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Abstract

In this work, the hexagonal ray tracing module and coarse mesh finite difference
(CMFD) acceleration, which are capable of explicitly modeling hexagonal geometry
cores are developed in a direct whole core calculation code, nTRACER. The
hexagonal ray tracing module employs the elongated model to explicitly model the
unusual structures of a water-water energetic reactor (VVER) and sodium-cooled
fast reactor (SFR) core. The assembly-wise modular rays are used in the hexagonal
ray tracing calculation to reduce the tracking ray information to be stored. The coarse
mesh finite difference (CMFD) formulation is expanded to the unstructured
geometry to handle the irregular method of characteristics (MOC) cells in hexagonal
assemblies. The CMFD calculation time and total computing time for the 2D VVER
core problems are reduced by up to 39 % and 17 %, respectively, by using the super
pin scheme.

The hexagonal ray tracing calculation in nTRACER is parallelized efficiently
by employing the assembly-wise domain decomposition (ADD) scheme. Memory
reduction and consequent reduction in computing time are possible by using the
ADD scheme since the storage of the flat source region information is needed only
for the assemblies being computed currently. The deterioration in the convergence
of MOC calculations induced by using the ADD scheme is relaxed by updating the
angular fluxes after CMFD calculations and by using the three-color scheme. The
total computing time is reduced by up to 13 % and 23 % by using the three-color
scheme and the angular flux storage scheme, respectively.

The hexagonal assembly-wise nodal solution is expanded to the unstructured
geometry so that the high-fidelity analyses of SFR core deformations can be
conducted in a practical time. The method to calculate the curvilinear and surface
integrals of polynomials in arbitrary geometry is suggested. The triangle-based
polynomial expansion nodal method and corner point balance calculation in a nodal
code, RENUS are expanded to the unstructured geometry by using this method. The
CMFD formulation in RENUS is expanded to the unstructured geometry similarly
to nTRACER.

The solution accuracy of nTRACER is verified by comparing its calculation
results against the McCARD results for the various hexagonal geometry core
problems. The reactivity difference and the maximum and root-mean-square 3D pin
power differences do not exceed 7 pcm, 6.41 %, and 0.44 %, respectively, for the
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three 3D C5G7 H benchmark problems. The solution differences for the nine 2D
KAERI VVER-1000 core problems do not exceed 106 pcm, 2.24 %, and 0.95 %,
respectively, by using the PO option. The two solutions for the 2D ‘Full-core’ VVER-
440 and MET-1000 SFR core problems also match each other well. The solution
differences are reduced by using the P2 option by up to 70 pcm in reactivity and
0.90 % in pin power distribution. It is demonstrated that nTRACER achieved
satisfactory solution accuracy for hexagonal geometry core problems.

The ADD performance is examined by comparing the ray tracing time with and
without the ADD scheme for the various VVER core problems. The ray tracing time
and total computing time for the 2D full core problems are reduced by up to 48 %
and 38 %, respectively. The two computing times for the 3D full core problems are
reduced by up to 53 % and 45 %, respectively. It is verified that the hexagonal ray
tracing calculation in nTRACER is parallelized efficiently by employing the ADD
scheme.

The performance of the unstructured hexagonal nodal solution in RENUS is
verified by comparing its calculation results against the McCARD results for the 2D
schneller natriumgekiihlter reaktor-300 core problems. Arbitrary core deformations,
contrived states were applied to the core problems to expose the RENUS solution
accuracy for unstructured geometry. The solution differences for the changes in
reactivities and assembly power distribution induced by contrived states on the fuel
region do not exceed 7 pcm and 0.46 %, respectively. In contrast, the reference
reactivity and assembly power change by up to 240 pcm and 47.76 %, respectively.
The RENUS solutions were further verified by decomposing the deformed core
problem with uniform expansion into the deformed core problems with assembly-
wise expansion. The verification results reveal that excellent agreements between
the two solutions for deformed core problems do not owe to any error cancellation.
Thus, it is concluded that RENUS attained significantly high accuracy in predicting
the changes in nuclear characteristics induced by core deformations by using the
unstructured nodal method.

Keyword : hexagonal geometry core, ray tracing calculation, coarse mesh finite
difference formulation, assembly-wise domain decomposition, thermal core
expansion, unstructured nodal solution
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Chapter 1. Introduction

In this work, the hexagonal ray tracing module and coarse mesh finite difference
(CMFD) acceleration, which are capable of explicitly modeling hexagonal geometry
cores including complicated structures, are developed in a direct whole core
calculation (DWCC) code, nTRACER. The hexagonal assembly-wise nodal solution
is expanded to the unstructured geometry so that the high-fidelity analyses of
sodium-cooled fast reactor (SFR) core deformations can be conducted in a practical

time.

Two-step core calculation (TSCC) code systems are to employ lower-order
solution methods to analyze the core of a nuclear reactor using the group constants
generated from the higher order solution for each typical assembly. The nuclear
characteristics of reactor cores have been generally simulated by a TSCC code due
to its advantage of low computing cost. With astonishing progress in computational
processing units and storage devices in recent times, however, the need for the whole
core solution with high resolution and transport-based accuracy has got increased
justification. DWCC methods, which are to enhance solution fidelity by eliminating
the advance procedure of generating homogenized assembly or pin cross-sections,
have been extensively used in numerous codes [1]-[3] dealing with Cartesian
geometry cores.

Water-water energetic reactors (VVERS), which are pressurized water reactors
with hexagonal fuel assemblies, have spread in the East-European bloc and
developing countries for several decades. Neutron moderation in the VVER core is
complicated by unusual structures such as Vygorodka, the corner stiffener, and the
water channels at the core basket. The complication undermines the assumptions of
the diffusion equation and assembly or pin homogenization. Thus, it is expected that
the DWCC method performing the sub-pin level transport calculation would
outperform the assembly-wise or pin-wise nodal methods for VVER cores.

Currently, several codes have the hexagonal geometry handling feature in
DWCC calculation. DeCART and STREAM are incorporated in TSCC code systems
solving VVER core problems.[5]-[6] DeCART achieved the abundant analyses of
high-temperature gas-cooled cores [7], and STREAM conducted verifications for 2D
SFR core problems.[8§] MPACT and NECP-X are also equipped with hexagonal ray
tracing modules in recent years.[9]-[10] nTRACER has been coupled with T/H
codes in the multi-physics analyses of VVER cores.[11]-[12]
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Efficient application of parallel computation is necessary for the DWCC code,
which performs large-scale calculations on millions of flat source regions (FSRs).
The angle-wise parallelization, where threads trace the bunches of tracking rays in
parallel across the whole problem domain, can be easily implemented while it has
drawbacks in that the number of parallel processors is limited and a huge amount of
memory is required. The assembly-wise domain decomposition (ADD) scheme was
introduced in the DWCC codes for Cartesian geometry [13]-[14] to effectively
exploit massively parallel computing platforms involving thousands of processors.
In the plane-wise parallelization which is to assign a group of planes to different
computing nodes, the ADD scheme using the OpenMP constructs can effectively
reduce computing time by alleviating fetching overhead due to memory access
bottleneck.

SFRs are estimated to have the highest feasibility of commercial operations
among Generation-VI reactors due to their high efficiency in nuclear fuel usage.[15]
SFRs also include hexagonal fuel assemblies. The complication is further increased
by employing the double assembly duct and non-fuel assemblies with different rod
sizes. The critical characteristic of SFR cores is the thermal core expansion induced
by high power density and steep temperature gradient, which significantly impact
reactivity and power distribution. The DWCC method using millions of FSRs is not
adequate to deal with moving geometries. A low-scale computing resource is
exploited in a nodal method employing fuel assembly size coarse meshes while its
governing equations have been established only for regularly structured geometries
so far.

Many codes, e.g., BOWPERT [16], RHOBOW [17], and BISTRO [18] have
been carried out the analyses of SFR core deformations based on the perturbation
theory. Those codes, which are to predict reactivity change induced by sufficiently
small deviation from the reference state, have a weakness in analyzing a large-scale
core deformation and consequent power distribution change. GeN-Foam [19] and
PROTEUS-SN [20] explicitly model SFR core deformations by employing the finite
difference method (FDM) and finite element method (FEM), respectively, on
unstructured meshes. Those methods require a huge computing cost as mesh size is
decreased to reduce discretization error.

The flux expression of a nodal solution is uniquely determined by reducing the
number of unknown variables in physical constraints as the number of flux
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expansion coefficients. The unknown variable can be specified by being substituted
with the input determined from previous calculations or an equation of other
unknown variables. Thus, the nodal method can be expanded to the unstructured
geometry by deriving the variable expressions incorporating the curvilinear and
surface integrals of functions used to approximate the flux distribution in an
unstructured mesh.

1.1. Purpose and Scope of the Research

The unusual structures of VVER and SFR cores undermine the assumptions of
the diffusion equation and assembly or pin homogenization adopted in the
conventional TSCC code system. One of the purposes of this research is to develop
the hexagonal ray tracing module and CMFD acceleration in nTRACER, which is
capable of explicitly modeling hexagonal geometry cores. There needs to be more
than the prediction of reactivity change based on the perturbation theory to grasp the
entire characteristics of SFR thermal core expansions. ADWCC method, FDM, FEM,
and Monte Carlo method require a large-scale computing resource to model core
deformations. The other purpose of this research is to expand the hexagonal
assembly-wise nodal solution to the unstructured geometry so that the high-fidelity
analyses of SFR core deformations can be conducted in a practical time.

The hexagonal ray tracing module is developed in nTRACER by using the
elongated model and assembly-wise modular ray scheme to model hexagonal
geometry cores explicitly. The hexagonal ray tracing calculation using cells of
different shapes is accelerated by the CMFD formulation expanded to the
unstructured geometry. The computing time of nTRACER calculations for
hexagonal geometry core problems is reduced by employing the super pin scheme
in the CMFD formulation.

The hexagonal ray tracing calculation in nTRACER is parallelized efficiently
by employing the ADD scheme. A significant drawback in the ADD scheme is that
the lag in updating the incoming angular fluxes at the assembly surface would
deteriorate the convergence of the method of characteristics calculation. The
incoming partial current at the assembly surface is updated by using the incoming
partial current change determined by the CMFD calculation. The three-color scheme
and angular flux storage scheme (AFSS) are employed to enhance the ADD

performance.



The method to calculate the curvilinear and surface integrals of polynomials in
arbitrary geometry by using the look-up table is suggested. A nodal code, RENUS
[21] solves 3D hexagonal geometry core problems by employing the triangle-based
polynomial expansion nodal (T-PEN) method [22], corner point balance (CPB)
solution, nodal expansion method (NEM), and approximation to the axial leakage
source distribution. The polynomial expressions of the areal fluxes and flux moments,
surface fluxes, and currents are established in arbitrary geometry. RENUS is capable
of solving 2D deformed hexagonal geometry core problems by incorporating those
expressions in the governing equations in the T-PEN method and CPB solution.

In this work, the application scope is limited to the steady-states of hexagonal
geometry cores rather than transients or depletions. The nTRACER solution
accuracy is verified by comparing its solutions against the reference solutions for the
3D hexagonal variation benchmark problems and 2D VVER and SFR core problems.
The ADD performance is examined by comparing the ray tracing time with or
without the ADD scheme for the 2D and 3D VVER core problems. The accurate
analysis of SFR core deformations requires considering millions of interactions
between core components in neutronics, thermal-hydraulics, thermal-mechanics, and
radiologics, which exceeds the scope of this thesis. Thus, this work focuses on the
hypothetical deformation states of the 2D SFR benchmark problems in verifying the
unstructured nodal solution in RENUS.

1.2. Outline of the Thesis

Chapter 2 presents the comprehensive descriptions of code development of
nTRACER for a hexagonal geometry core. The complicated geometries of VVER
and SFR cores are illustrated. The cell and modular ray schemes are selected to
model hexagonal geometry cores explicitly. The CMFD formulation in unstructured
geometry and the super pin scheme used in the CMFD update are described.

Parallelization of hexagonal ray tracing calculations with the ADD scheme is
described in Chapter 3. The principle of the ADD scheme which renders a reduction
in computing time is presented. The equation to update the assembly incoming
angular flux in the ADD scheme is derived. Performance examinations for the three-
color scheme and AFSS are carried out by comparing the computing time between
different schemes.

Chapter 4 presents the detailed descriptions of the RENUS nodal solutions for
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unstructured geometry. The method to calculate the curvilinear and surface integrals
of polynomials in arbitrary geometry is described. The governing equations for
regular hexagonal geometry are introduced first, and subsequently, the expansion of
these equations to the unstructured hexagonal geometry is described.

Chapter 5 deals with verifications of the nTRACER solutions for the various
hexagonal geometry core problems and performance examinations of the hexagonal
ray tracing calculations with the ADD scheme. The RENUS unstructured nodal
solutions for the 2D irregularly deformed hexagonal geometry core problems are
compared against the reference solutions produced by McCARD. Chapter 6
concludes the thesis.



Chapter 2. Development of the Hexagonal Ray
Tracing Module and CMFD acceleration in
nTRACER

One of the purposes of this research is to develop the hexagonal ray tracing
module and coarse mesh finite difference (CMFD) acceleration in nTRACER, which
is capable of explicitly modeling hexagonal geometry cores. Thus, the core
configurations of Water-water energetic reactor (VVER) cores and sodium-cooled
fast reactor (SFR) cores including the unusual structures to be modeled by
nTRACER are presented first. In the subsequent subsection, the cell and modular
ray schemes employed in the hexagonal ray tracing calculation in nTRACER are
carefully selected by considering hexagonal geometries. The last subsection
describes the expansion of CMFD formulation to the unstructured geometry required
to solve method of characteristics (MOC) cells in hexagonal assemblies.
Improvement in the performance of CMFD calculations by using the super pin
scheme is verified for the 2D VVER core problems.

2.1. Descriptions of the Hexagonal Geometry Core Problems

Before developing the necessary geometry extension of nTRACER for the
accurate modeling of VVERs, various hexagonal benchmark specifications need to
be checked thoroughly. In this regard, the four benchmark problems to be solved by
nTRACER are described with the approximations introduced in the nTRACER
modeling.

The VVER-1000 reactor benchmark problems were proposed by korea atomic
energy research institute (KAERI) to verify the code capability in the US/ROK I-
NERI program.[23] This benchmark is referred to as ‘KAERI benchmark’ in the
following. The benchmark set consists of 5 parts: a pin cell, an assembly with and
without control rod insertion, a 2D whole core, and a 3D whole core. The fuel loading
pattern shown in Figure 2.1 is originated from the first cycle of Kozloduy Unit 6
with the fuel assembly TVS and TVSM. The assembly and pin pitches are 23.6 cm
and 1.275 cm, respectively. Each part is divided into sub-problems with different

fuel enrichments, fuel and moderator temperatures, and boron concentrations.
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Figure 2.1. (a) Radial core configuration and (b) pin layout of FS 32 in the KAERI
benchmark problem.

The axial configuration of the core is depicted in Figure 2.2.a. Since the 3cm
thin plane of spacer grids would cause instability in the nTRACER calculation, the
spacer grid is approximated as a single cylindrical tube within the active fuel region
as shown in Figure 2.2.c. While the spacer grid volume is conserved, the outer radius
is reduced from 0.5769 cm to 0.5535 cm.

Z [cm]

32.0 Top Reflector

P!

23.2

280.5

225 |

3.0}
20.8
29.0 Bottom Reflector

(2) (b) ()

Figure 2.2. (a) Axial core configuration and (b) spacer grid in the KAERI
benchmark problem (c) nTRACER modeling.

Based on the operational data of the second VVER-1000 Unit of the Ukrainian
nuclear power plant Khmelnitsky, the X2 VVER-1000 benchmark problem was
proposed for further validation and verification of VVER-1000 reactors with the
TVSA fuel assembly.[24] Tasks for steady-state, transient, and burn-up calculations
are provided in this benchmark problem. The experimental values and reference
Monte Carlo solutions for reactivity and power distribution are also provided. The
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radial core configuration and the pin layout of the fuel assembly types are depicted
in Figure 2.3. Compared to the KAERI benchmark problem, the fuel assembly types
are more complicated with the burnable Gd>O; absorber. The core basket with the
groove region and the water channels are added to the X2 benchmark problem. The
inner three fuel pins with the burnable absorber in 39AWU change their position
when reflected or rotated in the azimuthal direction. Due to this asymmetry, the
solution for the one-sixth core problem with any azimuthal boundary condition
cannot be identical to that for the full core problem.

RPV (Steel) ——
13AU
© 4.0 wt% Fuel pin
22AU0
© 3.6 wt% Fuel pin
3.3 wt% Fuel pin
S0AVS with 5.0 % Gd,0,
O Central guide tube
390GO
© Guide tube
J9AWU

Basket groove (Steel & Coolant)
(@) (b)

Figure 2.3. (a) Radial core configuration and (b) pin layout of FA 39 AWU in the
X2 benchmark problem.

The X2 benchmark problem is explicitly modeled in nTRACER following the
revised benchmark specifications [25] except for several approximations. The
double rings in the coolant channel are approximated as a single ring with a radius
of 5.59 cm while the coolant volume is conserved. The dent in the groove region is
neglected. Since the central guide tube exceeds the hexagonal MOC cell in
nTRACER, its radius is reduced from 0.65 cm to 0.633 cm. The temperature of all
elements, coolant density, and boron concentration in the coolant are set to 281.0 °C,
0.7626 g/cc, and 1077 ppm, respectively.

The VVER-440 ‘Full-core’ benchmark problem is a 2D calculation benchmark
problem based on a VVER-440 reactor core set at the cold state with explicit
modeling of the radial reflector.[26] This benchmark problem is referred to as
VVER440FC in the following. The radial core configuration and the pin layout of
the fuel assembly are depicted in Figure 2.4. The assembly and pin pitches are 14.7
cm and 1.23 cm, respectively. The fuel assembly is enclosed with the assembly duct,
and the outer-most fuel assemblies are wrapped with ‘Vygorodka’, a kind of shroud,
in the VVER-440 core. The temperature of all elements, coolant density, and content
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of the absorbing material (H3BO3) in the coolant are set to 543.15 K, 0.7775 g/cc,
and 3.0 g/kg, respectively.

0%
0%
0%2e%o
0%0%
020%%0
0%20%o
09020
0%
20

@ (b)

Coolant O Central guide tube

Vygorodka —— (

FAL6[ | () 3.6 wt% Fuel pin

@ 4.0 wt% Fuel pin

4.0 wt% Fuel pin
with 3.35 % Gd,0,

@ 4.4wt% Fuel pin

Figure 2.4. (a) Radial core configuration and (b) pin lay out of FA 4.25 in the
VVER440FC benchmark problem.

The VVER440FC benchmark problem is limited to the planar core while the
simple axial configuration shown in Figure 2.5 is represented in the 180° benchmark
problem.[27] In the examination for VVER-440 3D cores, the planar core of the
VVER440FC benchmark is extended axially with an active height of 250 cm. The
two axial reflectors are filled with the material identical to that of the radial
moderator.

z [cm]

300 —

275 —
D Fuel assembly
|:| Absorber

150 —
D Radial reflector
D Axial reflector

25 —

0 S—

Figure 2.5. Axial core configuration in the 180° benchmark problem.

The advanced burner reactor (ABR) core was designed for the study of future
fast reactor designs.[28] The MET-1000 benchmark includes the 1000 MWth
medium-size core incorporating a ternary metallic fuel and mixed-oxide fuel. The
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fuel loading pattern of an assembly pitch of 16.2471 cm is depicted in Figure 2.6.
The distinctive geometries of this benchmark problem are the different pin radii
ranging from 0.3857 cm to 2.3606 cm and the double-layered duct at the control
assemblies as shown in Figure 2.7. The fuel and non-fuel are at uniform temperatures
0f'432.5 °C and 534 °C, respectively. The complicated axial configuration of the core
of a height of 480.2 cm is described in this benchmark problem. Nonetheless, only
the 2D core problem established from the middle plane of the core is solved in this
work due to a calculation instability in nTRACER induced by the severe axial
gradient of flux and temperature in the core.

Inner Core O
Outer Core O
Control Rod ‘
Reflector ‘
Shield

N N
Fuel Assembly Reflector Assembly Shield Assembly Control Rod Assembly

Figure 2.7. Radial assembly configurations in the MET-1000 benchmark problem.

2.2. Ray Tracing Calculation Using the Modular Ray in a
Hexagonal Assembly

The features of handling hexagonal geometry in nTRACER had to be extended
to model the VVER cores explicitly. This section briefly describes the basic general
calculation scheme of nTRACER, and the specific extensions for VVER geometries
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are then followed.

nTRACER solves 3D core problems by iterating the calculations with different
resolutions and geometries. The sub-pin level planar MOC solution is used to
determine the homogenized group constants in pin level to be used in the 3D CMFD
formulation. During the outer iterations in the CMFD calculation, the axial MOC
calculation is invoked. Given the flux, flux form function, and radial transverse
leakage, the axial MOC calculation is performed to update the axial current between
the axial nodes of each pin. The solvers of planar MOC and 3D CMFD for hexagonal
geometries were newly developed to solve hexagonal geometry core problems while
the axial MOC solver was modified with minor changes for summing the transverse
leakage in hexagonal geometry.

The planar MOC cell can be easily constructed in rectangular geometry since
both fuel rods and moderator gaps can be modeled similarly to a rectangular cell.
However, the moderator gap in hexagonal geometry cannot be easily modeled as a
hexagonal cell like a fuel rod. There can be two available models to fill up the
hexagonal assembly with cells as shown in Figure 2.8. In the chopped model, all the
fuel rods in a hexagonal assembly are modeled as a hexagonal cell, and the zigzag-
shaped residual region is chopped at the hexagonal cell vertex. On the contrary, the
fuel rods along the assembly periphery are modeled as an outward-elongated
pentagon cell in the elongated model. As a consequence, the moderator gap is
modeled as a trapezoidal cell. The rectangular gap cell is divided in half in case of
solving one-sixth core problems. While DeCART, the direct whole core calculation
(DWCC) code of KAERI, adopts the chopped model,[1] nTRACER adopts the
elongated model. In the latter model, a computing resource for tracking cells in MOC
and CMFD solutions can be increased with more cell types, and the accuracy of the
planar MOC solution might be deteriorated by uneven fuel cell area. However,
hexagonal-annulus structures along the assembly periphery such as Vygorodka of
VVER-440,[26] the assembly duct of SFR,[28] and the corner stiffener of VVER-
1000 [24] can be modeled explicitly by using the latter model whereas the former

model cannot.

11 ;



Figure 2.8. (a) Chopped model and (b) Elongated model for the hexagonal
assembly.

In the ray tracing calculation, the outgoing angular flux at each source region is
updated based on the solution of the Boltzmann transport equation following a ray
across the problem plane. Rays are constructed in a hierarchical structure prior to the
ray tracing calculation. A cyclic ray or rotational ray starts and ends at the core outer
boundary, respectively. It is reflected on the core azimuthal boundary if exists. The
cyclic ray can be decomposed into assembly rays, which start and end at the
assembly surface, respectively. Ray tracing parameters such as the ray spacing, the
number of azimuthal angles, and the number of polar angles are specified in the user
input. The ray spacing, azimuthal angle, and weight of cyclic ray are adjusted so that
all assembly rays on the problem plane belong to a set of basis rays, so-called
modular rays in a unit assembly to save computing resource. The modular ray passes
through the flat source regions (FSRs), of which the region index and segment length
are stored for the ray tracing calculation. In DeCART, the modular ray is
approximated by linking cell rays to reduce the segment information to be stored.
However, the memory for modular rays is insignificant compared to others, e.g., the
memory needed for the scalar flux storage at FSRs. Therefore, the modular rays are
modeled explicitly in nTRACER to prevent losing solution accuracy.

At each imaginary assembly filled with MOC cells of a single type, the
segments of modular rays are stored in the unit of a cell as shown in Figure 2.9.a.
Sub-divisions among FSRs along the radial direction and azimuthal direction in
MOC cells are omitted here, and the ray spacing is exaggerated for brevity. During
the ray tracing calculation, the cyclic ray is swept in the unit of a cell by looking up

the segment information from the corresponding cell ray in the modular ray as shown
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in Figure 2.9.b.

Figure 2.9. (a) Modular ray at the imaginary assembly (b) cyclic ray on the
problem plane.

Vygorodka is a steel reflector which wraps the outer-most fuel assembly in the
VVER-440 core as shown in Figure 2.10.a. The elongated model cannot model the
protruded corner of Vygorodka explicitly. Thus, the moderator and steel materials
are homogenized into a mixture as an area-weighted average at the gap cell colored
red in Figure 2.10.b. Note that the dimensions of the fuel cells and moderator cells
are different in this figure. The hexagonal version of nTRACER is capable of
modeling the problem with cells of different dimensions, which is a significant
characteristic of an SFR.
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Figure 2.10. (a) Vygorodka in the VVER440FC benchmark problem (b) planar
MOC cells in nTRACER.

As for modeling the outer structure, it is reasonable to fill a MOC cell with the
structural material if the center of mass belongs to the structure. Otherwise, with the
surrounding material. The groove region in the X2 benchmark problem, which is
described by a homogeneous mixture of the coolant and steel, is approximated
following this modeling as shown in Figure 2.11. The fuel assembly is simply
represented as a single hexagon in Figure 2.11.a. Figure 2.11.b is a magnified view
of the red square region in Figure 2.11.a while the gap cell is omitted.

(a) )

Figure 2.11. (a) Groove region in the X2 benchmark problem (b) nTRACER
modelling.

2.3. CMFD Formulation for the Unstructured Geometry

Unlike rectangular geometry, cell shapes differ among CMFD meshes in
hexagonal geometry. Following the definitions of the coupling coefficient and
current correction coefficient,[29] the finite difference formulation at an unstructured
CMFD mesh can be written as follows:
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ng{(ﬁk - ﬁk)sk¢s - (Ijk + ﬁk)sk¢k} + 2:tsqbsVs = QsVsa (2'1)

where D, and Dy are the coupling coefficient and current correction
coefficient with the k-th neighboring mesh, respectively, given as:

DDy,

Dk - Dslkn"'Dklks’ (22)
= ~Jk—Di(Pr—ds)
D e e < 2.3
k I (2.3)

and Ji, @i, and ¢, are the net current and two cell-averaged fluxes at the k-
th surface of the mesh determined from the previous MOC solution; ¢, and D
are the mesh-averaged flux and mesh-averaged diffusion coefficient in the k-th
neighboring mesh; Ng, X5, ¢, D, Vi, and Qg are the number of surfaces, mesh-
averaged total macroscopic cross-section, mesh-averaged flux, mesh-averaged
diffusion coefficient, area, and mesh-averaged neutron source in the mesh,
respectively; s is the length of the k-th surface of the mesh, and [, and [, are
the shortest length from the k-th surface to the mesh center and the neighboring
mesh center, respectively. The notation of the energy group is omitted here. The
unstructured CMFD formulation is enabled by applying flexibility to the surface
length, mesh width, and the number of neighboring meshes. In Figure 2.12, the
construction of the CMFD formulation parameters for the super-cell split by the core
boundary is represented.
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Figure 2.12. Construction of the CMFD formulation parameters for the boundary
mesh in hexagonal geometry.

The gap cell thicknesses in the VVER440FC and KAERI benchmark problems
are 0.25 cm and 0.02 cm, respectively, while the fuel pin pitches in the two problems
are 1.23 cm and 1.275 cm, respectively. Neutron moderation in the gap cells, where
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the pure moderator is filled, has less significance in the analyses of VVER cores due
to its relatively small cell area. On the other hand, the number of CMFD meshes for
the gap cells counts six times the number of fuel pins along the assembly surface in
the elongated model as shown in Figure 2.13.a. Inefficiency would occur in CMFD
calculations by incorporating CMFD meshes for the gap cells in that a significant
computing resource is consumed additionally while solution accuracy is improved
little. Thus, the super pin scheme, which is to homogenize the periphery fuel cell and
gap cell into one cell in the CMFD calculation as shown in Figure 2.13.b., is
examined in nTRACER. The homogenized macroscopic cross-section in super pins
used in the CMFD calculation is obtained as the average value of reaction rate
divided by flux. This value is calculated by using the area weight of the FSRs
incorporated in the super pin. The flux change in the super pin determined by the
CMEFD calculation is used uniformly in the flux update for those FSRs.

Figure 2.13. Construction of CMFD meshes with (a) MOC pins and (b) Super pins.

The performance of CMFD calculations with two mesh schemes and two
scattering order options are compared for the 2D VVER core problems. The
comparison results are summarized in Table 2.1 and Table 2.2, where ‘MP’ and ‘SP’
are the MOC pin scheme and super pin scheme, respectively; ‘V10’ and V4’ are the
KAERI and VVER440FC benchmark problems, respectively; and ‘RT’, ‘CMFD’
and ‘Total’ are the ray tracing time, CMFD calculation time, and total computing
time, respectively. The total computing time is reduced due to the significant
reduction in CMFD calculation time while the ray tracing time does not change. The
reduction in CMFD calculation time does not change by the scattering order option
nor geometric symmetry of the problem while it increases in the problems of smaller
core size. The reduction in total computing time is decreased in the solutions using
the P2 option since the ray tracing time accounts mainly for the total computing time.
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The CMFD calculation time and total computing time are reduced by up to 39 % and

17 %, respectively, by using the super pin scheme. Thus, the super pin scheme is

employed in nTRACER for the hexagonal geometry core problems in the following.

Table 2.1. Comparison results for the 2D VVER core problems with the PO option

between two CMFD pin schemes.

Case MP computing time (s) Reduction by SP (%)
RT CMFD  Total RT  CMFD Total
V10 V01 513 697 1,322 0 24 13
1/6 Core V10 V05 418 538 1,063 0 27 9
V10 V09 410 492 1,007 0 25 12
V4 285 87 439 0 37 7
V10 VOl | 2,770 3,776 7,078 -2 24 12
Full Core V10 V05 | 2,242 2,875 5,644 3 30 17
V10 V09 | 2,209 2,622 5,355 -1 27 13
V4 1,402 467 2,206 1 39 9

Table 2.2. Comparison results for the 2D VVER core problems with the P2 option

between two CMFD pin schemes.

Case MP Computing time (s) Reduction by SP (%)
RT CMFD  Total RT  CMFD Total
V10 V01 1,481 533 2,124 -1 22 5
1/6 Core V10 V05 1,460 566 2,134 -1 24 6
V10 V09 | 1,509 515 2,133 1 28 8
V4 763 87 920 0 38 4
V10 Vo1 | 9,517 3,052 13,131 1 28 7
Full Core V10 V05 | 8,657 3,128 12,336 0 27 7
V10 V09 | 8,808 2,756 12,115 0 28 6
V4 4,410 461 5,219 -1 39 3
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Chapter 3. Parallelization of the Hexagonal Ray
Tracing Calculation with the ADD Scheme

With the original parallelization scheme of the nTRACER code, which is to
divide the time-consuming entire ray tracing task into smaller tasks by grouping rays
in the azimuthal direction, some large 3D core problems cannot be solved in a
computing cluster with limited memory. This limitation is because the rays
encompass the entire core region, and each thread tracing a group of the rays requires
the ray segment information across the core. Memory for this information can be
huge in hexagonal ray tracing involving much more complicated FSR structures than
the rectangular cases. This excessive memory burden can be resolved by employing
the assembly-wise domain decomposition (ADD), which is to let each thread trace
only the rays belonging to an assembly. In the following, the overall parallelization
scheme of the nTRACER ray tracing calculation with the hexagonal ADD scheme is
described first. Then the specific methods to enable the ADD scheme including the
angular flux update method at the assembly surface, three-color method, and angular
flux storage scheme (AFSS) are detailed in the subsequent subsections.

3.1. Assembly-wise Decomposition of the Planar Ray Tracing
Domain

The MOC ray tracing calculation outlined in the previous section requires
considerable computing time associated with the tremendous number of ray
segments. Incorporating the effect of anisotropic scattering, which is needed for
enhancing solution accuracy, is the additional factor to increase computing time.
With the P, scattering source, the memory for FSRs is increased six times to store
the region-averaged angular fluxes. This memory can be tremendous because the
number of FSRs is huge (about 1,800,000 in the 2D KAERI one-sixth core problem
and six times it for the full core problem).

In the angle-wise parallelization for the ray tracing calculation, which was the
original nTRACER parallel computing scheme, a group of cyclic rays are swept in
parallel by different CPU threads. It is necessary to allocate the memory for the FSRs
in the whole core to each thread since every FSR should be swept during the ray
tracing. Thus, some large problems with limited memory cannot be solved with
angle-wise parallelization. This limitation is worsened by the AFSS needed for
anisotropic scattering treatment. In this regard, the ADD scheme to let each thread
trace rays in one assembly is tried here so that the storage of FSR information is
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needed only for the assemblies being computed currently, and thus memory
reduction is possible. While the ADD is performed originally by using the distributed
parallelism,[30]—[31] the shared memory parallelism using the OpenMP constructs
is exploited here following the nTRACER parallelism. The algorithm of the
nTRACER MOC sweeps with the ADD scheme is presented in Figure 3.1. The
nTRACER ray tracing calculation for a 3D VVER core problem is performed plane-
by-plane using MPI for the distributed memory parallelism. In the ADD calculation,
the ray tracing domain at each plane is decomposed into assemblies using OpenMP
for the shared memory parallelism. Each thread sweeps several assemblies since the
number of assemblies is usually larger than the number of available threads. Load
balancing is achieved by using the OpenMP guided scheduling.

Algorithm MOC sweep for n'TRACER
do Energy group iterations
do Energy groups
== do Planes ! MPI parallelization
do Inner iterations
Update PO scattering source and higher-order scattering source moment
= o Assemblies ! OpenMP parallelization (ADD)
Update anisotropic scaftering source
do Forward & Backward
do Assembly rays
do Cells
do Segments
do Polar angles
Calculate segment angular flux change
Update segment outgoing angular flux
Calculate FSR scalar flux
end do
Calculate cell current
end do
end do
end do
end do
= ¢nd do
Update assembly angular flux
end do
- cd do
end do
end do

Figure 3.1. Algorithm of the nTRACER MOC sweeps with the ADD scheme.

The ADD is implemented with dynamic memory allocation, which is to allocate
the memory needed for ray tracing for an assembly only when a thread for that
assembly performs ray tracing. This memory is deallocated once the ray tracing is
done. Parallel computing is done by assigning one thread to one assembly such that
the number of simultaneously calculated assemblies is the same as the number of
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threads available on each node. The total memory allocated at a time during the ray
tracing calculation is thus proportional to the number of available threads, which is
usually much fewer than the number of assemblies in a plane. By this method, the
memory requirement for simultaneous ray tracing with the ADD scheme can be
significantly less than the angle-wise parallelization. However, the actual reduction
cannot be that much because additional nontrivial memory to save the incoming
angular flux shape at the assembly surfaces is required. Nonetheless, considerable
memory saving is possible with the ADD scheme. Updating the assembly incoming
angular flux is described in the following sub-section.

3.2. Assembly Incoming Angular Flux Update

A significant drawback in the ADD is that a ray cannot be traced continuously
throughout the core since the ray within an assembly should start from the assembly
surface. Thus, the incoming angular flux at the assembly surface cannot be taken as
the outgoing angular flux of its neighboring assembly. The incoming angular flux at
each assembly surface should be taken from the previous MOC iteration, and it
requires storing the angular flux information at the assembly surfaces, which is
another drawback to increase memory requirement. The lag in updating the incoming
angular fluxes at the assembly surfaces would deteriorate the convergence of the
MOC calculation. However, this deterioration can be relaxed by updating the
incoming angular fluxes by using the CMFD calculation results. There are three
variables of which the change by the CMFD calculation can be used for this update:
the scalar flux, partial current, and P1 approximation of the angular flux. The partial
currents, which can be determined by two node average fluxes and the interface
surface flux obtained from the CMFD calculation, are used to update the incoming
angular fluxes at the assembly surface similarly to the method implemented in
MPACT.[31]-[32] Specifically, the stored incoming angular flux @ of the previous
MOC calculation at the surface of each assembly for each energy group is used to
determine the new angular flux ¢y by using the scalar flux and net current
determined at the surface between the i-th and the i + 1-th CMFD mesh as:

CMFD
I

Qs = W‘Ps, (.1
1 1
MoC+ — Z(I)zswoc + EIISVIOC’ (3.2)
1 1
CMFD+ _ Z(155M1~"D + ElgMFD’ (3.3)
M = @M + (1 — ap g + a(ofM + pE ). (34)
N a;pMo+(1-a) pM 9 -pMOC
a; = — ¢gaoc+¢ﬁ+o; > (3.5)

20 2



~ Di/hi

@ = Di/hi+Dj+1/hi+1’ (3.6)

where ¢pMOC JMOCand pMOC are the surface scalar flux, surface net current
and cell-averaged scalar flux at the i-th mesh, respectively, determined from the
previous MOC calculation; and D; and h; are the diffusion coefficient and size of
the i-th mesh, respectively. The CMFD surface current, J$MFP | is obtained by the
ordinary CMFD net current relation involving the current correction coefficient D;.
Note that the similar correction coefficient @; is introduced for the surface flux
calculation from the mesh average flux. The plus sign appearing in Egs. (3.2) and
(3.3) changes to the minus sign if the incoming angular flux is in the opposite
direction, namely from mesh i+ to i. In the hexagonal CMFD calculation with the
elongated model, the CMFD meshes have different shapes. Therefore, the @;
calculation represented in Eq. (3.6) is extended to use two different mesh sizes.

3.3. Three-color Scheme

The STREAM DWCC code developed at UNIST uses the red-black scheme to
achieve high efficiency in angular flux communication.[33] This scheme arranges
the surfaces and directions in the assembly angular flux update with an index
determined on a checkerboard. On the other hand, the color scheme used in
nTRACER is to perform simultaneous ray tracing calculations for a group of
assemblies belonging to the same color group. After all assemblies belonging to one
color are swept, assemblies belonging to the next color are swept in sequence. Note
that assemblies belonging to a color are swept in parallel by threads. This scheme
provides an important advantage in that the outgoing angular fluxes of one colored
assembly can be used in updating the incoming angular fluxes of the other colored

assemblies.

Possible color schemes in hexagonal geometry are illustrated in Figure 3.2:
none, two red/black schemes, and the three-color scheme. All assemblies are swept
at once by using threads in a random order without any color scheme (‘w/o C.”). On
the other hand, the update of angular fluxes in the assembly surface is invoked
between sweeping assemblies belonging to different colors in case of using a color
scheme. Red and black in the red/black scheme might be alternately assigned to
assemblies (‘RB 1°) or arranged in a strip (‘RB 2’). Three groups of assemblies in
the three-color scheme can be swept by following two iteration patterns (‘RGB1’ and
‘RGB2’) as described in Table 3.1.
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Figure 3.2. Color schemes in hexagonal geometry.

Table 3.1. Iteration patterns in the RGB scheme.

Iterations | 1 2 3 4
RGB 1 R,G,B) B,G,R) [RGB B,GR)
RGB 2 R,G,B) (G,B,R) (B,R,G) ([R,G,B)

The ADD performance with different color schemes is examined for the small
VVER core problems, which employ the assemblies and problem cases of the
KAERI benchmark and follow the loading pattern of the C5G7 H benchmark
problem. The examination results are summarized in Table 3.2, and error reductions
in the ADD calculations with different color schemes are illustrated in Figure 3.3 and
Figure 3.4. The ray tracing time is increased in most cases since sweeping assemblies
in a sequence of color deteriorates calculation parallelization. This drawback is
aggravated for the one-sixth core problems due to unevenness in assembly area.
However, a necessity to mitigate the instability in ADD calculations justifies a few
increase in computing time. Thus, it is concluded to employ the three-color scheme
in hexagonal ADD calculations for the full core since one MOC iteration is saved for
the VO1 full core problem only by using the three-color scheme. The first iteration
pattern of the three-color scheme is employed in the following though the difference
between the two patterns is negligible.[34]
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Table 3.2. Ray tracing time (s) for the small core problem with color schemes.

Cases w/o C. RBI1 RB2 RGBI1 RGB2
Vol 845 1,283 1.270 1,890 1.897
1/6 Core VOS5 605 1,063 1,057 1,560 1,563
V09 610 1,050 1,050 1,550 1,567
Full Vol 2.363 2.570 2.560 2.210 2.220
Cor V05 1,683 2,120 2,123 1,883 1,857
ore V09 1,670 2,113 2,100 1,827 1,830
1E-2 ‘,0 l 1E-2 \’05 1E-2 “09
, 1B \ . i 1E-3 1\\.
E; 1E-4 \\ \ f; E 1E-4 \
. 1E- \\\ 2 = ks \

Figure 3.3. Error reduction with different color schemes for one-sixth core
problems.

V09

Vo1

Residual Error

Residual Error
Residual Error

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6
# of RT OQuter Iterations # of RT Quter Iterations #of RT Quter Iterations

~wfoC. ~RB1 —RB2 RGB1 ~RGB2 ~-w/oC. —=RB1 —RB2 RGB1 ~RGB2 ~wlo C. RB1 -RB2 ~RGB1 ~RGB2
Figure 3.4. Error reduction with different color schemes for full core problems.

The impact of the three-color scheme on the ray tracing calculation with the
hexagonal ADD scheme is examined for the 2D VVER core problems as shown in
Figure 3.5, where ‘RGB?’ is the three-color scheme. In the one-sixth symmetry case,
the total ray tracing time is increased since OpenMP load balancing for the ray
tracing calculation is deteriorated by adding three-color iterations to assembly
iterations. On the other hand, the total ray tracing time for the 2D KAERI V06, V09
full core problem is reduced by 9~13 % by saving one ray tracing iteration. Thus,
the three-color scheme is used only for the full core problems in the following.

» ] S o)) &



~N
v
=
o
o

1/6 Core Full Core

KAERI V03 KAERI V06 KAERIV09  VVER440FC KAERI V03 KAERIV06 KAERIV09 VVER440FC
Ew/oRGB ®w/RGB Ew/o RGE ®mw/RGB

[
[=]
-]
o

=
wn
=)
o

~
o

w
Total Ray Tracing Time (min.)
-3
o

Total Ray Tracing Time (min.)
=
o

o

Figure 3.5. Total ray tracing time for the 2D VVER core problems with and without
the three-color scheme.

3.4. Angular Flux Storage Scheme

The [-th order Legendre angular expanded m-th flux moment ¢;* for the
energy group g at the position 7 in the planar MOC calculation with anisotropic
scattering is obtained as follows:

OIS

P01 = 5 2@ T Ty’ 3.7
d5(T) =Ypwysinb A ( n(7,2) — (s, T, TZ)) Y™ (Q), (3.8)
Qg l(r) - 6OIQfg(r) + Z 2-"s gr—»g(r)d)p”]m( )7 (39)

where X, is the total cross-section; A is the source mesh area in ray tracing;
w is the weighting of solid angle 2; @ is the polar angle; A is the ray spacing; a

out s the outgoing

is the azimuthal angle; ¢ is the incoming angular flux; ¢
angular flux; s is the segment length; Qf is the fission source; Z! is the [-th

order Legendre angular expanded scattering cross-section; ¢P™ is the angular flux
moment obtained from the previous step.

In the flux moment storage scheme (FMSS), qﬁgfl is accumulated in the course
of tracing each ray segment. This scheme is quite intuitive and especially effective
in the PO calculation. It requires, however, enormous multiplication operations in the
P2 calculation. On the contrary, @;"’l is calculated as the weighted sum of @, the
difference between two angular fluxes in the AFSS.[35]

Py (F) = Tgwy sin 6 4,9 4(s, 7. 2)Y7 (2), (3.10)
Py(s7.2) = (7. 2) — 93 (s, 7. 2). (3.11)

This scheme requires storing the average angular flux information during ray

* ,»H-,J”aﬂ T



tracing. The moment calculation is done at the end of the ray tracing calculation in
this scheme. The benefit of computing time saving attainable by avoiding expensive
moment calculations during the ray tracing calculation justifies the increased
memory usage.

The impact of the AFSS on computing time for the two ray tracing calculations
with and without the ADD scheme, which are examined for the 2D VVER core
problems, is exactly the opposite as shown in Figure 3.6. The total ray tracing time
is increased significantly in the calculation without the ADD scheme due to a huge
fetching overhead induced by the enormous memory size of the angular flux change.
On the other hand, the total ray tracing time is reduced by 10~26% in the calculation

with the ADD scheme by saving multiplication operations in the P2 calculation. Thus,

the AFSS is used only in the calculation with the ADD scheme in the following.
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Figure 3.6. Total ray tracing time for the 2D VVER core problems with and without
the AFSS.

The algorithm of the nTRACER MOC sweeps with the hexagonal ADD scheme,

three-color scheme, and AFSS is represented in Figure 3.7. Compared to Figure 3.1,
color iterations are added to assembly iterations, and the scalar flux is calculated
once all assembly rays are swept.
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Algorithm MOC sweep for n-TRACER

do Energy group iterations
do Energy groups
e= do Planes | MPI parallelization
do Inner iterations
Update PO scattering source and higher-order scattering source moment
do Colors! 3 color scheme
= do Assemblies ! OpenMP parallelization (ADD)
Update anisotropic scattering source
do Forward & Backward
do Assembly rays
do Cells
do Segments
do Polar angles
Calculate segment angular flux change
Update segment outgoing angular flux

end do
Calculate cell current
end do
end do
end do
end do
Calculate scalar flux ! AFSS
= end do
Update assembly angular flux
end do
end do
e end do
end do
end do

Figure 3.7. Algorithm of the nTRACER MOC sweeps with the ADD scheme,
three-color scheme, and AFSS.
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Chapter 4. Development of the Unstructured Nodal
Method in RENUS

So far, the capability of handling geometric deformation of a core has been
attained only in the finite difference method, finite element method, and Monte Carlo
solutions, which require dividing the problem domain into substantial meshes to
obtain sufficient accuracy. Meanwhile, the nodal solution based on polynomial
expansions, which exploits a smaller computing resource, can also be expanded to
the unstructured geometry by calculating the integrals of the polynomial expressions

within the given domain.

A nodal code, RENUS analyzes the neutronic characteristics of a 3D hexagonal
geometry core by employing the planar solutions and axial solution as shown in
Figure 4.1. For each plane, the triangle-based polynomial expansion nodal (T-PEN)
method and corner point balance (CPB) solution are alternately invoked to solve the
decoupled planar diffusion equations. The point fluxes used in the T-PEN
calculations are updated from the CPB solutions while the surface currents and
assembly fluxes used in the CPB calculations are updated from the T-PEN solutions
again. The axial coupling between planes is resolved by the 1D nodal expansion
method (NEM) solution. The axial leakages used in the T-PEN calculations are
updated from the NEM solutions while the transverse leakages and assembly fluxes
used in the NEM calculations are updated from the T-PEN solutions again. The axial
leakage source distribution approximated as the third polynomial expression for each
assembly is inputted to the T-PEN calculations. The nodal calculations are
accelerated by updating the assembly fluxes by using the 3D CMFD formulation.
The 3D CMFD formulation uses the surface currents determined by the nodal

solutions again.
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Axial | Planar
| Surface current

Axial leakage source | A bly flux
| >
NEM | T-PEN CPB
Transverse leakage source ! Point flux
Assembly flux :
Assembly flux | Radial/Axial current

3D CMFD

Figure 4.1. Code flow of RENUS.

This section introduces the method to calculate the curvilinear and surface
integrals of polynomials in arbitrary geometry. In the subsequent subsections, the T-
PEN method and CPB solution in regularly structured geometry are introduced, and
the expansion of those calculations to the unstructured geometry by using the method
described in Subsection 4.1. is described.

4.1. Polynomial Integral Calculations in Arbitrary Geometry

The nodal method is to approximate the flux distribution in a fuel assembly size
coarse mesh, into which the cross-sections are homogenized, as an expression of
continuous functions such as polynomial, exponential and trigonometrical functions.
The physical constraints, e.g., the diffusion equation, flux and current continuity, and
leakage balance are employed in each mesh to determine the unknown coefficients
in the flux expression. The system of the physical constraints can be established by
incorporating the physical variables including the mesh-averaged flux and current,
of which the expressions are determined from the flux expression. The number of
unknowns in the system can be reduced by substituting the unknown variables with
the inputs determined from previous calculations or equations of other unknown
variables. The flux expression can be uniquely determined by solving the system as
the number of unknowns becomes equal to the number of flux expansion coefficients.
Thus, the nodal method can be expanded to the irregularly deformed geometry by
expressing edge-averaged and area-averaged variables as an equation of other
variables in an unstructured mesh. It needs to calculate the curvilinear and surface
integrals of basic functions in arbitrary geometry since those integrals are

incorporated in variable expressions.

In the two arbitrary segments stretching from (xq,y;) to (x,y,) which are
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parallel to the y-axis or not, respectively, shown in Figure 4.2, the surface flux ¢,
and current J; are defined as follows:

(xl;YZ)I (xz.yz) ‘,'/

L:ix=xq

-—— e m—————————————
—~

(X1, y1)d -
(a) (b)

Figure 4.2. Arbitrary segments (a) parallel to the y-axis or (b) not.

- Yy
1= - [2P(x, )l aery dx while 2, = x5, (.1
¢ = _j:lzq}(x Y)ly—ax+[3dx while x1 # x2, 4.2)
— ad :
Ji = —p ¥t fyyf axqb(x y)| dy while x; = x, (4.3)
@y
— x a
= pmel T ™) e
+ 122 p(x,y)|
y y= ax+B

where sgn is a sign function; D is the homogeneous diffusion coefficient; [
is the segment length; and ¢(x,y) is the flux expression.

The surface flux of ¢(x,y) polynomials used in the T-PEN method and CPB
solution can be obtained by using Table 4.1, in which u,p,v and q are defined as
follows:
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Table 4.1. Polynomial curvilinear integrals in arbitrary segment.

[
1

x1+x2
yity2
u1+u2
P1t+Dp2
V1+v2
q,+qz
xf + x1x5 + x%
i+ Yz +y3
ud + uyu, + u
pi +p1p2 + P3
vi + vz + v%
qi+ 9192 + 43
(xq + xz){xf + x%)
(y1 +y2)(¥i +3)
(ug + uz)(uf +uf)
(p1+ p2)(PT + p3)
(vy +v2)(vf +v§)
(g1 +92)(qi + q3)
x‘f + xixz + xfx% + xlxg + xg
4, .3 2.2 3, .4
YityiyYztyiyz ty1yztyz
uf + wdu, + vl + ugud + ud
pi+pip: +pivi + P + P}
vi +viv, + vivi + vyvd + v
a1+ qiq: + qiq3 + 4,193 + a3

RE,R,aem R R(m
B | =

| S
W =

=TT~
]

e
w

w w w w
I

=TT~ T~
(5]

=
'S

RS
v =

-]

S

u=— % (x ++/3y), (4.5)
p= —%(x—\/§y), (4.6)
v=—2(y—3x), 4.7)
q= —%(y+\/§x). (4.8)

Note that the equations in the table are valid whether the segment is parallel to
the y-axis or not. For example, the surface flux in arbitrary segment with the flux
shape of x3 is obtained as follows:

o ) |
1= f;;z x3dx = (xg +x)(xf +x}) while xq = x3, (4.9)
1= [ adn =100+ x) (6 + 23) while xy £ xy (4.10)

The curvilinear integral terms in Eq. (4.3) and Eq. (4.4) can be obtained by
multiplying their coefficients to the surface flux of %qb(x, y) and %qf)(x, y)

polynomials, respectively, which can be determined by using Table 4.1.
30



The areal flux ¢y, flux moments ¢, and éy, flux Laplacian operator V2¢y,
and flux Laplacian operator moments V2¢, and Vzéy in an arbitrary closed

polygon with an area of A are defined as follows:

v= ifqb(x, y)ds, 4.11)
by = 7 [ xp(x,y)ds, (4.12)
by = [ yb(x,y)ds, (4.13)

27 1 a? a?
Vigy = _f(ﬁ a—z) ¢ (x,y)ds, (4.14)
Vg =3[ x (57 + 7z) $(x.y)dS. @15
Vg, =11y (2 + o) G y)ds, (4.16)

The arbitrary closed polygon shown in Figure 4.3 can be split into
parallelograms or triangles divided by lines parallel to the y-axis. The areal
variables of Egs. (4.11)—(4.16) in this polygon can be obtained by averaging the areal

variables in parallelograms or triangles with volume weight.

2 Pis

Ppe = Pes

PR - Vi ———

e e ()

Pps)

o v e o

Figure 4.3. Arbitrary polygon divided by lines parallel to the y-axis.

The areal flux in one parallelogram shown in Figure 4.4 can be obtained as
follows:
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Figure 4.4. Parallelogram parallel to the y-axis.

by = d(x,y)ds =1 [ [ p(x,y) dydx, 4.17)
A=30x, —x)(v - ¥8) (vs - ¥2). (4.18)
fLLb‘ d(x,y)dy = Fy(x,L(x)) — F)(x,Ly(x)), (4.19)
F)
oy YY) = 0(xy), (4.20)
f;lz (Fy(X, Lt(x)) - Fy(x, Lb(x))) dx = (Gxt(xz) — Gxt(x1)) - @21
(be(xz) - be(xl))v
% Gre(x) = Fy(x, Le(x)), (4.22)
72 G (0) = Fy (%, Ly, (), (4.23)
Bv =3 (62 (x2) = G (x)) = (G (x2) — G (x1)) ) (4.24)

The surface integral function G,;(x) in the arbitrary line L:y = ax+ b for
x,y polynomials used in the T-PEN method and CPB solution can be obtained by
using Table 4.2. G,;(x) for u,p,v and q polynomials can be obtained as a linear
combination of G,;(x) for x,y polynomials.
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Table 4.2. Polynomial surface integral functions in arbitrary line.

o(x,y) Gy(x)
1
1 Eaxz + bx
1
x §M3 +£.[:r:c2
1 1
_‘(2 %M‘l‘-i-?bxa
X3 _ 3 +—h 4
N
x* Eax5+§bx5
1 1 1
y gazxs +£abx2 + = bx
1 1 1 1
2 Easx"-i-gaszs +Eabzx2 +§be
1 1 1 1 1
y? ﬁa‘ﬁ + Ea3bx“‘+ia2b2x3 +Eab3x2 +=b*x
1 1 1
yi ﬁan(’ R ga*be + Eaabzx" T §a2b3x3 i Eab‘*xz 1 Ebsx
1 1 1
xy Eazx.‘ +§abx3 +1b2x2
1 1 1
2y Eazﬂ + Eabx‘* + Eb2x3
1 1 1 1
xy? —a’x® + —a’bx* + = ab®x® + —b3x?
15 1 4 1 3 1 6
3 x5 4 = abx’ + —hPxt
¥y lzalx 511.:1 +8b:¢1
x2y? Easxs—i—gazbﬂ +Eabzx‘*+§b3x3
1 1 3 1 1
3 @t 4+ —a@dhS + o Bt + = ab? 2pa2
y 5% X +gathx Babx +3abx3+8bx

Note that the equations in the table are also valid in a triangle by inputting same

y! and y? or same y5 and y?2. The areal flux moments, flux Laplacian operator

and flux Laplacian operator moments of ¢(x,y) polynomials can be obtained by
2

repeating the areal flux calculation for  x¢(x,y),yp(x,y), (% +

a2 a2 a2 a2 a2 .
W) d(x,y),x (@ + W) ¢(x,y) and y (@ + W) ¢(x,y) polynomials,

respectively, which can be determined by using Table 4.2.

4.2. Expansion of the T-PEN Method to the Unstructured
Geometry

The T-PEN method [22] is to approximate the flux distribution in a triangle

node of hexagonal assembly as a linear combination of nine polynomials as follows:

d(x,y) = co + ayx + a,y + byx* + byu® + b,p* + ¢, x> + c,u* +  (4.25)
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cpp°,

where the notation of the energy group is omitted here.

The physical variables used in the T-PEN method can be categorized into the

representative group and the derived group. Each variable in the representative group

including one areal flux ¢, two areal flux moments ¢, and $y, three surface

fluxes ¢y, ¢y, Pp, and three corner point fluxes ¢, ¢y, P, can be expressed as a

linear combination of nine flux expansion coefficients, and vice versa. Seven

variables in the derived group including one areal leakage DZ, two areal leakage

moments D2 and 532,, three surface currents /., Jy, ]_p, and one central leakage L.

are incorporated in the physical constraints employed to establish the response

matrix. The T-PEN variables in the regular triangle node shown in Figure 4.5 are

defined as follows:

u

Figure 4.5. Construction of the T-PEN variables in the regular triangle node.

by =7 Js dxyds,
$: = g fs xd(xY)dS,
&, = ,f?fs Yo (x,y)ds.
¢ = %ff;qb(x, P, _a,dy.
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_ 1 ﬁh
q§u = ﬁf_ﬁﬁhd)(x’ y)|y=— 1 N 1hdx, (4.30)
3

N
V3
= — x’ dx’ 431
by hf_?hfﬁ( Y)lly:_%x%h (4.31)
¢ = (-5h0), (4.32)
—o(Bpt
bu =0 (% h,zh), (4.33)
V3 1
by = ¢ (Z?h,z—gh), (4.34)
= D a a
b} =-2[ (S+ W) P(x,y)dSs, (4.35)
= 2D 9% 9%
D% = -2 x(35+32) d(x.1)dS, (4.36)
= 2D 9% 9%
Di=-=1y (ﬁ + W) ¢(x,y)ds, (4.37)
1
_ D sh /. =
Jo=—3 14, (6 Vo@y)| g, 4. (4.38)
2 “6
V3
_ D ~~h /. —
Ju=-20% (u Vo) , , dx. (439)
—5h J’——ﬁx—gh
V3
_ D ~h /.. =
Jo=-31% (& Vo) ety 9% (4.40)
3 33
L.=-D (Ex . V([)(x,y)) (4.41)

where h is the side length; A is the triangle area; D is the homogeneous
diffusion coefficient in the triangle node. The notation of the energy group is omitted
here.

The derived group variables can be expressed as a linear combination of the
representative group variables by using the following procedures: First, express all
T-PEN variables as a linear combination of the nine flux expansion coefficients by
substituting Eq. (4.25) into Egs. (4.26)—(4.41). Then, reverse the expressions of the
representative group variables to express the nine flux expansion coefficients as a
linear combination of the nine representative group variables. Finally, multiply the
expressions of the derived group variables by the expressions of the flux expansion
coefficients to express seven derived group variables as a linear combination of the
nine representative group variables. The final expressions in a regular triangle are

obtained as follows:

D% = %(80(7) —32(x+ Pu + &) + 5 (bx + bu + ¢p)), (4.42)
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D2 = (808, X8, + 5 (But B) +5 (20— bu=y)). (44
D3 = 2808, + 8(Bu — ,) -2 (64— 8)). (4.4

Jr = — 7 (206 + 1208, — 24, + 2, + bu + bp), (4.45)
Ju=—7; (206 — (608, + 608,) — 24¢, + by + 2 + &), (4.46)
Jp = — 7 (208 — (608, — &) — 246, + b, + bu + 2¢,),  (447)
Lo=—22(60, — 4§, + 4,). (4.48)

For the hexagonal assembly including six triangle nodes shown in Figure 4.6,
the T-PEN method employs 31 physical constrains for each energy group. These
constraints include three diffusion equations in each triangle node including two
weighted residual methods of x and y, two current continuity equations at each
inner and outer surfaces, and one leakage balance equation at the center to construct
the linear system as follows:

Figure 4.6. Construction of the T-PEN variables in the regular hexagonal assembly.

— . —_— X —_— —_— —_ .

D* + 3,9, = Kzzg, VEfgig®Pg + Xgi ZsgigPy + S5, (4.49)
~ . ~ . X ~ . ~ ~ .
D%l + zrg¢‘qu == Kffz‘q, szglg¢‘lqlx + Zgl zsglg¢‘lqlx + S‘quX3 (4.50)
~2. ~ . _ X ~ . ~ ~ .
Dy +Zygbgy = Kzzg' VifgigPgy + Lgr ZsgigPgy + gy 4.51)
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Ji=J¢ -4,

Ju=-T51,
6 ,

Zi:1Lé =0,

(4.52)
(4.53)
(4.54)

where X,,Xr and Xg are the assembly macroscopic cross-sections of the

removal, fission, and scattering reaction, respectively; y is the fission spectrum; v

is the average number of neutrons generated by fission; k.ss is the multiplication

factor; S%,SZ, and SZ are the axial leakage source and two axial leakage source
x y g g

moments, respectively; and 2 and J. are the outgoing and incoming partial

currents, respectively.

The T-PEN response matrix can be constructed by substituting Egs. (4.42)—
(4.48) into Egs. (4.49)—(4.54) as follows:

a
a

21
o
5 5,

5
5 5

X

Sy

- PJ

a,
Xy
M
M
<]
S5 S
L
Ss S5
[P:
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oy

Sg
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ps |

‘
Losl s
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Figure 4.7. T-PEN Response matrix for a regular hexagonal assembly.

In this work, the definitions of the T-PEN variables described in Egs. (4.26)—
(4.41), except for the areal variables, are expanded to the unstructured triangle node

shown in Figure 4.8 as follows:
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P3 = (x3,¥3)

Figure 4.8. Construction of the T-PEN variables in the irregularly deformed
triangle node.

1 = [ @Y1 wdx, (4.55)

&, = if;f([)(x, Y, dx, (4.56)

3 = [ d@ )iy dx, (437
Jo=— D% [ (31 V(x, y))|L1(x) dx, (4.58)
VO ) I @59
=052 (6 S| o o
1 = ¢(Py), (4.61)

> = ¢(P>), (4.62)

b3 = ¢(P3). (4.63)

= l

L= —2(e1 Vo) (4.64)

(P1)

The linear combination expressions of the nine flux expansion coefficients for
the corner fluxes and central leakage described in Egs. (4.61)—(4.64) can be easily
obtained by simple substitution. The expressions of the surface fluxes and currents
in Egs. (4.55)—(4.60) can be obtained by using the look-up table presented in Table
4.1. The expressions of the areal flux, flux moments, leakage, and leakage moments
can be obtained by dividing the deformed assembly into parallelograms and
calculating the surface integral functions for each parallelogram by using the look-
up table presented in Table 4.2. Consequently, the derived group variables in the
deformed triangle node can be expressed as linear combinations of the representative
group variables by repeating the procedures described for the regular triangle node.
The T-PEN response matrix for the deformed assembly can be constructed by
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substituting the derived group variables with those expressions. Note that the
curvilinear and surface integrals of nine polynomials are different for six triangle
nodes of the deformed assembly as node shapes differ from each other. The
diagonality of the response matrix can be decreased since all representative group
variables are incorporated in the expressions of the derived group variables while the
response matrix in regularly structured geometry is quite sparse. This decrease can
deteriorate the performance of the T-PEN calculations for deformed hexagonal
geometry problems.

In contrast with Eq. (4.41), the central leakage is multiplied by the length-
weight in Eq. (4.64). This difference is because the leakage at one edge of an
infinitesimal hexagon is a product of the leakage normal to the edge and the edge
length as shown in Figure 4.9. The leakage balance at the center of the irregularly
deformed hexagonal assembly is described as follows:

Figure 4.9. Leakage balance at the center of the irregularly deformed hexagonal
assembly.

vaLli=0. (4.65)

4.3. Expansion of the CPB solution to the Unstructured
Geometry

The CPB solution is to approximate the flux distribution in a hexagonal

assembly as a linear combination of fifteen polynomials as shown in Figure 4.10 as
follows:
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Figure 4.10. Construction of the CPB variables in the regular hexagonal assembly.

¢(x;}’) = CO
+4, (2% + x) + B, (x* + xz) + Ay(y3 - y) + By(y4 - yz)
+4,(ud + u) + B, (u* + uz) +4,(v3 - v) +B,(v* - vz)
+4,(p® +p) + By (p* + p?) + A.(q° — q) + A4(q* — 4°),

(4.66)

where the notation of the energy group is omitted here.

The CPB variables represented in Figure 4.10 are defined similarly to the T-
PEN method. The corner flux, surface flux, and areal flux belong to the
representative group, and the corner leakage belongs to the derived group in the CPB
solution. The expressions of three corner leakages as a linear combination of the
fifteen flux expansion coefficients can be obtained as follows:

155 = —(3h% — h)A, + (4h* — 21?)B, + (22h3 + 2 1) 4, +
(G 200) 0 (0~ (- ),
(22h3 +2n) 4, +((1%h4 +1§h2))3,, +(Cn3-2n)a, +

(4.67)
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I = — (22p3 + Bh) 4, + (Cht +202) B, + (3h3 - 3h) 4, +
(3n*—1n?)B, - (30% — h)4, + (4h* — 21?)B, + (Z2R3 +  (4.68)
Sh)a,+(Cnt+3n2)B, + (En3 —1n)a, + (Grt - 1n?) B,
IVE = (22h3 + 2 h) A, + (Cht +20%) B+ (BR3 - 1h) 4, +
(Grt—1n?)B, - (2203 + Zh) 4, + (h* +202) B, +
((n®—2n)4, + (Gh* —3h?)B, — (3h3 — 4h)A, + (h* —
2h?)B,.

(4.69)

Three corner leakages can be expressed as linear combinations of the fifteen
flux variables by repeating the converting procedures described in the previous
subsection. Note that the coefficients in the expressions change with the assembly
pitch while it does not in the T-PEN method. The corner leakages are substituted
with these expressions in the leakage balance equation at the intersection of three
assemblies shown in Figure 4.11. As a result, the intersection flux can be expressed
as a linear combination of thirty flux variables as follows:

Figure 4.11. Construction of the CPB parameters in the regular hexagonal

assemblies.
3.Li=0, (4.70)
(D' +D* + D3) ¢, + w {D'(pp + ¢3) + D*(dp + Ppp) + (4.71)
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D3(¢} + ¢3)} + w,{D (3 + d}) + D (¢S + ¢3) + D3 (P} +
¢5*)} + w3 (D@} + D? P} + DAPp') = wu{D (@53 + P5*) +
D*(¢pi* + ¢15) + D3 (@2 + ¢2°)} + ws{D1 (P} + p}) +
D(3 + ¢F) + D3(¢3 + ¢3°)} + we{D (93 + ¢3) + D? (S +
$3) + D3(p3° + ¢3')} + w; (D1} + D?PF + D3 ¢3),

where w is the weighting factor changing with the assembly pitch. The
weighting factors in the case of an assembly pitch of 4 (cm) are presented as follows:
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Wy = a7 (4.72)
wy = s (4.73)
w3 = o (4.74)
w4 = 955 (4.75)
ws = s (4.76)
we = “ieer (4.77)
w7 = =5 (4.78)

The linear system of the point fluxes in the core can be constructed by applying
Eq. (4.71), where the surface fluxes and assembly fluxes determined from the T-PEN
calculation are moved to the right-hand side, to all corner points. This linear system
can be solved easily by using the plain Gauss-Seidal iteration scheme since it is
strongly diagonally dominant.

In this work, the definitions of the CPB variables with the flux shape of Eq.
(4.66) are expanded to the unstructured geometry similarly to the T-PEN method.
The physical variables in the irregularly deformed hexagonal assembly shown in
Figure 4.12 are expressed as linear combinations of the fifteen flux expansion
coefficients by using Table 4.1 and Table 4.2. Three corner leakages in the leakage
balance equation at the center are substituted with linear combinations of the fifteen
flux variables by using the same converting procedures described in the previous
subsection. The point fluxes in a deformed hexagonal geometry core are determined
by solving the linear system employing the leakage balance equations at corner
points including deviated ones. Note that the leakage balance equation at a deviated
point employs the weighted sum of length between two neighboring corner points as
shown in Figure 4.13.
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Figure 4.12. Construction of the CPB variables in the irregularly deformed
hexagonal assemblies.

Figure 4.13. Leakage balance at the deviated point.
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Chapter 5. Validation of the Solution Methods

The newly developed methods and schemes in nTRACER and RENUS
described in the previous sections need to be verified to determine whether this
research’s purposes are achieved. The solution accuracy of nTRACER is verified
first by comparing its calculation results for the various hexagonal geometry core
problems against the McCARD results. In the subsequent subsection, the ADD
performance is examined by comparing the ray tracing time with and without the
ADD scheme for the various VVER core problems. The performance of the
unstructured hexagonal nodal solution in RENUS is verified in the last subsection
by comparing its calculation results for the arbitrarily deformed 2D SFR benchmark
problems against the McCARD results.

The nTRACER calculation options proved to ensure sufficient solution
accuracy by conducting sensitivity tests are used in this section. The ray parameters
of 0.05 cm ray spacing, 12 azimuthal angles in [0, 7], 4 polar angles in [0, /2] are
employed. The fuel of the fuel rod is divided into four regions in the radial direction.
In contrast, the fuel with the gadolinium absorber is divided into seven regions. The
outer iteration on ray tracing is terminated when the pseudo fission source error and

residual error are reduced below 5x10-5.

In all nTRACER calculations in this section, pin power errors are examined in
the absolute value, and the number of energy groups for VVER and SFR core
problems are 47 and 33, respectively.

5.1. nTRACER Calculations for the Hexagonal Geometry
Core Problems

For accuracy assessment, the nTRACER solutions for the hexagonal variant
light water reactor (LWR) core problems, and 2D VVER and SFR core problems are
compared with the McCARD [39] Monte Carlo reference solutions. The effect of P2

anisotropic scattering treatment on solution accuracy is also examined.

5.1.1. C5G7 H Benchmark Problem

The C5G7 H benchmark problems are the hexagonal variants of the C5G7
benchmark problems established for rectangular geometry LWR cores without
spatial homogenization.[1] The core consist of nine materials including one UOX,
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three MOX fuels, one fission chamber, one guide tube, one moderator, and one
control rod. The seven-group macroscopic cross-section set for these materials is
provided in this benchmark. The fuel loading pattern in the radial direction and axial
configuration with three types of control rod insertion are illustrated in Figure 5.1.
Fuel assemblies of a pitch of 11.9 cm shown in Figure 5.2 consist of fuel pins of a
radius of 0.54 cm. One 2D core problem, where all control rods are withdrawn, and
three 3D core problems with different control rod insertions in UA assemblies
indicated in Table 5.1 are included in this benchmark.

Vac.
/\ RP
RA 21.42 cm — CR
-
i
MA V. 14.28 cm FP
ac
-
14.28 cm FP
UA
14.28 cm FP
12 Ref.
Ref. TA TB TC
(a) (b)

Figure 5.1. (a) Radial and (b) axial core configurations in the C5G7 H benchmark
problem.

. % '. ; .Fission Chamber
| | Guide Tube
vo,
! (OMOX 4.3 %
MOX 7.0 %

@ Mox87%

(a) (b)

Figure 5.2. (a) UA and (b) MA in the C5G7 H benchmark problem.
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Table 5.1. Control rod insertion in the C5G7 H benchmark problems.

Problems | UA-1 UA-2 MA
Unrodded TA TA TA
Rodded A TB TA TA
Rodded B TC TB TA

The McCARD solution for these benchmark problems was determined as an

average of three calculation results for the same problem with different random

number seeds. Each McCARD calculation was conducted by using 100 inactive

cycles, 500 active cycles, and 20 million particles per cycle. The standard deviation

of pin power distribution does not exceed 0.19 %.

The solution accuracy of nTRACER for the 2D C5G7 H problem is sufficiently
high in that the reactivity difference is 12 pcm and the maximum and root-mean-

square (RMS) pin power differences are 1.02 % and 0.24 %, respectively, as

presented in Table 5.2 and Figure 5.3.

Table 5.2. Comparison of two solutions for the 2D C5G7 H core problem.

McCARD nTRACER
k-eff o (pcm) Ap (pcm) Max. AP (%) RMS AP (%)
1.16241 2 12 1.02 0.24
2
0 I

15 —~
£ g =
Q —
[ =
o w
g 05 5
£ 20 H
s ¥
8 20 0.5 ;
= 3
; 4 g
) MAX : 1.02% -,

1 RMS :0.24% §-1-5
‘ : : ‘ -
0 10 20 30 40 50

Distance from center, cm

Figure 5.3. Pin power difference distribution for the 2D C5G7 H core problem.

The solution differences for the three 3D C5G7 H problems are summarized in

Table 5.3, and the pin power difference for the Rodded A case in the radial and axial
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directions are depicted in Figure 5.4 and Figure 5.5, respectively. The maximum
difference in reactivity and 3D pin power distribution are 7 pcm and 6.41 %,
respectively. The 3D pin power difference is somewhat high. However, the radial
and axial pin power differences do not exceed a tolerance range. Thus, it is concluded
that nTRACER reproduces the reference solutions for all C5G7 H benchmark
problems with high accuracy.

Table 5.3. Comparison of two solutions for the 3D C5G7 H core problems.

Unrodded Rodded A Rodded B
McCARD k-eff 1.12273 1.11891 1.10264
o (pcm) 1
Ap (pecm) 7 3 -2
Max 6.41 5.98 5.36
o )
3D AP (%) RMS 0.43 0.44 0.44
nTRACER Rad. AP Max. 0.93 0.98 0.89
(%) RMS 0.24 0.26 0.24
Max 0.86 0.76 0.84
o )
AX. AP (%) pms 0.23 0.17 0.23
0r : 2
L. | 2
o : : °
5 -10 11 £
c o
2 2
"E’-zo S
<] ¥ g
- o
[ i =]
g-307 N
L] 17w
n £
2 4 MAX : 0.98% =
RMS : 0.26% =
o 10 20 30 40 50

Distance from Center, cm

Figure 5.4. Radial pin power difference distribution for the C5G7 H Rodded A
problem.

47



=
1

o
tn

<

RMS : 0.17%

Normalized PIn. Power Eror (%)
o
[3,]

[
-

10 20 30 40
Height (cm)

(=}

Figure 5.5. Axial plane power difference distribution for the C5G7 H Rodded A
problem.

5.1.2. KAERI Benchmark Problem (VVER-1000)

The core configuration of the KAERI benchmark problem is illustrated in
Subsection 2.1. All cases of the 2D KAERI benchmark problem described in Table
5.4 are solved by nTRACER and McCARD. The same McCARD options in the
previous verification are also used for this problem.

Table 5.4. Benchmark cases of the 2D KAERI benchmark problem.

Case Temperature (K) Boron concentration
Fuel Cladding, Coolant (ppm)
Vo1 300 300 0
V02 600 600 0
Vo3 900 600 0
V04 300 300 1,000
V05 600 600 1,000
V06 900 600 1,000
V07 300 300 2,000
V08 600 600 2,000
V09 900 600 2,000

nTRACER solved the 2D KAERI core problem by using the PO option. The
solution differences calculated by comparing the nTRACER calculation results
against the McCARD results are presented in Table 5.5. The solution differences are
somewhat high for the V01, V04, and V07 cases, where all materials are at 300 K.
This is because the SNURPL 47G library used in the nTRACER calculations were
generated targeting operation states with high temperature. On the other hand, the
high solution accuracy of nTRACER is demonstrated for other cases as shown in
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Figure 5.6 while it does not change significantly by fuel temperature nor boron
concentration.

Table 5.5. Comparison of the two solutions for the 2D KAERI core problem with
the PO option.

PO McCARD nTRACER
k-eff o (pcm) Ap (pcm) Max. AP (%) RMS AP (%)
Vo1 1.28365 -34 2.24 0.95
V02 1.22097 -8 0.72 0.19
Vo3 1.21116 -38 0.68 0.20
V04 1.08154 -72 1.52 0.61
Vo5 1.08246 1 -23 0.58 0.22
Vo6 1.07377 -55 0.62 0.22
Vo7 0.94263 -106 1.54 0.53
V08 0.97712 -32 0.63 0.23
V09 0.96935 -68 0.70 0.27
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.| AX:068% § <

: : : -2
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Figure 5.6. Radial pin power difference distribution for the KAERI V03 problem
with the PO option.

The effect of P2 anisotropic scattering treatment on solution accuracy is
examined by comparing the solution differences between the PO and P2 options.
Table 5.6 and Figure 5.7 represent the solution difference with the P2 option. The
reduction in solution difference is presented with a positive sign in Table 5.7. The
reactivity difference is significantly reduced in most cases by using the P2 option.
On the other hand, the pin power difference is increased for all cases at room
temperature. It is also increased as boron concentration increases. It is demonstrated
that the SNURPL 47G library needs to employ improved P2 anisotropic scattering

treatment for problems at room temperature with high boron concentration.
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Nonetheless, the increase in solution accuracy of nTRACER by using the P2 option
for the core problems in operation state with low boron concentration is verified in
this benchmark.

Table 5.6. Comparison of the two solutions for the 2D KAERI core problem with
the P2 option.

P McCARD nTRACER
k-eff o (pcm) Ap (pem) Max. AP (%) RMS AP (%)
Vo1 1.28365 5 2.33 0.89
V02 1.22097 22 0.47 0.14
Vo3 1.21116 -7 0.50 0.18
V04 1.08154 23 1.85 0.80
Vo5 1.08246 1 31 0.58 0.20
V06 1.07377 -1 0.54 0.10
Vo7 0.94263 36 1.82 0.67
V08 0.97712 46 0.82 0.35
V09 0.96935 11 0.99 0.41
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Figure 5.7. Radial pin power difference distribution for the KAERI V03 problem
with the P2 option.
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Table 5.7. Reduction in solution differences for the 2D KAERI core problem by
using the P2 option.

P0-P2 Abs. Ap (pcm) Max. AP (%) RMS AP (%)
Vo1 29 -0.09 0.06
V02 -14 0.25 0.05
Vo3 31 0.18 0.02
V04 49 -0.33 -0.19
V05 -8 0 0.02
Vo6 54 0.08 0.12
Vo7 70 -0.28 -0.14
V08 -14 -0.19 -0.12
V09 57 -0.29 -0.14

5.1.3. VVER440 ‘Full-core’ Benchmark Problem

nTRACER solved the VVER440FC benchmark problem by using both PO and
P2 options. The same McCARD options in the previous verification are also used
for this problem. The solution differences are presented in Table 5.8, Figure 5.8, and
Figure 5.9. The solution accuracy of nTRACER is increased significantly by using
the P2 option. These verification results correspond to the previous subsection since
the benchmark problem is in operation state with low boron concentration. It is
concluded that nTRACER reproduces the reference solutions for VVER core
problems with high accuracy, which is improved by using the P2 option for problems
in operation state with low boron concentration.

Table 5.8. Comparison of the two solutions for the VVER440FC core problem.

‘ McCARD ‘ nTRACER

k-eff o (pcm) Ap (pcm) Max. AP (%) RMS AP (%)
PO -116 1.42 0.81
P2 ‘ 1.08834 ! ‘ -52 0.52 0.32
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Figure 5.8. Radial pin power difference distribution for the VVER440FC problem
with the PO option.
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Figure 5.9. Radial pin power difference distribution for the VVER440FC problem
with the P2 option.

5.1.4. MET-1000 Benchmark Problem

nTRACER solved the 2D MET-1000 benchmark problem by using the P2
option. The McCARD calculation result for this problem was obtained by using 500
inactive cycles, 2,000 active cycles, and 200 thousand particles per cycle. The
solution difference is presented in Table 5.9 and Figure 5.10. The reactivity
difference and the maximum and RMS pin power differences are 150 pcm, 2.17 %,
and 0.76, respectively, which are in a tolerance range.[40] Thus, it is concluded that
nTRACER attained satisfactory accuracy for solving SFR core problems.
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Table 5.9. Comparison of the two solutions for the 2D MET-1000 core problem.

McCARD nTRACER
k-eff o (pcm) Ap (pcm) Max. AP (%) RMS AP (%)
1.22141 2 | 150 2.17 0.76
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Max: 2.17% J
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400 RMS:0.76% \‘
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Figure 5.10. Radial pin power difference distribution for the 2D MET-1000
problem.

5.2. Performance Examination of the nTRACER Hexagonal
Ray Tracing Calculation with the ADD scheme

The parallel execution performance of the new hexagonal version of nTRACER
is examined by comparing the two solutions obtained with and without the ADD
scheme. Considering practical operating conditions, only V03, V06, and V09 in the
KAERI benchmark problem are solved. In these cases, the fuel and coolant
temperatures are 900 K and 600 K, respectively, and the boron concentration ranges
from 0 ppm to 2,000 ppm. The calculation options including the ray parameters and
mesh structures in the previous section are also used in this section. For the 3D core
problems, the active fuel region is equally divided into eighteen planes in the KAERI
problem and into twelve planes in the VVER440FC problem, respectively. The axial
reflectors in the 3D VVER440FC problem are also divided in half. As a consequence,
eight computing nodes are exploited to solve sixteen and twenty-four planes of the
VVER440FC and KAERI problems, respectively. The nTRACER calculations were
performed on a ten-nodes computing platform, of which each node is equipped with
two 26-core CPUs of Intel Xeon Gold 6230 R with 2.10 GHz clocks and 540 GB
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RAM. The nodes are connected by 100 Gbps InfiniBand, which transfers calculation
results between each node.

5.2.1. 2D VVER Core Problems

In the ADD scheme, the incoming angular flux at the assembly surface is
updated by using the partial current information determined by the CMFD
calculation by following Eq. (3.1). If the surface of a CMFD mesh adjoins more than
two CMFD meshes, the length-weighted sum of CMFD fluxes should be employed
in the partial incoming current update. This approximation might deteriorate neutron
balance in CMFD meshes, consequently, and calculation convergence. In this regard,
the nTRACER modeling of Vygorodka in the VVER440FC benchmark problem is
modified from one shown in Figure 2.10.b to the other shown in Figure 5.11.a such
that CMFD mesh boundaries are aligned, but Vygorodka is modeled with a jagged
edge. Here the dimensions of the fuel and moderator cells are the same unlike in
Figure 2.10.b. The cells representing Vygorodka are filled with a homogeneous
mixture of steel and moderator materials, which conserves the total mass of
Vygorodka. The error associated with this approximation of Vygorodka was assessed
by the nTRACER runs with the angle-wise parallel computing option. The difference
in power distribution between the two models is given in Figure 5.11.b., which
reveals the maximum error of about 1 % at the core periphery. The reactivity error
and RMS pin power difference are negligible. Thus, it is expected that the
approximated Vygorodka modeling to enable the ADD would have a negligible

impact on solution accuracy.
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Figure 5.11. (a) nTRACER modeling for Vygorodka with the ADD scheme (b) Pin
power difference for the 2D VVER440FC core problem.

For the 2D KAERI V09 core calculations with and without the ADD scheme,
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the OpenMP parallel speedup in the ray tracing calculation is examined as shown in
Figure 5.12. As the number of threads increases, the actual parallel speedup falls
behind the ideal one. This gap is induced by load imbalance and thread
communication. The ray tracing calculation for the full core with the ADD scheme
has good load balancing since all assemblies have tracking rays of the same size.
Thus, this case has a high parallel speedup of about 21 using twenty-six threads. The
parallel speedups in other cases are less than 16 since imbalance exists in the
assembly area or tracking ray length. Twenty-six threads of each processor are used
for the planar MOC calculations in the following.

26 26
21 21 e
216 " 21 et
° ” _— © . S,
8 A b e
a1 T == a1 //
o= =
6 /,/ 6 =
o 1/6 Core /’ Full Core
e 1w
1 6 11 16 21 26 1 6 11 16 21 26
# of Threads # of Threads
-s-w/o ADD w/ ADD ---Ideal +-w/o ADD -=-w/ADD ---ldeal

Figure 5.12. OpenMP parallel speedup of the ray tracing calculation for the 2D
KAERI V09 core problems.

For each of the 2D core problems, the two solutions with and without the ADD
scheme were compared as summarized in Table 5.10. The solution differences must
be small because both solutions were obtained after satisfying the same convergence
criterion. The convergence behaviors shown in Figure 5.13 indicate that convergence
is slower with the ADD scheme. This drawback is because the incoming angular
fluxes had to be approximated even with the CMFD partial current update scheme
of Eq. (3.1). Nonetheless, the number of ray tracing iterations needed for satisfying
the convergence criterion increases only by one for the one-sixth symmetry cases
while it does not essentially increase for the full core cases. The comparison results
for calculation performance are presented in Table 5.11 including the computing
times, where ‘# of RT” and ‘Total RT’ are the number of ray tracing iterations and
total ray tracing time, respectively.
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Table 5.10. Calculation error with the ADD scheme for the 2D VVER core

problems.
AP (%)
Problem Ap (pecm) Max. RMS
KAERI V03 0 0.34 0.10
1/6 Core KAERI V06 0 0.32 0.10
KAERI V09 0 0.25 0.08
VVER440FC 0 0.32 0.11
KAERI V03 0 0.31 0.11
KAERI V06 0 0.30 0.10
Full Core KAERI V09 -1 0.17 0.07
X2 0 0.31 0.10
VVER440FC 0 0.05 0.01
1/6 Core Full Core

Residual Error

# of Outer Iterations in planar MOC

—KAERI V06 w/o ADD - -VVER440FC w/o ADD
* KAERI V06 w/ ADD = VVER440FC w/ ADD

Residual Error

—KAERI V06 w/o ADD

* KAERI V06 w/ ADD

= VVER440FC w/ ADD

# of Outer Iterations in planar MOC

- -VVER440FC w/o ADD —X2 w/o ADD

+ X2 w/ ADD

Figure 5.13. Residual error reduction for the 2D VVER core problems.

Table 5.11. Calculation performance with the ADD scheme assessed for the 2D

VVER core problems.
Problems w/o ADD w/ ADD
# of RT Total RT # of RT Total RT
KAERI V03 5 22m 6 19m
1/6 Core KAERI V06 5 22m 6 20m
KAERI V09 5 22m 6 20m
VVER440FC 4 12m 5 10m
KAERI V03 5 2h 7m 5 1h 8m
KAERI V06 5 2h 8m 5 1h 7m
Full Core = KAERI V09 5 2h 9m 5 1h 7m
X2 5 1h 59m 5 1h 8m
VVER440FC 4 67m 5 43m

Computing time decreases significantly for the 2D full core problems as

summarized in Table 5.12. The total computing time is reduced by 26~38%, and
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higher reductions of 43~49% are possible for each ray tracing calculation. This
significant reduction is possible because memory access traffic is significantly
reduced by reducing the memory size needed for each thread. In the original angle-
wise parallelization without the ADD scheme, all threads have to access the
geometry information of the entire core. Thus, there could be a serious fetching
overhead due to a memory access bottleneck, which deteriorates calculation
performance. This fetching overhead is significantly reduced by using the ADD
scheme, which requires fetching local geometry information by each thread. For the
2D KAERI full core problem, the memory needed for the angle-wise parallelization
(without the ADD scheme) and the ADD scheme turned out to be 100 GB and 82
GB, respectively. 18 GB reduction in memory was possible by using the ADD
scheme even though additional memory was required to store the incoming angular
fluxes at each assembly surface. For the one-sixth core problem, the single ray
tracing time reduction is deteriorated due to an imbalance in sweeping assemblies

and an increase in ray tracing iterations.

Table 5.12. Computing time reduction (%) with the ADD scheme for the 2D VVER
core problems.

Problems Single RT Total RT Total

KAERI V03 29 15 3

1/6 Core KAERI V06 25 10 0
KAERI V09 26 11 1

VVER440FC 34 18 6
KAERI V03 47 47 35
KAERI V06 48 48 36
Full Core KAERI V09 48 48 38
X2 43 43 33
VVER440FC 49 36 26

5.2.2. 3D VVER Core Problems

The 3D core calculation is decomposed first axially by assigning a certain
number of planes to each computing node. Eight computing nodes in the ten-nodes
computing platform were exploited in the calculations for the 3D VVER440FC and
KAERI core problems with sixteen and twenty-four planes, respectively. For the 3D
VVER440FC core calculations with and without the ADD scheme, the MPI parallel
speedup in the ray tracing calculation is examined as shown in Figure 5.14. The
memory size required for the 3D VVER440FC full core calculation exceeds memory
limitation when less than four computing nodes are exploited. n"TRACER has good
MPI parallel performance, which is better in the calculations with the ADD scheme.
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In the following, two processors of each computing node are used for the 3D
VVER440FC core problems while only one is used for the 3D KAERI core problems
due to a memory size restriction. Thus, each processor solves one planar MOC
problem of the 3D VVER440FC core while it solves four planar MOC problems of
the 3D KAERI cores.
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# of Processors # of Processors
-»-w/o ADD -=w/ADD -- Ideal -e-w/o ADD -=-w/ADD -- Ideal

Figure 5.14. MPI parallel speedup of the ray tracing calculation for the 3D KAERI
V09 core problems.

The solution accuracy summarized in Table 5.13-Table 5.14 and the
convergence behavior shown in Figure 5.15 reveal the same tendency as the 2D
problems.

Table 5.13. Calculation error with the ADD scheme for the 3D VVER one-sixth
core problems.

A AP (%)
Problem ( Cﬁl ) 3D 2D 1D
P Max. RMS Max. RMS Max. RMS
KAERI V03 0 060 0.18 026 009 026 0.14
KAERI V06 0 0.78 023 054 021  0.07 004
KAERI V09 -1 025 005 012 004 006 003
VVER440FC -1 035 0.09 021 008 0.05 003

Table 5.14. Calculation error with the ADD scheme for the 3D VVER full core

problems.
A AP (%)
Problem p 3D 2D 1D
(Pem)  y\ix. RMS  Max. RMS  Max. RMS
KAERI V03 0 0.47 0.16 0.14 0.06 025 0.14
KAERI V06 0 0.14 005 007 003 006 003
KAERI V09 0 0.17 005 007 003 006 004
VVER440FC -1 030 006 0.12 003 007 005
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Figure 5.15. Residual error reduction for the 3D VVER core problems.

The calculation performance and reduction in computing time with the ADD
scheme assessed for the 3D core problems are summarized in Table 5.15-Table 5.17,
where the computing time for the axial MOC calculation is included under ‘Total
Ax.” Compared to the 2D full core problems, the reduction in radial ray tracing time
is better in that the 27~53% reduction is possible in the single ray tracing time. This
improvement is because the fetching overhead in the angle-wise parallelization is
further increased by allocating four planes to each computing node in the 3D core
problems. For the same reason, the 4~45% reduction in total computing time is
possible for the 3D core problems. The axial MOC solver in nTRACER incorporates
the effect of anisotropic scattering in the axial reflectors filled with the pure
moderator to stabilize 3D core calculations. Some instability was noted in the axial
MOC solution for the VVER440FC problem with the ADD scheme. This instability
leads to performing more axial MOC calculations and increasing the axial MOC
calculation time. This drawback offsets the gain for the computing time reduction in
the radial MOC calculation, which is the main target of the ADD scheme.
Nonetheless, the total computing time is reduced by up to 45%, which demonstrates
the advantage of the ADD scheme in the computing time reduction.

Note that the capability of solving a 3D VVER full core is a crucial feature of
a DWCC code because it is necessary for solving the asymmetric core, e.g., the X2
benchmark problem or for analyzing the depletion in the core with an asymmetric
burn-up distribution. The ADD scheme can be exploited to reduce computing time
for those 3D VVER full core calculations.
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Table 5.15. Calculation performance assessed for the 3D VVER one-sixth core

problems.
w/o ADD w/ ADD
Problems 4 of RT Total RT Total Ax 4 of RT Total RT l:}t(al
KAERI V03 4 1h 36m Sm 5 1h 10m Sm
KAERI V06 5 2h 9m Sm 5 1h 12m Sm
KAERI V09 5 2h Sm 6 1h 20m Sm
VVER440FC 4 15m 17m 5 13m 17m

Table 5.16. Calculation performance assessed for the 3D VVER full core problems

w/o ADD w/ ADD
Problems 4 of RT Total RT Total Ax 4 of RT Total RT ]:::(al
KAERI V03 4 10h 39m 39m 5 6h 18m 40m
KAERI V06 5 13h 19m 40m 5 6h 20m 40m
KAERI V09 5 13h 31m 40m 5 6h 19m 40m
VVER440FC 4 1h32m 1h47m 5 1h 8m 1h 55m

Table 5.17. Computing time reduction (%) with the ADD scheme for the 3D VVER
core problems.

Problems Single RT Total RT Total
KAERI V03 41 27 19
1/6 Core KAERI V06 44 44 36
KAERI V09 44 33 26
VVER440FC 32 15 4
KAERI V03 53 41 31
Full Core KAERI V06 52 52 44
KAERI V09 53 53 45
VVER440FC 41 27 5

5.3. RENUS Calculations for the Arbitrarily Deformed Core
Problems

Considering the physical backgrounds of an SFR core deformation, it is
necessary to employ contrived states to verify the unstructured nodal solution in
RENUS. The definition of the contrived state is suggested first. In the subsequent
subsection, the benchmark for a sodium-cooled fast breeder reactor is introduced,
and the RENUS solutions are verified for the benchmark core problems with
regularly structured geometry against the reference solution provided by McCARD.
The RENUS verification results for the arbitrarily deformed 2D core problems with

uniform and assembly-wise expansion are then followed.
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5.3.1. Definition of the Contrived State

The physical backgrounds of an SFR core deformation can be grasped from the
limited free bow illustrated in Figure 5.16.[41] As the thermal gradient develops
during reactor operation, the assembly ducts begin to bow outward. After the
outermost top load pad touches the restraint ring, the assembly ducts begin to bow
inward. Note that the assembly inner components retain shape while the assembly
duct moves laterally. This core deformation is a problem with millions of degrees of
freedom due to thousands of mechanical interactions between the assembly ducts,
supporting structure, restraint system, etc., induced by neutron irradiation, thermal
expansion, and sodium coolant pressure. Dealing with the entire quality of the
information provided to SFR core deformations must exceed the scope of this

research.

TLP restraint
ring
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Figure 5.16. Axial and radial configurations of the limited free bow in an SFR core.

The contrived state, a hypothetical deformation state not claimed to be true
deformation state in the reactor, is introduced to expose the weaknesses and strengths
of calculation methods under different conditions.[42] Considering the lateral
displacements of assemblies shown in Figure 5.16, contrived states are defined in
this work as assembly deformations depicted in Figure 5.17. Each corner point
colored grey deviates to the outward position colored red along the dashed line
passing through the core center. The maximum x and y displacements of the
assembly duct in the experimental breeder reactor-2 are 0.42 cm and 0.35 cm,
respectively, in Reference [43]. The root-sum-squared displacement reaches about
9 % of the assembly pitch of the core. Thus, the displacement of assembly corner
points with contrived states is determined as 9 % of the assembly pitch in this work.
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Figure 5.17. Radial core configuration with contrived states on one assembly.
5.3.2. SNR-300 Benchmark Problem with regularly structured geometry

The schneller natriumgekiihlter reaktor-300 (SNR-300) is a sodium-cooled fast
breeder reactor with 730 MW thermal power. The benchmark for this reactor
provides the descriptions of the 3D core geometry and 4G macroscopic cross-section
set.[44] The radial and axial core configurations are depicted in Figure 5.18 and
Figure 5.19, respectively. Two 2D core problems including the upper core (UC) and
lower core (LC) problems are incorporated in this benchmark. The outer control rod
assembly is filled with the absorber and follower in the UC and LC problem,
respectively, following the axial control rod insertion illustrated in Figure 5.19.

Radial Blanket .I 6.4665 cm

Outer Control Rod

Inner Control Rod

Outer Core

Inner Core

COe@®

Figure 5.18. Radial core configuration of the SNR-300 benchmark problem.
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Core Control Core Control Blanket
Rod Rod

Figure 5.19. Axial core configuration of the SNR-300 benchmark problem.

The comparison results of the RENUS nodal solutions for the two 2D SNR-300
core problems with regularly structured geometry against the reference solutions
produced by McCARD are summarized in Table 5.18. Each McCARD solution was
determined as an average of three calculation results for the same problem with
different random number seeds. Each McCARD calculation was conducted by using
100 inactive cycles, 300 active cycles, and 10 million particles per cycle. The
standard deviation of assembly power distribution does not exceed 0.15 %. The
solution differences in the UC problem with 508 pcm in reactivity and the maximum
3.38 % in assembly power distribution are larger than those in the LC problem due
to the higher flux gradient in the core induced by the absorber in the outer control
assembly. The McCARD assembly power and assembly power difference
distributions are depicted in Figure 5.20 and Figure 5.21, respectively.

Table 5.18. Comparison of the RENUS solution for two 2D SNR-300 core
problems with regularly structured geometry against the reference solution.

Case | Ap(pem) Max. AP (%) RMS AP (%)
ucC -508 3.38 1.71
LC -270 2.40 1.34
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Figure 5.20. McCARD assembly power distribution for the two 2D SNR-300 core

problems.
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Figure 5.21. Assembly power difference distribution for the two 2D SNR-300 core
problems.

In this work, the level of assembly power distribution is adjusted by dividing
the power per volume for each assembly by the power per volume for the core.

Concretely, the assembly power Px"y is adjusted as follows:

— N, , . . Ny .
P= zi. yzg¢;k;;gyl/2_i A (5.1)
PL, = Y5 pLkz;, /P, (5.2)

where N,, and G are the number of fuel assemblies and energy groups,
respectively; ¢£"I and kZ}g are the flux and kappa-fission macroscopic cross-

section for the i-th assembly and g-th energy group, respectively; V' is the i-th
assembly volume.
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5.3.3. 2D deformed SNR-300 core problems with uniform expansion

The masses of the fuel and structural materials are conserved after core
deformations while the sodium coolant can backfill into the deformed domain. The
factor Rys is introduced in this work to deal with diverse cross-section changes as
follows:

I} 1
L =IxX—— (5.3)

1+RXST

where ¥ and X' are the macroscopic cross-sections before and after assembly
deformation, respectively; V and V' are the assembly volumes before and after
assembly deformation, respectively. Note that the cross-section remains the same
when Ry is 0 %. It changes in inverse proportion to volume change when Ryg is
100 %. In this verification, the core problems with contrived states are solved with
three different Rys of 0 %, 50 %, and 100 %.

The arbitrarily deformed 2D SNR-300 core problems with uniform expansion
are established in this work by applying contrived states on assemblies in the fuel
region as depicted in Figure 5.22. The fuel assemblies are uniformly expanded in
these problems except for the radial blanket of which the assembly power is
negligible. For the two 2D SNR-300 core problems with three Ryg, six deformed
2D core problems were solved.

Figure 5.22. Contrived states on the fuel region.

The comparison results of k-eff values between RENUS and McCARD for the
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deformed core problems are summarized in Table 5.19 and Table 5.20, respectively.
The McCARD options for regularly structured geometry were also used here. Huge
reactivity differences between the two solutions shown for regularly structured
geometry remain almost the same after applying core deformation regardless of Rys.
The reactivity changes of the two solutions for the deformed core problem compared
to the problem with regularly structured geometry match each other within 7 pcm.
In contrast, the reference reactivity changes from -240 pcm to 192 pcm. It is
demonstrated that RENUS reproduces reactivity changes in the reference solution
induced by core deformations with high accuracy.

Table 5.19. Comparison of the k-eff values for the deformed 2D SNR-300 core
problems with uniform expansion.

Deformed (Rxs
k-eff Regular 0% 50 %( ) 100 %

McCARD 1.13258 1.13496 1.13226 1.12960
ucC RENUS 1.12610 1.12854 1.12574 1.12307

Ap (pcm) -508 -501 -512 -515

McCARD 1.23297 1.23399 1.23221 1.23046
LC RENUS 1.22888 1.22987 1.22807 1.22632

Ap (pcm) -270 -271 -274 -274

Table 5.20. Comparison of the reactivity changes for the deformed 2D SNR-300
core problems with uniform expansion.

Ap (pcm) vs. Regular 0% Defogr(r)li/do () 100 %
McCARD 185 -25 -233
uc RENUS 192 -28 -240
del 7 -3 -7
McCARD 67 -50 -165
LC RENUS 66 -54 -170
del -2 -4 -4

The comparison results of assembly power and assembly power change
distributions between the two solutions for the deformed core problems are
summarized in Table 5.21 and Table 5.22. The assembly power differences between
the two solutions for the LC problem after core deformation remain almost the same.
Those for the UC problem are even decreased. The changes in assembly power
distribution of the two solutions for the deformed core problem compared to the
problem with regularly structured geometry match each other within 0.46 %. In
contrast, the reference assembly power changes by up to 47.76 %. The McCARD
assembly power, McCCARD assembly power changes, and assembly power change
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del distributions for the deformed LC problem with 0 % Rys and the deformed UC
problem with 100 % Ryg are presented in Figure 5.23-Figure 5.25, respectively.
The assembly power change del is defined in this work as the RENUS and McCARD
difference of the assembly power change in the deformed core problem. For example,
the McCARD and RENUS assembly power at the core center change by about -
47.76 % and -48.22 %, respectively, in the deformed UC problem with 100 % Rys.
Therefore, the assembly power change del at the core center is 0.46 % in this problem.
All assembly power change del distribution for the six core problems are small
enough compared to assembly power change distributions. These results reveal that
the RENUS unstructured nodal solution and the reference solution match each other
well in assembly power changes induced by core deformations.

Table 5.21. Comparison of the assembly power distribution for the deformed 2D
SNR-300 core problems with uniform expansion.

Abs. AP (%) Regular 0% Defor;r(l)e(c;) (Rxs) 100 %
uc Max. 3.38 3.47 3.11 2.96
RMS 1.71 1.72 1.69 1.68
LC Max. 2.44 2.41 2.41 2.40
RMS 1.34 1.34 1.33 1.33

Table 5.22. Comparison of the assembly power change distribution for the
deformed 2D SNR-300 core problems with uniform expansion.

Abs. AP (%) vs. Regular 0% Deforgr(l)eOdA)(Rxs) 100 %
Max. 3.79 27.13 4776

McCARD RMS 233 3.14 4.64
Max. 3.72 27.4 48.22

uc RENUS RMS 233 3.17 47
» Max. 0.09 0.27 0.46

RMS 0.03 0.04 0.06
Max. 3.61 20.94 36.63

McCARD RMS 2.15 261 3.58

Max. 3.56 21.08 36.9

LC RENUS RMS 2.15 2.62 3.61
i Max. 0.06 0.13 0.27

RMS 0.02 0.03 0.05
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Figure 5.23. McCARD assembly power distribution for the deformed 2D SNR-300
core problems with uniform expansion.
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SNR-300 core problems with uniform expansion.

LC Ryg 0 %p2

-
(2] (=3
(=] o

Distance from Center, cm
(-]

-50
MAX : 0.06%
-100 RMS : 0.02%
-100 -50 0 50 100

Distance from Center, cm

- -
L2

e
o

&
@

LN (=]
Normalized Asy. Power Error (%)

-1.5

100

o
o

Distance from Center, cm
X
(52
(=] (=]

-100

UC Ry 100 %p 2
1.5
1

0.5

o
Normalized Asy. Power Error (%)

MAX : 0.46%
RMS : 0.06%

-50 0 50
Distance from Center, cm

-100 100

Figure 5.25. Assembly power change de!/ distribution for the deformed 2D SNR-
300 core problems with uniform expansion.

68

, .H _ 1_'.]'| &

o

]

1

TU



5.3.4. 2D deformed SNR-300 core problems with assembly-wise expansion

The excellent agreements for the changes in nuclear characteristics between the
two solutions for the deformed core problems presented in the previous subsection
can result from a cancellation between opposite solution errors in assemblies.
Therefore, it needs to investigate the cores with contrived states on each assembly.
In this work, twenty-two core problems were established additionally for the UC and
LC problems, respectively, by applying contrived states to a group of assemblies.
Concretely, contrived states were applied to one of the assemblies shown in Figure
5.26. Contrived states were also applied to the assemblies, which overlaps with the
assembly when reflected on the 30-degree lines passing through the core center. For
example, contrived states are applied to the twelve assemblies expressed as diagonal
lines in Figure 5.27 in case 17. By duplicating assembly deformations in the
azimuthal direction, the changes in nuclear characteristics are amplified, and the
resolution of solution differences is increased. One hundred and twenty-six core
problems were solved with the twenty-one cases, UC and LC problems, and three
different Rys. The McCARD solutions exploited in the following verifications were
obtained by using the same options described in Subsection 5.3.2.

Figure 5.26. Radial core configuration of the SNR-300 benchmark problem in the
range of 30-degree.
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Figure 5.27. Deformed assemblies (expressed as diagonal lines) in the deformed
2D SNR-300 core problem with assembly-wise expansion (case 17).

The comparison results of the reactivity changes between the two solutions for
the deformed core problems are presented in Figure 5.28-Figure 5.33. The values in
each assembly are the calculation results for the deformed core problem with
contrived states on the assembly. Those values are the McCARD and RENUS
reactivity changes and the reactivity change del/ between the two solutions. The
reference reactivity changes by up to 383 pcm in the UC problem case 10 with 0 %
Rys. The reactivity changes of the two solutions match each other within 18 pcm.

The comparison results of the assembly power change distribution between the
two solutions for the deformed core problems are presented in Figure 5.34-Figure
5.39. The values in each assembly are the calculation results for the deformed core
problem with contrived states on the assembly. The McCARD and RENUS assembly
power changes and the assembly power change del between the two solutions are
represented in columns at each assembly. The maximum and RMS values are
represented in rows at each column. The reference assembly power changes by up to
45.52 % in the UC problem case 2 with 100 % Rys. The assembly power changes
of the two solutions match each other within 0.40 %.
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Figure 5.28. Comparison of the reactivity changes for the deformed UC problems
with assembly-wise expansion and 0 % Rys.

Figure 5.29. Comparison of the reactivity changes for the deformed LC problems
with assembly-wise expansion and 0 % Rys.
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Figure 5.30. Comparison of the reactivity changes for the deformed UC problems
with assembly-wise expansion and 50 % Rys.

Figure 5.31. Comparison of the reactivity changes for the deformed LC problems
with assembly-wise expansion and 50 % Rys.
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Figure 5.32. Comparison of the reactivity changes for the deformed UC problems
with assembly-wise expansion and 100 % Rys.

Figure 5.33. Comparison of the reactivity changes for the deformed LC problems
with assembly-wise expansion and 100 % Rys.
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Figure 5.34. Comparison of the assembly power change distribution for the
deformed UC problems with assembly-wise expansion and 0 % Rys.
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Figure 5.35. Comparison of the assembly power change distribution for the
deformed LC problems with assembly-wise expansion and 0 % Rys.
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Figure 5.36. Comparison of the assembly power change distribution for the
deformed UC problems with assembly-wise expansion and 50 % Rys.
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Figure 5.37. Comparison of the assembly power change distribution for the
deformed LC problems with assembly-wise expansion and 50 % Rys.
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Figure 5.38. Comparison of the assembly power change distribution for the
deformed UC problems with assembly-wise expansion and 100 % Rys.

(Max., RMS) AP (%)
: LC Rys 100 %

Figure 5.39. Comparison of the assembly power change distribution for the
deformed LC problems with assembly-wise expansion and 100 % Rys.

The McCARD assembly power, McCARD assembly power changes, and
assembly power change de/ distributions for the deformed LC problem case 18 with
0 % Rys and the deformed UC problem case 02 with 100 % Rys are depicted in
Figure 5.40-Figure 5.42, respectively.
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Figure 5.40. McCARD assembly power distribution for the deformed 2D SNR-300
core problems with assembly-wise expansion.
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Figure 5.41. McCARD assembly power change distribution for the deformed 2D
SNR-300 core problems with assembly-wise expansion.
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Figure 5.42. Assembly power change de!/ distribution for the deformed 2D SNR-
300 core problems with assembly-wise expansion.
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The reactivity dels and assembly power change del distributions for all
deformed core problems with assembly-wise expansion are small enough compared
to the reference reactivity changes and assembly power change distributions,
respectively. Therefore, it is concluded that the highly accurate RENUS solutions for
predicting the changes in nuclear characteristics induced by uniform expansion on
the fuel region do not owe to any error cancellation.
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Summary and Conclusions

In this work, the hexagonal ray tracing module and coarse mesh finite difference
(CMFD) acceleration, which are capable of explicitly modeling hexagonal geometry
cores including complicated structures, are developed in a direct whole core
calculation (DWCC) code, nTRACER. The hexagonal ray tracing calculation in
nTRACER is parallelized efficiently by employing the assembly-wise domain
decomposition (ADD) scheme. The hexagonal assembly-wise nodal solution is
expanded to the unstructured geometry so that the high-fidelity analyses of sodium-
cooled fast reactor (SFR) core deformations can be conducted in a practical time.
The nTRACER solution accuracy is verified by comparing its calculation results for
the various hexagonal geometry core problems against the reference solutions. The
ADD performance is examined by comparing the ray tracing time with or without
the ADD scheme for the water-water energetic reactor (VVER) core problems. The
accuracy of the unstructured hexagonal nodal solution in RENUS is verified by
comparing its calculation results for the arbitrarily deformed 2D SFR core problems
against the McCARD results.

Both VVERs, which have spread widely in the East-European bloc and
developing countries for several decades, and SFRs, which are estimated to have the
highest feasibility of commercial operations among Generation-VI reactors, have a
hexagonal geometry core. The unusual structures such as Vygorodka and the corner
stiffener in VVERSs and assemblies with different rod sizes in SFRs undermine the
assumptions of the diffusion equation and assembly or pin homogenization, on
which the two-step core calculation (TSCC) code systems base. Thus, the hexagonal
ray tracing module and CMFD acceleration are developed in nTRACER to attain the
solution for VVER and SFR core problems with high accuracy in this research. The
elongated model is employed in the hexagonal ray tracing module to explicitly
model Vygorodka and the assembly duct of VVER cores. This model expands the
periphery fuel cell into a pentagon so that the gap cell becomes a parallelogram. The
memory required to construct cell-wise module rays increases in this model due to
the various cell types in hexagonal geometry. Thus, the hexagonal ray calculation in
nTRACER is conducted by using the assembly-wise modular rays.

The CMFD formulation for regular square cells cannot solve the various cell
types in the elongated model. Thus, the CMFD formulation is expanded to the
unstructured geometry by applying flexibility to the surface length, mesh width, and
the number of neighboring meshes. The performance of CMFD calculations would
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be deteriorated by incorporating CMFD meshes for the tiny gap cells in VVER cores
in that a significant computing resource is consumed additionally while solution
accuracy improvement is negligible. Thus, the super pin scheme, which is to
homogenize the periphery fuel cell and gap cell into one cell in the CMFD
calculation, is employed in nTRACER. Consequently, the CMFD calculation time
and total computing time for the 2D VVER core problems are reduced by up to 39 %
and 17 %, respectively.

DWCC solutions have higher accuracy and resolution compared to TSCC
solutions while they require an enormous computing resource and time. Thus, it is
necessary for DWCC solutions to reduce memory usage and improve parallel
efficiency. nTRACER divides a 3D core into several planes, on which ray tracing
calculations are conducted in parallel by using processors of computing nodes. Each
planar ray tracing calculation is also conducted in parallel by using threads of CPUs.
The angle-wise parallelization, where threads trace tracking rays in parallel across
the whole problem domain, requires an enormous memory, which increases
computing time by inducing high fetching overhead. This problem is alleviated by
using the ADD scheme to let each thread trace the rays in one assembly. Memory
reduction and consequent reduction in computing time are possible since storing the
flat source region (FSR) information is needed only for the assemblies being
computed currently. On the other hand, the convergence of method of characteristics
(MOC) calculations would be deteriorated in ADD calculations due to the lag in
updating the incoming angular fluxes at the assembly surface. This deterioration is
relaxed by updating the angular fluxes after CMFD calculations and by using the
three-color scheme. The three-color scheme is to sweep all assemblies belonging to
one color and then use the outgoing angular fluxes of those assemblies in updating
the incoming angular fluxes of the other colored assemblies. The total computing
time for the 2D VVER core problems is reduced by up to 13 % by reducing the
number of MOC iterations. The angular flux storage scheme (AFSS), which is to
store the angular flux changes and conduct moment calculations at the end of the ray
tracing calculation, is also used in nTRACER. The total computing time for the 2D
VVER core problems is reduced by up to 23 % by avoiding expensive moment
calculations during ray tracing calculations.

The critical characteristic of an SFR core is the thermal core expansion induced
by high power density and steep temperature gradient, which significantly impacts
reactivity and power distribution. A finite difference method, finite element method,
and Monte Carlo method, which have been used in the analyses of SFR core
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deformations, have a drawback in that they require an enormous computing resource
to attain sufficient solution accuracy. On the other hand, a nodal solution requiring
the smallest calculation burden has been established only for regularly structured
geometries so far. In this work, the unstructured nodal solution is developed in
RENUS to overcome this problem. The triangle-based polynomial expansion nodal
(T-PEN) method, corner point balance (CPB) solution, and CMFD formulation are
expanded to the irregularly deformed hexagonal geometry. The linear systems in the
T-PEN method and CPB solution are constructed by substituting the derived group
variables with an equation of the representative group variables in the physical
constraints. The curvilinear and surface integrals of basic functions incorporated in
the variable expressions need to be calculated for unstructured geometry to conduct
this conversion. The method, which is to split a polygon into several parallelograms
and calculate the polynomial integrals in each parallelogram by using the look-up
table formulated in advance, is suggested. The unstructured nodal solution is
implemented in RENUS by expressing the surface and areal variables in arbitrary
geometry as linear combination of polynomials by using this method. The CMFD
formulation in RENUS is expanded to the unstructured geometry similarly to
nTRACER.

The solution accuracy of nTRACER is verified by comparing its calculation
results for the various hexagonal geometry core problems against the McCARD
results. The reactivity difference and the maximum and root-mean-square 3D pin
power differences do not exceed 7 pcm, 6.41 %, and 0.44 %, respectively, for the
three 3D C5G7 H benchmark problems with different control rod insertions. For the
nine 2D VVER-1000 core problems proposed by KAERI with different fuel and
coolant temperatures and boron concentrations, the solution differences do not
exceed 106 pcm, 2.24 %, and 0.95 %, respectively, by using the PO option. It is
demonstrated that the nTRACER solution difference is reduced by using the P2
option, especially for the problems in operation state with low boron concentration.
The solution differences are reduced by up to 70 pcm, 0.25 %, and 0.12 %,
respectively, by using the P2 option. The nTRACER and McCARD solutions for the
2D ‘Full-core’ VVER-440 and MET-1000 SFR core problems also match each other
well by using the P2 option. It is demonstrated that n«TRACER achieved satisfactory
solution accuracy for hexagonal geometry core problems.

The ADD performance is examined by comparing the ray tracing time with and
without the ADD scheme for the various VVER core problems. The maximum
difference in reactivity and pin power distribution induced by the ADD scheme do
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not exceed 1 % and 0.78 %, respectively. For the 2D one-sixth and full core problems,
the ray tracing time is reduced by up to 18 % and 48 %, respectively. The total
computing time is reduced by up to 6 % and 38 %, respectively. For the 3D one-sixth
and full core problems, the ray tracing time is reduced by up to 44 % and 53 %,
respectively. The total computing time is reduced by up to 36 % and 45 %,
respectively. It is verified that the hexagonal ray tracing calculation in nTRACER is
parallelized efficiently by employing the ADD scheme.

The performance of the unstructured hexagonal nodal solution in RENUS is
verified by comparing its calculation results for the 2D arbitrarily deformed schneller
natriumgekiihlter reaktor-300 (SNR-300) core problems against the McCARD
results. The contrived state is defined here as an arbitrary core deformation to deviate
assembly corner points outward by 9 % of the assembly pitch. The solution
differences for the 2D SNR-300 core problems with regularly structured geometry
are somewhat large, up to 508 pcm in reactivity and 3.38 % in assembly power
distribution. Nonetheless, RENUS reproduces the changes in reactivity and
assembly power distribution in the reference solution induced by contrived states on
the fuel region within 7 pcm and 0.46 %, respectively. In contrast, the reference
reactivity and assembly power change by up to 240 pcm and 47.76 %, respectively.
A cancellation between opposite solution errors in assemblies may exist for the
deformed core problem with uniform expansion. Therefore, the RENUS solutions
were further verified by decomposing the deformed core problem with uniform
expansion into the deformed core problems with assembly-wise expansion. The
reactivity and assembly power changes of the two solutions match each other within
18 pcm and 0.40 %, respectively, while they change by up to 383 pcm and 45.52 %,
respectively. It is demonstrated by these verification results that excellent agreements
between the two solutions for the deformed core problems do not owe to any error
cancellation. Thus, it is concluded that RENUS attained significantly high accuracy
in predicting the changes in nuclear characteristics induced by core deformations by
using the unstructured nodal solution.

In this work, the high-fidelity hexagonal geometry core analysis system capable
of diverse applications is facilitated by developing the hexagonal ray tracing module
and CMFD acceleration in nTRACER and by expanding the nodal solution in
RENUS to the unstructured geometry. n"TRACER reproduces the reference solution
for hexagonal geometry core problems with high accuracy by explicitly modeling
the complicated geometries of VVER and SFR cores. The practicality of the
nTRACER solution is improved as the ray tracing time is reduced by employing the
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ADD scheme. RENUS reproduces the McCARD solution changes for the 2D
arbitrarily deformed hexagonal geometry core problems with high accuracy by using
the unstructured nodal solution. Due to its accuracy and practicality, nTRACER
coupled with T/H codes is currently used in the multi-physics analyses of VVER
cores. It is expected that this hexagonal geometry core analysis system would also
provide the comprehensive analyses of SFR cores including thermal core expansion.
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