 이내였다. 연료

영역에서의 균일한 팽창에 의한 노심 변형 문제를 집합체 단위 팽창에

의한 노심 변형 문제들로 분해한 후, 이 문제들에 대해서도 RENUS 

해법의 정확도를 검증했다. 이 검증 결과들을 바탕으로 하여 RENUS가
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가변 구조 노달법을 사용하여 노심 변형에 의한 노심 핵특성 변화를

어떠한 오류 상쇄 없이도 높은 정확도로 예측한다는 결론을 얻었다.

주요어 : 육방형 집합체 기반 노심, 선추적 계산, 소격격자 유한차분법,

집합체 단위 영역분할법, 노심 열팽창, 가변 구조 노달법

학 번 : 2016-21288
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