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Abstract

Acid mine drainage (AMD) is a global problem due to the high content of

heavy metals and low pH and needs to be monitored and managed by reclamation

or treatment systems. The performance of AMD treatment systems is difficult to

predict due to the numerous factors associated. Empirical and geochemical models

have been developed to predict the AMD treatment. The machine learning-based

access can be an alternative when the amount of data and time required to build

models are limited. In this study, random forest (RF) and artificial neural network

(ANN) model were constructed for predicting the Fe(Ⅱ) and Mn removal

efficiencies of passive systems in 9 abandoned coal mines and compared to the

performance of multiple linear regression (MLR) model. Among the three models,

the RF model showed the best performance in both predicting the Fe(Ⅱ) and Mn

removal efficiency. According to the sensitivity analysis, the pH of the inflow

water, the Fe(Ⅱ) concentration of the inflow water, and the alkalinity were the most

important variables for predicting the Fe(Ⅱ) removal efficiency. The alkalinity of

the inflow water and the pH of the inflow water were important variables to predict

Mn removal efficiency.
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Chapter 1. Introduction

1.1. Research Background

Acid mine drainage (AMD) is a global problem according to the amount of

tailings left behind after mining or mineral processing (Matlock et al., 2002; Akcil

et al., 2006; McCarthy, 2011; Rezaie and Anderson, 2020). It negatively affects the

local ecology when discharged into nearby water systems because of the heavy

metals present and the low pH (Lopes et al., 1999; Lei et al., 2010; Equeenuddin et

al., 2013). Especially, heavy metals are dangerous due to their persistence,

potential toxicity, and ability to accumulate in many body parts (Gray, 1997;

Duruibe et al., 2007; Briffa et al., 2020).

AMD is mainly generated by the oxidation of pyrite (FeS2), which is one

of the main minerals in coal and metal ore deposits (Qureshi et al., 2016). Pyrite is

oxidized into metallic hydroxides, sulfates, and acid (Eq. (1.1)). It can also be

oxidized by ferric ion (Fe3+) as an oxidant when pH is less than 3.5 (Eq (1.2)).

AMD may also be produced by other sulfide minerals, such as pyrrhotite (FeS) and

chalcopyrite (Cu2S) (Akcil and Koldas, 2006, Simate and S.Ndlouv., 2014).
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The main objective of AMD treatment is to achieve water quality

regulation by raising pH and removing heavy metal compounds (Seervi et al.,

2017). AMD treatment approaches are classified as active and passive treatment.

Active treatments are based on chemical and physical processes such as pH control,

absorption or adsorption, and electrochemical concentration. They can be done

with portable equipment or in-situ facilities such as high-density sludge, and

biological reactor systems (Taylor et al., 2005; Johnson and Hallberg, 2005; Saha

and Sinha, 2018).

Passive treatment has been adopted due to low-cost operation, little

maintenance, and energy consumption for the rehabilitation of abandoned mine

sites (Gazea et al., 1996; Zipper and Skousen, 2014; Clyde et al., 2016). Passive

treatment systems are based on chemical and biological techniques to establish

reducing conditions which facilitate the precipitation of metal sulfides. Chemical

systems involve neutralizing acidic water with alkaline materials such as limestone

and steel slag (Skousen et al.,2019). Biological systems utilize several mechanisms

including bio-catalyzed oxidation of Fe and Mn, alkali generation by

microbiological reduction, and eliminating metals through adsorption and

exchange processes interacted with organic substances (Skousen et al., 2017).

FeS2 s( )+14Fe3++8H2O→ 15Fe2++2SO4
2−+16H+ (1.2)

FeS2 s( )+15/4O2+7/2H2O → Fe OH( )3 s( )+2SO4
2−+4H+ (1.1)
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Passive treatment systems include aerobic wetlands (AeW), anaerobic wetlands

(AnW), vertical flow wetlands (VFW), successive alkalinity producing systems

(SAPS), oxic limestone drains (OLD), limestone diversion wells (LDW),

permeable reactive barriers (PRB), limestone leach beds (LLB), steal leach beds

(SLB), electrochemical covers, and Gas Redox and Displacement Systems

(GaRDS) (Taylor et al., 2005).

Selecting suitable AMD treatment systems is affected by numerous

important factors such as site characteristics, components, and volumes, and flow

rate of discharged water (Hyman and Watzlaf, 1995). These factors influence the

standard, effectiveness, and life expectancy of treatment systems and the site

feature and removal of heavy metals (Zipper and Skousen, 2014; Seervi et al.,

2017). Lab and field tests are frequently used to predict AMD treatments, but the

limitations of small-scale and short duration, as well as uncertainties when

applying the extrapolated results into real mine sites, must be overcome (Gibert et

al., 2002; Heviánková et al.,2014; Igarashi et al.,2020). Building predictive models

can be an alternative to addressing the aforementioned issues (Betrie et al., 2013;

Cravotta, 2021).

Researchers have tried to find suitable models for predicting the treatment

of acid mine drainage over 20 years (Foos, 1997; Amos et al., 2004; Andalaft et al.,

2018). First, empirical modeling based on experimental and statistical data was

developed. Zipper and Skousen (2010) predicted the alkalinity generation of 5

passive treatment systems AWs, ALDs, VFs, OLCs, and LLBs as functions of

water loading and influent acidity. There was a limitation of empirical models that

they displayed substantial deviation from actual performance in the case of higher
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influent acidity loadings.

There have been several attempts to assess treatment using geochemical

modeling. For example, PHREEQC and Minteq.v4 were used for simulating

chemical components and neutralizing AMD (Koide et al., 2012). "AMDTreat"

was used to calculate the volume of sludge after treatment, the amounts of

dissolved metals, and the amount of chemicals needed to reach a target pH

(Cravotta et al., 2010). Similar studies were progressed using other tools:

AMDTreat 5.0 and PHREEQC (Cravotta et al., 2015) and PHREEQ-N-AMDTreat

(Cravotta et al., 2021). PHREEQC was also used for simulating the precipitation of

Fe and Al by the remediation process of mixing and neutralization (Nordstrom,

2020). However, the application of geochemical modeling is limited when complex

mechanisms that control water composition are unknown and a large amount of

precise data, such as mineralogical and hydrological data, is lacking (Nordstrom,

2020; Chen et al., 2020).

Machine learning could be another promising approach for making

predictive models because of the good performance with insufficient data, noise

insensitivity, and accurate error measurement by avoiding overfitting (Auria and

Moro, 2008; Betrie et al., 2013; Yaseen, 2021). There were previous studies

applying machine learning-based models for heavy metal removal prediction. For

example, an artificial neural network (ANN) model based on the sulfate, COD,

alkalinity, and sulfide was employed for predicting the performance of fludized bed

reactor (FBR) (Atasoy et al., 2013). Lu et al. (2022) constructed a random forest
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(RF) model for predicting the removal of heavy metals using chitosan-based

flocculants (CBFs) based on flocculant properties, flocculation conditions, and

heavy metal properties. However, the majority of the existing research has focused

on analyzing and predicting the performance of a single treatment facility. It is

challenging to directly apply the previous prediction models to the cases in Korea

because most of AMD treatment facilities consist of 2 or 3 different passive

treatment systems (Ji et al., 2008). Therefore, this study attempted to develop

machine learning-based predictive models that can predict the metal removal

efficiency of AMD treatment facilities in Korea.
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1.2. Research Objective

The objective of this study is to compare three predictive models Multiple

Linear Regression (MLR), Random Forest (RF), Artificial Neural Network (ANN)

and finding the optimal model for predicting the metal removal efficiency of

passive systems for acid mine drainage. The mine drainage data were provided

from KOMIR (Korea Mine Rehabilitation and Mineral Resources Corporation),

and drainage data of 9 mines recorded from 2010 to 2019 were used in this study.

The research procedure is as follows. To begin, eight explanatory factors relating to

inflow drainage were chosen to explain removal efficiency. Second, three models

were constructed, and to avoid overfitting, the optimal hyperparameters of each

model were obtained through the tuning process using GridsearchCV of scikit-

learn package. Third, the performance of each model was assessed by RMSE (Root

Mean Squared Error), MAE (Mean Absolute Error), MSE (Mean Squared Error),

and determination coefficient R2. Lastly, the importance of variables in RF and

ANN model was calculated and compared. The prediction models and key

variables in the study could be used as indicators for the construction and

performance evaluation of treatment systems.
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Chapter 2. Background Theory

2.1. Passive Treatment systems

Most of AMD treatment facilities in Korea usually consisted of Successive

alkalinity-producing systems (SAPS), aerobic wetlands, and oxidation ponds (Fig

2.1).

Figure 2.1. The schematic diagram of general passive treatment system in

Korea (adapted from Ji et al., 2008)
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2.1.1. Oxidation Ponds (OPs)

The main purpose of OPs is to reduce Fe2+ with dissolved oxygen to be

precipitated as ferric hydroxides by holding acid mine drainage (Lee et al., 2013).

Since the rate of Fe2+ oxidation in OPs is affected by many factors such as the pH

of inflow drainage, the flow patterns, and retention times, the design of OPs should

be determined considering the influence of aforementioned variable through the

experiments (Ji et al., 2008; Lee and Cheong, 2016)

According to the design guidelines for OPs from the National Coal Board,

it was recommended that an oxidation pond have a capacity of 1 L/sec per 100m2

and the theoretical holding time was defined as 48 h (Laine and Jarvis, 2003; Lee et

al., 2013)
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2.1.2. Aerobic Wetlands (AeWs)

AeWs are utilized to hold AMD for the purpose of ���+ oxidation and

the precipitation of metal hydroxides (Skousen et al., 2017). They are usually

shallow basins with wetland plants such as Typha latifolia to make wildlife habitats

and aesthetics, regulate uniform flow, stabilize the metal precipitation, and

maintain the microbial population (Abhishek et al., 2015).

AeWs remove metals by making the AMD flow slow and allowing for

���+ oxidation. Fe3+ resulting from the ���+ oxidation precipitates as ferric

hydroxide and makes other metals co-precipitated, but the metal removal is

effective when the pH of inflow drainage is over 6 (Skousen and Ziemkiewicz,

2005; Abhishek et al., 2015). Therefore, alkali materials have to be added if the

water is not net-alkaline. Additionally, AeWs should always be connected with

other passive treatment systems such as anoxic limestone drains or SAPS in order

to get alkaline drainage from them (Skousen et al., 2017).

Mn oxidation, which is slower than the ���+ oxidation, is associated with

the presence of ���+. Since ���+ inhibits and counteracts the Mn oxidation, Mn

precipitation generally occurs after all of the Fe has been removed (Wildeman et al.

1993; Skousen et al., 2017). Hedin et al., (1994) calculated the removal rates of

AeWs as 10–20 g �−����−� for Fe and 0.5–1.0 g �−����−� for Mn.
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2.1.3. Successive Alkalinity-Producing Systems (SAPS)

Kepler and McCleary (1994) developed SAPS to make up for the

limitations of using wetlands or limestone drains (ALDs) exclusively. For instance,

the ALDs' capacity to produce alkalinity is limited when AMD includes dissolved

oxygen. Wetlands have limitations of slow treatment and need for large treatment

areas, and the effectiveness is directly influenced by environmental conditions such

as rainfall (Kepler and McCleary, 1994; Ordonez et al., 2012). SAPS overcame the

limitations of wetlands and limestone drains by adopting only the advantages of

both systems (Kepler and McCleary, 1994).

The process of SAPS treatment is as follows; First, ponded AMD flows

downstream through the about 0.5 - 1 m organic layer, where dissolved oxygen is

eliminated and alkalinity is generated by the bacterial reaction. Second, drainage

flows downstream through the about 0.5 - 1m limestone bed. Since dissolved

oxygen has been removed in the previous organic layer, alkalinity can be produced

successively. Finally, the effluent goes out of the system at the bottom of the

limestone bed (Ji et al., 2008; Ordonez et al.,2012).
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2.2. Predictive Models

In this study, models for predicting removal efficiency were built using

three different approaches: multiple linear regression, random forest, and artificial

neural networks.

2.2.1. Multiple Linear Regression (MLR)

The MLR is generally used to determine the relations between the

dependent variable and the independent variables, which is a straightforward

regression model expressed using linear combinations between dependent and

independent variables. The general form of a multiple linear regression model is as

follows:

Y= β0+β1x1+β2x2+⋯+βnxn+ϵ

Where Y represents the dependent variable, β0 the intercept x1~xn are the

independent variables, β1~βn are the coefficients for the independent variables,

and ϵ is the estimation error. The MLR model is optimized by minimizing the

sum of errors between observed and predicted values (Seber and Lee, 2012)
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2.2.2. Random Forest (RF)

Random Forest (RF) is an ensemble machine learning model that has been

utilized for creating predictive models in numerous studies since it was first

proposed by Breiman (2001). It is suitable for modeling the nonlinear combination

of variables because of the ability to manage complicated interactions and

resistance to multicollinearity (Breiman, 2001, Biau and Scornet, 2016).

RF is an ensemble model of K decision trees {T1 X( ) , T2(X),⋯ , TK(X)},

where X is the set of independent variables X= {x1, x2, ⋯ , xp} (Fig 2.1). RF

model is constructed by the bootstrap aggregating (bagging), which is a technique

that prevents the correlation of distinct trees by generating K tree samples from

randomized subset of the train dataset ℒ. A total of K predictions are made by tree

samples, and they are averaged to determine the output y of the RF model

(Svetnik et al., 2003; Biau and Scornet, 2016).

In RF model, about one-third of the data in the samples are not used to

create each decision tree because of the randomized bootstrap sampling from the

original train dataset. The whole set of excluded data is called as out-of-bag dataset

(OOB dataset). In contrast, data used for growing trees are referred to as In-Bag

dataset. Generated OOBs can be used to estimate the error of RF model instead of

applying the time-consuming cross-validation approach (Breiman, 2002; Archer

and Kimes, 2008)
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Figure 2.2. The structure of RFmodel.
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2.2.3. Artificial Neural Networks (ANN)

An artificial neural network (ANN) is a model for data processing that

draws inspiration from the operations and analyses of the human brain (Hopfield,

1988). ANN has been used for modeling and analysis in many fields, several

researchers also have used ANN to predict the chemistry of acid mine drainage; i.e.

the concentrations of heavy metals. (Rooki et al., 2011, Ajayi et al., 2021, Mariem

et al., 2022).

In particular, a deep neural network (DNN) is an artificial neural network

with two or more hidden layers (Fig 2.3). Deep learning is the process of learning

this deep neural network (Hinton et al., 2012, Lecun et al., 2015). DNNs can

express more sophisticated models and have a greater computing capacity than

earlier networks because of the complex linking of layers (Abiodun et al., 2018).

ANN is comprised of one input, one or more hidden, and one output layer in

general. The input layer has nodes containing the values of independent variables,

and it transmits the input data to the following hidden layer. In one or more hidden

layers, the input data is transferred to 2~3 times as many nodes as those in the input

layer. The data is then abstracted and transmitted to the output layer. The output

layer is where the predicted dependent variables are produced from the abstracted

data (Hopfield, 1988).
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Figure 2.3. The structure of ANN model with backpropagation.
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In this study, ANN with forward propagation of data and back

propagation of error, also called back-propagation neural network (BPNN), was

trained (Fig 2.3). BPNN is a commonly applied neural network since it can be

autonomously optimized by minimizing errors using the gradient descent technique

(Ruder, 2016).

1) Forward propagation of data

When the number of independent variables in input layer is i, the data in

the input layer Xi= [x1,x2, ⋯ , xi] will be forwardly propagated as net1 ,

adding the first bias vector b1= [b1
1, b2

1, ⋯ , b i
1 ] to the dot product of the

input and the first weight vector wi,h1
= wi,1

h1 , wi,2
h1 , ⋯ , wi,i

h1 T (Eqn (2.1)).

Then, an activation function f is applied to make the neural network cope

with the complex data and to learn the non-linear mappings between

independent and dependent variables (Eqn (2.2)) (Sharma et al., 2017).

h1= f net1 (2.2)

net1=wi,h
1
∙ X i+b1=

n=1

i

(xnwi, n
h1 +bn

1) (2.1)
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The processes of data propagation between the hidden layers and between

the hidden layer and the output layer are in the same way. The only difference

is that activation functions such as Sigmoid, Tanh, and ReLU function (Table

2.1, Fig 2.4) are applied to pass the data between hidden layers, while a linear

function is applied between the last hidden layer and the output layer. ReLU

function was selected as an activation function in this work since it can deal

with the gradient vanishing problem of the Sigmoid and Tanh function (Nair

and Hinton, 2010; Ide and Kurita, 2017)

When the number of the hidden layers is l, the vector of the first hidden

layer h1 and the vector of k-th hidden layer hk, and the vector of predicted

output layer Yo are described as Eqn (2.3) and Eqn (2.4), respectively.

Yo=whk, o
∙ hl+bl+1 (2.4)

hk= f whk−1, hk
∙ hk−1+bk (2.3)

where wh
k−1

, h
k

is the weight vector connecting (k-1)th and k-th hidden layer

and wh
k
, o is the weight connecting the last hidden layer and the output layer.
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Figure 2.4. Non-linear activation functions (a) Sigmoid. (b) Tanh. (c) ReLU.
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Table 2.1. Equations of activation functions

ReLU a=
0, &z<0
z, &z≥ 0

Tanh a =
exp z( ) −exp⁡(− z)

exp z( ) +exp( − z)

Sigmoid a =
1

1+ exp⁡(− z)

Activation Function Equation

2) Backpropagation of error

Following the generation of the output layer Yo by feed-forward

propagation, the neural network is trained via backpropagation.

Backpropagation is the process of using the gradient descent method to

update and optimize the weights and biases (Mitchell, 1997). The weights and

biases of each connection are modified until the loss function based on the

mean squared error (MSE) has been minimized (Eqn (2.5)).

C=

k=1

1

2
(yk−yo,k)

2
(2.5)

where yk and yo,k indicate the i-th label of observed output vector Y and

the predicted output vector Yo, respectively.
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The loss function and the gradient of it can be expressed as the

combination of using all possible weight vector and bias values (Eqn (2.6)).

Starting with the initial random vectors, the weight vector and bias with mk

nodes connecting the (k-1)-th and k-th hidden layer are updated by subtracting

a component of the gradient (Eqn (2.7), (2.8)).

bk←bk−α
∂C

∂bk
(2.8)

whk−1, hk
←whk−1, hk

−α∇C whk−1, hk (2.7)

∇C whk−1, hk
=

∂C

∂wh
k−1

, h
k

1
,

∂C

∂wh
k−1

, h
k

2
, ⋯ ,

∂C

∂wh
k−1

, h
k

m
k

⎡

⎣

⎤

⎦
(2.6)

where α stands for learning rate which adjusts the optimization rate for

avoiding significant deviation of the weight vector and bias due to the large

gradient. This procedure is repeated over a significant number of training

cycles, or "epochs," until the model converges and the MSE falls below a

preset threshold (Mitchell, 1997).
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Chap 3. Methodology

3.1. Data description

The mine drainage data of abandoned 123 coal and 128 metal mines in

Korea used in this study were obtained from Korea Mine Rehabilitation and

Mineral Resources Corporation(KOMIR), Wonju, Korea. They consist of

fundamental information about each mine, survey details, treatment systems,

number of elements exceeding the water quality standard, and the classification

based on wastewater ordinance.

1) Fundamental information about each mine

Fundamental information includes the name, the type of mine, regional

information and water system information, and the management number. The

regional and water systematic information includes cities, provinces, counties,

water system areas, water system main streams, and water system tributaries.

2) Survey details

Survey details include the survey period, the survey year, the survey date,

and the survey point. The survey was conducted twice or four times per year.

Surveys were performed once in the spring and once in the fall for mines that
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were surveyed twice a year. Mines that were surveyed four times a year were

investigated on a quarterly basis. For example, the Poongwon mine, which

had the most data, recorded a total of 40 data from 2010 to 2019. The subjects

of the survey included samples from several locations, including mine

drainage, leachate, inflow drainage, and discharge drainage. Especially, water

quality analyses of mines with equipped treatment systems were performed on

inflow and discharge drainage, which meant drainage before and after passing

through the treatment systems, respectively.

3) Treatment systems

Treatment systems were available in 36 coal mines and 8 metal mines out

of the total data. Depending on the level of contamination in each mine, the

treatment systems were classified as active, semi-active, or natural. In

summary, in coal mines, 5 active, 4 semi-active, and 27 natural treatment

systems were applied, while in metal mines, 1 active, 4 semi-active, and 3

natural treatment systems were applied.

4) Measured variables

Measured variables consist of flow rate ( m3/d) , temperature ( ℃ ),

dissolved oxygen (mg/L), electro-conductivity (mS/cm), turbidity (NTU),

alkalinity (mg/L), concentration of metals and non-metals (mg/L).



25

The concentrations of metals and non-metals were based on the result of

ICP analysis and element types were as follows: Metals consist of Fe( Ⅱ ),

Cr(Ⅵ), CN, Fe, Mn, Al, As, Cd, Cr, Cu, Pb, Zn, Hg, Ni, Na, Ca, K, Mg, and

non-metals consist of F, Cl, SO4 . The number of polluted elements was

recorded by counting the elements that exceeded the Korean Ministry of

Environment (KME) established drinkable water quality guidelines (Table 3.2).

Table 3.1. Drinkable water quality guidelines of KME.

Cd < 0.02

As < 0.05 F < 3.00

Al < 2.00 Ni < 0.10

Mn < 2.00 Hg < 0.10

Fe < 2.00 Zn < 1.00

Fe(Ⅱ) < 2.00 Pb < 0.10

CN < 0.20 Cu < 1.00

Cr6+ < 0.10 Cr < 0.50

Type Concentration(mg/L) Type Concentration(mg/L)
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3.2. Data Sampling

The specific data required for analysis were sampled by two criteria. First,

mines that had been analyzed four times a year from 2010 to 2019 were re-

extracted. Second, mines using treatment systems consisting of a combination of

aerobic wetland (AeW), oxidation pond (OP), or SAPS were extracted to predict

the performance of passive treatment systems. As a result, 9 coal mines (ST, DS,

SS1, SS2, PW, HY, HU, HN, and GJ) were selected for analysis.

Table 3.2. Data description of 9 coal mines.

GJ 5.19 ~ 8.22 OP – SAPS – AeW Fe, Mn

HN 5.51 ~ 8.02 OP – SAPS – AeW Fe, Mn, Ni

HU 6.10 ~ 8.08 OP – SAPS – AeW Fe, Mn

HY 5.91 ~ 7.52 SAPS – AeW Fe

PW 6.24 ~ 7.57 SAPS – AeW Fe

SS2 6.17 ~ 9.05 OP – SAPS – AeW Fe

SS1 2.58 ~ 4.47 SAPS – OP – AeW Fe, Mn, Al, Ni

DS 2.42 ~ 4.62 SAPS – OP Fe, Mn, Al, Ni

ST 2.59 ~ 4.16 SAPS – OP– AeW Fe, Mn, Al, Zn, Al, Ni

Name pH range Treatment systems Main Pollutants
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3.3. Setting Variables

All measured variables were used as explanatory variables to predict the

removal efficiency (RE). The variables and their abridged terms are as follows:

l IM (Metal concentration in the inflow drainage)

n IF (Fe(Ⅱ) concentration in the inflow drainage)

n IM (Mn concentration in the inflow drainage)

l IpH (pH of inflow drainage)

l FR (Flow rate of the inflow drainge)

l EC (Electro-conductivity of inflow drainage)

l Tur (Turbidity of inflow drainage)

l Alkal (Alkalinity of inflow drainage)

l DO (Dissolved Oxygen of the inflow drainage)

l Temp (Temperature of the inflow drainage)

The removal efficiency of each metal by the treatment systems was calculated

by (Ci−Co)/C i, where Ci , Co indicate the metal concentration of inflow water

and discharge water, respectively. The Fe(Ⅱ) and Mn removal efficiency (FRE and

MRE) were predicted because the main pollutants in the mine used in the analysis

were Fe(Ⅱ) and Mn (Table 3.3).
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3.4. Correlation Analysis

Calculating the Pearson correlation coefficient, which shows the linear

dependence between two sets of data, is one of the most used techniques for

correlation analysis (Dutilleul et al., 2000; Mansson et al., 2004). The Pearson

correlation coefficient ( rxy ) of two variables X= {x1, x2, ⋯ , xi} and

Y= {y1, y2, ⋯ , yi} means the normalized covariance, which is calculated using

covariance and two standard deviations (Eqn (3.1)).

x, y: the

mean value of elements in each set X and Y

The Pearson correlation coefficient measures the strength of the linear

relationship between two variables. The sign of the correlation coefficient can be

either positive or negative, denoting that the two variables are directly or inversely

related, respectively. The linear relationship between two variables becomes

stronger as the absolute value of rxy approaches 1.

rxy=
(x i−x) (yi−y)

x i−x
2 yi−y

2

(3.1)
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3.5. Data Split

The total datasets were 360 for the selected 9 mines. Then, only datasets

in which the values of all explanatory variables were completely recorded and

whose metal concentration exceeded the drinkable water quality standard were

used for analysis. As a result, 199 datasets were utilized for predicting Fe( Ⅱ )

removal efficiency and 132 datasets were utilized for predicting Mn removal

efficiency. Finally, each dataset was randomly split into a train dataset (70%) and a

test dataset (30%).
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3.6. Model Construction

3.6.1. Multiple Linear Regression

The multiple linear regression model was constructed in the forward

stepwise method to find the optimal combination of variables among the eight

variables IM, IpH, FR, EC, Tur, Alkal, DO, and Temp using the LinearRegression

in linear_model package of Scikit-learn. The objective of the forward stepwise

method is to minimize the number of independent variables in the regression model

while maximizing the model performance (Alicja, 2015). The forward stepwise

method was carried out based on the determination coefficient R2 between the

observed and predicted values of datasets. The optimization process is as follows:

1) The determination coefficient R2 of the model was evaluated by

successively adding the variables that had the highest absolute value of

Pearson correlation coefficient with the metal removal efficiencies.

2) If R2 decreased for the test dataset, the addition of variables was stopped

and the optimal linear model was selected.
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3.6.2. Random Forest

Machine learning (ML) based models such as random forest and neural networks

require several hyperparameters that must be set before learning. The model

performance is significantly influenced by the hyperparameters (Probst et al., 2019).

In RF model, the number of bootstrapped samples (n_estimators) and the

maximum depth of each decision tree (max_depth) were set as the hyperparameters

to find the optimal condition (Table 3.4).

The optimal hyperparameters were selected using the GridSearchCV in the

model_selection package of Scikit-learn (Fabian et al., 2011). Grid search is a

process of selecting the models and hyperparameters on a specified parameter grid

by validating all combinations. Grid search is generally performed in conjunction

with k-fold cross validation. In this study, the 5-fold cross validation method was

used and the R2 values from 5 iterations were averaged to estimate the

performance (Fig 3.1). The hyperparameters recorded in Table 3.5 were the optimal

conditions.
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Table 3.3. The minimum and maximum values, and intervals of

hyperparameters in RFmodel.

max_depth 10 50 10

n_estimators 100 1000 100

Hyperparameter Min Max Interval

Table 3.4. The optimal hyperparameters in RFmodel

MRE 300 20 0.8442

FRE 500 20 0.8112

Model n_estimators max_depth Score (mean R2)
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3.6.3. Artificial Neural Networks

For building an ANN model, the number of nodes in each hidden layer

and epoch was set as hyperparameters to determine optimal values through the

tuning process. The optimal hyperparameters of the ANN model were also selected

using the GridSearchCV in the model_selection package of Scikit-learn. The

hyperparameters recorded in Table 3.7 were the optimal conditions.

Table 3.5. The minimum and maximum values, and intervals of
hyperparameters in ANN model.

Epochs 100 500 100

Node of
2nd Hidden Layer

15 50 5

Node of
1st Hidden Layer

15 50 5

Hyperparameter Min Max Interval

Table 3.6. The optimal hyperparameters in ANN model

MRE 20 20 300 0.7458

FRE 30 30 400 0.6281

Model Node of 1st

Hidden Layer
Node of 2nd

Hidden Layer
Epochs Score (mean

R2)
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3.7. Model Evaluation

The MAE, MSE, RMSE, and R2 were used to evaluate and compare the

performance of the prediction models. MAE, MSE, and RMSE are parameters

based on the difference between the observed and predicted values, and low values

mean the accurate prediction of models. The determination coefficient R2 is a

parameter for assessing the similarity between the observed and predicted values.

The MAE, MSE, RMSE and R2 values are defined as:

R2=1−
yi−yp

2

yi−yi
2

(3.5)

RMSE=
1

n
i=1

n

yi−yp
2 (3.4)

MSE=
1

n
i=1

n

yi−yp
2 (3.3)

MAE=
1

n
i=1

n

yi−yp|| || (3.2)

where yi are the observed values, yp are the predicted values, yi indicates the

mean of observed values, and n is the number of test datasets.
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3.8. Variable Importance

3.8.1. Random Forest

About one-third of the data in the samples are not used to build each decision tree

due to the randomized bootstrap sampling from the initial train dataset utilized in

the RF model. The whole set of excluded data is referred to as out-of-bag dataset

(OOB dataset). The OOB (out-of-bag dataset) can be applied to rank the variable

importance by calculating the MSE reduction according to the permutation of each

variable (Breiman, 2002; Grömping, 2009). For example, the OOBMSE (OOB

mean squared error) in tree k is calculated as the average of the squared deviations

between the observed values of OOB and the corresponding predictions (Eqn (3.6)).

Then the MSE reduction, OOBMSEk (X j permuted) − OOBMSEk in OOB

dataset is calculated based on the permutation of all variables X j in the tree (Eqn

(3.7)).

OOBMSEk (Xj permuted) =
1

nOOB,k
i=1

k

yi−yi,k(Xj permuted)
2 (3.7)

OOBMSEk=
1

nOOB,k
i=1

k

yi−yi,k
2 (3.6)
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3.8.2. Artificial Neural Network

SHAP (Shapely Additive explanations) suggested by Lundberg and Lee

(2017) was used to evaluate variable importance in the ANN model. ANN

inherently involves complexity and interpreting challenges due to the numerous

hidden layers and weights connecting them (Olden et al., 2004). SHAP, which

evaluates the variable importance based on the order of SHAP value, is one of the

promising approaches which can address these problems (Lundberg and Lee, 2017).

SHAP value is referred to as the unique Shapley value of a feature which

is calculated using the conditional expectation function fx(S) = E[f(x)|xs]. When

a specific subset of independent variables is S and the total number of

independent variables in the model is M, the SHAP value can be expressed as:

SHAPi=

S⊆N{i}

S| | ! M− S| | ! − 1( )!

M!
(fx(S ∪ j{ } ) − fx(S)) (3.8)

where N is the full set of independent variables set, and fx(S ∪ j{ } ) and fx S( )

are the model output with and without the i-th variable, respectively (Lundberg et

al., 2018). About all varieties of neural network models, SHAP values may be

computed using Kernel SHAP (Lundberg and Lee, 2017). The calculation was

carried out using the SHAP 0.41.0 library.
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Chapter 4. Result

4.1. Data Summary

Data about the dependent and explanatory variables used for predicting

FRE and MRE was summarized in Table 4.1 and Table 4.2. The content of Fe(Ⅱ)

and Mn in the inflow drainage differed substantially amongst the 9 coal mines. The

range of IF (2~128 mg/L) was approximately 5 times larger than the range of IM

(2~28mg/L) and the average IF was approximately 3.36 times more than the

average IM. The maximum and minimum values of FRE and MRE were the same,

but the average FRE was 0.82 and higher than the average MRE, which was 0.56.

The FR showed the greatest range and the highest standard deviation, whereas the

IpH showed the narrowest range and the lowest standard deviation. Since the

difference in the range of each variable was significant, normalized variables were

used in the analysis. Using the MinMaxScaler of sklearn.preprocessing package,

each variable was normalized so that the lowest value of each variable was 0 and

the maximum value of each variable was 1, resulting in all values ranging from 0 to

1.
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Table 4.1. Summary of 199 datasets for FRE prediction.

FRE - 0.00 1.00 0.82 0.24

Alkal mg/L 0.00 313.00 73.74 76.10

Tur NTU 0.00 291.80 21.38 45.23

EC mS/cm 0.00 72.10 2.92 10.92

DO mg/L 0.41 11.00 5.67 1.91

IpH - 2.56 9.05 5.31 1.79

Temp ℃ 3.40 27.40 14.64 4.61

FR m3/day 8.00 4434.00 300.96 529.14

IF mg/L 2.00 128.00 20.25 27.54

Variable Unit Min Max Average Std.Ev

Table 4.2. Summary of 132 datasets for MRE prediction.

MRE - 0.00 1.00 0.56 0.39

Alkal mg/L 0.00 674.00 74.17 91.30

Tur NTU 0.00 390.50 27.86 53.25

EC mS/cm 0.00 1020.00 15.78 100.85

DO mg/L 0.41 11.00 5.79 2.02

IpH - 2.70 8.02 5.52 1.46

Temp ℃ 3.40 25.80 14.88 3.87

FR m3/day 0.00 4434.00 433.96 589.55

IM mg/L 2.04 28.11 6.05 5.13

Variable Unit Min Max Average Std.Ev
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4.2. Correlation Analysis

4.2.1. Variables of Fe(Ⅱ) Dataset

The heatmap of the Pearson correlation coefficient matrix shows the

correlation among input and output variables (Fig 4.1, 4.2). When the color is dark

and the absolute value of the Pearson correlation coefficient is near 1, variables

have a strong relationship. According to the heatmap of Fig 4.1, IpH was the most

closely associated with FRE, whose Pearson correlation coefficient with FRE was

0.67. This indicated a strong positive correlation between the pH of the inflow

water and the Fe(Ⅱ) removal efficiency.

The Alkal was the variable that had the second highest association to FRE,

with a Pearson correlation coefficient of 0.52. Same with the correlation between

IpH and FRE, the higher alkalinity led to the higher Fe(Ⅱ) removal efficiency. For

the remaining variables, the Pearson correlation coefficients were less than 0.3,

making it difficult to explain the linear relationship with FRE.

Some explanatory variables were also correlated. For instance, IpH and IF

had a negative correlation with a Pearson correlation coefficient of -0.52, indicating

that the concentration of Fe(Ⅱ) in mine drainage had a negative correlation with the

pH of mine drainage. A correlation with the Pearson correlation coefficient of 0.52

was also found between pH and alkalinity.
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Figure 4.1. Correlation analysis of FRE and explanatory variables.
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4.2.2. Variables of Mn Dataset

The three explanatory variables with the highest correlations to MRE

were Alkal, IpH, and IM with Pearson correlation coefficients of 0.81, 0.77, and -

0.46, respectively. (Fig 4.2). Similar to the result of 4.2.1, IpH and Alkal showed a

positive correlation with MRE. Additionally, MRE showed a negative Pearson

correlation coefficient to IM, indicating the negative correlation between the Mn

removal efficiency and the Mn concentration of the inflow mine drainage.

Explanatory variables, such as IM and IpH, and IM and Alkal showed a

high negative correlation with Pearson correlation coefficients of -0.69 and -0.47,

respectively. IM was also strongly correlated with EC with a Pearson correlation

coefficient of 0.68. Alkal and IpH also showed a weak positive correlation with Tur

with the Pearson correlation coefficient of 0.37 and 0.39, respectively.
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Figure 4.2. Correlation analysis of MRE and explanatory variables.
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4.3. Optimization of MLR model

MLR models using Fe(II) and Mn datasets were built by the forward

stepwise method, adding the explanatory variables with the order of strong

correlation to removal efficiency by referring to the results of correlation analysis.

Then, R2 values between observed and predicted values in the train and test

datasets were calculated (Table 4.2, 4.3). From the result, R2 in the train dataset

usually increased as the number of explanatory variables increased, whereas R2 in

the test dataset showed no tendency with the number of explanatory variables.

Using the Fe(II) dataset, the linear model with 6 explanatory variables

IpH, Alkal, Tur, Temp, IF, DO, and EC was the optimal condition; R2 in the test

dataset was 0.604. Using the Mn dataset, the linear model with 6 explanatory

variables Alkal, IpH, IM, FR, EC, and Tur was the optimal condition; R2 in the

test dataset was 0.733. The optimal MLR models for predicting Fe(Ⅱ) and Mn

removal efficiencies are as follows:



49

Table. 4.3. Optimization of MLR model for predicting FRE

IpH, Alkal,Tur, Temp, IF,DO, EC, FR 0.586

IpH, Alkal,Tur, Temp, IF,DO,EC 0.604

IpH, Alkal,Tur, Temp, IF, DO 0.600

IpH, Alkal,Tur, Temp, IF 0.565

IpH, Alkal,Tur, Temp 0.538

IpH, Alkal,Tur 0.4948

IpH, Alkal 0.4945

IpH 0.479

Explanatory variables Test R2
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Table. 4.4. Optimization of MLR model for predicting MRE

Alkal, IpH, IM,FR, EC, Tur, DO 0.727

Alkal, IpH, IM,FR, EC, Tur 0.733

Alkal, IpH, IM,FR, EC 0.732

Alkal, IpH, IM, FR 0.720

Alkal, IpH, IM 0.714

Alkal, IpH 0.707

Alkal 0.694

Explanatory variables Test R2
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4.4. Comparison of Removal Efficiency Prediction

4.4.1. Train Dataset

The FRE and MRE of train datasets were re-predicted using the three

trained models and the results were presented in Figure 4.3 and 4.4. The 1:1 line on

the graph, which shows where the observed and predicted values are identical, was

drawn to show how similar the two values are.

The MLR model showed the lowest performance for predicting the FRE

and MRE of train datasets, indicating that the non-linear correlation between

variables in the train datasets. R2 values were 0.488 and 0.690 for predicting

the FRE and MRE, respectively (Fig. 4.3a, 4.4a). The model with the best

performance was RF, which predicted the FRE and MRE of train datasets with

high R2 values of 0.932 and 0.950, respectively. The RF model outperformed the

other models in predicting FRE and MRE across the entire range of removal

efficiency, with most of the predicted values that were close to the 1:1 line (Fig

4.3b, 4.4b).
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(a)

(b)

(c)

Figure 4.3. Prediction of FRE in train dataset (a) MLR (b) RF (c) ANN
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(a)

(b)

(c)

Figure 4.4. Prediction of MRE in train dataset (a) MLR (b) RF (c) ANN
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4.4.2. Test Dataset

4.4.2.1. Predicting Fe(Ⅱ) Removal Efficiency

The performances of three models for predicting FRE in the test dataset

were evaluated by RMSE, MAE, MSE, and R2 (Table 4.3 and Figure 4.5). Also,

the observed values and predicted values of all elements in test the dataset were

described together in a graph (Fig 4.6). According to the results, the RF model

showed the most accurate predictions with the lowest RMSE, MAE, and MSE and

the highest R2 (Table 4.3). The ANN model outperformed the MLR model among

the remaining two models.

The RF and ANN model performed better than the MLR model at

predicting extreme values. Especially, the RF model showed the best prediction of

FRE higher than 0.9 since the predicted values did not exceed 1 (Fig. 4.5b, Table

4.5). The ANN model showed a good prediction of FRE lower than 0.4 (Fig 4.6c,

Table 4.5).

Table 4.5. Model performances of FRE prediction

ANN 0.137 0.109 0.018 0.634

RF 0.120 0.086 0.014 0.719

MLR 0.143 0.113 0.020 0.604

Model RMSE MAE MSE R2
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(a)

(b)

(c)

Figure 4.5. Prediction of FRE in test dataset (a) MLR (b) RF (c) ANN
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Table 4.6. Observed and predicted FRE in test dataset

31 0.944 0.794366 0.900426 0.803635

30 0.282 0.572019 0.503892 0.559378

29 0.98 0.984041 0.922128 1.048003

28 0.957 0.676373 0.682382 0.707713

27 0.934 0.618507 0.666146 0.599911

26 0.837 0.708868 0.684216 0.796302

25 0.995 0.987035 0.971804 0.934731

24 0.712 0.511291 0.630852 0.482391

23 0.824 0.866847 0.918176 0.874399

22 0.336 0.585058 0.52577 0.562538

21 0.996 1.036711 0.981722 1.027024

20 0.979 0.888303 0.980888 0.905405

19 0.957 1.074042 0.922826 1.019755

18 0.974 0.888819 0.93624 0.888304

17 0.529 0.761167 0.691912 0.755924

16 0.996 1.000423 0.96815 0.981757

15 0.971 0.845447 0.75743 0.876061

14 0.412 0.531155 0.299898 0.50098

13 0.99 0.855591 0.922548 0.876161

12 0.999 1.005899 0.958602 1.038816

11 0.96 0.81872 0.711272 0.904315

10 0.998 0.992734 0.98329 0.932437

9 0.999 0.982328 0.944472 0.98517

8 0.913 0.93828 0.98363 0.949381

7 0.923 1.003392 0.97193 0.977706

6 0.996 1.028237 0.983192 1.054046

5 0.297 0.57203 0.686638 0.541747

4 0.77 0.720941 0.76453 0.759459

3 0.664 0.787769 0.84141 0.853303

2 0.99 1.024097 0.947522 1.037119

1 0.977 0.93336 0.85953 0.91539

Number Observed MLR RF ANN
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60 0.973 1.092668 0.96843 1.083695

59 0.425 0.491445 0.512038 0.466889

58 0.995 0.974902 0.979856 0.968458

57 0.914 0.809307 0.737958 0.857601

56 0.985 0.834626 0.89336 0.900788

55 0.677 0.547577 0.640264 0.445648

54 0.531 0.679983 0.717268 0.723065

53 0.972 0.883063 0.986526 0.885068

52 0.638 0.717488 0.785338 0.863104

51 0.993 0.796768 0.962268 0.81782

50 0.949 0.943656 0.974616 0.948569

49 0.984 1.030504 0.979768 1.007242

48 0.943 1.015625 0.938122 0.998542

47 0.98 0.784048 0.966068 0.846902

46 0.913 1.014941 0.980944 0.977672

45 0.553 0.650851 0.460548 0.663468

44 0.998 0.953617 0.938048 0.941279

43 0.619 0.747344 0.673518 0.744091

42 0.984 0.888254 0.956598 0.855777

41 0.808 0.582073 0.752002 0.635403

40 0.902 0.727795 0.786798 0.721564

39 0.993 1.001761 0.973322 0.981412

38 0.994 1.068967 0.926452 1.03343

37 0.988 0.991843 0.92281 1.025934

36 0.907 0.875793 0.97621 0.879445

35 0.986 0.752141 0.961854 0.81277

34 0.993 0.863823 0.952184 0.764759

33 0.208 0.490925 0.45198 0.45308

32 0.299 0.579034 0.323278 0.491752
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4.4.2.2. Predicting Mn Removal Efficiency

The RF model outperformed the other two models in predicting the MRE

in the test dataset with the most accurate predictions, with the lowest RMSE, MAE,

and MSE and the highest R2 (Table 4.5, Figure 4.7, Figure 4.8). The ANN model

outperformed the MLR model among the two remaining models. Different from

the FRE predictions, all models showed great performances with R2 values

exceeding 0.7, and the predictions among models showed no significant difference.

Table 4.7. Model performances of MRE prediction

ANN 0.172 0.135 0.029 0.779

RF 0.140 0.112 0.019 0.853

MLR 0.189 0.145 0.036 0.733

Variable RMSE MAE MSE R2
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(a)

(b)

(c)

Figure 4.6. Prediction of MRE in test dataset (a) MLR (b) RF (c) ANN
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Table 4.8. Observed and predicted MRE in test dataset

32 0.356 0.12165 0.100326 0.13172

31 1 0.91483 0.87968 0.88145

30 0.282 0.094937 0.050114 0.12115

29 0.005 0.112873 0.063116 0.0175

28 0.091 0.140687 0.090148 0.06725

27 0.027 0.179347 0.150874 0.17077

26 0.001 0.090154 0.032344 0.06439

25 0.005 0.040114 0.041648 0.05817

24 0.936 0.775594 0.91682 0.87026

23 0.043 0.111044 0.252546 0.3233

22 0.892 0.912927 0.683924 0.85718

21 0.97 0.691319 0.865374 0.75273

20 0.135 0.128428 0.095964 0.17441

19 0.77 0.500237 0.854892 0.5324

18 0.049 0.195326 0.105652 0.08827

17 0.99 0.660219 0.714904 0.60551

16 0.69 0.519772 0.561184 0.52182

15 0.267 0.042789 0.166022 0.02484

14 0.6 0.47578 0.690496 0.45119

13 0.85 0.969874 0.650326 0.91529

12 0.96 0.467679 0.746118 0.58572

11 0.056 0.133372 0.129206 0.15665

10 0.256 0.167084 0.058252 0.05568

9 0.107 0.125556 0.122162 0.17489

8 0.595 0.694585 0.681244 0.70485

7 0.098 0.670719 0.461898 0.49332

6 0.971 0.971188 0.86695 1.01785

5 0.317 0.086196 0.095628 0.09288

4 0.607 0.580823 0.550886 0.54265

3 0.031 0.234598 0.119898 0.14168

2 0.8 0.558744 0.902988 0.65128

1 0.56 0.45045 0.59054 0.44284

Number Observed MLR RF ANN
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40 0.313 0.116303 0.194074 0.11531

39 0.997 0.837851 0.87247 0.87388

38 0.056 0.003123 0.11398 0.02722

37 0.073 0.143223 0.073524 0.07964

36 0.021 0.156511 0.069068 0.05431

35 0.63 0.713866 0.740254 0.79419

34 0.51 0.454452 0.603518 0.46705

33 0.82 0.783486 0.792188 0.84297
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4.5. Variable Importance

4.5.1. Variable Importance in FRE Prediction

The most important variables defining the two machine learning models

RF, ANN for predicting FRE were extracted using the variable importance analysis

(Fig 4.9). From this analysis, the relative importance of each variable was

compared using the calculated values.

From the result of the analysis, the variable importance in two machine

leaning models was different. First, the most important variable in the RF model

was IpH, accounting for more than 40% of the total importance. IF and Alkal were

followed with the importance of 0.18 and 0.1, respectively. The importance of the

remaining variables was less than 0.07. In ANN model, IpH showed the highest

SHAP value (0.158). It was followed by other variables Temp, IF, DO, and Alkal

with the SHAP value of 0.07, 0.035, 0.034, and 0.033, respectively. The other

variables FR, Tur, and EC showed the low importance with the SHAP values lower

than 0.02.
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(a)

(b)

Figure 4.7. Variable importance in FRE prediction (a) RF (b) ANN
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4.5.2. Variable Importance in MRE Prediction

The two most important variables in the RF model was Alkal and IpH.

They accounted for more than 90% of the total importance with the variable

importance of 0.5 and 0.4, respectively. Whereas, the significance of the remaining

variables was less than 0.05 and only contributed approximately 10%.

Alkal and IpH were the two most important variables in the ANN model,

with a SHAP value of about 0.22, 0.10, respectively. The two most important

variables in RF and ANN model were the same. However, other factors like EC

and Tur were also important in defining ANN model.
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(a)

(b)

Figure 4.8. Variable importance in MRE prediction (a) RF (b) ANN
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Chapter 5. Discussion

In this study, the order of optimal models for predicting the removal

efficiency of Fe(Ⅱ) and Mn was the RF, ANN, and MLR model. This meant that

when it comes to predicting the metal removal efficiency, machine learning-based

algorithms outperformed the linear regression approach. According to the results

from the correlation analysis, only the pH of the inflow drainage was a meaningful

explanatory variable showing a clear linear relationship with the Fe and Mn

removal efficiency (Pearson correlation coefficient > 0.7). In other words, most

explanatory variables had nonlinear correlations with the metal removal

efficiencies in this study.

These nonlinear correlations between variables can be more accurately

simulated by RF and ANN models than by the MLR model. In RF model, the

nonlinearity can be explained by adjusting the number of trees, the node and depth

of the single trees (Breiman, 2001). In Neural Networks, the number of hidden

neurons and the node of each layer, and the optimization algorithms for optimizing

weights are used to learn the model and explain the complexity between variables

(Jain et al., 1996).
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From the results of variable importance analysis, the pH of the inflow

drainage was the most and secondly most important variable in predicting the Fe(II)

and Mn removal efficiency, respectively. All 9 coal mines analyzed in this study

adopted the series of passive systems for treating the mine drainage. According to

the previous studies, two or three passive systems, including successive alkalinity

producing systems (SAPS), anoxic limestone drains (ALD), anaerobic wetland,

aerobic wetland, and oxidation ponds, have been combined and utilized for treating

the abandoned mines in Korea (Sung et al. 1997; Bae et al. 2001; Ji et al., 2008).

The performances of aforementioned passive systems were highly dependent on

the pH of the inflow drainage since most systems remove metals via pH-controlled

precipitation (Ji et al., 2008).

According to previous studies, effective metal removal in aerobic

wetlands was possible when the inflow drainage pH was higher than 6 (Skousen

and Ziemkiewicz, 2005). Fe and Mn could be precipitated as insoluble compounds

(hydroxides) in wetlands by precipitation and reduction, which were sensitive to

the pH of the drainage (A.S. Sheoran and V. Sheoran, 2006). In other studies,

Fe2+ must first be oxidized to Fe3+ with the bacterial catalyzing to be

precipitated in drainage, since it was too soluble in drainage with low dissolved O2

up to pH 8 (Robbins and Norden, 1994; Evangelou and Zhang, 1995). And Mn

removal was challenging due to the sensitivity to pH, and it was accomplished with the

oxidation at pH 8 (Stumm and Morgan, 1981; A.S. Sheoran and V. Sheoran, 2006).

In SAPS, the rate of forming iron complexes depended significantly on the pH,

ranging from minutes to hours at neutral pH and from months to years at below pH

4 (Kepler ad McCleary, 1994)



69

Another important variables affecting the performance of RF model was

the alkalinity of inflow drainage, which was the second and first important variable

in predicting the Fe(II) and Mn removal efficiency, respectively. The relationship

between alkalinity and Fe removal efficiency was linked to the properties of

passive systems. In SAPS, alkalinity was created by raising the calcium content in

order to effectively negate the ability of the Fe2+ to form acid. (Kepler ad

McCleary, 1994, Ordonez et al., 2012). Alkali materials were also supplied from

external sources in the case of other passive systems, such as certain aerobic

wetlands or anoxic limestone drains (ALD), when there was not enough alkalinity

(Skousen and Larew, 1994). Alkalinity is also associated with Mn removal

efficiency, because the most widely used technique for removing Mn from mine

drainage was the use of alkaline materials for acidity-neutralization and

precipitation (Ayora et al.,2013; Luan and Burgos, 2019; Bryce et al., 2020).

Since the most important variables extracted from the learned model were

also major variables in the passive treatment systems, the Fe(Ⅱ) and Mn removal

efficiency of passive systems may be predicted using the machine learning-based

RF model. However, performances of RF models are affected by several factors,

such as the number of dataset, model optimizing, and explanatory variables (Guyon

and Elisseeff, 2003). Especially, the treatment system’s design factors such as the

size and the hydraulic retention time that might influence the metal removal could

not be considered in this study due to the lack of data. If these limitations are

further considered, better performance of prediction models will be expected.
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Chapter 6. Conclusion

Acid mine drainage (AMD) has to be monitored and managed by

reclamation or treatment systems because of the high concentration of heavy

metals and low pH. Predicting the performance of AMD treatment systems is

challenging due to the many variables involved. In this study, MLR, RF and ANN

model were constructed for predicting the Fe(Ⅱ) and Mn removal efficiencies and

the performances were compared by the RMSE, MAE, MSE, R2. The results are

as follows:

The RF model was the optimal model to predict the Fe(Ⅱ) removal efficiency.

Especially, RF performed well to predict high FRE >0.9 since the predicted values

did not exceed 1. It was also the optimal model to predict the Mn removal

efficiency. But, all models showed great performances with R2 values exceeding

0.7, and the predictions among models showed no significant differences.

From the result of sensitivity analysis, the pH, the concentration of Fe(II),

and the alkalinity of the inflow water were determined to be the most important

variables to predict the effectiveness of Fe(II) removal. And the pH, the alkalinity

of the inflow water were the most important variables to predict the Mn removal.

These variables have been discussed as important factors related to the metal

removal in previous studies. However, limited number of factors were importantly

taken into account constructing the RF models. The prediction performance of the

model is expected to be improved if more important independent variables are
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considered.
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국문요지

산성광산배수(AMD)는 높은 중금속과 낮은 pH로 인해 세계적인

문제로 대두되었으며 지속적인 모니터링과 처리시설을 이용한 관리를 필

요로 한다. 산성광산배수의 처리는 pH, 금속의 농도 등 연관된 수많은

요인으로 인해 예측에 어려움이 있다. 광산 배수 내 중금속의 제거를 예

측하기 위한 경험적 및 지구화학적 모델이 개발되어왔으나 모델을 구축

하는 데 많은 시간이 소요되고 충분한 양의 데이터를 필요로 하기 때문

에, 제한된 정보로도 예측이 가능한 머신 러닝 기반 모델을 구축할 필요

성이 존재한다.

본 연구에서는 한국의 9개 폐탄광에 대하여 수동적 처리 시스템

의 Fe(Ⅱ) 및 Mn 제거 효율을 예측하기 위해 RF 및 ANN 모델을 구축

하였고, 이를 MLR 모델의 성능과 비교하였다. 이중, RF 모델이 Fe(Ⅱ)

제거 Mn 제거 효율 예측 모두에서 가장 우수한 성능을 보였다. 민감도

분석 결과, Fe(Ⅱ) 제거 효율을 예측하는 데 가장 중요한 변수 세 가지는

순서대로 유입수의 pH, 유입수의 Fe(Ⅱ) 농도 및 알칼리도였다. Mn 제거

효율 예측을 위한 세 가지 중요한 변수는 순서대로 유입수의 알칼리도,

유입수의 pH, 유입수의 Mn 농도로 분석되었다.

핵심어 : 광산배수 정화, 머신러닝, 랜덤 포레스트, 인공신경망, 예측,

민감도 분석

학번 : 2021-27958
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