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Abstract

With the development of the density-functional theory (DFT) and ever-increasing
computational capacity, an accurate prediction of thermal properties of materials be-
comes computationally feasible. When DFT calculations are combined with the theo-
retical methodologies, such as Boltzmann transport equations, thermodynamic integra-
tion, and semigrand ensemble simulations, the lattice thermal conductivity and phase
diagram can be calculated without experimental inputs. However, a huge amount of
computational resources required for calculating these thermal properties hinders the
exploration of a wide range of systems. In recent years, the machine-learned potentials
(MLPs) are getting much attentions as a surrogate model of DFT, providing near-
DFT accuracy at a fraction of computational cost. Whereas MLPs have been proven
to predict thermal properties in ab initio accuracy, more investigations are required for
calculation of the lattice thermal conductivity for a wide range of crystal symmetries,
as well as construction of multi-component phase diagrams.

In this dissertation, calculation of thermal properties using neural network inter-
atomic potentials (NNPs) is demonstrated. First, lattice thermal conductivity is calcu-
lated for crystal structures that have diverse symmetries and wide range of conduc-
tivity. To construct transferable data sets for training NNPs, three methods are tested:
random displacement, superposition of phonon eigenmodes, and ab initio molecular
dynamics. 25 materials are benchmarked on the best data set to evaluate the accuracy
and computational cost compared with the pure-DFT approaches. The test reveals that
while 2-10 fold computational savings are achieved, most of the computational re-
sources are put into the construction of data set. By reducing the data set, at maximum
50-fold acceleration is obtained compared to the pure-DFT approach with marginal
compromise in accuracy. Next, the full phase diagram of MgO-CaO eutectic system is

constructed by calculating the free energy of rocksalt and liquid phases with molecular



dynamics simulations. They are trained on NVT- and NPT-MD simulations at selected
stoichiometry to span the relevant temperature, composition, and phase domain. In ad-
dition, to see the effect of approximations on the DFT exchange-correlation energies,
we generate data set using the two functional, PBE and SCAN, and compare them
in the phase diagram. Notably, phase boundaries predicted by SCAN-NNP are close
to the experiments, and total computational cost is reduced by more than 1,000-fold
compared with fully DFT approach. Finally, phase transition of HfO is studied at at-
mospheric pressure, utilizing only its chemical composition as the starting point, to
test the strategy for constructing fully theoretical phase diagram. This can be accom-
plished by incorporating crystal structure prediction algorithms to identify candidate
phases. Afterward, the temperature-dependent stability and phase transitions are re-
vealed through MD simulations and free energy calculations performed with NNPs,
which are on the candidate phases. By accelerating ab initio prediction of stable phases
and their properties employing NNPs, we believe this work will be extended to a self-

contained computational laboratory for materials exploration.

keywords: machine-learned potential, neural network interatomic potential, lattice
thermal conductivity, free energy calculations, phase diagram
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Chapter 1

Introduction

1.1 Overview

Thermal properties are at the heart of materials science and engineering. Lattice ther-
mal conductivity dominates heat transfer in insulators and semiconductors, and the
required value varies depending on the purpose; thermoelectric materials or heat sink
ceramics require low or high thermal conductivity, respectively. In the meanwhile, the
phase diagram allows one to predict states of matter that can change under input/output
of heat. Despite the usefulness of these thermal properties, only a subset of the mate-
rials have been studied due to the vast experimental effort and cost, compared to the
possible combinations of chemical elements and stoichiometry. In these motivations,
attempts to explore the unknown materials space in order to discover new materials
have continued [1-4].

Density-functional theory (DFT) calculations have been widely adopted to address
phenomena in experiments or to predict material properties. This is because DFT pro-
vides sufficient accuracy without empirical parameters. Despite the successes and use-
fulness of DFT, the main bottleneck stems from the expensive computational cost that
limits time and length scale of the simulations. Thus, realistic simulations such as crys-

tallization of phase-change materials [5], thermal transport via interfaces [6], and free



energy calculations on alloys [7] are practically prohibited within DFT.

To overcome these limitations, force fields are often fitted toward DFT calcula-
tions to reproduce accurate energy and forces. Since their computational cost is much
inexpensive compared to DFT, they can simulate the large-scale reactions such as dry
oxidation of silicon [8]. While the force field methods are formulated with interaction
terms that are physically sensible, their pre-determined functional form has often lim-
ited their transferability toward other systems or simulation domains. Efforts have been
made to address these limitations by modifying the formalism, thereby broadening the
scope of force field methods [9, 10].

Recently, machine-learned potentials (MLPs) have attracted much attention as sur-
rogate models of DFT calculations as they provide ab initio accuracy with a fraction
of computational cost [11, 12]. A main feature of MLP is that the model is mathemat-
ically flexible so that it is applicable to most of the systems ranging from metallic to
covalent and ionic systems. A wide range of molecular simulations have been acceler-
ated by MLPs: crystallization of phase change materials [5], reactions at the interface
between Si and Ni [13], crystal structure prediction [14], and light emission spectra of
core-shell quantum dot [15].

MLPs are also useful for thermal properties of materials. Although successful in
calculating lattice thermal conductivity for a variety of materials, a standard approach
for generating data set is lacking, and the computational savings when employing
MLPs are not fully discussed. In addition, phase diagrams are mainly demonstrated on
unary systems while studies on binary and multinary systems are still lacking. There-
fore, it is timely to further demonstrate calculation of thermal properties using MLPs,
including accurate and computationally efficient prediction of lattice thermal conduc-
tivity [16] and construction of multinary phase diagram [17].

Achieving these goals requires exploring and understanding the effect of the data
set on the final MLP. First of all, the data set should span the target simulation do-

main and at the same time best represent it. Conventional approaches exploit human



intuition for constructing and augmenting the data set, while recent approaches use
machine-learning techniques such as uncertainty estimations to append the data that
are relevant to the target simulations. Furthermore, MLPs have been mostly trained
on DFT calculations with approximations of exchange-correlation energy by Perdew-
Burke-Ernzerhof (PBE) [18]. As this functional often becomes erroneous in predicting
thermal properties, more accurate and advanced functional such as SCAN [19] or even
the level of theory beyond DFT has been employed to improve accuracy of the final

model.



1.2 Goal of the dissertation

This dissertation aims to calculate thermal properties of materials using neural net-
work interatomic potentials (NNPs), including lattice thermal conductivity (x;) and
composition-temperature phase diagram. In detail, x; at 300 K is calculated for crys-
tals with diverse symmetries and elemental combinations by solving Boltzmann trans-
port equation under relaxation-time approximation, followed by validations on lattice
dynamics and phonon lifetime. Then the phase diagram of MgO—CaO pseudo-binary
system is calculated for a wide range of composition and temperature, employing ther-
modynamic integration and semigrand ensemble methods based on MD simulations;
validations on, for example, melting point of the pure MgO and CaO phases are pre-
ceded and compared to the available literature. By demonstrating accurate prediction
of x; and construction of the phase diagram, this dissertation would further extend the

application range of MLPs toward thermal properties of materials.



1.3 Organization of the dissertation

This dissertation is organized in 6 chapters. Chapter 1 is the introduction which gives
an overview on machine-learned potentials, thermal properties of materials, and the
goal of this dissertation. In Chapter 2, theoretical backgrounds for density-functional
theory and machine-learned potential are briefly discussed. Chapter 3 shows the appli-
cation of NNPs for lattice thermal conductivities. Then Chapter 4 demonstrates con-
struction of a full phase diagram including melting point for MgO—CaO pseudo-binary
system. In Chapter 5, approaches toward phase diagrams when there is no phase in-
formation are tested for phase transition of HfOs. Finally, Chapter 6 summarizes this

dissertation with original contribution to knowledge.



Chapter 2

Theoretical background

2.1 Density-functional theory

2.1.1 Born-Oppenheimer approximation

To derive materials properties from quantum-mechanical level, one should investigate
the interactions between nuclei and electrons. This can be accomplished by solving the

Schrodinger equation, given as

HU = EV, 2.1

where H is the Hamiltonian, F is the eigenvalues, and W is the corresponding eigen-
functions. Since postulated in 1925, this equation has been laid foundation of ab initio

calculations. Hamiltonian for the quantum-mechanical system can be written as

ﬁ__ZLQVQ_Lz V2
- oM; T 2m, ‘

Z]ZJC Zle
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where A and e are the reduced Planck constant and elementary charge, M; or m. is

the mass of Ith nuclei or electron, Z; is the atomic number of /th nuclei, and Ry or r;



is the position vector of Ith nuclei or ith electron, respectively. In Eq. 2.2, the first and
second terms corresponds to the kinetic energy of nuclei and electrons respectively, the
third or fourth terms are Coulomb repulsion between nuclei-nuclei or electron-electron
pairs, and the fifth term is nuclei-electron interactions, respectively. Since nuclei are
orders of magnitude heavier than electrons, nuclei can be treated as if they are station-
ary with respect to electrons. Therefore, the motion of electrons can be separated from
nuclei. This is called Born-Oppenheimer approximation [20] under which Eq. 2.2 can

be reduced to

H:Te+‘7e+‘7ezxt

B ol T P
_—277%21: Z+2;]rz—rﬂ+; ext( ])7

(2.3)

where Te, Ve, and Vext are kinetic energy, electron-electron repulsion, and external po-
tential, respectively, and Vext (R7) is the external potential acting on electrons, exerted
from Ith nucleus. However, it is still impractical to directly solve Eq. 2.3 for many-
electron systems since there are 3N, degrees of freedom. The density-functional the-
ory introduces more theorems and approximations on the electrons to solve Schrodinger

equation, as will be described in the following sections.



2.1.2 Hohenberg—Kohn theorems

The Hohenberg—Kohn theorems [21] consist of two parts. The first theorem states that
the external potential Viy (r) is a unique functional of electron density p(r). Assum-
ing no degeneracy, this can be proven by starting with the assumption that two external

potentials that are different by more than constants, Vit (r) and V!

(1), give the same

ground-state density p(r). Since T, and V, in Eq. 2.3 are universal for electrons, those
two external potentials produce different Hamiltonian H and H', respectively; corre-
sponding ground-state wavefunctions, ¥(r) and W' (r) respectively, are also different
but assumed to give the same electron density after integration. Then the ground-state

energy of these systems, E and F’, satisfies

E = (U|H|V) < (V|H|V') = (V|H'|U) + (V|H — H'|0')

A . 2.4)
B+ [ Wos(r) = Vi r))plo)e
The same procedure starting from £’ yields
B < Bt [ [Vialr) = Vs (0)]pl0)dr 2.5)

A contradiction is found after adding Egs. 2.4 and 2.5 (' + E' < E' + E), so it is
concluded that there is no different Vext(r) that gives the same electron density. In
other words, there is one-to-one correspondence between p(r), ¥, H s f/ext, F, and
the other ground-state properties. Then the energy can be expressed as a functional of

ground-state density:

Elp(r)] = / () Vass (£)d + Firc[p(r)], 2.6)

where Vex(r) is the external potential, and

Fuk[p] = Te[p] + Velp] 2.7



includes kinetic energy and electron-electron interaction respectively.

The second theorem states that the energy functional (Eq. 2.6) gives its global
minimum only when the input density is the ground-state density. If trial density is not
the ground state, the energy is also not the global minimum but gives upper bound.

Hohenberg—Kohn theorems therefore indicate the existence of energy functional
that depends on the ground-state density. However, there still exist two problems: the
input density requires many-body wavefunction, and the actual form of the functional

in Eq. 2.6 is unknown. Each is covered in following subsections.



2.1.3 Kohn-Sham equations

Kohn and Sham proposed a (fictitious) single-particle Schrodinger equation that gener-
ate the same electron density to the original many-body counterpart [22]. This equation

18 written as

2
<—2hmv2 + Veff(l")> ¢i(r) = €i¢i(r), (2.8)

where Vg (r) is the effective potential, and ¢;(r) and ¢; are ith Kohn—Sham orbital

wavefunctions and energies. The ground-state density is calculated by

N
p@zZ]Mm% (2.9)

where N is the number of electrons in the system. In Kohn—Sham density-functional

theory, the total energy functional is defined as

Bl =Tl + [ Veal®)o(w)dr + Eulp] + Exclpl, (2.10)

where Ts[p], Enlp], and Ex.[p] are kinetic, Hartree, and exchange-correlation energy
of electrons, respectively.

The effective potential in Eq. 2.8 is written as
Vegt (r) = Vet (x) + Vir(r) + Vie(x), (2.11)

where Vji(r) is the Hartree energy corresponding to the electron-electron Coulomb

interaction term, defined as

Via(r) = €2 / i (r,)/dr’, 2.12)

r—r
and Vi (r) is the exchange-correlation potential of electrons and defined as

8 Exelp]

Vacelr) = op(r)

(2.13)

10



Notably, Fy.[p] also contains corrections for the difference between the single-particle
orbitals and true electron wavefunctions. While these equations are exact in princi-
ple, the exact form of Ey.(r) is unknown in Kohn-Sham density-functional theory.
Therefore, the level of approximations for Fy.(r) determines accuracy of the density-
functional calculations.

To obtain solutions for Kohn—Sham equation, a trial density p(r) is introduced
to construct Vog(r) (Sec. 2.1.2). Then at given Vg (r), single-orbital wavefunctions
¢;(r) are obtained after solving the single-particle Schrodinger equation (Eq. 2.8),
giving again the electron density p(r) (Eq. 2.9) and corresponding energy (Eq. 2.10).

These procedures are self-consistent and iterated until reaching the global minimum.

11



2.1.4 Exchange-correlation functional

To address many-body nature of electrons, approximations have been made for Fy(r)
(Eq. 2.13). The simplest one is local density approximation (LDA) [22], where the
exchange—correlation energy is functional of electron density at given spatial coordi-

nate. For spin-unpolarized system, it is written as

LA = / p(0)ePA ()] P, (2.14)

LDA

XcC

where ;% [p(r)] is the exchange—correlation energy density within LDA. This is

mostly referenced to the homogeneous electron gas, written as

ELPMp] = EXPAp] + EFPA[p), (2.15)
where
3 3 1/3
EPAp) = = () / P (x)dr (2.16)
e

is the exchange energy functional, and EEDA [p] is the correlation energy functional
available from quantum Monte Carlo simulations [23]. LDA often works well for sys-
tems with uniform electron density.

Since electron densities in solids are non-uniform, corrections are made by gra-
dient of the charge density. This is called generalized-gradient approximation (GGA)
and often produce better results than LDA [24]. Its functional form can be expressed
as

EGS M o) = / p(r)es Ao, Vpld'r, (2.17)

GGA

where now the energy density ¢,

also depends on the gradient of the electron den-
sity Vp. Among various derivatives, the most widely-used GGA functional is the
parameterization of Perdew, Burke, and Ernzerhof (PBE) [18]. More recently, the
exchange—correlation potential is further modified by kinetic energy of non-interacting

orbitals. it is called meta-GGA and written as

B 098] = [ p(r)eties= 09 o, 9, 7l @.18)

12



where 7 is the kinetic energy density from Kohn—Sham orbitals. A widely used one
is strongly constrained and appropriately normed (SCAN) functional [19], which is

benchmarked against PBE and shows decent accuracy over properties of materials and

molecules [25].

13



2.2 Neural network interatomic potential

DFT calculations have been widely used because it can accurately predict physical
properties or chemical reactions from interactions between electrons, without empiri-
cal parameters. However, since it requires a huge amount of computational resources,
attempts to accelerate the DFT calculations by employing surrogate models have been
continuing. Recently, models based on machine learning gain much attentions. Among
them, Behler [26] proposed neural network interatomic potential (NNP), which is
based on feedforward neural network. NNPs are mostly trained on DFT calculations
and reproduce them with little computational cost, bypassing the redundant and com-
putationally costly consideration of many-body interactions between electrons.

NNP is a regression model that takes an atomic structure as an input and returns the
energy, atomic force, and stress corresponding to the structure. This is schematically
presented in Fig. 2.1. While detailed discussions and implementations are provided in

Ref. [26, 27], principles and practices are briefly introduced in this section.

2.2.1 Feature vector

If raw Cartesian coordinates of atoms within the structure is used as input features,
the model can only predict the energy of structures with the same number of atoms.
Instead, by dividing the total energy into the atomic energies, one can predict the total
energy from the sum of the atomic energies regardless of the system size. In addition,
since the energy of a structure is invariant under rotation or translation of the entire
system and under permutation of the same element, it is natural for the input features
to satisfy those conditions.

The atom-centered symmetry functions (ACSFs) are proposed by Behler [28], sat-
isfying above-mentioned constraints. This feature vectors encodes the real-space co-
ordinates of the given structures into the atom-wise information about local environ-

ments within the certain cutoff radius about the center atom. The ACSFs include 5

14
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types defined as follows.

GE =) fe(Ryj), (2.19)
J
G =Y e f (Ryy), (2.20)
J
G} = cos(kRij) fe(Rij), 2.21)

J
all ) ) )
G = 26 (14 Aeosbiy)e AR £ (R £ (R fo(Ry). (222)
j ki
all ) )
GF =217 3 (14 Acosby)?e ") £ (Ry) fu(R). (2.23)
j ki

where i, j, and k£ are atom indices, R;; is the distance between atom 7 and j, and 7,
K, ¢, and X\ are hyperparameters that can have multiple values to represent the local
environment in detail. G, G2, and G® are radial, and G* and G? is angular functions,

respectively. Finally, f. is the cutoff function that smears out the effect of atoms outside

the certain cutoff radius R,.

fC(Rij) _ 0.5 [COS(?TRZ']'/RC) + 1] (Rij S Rc) (2.24)
0 (Ri]’ > RC).

The feature vectors have different scale according to the selection of hyperparam-
eters. As the range of input features affects the effective importance of features and
thus the performance of final model, they should be scaled to have similar ranges. The
most common choice is the mixmax scaling, making them have values between 0 to
1.

As seen from the Fig. 2.2, input features are highly correlated to each other, whose
dimension is around 100. Thus, instead of using the original features, one may re-

duce the number of features for accelerating convergence of the training procedure

16
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and avoiding overfitting. This can be done by decorrelating these features using, for
example, principal component analysis (PCA).

After PCA transformation, the principal components again have different ranges.
These are standardized by whitening transformation, making all the values have stan-
dard deviation of 1. However, in this case, latter principal axes have orders of mag-
nitude smaller variance than the former axes. Therefore, a minimum whitening level
could be selected such that the small-importance principal axes does not act as noises

to the model.

2.2.2 Model

The NNP consists of atomic feedforward neural networks that give atomic energies
(Fig. 2.1(b)). Beginning from the input layer, nodes and their weights in each layer are

connected to the next layer by the analytical relation defined as

Nk:
o=, mewfj + bk, (2.25)
=1

where ¢ (7) is the index of nodes of the kth ([k + 1]th) layer, wfj is the weight connect-
ing the node between xf and x?“, and b” is the bias of the kth layer. The summation
runs for all the nodes in the kth layer (Vy), and f, is called activation function. While
the others are linear arithmetic, the activation function imposes non-linearity to the
model. Sigmoid or cotangent functions are common choice for NNPs.

The atomic energies obtained from the atomic neural networks are summed up to
give total energy of a given structure. The total energy expression is analytical as given
in Eq. 2.25, and the forces can be analytically obtained from the derivative about the
Cartesian coordinates, exploiting chain rules.

The regression of the model parameters toward data sets are realized by backprop-

agation. The NNP is trained by minimizing the loss function (I') defined as

18
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where M is the total number of structures in the training set, N; is the number of
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(2.26)

:\t

atoms in the sth structure, and £ are its total
energy, atomic force of the jth atom, and the kth component of the virial stress tensor,
respectively. ©1 and po are the parameters that scale the relative importance of atomic
force and stress with respect to the total energy when minimizing the loss function.
As the size of data set becomes large in practices, minimizing the loss function for
optimizing network parameters using the whole data set becomes largely inefficient.
Stochastic gradient descent, which uses small fractions (batch) of data set to proceed
more iterations, can make the training process more computationally efficient. In this
process, since the gradient has errors to the true gradient, it is desirable to use informa-

tion of previous batches. For example, Adam (adaptive moment estimation) optimizer

is one of the advanced scheme which exploits adaptive step size and momentum.

2.2.3 Data set

The data set should fully span the target simulation domain. This is because the ma-
chine learning methods give precise predictions for interpolation but unexpected errors
for extrapolation. The conventional approach for constructing data set is based on hu-
man intuition and the background knowledge about the system. For example, a data
set consists of ground state structures, their strained states, and ab initio MD trajecto-
ries for the target simulations in small cells. However, data set based only on human
intuition and MD simulations may be insufficient. This is because, for example, sad-
dle points of the reaction paths are hardly sampled within Boltzmann statistics in MD

simulations.
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One of the approaches to overcome the limitation of the conventional approach
is augmentation of the data set based on uncertainty prediction. For NNPs, there is
no inherent metric for uncertainty, unlike other machine learning methods such as
Gaussian process. Instead, one can use the deviations of energy or force within an
ensmeble of NNPs [29], which are trained from different random numbers or hidden
layer architectures. It would be advantageous for homogeneous system such as bulk
or amorphous materials to use uncertainty indicators based on total energy, while in-
homogeneous systems including interfaces or chemical reactions require atom-based
indicators to resolve the exact source of errors. To accomplish those purposes there
are several methods as suggested in Ref. [13]. One can use active learning schemes
based on the uncertainty prediction methods to expand the data set toward simulation
domain. Starting from the initial data set, the target simulations are repeatedly car-
ried out by NNPs, and the data set is augmented whenever the untrained domain is
detected until the simulations becomes stable within the training domain. Other ap-
proaches, such as metadynamics have been also suggested to sample a wide range of
configurations without human intuition.

The performance of the final model is critically affected by approximations in
ab initio calculations that are used to construct the data set. When NNPs are trained
with DFT calculations, a routine choice is PBE functional. However, when calculating
thermal properties, such as phonon dispersion or melting points, it has been repeat-
edly reported that the PBE functional often gives underestimated phonon frequency or
melting points. Instead, the SCAN functional provides more accurate descriptions on a
wide range of physical properties and also validated through melting point calculation.
Depending on the target simulations, DFT functional that correctly reproduces desired

properties should be chosen to obtain reliable results.
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Chapter 3

Accelerated computation of lattice thermal conductiv-

ity

3.1 Introduction

The prediction of thermal conductivity is of central importance in materials science
and engineering for a wide range of applications. For example, materials with low
thermal conductivities can be used for thermoelectrics [30] or thermal insulations [31],
whereas materials with high thermal conductivities are suitable for the thermal man-
agement of electronic devices [32]. In the past decades, the development of ab initio
methods combined with increasing computational power enabled a reliable prediction
of lattice thermal conductivity (x;) [30, 33]. This is particularly impressive because
the computed x; spans a wide range of scales from 10~! to 10> Wm~!K~!. However,
the ab initio evaluation of k; becomes expensive in multicomponent or low-symmetry
materials due to high computational costs for considering anharmonicity. For instance,
the monoclinic 3-GazOj3 requires thousands of single-point density- functional the-
ory (DFT) calculations to obtain x;. Several approaches that exploit regression tech-
niques have been proposed to save the computational cost, resulting in a significant

increase in the computational efficiency [34-36]. One example is the compressive
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sensing lattice dynamics method, which uses sparsity in the force constants [34]. In
this method, the potential energy surface is Taylor-expanded with the high-order force
constants (fourth-order and beyond), which is fitted to DFT atomic forces for refer-
ence structures. The temperature-dependent effective-potential method (TDEP) also
expands the potential energy surface but the series is usually truncated beyond the
third order [35]. Through a fit to ab initio molecular dynamics (AIMD) trajectories, the
finite-temperature effects of higher-order terms on the force constant and anharmonic-
ity are incorporated in TDEP. Several high-throughput calculations of x; have been
reported using semi-empirical approaches based on the Debye-Callaway or Leibfried-
Schlomann models [37-39]. However, for materials outside of the dataset used to fit
the model, x; prediction accuracy would deteriorate.

Machine-learned interatomic potentials (MLPs) have recently been used as surro-
gate models of DFT in calculating force constants and «; [40—47]. To fit the potential
energy surface produced by ab initio calculations, preferably DFT [11], MLPs use flex-
ible regression models. For regression models, artificial neural networks [26], kernel-
based methods [48], and linear fitting [49] are popular choices. Once trained, MLPs
infer the energy, atomic force, and virial stress of the given structure with an accuracy
comparable to DFT, but at a fraction of the cost. Until now, several crystals and alloys
have been studied, and x; values obtained by MLPs have been close to the reference
DFT data. Notably, the x; of BAs was successfully predicted by MLP, which demands
up to four-phonon scattering in the Boltzmann transport equation [44]. MLPs are also
advantageous for investigating the x; of disordered phases such as amorphous [46]
and liquid systems [45]. For materials dominated by nonperturbative phonon scatter-
ing, extensive molecular dynamics (MD) simulations are necessary to get an accurate
ki, which can be handled efficiently by MLP [47].

Although previous works support that the MLP is a powerful tool in calculating ~;,
several issues need to be addressed. For example, most materials in the previous stud-

ies retain high symmetries, three or fewer elements, relatively simple configurations,
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and a limited range of x; (>10 Wm~!K~1). Consequently, it is unclear whether the
MLP’s prediction accuracy can be maintained for materials in general. Furthermore,
recipes for creating the training set differ significantly across the literature, making it
difficult to establish a standard approach. Motivated by these observations, we herein
investigate the effect of material complexity and different types of training sets on
the accuracy and computational cost of k; prediction by MLPs. We adopt Behler-
Parrinello-type neural network potential (NNP) as an MLP model [26] and consider
three types of training sets: i) snapshots of crystals with randomly displaced atoms,
ii) AIMD trajectory, and iii) snapshots of crystals with atoms displaced along phonon
eigenmodes. Our main goal is to develop a recipe for building a training set that pre-
dicts the room-temperature (300 K) «; of general bulk materials with high efficiency
and reasonable accuracy. The following is how the remaining sections are built: the
details of computational methods are described in Sec. 3.2. In Sec.3.3, we conduct a
preliminary test on the methods of constructing training sets. In Sec. 3.4, based on the
method chosen in the previous test, we calculate «; of 25 materials with diverse cell
symmetry and a wide range of ; values and analyze relative errors and computational
efficiencies. We also check the effect of reducing the size of the training set in Sec. 3.5.

Finally, we summarize and conclude in Sec. 3.6.
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3.2 Computational details

3.2.1 Density-functional theory calculations

All the DFT calculations are performed using Vienna Ab initio Simulation Package
(VASP) [50-52]. The generalized gradient approximation by Perdew—Burke—Ernzerhof
(PBE) [18] is used for the exchange-correlation function. The initial structure for each
material is obtained from the inorganic crystal structure database (ICSD) [53], which
is relaxed further within DFT. The plane-wave cutoff energy and k-point grids for the
unit-cell optimization are selected such that the energy and atomic forces converge to
within 1 meV/atom and 5 meV/A, respectively. The selected parameters are summa-
rized in Ref. [16]. In addition, the PREC tag is set to “Accurate”, and the convergence
criteria for the self-consistent cycle is set to 10~8 eV. Then, the unit cells are fully
optimized including lattice vectors until remaining atomic forces become smaller than
1 meV/A. The final structure becomes the reference one in generating the training set.
The computational parameters used for constructing the training data will be discussed

in Sec. 3.3.

3.2.2 Boltzmann transport equation

We calculate the lattice thermal conductivity by solving the phonon Boltzmann trans-
port equation linearized under the relaxation-time approximation. In the following, we
briefly summarize the equations involved in computing «;. Detailed discussions can

be found elsewhere [54, 55]. The potential energy surface U can be expanded as

U="Uo+ Zcbaﬁu u + ISR ALYV 3.1)
ijaf : 7/Jk0¢57

where Uy is a constant and (I)%B and @gﬁv are the second- and third-order interatomic

force constants, respectively. u; is the atomic displacement of the ith atom from the
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equilibrium position, and «, /3, and y are the Cartesian indices. At temperature 7', the

lattice thermal conductivity tensor is expressed as

Kag = Q Z Cqquququs, (3.2)

where € is the volume of the crystal and Cgs, vqs, and 745 correspond to the heat
capacity, phonon velocity, and phonon lifetime with the wave vector q and branch
index s, respectively. In Eq. 3.2, the heat capacity is defined as

Cqs = hw (3.3)

where 7 is the reduced Planck constant, wq is the angular frequency of the phonon
mode qs, and ngs is the Bose-Einstein occupation number at temperature T. The

phonon lifetime is calculated as the inverse of the total scattering rate

— = ZFM,A,, + = ZPM,A,, +) Thw (3.4)
)\/

N 25
where I'" and I~ are three-phonon scattering rates, corresponding to absorption and
emission processes, respectively. Here the phonon mode qs is abbreviated to a single
index A. The last term on the right-hand side of Eq. 3.4 corresponds to scattering by
isotopes present in nature. The three-phonon scattering rates 't and I'~ are expressed

as

ha ( n,\/ nr) 25
F:\i_/\/)\// - 4 BN | AN N/ W)\ + wy — W)\//) s (35)
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In Egs. 3.5 and 3.6, the Dirac delta functions § impose the energy conservation during

scattering. The scattering matrix elements V)\j;, v are computed as
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where €;(A) and M; are normalized eigenvectors of mode A and the atomic mass of
the ith atom, respectively. Here —\ refers to the phonon mode in the wave vector —q
and branch s. Finally, the summation index ¢ and indices j and k in Eq. 3.7 indicate
atoms in the unit cell and supercell, respectively.

The second-order interatomic force constants @%ﬂ in Eq. 3.1 are calculated with
a finite displacement method using the Phonopy package [56]. The side lengths of
supercells used in the computation are ~20 A each. The third-order interatomic force
constants (@;ﬁ” in Eq. 3.1), also calculated with a finite displacement method, and
lattice thermal conductivities at 300 K are evaluated by the ShengBTE package [54].
Here the supercell dimension is typically ~10 A with ~6 A for the cutoff radii of the
interatomic interaction. The number of single-point force calculations increases with
the number of possible atomic pairs in the supercell, considering the cutoff radii of the
interatomic interaction. For the q-point sampling, a uniform mesh grid with a density
of ~19 points A~! is used. The Dirac delta functions in Eqs. 3.5 and 3.6 are approx-
imated by the adaptive Gaussian with a proportionality factor of 0.1 [54]. Under the
relaxation time approximation, the Boltzmann transport equation is not solved itera-
tively. Because the current work focuses on comparing the results of DFT and NNP,
we do not consider nonanalytic corrections for LO-TO splitting. The full details on the

computational parameters used to evaluate force constants can be found in Ref. [16].

3.2.3 Neural network potential

For training NNPs, we employ the STMPLE-NN package [27]. Atom-centered symme-
try functions G2 and G* [28] are adopted to describe radial and angular distributions of
neighboring atoms, respectively. The cutoff radius is set to 6.5 A, and 26, 70, and 132
symmetry functions are employed for unary, binary, and ternary systems, respectively.
The network architecture comprises two hidden layers with 60 hidden nodes each and
one output layer that provides atomic energy. The input vector is decorrelated by prin-

cipal component analysis and then whitened to increase the learning speed [5]. We set
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the parameters 11 and p9 in the loss function (Eq. 2.26), scaling the relative importance
of atomic force and stress with respect to the total energy, as 10 and 10~°, respec-
tively. To avoid overfitting and obtain more regularized NNPs, we apply a dropout
technique in which half of the nodes are randomly selected and fixed at each training
iteration [57]. The learning rate starts at 0.01 and scales by 0.1 every 5000 iterations.
We train two independent NNPs and use averaged forces to obtain interatomic force
constants for given atomic displacements. For evaluating atomic forces, we use the

LAMMP S package [58].
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3.3 Construction of training sets

To select an optimal approach to generate training sets, preliminary tests are conducted
on six materials: BAs, CoSbs, 5-Ga20s3, GaP, a-SiOs, and TlgBiTeg that span three or-
ders of r; from 10~ to 102 Wm~'K~!. We compare the three methods of constructing
the training set: (i) random displacements of atoms (RDA), (ii) AIMD, and (iii) super-
position of phonon eigenmodes (SPE). Each atom is displaced with random directions
and amplitudes in the RDA method. The amplitudes are chosen from a normal distribu-
tion with a standard deviation of 0.1 A. The AIMD method comprises two steps. First,
the AIMD using an NVT ensemble is conducted over 1 ps with the time step of 1 fs, at
temperatures of 50, 300, 500, and 700 K, following the choice of the simulation time
and temperatures in Ref. [42]. (We also tested the AIMD method with NPT ensemble,
but the resulting x; showed no significant difference.) The simulation cell, which con-
tains ~100 atoms, is identical to the one used to calculate the third-order interatomic
force constants for the most cases of the test materials. During AIMD, the computa-
tional parameters are slightly loosened such that the self-consistency criteria is set to
10~* eV with the default plane-wave energy cutoff and the I'-point sampling. Next,
we sample the 4-ps AIMD trajectories in 10- or 80-fs intervals depending on the target
size of the training set, and more accurate DFT calculations are performed on the sam-
pled structures. This is required because the interatomic force constants are sensitive
to computational precision, so the training data must maintain high precision. In these
calculations, the plane-wave energy cutoff, k-point grids, and convergence criteria of
self-consistent calculation are set to the same as those of the unit cell optimization (see
Section 3.2.1). Finally, the SPE method requires the second-order interatomic force
constants that determine the phonon eigenmodes. To roughly calculate the second-
order interatomic force constants with minimal computational costs, we use the I’
point and a small supercell size adopted in calculating third-order interatomic force

constants (see Section 3.2.1). Each atom is displaced along the superposed phonon
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modes with random amplitudes and phase factors [36].

In each of the three approaches described above, the training set comprises 400
structures. To calculate third-order interatomic force constants, interactions up to ~6
A or 6th, 7th, 19th, 5th, 11th, and 4th nearest neighbors are considered for BAs, CoSbs,
B-Gay03, GaP, a-Si0,, and TlgBiTeg, respectively. For the phonon dispersion, every
NNP trained by the three methods reproduces phonon dispersion for all six materi-
als [16]. Figures 3.1(a)—(c) present the comparisons of the diagonal components of the
r; tensor between NNP and DFT. We also compare the DFT results with experimental
data in Fig. 3.1(d) to validate computational settings. It is seen that NNP-AIMD shows
higher accuracy than other methods, with the error bound for all test materials being
less than 30%. Conversely, NNP-RDA and NNP-SPE show error levels larger than a
factor of 2 for GaP and 3-GayOs, respectively. This means that RDA and SPE method
may produce atomic displacements that have no bearing on third-order interatomic
force constants. Since the RDA method does not make any assumptions about atomic
correlations, it is more likely to produce unphysical atomic configurations with small
interatomic distances and large repulsive atomic forces. This analysis is supported by
the phonon scattering rates of GaP shown in Fig. 3.2; while NNP-AIMD shows good
accuracy in predicting frequency-scattering rates relations, the other two NNPs show
large discrepancies, especially NNP-RDA.

The computational cost of the SPE method varies greatly depending on the cell
symmetry due to the part on obtaining phonon dispersion. The costs of the AIMD
and RDA methods, however, are less affected by crystal symmetry. Consequently, we
conclude that the AIMD method is the best for generating training data. In passing,
we note that for BAs, the present DFT result of x; (~1200) in Fig. 3.1 deviates from
the previous literature (>2000) [42]. This is because we did not solve the Boltzmann
transport equation iteratively (i.e., relaxation time approximation), which is known to
affect the prediction accuracy for materials with high x; [54]. When the Boltzmann

transport equation is solved iteratively, we find that x; increases to ~1900.
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Fig. 3.1: k; of test materials calculated by density-functional theory (DFT) and neural
network potentials (NNPs) that are generated with various training sets. (a) Random
displacements of atoms (RDA), (b) ab initio molecular dynamics (AIMD), (c¢) superpo-
sition of phonon eigenmodes (SPE). (d) Comparison between DFT and experimental
values. Multiple values for each symbol denote the diagonal components of «;, and
gray lines denote the error with a factor of 2. The data for experimental «; values are

referred to the original publication and the references therein [16].
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and NNPs (a), averaged over every 1.2 THz intervals (b). Error bars in (b) indicate

standard deviation within the interval [16].
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3.4 Computation of ~; for diverse materials

This section increases the benchmark cases to 25 materials with diverse cell symme-
tries and a wide range of x; values. The training set for each NNP comprises 400
structures generated by the AIMD method. Figure 3.3(a) compares ; between NNP-
AIMD and DFT. The root-mean-squared relative error (RMSRE) of test materials is
18.6%. To be more informative, results of three materials with different symmetry are
provided in Fig. 3.5, showing good agreements with DFT calculations in phonon dis-
persion, scattering rate, and ;. Figure 3.3(b) shows the results when the training data
is reduced, as discussed below. For comparison, we gather the x; values computed by
MLP and DFT from the literature and plot them in Fig. 3.4(a) (For a fair compari-
son, only those obtained by solving the Boltzmann transport equation are presented).
Except for a few materials, the error level in Fig. 3.3(a) and Fig. 3.4(a) is similar. Fig-
ure 3.4(b) explicitly compares the error values for common materials in Fig. 3.3(a)
and Fig. 3.4(b). It can be seen that the errors from the present approach are compara-
ble to those of other references even though we use a consistent choice of the training
set. However, BAs shows a much larger error than Ref. [44]. It is known that x; of
BAs is mainly determined by the scattering of acoustic phonon modes. Ref. [44] em-
ployed NPT simulations and adopted DFT results for the harmonic part, which may
have contributed to more accurate scatterings by acoustic phonons.

We note that materials with low symmetries often exhibit large errors in Fig. 3.3(a).
To be specific, we classify the test materials into four groups based on the crystal sys-
tem: (1) cubic, (2) tetragonal and hexagonal, (3) orthorhombic, and (4) monoclinic
and triclinic. For each material, we first select the component of «; showing the largest
error. For the selected components, we calculate the average error within each group.
The results are 7.6%, 13.5%, 15.7%, and 24.2% for the group (1)—(4), respectively,
which shows a trend of increasing errors with low crystal symmetries. The low sym-

metry may require longer AIMD simulations for sufficient sampling. To test this, we
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Fig. 3.3: k; computed by NNP-AIMD trained with (a) 400 and (b) 50 structures sam-

pled from the same AIMD trajectories [16].
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Fig. 3.4: (a) DFT and machine-learned potentials (MLP) results quoted from litera-
ture. (b) Comparison of errors in x; prediction by MLPs for the materials common
in Fig. 3.3. The filled and empty bars are the present results and references, respec-
tively. The exact sources are referred to the original publication and the references

therein [16].
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extend AIMD of K5BigSe3, which has P1 space group and thus has the largest er-
ror, up to 2 ps, increasing the training set by two folds. However, the resulting NNP
for KoBigSe;s produces almost identical x;. Therefore, the origin of the error and a

systematic solution need further investigation in future.
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3.5 Savings on computational cost

The high-precision DFT calculations used to construct the training set account for
about 90% of the computational costs in the present work. The other portions of the
computational cost stem from AIMD, NNP training, and k; calculation, with each
corresponding to ~3 % respectively. Consequently, it would be worthwhile to see if
the training set could be shrunk further to save on computational costs. To this end, we
investigate the effect of dataset size on ; using aSiO9 as an example. First, we choose
12, 28, 52, 100, 200, and 400 structures from 108-atom AIMD data, which train six
different NNPs. The simulation time and temperatures are the same as those in the
previous section. In Fig. 3.6, we calculate phonon dispersions, scattering rates, and
cumulative lattice thermal conductivities as a function of the phonon mean free path.
Figure 3.6(a) shows that harmonic properties are well described by every NNP, but a
slight deviation of the transverse acoustic mode is observed along the I'-A line with
the data size of 12. The scattering rates and cumulative x; in Figs. 3.6(b) and 3.6(c),
respectively, are well reproduced for data sizes exceeding 28. With data sizes of 12 or
28, significant deviations in x; are observed mostly at mean free paths of 1-10 nm.

Following the above analysis, we reduce the training set to 50 structures for 18
materials selected from Fig. 3.3(a) by sampling more sparsely over the same MD tra-
jectories. The x; values compared between the resulting NNPs and DFT are shown in
Fig. 3.3(b). The RMSRE of the «; is 31%, increasing from 18% in Fig. 3.3(a), which is
reasonable considering the drastic decrease in computational cost. Again, KoBigSe3
shows the largest error as in Fig. 3.3(a), which can be understood by the low symmetry
in the crystal structure.

Additionally, we analyze the computational efficiency of the NNP-based calcula-
tion of x; with respect to the DFT-based calculation. Figure 3.7 shows how the com-
putational cost changes as the material complexity increases. The number of structures

required to calculate the third-order force constants, which encompasses the number
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of atomic elements, the number of atoms in the unit cell, and the crystal symmetry, is
used to rank the material complexity. The computational cost is normalized with re-
spect to that of Si computed using the full DFT approach (left scale) or the NNP trained
with 50 structures. (right scale). Here, the computational cost of the DFT-based «; cal-
culation is the summation of those obtaining second- and third-order force constants.
The majority of the computational costs in NNP-based calculations come from build-
ing the training set (AIMD and single-shot calculations) and training NNPs, while the
cost of calculating force constants using the finite displacement method is negligible.
As the material complexity increases, the number of structures needed to generate
the third-order force constants increases rapidly, which is confirmed in Fig. 3.7. For
instance, the DFT computational cost for KCuS is more than 20 times higher than
that of Si. Conversely, NNP-based x; calculations show nearly constant computational
costs regardless of the material complexity. This is because the cost of AIMD and
high-precision DFT calculations are similar among the materials. This is because the
atomic forces can be calculated with almost no cost once the NNP has been trained,

even for a very large supercell.
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3.6 Summary

In summary, we propose a standard protocol for building the training set of NNPs
targeted for computing «; efficiently without fine-tuning for each material. The proto-
col requires 1-ps AIMD simulations at various temperatures and accurate single-shot
calculations for 400 structures sampled along the MD trajectory. Testing over 25 ma-
terials with diverse symmetries and wide range of xy, it is confirmed that NNP-AIMD
provides consistent accuracies comparable to reported values in the literature. The uni-
form cost across material types for the proposed method makes it especially efficient
for complex materials whose x; prediction would be costly in a full-DFT approach.
Furthermore, the NNPs showed reasonable accuracy even when the training set was
reduced to 50 structures. Having confirmed that the machine-learned potential repro-
duces well the anharmonicity, which is a prerequisite for predicting high-temperature
properties, the next Chapter will extend its application range to melting properties and

phase diagrams.
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Chapter 4

Ab initio construction of MgO-CaO full phase diagram

4.1 Introduction

By informing phase formation under the given temperature, pressure, or cOmposi-
tion, the phase diagram plays an important role in designing and processing materi-
als [59, 60]. However, determination of the phase diagram requires a huge amount of
experimental efforts, particularly for multicomponent systems [61, 62]. This is because
while possible combinations of temperature and composition are vast, each data point
becomes only reliable with consistent observations from complementary techniques.
As such, full phase diagrams are sparse for multicomponent systems [61].
Theoretically, the phase diagram is determined by the Gibbs free energies of com-
peting phases, where the lowest ones appear in the equilibrium phase diagram. Several
computational methods based on molecular dynamics (MD) have been developed for
computing the free energies from atomistic simulations: thermodynamic integration,
coexistence method, and semigrand ensemble [63—67]. Among these methods, the co-
existence method allows the calculation of the free energy difference between the two
phases by directly simulating the equilibrium of a large-scale simulation cell contain-
ing those phases and interfaces [65, 66]. On the other hand, the absolute free energy

can be computed by the thermodynamic integration method without direct evaluation
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of the partition function, which is applicable for pure solids or liquids but not for solid
solutions [63, 65]. The free energy of such mixtures can be determined by calculat-
ing derivatives of the free energy about composition using a semigrand ensemble and
integrating them from the pure phases [63, 67]. By exploiting those complementary
methods, one can calculate the composition-dependent free energy for any systems.

In combination with the density-functional theory (DFT), these methods allow for
evaluating free energies without experimental inputs. For example, various single-
component phase diagrams including melting properties have been constructed by
employing the above-mentioned methods [68—74]. However, in binary or higher-order
systems, the MD-based approaches are limited with DFT because the sampling over
compositional variations and configurations requires iterative simulations over mil-
lions of time steps and large simulation cells containing hundreds of atoms [75, 76].
Alternatively, the MD-free cluster expansion was employed in constructing phase dia-
grams of solid alloys by interpolating free energies of alloy configurations [63, 77-83].
However, this approach is applicable to only crystal systems, and its accuracy degrades
when atomic relaxations are significant [84]. Ideal solution approaches were also em-
ployed along with special quasi-random structures [85] to approximate the mixture
with a single configuration.

In recent years, machine-learned potentials (MLPs) have gained much attention
as they can provide energies with near-DFT accuracy at a fraction of the cost [11].
The computational acceleration using MLPs has been confirmed over a wide range of
applications including, for example, crystal structure prediction [14] and lattice ther-
mal conductivity [16]. In addition, MLPs are suitable as surrogate models of DFT
in evaluating free energies, which has been successfully demonstrated in many recent
studies. [40, 86-98] However, examples are mostly single-component systems [40, 86—
95] and only a few examples, Ag,Pd;_, [96], NizMo;_, [97], and Ga,As;—, [98],
have been attempted for constructing the phase diagram of compounds. Therefore, the

accuracy and efficiency of MLPs for constructing the whole phase diagram of multi-
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component systems are yet to be confirmed. With these motivations, herein we aim to
construct a full temperature-composition phase diagram for the MgO-CaO, an archety-
pal pseudo-binary system with rich experimental information, using Behler-Parrinello-
type neural network potentials (NNPs) [26].

Our strategy for computing the free energy and constructing the phase diagram is
as follows: first, for pure phases, temperature-dependent free energies are calculated
using the thermodynamic integration method. For pure MgO and CaO, we consider
rocksalt and liquid phases, and the crossing of the free energy curves of both phases
corresponds to the melting point. Next, the composition-dependent free energy of mix-
ing is calculated using semigrand ensemble simulations at selected temperatures. Since
no intermetallic compound exists along the MgO-CaO pseudo-binary line, only the
rocksalt solid solution phase and liquid mixture are considered. The above two meth-
ods are complementary: the thermodynamic integration method computes the absolute
free energy but is limited to a fixed composition, making this method optimal to pure
phases. On the other hand, the semigrand ensemble method computes the composition-
dependent derivative of free energy that can be integrated from the pure phase. The
whole temperature- and composition-dependent free energies are fitted into analyti-
cal forms, and phase boundaries are determined by common tangents on the isother-
mal sections of free energy curves. The rest of the paper is organized as follows: in
Sec. 4.2 we introduce computational methods used in the present work such as NNPs,
thermodynamic integration, and semigrand ensemble simulations. The main results are

discussed in Sec. 4.3 and 4.4, and Sec. 4.5 summarizes this Chapter.
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4.2 Theoretical methods

4.2.1 Neural network potential and DFT calculations

In the present work, the Behler-Parrinello-type NNPs [26] are trained by using the
SIMPLE-NN package [27, 99]. For input features, we use atom-centered symmetry
functions (ACSFs) [28]. The numbers of features are 24 and 108 for the radial and
angular parts, respectively, with cutoff radii of 7.0 and 4.5 A, respectively. Since three-
body interactions require more computational resources than two-body interactions,
we tune the angular cutoff to accelerate the MD simulations. When compared to the
single cutoff of 7 A, we confirm that 10x speed gain can be obtained with negligi-
ble compromise in accuracy, as will be validated in Sec. 4.3. The full parameters for
ACSFs are listed in Ref. [17]. The training is accelerated by decorrelating features us-
ing principal component analysis and whitening [5]. We use an initial learning rate of
0.01, which decays exponentially during 190 epochs and becomes 0.0005 at the final
epoch. We use a fully connected atomic neural network with two 60-node hidden lay-
ers. The MD simulations and evaluations of energy, force, and stress are carried out
using the LAMMP S package [27, 58].

The DFT calculations for the training set are carried out using Vienna Ab initio
Simulation Package (VASP) [50-52] with the projector-augmented wave pseudopo-
tentials [100]. The pseudopotential contains the valence electrons of 3s2, 3523p%4s2,
and 2522p? for Mg, Ca, and O, respectively. We generate data sets independently us-
ing two types of the exchange-correlation functional; the widely-used the generalized
gradient approximation (GGA) by Perdew-Burke-Ernzerhof (PBE) [18] and strongly
constrained and appropriately normed (SCAN) meta-GGA functional [19]. The SCAN
functional has been benchmarked against PBE on diverse properties, providing more
accurate lattice parameters [19], formation enthalpies [25], lattice dynamics [101], en-
ergies of metastable phases [102], and the melting points [93, 103]. For ab initio MD

simulations, we use default plane-wave energy cutoffs with the I'-point sampling for
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the Brillouin zone integration. Then more accurate DFT calculations are performed on
selected snapshots for reference data set by increasing the plane-wave energy cutoff to
500 eV and employing 3 x3x 3 k-point meshes for the conventional unit cell of rock-
salt MgO and CaO, which is scaled in supercells to select a similar k-point density.

Details on the training structures will be discussed in Sec. 4.3.1.

4.2.2 Thermodynamic integration

Thermodynamic integration allows one to calculate the free energy by computing the
work done in the isothermal switching process from a reference state whose free en-
ergy is known a priori, to a state of interest [64, 65, 71, 104]. We apply this method
for pure rocksalt and liquid phases of MgO and CaO. When the potential energy term
of Hamiltonian of the reference system (U;) and of the system of interest (Uy) is given,

a parametric potential is defined as
UN) = (1= MU + AUy, “4.1)

where A is a coupling parameter ranging from O to 1. The difference in the Helmholtz

free energy between the two systems (Fy — F}) is given by

[P /oUN)

where the (..), denotes the ensemble average under the NVT condition at constant A,
which is practically replaced by a temporal average according to the ergodicity.

We employ two reference systems depending on the final state: the Einstein crystal
for solid phases and Lennard-Jones (LJ) fluid for liquid phases. The free energy of

Einstein crystal is given by

F =Y 3nksTn ( i ) (4.3)

2nkgT

where kg, h, and T' mean the Boltzmann constant, Planck constant, and temperature,

respectively, and n; and w; correspond to the number of atoms and angular frequency
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of Einstein oscillators of atomic species %, respectively. We use a spring constant of 5
eV/A? throughout this work regardless of atomic species.

For the liquid phase, we select for the reference system the “cut and shifted” LJ
potential [105]. In Ref. [105], the residual free energy of the LJ fluid in reference to the
ideal gas was parameterized into an equation of state, which provides highly accurate
free energies over a wide range of temperatures and densities. The free energy of the

ideal gas is given by

F=—kpTS In (A?)Vnn‘> (44)

]

h
A= ———, 4.5
vV 27rmikBT ( )

where V' is the volume of the system and A; is the thermal De Broglie wavelength of
the atomic species ¢ with the atomic mass of m;. To avoid a phase transition along
the integration path, the depth of the LJ potential is controlled such that the LJ fluid
becomes supercritical, and the diameter of LJ particles is chosen to have a nearest-

neighbor distance similar to the final state [65].

4.2.3 Semigrand ensemble siumlations

Taking the example of a binary system made of atoms A and B, the difference of
chemical potentials is written as

0G(x,T)

Au(z,T) = pp(x,T) — pa(z, T) = or

(4.6)

where x is the mole fraction of species B and G is the Gibbs free energy. Ap(x,T)
can be obtained by the semigrand ensemble, a subset of the grand-canonical ensemble
in which the number of atoms is fixed but chemical identities can change freely [67,
75, 76, 106]. In practice, the equilibration within the semigrand ensemble is achieved
by hybridizing MD simulations with Monte Carlo (MC) swap of atomic species. The

MC particle swap is accepted by the Metropolis criterion defined as

p = min {1, exp{ (—AE _kA;NM) H , (4.7)
B
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where AF and Ax indicate the change of energy and composition of the simulation
cell due to the test flipping of atomic species respectively, and NN is the total number of
atoms [106]. After sufficient MD-MC runs, the equilibrium composition x is obtained
for the given Ap. By iterating the semigrand ensemble simulations over a range of Ay,
x(Ap) and its inverse Ay (x) are obtained at given T, and the free energy G(x,T")
is obtained in turn by integrating Eq. 4.6. A more formal derivation [67], practical
implementation [106], and application examples [75, 76] of the semigrand ensemble
are referred to the literature. During the MD simulations, the isobaric condition is

imposed to consider composition-dependent of lattice parameters.
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4.3 Validations on NNP

4.3.1 NNP training

The DFT data set for training NNPs consists of pure phases, solid solutions, and their
melts. For pure phases of MgO and CaO, the data set first contains rocksalt crystals un-
der volume-conserving uniaxial, hydrostatic, or shear strain, whose ranges are —5% to
5%, 2% to 4%, and —5% to 5%, respectively. For intermediate compositions, we gen-
erate 100 random alloys in the rocksalt structure (Mg, Ca;_,O) containing 100 atoms
in x = 0.08,0.2,0.8,0.92. For each composition, the lattice parameter is obtained by
relaxing the cell shape and volume. To sample thermal vibrations of solids as well as
liquid phases, the crystals of pure phases and random alloys (the most and least stable
configurations among the 100 structures) are heated from 300 K to 2000, 4000, 6000,
and 8000 K with a duration time of 1 ps at each temperature. Two independent MD
simulations are performed in constant pressure (NPT) or constant volume (NVT) en-
sembles, where temperatures are modulated with the Langevin [107] or Nosé-Hoover
[108] thermostats, respectively. We note that both ensembles are complementary in
constructing data sets; while the NPT data set includes the thermal expansion of solid
and liquid phases, NVT data set contains interactions between atoms at short distances,
which helps prevent short-bond failures of NNPs during MD simulations along the
thermodynamic integration path. We find that the pure phases and random alloys melt
at 8000 and 6000 K, respectively. By including these melting processes, NNP may
learn the interface between the solid and liquid phases required for coexistence simu-
lations. Those MD trajectories are sampled with the interval of 40 and 10 fs at 300-
4000 K and 6000-8000 K, respectively, and included in the data set after accurate
single-shot DFT calculations. The whole data set contains 5,670 structures, equivalent
to 552,096 atoms, consistently for both PBE and SCAN as shown in Table 4.1.

We generate single NNP for PBE and SCAN functionals, named as PBE-NNP and
SCAN-NNP, respectively, which is used for the whole calculations. 10% of the data
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is randomly selected as a test set to evaluate performance of the NNP. The root mean
square error (RMSE) of NNPs on the training and test set is presented in Table 4.2,
indicating that the accuracy of NNPs is satisfactory. The parity plots in Fig. 4.1 dis-
play correlations of the energy and force components between DFT and NNP for the
test sets, showing that both PBE-NNP and SCAN-NNP well reproduce the reference
DFT results. The slightly higher energy RMSE of SCAN-NNP (Table 4.2) could be
attributed to a wider energy range of the data set as seen in Figs. 4.1(a) and (b). In com-
parison, the force RMSE between the two NNPs is comparable since the magnitude of
the force is similar in both data sets (see Figs. 4.1(c) and (d)).

Given that the final model is subject to the hidden layer architectures or the random
numbers that determine initial weights of neural networks, the influence of the network
dimension can be partly examined by the four NNPs with varying numbers of hidden
nodes that were developed for estimating prediction uncertainties in Fig. 4.2. They
have two hidden layers of 30, 60, 100, or 150 nodes and trained on different training
sets from the same data set. When we calculate melting points of the pure phases using
those NNPs, the deviations between NNPs are less than 20 K (see below). Moreover,
the standard deviation of substitutional defect formation energy among those NNPs is

only about 1% within SCAN-NNPs.

4.3.2 Test of NNP on pure phases

In Table 4.3, the trained NNPs are further validated by comparing various properties
of pure phases. We first compare structural and mechanical properties of rocksalt MgO
and CaO at 0 K. It is seen that PBE overestimates the lattice parameters by 0.6—0.8%,
while SCAN underestimates by 0.3-0.6%, in better agreements with experiment [109,
110]. The elastic constants are also reproduced more accurately by SCAN than PBE,
except for C'p2. It is seen that each NNP well reproduces corresponding DFT results—
lattice parameters within 0.001 A and elastic constants within 16.7% (largest for off-

diagonal component C5 in SCAN-NNP).
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Table 4.2: The root mean square error (RMSE) for the energy and force on training and
test sets. PBE-NNP and SCAN-NNP represent NNPs that are trained with the corre-
sponding functional. In averaging errors in the force, the three-dimensional Euclidean

distance is measured between DFT and NNP forces.

Energy (meV/atom) Force (eV/A)

Train Test Train  Test
PBE-NNP 4.0 4.1 024 0.28
SCAN-NNP 5.1 5.5 024 0.29
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Fig. 4.1: Parity plots between DFT and NNPs, comparing energies (F) ((a) and (b))

and force component (F;,7 = x,y, z) in the Cartesian coordinate ((c) and (d)) for test

sets. The functional used for the reference data set is shown at the top.
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In Fig. 4.3, we compute phonon dispersions and compare them with experiments.
The phonon dispersions are calculated using the Phonopy code [56] with the finite
displacement method and a 5x5x5 repetition of the primitive cell. In Ref. [101], it
was tricky to obtain phonon dispersions with the SCAN functional due to unstable
convergences, which is also confirmed in the present work as the phonon dispersions
calculated within the SCAN functional exhibit spurious imaginary modes for rocksalt
MgO and CaO. Instead, we employ r2 SCAN functinoal [111] for phonon calculations,
as it exhibits better numerical convergences while maintaining the accuracy of the
original SCAN. As shown in Fig. 4.3, the r’SCAN functional accurately reproduces the
lattice dynamics of the experiments [112, 113]. On the other hand, PBE calculations
underestimate the phonon frequencies. We do not consider the modifications of optical
branches due to the long-range Coulomb interactions (LO-TO splitting), resulting in
the deviations of optical branches near the I' point. In Fig. 4.3, NNPs successfully
reproduce the phonon dispersions by DFT regardless of the functional type.

To benchmark thermal properties of solids at constant pressures, the linear coef-
ficient of thermal expansion (CTE) and heat capacity (C},) are calculated in Fig. 4.4
within the quasi-harmonic approximation [56]. As can be seen in Fig. 4.4(a), for both
pure phases, the predicted CTE in SCAN-NNP compares favorably to the experiments,
whereas PBE-NNP overestimates it by about 20-30%. Similarly, Fig. 4.4(b) shows
that C}, of MgO agrees well between SCAN-NNP and experiment, while PBE-NNP
slightly overestimates it. For CaO, C, is accurately predicted by both NNPs, although
SCAN-NNP and PBE-NNP perform slightly better at temperatures below and above
350 K, respectively.

We next compare structural properties of the liquid phases, which are obtained by
employing 100-atom supercells and NVT ensembles with temperatures of 3100 and
2850 K for MgO and CaO, respectively. The radial and angular distribution functions
(RDF and ADF, respectively) are averaged over 40-ps MD simulations, preceded by

5-ps pre-melting at twice the temperature and 10-ps equilibration. The total and atom-
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Fig. 4.4: Thermal properties of MgO and CaO calculated by quasi-harmonic approx-
imations: (a) linear coefficient of thermal expansion (CTE) and (b) heat capacity at
constant pressure (Cp,). Experimental values of CTE for MgO and CaO are from
Ref. [114-116] and Ref. [116, 117], respectively, while ), is from the thermochemical
tables [118].

58



(@)

g(r

(b)

p(6) (arb. units)

3-|/-MgO Total 3-|/-Ca0 Total
2 2

1] o~ 1 o
0 T T T 0 T T T

3 Mg-Mg | 3- Ca-Ca
2 2

11 /\/\’ 11 /\/\-
O T T 0 Te T T

3 Mg-O 3 Ca-O
2+ 2+

1 1

0 T T T O T T T

34 0-0 3+ 0-0

2 2

11 /\__/\/ 11 /\/\\-
0 I T 0 i T T

0.02+

0.01+

0.00 —
0.024-Ca0

0.01+

0.00

0 45 90 135180
0(°)

——PBE

—-— SCAN
----PBE-NNP
SCAN-NNP

Fig. 4.5: (a) Total and partial radial distribution functions (g(r)) and (b) total angular

distribution functions (p(#)) of liquid MgO and CaO.

| i P
=, = t_.
—

,-,H

59 e i'

| 8}



(@)

g(n

(b)

p(6) (arb. units)

34|/-MgO Total 3- Total
27 (Y 27 N
R I A 14 | N ]
O JI T T O JI T T
31 Mg-Mg | 3+ Ca-Ca
21 A 21 .
11 JASIP e N R B f‘ N m ™
0 I/ T T 0 T / T T
4
31\ Mg-O | 3 ,"‘\ Ca-0
24 1 2- I\
11 TN 1 | N T~
0 1 ] ] 0 T ]
3 0-0 3 0-0
21 “\ 21 o~
11 / e e /ST
0 lj T T 0 IJ/ T T
0 2 4 6 8 0 2 4 6 8
r(A) r(A)
0.02--MgO|
f‘.
\
N\
0.01- I\
/ kN
/ \ —.— SCAN (100)
Y
0.00 » SCAN-NNP (100)
0.024|/-Ca0 ---- SCAN-NNP (12500)
A
Iy
[
0.014 | ‘t.\
N
/ ™
0.00+———+——
0 45 90 135180
0(°)

Fig. 4.6: (a) Total and partial radial distribution functions (g(r)) and (b) total angular

distribution functions (p(#)) of liquid MgO and CaO in large supercells. The number

of atoms within the simulation cells are shown in the parentheses.

ER
60 i A

U



resolved RDFs in Fig. 4.5(a) indicate that the first peaks are dominated by heteropolar
pairs for both liquid MgO and CaO (I-MgO and [-CaO, respectively). The first peaks
lie at 2.0 and 2.2 A for MgO and CaO respectively, where the difference stems from
the larger ionic radius of Ca than that of Mg. The second peaks consist of mostly
homopolar pairs, with similar distributions among the pairs. The ADFs are shown in
Fig. 4.5(b), and both phases commonly exhibit a major peak at 90° and shoulder peaks
around 50° and 150°. Both NNPs well reproduce main features in the RDF and ADF
from DFT calculations. In addition, the RDF and ADF are also consistent in 12,500-
atom supercells, as shown in Fig. 4.6. It is noticeable that the liquid structures of PBE-
NNP and SCAN-NNP are hardly distinguishable despite the significant differences in

the solid phase.

4.3.3 Test of NNP on pseudo-binary mixtures

In this subsection, we test the accuracy of NNPs for solids and liquids at intermediate
compositions. To this end, we first compare the formation energies of substitutional
defects in solids that affect the free energy of mixing at low concentrations. The defect

formation energy (D) is defined as follows:
D¢ = Eqeteet — Y_ NiEi, (4.8)
i

where Egefect means the total energy of the supercell containing a point defect, and NV;
and E; (¢ = MgO, Ca0) indicate the number of formula unit in the supercell and the
energy of pure phases, respectively. As can be seen from Table 4.4, NNPs reproduce
DFT formation energies of the substitutional defects within 3%. Both PBE and SCAN
produce a larger Dy for Capyg than for Mgca, which implies a lower solubility of the
former. It is also seen that SCAN produces a higher Dy than PBE by 0.2 eV, which
affects the solubility limit as will be shown later.

Next, we compare the formation energies of ordered structures at intermediate

compositions. We consider ten ordered structures [119] by exchanging cations in the
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Table 4.4: The formation energy of substitutional defects in eV. Cayye and Mgc, mean
a single-atom impurity of CaO in MgO and MgO in CaO respectively, where we use

216-atom supercells to evaluate the formation energy of point defects.

Type PBE PBE-NNP SCAN SCAN-NNP

Cang  1.00 0.98 1.21 1.19
Mgca  0.67 0.70 0.86 0.82
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rocksalt lattice, including L1g, L1y, NbP, NigMo, L1s, D0s2, and MoPt, structures
where the latter three structures include both Mg- and Ca-rich stoichiometries. The

formation energy per atom (A FE) is defined as follows:

AE; , 4.9

Esc — Z N;E;
i

1
e
where Egc means the total energy of the ordered structure and other notations are
the same as in Eq. 4.8. The AFE;’s computed by DFT and NNPs are compared in
Fig. 4.7, showing that NNPs closely reproduce corresponding DFT results within 10
meV/atom. It is understandable that the errors in A Fy are maximum at Mgy 5Cag 50,
as the training set consists of pure phases and mixtures of up to 20% mole fractions. It
is seen that none of the ordered phases are energetically favorable with respect to the
pure phases, with A E greater than 50 meV/atom. We also note that the magnitude of
AFE is larger in SCAN than PBE, which is consistent with Ds.

As a preliminary test to see behaviors of cations in solid solution before calcu-
lating phase diagram, we perform hybrid MC-MD simulations of halite phase with
Mg 5Cag 50 stoichiometry at 1200 K. We employ NPT ensemble with 1-fs time step,
and the initial configuration is given by random solid solutions containing 8,000 atoms
and equilibration of 10 ps. Then in the subsequent 200 ps, Mg—Ca cation pairs are
allowed to exchange their sites at 0.2% of the cations per time step, according to the
Metropolis criterion. These exchanges accelerate the diffusion process of cations dur-
ing the annealing. As a measure of distribution of cations, we take the average over the
number of cation pairs that are within 4 A, corresponding to the second nearest neigh-
bors in rocksalt lattice. As shown in Fig. 4.8(a), the number of Mg-Mg and Ca-Ca pairs
increases over time from 6 corresponding to a random occupation, while the number
of Mg-Ca pairs decreases. This indicates that mixing is energetically unfavored, as is
consistent with the positive formation energy of substitutional defects (Table 4.4) and
ordered structures (Fig. 4.7).

In addition, as seen from the atomic structure in Fig. 4.8(b), the random config-

uration is divided into MgO- and CaO-rich regions at 200 ps. The large difference
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Fig. 4.8: (a) Time evolution of the average number of second nearest-neighbor cation
pairs in Mgy 5Cag 50 simulated by hybrid MC-MD simulations at 1200 K and (b)

snapshot at 0 and 200 ps. Atomic structures are visualized without O atoms for clarity.
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in lattice parameters between rocksalt MgO and CaO (~14%) leads to distortion of
the cubic lattice by local contraction and expansion at corresponding region. This dis-
tortion eventually contribute to the formation of line defects near the boundaries, as
seen from the middle-left region at 200 ps, which indicates that the formation of grain
boundaries may be energetically favored over misfit deformation. From these aspects,
one would expect spinodal decomposition at this temperature and composition, which

will be verified in the next section.
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4.4 Free energy calculations and phase diagram

4.4.1 Free energy of pure phases

With the accuracy on solid and liquid phases confirmed, the trained NNPs are used
in the thermodynamic integration to calculate free energies of the solid and liquid
phases. We employ a 10-point Gauss-Legendre quadrature to evaluate the integral in
Eq. 4.2 using the lattice parameters obtained from NPT simulations at zero pressure
(see Fig. 4.9). For all the phases, each point in the quadruture is evaluated by employ-
ing a 1,000-atom supercell and 2-ps equilibration followed by 5-ps sampling for the
temporal average. We use the Langevin thermostat [107] with the center of mass fixed
to avoid drift of the atoms [64, 120, 121]. To determine convergence, we use the block
standard error (BSE) as a measure of uncertainty [122].

Figure 4.10 shows the computed free energies of pure phases, which are fitted to

an analytical free energy model as follows:
G°(T)=a+bT +cT'InT +dT? +¢/T, (4.10)

where a, b, ¢, d, and e are fitting parameters. Similar function forms were used in
the previous thermodynamic calculations [62] and MD studies [120, 123]. The error
of fit is less than 2 meV/atom in both solid and liquid phases, which is on the order
of the BSE of each point and sufficient to obtain melting properties. By fitting to the
smooth function in Eq. 4.10, the determination of temperature-dependent free energies
becomes robust against statistical fluctuations in the numerical integration. We add that
the specific function form has negligible effects on the melting properties as long as
the free energy data are well fitted into the model.

The resulting free-energy curves of MgO and CaO are shown in Fig. 4.10 as solid
lines, and the parameters of Eq. 4.10 are tabulated in Table 4.5. Melting properties ob-
tained from intersections of the free-energy curves are summarized in Table 4.6. The

melting point of MgO is calculated as 2787 K by PBE-NNP, which is consistent with
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energy curves.
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the previous works at the PBE level, 2747 K by DFT calculations [103] and 2698 K by
the Gaussian approximation potential (GAP) [93]. However, these values are signifi-
cantly underestimated compared to the experimental range of 3040-3250 K [62, 103].
In contrast, the SCAN-NNP produces an improved melting point of 3173 K, which
is within the experimental range and agrees reasonably with the previous SCAN-DFT
calculations (3032 K) or SCAN-GAP (3072 K) [93]. The entropy of fusion and slope
of melting curve of MgO are mostly consistent among the same functional. On the
other hand, the melting point of CaO is computed to be 2640 K by PBE-NNP, which is
far below the experimental data of 2850-3220 K [62]. The SCAN-NNP better predicts
the melting point of CaO to be 3057 K, which is within the experimental range.

For a further check, the melting points of the pure phases are recalculated with
the coexistence method [65, 124]. In this method, the simulation cell contains solid
and liquid phases and the interfaces between them, which is directly equilibrated to
identify the transition temperature at which the interface stops moving. We employ a
16,000-atom simulation cell that is a 10x 10x20 replication of the conventional unit
cell. The initial simulation cell is prepared in NPT ensembles, with the initial guess
on melting points calculated from the thermodynamic integration. Half of the simu-
lation cell is melt-quenched to the tentative melting point while the other atoms are
frozen. Then the simulation cell is equilibrated within the NPH ensemble for 100 ps,
and the temperature is sampled for another 100 ps. When we test the cell size effect
with 2,000-atom simulation cells, the melting point shifts only by 6 K. As can be seen
in Table 4.6, the melting points calculated by the thermodynamic integration and co-

existence methods agree within 40 K.

4.4.2 Phase diagram

To construct the full phase diagram, we compute the free energies in semigrand en-
sembles at intermediate compositions. The isobaric ensemble is used to allow for the

volume to change according to the composition during the MD simulations, and the
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cell size is the same as in the thermodynamic integration. The ensemble is equilibrated
and sampled during 50,000 steps with the 2-fs time step, and attempts to swap be-
tween Mg and Ca atoms are set at 1% of the cations per time step. Single run of the
semigrand ensemble simulation at given Ay and 7" provides the corresponding equi-
librium composition x. After carrying out the semigrand ensemble simulations over a
set of (Ap,T'), one can obtain composition-dependent Gibbs free energies following
the relation in Eq. 4.6.

In Fig. 4.11(a), results from the semigrand simulation using SCAN-NNP are shown
for A = pcao — pnvgo- With solid solutions at 2400 K, there exists a Ay range where
the equilibrium composition is not unique due to the dependence on the initial compo-
sition. Because of this hysteresis, pure phases of MgO or CaO should be used as initial
configurations to scan over end compositions. This is the reason why data points are
empty for a range of intermediate compositions at 2400 K (and also 2800 K). The hys-
teresis weakens with the increasing temperature and almost disappears at 3200 K. For
the liquid phase, such hysteresis does not exist at any simulation temperature.

The semigrand simulations are carried out for solid and liquid phases at least five
temperatures spanning relevant domains in the phase diagram. (For example, in the
case of SCAN-NNP, the simulation temperatures for solids (liquids) are sampled from
1200 (2400) K to 3200 (3300) K with the interval of 400 (100) K.) In order to in-
terpolate free energies over the whole phase diagram and obtain G(x,T') via integra-
tion of Au(x,T) following Eq. 4.6, we introduce analytical models for the free en-
ergy [62, 76] and fit them to the simulation data in Fig. 4.11(a). First, the free energy

is written as follows:
G(z,T) = Gpure(m,T) + AGnix(z,T), “4.11)

where x is the mole fraction of CaO and Gpure(z, 1) means the weighted average of

free energies of pure phases:

Gpure(2, T) = 2G 0 (T) + (1 — 2)Gyuo (1), (4.12)
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where Gy, and G¢y, are free energies of the pure phases obtained in the previous
subsection. In Eq. 4.11, AGpix(x, T') means the residual free energy of mixing defined

as
AGnix(z,T) = kpT[zlnz + (1 —z)In (1 — z)]

+2(1 — 2)(A+ Bz + Cz?), (4.13)

where the first term corresponds to the ideal free energy of mixing, and the second

term reflects the non-ideality with the temperature-dependent parameters A, B, and

C. The chemical potential model is derived from the relation in Eq. 4.6, written as

G (z,T)
AM(%T) = HCaO — UMgO = “or
= G2,0(T) = G310 (T) + kaTIn <1f>
+A+2(B— Az +3(C — B)a? — 4023, (4.14)

Equation 4.14 is fitted to the simulation data in Fig. 4.11(a), and the optimized mod-
els in solid lines are in good agreements with the simulation data. The parameters
A, B, and C are assumed to be linear with the temperature as in Ref. [62], and the
fitting RMSE of the solid phase is 5.1 and 7.3 meV/atom for PBE-NNP and SCAN-
NNP, respectively, and the corresponding RMSEs in the liquid phase are 3.6 and 5.8
meV/atom, respectively.

Figure 4.11(b) shows the fitted AGpix in Eq. 4.13 at the selected temperatures,
and the parameters are compiled in Table 4.7. At 2400 K, the free energy curve for the
solid phase features a miscibility gap resulting from the two local minima at terminal
solutions, while no liquid phase is thermodynamically stable throughout the compo-
sition. At the elevated temperature of 2800 K, the liquid phase becomes stable over a
range of intermediate compositions, and so the eutectic point is expected to lie between
2400 K and 2800 K. Above 3200 K, the liquid phase is always stable over the solid
phase as the temperature becomes higher than the melting point of both pure phases.
The dotted lines in Fig. 4.11(b) are common tangents of stable phases, and the con-

tacts are indicated by the circles. These contacts represent the phase boundary since
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the coexistence of those phases is thermodynamically favored over other compositions
and phases.

The full phase diagrams constructed with NNPs are shown in Fig. 4.12 together
with experimental data. Based on the fitted analytical free energy models, we calculate
the phase boundaries with the 1 K interval between 1200 and 3200 K. It is seen that
both PBE-NNP and SCAN-NNP reproduce the characteristics of the MgO-CaO sys-
tem such as eutectic points and solubility limits. In detail, the eutectic compositions
predicted by PBE-NNP and SCAN-NNP are 0.50 and 0.49 for the mole fraction CaO,
respectively, which are within the experimental observations of 0.45-0.60 [62] (see
red crosses). The eutectic temperature, on the other hand, is 2253 K and 2651 K for
PBE-NNP and SCAN-NNP respectively, only the latter being close to the experimental
range of 2550-2640 K. The failure of PBE-NNP is consistent with the underestimated
melting points of the pure phases. The experimental solid solubility of CaO in MgO
(MgO in CaO) at the eutectic temperature is 6% (22%) mole fraction CaO [125], which
are closely reproduced by SCAN-NNP within the error bar. The PBE-NNP can also
reproduce the solid solubility of CaO in MgO at its own eutectic temperature, but the
solubility of MgO in CaO is overestimated by about 10%. The overestimation is re-
lated to the smaller formation energy of substitutional defects than with SCAN-NNP
(see Sec. 4.3.3), which leads to thermodynamic preference toward mixing. Other ex-
perimental data regarding the solvus, solidus, and liquidus are all in good agreements
with those by SCAN-NNP.

Figure 4.13 compares the phase diagram by SCAN-NNP and those from other
atomistic simulations (see gray lines). Previous theoretical works identified only solid-
state phase diagrams of the MgO-CaO system with classical potentials [7, 126] or first-
principles calculations [7, 119]. (To note, the effect of lattice vibration is considered
only in Ref. [7].) It is seen that none of previous works produced correct solvus lines
on both MgO- and CaO-rich sides. On the other hand, the results by CALculation of
PHAse Diagrams (CALPHAD) modeling are also presented in Fig. 4.13. While solvus
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lines are consistent with the SCAN-NNP results, eutectic point, solidus, and liquidus
are at variance with each other, even among the CALPHAD data. This is because while
solvus lines are validated through a number of experiments, the data for solidus and
liquidus lines are sparse and scattered [62]. The mismatch of the phase boundaries
from CALPHAD models is understandable because each model is fitted to different

sets of data points.
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4.5 Summary

We remark on the computational efficiency for constructing the phase diagram. The
whole procedure, including the data set generation, NNP training, and free energy cal-
culations with MD simulations, took about ten days of computing time on 400 cores of
Intel® Xeon® Gold 6148 CPU running at 2.4 GHz. In detail, about five days were spent
on generating data sets and training NNPs, and another five days on free energy cal-
culations using NNPs and 1,000-atom cells. If identical free-energy calculations were
carried out by purely DFT approaches, it would take several decades with the same
computational resource, even assuming that the free energy calculations are done on
smaller 200-atom simulation cells. This is mainly because the hybrid MC-MD sim-
ulations require a large amount of computing resources due to several million time
steps.

In summary, we developed NNPs for the MgO-CaO pseudo-binary system and
demonstrated construction of the full phase diagram. The accuracy of NNPs trained
over PBE or SCAN data is confirmed by validation over diverse properties. Notably,
SCAN-NNP outperformed PBE-NNP in most cases when compared with experiments.
The full phase diagrams are determined from the free energy calculations employing
thermodynamic integration and semigrand ensemble methods. Notably, SCAN-NNP
produced a phase diagram that closely follows experimental measurements on lig-
uidus, solidus, and solvus lines, including the eutectic point and solid solubility limits.
In conclusion, we believe that this work will pave the way to the ab initio CALPHAD

approach with high prediction accuracies.
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Chapter 5

From chemical composition to phase diagram: a case

study for HfO,

5.1 Introduction

While Chapter 4 demonstrated that the phase diagram for the pseudo-binary system
is constructed accurately compared to experiments, there was an assumption that the
phase information is known a priori. In other words, the free energy is calculated only
for rocksalt and liquid phases in MgO—-CaO system since these are experimentally
known to be stable at atmospheric pressure. However, given that a large fraction of the
chemical space of materials remains unknown [128], it seems necessary to generalize
this MLP-based approach to the phase diagram to unexplored chemical spaces.

One of the possible route to achieve this goal is to use theoretical methods such as
crystal structure prediction (CSP) [129] to detect stable phases starting from a given
chemical element and composition. A number of CSP algorithms have been devel-
oped and extensively tested to find the most stable as well as metastable phases for a
wide range of systems [14, 130]. The candidate structures are generated based on, for
example, informatics, random approaches, and genetic algorithms, and their stability

is mostly measured on 0 K energies and lattice dynamics calculated within density-
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functional theory (DFT). Whereas it could be valid at low temperatures, prediction of
phase stabilization or transition at high temperatures requires another methodologies
such as MD simulations and free energy calculations.

In the meanwhile, HfO, if of technological importance in electronic applications
such as high-k dielectrics, related to its phase transition at finite temperatures [131].
From the room temperature, HfO5 undergoes two phase transitions: from monoclinic
to tetragonal and cubic phases, with space group of P2;/c, P49/nmc, and Fm3m, at
~2000 and ~2800 K [131], respectively, before melting at ~3100 K [132]. Further-
more, formation of ferroelectric phase in thin film is known [133], and theoretical
investigations suggest a possible polymorph with space group of Pca2,, adding to the
difficulty of predicting phase transitions.

With these motivations, this Chapter investigates phase transition of HfOo without
any prior phase information using a combination of CSP algorithms and NNP. Two dif-
ferent approximations in exchange-correlation energy, PBE and SCAN functional, are
also compared with the experiments to test their predictive power. Thermodynamically

stable phases and transition among them are investigated based on MD simulations.
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5.2 NNP training from chemical composition

5.2.1 Crystal structure prediction

For phase search of HfOy, we employ CSP algorithm as implemented in SPINNER
code [14, 102], which exploits NNPs as a surrogate model of direct DFT calculations.
We employ SCAN functional [19] for accurate description of energy of crystal struc-
tures, as will be discussed below. Following the standard procedure of this code [102],
we start from training of primitive NNPs using ab initio melt-quench-anneal simula-
tions to sample local environments at the given chemical composition. After finding
candidate crystal structures, they are fully relaxed using DFT calculations to find true
local minima. As shown in Fig. 5.1, the primitive NNP has erroneous potential en-
ergy surfaces and is not satisfactory to find ground states. To improve accuracy for
ordered structures, these NNPs are iteratively trained on the candidates of CSP output
until converged. At the final iteration, the NNP energies become accurate for a set of
structures, especially at low energies.

Then the crystal candidates are searched for 3,000 generations with the 100 meV/atom
energy window. The final candidates are fully relaxed by DFT until a force criteria of
1073 eV/A and deduplicated with pRDF indicators [102] and the space group. We note
that due to the small differences between the structures, high resolution is required to
distinguish them: for example, pRDF indicator with threshold of 10~ or space group
tolerance of 0.03 A. As a result, 22 candidates are obtained in total, and their energy
and volumes are plotted in Fig. 5.2(a), and detailed information is given in Table 5.1.
We note that all three atmospheric pressure phases can be found with this NNP-based
CSP algorithm (red circles). In addition, the ferroelectric phase (Pca2;) is also found
(a green circle), which is relevant to a large permittivity in thin film [134]. The others
include 1 high-pressure phase and 17 theoretical phases (blue circles).

On the other hand, as can be seen in Fig. 5.2(b), results based on PBE functional

show that another theoretical phase with the energy almost the same to the ground
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Fig. 5.1: Comparison for structural energy between DFT and NNP during the iterative
training. The NNP is trained on total 4 iterations, and the structures obtained from the

CSP algorithm are fully relaxed within DFT.
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Table 5.1: CSP results: 22 polymorphs of HfO9 with space group, energy, and volume.

The energy is referenced to the lowest-energy phase. Atmospheric pressure and ferro-

electric phases are abbreviated with the notations, and experimentally observed phases

are indicated by descriptions in the last column.

No. Space group Energy Volume  Notation Expt.
(meV/atom) (A3/atom)
1 P2./c (14) 0 11.23 Ground state
2 Pbca (61) 10 11.24 High pressure
3 Pca2; (29) 24 10.83 Ferroelectric
4 P2y/m (11) 28 11.27
5 Pbcn (60) 33 11.92
6 Pnma (62) 37 11.36
7 141/amd (141) 40 13.65
8 P432,2 (96) 46 10.79
9 P4o/nmc (137) 46 10.79 Ambient pressure
10 P2,/c (14) 47 12.11
11 Pbca (61) 50 12.72
12 P49/mnm (136) 50 12.25
13 P2,/c (14) 69 11.03
14 C2/m (12) 82 14.12
15 Fm3m (225) 87 10.47 Ambient pressure
16 P1 (1) 88 11.32
17 C2/c (15) 90 11.26
18 P3 (147) 97 11.97
19 P2,2,2 (18) 100 12.13
20 C2/m (12) 111 12.05
21 Pbcen (60) 113 12.07
22 Pbcn (60) 131 10.36
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state, whose space group is I4;/amd and volume 21% larger than the ground state. This
could be attributed to the underbinding of the PBE functinoal. This phase has an energy
40 meV/atom higher than the ground state in SCAN, so we do further investigations

within the SCAN functional that gives correct energetic order.

5.2.2 Retraining and validations

The NNPs obtained within Sec. 5.2.1 is tested for equations of states and phonon
dispersion, but its accuracy is dissatisfactory when compared to the DFT. Therefore,
we construct an accurate data set based on the CSP results with two approaches. First,
all the candidates are included in the data set with uniaxial, biaxial, hydrostatic, and
shear strains. Then, 5 lowest-energy structures (see Table 5.1) are chosen to sample
finite-temperature behaviors with NVT- and NPT-AIMD simulations. (Condition of
MD simulations are the same to the method in Sec. 4.3.1.) NNPs are retrained on
those data set, which have two hidden layers with 60 hidden node each, and the radial
and angular cutoff distance is set to be 7 and 5 A, respectively.

As shown in Fig. 5.3, NNPs can accurately predict the volume and energy of a
wide range of polymorphs as well as their strain dependency. Furthermore, energetic
order of these structures are also well reproduced, which only differs in meV order.
In Fig. 5.4, phonon dispersion is calculated for three polymorphs, including ground
state (P21/c), high-pressure phase (Pbca), and ferroeletric phase (Pca2;). They are
all dynamically stable at O K, and NNPs well reproduce lattice vibrations compared
to the DFT calculations, except for deviations at high-frequency optical modes. The
other two atmospheric-pressure phases are not dynamically stable at 0 K, confirmed

by imaginary modes.
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5.3 Prediction of phase transition

5.3.1 MD simulations

As a next step, we carry out MD simulations with the retrained NNP to detect ther-
modynamically favored phases at 0 bar. NPT ensemble is employed to address change
of the cell shape. Phase detection is based on the time average of lattice parameters
and atomic position over at least 50 ps. We employ supercells with side lengths being
~25 A, which correspond to 5x5x5 replication of the HfOy ground state. We notice
the cell-size dependence of the MD simulation results; when using smaller supercells
containing 96 or 324 atoms, phase transition is not clearly visible due to the large fluc-
tuations in lattice parameters. Therefore, we select a larger simulation cell containing
1,500 atoms, which is beyond the scope of DFT calculations. The cell size dependence
of MD simulations on phase transition is also noted in Ref. [135].

Upon the heating of ground state P2,/c (m-) phase from 300 K, HfO5 evolves into
P4s/nmc (t-) and Fm3m (c-) phase at ~2500 and ~2600 K, respectively. Inversely,
when cooling the c-phase from 3000 K, phase transition to ¢- and m-phases is ob-
served at ~2600 and ~1200 K, respectively, indicating that these phase transitions are
reversible. On heating or cooling, m- to ¢-phase transition temperature shows a large
hysteresis, while - to c-phase transition occurs with little hysteresis. This can be at-
tributed to the phase change barrier stemming from large mismatch of the cell shape
and volume between m- to t-phases [136].

To further investigate the thermal stability of the phases from crystal structure
predictions, we further perform MD simulations for 5 more phases exhibiting either
low energy at 0 K or high symmetries. Selected polymorphs have space group of Pbca,
Pca2;, P2,/m, I4;/amd, and P43/mnm, corresponding to the 2nd, 3rd, 4th, 7th, and 12th
rows in Table 5.1, respectively. Among them, Pca2; phase is known as ferroelectric
phase [131]. Upon heating from 500 K to 2500 K, Pbca, I4;/amd, and P45/mnm phases

maintain the crystal structure, while Pca2; and P2;/m phases are transformed into
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another phase at 1300 K.

5.3.2 Phase transition temperature

To determine the transition temperature between the phases that appear from MD
simulations, we first calculate the free energy of 7 phases with TI method (see Sec-
tion 4.2.2). Einstein crystal is selected as the reference system to deal with these solid
phases, and the free energy data are fitted to Eq. 4.10 to find the intersections. As can
be seen from Fig. 5.6, free energy of m-phase is the lowest at low temperatures, and
the phase transition to 14;/amd and ¢-phase is observed at 19384118 and 2456496 K,
respectively. (The intersection of m- and ¢-phase is at 230466 K.) The other phases
including ferroelectic o-phase is unstable over the whole temperature range. Parame-
ters of free energy curves (Eq. 4.10) are given in Table 5.2.

In the meanwhile, transition to c-phase and liquid are treated with different ap-
proaches other than TI method. This is due to the vigorous diffusion of O atoms at
elevated temperatures while Hf atoms maintain local vibrations around their ideal po-
sition, making it tricky to apply a direct TI path from Einstein crystal to real sys-
tem. These behaviors would be in line with the small oxygen diffusion barrier in
HfO, [137], which is comparable to the thermal energy kg7’ at the temperatures where
c-phase is stable. One would have to seek another integration path that considers self
diffusion.

The transition from - to c-phase has second-order character as seen from contin-
uous changes in lattice parameters at 2450-2600 K without hysteresis (Fig. 5.5). Thus
we narrow down the transition temperature by additional MD simulations with 20 K
interval, resulting in the ¢- to c-phase transition temperature of 2550410 K. Then the
melting point is determined from coexistence simulations between c-phase and liquid
(see the last paragraph of Section 4.4.1). We use 5,184-atom simulation cell and NPH
ensemble to average the coexistence temperature over 0.6 ns after equilibration of 0.4

ns. This simulation results in the melting point of HfO5 to be 274546 K.

93



0.041 m

0.03+

0.02+

0.014

AG (eV/atom)

0.00+

500 1000 1500 2000 2500
T (K)

m

t

o

14,/amd (#7)
P24/m (#4)
Pbca (#2)
P4,/mnm (#12)

OP> 4 % 8 0

Fig. 5.6: Free energy of HfOy polymorphs. The markers indicate free energies calcu-
lated from the thermodynamic integration method, and the lines are fitted models. Free
energies are referenced to the free energy model of m-phase. Phase notations or the

numbering is referred to Table 5.1.

&) i

94 o



1096977 T 60-210STH-  ¥0-98L6S'T-  €0-9S19S'T  10+0¥68'C-  00ST 00S  (TI#) wuw/ipd
00+36€0L'S  OI-9LEIY'9  #0-90S68'C-  €0-9STIT 10+98106C-  00ET 00S (T#) ®oqd
00+3YL91°C-  80-9€TI6'T-  +0-9TT8I'T-  €0-9€10E'T  10+3LE6S'T-  00TI 00S (r#) wy'ed
00+988YTT  60-218L8'T- +0-98€99°C-  €0-9€¥19'T  10+98968'C-  00ST 00S (L#) pure/Hy]
10+31200C  80-9SY6Y'L  ¥O-¥619'v-  €0-9SYE0'E  10+9€T16'CT-  00€1 00S 0
TOHYLIE'S  LOOSHO9'T  €0-99€1TT-  €0-9V€ET'6  T0+98TLO'E-  00ST 00ST 7
10-96VYE'L-  80-20861'1-  ¥0-9€S8F'T-  €0-9LLOS'T 10+¥868'C-  00¥T 00S w

2 p 0 q D oD ML oD ™ML aseyd

95

‘K[9A1}0adSaI ‘3 pue A9 JO S}IUN UI 918 [, PUB 5 219YyMm ‘0]t "bg 01 pai1oja1 axe o pue ‘p 0 ‘q ‘v "seSuer arjeroduwa)
9SOY) UIYIIM PI[eA A[UO I8 S9AIND AFIoUQ 991) 9y 1By} 0s ‘A[eanoadsar ‘aseyd uaAIS ® JoJ paje[no[ed sI AZIoua 991J 9y} yoIym e

sarmjeroduwo) WNWIXEW pue WNWIUIW 3y} sueaw XMW r pue W 7 -sydiowAjod ¢OJH 10J SOAIND AFIOUQ 991J JO SIdQWRIR] 7' d[qRL



The sequence of phase transitions predicted by NNP is similar to the experi-
ment (m, t, ¢, and liquid phase). It is also consistent that the ferroelectric o-phase
is metastable over the whole temperature range. However, the phase transition tem-
perature differs between the NNP (2304, 2550, and 2745 K) and experiments (2000,
2800, and 3100 K) [131, 132], and the stabilization of 14;/amd phase at 1938-2456 K
is another difference from the experiment.

These can be attributed to the training set, since MD trajectories of ¢-, c-, and
I4,/amd phases are not explicitly included in the training set. Adding missing struc-
tures in the database would help to mitigate these issues, since the accuracy MLP can
be improved by complementing the training set. The error can be also explained by
the small entropy changes associated with the phase transition of HfO, the small an-
gle between two free energy curves at their intersection. Taking transition from m-
to t-phase as an example, the entropy change is as small as 0.2 kg, in which the free
energy error of 5 meV/atom would be exaggerated to be 284 K error in temperature.
Therefore, considering that the training RMSE of NNP on the low-temperature data is
~5 meV/atom, errors for the transition temperature of up to 350 K can be understood
by the small entropy changes. More precise models will be required to obtain more

accurate phase transition temperatures.
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5.4 Summary

To summarize, phase transition of HfO, is predicted by NNPs without phase infor-
mation, as a test for construction of the phase diagram toward unexplored chemical
spaces. Crystal structure prediction reproduces all the atmospheric pressure phases as
well as the ferroelectric phase. The phase transition from the ground state m-phase to
t- and c-phases and liquids are predicted by NNP-MD simulations, as consistent with
the experiments. Errors in the transition temperature or in the stabilization of 14;/amd
phase would be resolved when using more diverse data set. We believe that this purely
theoretical construction of phase transition for HfOy will guide future directions to-
ward phase diagram calculations for experimentally unknown systems.

Using the above-mentioned methods, the phase diagram of an arbitrary binary
system can be constructed in the following order: first, candidate phases are found
through CSP algorithm in diverse composition including pure and intermetallic com-
pounds. Then, NNPs are trained on these candidates and short AIMD simulations,
and temperature- and composition-dependent free energies are calculated by NNP-
MD simulations. During this procedure, the data set can be augmented based on the
candidate phases or uncertainty predictions whenever the accuracy of the model is un-
satisfactory. Finally, the phase diagram is determined from the free energy curves by

common tangent construction.
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Chapter 6

Conclusion

6.1 Summary of results

I first demonstrated a transferable approach for calculating lattice thermal conductivity
at ab initio accuracy using NNPs. Data set based on ab initio MD data set outperforms
random displacement or superposition of phonon modes in accuracy. This is mainly be-
cause while lattice dynamics are well reproduced by all three methods, anharmonicity
such as scattering rates are only consistent when using AIMD data set. When applying
this approach for 25 materials that have diverse symmetries and thermal conductivity, I
obtain RMSRE of 18.6% with 2-10 fold computational acceleration. Effect of the size
of data set is tested, and reducing the data set to 50 structures results in RMRSE of 31%
and up to 50-fold speed-up. While the relative errors are within the factor of two, low-
symmetry materials tend to have larger errors than high-symmetry ones. Nevertheless,
it is still surprising that this approach is applicable for a wide range of materials with
uniform computational cost, making it more beneficial for low-symmetry crystals.

I then demonstrated the construction of full phase diagram for MgO—CaO eutec-
tic system. Two different exchange—correlation functional is employed for generating
data set, and the NNP trained on each functional well reproduces the corresponding

DFT calculations over structural, mechanical, dynamical, and energetical properties.
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Melting properties and phase diagram are successfully obtained through free energy
calculations based on NNP-MD simulations, including thermodynamic integration
and semigrand ensemble methods. While both PBE-NNP and SCAN-NNP reproduce
the eutectic nature of the MgO—-CaO phase diagram, the phase boundaries predicted
by SCAN-NNP closely follow the experimental measurements. These can be related
to the comparative results on the enthalpy of formation and lattice dynamics within
SCAN functional.

The above demonstration utilizes prior knowledge of the phase information, thus
ruling out the possible stabilization of phases other than rocksalt and liquid. To expand
phase diagram calculations to the unknown phase space, I calculate the phase transi-
tion of HfOy without prior knowledge about polymorphism. By employing the CSP
algorithm, I can find 22 candidate structures including all three atmospheric-pressure
phases. After training NNPs with AIMD or polymorph data, NNP-MD simulations
and free energy calculations find the stable phases and transition temperatures. These
result is noteworthy in that the phases and their transitions are obtained with only the

chemical composition, without any experimental inputs.
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6.2 Original contribution to knowledge

This dissertation presents original contribution to knowledge in two ways; first, a com-
putationally efficient and transferable procedure to compute x; in near-DFT accuracy
is proposed, by showing that NNPs trained on short AIMD trajectories can reproduce
k; of a wide range of crystal symmetries. It can be said that another option is added
to the theoretical methods for calculating x; by extending the MLP-based approach
toward complex crystal structures, which has been rarely attempted.

Second, ab initio construction of MgO—CaO phase diagram is demonstrated using
NNPs without experimental parameters, where the eutectic point and phase bound-
aries closely follow the experimental measurements when trained on SCAN functional.
These tasks have been regarded impractical in fully DFT approaches due to the com-
putational cost, and most of the MLP-based works have focused on single-component
systems. Furthermore, it is shown that phase diagram calculations may not require
phase information, by showing that phase transition of HfO5 up to melting point can
be predicted when employing crystal structure prediction algorithm.

The primary focus of computational research based on DFT has been using experi-
mental information such as crystal structures to predict their properties. I would expect
to construct a virtual laboratory that explores materials space from the chemical com-

position to the formation of phases and materials properties.
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