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Abstract

With the development of the density-functional theory (DFT) and ever-increasing

computational capacity, an accurate prediction of thermal properties of materials be-

comes computationally feasible. When DFT calculations are combined with the theo-

retical methodologies, such as Boltzmann transport equations, thermodynamic integra-

tion, and semigrand ensemble simulations, the lattice thermal conductivity and phase

diagram can be calculated without experimental inputs. However, a huge amount of

computational resources required for calculating these thermal properties hinders the

exploration of a wide range of systems. In recent years, the machine-learned potentials

(MLPs) are getting much attentions as a surrogate model of DFT, providing near-

DFT accuracy at a fraction of computational cost. Whereas MLPs have been proven

to predict thermal properties in ab initio accuracy, more investigations are required for

calculation of the lattice thermal conductivity for a wide range of crystal symmetries,

as well as construction of multi-component phase diagrams.

In this dissertation, calculation of thermal properties using neural network inter-

atomic potentials (NNPs) is demonstrated. First, lattice thermal conductivity is calcu-

lated for crystal structures that have diverse symmetries and wide range of conduc-

tivity. To construct transferable data sets for training NNPs, three methods are tested:

random displacement, superposition of phonon eigenmodes, and ab initio molecular

dynamics. 25 materials are benchmarked on the best data set to evaluate the accuracy

and computational cost compared with the pure-DFT approaches. The test reveals that

while 2-10 fold computational savings are achieved, most of the computational re-

sources are put into the construction of data set. By reducing the data set, at maximum

50-fold acceleration is obtained compared to the pure-DFT approach with marginal

compromise in accuracy. Next, the full phase diagram of MgO–CaO eutectic system is

constructed by calculating the free energy of rocksalt and liquid phases with molecular
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dynamics simulations. They are trained on NVT- and NPT-MD simulations at selected

stoichiometry to span the relevant temperature, composition, and phase domain. In ad-

dition, to see the effect of approximations on the DFT exchange-correlation energies,

we generate data set using the two functional, PBE and SCAN, and compare them

in the phase diagram. Notably, phase boundaries predicted by SCAN-NNP are close

to the experiments, and total computational cost is reduced by more than 1,000-fold

compared with fully DFT approach. Finally, phase transition of HfO2 is studied at at-

mospheric pressure, utilizing only its chemical composition as the starting point, to

test the strategy for constructing fully theoretical phase diagram. This can be accom-

plished by incorporating crystal structure prediction algorithms to identify candidate

phases. Afterward, the temperature-dependent stability and phase transitions are re-

vealed through MD simulations and free energy calculations performed with NNPs,

which are on the candidate phases. By accelerating ab initio prediction of stable phases

and their properties employing NNPs, we believe this work will be extended to a self-

contained computational laboratory for materials exploration.

keywords: machine-learned potential, neural network interatomic potential, lattice

thermal conductivity, free energy calculations, phase diagram

student number: 2016-20806
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Chapter 1

Introduction

1.1 Overview

Thermal properties are at the heart of materials science and engineering. Lattice ther-

mal conductivity dominates heat transfer in insulators and semiconductors, and the

required value varies depending on the purpose; thermoelectric materials or heat sink

ceramics require low or high thermal conductivity, respectively. In the meanwhile, the

phase diagram allows one to predict states of matter that can change under input/output

of heat. Despite the usefulness of these thermal properties, only a subset of the mate-

rials have been studied due to the vast experimental effort and cost, compared to the

possible combinations of chemical elements and stoichiometry. In these motivations,

attempts to explore the unknown materials space in order to discover new materials

have continued [1–4].

Density-functional theory (DFT) calculations have been widely adopted to address

phenomena in experiments or to predict material properties. This is because DFT pro-

vides sufficient accuracy without empirical parameters. Despite the successes and use-

fulness of DFT, the main bottleneck stems from the expensive computational cost that

limits time and length scale of the simulations. Thus, realistic simulations such as crys-

tallization of phase-change materials [5], thermal transport via interfaces [6], and free
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energy calculations on alloys [7] are practically prohibited within DFT.

To overcome these limitations, force fields are often fitted toward DFT calcula-

tions to reproduce accurate energy and forces. Since their computational cost is much

inexpensive compared to DFT, they can simulate the large-scale reactions such as dry

oxidation of silicon [8]. While the force field methods are formulated with interaction

terms that are physically sensible, their pre-determined functional form has often lim-

ited their transferability toward other systems or simulation domains. Efforts have been

made to address these limitations by modifying the formalism, thereby broadening the

scope of force field methods [9, 10].

Recently, machine-learned potentials (MLPs) have attracted much attention as sur-

rogate models of DFT calculations as they provide ab initio accuracy with a fraction

of computational cost [11, 12]. A main feature of MLP is that the model is mathemat-

ically flexible so that it is applicable to most of the systems ranging from metallic to

covalent and ionic systems. A wide range of molecular simulations have been acceler-

ated by MLPs: crystallization of phase change materials [5], reactions at the interface

between Si and Ni [13], crystal structure prediction [14], and light emission spectra of

core-shell quantum dot [15].

MLPs are also useful for thermal properties of materials. Although successful in

calculating lattice thermal conductivity for a variety of materials, a standard approach

for generating data set is lacking, and the computational savings when employing

MLPs are not fully discussed. In addition, phase diagrams are mainly demonstrated on

unary systems while studies on binary and multinary systems are still lacking. There-

fore, it is timely to further demonstrate calculation of thermal properties using MLPs,

including accurate and computationally efficient prediction of lattice thermal conduc-

tivity [16] and construction of multinary phase diagram [17].

Achieving these goals requires exploring and understanding the effect of the data

set on the final MLP. First of all, the data set should span the target simulation do-

main and at the same time best represent it. Conventional approaches exploit human

2



intuition for constructing and augmenting the data set, while recent approaches use

machine-learning techniques such as uncertainty estimations to append the data that

are relevant to the target simulations. Furthermore, MLPs have been mostly trained

on DFT calculations with approximations of exchange-correlation energy by Perdew-

Burke-Ernzerhof (PBE) [18]. As this functional often becomes erroneous in predicting

thermal properties, more accurate and advanced functional such as SCAN [19] or even

the level of theory beyond DFT has been employed to improve accuracy of the final

model.

3



1.2 Goal of the dissertation

This dissertation aims to calculate thermal properties of materials using neural net-

work interatomic potentials (NNPs), including lattice thermal conductivity (κl) and

composition-temperature phase diagram. In detail, κl at 300 K is calculated for crys-

tals with diverse symmetries and elemental combinations by solving Boltzmann trans-

port equation under relaxation-time approximation, followed by validations on lattice

dynamics and phonon lifetime. Then the phase diagram of MgO–CaO pseudo-binary

system is calculated for a wide range of composition and temperature, employing ther-

modynamic integration and semigrand ensemble methods based on MD simulations;

validations on, for example, melting point of the pure MgO and CaO phases are pre-

ceded and compared to the available literature. By demonstrating accurate prediction

of κl and construction of the phase diagram, this dissertation would further extend the

application range of MLPs toward thermal properties of materials.
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1.3 Organization of the dissertation

This dissertation is organized in 6 chapters. Chapter 1 is the introduction which gives

an overview on machine-learned potentials, thermal properties of materials, and the

goal of this dissertation. In Chapter 2, theoretical backgrounds for density-functional

theory and machine-learned potential are briefly discussed. Chapter 3 shows the appli-

cation of NNPs for lattice thermal conductivities. Then Chapter 4 demonstrates con-

struction of a full phase diagram including melting point for MgO–CaO pseudo-binary

system. In Chapter 5, approaches toward phase diagrams when there is no phase in-

formation are tested for phase transition of HfO2. Finally, Chapter 6 summarizes this

dissertation with original contribution to knowledge.
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Chapter 2

Theoretical background

2.1 Density-functional theory

2.1.1 Born–Oppenheimer approximation

To derive materials properties from quantum-mechanical level, one should investigate

the interactions between nuclei and electrons. This can be accomplished by solving the

Schrödinger equation, given as

ĤΨ = EΨ, (2.1)

where Ĥ is the Hamiltonian, E is the eigenvalues, and Ψ is the corresponding eigen-

functions. Since postulated in 1925, this equation has been laid foundation of ab initio

calculations. Hamiltonian for the quantum-mechanical system can be written as

Ĥ =−
∑
I

ℏ2

2MI
∇2

I −
ℏ2

2me

∑
i

∇2
i

+
1

2

∑
I ̸=J

ZIZJe
2

|RI −RJ |
+

1

2

∑
i ̸=j

e2

|ri − rj |
−
∑
i,I

ZIe
2

|ri −RI |
,

(2.2)

where ℏ and e are the reduced Planck constant and elementary charge, MI or me is

the mass of Ith nuclei or electron, ZI is the atomic number of Ith nuclei, and RI or ri
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is the position vector of Ith nuclei or ith electron, respectively. In Eq. 2.2, the first and

second terms corresponds to the kinetic energy of nuclei and electrons respectively, the

third or fourth terms are Coulomb repulsion between nuclei-nuclei or electron-electron

pairs, and the fifth term is nuclei-electron interactions, respectively. Since nuclei are

orders of magnitude heavier than electrons, nuclei can be treated as if they are station-

ary with respect to electrons. Therefore, the motion of electrons can be separated from

nuclei. This is called Born-Oppenheimer approximation [20] under which Eq. 2.2 can

be reduced to

Ĥ = T̂e + V̂e + V̂ext

= − ℏ2

2me

∑
i

∇2
i +

1

2

∑
i ̸=j

e2

|ri − rj |
+
∑
I

Vext(RI),
(2.3)

where T̂e, V̂e, and V̂ext are kinetic energy, electron-electron repulsion, and external po-

tential, respectively, and Vext(RI) is the external potential acting on electrons, exerted

from Ith nucleus. However, it is still impractical to directly solve Eq. 2.3 for many-

electron systems since there are 3Ne degrees of freedom. The density-functional the-

ory introduces more theorems and approximations on the electrons to solve Schrödinger

equation, as will be described in the following sections.
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2.1.2 Hohenberg–Kohn theorems

The Hohenberg–Kohn theorems [21] consist of two parts. The first theorem states that

the external potential V̂ext(r) is a unique functional of electron density ρ(r). Assum-

ing no degeneracy, this can be proven by starting with the assumption that two external

potentials that are different by more than constants, V̂ext(r) and V̂ ′
ext(r), give the same

ground-state density ρ(r). Since T̂e and V̂e in Eq. 2.3 are universal for electrons, those

two external potentials produce different Hamiltonian Ĥ and Ĥ ′, respectively; corre-

sponding ground-state wavefunctions, Ψ(r) and Ψ′(r) respectively, are also different

but assumed to give the same electron density after integration. Then the ground-state

energy of these systems, E and E′, satisfies

E = ⟨Ψ|Ĥ|Ψ⟩ < ⟨Ψ′|Ĥ|Ψ′⟩ = ⟨Ψ′|Ĥ ′|Ψ′⟩+ ⟨Ψ′|Ĥ − Ĥ ′|Ψ′⟩

= E′ +

∫
[V̂ext(r)− V̂ ′

ext(r)]ρ(r)dr.
(2.4)

The same procedure starting from E′ yields

E′ < E +

∫
[V̂ ′

ext(r)− V̂ext(r)]ρ(r)dr. (2.5)

A contradiction is found after adding Eqs. 2.4 and 2.5 (E + E′ < E′ + E), so it is

concluded that there is no different V̂ext(r) that gives the same electron density. In

other words, there is one-to-one correspondence between ρ(r), Ψ, Ĥ , V̂ext, E, and

the other ground-state properties. Then the energy can be expressed as a functional of

ground-state density:

E[ρ(r)] =

∫
ρ(r)Vext(r)dr+ FHK[ρ(r)], (2.6)

where Vext(r) is the external potential, and

FHK[ρ] = Te[ρ] + Ve[ρ] (2.7)

8



includes kinetic energy and electron-electron interaction respectively.

The second theorem states that the energy functional (Eq. 2.6) gives its global

minimum only when the input density is the ground-state density. If trial density is not

the ground state, the energy is also not the global minimum but gives upper bound.

Hohenberg–Kohn theorems therefore indicate the existence of energy functional

that depends on the ground-state density. However, there still exist two problems: the

input density requires many-body wavefunction, and the actual form of the functional

in Eq. 2.6 is unknown. Each is covered in following subsections.
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2.1.3 Kohn–Sham equations

Kohn and Sham proposed a (fictitious) single-particle Schrödinger equation that gener-

ate the same electron density to the original many-body counterpart [22]. This equation

is written as

(
− ℏ2

2m
∇2 + Veff(r)

)
ϕi(r) = εiϕi(r), (2.8)

where Veff(r) is the effective potential, and ϕi(r) and εi are ith Kohn–Sham orbital

wavefunctions and energies. The ground-state density is calculated by

ρ(r) =

N∑
i

|ϕi(r)|2, (2.9)

where N is the number of electrons in the system. In Kohn–Sham density-functional

theory, the total energy functional is defined as

E[ρ] = Ts[ρ] +

∫
Vext(r)ρ(r)dr+ EH[ρ] + Exc[ρ], (2.10)

where Ts[ρ], EH[ρ], and Exc[ρ] are kinetic, Hartree, and exchange-correlation energy

of electrons, respectively.

The effective potential in Eq. 2.8 is written as

Veff(r) = Vext(r) + VH(r) + Vxc(r), (2.11)

where VH(r) is the Hartree energy corresponding to the electron-electron Coulomb

interaction term, defined as

VH(r) = e2
∫

ρ(r′)

|r− r′|
dr′, (2.12)

and Vxc(r) is the exchange-correlation potential of electrons and defined as

Vxc(r) =
δExc[ρ]

δρ(r)
. (2.13)
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Notably, Exc[ρ] also contains corrections for the difference between the single-particle

orbitals and true electron wavefunctions. While these equations are exact in princi-

ple, the exact form of Exc(r) is unknown in Kohn–Sham density-functional theory.

Therefore, the level of approximations for Exc(r) determines accuracy of the density-

functional calculations.

To obtain solutions for Kohn–Sham equation, a trial density ρ(r) is introduced

to construct Veff(r) (Sec. 2.1.2). Then at given Veff(r), single-orbital wavefunctions

ϕi(r) are obtained after solving the single-particle Schrödinger equation (Eq. 2.8),

giving again the electron density ρ(r) (Eq. 2.9) and corresponding energy (Eq. 2.10).

These procedures are self-consistent and iterated until reaching the global minimum.
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2.1.4 Exchange–correlation functional

To address many-body nature of electrons, approximations have been made for Exc(r)

(Eq. 2.13). The simplest one is local density approximation (LDA) [22], where the

exchange–correlation energy is functional of electron density at given spatial coordi-

nate. For spin-unpolarized system, it is written as

ELDA
xc [ρ] =

∫
ρ(r)εLDA

xc [ρ(r)]d3r, (2.14)

where εLDA
xc [ρ(r)] is the exchange–correlation energy density within LDA. This is

mostly referenced to the homogeneous electron gas, written as

ELDA
xc [ρ] = ELDA

x [ρ] + ELDA
c [ρ], (2.15)

where

ELDA
x [ρ] = −3

4

(
3

π

)1/3 ∫
ρ4/3(r)dr (2.16)

is the exchange energy functional, and ELDA
c [ρ] is the correlation energy functional

available from quantum Monte Carlo simulations [23]. LDA often works well for sys-

tems with uniform electron density.

Since electron densities in solids are non-uniform, corrections are made by gra-

dient of the charge density. This is called generalized-gradient approximation (GGA)

and often produce better results than LDA [24]. Its functional form can be expressed

as

EGGA
xc [ρ] =

∫
ρ(r)εGGA

xc [ρ,∇ρ]d3r, (2.17)

where now the energy density εGGA
xc also depends on the gradient of the electron den-

sity ∇ρ. Among various derivatives, the most widely-used GGA functional is the

parameterization of Perdew, Burke, and Ernzerhof (PBE) [18]. More recently, the

exchange–correlation potential is further modified by kinetic energy of non-interacting

orbitals. it is called meta-GGA and written as

Emeta−GGA
xc [ρ] =

∫
ρ(r)εmeta−GGA

xc [ρ,∇ρ, τ ]d3r, (2.18)
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where τ is the kinetic energy density from Kohn–Sham orbitals. A widely used one

is strongly constrained and appropriately normed (SCAN) functional [19], which is

benchmarked against PBE and shows decent accuracy over properties of materials and

molecules [25].
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2.2 Neural network interatomic potential

DFT calculations have been widely used because it can accurately predict physical

properties or chemical reactions from interactions between electrons, without empiri-

cal parameters. However, since it requires a huge amount of computational resources,

attempts to accelerate the DFT calculations by employing surrogate models have been

continuing. Recently, models based on machine learning gain much attentions. Among

them, Behler [26] proposed neural network interatomic potential (NNP), which is

based on feedforward neural network. NNPs are mostly trained on DFT calculations

and reproduce them with little computational cost, bypassing the redundant and com-

putationally costly consideration of many-body interactions between electrons.

NNP is a regression model that takes an atomic structure as an input and returns the

energy, atomic force, and stress corresponding to the structure. This is schematically

presented in Fig. 2.1. While detailed discussions and implementations are provided in

Ref. [26, 27], principles and practices are briefly introduced in this section.

2.2.1 Feature vector

If raw Cartesian coordinates of atoms within the structure is used as input features,

the model can only predict the energy of structures with the same number of atoms.

Instead, by dividing the total energy into the atomic energies, one can predict the total

energy from the sum of the atomic energies regardless of the system size. In addition,

since the energy of a structure is invariant under rotation or translation of the entire

system and under permutation of the same element, it is natural for the input features

to satisfy those conditions.

The atom-centered symmetry functions (ACSFs) are proposed by Behler [28], sat-

isfying above-mentioned constraints. This feature vectors encodes the real-space co-

ordinates of the given structures into the atom-wise information about local environ-

ments within the certain cutoff radius about the center atom. The ACSFs include 5
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Fig. 2.1: (a) the whole structure of neural network interatomic potential and (b) the

atomic neural network. Ri and Gi are spatial coordinates and feature vectors of ith

atom, respectively. Ei and Eatomic indicate atomic energies.
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types defined as follows.

G1
i =

∑
j

fc(Rij), (2.19)

G2
i =

∑
j

e−η(Rij−Rs)2fc(Rij), (2.20)

G3
i =

∑
j

cos(κRij)fc(Rij), (2.21)

G4
i = 21−ζ

all∑
j,k ̸=i

(1 + λ cos θijk)
2e−η(R2

ij+R2
ik+R2

jk)fc(Rij)fc(Rik)fc(Rjk), (2.22)

G5
i = 21−ζ

all∑
j,k ̸=i

(1 + λ cos θijk)
2e−η(R2

ij+R2
ik)fc(Rij)fc(Rik). (2.23)

where i, j, and k are atom indices, Rij is the distance between atom i and j, and η,

κ, ζ, and λ are hyperparameters that can have multiple values to represent the local

environment in detail. G1, G2, and G3 are radial, and G4 and G5 is angular functions,

respectively. Finally, fc is the cutoff function that smears out the effect of atoms outside

the certain cutoff radius Rc.

fc(Rij) =

 0.5 [cos(πRij/Rc) + 1] (Rij ≤ Rc)

0 (Rij > Rc).
(2.24)

The feature vectors have different scale according to the selection of hyperparam-

eters. As the range of input features affects the effective importance of features and

thus the performance of final model, they should be scaled to have similar ranges. The

most common choice is the mixmax scaling, making them have values between 0 to

1.

As seen from the Fig. 2.2, input features are highly correlated to each other, whose

dimension is around 100. Thus, instead of using the original features, one may re-

duce the number of features for accelerating convergence of the training procedure
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and avoiding overfitting. This can be done by decorrelating these features using, for

example, principal component analysis (PCA).

After PCA transformation, the principal components again have different ranges.

These are standardized by whitening transformation, making all the values have stan-

dard deviation of 1. However, in this case, latter principal axes have orders of mag-

nitude smaller variance than the former axes. Therefore, a minimum whitening level

could be selected such that the small-importance principal axes does not act as noises

to the model.

2.2.2 Model

The NNP consists of atomic feedforward neural networks that give atomic energies

(Fig. 2.1(b)). Beginning from the input layer, nodes and their weights in each layer are

connected to the next layer by the analytical relation defined as

xk+1
j = fa

Nk∑
i=1

xkiw
k
ij + bk

 , (2.25)

where i (j) is the index of nodes of the kth ([k+1]th) layer, wk
ij is the weight connect-

ing the node between xki and xk+1
j , and bk is the bias of the kth layer. The summation

runs for all the nodes in the kth layer (Nk), and fa is called activation function. While

the others are linear arithmetic, the activation function imposes non-linearity to the

model. Sigmoid or cotangent functions are common choice for NNPs.

The atomic energies obtained from the atomic neural networks are summed up to

give total energy of a given structure. The total energy expression is analytical as given

in Eq. 2.25, and the forces can be analytically obtained from the derivative about the

Cartesian coordinates, exploiting chain rules.

The regression of the model parameters toward data sets are realized by backprop-

agation. The NNP is trained by minimizing the loss function (Γ) defined as
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Γ =
1

M

M∑
i=1

(
EDFT

i − ENNP
i

Ni

)2

+
µ1

3
∑M

i=1Ni

M∑
i=1

Ni∑
j=1

∣∣FDFT
ij − FNNP

ij

∣∣2
+

µ2

6M

M∑
i=1

6∑
k=1

∣∣SDFT
ik − SNNP

ik

∣∣2, (2.26)

where M is the total number of structures in the training set, Ni is the number of

atoms in the ith structure, and E
DFT(NNP)
i , FDFT(NNP)

ij , and S
DFT(NNP)
ik are its total

energy, atomic force of the jth atom, and the kth component of the virial stress tensor,

respectively. µ1 and µ2 are the parameters that scale the relative importance of atomic

force and stress with respect to the total energy when minimizing the loss function.

As the size of data set becomes large in practices, minimizing the loss function for

optimizing network parameters using the whole data set becomes largely inefficient.

Stochastic gradient descent, which uses small fractions (batch) of data set to proceed

more iterations, can make the training process more computationally efficient. In this

process, since the gradient has errors to the true gradient, it is desirable to use informa-

tion of previous batches. For example, Adam (adaptive moment estimation) optimizer

is one of the advanced scheme which exploits adaptive step size and momentum.

2.2.3 Data set

The data set should fully span the target simulation domain. This is because the ma-

chine learning methods give precise predictions for interpolation but unexpected errors

for extrapolation. The conventional approach for constructing data set is based on hu-

man intuition and the background knowledge about the system. For example, a data

set consists of ground state structures, their strained states, and ab initio MD trajecto-

ries for the target simulations in small cells. However, data set based only on human

intuition and MD simulations may be insufficient. This is because, for example, sad-

dle points of the reaction paths are hardly sampled within Boltzmann statistics in MD

simulations.
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One of the approaches to overcome the limitation of the conventional approach

is augmentation of the data set based on uncertainty prediction. For NNPs, there is

no inherent metric for uncertainty, unlike other machine learning methods such as

Gaussian process. Instead, one can use the deviations of energy or force within an

ensmeble of NNPs [29], which are trained from different random numbers or hidden

layer architectures. It would be advantageous for homogeneous system such as bulk

or amorphous materials to use uncertainty indicators based on total energy, while in-

homogeneous systems including interfaces or chemical reactions require atom-based

indicators to resolve the exact source of errors. To accomplish those purposes there

are several methods as suggested in Ref. [13]. One can use active learning schemes

based on the uncertainty prediction methods to expand the data set toward simulation

domain. Starting from the initial data set, the target simulations are repeatedly car-

ried out by NNPs, and the data set is augmented whenever the untrained domain is

detected until the simulations becomes stable within the training domain. Other ap-

proaches, such as metadynamics have been also suggested to sample a wide range of

configurations without human intuition.

The performance of the final model is critically affected by approximations in

ab initio calculations that are used to construct the data set. When NNPs are trained

with DFT calculations, a routine choice is PBE functional. However, when calculating

thermal properties, such as phonon dispersion or melting points, it has been repeat-

edly reported that the PBE functional often gives underestimated phonon frequency or

melting points. Instead, the SCAN functional provides more accurate descriptions on a

wide range of physical properties and also validated through melting point calculation.

Depending on the target simulations, DFT functional that correctly reproduces desired

properties should be chosen to obtain reliable results.
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Chapter 3

Accelerated computation of lattice thermal conductiv-

ity

3.1 Introduction

The prediction of thermal conductivity is of central importance in materials science

and engineering for a wide range of applications. For example, materials with low

thermal conductivities can be used for thermoelectrics [30] or thermal insulations [31],

whereas materials with high thermal conductivities are suitable for the thermal man-

agement of electronic devices [32]. In the past decades, the development of ab initio

methods combined with increasing computational power enabled a reliable prediction

of lattice thermal conductivity (κl) [30, 33]. This is particularly impressive because

the computed κl spans a wide range of scales from 10−1 to 103 Wm−1K−1. However,

the ab initio evaluation of κl becomes expensive in multicomponent or low-symmetry

materials due to high computational costs for considering anharmonicity. For instance,

the monoclinic β-Ga2O3 requires thousands of single-point density- functional the-

ory (DFT) calculations to obtain κl. Several approaches that exploit regression tech-

niques have been proposed to save the computational cost, resulting in a significant

increase in the computational efficiency [34–36]. One example is the compressive
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sensing lattice dynamics method, which uses sparsity in the force constants [34]. In

this method, the potential energy surface is Taylor-expanded with the high-order force

constants (fourth-order and beyond), which is fitted to DFT atomic forces for refer-

ence structures. The temperature-dependent effective-potential method (TDEP) also

expands the potential energy surface but the series is usually truncated beyond the

third order [35]. Through a fit to ab initio molecular dynamics (AIMD) trajectories, the

finite-temperature effects of higher-order terms on the force constant and anharmonic-

ity are incorporated in TDEP. Several high-throughput calculations of κl have been

reported using semi-empirical approaches based on the Debye-Callaway or Leibfried-

Schlömann models [37–39]. However, for materials outside of the dataset used to fit

the model, κl prediction accuracy would deteriorate.

Machine-learned interatomic potentials (MLPs) have recently been used as surro-

gate models of DFT in calculating force constants and κl [40–47]. To fit the potential

energy surface produced by ab initio calculations, preferably DFT [11], MLPs use flex-

ible regression models. For regression models, artificial neural networks [26], kernel-

based methods [48], and linear fitting [49] are popular choices. Once trained, MLPs

infer the energy, atomic force, and virial stress of the given structure with an accuracy

comparable to DFT, but at a fraction of the cost. Until now, several crystals and alloys

have been studied, and κl values obtained by MLPs have been close to the reference

DFT data. Notably, the κl of BAs was successfully predicted by MLP, which demands

up to four-phonon scattering in the Boltzmann transport equation [44]. MLPs are also

advantageous for investigating the κl of disordered phases such as amorphous [46]

and liquid systems [45]. For materials dominated by nonperturbative phonon scatter-

ing, extensive molecular dynamics (MD) simulations are necessary to get an accurate

κl, which can be handled efficiently by MLP [47].

Although previous works support that the MLP is a powerful tool in calculating κl,

several issues need to be addressed. For example, most materials in the previous stud-

ies retain high symmetries, three or fewer elements, relatively simple configurations,
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and a limited range of κl (>10 Wm−1K−1). Consequently, it is unclear whether the

MLP’s prediction accuracy can be maintained for materials in general. Furthermore,

recipes for creating the training set differ significantly across the literature, making it

difficult to establish a standard approach. Motivated by these observations, we herein

investigate the effect of material complexity and different types of training sets on

the accuracy and computational cost of κl prediction by MLPs. We adopt Behler-

Parrinello-type neural network potential (NNP) as an MLP model [26] and consider

three types of training sets: i) snapshots of crystals with randomly displaced atoms,

ii) AIMD trajectory, and iii) snapshots of crystals with atoms displaced along phonon

eigenmodes. Our main goal is to develop a recipe for building a training set that pre-

dicts the room-temperature (300 K) κl of general bulk materials with high efficiency

and reasonable accuracy. The following is how the remaining sections are built: the

details of computational methods are described in Sec. 3.2. In Sec.3.3, we conduct a

preliminary test on the methods of constructing training sets. In Sec. 3.4, based on the

method chosen in the previous test, we calculate κl of 25 materials with diverse cell

symmetry and a wide range of κl values and analyze relative errors and computational

efficiencies. We also check the effect of reducing the size of the training set in Sec. 3.5.

Finally, we summarize and conclude in Sec. 3.6.
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3.2 Computational details

3.2.1 Density-functional theory calculations

All the DFT calculations are performed using Vienna Ab initio Simulation Package

(VASP) [50–52]. The generalized gradient approximation by Perdew–Burke–Ernzerhof

(PBE) [18] is used for the exchange-correlation function. The initial structure for each

material is obtained from the inorganic crystal structure database (ICSD) [53], which

is relaxed further within DFT. The plane-wave cutoff energy and k-point grids for the

unit-cell optimization are selected such that the energy and atomic forces converge to

within 1 meV/atom and 5 meV/Å, respectively. The selected parameters are summa-

rized in Ref. [16]. In addition, the PREC tag is set to “Accurate”, and the convergence

criteria for the self-consistent cycle is set to 10−8 eV. Then, the unit cells are fully

optimized including lattice vectors until remaining atomic forces become smaller than

1 meV/Å. The final structure becomes the reference one in generating the training set.

The computational parameters used for constructing the training data will be discussed

in Sec. 3.3.

3.2.2 Boltzmann transport equation

We calculate the lattice thermal conductivity by solving the phonon Boltzmann trans-

port equation linearized under the relaxation-time approximation. In the following, we

briefly summarize the equations involved in computing κl. Detailed discussions can

be found elsewhere [54, 55]. The potential energy surface U can be expanded as

U = U0 +
1

2!

∑
ijαβ

Φαβ
ij uαi u

β
j +

1

3!

∑
ijkαβγ

Φαβγ
ijk uαi u

β
j u

γ
k + ... (3.1)

where U0 is a constant and Φαβ
ij and Φαβγ

ijk are the second- and third-order interatomic

force constants, respectively. ui is the atomic displacement of the ith atom from the
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equilibrium position, and α, β, and γ are the Cartesian indices. At temperature T , the

lattice thermal conductivity tensor is expressed as

καβ =
1

Ω

∑
qs

Cqsv
α
qsv

β
qsτqs, (3.2)

where Ω is the volume of the crystal and Cqs, vqs, and τqs correspond to the heat

capacity, phonon velocity, and phonon lifetime with the wave vector q and branch

index s, respectively. In Eq. 3.2, the heat capacity is defined as

Cqs = ℏωqs
∂nqs

∂T
, (3.3)

where ℏ is the reduced Planck constant, ωqs is the angular frequency of the phonon

mode qs, and nqs is the Bose–Einstein occupation number at temperature T. The

phonon lifetime is calculated as the inverse of the total scattering rate

1

τλ
=

+∑
λ′λ′′

Γ+
λλ′λ′′ +

1

2

−∑
λ′λ′′

Γ−
λλ′λ′′ +

∑
λ′

Γλλ′ (3.4)

where Γ+ and Γ− are three-phonon scattering rates, corresponding to absorption and

emission processes, respectively. Here the phonon mode qs is abbreviated to a single

index λ. The last term on the right-hand side of Eq. 3.4 corresponds to scattering by

isotopes present in nature. The three-phonon scattering rates Γ+ and Γ− are expressed

as

Γ+
λλ′λ′′ =

ℏπ
4

(nλ′ − nλ′′)

ωλωλ′ωλ′′

∣∣V +
λλ′λ′′

∣∣2 δ (ωλ + ωλ′ − ωλ′′) , (3.5)

Γ−
λλ′λ′′ =

ℏπ
4

(nλ′ + nλ′′ + 1)

ωλωλ′ωλ′′

∣∣V −
λλ′λ′′

∣∣2 δ (ωλ − ωλ′ − ωλ′′) . (3.6)

In Eqs. 3.5 and 3.6, the Dirac delta functions δ impose the energy conservation during

scattering. The scattering matrix elements V ±
λλ′λ′′ are computed as

V ±
λλ′λ′′ =

∑
i,j,k

∑
αβγ

Φαβγ
ijk

eαi (λ)e
β
j (±λ′)eγk(−λ′′)√
MiMjMk

, (3.7)
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where ei(λ) and Mi are normalized eigenvectors of mode λ and the atomic mass of

the ith atom, respectively. Here −λ refers to the phonon mode in the wave vector −q

and branch s. Finally, the summation index i and indices j and k in Eq. 3.7 indicate

atoms in the unit cell and supercell, respectively.

The second-order interatomic force constants Φαβ
ij in Eq. 3.1 are calculated with

a finite displacement method using the Phonopy package [56]. The side lengths of

supercells used in the computation are ∼20 Å each. The third-order interatomic force

constants (Φαβγ
ijk in Eq. 3.1), also calculated with a finite displacement method, and

lattice thermal conductivities at 300 K are evaluated by the ShengBTE package [54].

Here the supercell dimension is typically ∼10 Å with ∼6 Å for the cutoff radii of the

interatomic interaction. The number of single-point force calculations increases with

the number of possible atomic pairs in the supercell, considering the cutoff radii of the

interatomic interaction. For the q-point sampling, a uniform mesh grid with a density

of ∼19 points Å−1 is used. The Dirac delta functions in Eqs. 3.5 and 3.6 are approx-

imated by the adaptive Gaussian with a proportionality factor of 0.1 [54]. Under the

relaxation time approximation, the Boltzmann transport equation is not solved itera-

tively. Because the current work focuses on comparing the results of DFT and NNP,

we do not consider nonanalytic corrections for LO–TO splitting. The full details on the

computational parameters used to evaluate force constants can be found in Ref. [16].

3.2.3 Neural network potential

For training NNPs, we employ the SIMPLE-NN package [27]. Atom-centered symme-

try functions G2 and G4 [28] are adopted to describe radial and angular distributions of

neighboring atoms, respectively. The cutoff radius is set to 6.5 Å, and 26, 70, and 132

symmetry functions are employed for unary, binary, and ternary systems, respectively.

The network architecture comprises two hidden layers with 60 hidden nodes each and

one output layer that provides atomic energy. The input vector is decorrelated by prin-

cipal component analysis and then whitened to increase the learning speed [5]. We set
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the parameters µ1 and µ2 in the loss function (Eq. 2.26), scaling the relative importance

of atomic force and stress with respect to the total energy, as 102 and 10−6, respec-

tively. To avoid overfitting and obtain more regularized NNPs, we apply a dropout

technique in which half of the nodes are randomly selected and fixed at each training

iteration [57]. The learning rate starts at 0.01 and scales by 0.1 every 5000 iterations.

We train two independent NNPs and use averaged forces to obtain interatomic force

constants for given atomic displacements. For evaluating atomic forces, we use the

LAMMPS package [58].
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3.3 Construction of training sets

To select an optimal approach to generate training sets, preliminary tests are conducted

on six materials: BAs, CoSb3, β-Ga2O3, GaP, α-SiO2, and Tl9BiTe6 that span three or-

ders of κl from 10−1 to 102 Wm−1K−1. We compare the three methods of constructing

the training set: (i) random displacements of atoms (RDA), (ii) AIMD, and (iii) super-

position of phonon eigenmodes (SPE). Each atom is displaced with random directions

and amplitudes in the RDA method. The amplitudes are chosen from a normal distribu-

tion with a standard deviation of 0.1 Å. The AIMD method comprises two steps. First,

the AIMD using an NVT ensemble is conducted over 1 ps with the time step of 1 fs, at

temperatures of 50, 300, 500, and 700 K, following the choice of the simulation time

and temperatures in Ref. [42]. (We also tested the AIMD method with NPT ensemble,

but the resulting κl showed no significant difference.) The simulation cell, which con-

tains ∼100 atoms, is identical to the one used to calculate the third-order interatomic

force constants for the most cases of the test materials. During AIMD, the computa-

tional parameters are slightly loosened such that the self-consistency criteria is set to

10−4 eV with the default plane-wave energy cutoff and the Γ-point sampling. Next,

we sample the 4-ps AIMD trajectories in 10- or 80-fs intervals depending on the target

size of the training set, and more accurate DFT calculations are performed on the sam-

pled structures. This is required because the interatomic force constants are sensitive

to computational precision, so the training data must maintain high precision. In these

calculations, the plane-wave energy cutoff, k-point grids, and convergence criteria of

self-consistent calculation are set to the same as those of the unit cell optimization (see

Section 3.2.1). Finally, the SPE method requires the second-order interatomic force

constants that determine the phonon eigenmodes. To roughly calculate the second-

order interatomic force constants with minimal computational costs, we use the Γ

point and a small supercell size adopted in calculating third-order interatomic force

constants (see Section 3.2.1). Each atom is displaced along the superposed phonon
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modes with random amplitudes and phase factors [36].

In each of the three approaches described above, the training set comprises 400

structures. To calculate third-order interatomic force constants, interactions up to ∼6

Å or 6th, 7th, 19th, 5th, 11th, and 4th nearest neighbors are considered for BAs, CoSb3,

β-Ga2O3, GaP, α-SiO2, and Tl9BiTe6, respectively. For the phonon dispersion, every

NNP trained by the three methods reproduces phonon dispersion for all six materi-

als [16]. Figures 3.1(a)–(c) present the comparisons of the diagonal components of the

κl tensor between NNP and DFT. We also compare the DFT results with experimental

data in Fig. 3.1(d) to validate computational settings. It is seen that NNP-AIMD shows

higher accuracy than other methods, with the error bound for all test materials being

less than 30%. Conversely, NNP-RDA and NNP-SPE show error levels larger than a

factor of 2 for GaP and β-Ga2O3, respectively. This means that RDA and SPE method

may produce atomic displacements that have no bearing on third-order interatomic

force constants. Since the RDA method does not make any assumptions about atomic

correlations, it is more likely to produce unphysical atomic configurations with small

interatomic distances and large repulsive atomic forces. This analysis is supported by

the phonon scattering rates of GaP shown in Fig. 3.2; while NNP-AIMD shows good

accuracy in predicting frequency-scattering rates relations, the other two NNPs show

large discrepancies, especially NNP-RDA.

The computational cost of the SPE method varies greatly depending on the cell

symmetry due to the part on obtaining phonon dispersion. The costs of the AIMD

and RDA methods, however, are less affected by crystal symmetry. Consequently, we

conclude that the AIMD method is the best for generating training data. In passing,

we note that for BAs, the present DFT result of κl (∼1200) in Fig. 3.1 deviates from

the previous literature (>2000) [42]. This is because we did not solve the Boltzmann

transport equation iteratively (i.e., relaxation time approximation), which is known to

affect the prediction accuracy for materials with high κl [54]. When the Boltzmann

transport equation is solved iteratively, we find that κl increases to ∼1900.
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Fig. 3.1: κl of test materials calculated by density-functional theory (DFT) and neural

network potentials (NNPs) that are generated with various training sets. (a) Random

displacements of atoms (RDA), (b) ab initio molecular dynamics (AIMD), (c) superpo-

sition of phonon eigenmodes (SPE). (d) Comparison between DFT and experimental

values. Multiple values for each symbol denote the diagonal components of κl, and

gray lines denote the error with a factor of 2. The data for experimental κl values are

referred to the original publication and the references therein [16].
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Fig. 3.2: The frequency-dependent phonon scattering rates of GaP obtained by DFT

and NNPs (a), averaged over every 1.2 THz intervals (b). Error bars in (b) indicate

standard deviation within the interval [16].
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3.4 Computation of κl for diverse materials

This section increases the benchmark cases to 25 materials with diverse cell symme-

tries and a wide range of κl values. The training set for each NNP comprises 400

structures generated by the AIMD method. Figure 3.3(a) compares κl between NNP-

AIMD and DFT. The root-mean-squared relative error (RMSRE) of test materials is

18.6%. To be more informative, results of three materials with different symmetry are

provided in Fig. 3.5, showing good agreements with DFT calculations in phonon dis-

persion, scattering rate, and κl. Figure 3.3(b) shows the results when the training data

is reduced, as discussed below. For comparison, we gather the κl values computed by

MLP and DFT from the literature and plot them in Fig. 3.4(a) (For a fair compari-

son, only those obtained by solving the Boltzmann transport equation are presented).

Except for a few materials, the error level in Fig. 3.3(a) and Fig. 3.4(a) is similar. Fig-

ure 3.4(b) explicitly compares the error values for common materials in Fig. 3.3(a)

and Fig. 3.4(b). It can be seen that the errors from the present approach are compara-

ble to those of other references even though we use a consistent choice of the training

set. However, BAs shows a much larger error than Ref. [44]. It is known that κl of

BAs is mainly determined by the scattering of acoustic phonon modes. Ref. [44] em-

ployed NPT simulations and adopted DFT results for the harmonic part, which may

have contributed to more accurate scatterings by acoustic phonons.

We note that materials with low symmetries often exhibit large errors in Fig. 3.3(a).

To be specific, we classify the test materials into four groups based on the crystal sys-

tem: (1) cubic, (2) tetragonal and hexagonal, (3) orthorhombic, and (4) monoclinic

and triclinic. For each material, we first select the component of κl showing the largest

error. For the selected components, we calculate the average error within each group.

The results are 7.6%, 13.5%, 15.7%, and 24.2% for the group (1)–(4), respectively,

which shows a trend of increasing errors with low crystal symmetries. The low sym-

metry may require longer AIMD simulations for sufficient sampling. To test this, we
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Fig. 3.3: κl computed by NNP-AIMD trained with (a) 400 and (b) 50 structures sam-

pled from the same AIMD trajectories [16].
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extend AIMD of K2Bi8Se13, which has P1 space group and thus has the largest er-

ror, up to 2 ps, increasing the training set by two folds. However, the resulting NNP

for K2Bi8Se13 produces almost identical κl. Therefore, the origin of the error and a

systematic solution need further investigation in future.

36



L A K M
Phonon wavevector

0.0

2.5

5.0

7.5

10.0

Fr
eq

ue
nc
y
(T
H
z)

0 5 10 15 20
Frequency (THz)

0.3

1.0

3.0

S
ca

tte
rin

g 
ra

te
 (p

s
1 )

400
200
100
52
28
12

NNP
(data size)

DFT

10
1

10
0

10
1

10
2

Mean free path (nm)

0

2

4

6

8

C
um

ul
at

iv
e 

 (W
m

1 K
1 )

(c)

κzz

κxx

(b)

(a)

Fig. 3.6: Data-size dependence of (a) phonon dispersion, (b) scattering rate, and (c)

cumulative lattice thermal conductivity as a function of the phonon mean free path.

The phonon dispersion is presented up to 10 THz for clarity. Scattering rates are aver-

aged over every 2 THz intervals, and error bars indicate standard deviation within the

interval [16].
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3.5 Savings on computational cost

The high-precision DFT calculations used to construct the training set account for

about 90% of the computational costs in the present work. The other portions of the

computational cost stem from AIMD, NNP training, and κl calculation, with each

corresponding to ∼3 % respectively. Consequently, it would be worthwhile to see if

the training set could be shrunk further to save on computational costs. To this end, we

investigate the effect of dataset size on κl using αSiO2 as an example. First, we choose

12, 28, 52, 100, 200, and 400 structures from 108-atom AIMD data, which train six

different NNPs. The simulation time and temperatures are the same as those in the

previous section. In Fig. 3.6, we calculate phonon dispersions, scattering rates, and

cumulative lattice thermal conductivities as a function of the phonon mean free path.

Figure 3.6(a) shows that harmonic properties are well described by every NNP, but a

slight deviation of the transverse acoustic mode is observed along the Γ–A line with

the data size of 12. The scattering rates and cumulative κl in Figs. 3.6(b) and 3.6(c),

respectively, are well reproduced for data sizes exceeding 28. With data sizes of 12 or

28, significant deviations in κl are observed mostly at mean free paths of 1–10 nm.

Following the above analysis, we reduce the training set to 50 structures for 18

materials selected from Fig. 3.3(a) by sampling more sparsely over the same MD tra-

jectories. The κl values compared between the resulting NNPs and DFT are shown in

Fig. 3.3(b). The RMSRE of the κl is 31%, increasing from 18% in Fig. 3.3(a), which is

reasonable considering the drastic decrease in computational cost. Again, K2Bi8Se13

shows the largest error as in Fig. 3.3(a), which can be understood by the low symmetry

in the crystal structure.

Additionally, we analyze the computational efficiency of the NNP-based calcula-

tion of κl with respect to the DFT-based calculation. Figure 3.7 shows how the com-

putational cost changes as the material complexity increases. The number of structures

required to calculate the third-order force constants, which encompasses the number
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of atomic elements, the number of atoms in the unit cell, and the crystal symmetry, is

used to rank the material complexity. The computational cost is normalized with re-

spect to that of Si computed using the full DFT approach (left scale) or the NNP trained

with 50 structures. (right scale). Here, the computational cost of the DFT-based κl cal-

culation is the summation of those obtaining second- and third-order force constants.

The majority of the computational costs in NNP-based calculations come from build-

ing the training set (AIMD and single-shot calculations) and training NNPs, while the

cost of calculating force constants using the finite displacement method is negligible.

As the material complexity increases, the number of structures needed to generate

the third-order force constants increases rapidly, which is confirmed in Fig. 3.7. For

instance, the DFT computational cost for KCuS is more than 20 times higher than

that of Si. Conversely, NNP-based κl calculations show nearly constant computational

costs regardless of the material complexity. This is because the cost of AIMD and

high-precision DFT calculations are similar among the materials. This is because the

atomic forces can be calculated with almost no cost once the NNP has been trained,

even for a very large supercell.
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3.6 Summary

In summary, we propose a standard protocol for building the training set of NNPs

targeted for computing κl efficiently without fine-tuning for each material. The proto-

col requires 1-ps AIMD simulations at various temperatures and accurate single-shot

calculations for 400 structures sampled along the MD trajectory. Testing over 25 ma-

terials with diverse symmetries and wide range of κl, it is confirmed that NNP-AIMD

provides consistent accuracies comparable to reported values in the literature. The uni-

form cost across material types for the proposed method makes it especially efficient

for complex materials whose κl prediction would be costly in a full-DFT approach.

Furthermore, the NNPs showed reasonable accuracy even when the training set was

reduced to 50 structures. Having confirmed that the machine-learned potential repro-

duces well the anharmonicity, which is a prerequisite for predicting high-temperature

properties, the next Chapter will extend its application range to melting properties and

phase diagrams.
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Chapter 4

Ab initio construction of MgO–CaO full phase diagram

4.1 Introduction

By informing phase formation under the given temperature, pressure, or composi-

tion, the phase diagram plays an important role in designing and processing materi-

als [59, 60]. However, determination of the phase diagram requires a huge amount of

experimental efforts, particularly for multicomponent systems [61, 62]. This is because

while possible combinations of temperature and composition are vast, each data point

becomes only reliable with consistent observations from complementary techniques.

As such, full phase diagrams are sparse for multicomponent systems [61].

Theoretically, the phase diagram is determined by the Gibbs free energies of com-

peting phases, where the lowest ones appear in the equilibrium phase diagram. Several

computational methods based on molecular dynamics (MD) have been developed for

computing the free energies from atomistic simulations: thermodynamic integration,

coexistence method, and semigrand ensemble [63–67]. Among these methods, the co-

existence method allows the calculation of the free energy difference between the two

phases by directly simulating the equilibrium of a large-scale simulation cell contain-

ing those phases and interfaces [65, 66]. On the other hand, the absolute free energy

can be computed by the thermodynamic integration method without direct evaluation
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of the partition function, which is applicable for pure solids or liquids but not for solid

solutions [63, 65]. The free energy of such mixtures can be determined by calculat-

ing derivatives of the free energy about composition using a semigrand ensemble and

integrating them from the pure phases [63, 67]. By exploiting those complementary

methods, one can calculate the composition-dependent free energy for any systems.

In combination with the density-functional theory (DFT), these methods allow for

evaluating free energies without experimental inputs. For example, various single-

component phase diagrams including melting properties have been constructed by

employing the above-mentioned methods [68–74]. However, in binary or higher-order

systems, the MD-based approaches are limited with DFT because the sampling over

compositional variations and configurations requires iterative simulations over mil-

lions of time steps and large simulation cells containing hundreds of atoms [75, 76].

Alternatively, the MD-free cluster expansion was employed in constructing phase dia-

grams of solid alloys by interpolating free energies of alloy configurations [63, 77–83].

However, this approach is applicable to only crystal systems, and its accuracy degrades

when atomic relaxations are significant [84]. Ideal solution approaches were also em-

ployed along with special quasi-random structures [85] to approximate the mixture

with a single configuration.

In recent years, machine-learned potentials (MLPs) have gained much attention

as they can provide energies with near-DFT accuracy at a fraction of the cost [11].

The computational acceleration using MLPs has been confirmed over a wide range of

applications including, for example, crystal structure prediction [14] and lattice ther-

mal conductivity [16]. In addition, MLPs are suitable as surrogate models of DFT

in evaluating free energies, which has been successfully demonstrated in many recent

studies. [40, 86–98] However, examples are mostly single-component systems [40, 86–

95] and only a few examples, AgxPd1−x [96], NixMo1−x [97], and GaxAs1−x [98],

have been attempted for constructing the phase diagram of compounds. Therefore, the

accuracy and efficiency of MLPs for constructing the whole phase diagram of multi-
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component systems are yet to be confirmed. With these motivations, herein we aim to

construct a full temperature-composition phase diagram for the MgO-CaO, an archety-

pal pseudo-binary system with rich experimental information, using Behler-Parrinello-

type neural network potentials (NNPs) [26].

Our strategy for computing the free energy and constructing the phase diagram is

as follows: first, for pure phases, temperature-dependent free energies are calculated

using the thermodynamic integration method. For pure MgO and CaO, we consider

rocksalt and liquid phases, and the crossing of the free energy curves of both phases

corresponds to the melting point. Next, the composition-dependent free energy of mix-

ing is calculated using semigrand ensemble simulations at selected temperatures. Since

no intermetallic compound exists along the MgO-CaO pseudo-binary line, only the

rocksalt solid solution phase and liquid mixture are considered. The above two meth-

ods are complementary: the thermodynamic integration method computes the absolute

free energy but is limited to a fixed composition, making this method optimal to pure

phases. On the other hand, the semigrand ensemble method computes the composition-

dependent derivative of free energy that can be integrated from the pure phase. The

whole temperature- and composition-dependent free energies are fitted into analyti-

cal forms, and phase boundaries are determined by common tangents on the isother-

mal sections of free energy curves. The rest of the paper is organized as follows: in

Sec. 4.2 we introduce computational methods used in the present work such as NNPs,

thermodynamic integration, and semigrand ensemble simulations. The main results are

discussed in Sec. 4.3 and 4.4, and Sec. 4.5 summarizes this Chapter.
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4.2 Theoretical methods

4.2.1 Neural network potential and DFT calculations

In the present work, the Behler-Parrinello-type NNPs [26] are trained by using the

SIMPLE-NN package [27, 99]. For input features, we use atom-centered symmetry

functions (ACSFs) [28]. The numbers of features are 24 and 108 for the radial and

angular parts, respectively, with cutoff radii of 7.0 and 4.5 Å, respectively. Since three-

body interactions require more computational resources than two-body interactions,

we tune the angular cutoff to accelerate the MD simulations. When compared to the

single cutoff of 7 Å, we confirm that 10x speed gain can be obtained with negligi-

ble compromise in accuracy, as will be validated in Sec. 4.3. The full parameters for

ACSFs are listed in Ref. [17]. The training is accelerated by decorrelating features us-

ing principal component analysis and whitening [5]. We use an initial learning rate of

0.01, which decays exponentially during 190 epochs and becomes 0.0005 at the final

epoch. We use a fully connected atomic neural network with two 60-node hidden lay-

ers. The MD simulations and evaluations of energy, force, and stress are carried out

using the LAMMPS package [27, 58].

The DFT calculations for the training set are carried out using Vienna Ab initio

Simulation Package (VASP) [50–52] with the projector-augmented wave pseudopo-

tentials [100]. The pseudopotential contains the valence electrons of 3s2, 3s23p64s2,

and 2s22p4 for Mg, Ca, and O, respectively. We generate data sets independently us-

ing two types of the exchange-correlation functional; the widely-used the generalized

gradient approximation (GGA) by Perdew-Burke-Ernzerhof (PBE) [18] and strongly

constrained and appropriately normed (SCAN) meta-GGA functional [19]. The SCAN

functional has been benchmarked against PBE on diverse properties, providing more

accurate lattice parameters [19], formation enthalpies [25], lattice dynamics [101], en-

ergies of metastable phases [102], and the melting points [93, 103]. For ab initio MD

simulations, we use default plane-wave energy cutoffs with the Γ-point sampling for
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the Brillouin zone integration. Then more accurate DFT calculations are performed on

selected snapshots for reference data set by increasing the plane-wave energy cutoff to

500 eV and employing 3×3×3 k-point meshes for the conventional unit cell of rock-

salt MgO and CaO, which is scaled in supercells to select a similar k-point density.

Details on the training structures will be discussed in Sec. 4.3.1.

4.2.2 Thermodynamic integration

Thermodynamic integration allows one to calculate the free energy by computing the

work done in the isothermal switching process from a reference state whose free en-

ergy is known a priori, to a state of interest [64, 65, 71, 104]. We apply this method

for pure rocksalt and liquid phases of MgO and CaO. When the potential energy term

of Hamiltonian of the reference system (Ui) and of the system of interest (Uf ) is given,

a parametric potential is defined as

U(λ) = (1− λ)Ui + λUf , (4.1)

where λ is a coupling parameter ranging from 0 to 1. The difference in the Helmholtz

free energy between the two systems (Ff − Fi) is given by

Ff − Fi =

∫ 1

0

〈
∂U(λ)

∂λ

〉
λ

dλ, (4.2)

where the ⟨..⟩λ denotes the ensemble average under the NVT condition at constant λ,

which is practically replaced by a temporal average according to the ergodicity.

We employ two reference systems depending on the final state: the Einstein crystal

for solid phases and Lennard-Jones (LJ) fluid for liquid phases. The free energy of

Einstein crystal is given by

F =
∑
i

3nikBT ln

(
hωi

2πkBT

)
, (4.3)

where kB, h, and T mean the Boltzmann constant, Planck constant, and temperature,

respectively, and ni and ωi correspond to the number of atoms and angular frequency
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of Einstein oscillators of atomic species i, respectively. We use a spring constant of 5

eV/Å2 throughout this work regardless of atomic species.

For the liquid phase, we select for the reference system the “cut and shifted” LJ

potential [105]. In Ref. [105], the residual free energy of the LJ fluid in reference to the

ideal gas was parameterized into an equation of state, which provides highly accurate

free energies over a wide range of temperatures and densities. The free energy of the

ideal gas is given by

F = −kBT
∑
i

ln

(
V ni

Λ3ni
i ni!

)
, (4.4)

Λi =
h√

2πmikBT
, (4.5)

where V is the volume of the system and Λi is the thermal De Broglie wavelength of

the atomic species i with the atomic mass of mi. To avoid a phase transition along

the integration path, the depth of the LJ potential is controlled such that the LJ fluid

becomes supercritical, and the diameter of LJ particles is chosen to have a nearest-

neighbor distance similar to the final state [65].

4.2.3 Semigrand ensemble siumlations

Taking the example of a binary system made of atoms A and B, the difference of

chemical potentials is written as

∆µ(x, T ) ≡ µB(x, T )− µA(x, T ) =
∂G(x, T )

∂x
, (4.6)

where x is the mole fraction of species B and G is the Gibbs free energy. ∆µ(x, T )

can be obtained by the semigrand ensemble, a subset of the grand-canonical ensemble

in which the number of atoms is fixed but chemical identities can change freely [67,

75, 76, 106]. In practice, the equilibration within the semigrand ensemble is achieved

by hybridizing MD simulations with Monte Carlo (MC) swap of atomic species. The

MC particle swap is accepted by the Metropolis criterion defined as

p = min

[
1, exp

{(
−∆E −∆µN∆x

kBT

)}]
, (4.7)
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where ∆E and ∆x indicate the change of energy and composition of the simulation

cell due to the test flipping of atomic species respectively, and N is the total number of

atoms [106]. After sufficient MD-MC runs, the equilibrium composition x is obtained

for the given ∆µ. By iterating the semigrand ensemble simulations over a range of ∆µ,

x(∆µ) and its inverse ∆µ(x) are obtained at given T , and the free energy G(x, T )

is obtained in turn by integrating Eq. 4.6. A more formal derivation [67], practical

implementation [106], and application examples [75, 76] of the semigrand ensemble

are referred to the literature. During the MD simulations, the isobaric condition is

imposed to consider composition-dependent of lattice parameters.

48



4.3 Validations on NNP

4.3.1 NNP training

The DFT data set for training NNPs consists of pure phases, solid solutions, and their

melts. For pure phases of MgO and CaO, the data set first contains rocksalt crystals un-

der volume-conserving uniaxial, hydrostatic, or shear strain, whose ranges are –5% to

5%, –2% to 4%, and –5% to 5%, respectively. For intermediate compositions, we gen-

erate 100 random alloys in the rocksalt structure (MgxCa1–xO) containing 100 atoms

in x = 0.08, 0.2, 0.8, 0.92. For each composition, the lattice parameter is obtained by

relaxing the cell shape and volume. To sample thermal vibrations of solids as well as

liquid phases, the crystals of pure phases and random alloys (the most and least stable

configurations among the 100 structures) are heated from 300 K to 2000, 4000, 6000,

and 8000 K with a duration time of 1 ps at each temperature. Two independent MD

simulations are performed in constant pressure (NPT) or constant volume (NVT) en-

sembles, where temperatures are modulated with the Langevin [107] or Nosé-Hoover

[108] thermostats, respectively. We note that both ensembles are complementary in

constructing data sets; while the NPT data set includes the thermal expansion of solid

and liquid phases, NVT data set contains interactions between atoms at short distances,

which helps prevent short-bond failures of NNPs during MD simulations along the

thermodynamic integration path. We find that the pure phases and random alloys melt

at 8000 and 6000 K, respectively. By including these melting processes, NNP may

learn the interface between the solid and liquid phases required for coexistence simu-

lations. Those MD trajectories are sampled with the interval of 40 and 10 fs at 300–

4000 K and 6000–8000 K, respectively, and included in the data set after accurate

single-shot DFT calculations. The whole data set contains 5,670 structures, equivalent

to 552,096 atoms, consistently for both PBE and SCAN as shown in Table 4.1.

We generate single NNP for PBE and SCAN functionals, named as PBE-NNP and

SCAN-NNP, respectively, which is used for the whole calculations. 10% of the data
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is randomly selected as a test set to evaluate performance of the NNP. The root mean

square error (RMSE) of NNPs on the training and test set is presented in Table 4.2,

indicating that the accuracy of NNPs is satisfactory. The parity plots in Fig. 4.1 dis-

play correlations of the energy and force components between DFT and NNP for the

test sets, showing that both PBE-NNP and SCAN-NNP well reproduce the reference

DFT results. The slightly higher energy RMSE of SCAN-NNP (Table 4.2) could be

attributed to a wider energy range of the data set as seen in Figs. 4.1(a) and (b). In com-

parison, the force RMSE between the two NNPs is comparable since the magnitude of

the force is similar in both data sets (see Figs. 4.1(c) and (d)).

Given that the final model is subject to the hidden layer architectures or the random

numbers that determine initial weights of neural networks, the influence of the network

dimension can be partly examined by the four NNPs with varying numbers of hidden

nodes that were developed for estimating prediction uncertainties in Fig. 4.2. They

have two hidden layers of 30, 60, 100, or 150 nodes and trained on different training

sets from the same data set. When we calculate melting points of the pure phases using

those NNPs, the deviations between NNPs are less than 20 K (see below). Moreover,

the standard deviation of substitutional defect formation energy among those NNPs is

only about 1% within SCAN-NNPs.

4.3.2 Test of NNP on pure phases

In Table 4.3, the trained NNPs are further validated by comparing various properties

of pure phases. We first compare structural and mechanical properties of rocksalt MgO

and CaO at 0 K. It is seen that PBE overestimates the lattice parameters by 0.6–0.8%,

while SCAN underestimates by 0.3–0.6%, in better agreements with experiment [109,

110]. The elastic constants are also reproduced more accurately by SCAN than PBE,

except for C12. It is seen that each NNP well reproduces corresponding DFT results—

lattice parameters within 0.001 Å and elastic constants within 16.7% (largest for off-

diagonal component C12 in SCAN-NNP).
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Table 4.2: The root mean square error (RMSE) for the energy and force on training and

test sets. PBE-NNP and SCAN-NNP represent NNPs that are trained with the corre-

sponding functional. In averaging errors in the force, the three-dimensional Euclidean

distance is measured between DFT and NNP forces.

Energy (meV/atom) Force (eV/Å)
Train Test Train Test

PBE-NNP 4.0 4.1 0.24 0.28
SCAN-NNP 5.1 5.5 0.24 0.29
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PBE SCAN
(a)

(c)

(b)

(d)

Fig. 4.1: Parity plots between DFT and NNPs, comparing energies (E) ((a) and (b))

and force component (Fi, i = x, y, z) in the Cartesian coordinate ((c) and (d)) for test

sets. The functional used for the reference data set is shown at the top.
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Fig. 4.3: Phonon dispersion along the high-symmetry points of the rocksalt phase of

MgO and CaO. We use the r2SCAN functional instead of the original SCAN in this

case for better numerical convergence of lattice dynamics [101]. Experimental mea-

surements are adopted from Refs. [112] (MgO) and [113] (CaO).
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In Fig. 4.3, we compute phonon dispersions and compare them with experiments.

The phonon dispersions are calculated using the Phonopy code [56] with the finite

displacement method and a 5×5×5 repetition of the primitive cell. In Ref. [101], it

was tricky to obtain phonon dispersions with the SCAN functional due to unstable

convergences, which is also confirmed in the present work as the phonon dispersions

calculated within the SCAN functional exhibit spurious imaginary modes for rocksalt

MgO and CaO. Instead, we employ r2SCAN functinoal [111] for phonon calculations,

as it exhibits better numerical convergences while maintaining the accuracy of the

original SCAN. As shown in Fig. 4.3, the r2SCAN functional accurately reproduces the

lattice dynamics of the experiments [112, 113]. On the other hand, PBE calculations

underestimate the phonon frequencies. We do not consider the modifications of optical

branches due to the long-range Coulomb interactions (LO-TO splitting), resulting in

the deviations of optical branches near the Γ point. In Fig. 4.3, NNPs successfully

reproduce the phonon dispersions by DFT regardless of the functional type.

To benchmark thermal properties of solids at constant pressures, the linear coef-

ficient of thermal expansion (CTE) and heat capacity (Cp) are calculated in Fig. 4.4

within the quasi-harmonic approximation [56]. As can be seen in Fig. 4.4(a), for both

pure phases, the predicted CTE in SCAN-NNP compares favorably to the experiments,

whereas PBE-NNP overestimates it by about 20-30%. Similarly, Fig. 4.4(b) shows

that Cp of MgO agrees well between SCAN-NNP and experiment, while PBE-NNP

slightly overestimates it. For CaO, Cp is accurately predicted by both NNPs, although

SCAN-NNP and PBE-NNP perform slightly better at temperatures below and above

350 K, respectively.

We next compare structural properties of the liquid phases, which are obtained by

employing 100-atom supercells and NVT ensembles with temperatures of 3100 and

2850 K for MgO and CaO, respectively. The radial and angular distribution functions

(RDF and ADF, respectively) are averaged over 40-ps MD simulations, preceded by

5-ps pre-melting at twice the temperature and 10-ps equilibration. The total and atom-
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Fig. 4.4: Thermal properties of MgO and CaO calculated by quasi-harmonic approx-

imations: (a) linear coefficient of thermal expansion (CTE) and (b) heat capacity at

constant pressure (Cp). Experimental values of CTE for MgO and CaO are from

Ref. [114–116] and Ref. [116, 117], respectively, while Cp is from the thermochemical

tables [118].
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Fig. 4.5: (a) Total and partial radial distribution functions (g(r)) and (b) total angular
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resolved RDFs in Fig. 4.5(a) indicate that the first peaks are dominated by heteropolar

pairs for both liquid MgO and CaO (l-MgO and l-CaO, respectively). The first peaks

lie at 2.0 and 2.2 Å for MgO and CaO respectively, where the difference stems from

the larger ionic radius of Ca than that of Mg. The second peaks consist of mostly

homopolar pairs, with similar distributions among the pairs. The ADFs are shown in

Fig. 4.5(b), and both phases commonly exhibit a major peak at 90° and shoulder peaks

around 50° and 150°. Both NNPs well reproduce main features in the RDF and ADF

from DFT calculations. In addition, the RDF and ADF are also consistent in 12,500-

atom supercells, as shown in Fig. 4.6. It is noticeable that the liquid structures of PBE-

NNP and SCAN-NNP are hardly distinguishable despite the significant differences in

the solid phase.

4.3.3 Test of NNP on pseudo-binary mixtures

In this subsection, we test the accuracy of NNPs for solids and liquids at intermediate

compositions. To this end, we first compare the formation energies of substitutional

defects in solids that affect the free energy of mixing at low concentrations. The defect

formation energy (Df ) is defined as follows:

Df = Edefect −
∑
i

NiEi, (4.8)

where Edefect means the total energy of the supercell containing a point defect, and Ni

and Ei (i = MgO,CaO) indicate the number of formula unit in the supercell and the

energy of pure phases, respectively. As can be seen from Table 4.4, NNPs reproduce

DFT formation energies of the substitutional defects within 3%. Both PBE and SCAN

produce a larger Df for CaMg than for MgCa, which implies a lower solubility of the

former. It is also seen that SCAN produces a higher Df than PBE by 0.2 eV, which

affects the solubility limit as will be shown later.

Next, we compare the formation energies of ordered structures at intermediate

compositions. We consider ten ordered structures [119] by exchanging cations in the
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Table 4.4: The formation energy of substitutional defects in eV. CaMg and MgCa mean

a single-atom impurity of CaO in MgO and MgO in CaO respectively, where we use

216-atom supercells to evaluate the formation energy of point defects.

Type PBE PBE-NNP SCAN SCAN-NNP

CaMg 1.00 0.98 1.21 1.19

MgCa 0.67 0.70 0.86 0.82
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rocksalt lattice, including L10, L11, NbP, Ni4Mo, L12, D022, and MoPt2 structures

where the latter three structures include both Mg- and Ca-rich stoichiometries. The

formation energy per atom (∆Ef ) is defined as follows:

∆Ef =
1

2
∑

iNi

[
ESC −

∑
i

NiEi

]
, (4.9)

where ESC means the total energy of the ordered structure and other notations are

the same as in Eq. 4.8. The ∆Ef ’s computed by DFT and NNPs are compared in

Fig. 4.7, showing that NNPs closely reproduce corresponding DFT results within 10

meV/atom. It is understandable that the errors in ∆Ef are maximum at Mg0.5Ca0.5O,

as the training set consists of pure phases and mixtures of up to 20% mole fractions. It

is seen that none of the ordered phases are energetically favorable with respect to the

pure phases, with ∆Ef greater than 50 meV/atom. We also note that the magnitude of

∆Ef is larger in SCAN than PBE, which is consistent with Df .

As a preliminary test to see behaviors of cations in solid solution before calcu-

lating phase diagram, we perform hybrid MC-MD simulations of halite phase with

Mg0.5Ca0.5O stoichiometry at 1200 K. We employ NPT ensemble with 1-fs time step,

and the initial configuration is given by random solid solutions containing 8,000 atoms

and equilibration of 10 ps. Then in the subsequent 200 ps, Mg–Ca cation pairs are

allowed to exchange their sites at 0.2% of the cations per time step, according to the

Metropolis criterion. These exchanges accelerate the diffusion process of cations dur-

ing the annealing. As a measure of distribution of cations, we take the average over the

number of cation pairs that are within 4 Å, corresponding to the second nearest neigh-

bors in rocksalt lattice. As shown in Fig. 4.8(a), the number of Mg-Mg and Ca-Ca pairs

increases over time from 6 corresponding to a random occupation, while the number

of Mg-Ca pairs decreases. This indicates that mixing is energetically unfavored, as is

consistent with the positive formation energy of substitutional defects (Table 4.4) and

ordered structures (Fig. 4.7).

In addition, as seen from the atomic structure in Fig. 4.8(b), the random config-

uration is divided into MgO- and CaO-rich regions at 200 ps. The large difference
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pairs in Mg0.5Ca0.5O simulated by hybrid MC-MD simulations at 1200 K and (b)

snapshot at 0 and 200 ps. Atomic structures are visualized without O atoms for clarity.
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in lattice parameters between rocksalt MgO and CaO (∼14%) leads to distortion of

the cubic lattice by local contraction and expansion at corresponding region. This dis-

tortion eventually contribute to the formation of line defects near the boundaries, as

seen from the middle-left region at 200 ps, which indicates that the formation of grain

boundaries may be energetically favored over misfit deformation. From these aspects,

one would expect spinodal decomposition at this temperature and composition, which

will be verified in the next section.
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4.4 Free energy calculations and phase diagram

4.4.1 Free energy of pure phases

With the accuracy on solid and liquid phases confirmed, the trained NNPs are used

in the thermodynamic integration to calculate free energies of the solid and liquid

phases. We employ a 10-point Gauss-Legendre quadrature to evaluate the integral in

Eq. 4.2 using the lattice parameters obtained from NPT simulations at zero pressure

(see Fig. 4.9). For all the phases, each point in the quadruture is evaluated by employ-

ing a 1,000-atom supercell and 2-ps equilibration followed by 5-ps sampling for the

temporal average. We use the Langevin thermostat [107] with the center of mass fixed

to avoid drift of the atoms [64, 120, 121]. To determine convergence, we use the block

standard error (BSE) as a measure of uncertainty [122].

Figure 4.10 shows the computed free energies of pure phases, which are fitted to

an analytical free energy model as follows:

G◦(T ) = a+ bT + cT lnT + dT 2 + e/T, (4.10)

where a, b, c, d, and e are fitting parameters. Similar function forms were used in

the previous thermodynamic calculations [62] and MD studies [120, 123]. The error

of fit is less than 2 meV/atom in both solid and liquid phases, which is on the order

of the BSE of each point and sufficient to obtain melting properties. By fitting to the

smooth function in Eq. 4.10, the determination of temperature-dependent free energies

becomes robust against statistical fluctuations in the numerical integration. We add that

the specific function form has negligible effects on the melting properties as long as

the free energy data are well fitted into the model.

The resulting free-energy curves of MgO and CaO are shown in Fig. 4.10 as solid

lines, and the parameters of Eq. 4.10 are tabulated in Table 4.5. Melting properties ob-

tained from intersections of the free-energy curves are summarized in Table 4.6. The

melting point of MgO is calculated as 2787 K by PBE-NNP, which is consistent with
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the previous works at the PBE level, 2747 K by DFT calculations [103] and 2698 K by

the Gaussian approximation potential (GAP) [93]. However, these values are signifi-

cantly underestimated compared to the experimental range of 3040–3250 K [62, 103].

In contrast, the SCAN-NNP produces an improved melting point of 3173 K, which

is within the experimental range and agrees reasonably with the previous SCAN-DFT

calculations (3032 K) or SCAN-GAP (3072 K) [93]. The entropy of fusion and slope

of melting curve of MgO are mostly consistent among the same functional. On the

other hand, the melting point of CaO is computed to be 2640 K by PBE-NNP, which is

far below the experimental data of 2850–3220 K [62]. The SCAN-NNP better predicts

the melting point of CaO to be 3057 K, which is within the experimental range.

For a further check, the melting points of the pure phases are recalculated with

the coexistence method [65, 124]. In this method, the simulation cell contains solid

and liquid phases and the interfaces between them, which is directly equilibrated to

identify the transition temperature at which the interface stops moving. We employ a

16,000-atom simulation cell that is a 10×10×20 replication of the conventional unit

cell. The initial simulation cell is prepared in NPT ensembles, with the initial guess

on melting points calculated from the thermodynamic integration. Half of the simu-

lation cell is melt-quenched to the tentative melting point while the other atoms are

frozen. Then the simulation cell is equilibrated within the NPH ensemble for 100 ps,

and the temperature is sampled for another 100 ps. When we test the cell size effect

with 2,000-atom simulation cells, the melting point shifts only by 6 K. As can be seen

in Table 4.6, the melting points calculated by the thermodynamic integration and co-

existence methods agree within 40 K.

4.4.2 Phase diagram

To construct the full phase diagram, we compute the free energies in semigrand en-

sembles at intermediate compositions. The isobaric ensemble is used to allow for the

volume to change according to the composition during the MD simulations, and the
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cell size is the same as in the thermodynamic integration. The ensemble is equilibrated

and sampled during 50,000 steps with the 2-fs time step, and attempts to swap be-

tween Mg and Ca atoms are set at 1% of the cations per time step. Single run of the

semigrand ensemble simulation at given ∆µ and T provides the corresponding equi-

librium composition x. After carrying out the semigrand ensemble simulations over a

set of (∆µ, T ), one can obtain composition-dependent Gibbs free energies following

the relation in Eq. 4.6.

In Fig. 4.11(a), results from the semigrand simulation using SCAN-NNP are shown

for ∆µ = µCaO−µMgO. With solid solutions at 2400 K, there exists a ∆µ range where

the equilibrium composition is not unique due to the dependence on the initial compo-

sition. Because of this hysteresis, pure phases of MgO or CaO should be used as initial

configurations to scan over end compositions. This is the reason why data points are

empty for a range of intermediate compositions at 2400 K (and also 2800 K). The hys-

teresis weakens with the increasing temperature and almost disappears at 3200 K. For

the liquid phase, such hysteresis does not exist at any simulation temperature.

The semigrand simulations are carried out for solid and liquid phases at least five

temperatures spanning relevant domains in the phase diagram. (For example, in the

case of SCAN-NNP, the simulation temperatures for solids (liquids) are sampled from

1200 (2400) K to 3200 (3300) K with the interval of 400 (100) K.) In order to in-

terpolate free energies over the whole phase diagram and obtain G(x, T ) via integra-

tion of ∆µ(x, T ) following Eq. 4.6, we introduce analytical models for the free en-

ergy [62, 76] and fit them to the simulation data in Fig. 4.11(a). First, the free energy

is written as follows:

G(x, T ) = Gpure(x, T ) + ∆Gmix(x, T ), (4.11)

where x is the mole fraction of CaO and Gpure(x, T ) means the weighted average of

free energies of pure phases:

Gpure(x, T ) = xG◦
CaO(T ) + (1− x)G◦

MgO(T ), (4.12)
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where G◦
MgO and G◦

CaO are free energies of the pure phases obtained in the previous

subsection. In Eq. 4.11, ∆Gmix(x, T ) means the residual free energy of mixing defined

as

∆Gmix(x, T ) = kBT [x lnx+ (1− x) ln (1− x)]

+x(1− x)(A+Bx+ Cx2), (4.13)

where the first term corresponds to the ideal free energy of mixing, and the second

term reflects the non-ideality with the temperature-dependent parameters A, B, and

C. The chemical potential model is derived from the relation in Eq. 4.6, written as

∆µ(x, T ) = µCaO − µMgO =
∂G(x, T )

∂x

= G◦
CaO(T )−G◦

MgO(T ) + kBT ln

(
x

1− x

)
+A+ 2(B −A)x+ 3(C −B)x2 − 4Cx3. (4.14)

Equation 4.14 is fitted to the simulation data in Fig. 4.11(a), and the optimized mod-

els in solid lines are in good agreements with the simulation data. The parameters

A, B, and C are assumed to be linear with the temperature as in Ref. [62], and the

fitting RMSE of the solid phase is 5.1 and 7.3 meV/atom for PBE-NNP and SCAN-

NNP, respectively, and the corresponding RMSEs in the liquid phase are 3.6 and 5.8

meV/atom, respectively.

Figure 4.11(b) shows the fitted ∆Gmix in Eq. 4.13 at the selected temperatures,

and the parameters are compiled in Table 4.7. At 2400 K, the free energy curve for the

solid phase features a miscibility gap resulting from the two local minima at terminal

solutions, while no liquid phase is thermodynamically stable throughout the compo-

sition. At the elevated temperature of 2800 K, the liquid phase becomes stable over a

range of intermediate compositions, and so the eutectic point is expected to lie between

2400 K and 2800 K. Above 3200 K, the liquid phase is always stable over the solid

phase as the temperature becomes higher than the melting point of both pure phases.

The dotted lines in Fig. 4.11(b) are common tangents of stable phases, and the con-

tacts are indicated by the circles. These contacts represent the phase boundary since
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the coexistence of those phases is thermodynamically favored over other compositions

and phases.

The full phase diagrams constructed with NNPs are shown in Fig. 4.12 together

with experimental data. Based on the fitted analytical free energy models, we calculate

the phase boundaries with the 1 K interval between 1200 and 3200 K. It is seen that

both PBE-NNP and SCAN-NNP reproduce the characteristics of the MgO-CaO sys-

tem such as eutectic points and solubility limits. In detail, the eutectic compositions

predicted by PBE-NNP and SCAN-NNP are 0.50 and 0.49 for the mole fraction CaO,

respectively, which are within the experimental observations of 0.45-0.60 [62] (see

red crosses). The eutectic temperature, on the other hand, is 2253 K and 2651 K for

PBE-NNP and SCAN-NNP respectively, only the latter being close to the experimental

range of 2550-2640 K. The failure of PBE-NNP is consistent with the underestimated

melting points of the pure phases. The experimental solid solubility of CaO in MgO

(MgO in CaO) at the eutectic temperature is 6% (22%) mole fraction CaO [125], which

are closely reproduced by SCAN-NNP within the error bar. The PBE-NNP can also

reproduce the solid solubility of CaO in MgO at its own eutectic temperature, but the

solubility of MgO in CaO is overestimated by about 10%. The overestimation is re-

lated to the smaller formation energy of substitutional defects than with SCAN-NNP

(see Sec. 4.3.3), which leads to thermodynamic preference toward mixing. Other ex-

perimental data regarding the solvus, solidus, and liquidus are all in good agreements

with those by SCAN-NNP.

Figure 4.13 compares the phase diagram by SCAN-NNP and those from other

atomistic simulations (see gray lines). Previous theoretical works identified only solid-

state phase diagrams of the MgO-CaO system with classical potentials [7, 126] or first-

principles calculations [7, 119]. (To note, the effect of lattice vibration is considered

only in Ref. [7].) It is seen that none of previous works produced correct solvus lines

on both MgO- and CaO-rich sides. On the other hand, the results by CALculation of

PHAse Diagrams (CALPHAD) modeling are also presented in Fig. 4.13. While solvus
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Fig. 4.11: (a) Chemical potential difference (∆µ = µCaO−µMgO) and (b) the free en-
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lines are consistent with the SCAN-NNP results, eutectic point, solidus, and liquidus

are at variance with each other, even among the CALPHAD data. This is because while

solvus lines are validated through a number of experiments, the data for solidus and

liquidus lines are sparse and scattered [62]. The mismatch of the phase boundaries

from CALPHAD models is understandable because each model is fitted to different

sets of data points.
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Fig. 4.12: Phase diagrams of MgO-CaO calculated with NNPs, compared to exper-

iments. Experimental solvus, solidus, and liquidus data are from Ref. [62] and the

references therein. [17]
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principles calculations with vibrational effects (Ref. [7]), or tight-binding calculations

(Ref. [119]) are displayed in gray lines. The CALPHAD models are adopted from

Ref. [62] and Ref. [127]. [17]
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4.5 Summary

We remark on the computational efficiency for constructing the phase diagram. The

whole procedure, including the data set generation, NNP training, and free energy cal-

culations with MD simulations, took about ten days of computing time on 400 cores of

Intel® Xeon® Gold 6148 CPU running at 2.4 GHz. In detail, about five days were spent

on generating data sets and training NNPs, and another five days on free energy cal-

culations using NNPs and 1,000-atom cells. If identical free-energy calculations were

carried out by purely DFT approaches, it would take several decades with the same

computational resource, even assuming that the free energy calculations are done on

smaller 200-atom simulation cells. This is mainly because the hybrid MC-MD sim-

ulations require a large amount of computing resources due to several million time

steps.

In summary, we developed NNPs for the MgO-CaO pseudo-binary system and

demonstrated construction of the full phase diagram. The accuracy of NNPs trained

over PBE or SCAN data is confirmed by validation over diverse properties. Notably,

SCAN-NNP outperformed PBE-NNP in most cases when compared with experiments.

The full phase diagrams are determined from the free energy calculations employing

thermodynamic integration and semigrand ensemble methods. Notably, SCAN-NNP

produced a phase diagram that closely follows experimental measurements on liq-

uidus, solidus, and solvus lines, including the eutectic point and solid solubility limits.

In conclusion, we believe that this work will pave the way to the ab initio CALPHAD

approach with high prediction accuracies.
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Chapter 5

From chemical composition to phase diagram: a case

study for HfO2

5.1 Introduction

While Chapter 4 demonstrated that the phase diagram for the pseudo-binary system

is constructed accurately compared to experiments, there was an assumption that the

phase information is known a priori. In other words, the free energy is calculated only

for rocksalt and liquid phases in MgO–CaO system since these are experimentally

known to be stable at atmospheric pressure. However, given that a large fraction of the

chemical space of materials remains unknown [128], it seems necessary to generalize

this MLP-based approach to the phase diagram to unexplored chemical spaces.

One of the possible route to achieve this goal is to use theoretical methods such as

crystal structure prediction (CSP) [129] to detect stable phases starting from a given

chemical element and composition. A number of CSP algorithms have been devel-

oped and extensively tested to find the most stable as well as metastable phases for a

wide range of systems [14, 130]. The candidate structures are generated based on, for

example, informatics, random approaches, and genetic algorithms, and their stability

is mostly measured on 0 K energies and lattice dynamics calculated within density-
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functional theory (DFT). Whereas it could be valid at low temperatures, prediction of

phase stabilization or transition at high temperatures requires another methodologies

such as MD simulations and free energy calculations.

In the meanwhile, HfO2 if of technological importance in electronic applications

such as high-k dielectrics, related to its phase transition at finite temperatures [131].

From the room temperature, HfO2 undergoes two phase transitions: from monoclinic

to tetragonal and cubic phases, with space group of P21/c, P42/nmc, and Fm3m, at

∼2000 and ∼2800 K [131], respectively, before melting at ∼3100 K [132]. Further-

more, formation of ferroelectric phase in thin film is known [133], and theoretical

investigations suggest a possible polymorph with space group of Pca21, adding to the

difficulty of predicting phase transitions.

With these motivations, this Chapter investigates phase transition of HfO2 without

any prior phase information using a combination of CSP algorithms and NNP. Two dif-

ferent approximations in exchange-correlation energy, PBE and SCAN functional, are

also compared with the experiments to test their predictive power. Thermodynamically

stable phases and transition among them are investigated based on MD simulations.
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5.2 NNP training from chemical composition

5.2.1 Crystal structure prediction

For phase search of HfO2, we employ CSP algorithm as implemented in SPINNER

code [14, 102], which exploits NNPs as a surrogate model of direct DFT calculations.

We employ SCAN functional [19] for accurate description of energy of crystal struc-

tures, as will be discussed below. Following the standard procedure of this code [102],

we start from training of primitive NNPs using ab initio melt-quench-anneal simula-

tions to sample local environments at the given chemical composition. After finding

candidate crystal structures, they are fully relaxed using DFT calculations to find true

local minima. As shown in Fig. 5.1, the primitive NNP has erroneous potential en-

ergy surfaces and is not satisfactory to find ground states. To improve accuracy for

ordered structures, these NNPs are iteratively trained on the candidates of CSP output

until converged. At the final iteration, the NNP energies become accurate for a set of

structures, especially at low energies.

Then the crystal candidates are searched for 3,000 generations with the 100 meV/atom

energy window. The final candidates are fully relaxed by DFT until a force criteria of

10−3 eV/Å and deduplicated with pRDF indicators [102] and the space group. We note

that due to the small differences between the structures, high resolution is required to

distinguish them: for example, pRDF indicator with threshold of 10−5 or space group

tolerance of 0.03 Å. As a result, 22 candidates are obtained in total, and their energy

and volumes are plotted in Fig. 5.2(a), and detailed information is given in Table 5.1.

We note that all three atmospheric pressure phases can be found with this NNP-based

CSP algorithm (red circles). In addition, the ferroelectric phase (Pca21) is also found

(a green circle), which is relevant to a large permittivity in thin film [134]. The others

include 1 high-pressure phase and 17 theoretical phases (blue circles).

On the other hand, as can be seen in Fig. 5.2(b), results based on PBE functional

show that another theoretical phase with the energy almost the same to the ground
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Table 5.1: CSP results: 22 polymorphs of HfO2 with space group, energy, and volume.

The energy is referenced to the lowest-energy phase. Atmospheric pressure and ferro-

electric phases are abbreviated with the notations, and experimentally observed phases

are indicated by descriptions in the last column.

No. Space group Energy Volume Notation Expt.
(meV/atom) (Å3/atom)

1 P21/c (14) 0 11.23 m Ground state
2 Pbca (61) 10 11.24 High pressure
3 Pca21 (29) 24 10.83 o Ferroelectric
4 P21/m (11) 28 11.27
5 Pbcn (60) 33 11.92
6 Pnma (62) 37 11.36
7 I41/amd (141) 40 13.65
8 P43212 (96) 46 10.79
9 P42/nmc (137) 46 10.79 f Ambient pressure

10 P21/c (14) 47 12.11
11 Pbca (61) 50 12.72
12 P42/mnm (136) 50 12.25
13 P21/c (14) 69 11.03
14 C2/m (12) 82 14.12
15 Fm3m (225) 87 10.47 c Ambient pressure
16 P1 (1) 88 11.32
17 C2/c (15) 90 11.26
18 P3 (147) 97 11.97
19 P21212 (18) 100 12.13
20 C2/m (12) 111 12.05
21 Pbcn (60) 113 12.07
22 Pbcn (60) 131 10.36
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state, whose space group is I41/amd and volume 21% larger than the ground state. This

could be attributed to the underbinding of the PBE functinoal. This phase has an energy

40 meV/atom higher than the ground state in SCAN, so we do further investigations

within the SCAN functional that gives correct energetic order.

5.2.2 Retraining and validations

The NNPs obtained within Sec. 5.2.1 is tested for equations of states and phonon

dispersion, but its accuracy is dissatisfactory when compared to the DFT. Therefore,

we construct an accurate data set based on the CSP results with two approaches. First,

all the candidates are included in the data set with uniaxial, biaxial, hydrostatic, and

shear strains. Then, 5 lowest-energy structures (see Table 5.1) are chosen to sample

finite-temperature behaviors with NVT- and NPT-AIMD simulations. (Condition of

MD simulations are the same to the method in Sec. 4.3.1.) NNPs are retrained on

those data set, which have two hidden layers with 60 hidden node each, and the radial

and angular cutoff distance is set to be 7 and 5 Å, respectively.

As shown in Fig. 5.3, NNPs can accurately predict the volume and energy of a

wide range of polymorphs as well as their strain dependency. Furthermore, energetic

order of these structures are also well reproduced, which only differs in meV order.

In Fig. 5.4, phonon dispersion is calculated for three polymorphs, including ground

state (P21/c), high-pressure phase (Pbca), and ferroeletric phase (Pca21). They are

all dynamically stable at 0 K, and NNPs well reproduce lattice vibrations compared

to the DFT calculations, except for deviations at high-frequency optical modes. The

other two atmospheric-pressure phases are not dynamically stable at 0 K, confirmed

by imaginary modes.
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5.3 Prediction of phase transition

5.3.1 MD simulations

As a next step, we carry out MD simulations with the retrained NNP to detect ther-

modynamically favored phases at 0 bar. NPT ensemble is employed to address change

of the cell shape. Phase detection is based on the time average of lattice parameters

and atomic position over at least 50 ps. We employ supercells with side lengths being

∼25 Å, which correspond to 5×5×5 replication of the HfO2 ground state. We notice

the cell-size dependence of the MD simulation results; when using smaller supercells

containing 96 or 324 atoms, phase transition is not clearly visible due to the large fluc-

tuations in lattice parameters. Therefore, we select a larger simulation cell containing

1,500 atoms, which is beyond the scope of DFT calculations. The cell size dependence

of MD simulations on phase transition is also noted in Ref. [135].

Upon the heating of ground state P21/c (m-) phase from 300 K, HfO2 evolves into

P42/nmc (t-) and Fm3m (c-) phase at ∼2500 and ∼2600 K, respectively. Inversely,

when cooling the c-phase from 3000 K, phase transition to t- and m-phases is ob-

served at ∼2600 and ∼1200 K, respectively, indicating that these phase transitions are

reversible. On heating or cooling, m- to t-phase transition temperature shows a large

hysteresis, while t- to c-phase transition occurs with little hysteresis. This can be at-

tributed to the phase change barrier stemming from large mismatch of the cell shape

and volume between m- to t-phases [136].

To further investigate the thermal stability of the phases from crystal structure

predictions, we further perform MD simulations for 5 more phases exhibiting either

low energy at 0 K or high symmetries. Selected polymorphs have space group of Pbca,

Pca21, P21/m, I41/amd, and P42/mnm, corresponding to the 2nd, 3rd, 4th, 7th, and 12th

rows in Table 5.1, respectively. Among them, Pca21 phase is known as ferroelectric

phase [131]. Upon heating from 500 K to 2500 K, Pbca, I41/amd, and P42/mnm phases

maintain the crystal structure, while Pca21 and P21/m phases are transformed into
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(b) cooling. The markers are simulation data, and the lines are guides to the eye. Phase
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another phase at 1300 K.

5.3.2 Phase transition temperature

To determine the transition temperature between the phases that appear from MD

simulations, we first calculate the free energy of 7 phases with TI method (see Sec-

tion 4.2.2). Einstein crystal is selected as the reference system to deal with these solid

phases, and the free energy data are fitted to Eq. 4.10 to find the intersections. As can

be seen from Fig. 5.6, free energy of m-phase is the lowest at low temperatures, and

the phase transition to I41/amd and t-phase is observed at 1938±118 and 2456±96 K,

respectively. (The intersection of m- and t-phase is at 2304±66 K.) The other phases

including ferroelectic o-phase is unstable over the whole temperature range. Parame-

ters of free energy curves (Eq. 4.10) are given in Table 5.2.

In the meanwhile, transition to c-phase and liquid are treated with different ap-

proaches other than TI method. This is due to the vigorous diffusion of O atoms at

elevated temperatures while Hf atoms maintain local vibrations around their ideal po-

sition, making it tricky to apply a direct TI path from Einstein crystal to real sys-

tem. These behaviors would be in line with the small oxygen diffusion barrier in

HfO2 [137], which is comparable to the thermal energy kBT at the temperatures where

c-phase is stable. One would have to seek another integration path that considers self

diffusion.

The transition from t- to c-phase has second-order character as seen from contin-

uous changes in lattice parameters at 2450–2600 K without hysteresis (Fig. 5.5). Thus

we narrow down the transition temperature by additional MD simulations with 20 K

interval, resulting in the t- to c-phase transition temperature of 2550±10 K. Then the

melting point is determined from coexistence simulations between c-phase and liquid

(see the last paragraph of Section 4.4.1). We use 5,184-atom simulation cell and NPH

ensemble to average the coexistence temperature over 0.6 ns after equilibration of 0.4

ns. This simulation results in the melting point of HfO2 to be 2745±6 K.
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The sequence of phase transitions predicted by NNP is similar to the experi-

ment (m, t, c, and liquid phase). It is also consistent that the ferroelectric o-phase

is metastable over the whole temperature range. However, the phase transition tem-

perature differs between the NNP (2304, 2550, and 2745 K) and experiments (2000,

2800, and 3100 K) [131, 132], and the stabilization of I41/amd phase at 1938–2456 K

is another difference from the experiment.

These can be attributed to the training set, since MD trajectories of t-, c-, and

I41/amd phases are not explicitly included in the training set. Adding missing struc-

tures in the database would help to mitigate these issues, since the accuracy MLP can

be improved by complementing the training set. The error can be also explained by

the small entropy changes associated with the phase transition of HfO2, the small an-

gle between two free energy curves at their intersection. Taking transition from m-

to t-phase as an example, the entropy change is as small as 0.2 kB, in which the free

energy error of 5 meV/atom would be exaggerated to be 284 K error in temperature.

Therefore, considering that the training RMSE of NNP on the low-temperature data is

∼5 meV/atom, errors for the transition temperature of up to 350 K can be understood

by the small entropy changes. More precise models will be required to obtain more

accurate phase transition temperatures.
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5.4 Summary

To summarize, phase transition of HfO2 is predicted by NNPs without phase infor-

mation, as a test for construction of the phase diagram toward unexplored chemical

spaces. Crystal structure prediction reproduces all the atmospheric pressure phases as

well as the ferroelectric phase. The phase transition from the ground state m-phase to

t- and c-phases and liquids are predicted by NNP-MD simulations, as consistent with

the experiments. Errors in the transition temperature or in the stabilization of I41/amd

phase would be resolved when using more diverse data set. We believe that this purely

theoretical construction of phase transition for HfO2 will guide future directions to-

ward phase diagram calculations for experimentally unknown systems.

Using the above-mentioned methods, the phase diagram of an arbitrary binary

system can be constructed in the following order: first, candidate phases are found

through CSP algorithm in diverse composition including pure and intermetallic com-

pounds. Then, NNPs are trained on these candidates and short AIMD simulations,

and temperature- and composition-dependent free energies are calculated by NNP-

MD simulations. During this procedure, the data set can be augmented based on the

candidate phases or uncertainty predictions whenever the accuracy of the model is un-

satisfactory. Finally, the phase diagram is determined from the free energy curves by

common tangent construction.
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Chapter 6

Conclusion

6.1 Summary of results

I first demonstrated a transferable approach for calculating lattice thermal conductivity

at ab initio accuracy using NNPs. Data set based on ab initio MD data set outperforms

random displacement or superposition of phonon modes in accuracy. This is mainly be-

cause while lattice dynamics are well reproduced by all three methods, anharmonicity

such as scattering rates are only consistent when using AIMD data set. When applying

this approach for 25 materials that have diverse symmetries and thermal conductivity, I

obtain RMSRE of 18.6% with 2-10 fold computational acceleration. Effect of the size

of data set is tested, and reducing the data set to 50 structures results in RMRSE of 31%

and up to 50-fold speed-up. While the relative errors are within the factor of two, low-

symmetry materials tend to have larger errors than high-symmetry ones. Nevertheless,

it is still surprising that this approach is applicable for a wide range of materials with

uniform computational cost, making it more beneficial for low-symmetry crystals.

I then demonstrated the construction of full phase diagram for MgO–CaO eutec-

tic system. Two different exchange–correlation functional is employed for generating

data set, and the NNP trained on each functional well reproduces the corresponding

DFT calculations over structural, mechanical, dynamical, and energetical properties.
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Melting properties and phase diagram are successfully obtained through free energy

calculations based on NNP-MD simulations, including thermodynamic integration

and semigrand ensemble methods. While both PBE-NNP and SCAN-NNP reproduce

the eutectic nature of the MgO–CaO phase diagram, the phase boundaries predicted

by SCAN-NNP closely follow the experimental measurements. These can be related

to the comparative results on the enthalpy of formation and lattice dynamics within

SCAN functional.

The above demonstration utilizes prior knowledge of the phase information, thus

ruling out the possible stabilization of phases other than rocksalt and liquid. To expand

phase diagram calculations to the unknown phase space, I calculate the phase transi-

tion of HfO2 without prior knowledge about polymorphism. By employing the CSP

algorithm, I can find 22 candidate structures including all three atmospheric-pressure

phases. After training NNPs with AIMD or polymorph data, NNP-MD simulations

and free energy calculations find the stable phases and transition temperatures. These

result is noteworthy in that the phases and their transitions are obtained with only the

chemical composition, without any experimental inputs.
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6.2 Original contribution to knowledge

This dissertation presents original contribution to knowledge in two ways; first, a com-

putationally efficient and transferable procedure to compute κl in near-DFT accuracy

is proposed, by showing that NNPs trained on short AIMD trajectories can reproduce

κl of a wide range of crystal symmetries. It can be said that another option is added

to the theoretical methods for calculating κl by extending the MLP-based approach

toward complex crystal structures, which has been rarely attempted.

Second, ab initio construction of MgO–CaO phase diagram is demonstrated using

NNPs without experimental parameters, where the eutectic point and phase bound-

aries closely follow the experimental measurements when trained on SCAN functional.

These tasks have been regarded impractical in fully DFT approaches due to the com-

putational cost, and most of the MLP-based works have focused on single-component

systems. Furthermore, it is shown that phase diagram calculations may not require

phase information, by showing that phase transition of HfO2 up to melting point can

be predicted when employing crystal structure prediction algorithm.

The primary focus of computational research based on DFT has been using experi-

mental information such as crystal structures to predict their properties. I would expect

to construct a virtual laboratory that explores materials space from the chemical com-

position to the formation of phases and materials properties.
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초록

밀도 범함수 이론(DFT)의 발전과 계속해서 증가하는 컴퓨팅 파워 덕분에 재

료의 열물성에 대한 이론적인 예측이 실현 가능해졌다. DFT 계산이 볼츠만 운송

방정식,열역학적분 (thermodynamic integration),준대정준앙상블 (semigrand en-

semble)시뮬레이션과같은이론적방법론과결합되면,격자열전도도및상태도를

실험정보없이계산할수있다.그러나,이러한열물성계산은필요한엄청난양의

컴퓨팅 자원을 필요로하기 때문에 제한적으로만 적용되고 있다. 최근 몇 년 동안

기계학습퍼텐셜(MLP)은 DFT의대리모형으로많은관심을받고있으며,적은비

용으로 DFT에가까운정확도를가지는것이장점이다.많은연구에서MLP가여러

시스템에 대해 제일원리 계산의 정확도로 열물성을 예측할 수 있음이 입증되었지

만, 다양한 대칭성을 가지는 결정에 대한 격자열전도도 계산과 다성분계 상태도의

구축에관한연구가부족한시점이다.

따라서본논문은인공신경망퍼텐셜(NNP)을사용한열물성계산을주제로삼

았다.먼저다양한대칭성과넓은범위의열전도도를갖는결정구조에대해격자열

전도도를계산했다. NNP훈련을위한일반화가능한데이터세트를구성하기위해

무작위변위,포논모드의중첩,또는제일원리분자동역학의세가지방법을테스트

했다. 이들 중 가장 좋은 방법을 25개의 결정 구조에 적용해보고, DFT만을 사용한

결과와비교하여정확도와계산비용을평가했다.그결과대부분의컴퓨팅자원이

데이터 세트 구축에 투입되었음을 확인했고, 데이터 세트를 줄임으로써 DFT와 비

교해근소한정확도의손실과함께최대 50배의계산자원절감을실현할수있었다.

다음으로, NNP분자동역학을통해 MgO–CaO공융계의자유에너지를계산해보고

액상을 포함하는 전체 상태도를 구축했다. 이를 위한 데이터 세트는 다양한 온도,

조성, 상을 학습시키기 위해서 몇 가지 조성에 대해서 NVT 또는 NPT 분자동역학

시뮬레이션을 통해 얻었다. DFT 교환-상관 에너지 근사에 대한 차이를 보기 위해

PBE와 SCAN 두 가지 범함수를 사용하여 데이터 세트를 생성했고 상태도 결과를

비교했다.그결과 SCAN-NNP는실험에서관찰된상경계를상당히정확하게재현

할수있었고, NNP를사용했을때전체상태도계산비용은순수한DFT계산방식에
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비해 1,000배이상줄일수있었다.마지막으로,상에대한정보없이화학적조성만

주어진 경우에 대해 상태도를 구축하는 방법을 논의했다. 상압에서 3개의 고체 다

형체를 나타내는 HfO2의 상태도를 조사하기 위해, 먼저 결정구조예측 알고리즘을

사용해 후보 상을 찾았다. 이를 기반으로 훈련된 NNP로 분자동역학 시뮬레이션과

자유 에너지 계산을 통해 따른 안정상과 전이 온도를 계산했다. 본 연구의 일련의

과정이이론에기반한상태도와재료탐색을위한길을열어줄것이라믿는다.

주요어: 기계학습 퍼텐셜, 인공신경망 퍼텐셜, 격자 열전도도, 자유에너지 계산,

상태도

학번: 2016-20806
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