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Abstract

Recently, with the remarkable development of deep learning, various data
have been accumulated. As the structure of big data becomes more diversified
and complex, complex data that is difficult to process with existing hardware
has emerged. Examples of complex data include sequential data and graph data.
Sequential data has characteristics that the current state reflects the input history
and the pattern is not constant and difficult to predict. Graph-type data is
difficult to be expressed in vector form since graphical data includes the
connections between entities. To process such complex data, novel data
processing techniques are required.

In the first part of this study, a method for processing time-series data with a
nonvolatile memristor is proposed. Recent advances in physical reservoir
computing, which is a type of temporal kernel, have made it possible to perform
complicated timing-related tasks using a linear classifier. However, the fixed
reservoir dynamics in previous studies have limited application fields. In this
study, temporal kernel computing was implemented with a physical kernel that
consisted of a W/HfO,/TiN memristor, a capacitor, and a resistor, in which the
kernel dynamics could be arbitrarily controlled by changing the circuit
parameters. After the capability of the temporal kernel to identify the static
MNIST data was proven, the system was adopted to recognize the sequential

data, ultrasound (malignancy of lesions), and electrocardiogram (arrhythmia),



that had a significantly different time constant (107 vs. 1 s). The suggested
system feasibly performed the tasks by simply varying the capacitance and
resistance. These functionalities demonstrate the high adaptability of the
present temporal kernel compared to the previous ones.

In the second part of this study, a method for processing non-Euclidean
graphs using self-rectifying memristor arrays is proposed. Many big data have
interconnected and dynamic graph structures growing over time. Analyzing
these graphical data requires identifying the hidden relationship between the
nodes in the graphs, which has conventionally been achieved by finding the
effective similarity. However, graphs are generally non-Euclidean, which does
not allow finding it. In this study, the non-Euclidean graphs were mapped to a
specific crossbar array (CBA) composed of the self-rectifying memristors and
metal cells at the diagonal positions. When all bit lines of CBA are connected
to the ground, the sneak current is suppressed, and CBA can be used to search
for adjacent nodes. When a single bit line is connected to the ground, the sneak
current, an intrinsic physical property of the CBA, allows for identifying the
similarity function. Sneak current-based similarity function indicates the
distance between nodes, the probability that unconnected nodes will be
connected in the future, connectivity between communities, and cortical
connections in a brain. This work demonstrates the physical calculation
methods applied to various graphical problems using the CBA composed of the

self-rectifying-memristor based on the HfO, switching layer. Moreover, such



applications suffer less from the memristors' inherent issues related to their

stochastic nature.

Keywords: Resistive switching memory, ReRAM, Memory, Hafnium oxide,
Self-rectifying memristor, Complex data, Kernel, Temporal
kernel, Sequential data, Medical diagnosis, Crossbar-array,
Sneak current, Graph algorithm, Process-in-memory
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List of Tables

Table 2-1: The temporal kernel conditions (Ry, signal pulse, and REF pulse)

used in Figure 2-9a-e

Table 2-2: The frequency of the appearance of inputs in the preprocessed

Table 2-3:

MNIST dataset, in which '0000' appeared overwhelmingly,
followed by the inputs '1111', '1000', '0011', '0001", '1100', '0111"
and '1110" in the table (Due to the nature of the picture, the pixels
were continuously blanked or filled in most cases. Therefore,
inputs with consecutive high or low signals mainly appeared, and
there were a few inputs with alternating high and low signals such
as '1010"and '0101".)

Comparison of the results of the MNIST recognition using
memristive temporal kernel computing systems and a software-
based system (single-layer FCN), showing very fast processing

and the highest accuracy in this study

Table 2-4: Results of MNIST recognition using various kernel combinations.

For the recognition, kernel conditions of Figure 2-9a, b, and f of
the main text were used. A combination of 'Figure 2-9a+Figure 2-
9f' showed an accuracy of 91.8%. For a 196x10 input vector, two
kernels processed the input, and a 392x10 readout layer was used
(588x10 readout for the 3 kernels). On the other hand, when the
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pulse width was modified without changing the conditions Ry, C,
and pulse height in the condition of Figure 2-9f, an accuracy of
92.4 % was obtained in the combination of '200ns+2us+5us'. By
combining various kernels or changing pulse conditions for the
same kernel machine, the imperfections of one kernel could be
compensated for by another kernel, and the accuracy could be
improved.

Table 2-5: The accuracy when cycle to cycle variation, cell to cell variation,
and both are considered (kernel condition of Figure 2-9f of main
text was used). Each variation was calculated based on variation
measurement results in Figure 2-1. Up to 1 sigma of each variation
was considered, and when both cycle to cycle and cell-to-cell
variations were included in the simulation, the accuracy decreased
by 0.5 %.

Table 2-6: Results of MNIST recognition using two-layer FCN for the readout
layer of the TK system. The table shows the number of training
parameters used in each two-layer FCN and the accuracy of the
TK system (nBPK = 4). When 196x38x10 FCN was used, 7,828
training parameters were used, and the TK system accuracy was
95.1 %.

Table 2-7: Results of the MNIST recognition while increasing the number of
bits processed in the temporal kernel, showing that as nBPK

increased, both the size of the used readout layer_l and the
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recognition accuracy decreased.
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List of Figures

Figure 2-1. Experimental results on device reliability and reproducibility. a,
Cycle-to-cycle variation of the WHT memristor. Except for the
first cycle out of 100 DC cycles (2.5 ~ -3.2 V), there was a slight
variation in the I-V curve. The inset of (a) shows the read current
at 0.5V for each cycle number. b, Endurance of the WHT
memristor. The WHT memristor showed stable resistive
switching behavior during ~10° pulse cycles. For endurance
measurement, a 3.3 V height 1 us width SET pulse and -3.35V
height 1.5 ps width RESET pulse were used. The read current was
recorded with DC read at 0.9 V and a WHT memristor with 4 um
cell size was used for measurement. ¢, d, Cell-to-cell variation of
the WHT memristor. A total of 80 devices were measured with 20
devices each of 4 pm x 4 pm, 6 pm x 6 um, 8 um x § pm, and 10
um x 10 um. An [-V curve was obtained in each device through a
2.5V ~-3.2VDC cycle (¢), and the read current was extracted at
0.5 V of each I-V curve (d). Data shown in red is read current in

HRS and data shown in blue is read current in LRS.

Figure 2-2: Retention measurement result of the WHT device. The WHT

device has a nonvolatile characteristic in the low



conductance range (a) and a retention time of about 100
days at 25 °C, which is the result of extrapolation based on

60 ~ 150 °C retention data (b). Meanwhile, the WHT device

has a volatile characteristic in a high conductance region (c¢).

This is because the trap depth exerted on the electrons is
different according to the conductance state (trapped
electron density). In the above case, the trapped electron
density was increased by increasing pulse height. Then, the
relatively easier de-trapping of the heavily trapped WHT
device induced the decay of conductance with time. This

can be used as a fading memory.

Figure 2-3: The structure of the IM1R1C temporal kernel system and the [-V
characteristics of the memristor used in the temporal kernel. a, The
structure of the IM1R1C temporal kernel system proposed in this
study. The temporal kernel system can recognize images in the
MNIST database through feature projection and classification. b,
The I-V curve of the W/HfO,/TiN memristor. The sweep order is
marked in the figure. SET and RESET occurred in the positive
bias and the negative bias, respectively, and gradual switching
occurred in both switching conditions. Since the filament
formation process is not required in this electronic switching

device, no electroforming process is seen in the first sweep.
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Figure 2-4: Analysis of the AC characteristics, and device structure of
the W/HfO»/TiN memristor. a, Changes in conductance of
memristor according to pulse number. Pulse number 1~13
correspond to SET pulse, 14~26 correspond to RESET
pulse, and read voltage was 0.5 V. The SET and RESET
pulse heights were 4 V and -4 V, respectively, and the width
of both was 200 ps. b, The conductance of the memristor
according to the 2.5~4 V SET pulse height. Multilevel
switching is possible for both SET and RESET, but the
change in conductance according to the pulse number is
non-linear (a). Also, the change in conductance according
to the pulse height is non-linear as the pulse height
decreases (b). Both nonlinearities were used for the non-
linear transformation of the input in the temporal kernel. ¢,
Scanning transmission electron microscopy (STEM) cross-
sectional image and energy-dispersive x-ray spectroscopy
(EDS) analysis results (right portion) of the fabricated
W/HfO>/TiN memristor with a depth profile. d, XPS
spectra of the W 4f region with a depth profile and fitting
results for the W/HfO»/TiN memristor. The square dot
shows the measurement result (Exp), and the black and red
lines show the fitting result (Fit) and back ground (BG),

respectively. Blue, green, and purple lines show XPS peaks
. ¥ | ] B |1
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of tungsten (W), tungsten oxide (WOs3), and tungsten
suboxide (WOy), respectively. The sample was measured
immediately after the deposition. ¢, d show that tungsten
oxide was generated in the memristor.

Figure 2-5: The effects of the temperature and the cell area on the electrical
properties of the device. a, The I-V curve at various temperatures
(45~105 °C). b, The I-V graph of the LRS at various temperatures
(45~105 °C). ¢, d, The cell area dependence of the resistance
measured in 10 devices in HRS (¢) and LRS (d).

Figure 2-6: The trap depth of the WHT memiristor calculated from the time-
dependent current-relaxation characteristics of the on and off
states at various temperatures. For this test, the current was
measured at the 0.5 V read voltage and the temperature was varied
from 35 °C to 150 °C. a, b, The relaxation curves at various
temperatures of the HRS (a) and LRS (b). Here, the read current
was normalized to the initial current at t = 0. The data show that
the read current rose (a) and decayed (b) over time as the trapped
electrons were being trapped (a) and detrapped (b). These

relaxation curves were fitted into the stretched exponential

t

B
function [f5(t) = Ae_(?) + B] to attain the time constant (T) at

each temperature. ¢, d, The Arrhenius plots of In (t) versus 1/kT

of the HRS and LRS cases. The analysis showed 0.45 eV and 0.13
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eV activation energy, which correspond to the trap depth for the

HRS and LRS, respectively, of the system.

Figure 2-7: The circuit used as a temporal kernel in the experiment, and the V-
t graphs obtained from the DUT and CH2 of this circuit. a, A
temporal kernel circuit composed of a memristor, resistors, and a
capacitor. CH1 shows the shape of the input pulse stream, and
CH2 shows the voltage applied to a 1M ohm resistor. The voltage
across the DUT (green graph) is obtained by subtracting the CH2
voltage from the CHI1 voltage. The left panel shows the circuit
used in the pulse set (marked by pink) and the right panel shows
the circuit used in DC read (marked by blue). b, The voltages
applied to the memristor with a '0101+reference pulse' (left) and a
'1010+reference pulse' (right). ¢, The voltages applied to the
corresponding CH2, where the 4 V and 0 V voltage amplitudes
represent ‘1” and ‘0,” respectively. The voltage across CH2 shows
that the charging and discharging rates of the capacitor were

asymmetric.

Figure 2-8: Fading memory test of the WHT memristor at the low and high
conductance levels. a, Response of the IM1RI1C kernel machine
to input patterns of '1111', '1010', '1000', and '0001' in the low
conductance range. In the low conductance region, the WHT

memristor has nonvolatile characteristics, so the effect of the high
xiii A =
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signal is accumulated and the fading memory is not implemented.
In contrast, the WHT memristor has a volatile characteristic in a
high conductance region, and a fading memory is implemented in
this region (b). ¢, d, Voltage applied to CH1 and CH2 for the input
patterns of '1111','1010', '1000', and '0001" in the low (c) and high
(d) conductance level of the cell 1. During the measurement, a 180
pF capacitor and 390 Q resistor were used for the IM1R1C kernel
machine. 4 V height 1 ps width pulse was used as the signal pulse
and 1 V height 1 ps width pulse was used as the read pulse.
Figure 2-9: Experiment results to analyze the effect of changing parameters on
the kernel characteristics in the temporal kernel system. The read
current at 0.5 V of the memristor for the pulse stream '0000'~'1111"
corresponds to 0~15 in the inset table in e. a, The read current at
0.5V of the memristor for each input under the conditions of 1 MQ
Ry, 4 V signal pulse height, 100 us width, 4 V REF pulse height,
and 100 pus width. b-e, The read current at 0.5 V of the memristor
for each input when Ry, pulse width, pulse height, and REF pulse
height are changed respectively from the condition of a. The
various parameter settings for each figure were summarized in
Table I. The kernel responses for each input of the temporal kernel
optimized for the MNIST recognition are shown in f. Responses
to inputs showing high prevalence in the dataset were well

separated (marked by red circles).
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Figure 2-10: The V-t graphs for the '0000'~'1111" inputs under the conditions
of a 1 MQ Ry with a 4 V signal pulse height and a 100 pus width,
and a 4 V REF pulse height and a 100 ps REF pulse width.

Figure 2-11: The V-t graphs for the '0000'~'1111" inputs under the conditions
of'a 120 kQ Ry, with a 4 V signal pulse height and a 100 ps width,
and a 4 V REF pulse height with a 100 ps width.

Figure 2-12: The V-t graphs for the '0000'~'1111" inputs under the conditions
of 1 MQ Ry with a 4 V signal pulse height and a 200 ps width,
and a 4 V REF pulse height with a 200 ps width.

Figure 2-13: The V-t graphs for the '0000'~'1111" inputs under the conditions
ofa 1 MQ Ry with a 3.5 V signal pulse height and a 100 ps width,
and a 3.5 V REF pulse height and a 100 ps width.

Figure 2-14: The V-t graphs for the '0000'~'1111" inputs under the conditions
of a 1 MQ Ry with a 4 V signal pulse height and a 100 pus width,
and a 3 V REF pulse height, and a 100 ps width.

Figure 2-15: Analysis of the separation of inputs that generated net 1 spikes
('0000','0001','0011'",'0111", and '1111"). From the conditions of a
4V signal pulse height and a 100 ps width, and a 4 V REF pulse
height and a 100 ps width, Ry varies from 1 MQ to 10 kQ. a-c,
The V-t graphs for the inputs that generated net 1 spikes when 1
MQ, 120 kQ, and 10 kQ Ry, were used. d-f, The read current of
the memristor for the '0000~1111" inputs under the conditions in

a-c. When the 1 MQ Ry was used, since the voltage dist_lribut_ed to

¥ _ ]
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Figure 2-16:

the memristor was small, SET switching did not occur after the
first spike (a). Therefore, the responses to the inputs that generated
net one spike (0, 1, 3, 7, and 15) were not separated (d). As Rp
decreased, the voltage distributed to the memristor increased (b-
¢), and thus, the responses to the corresponding inputs were
separated (e and f).

Analysis of the input that caused maximum conductance. a-b, The
V-t graphs for the '1000' and '1010" inputs under the conditions of
a 4 V signal pulse height and a 100 ps width. REF pulse has 4 V
height and 100 ps width. 1 MQ and 120 kQ Ry were used for a
and b. c-d, The read current of the memristor for the '0000~1111"
inputs under the conditions in a-b. Since the large R1. caused slow
discharging, a sufficient interval after the first spike is necessary
to generate a spike that can cause large SET switching. Under the
conditions in a, maximum conductance occurred at the '1000'
input due to the slow discharging by the IMQ R (¢). On the other
hand, under the conditions in b, second and third spikes of
sufficient magnitude to cause SET switching occurred at the '1010'
input due to the fast discharging by the 120 kQ Ry. Therefore,

maximum conductance occurred at the '1010" input (d).

XVi A ==



Figure 2-17: a, The V-t graphs for the '0000'~'1111" inputs under the conditions
of 10 kQ Ry with a 3.5 V signal pulse height and a 500 ns width,
and a 3 V REF pulse height and a 500 ns width. b, The read current
of the memristor for the '0000'~'1111" inputs. Insufficient charging
further increased the separability for the consecutive high signals
since the capacitor was not fully charged even though consecutive
high signals were applied. This is suitable for situations in which
consecutive signals mainly appear, such as in MNIST.

Figure 2-18: Temporal kernels with different time constants (100 ns ~ 1 s).
Load resistance, parallel capacitance, and input interval used in
each temporal kernel are indicated in each figure. a-e, The V-t
graphs for the '1000' input under the condition of a 3.5 V signal
pulse height. a-c represents a temporal kernel with similar
characteristics to the temporal kernel in Figure 2-9a of main text,
but with a different time constant. d-f represents a temporal kernel
with similar characteristics to the temporal kernel in Figure 2-9f
of main text, but with a different time constant.

Figure 2-19: Result of the I-V curve fitting for the WHT memristor and power
consumption in the IMIR1C kernel machine during processing
one input. a, [-V curve fitting of the WHT memristor (HRS state)
based on the conduction mechanisms. b, Power consumption in
the IM1R1C kernel machine (Figure 2-9f kernel condition) during

input processing. Since the resistance of the WHT me_llnristor is

XVil A
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dependent on the voltage, the current passing through the

memristor was obtained with the HSPICE simulation using the

result of the [-V curve fitting in a. The energy (/. . Power(t) - dt)

consumed to process one input was calculated as ~25 pJ.

Figure 2-20: The temporal kernel responses were measured while increasing
the number of bits processed in the temporal kernel from 3 bits to
6 bits. a-d, The temporal kernel responses for the '000~111",
'0000~1111", '00000~11111", and '000000~111111" inputs under
the conditions of 10 kQ Ry with a 3.5 V signal pulse height and a
200 ns width, and a 3 V REF pulse height and a 200 ns width. As
the number of bits processed in the temporal kernel increased, the
separation of the responses to each input deteriorated.

Figure 2-21: The confusion matrices comparing the recognized digit and the
desired digit for the MNIST test dataset (4 situations, from the top
left: nBPK = 3 bits to the bottom right: nBPK = 6 bits) showing
that the number of correct inferences decreased as the nBPK
increased.

Figure 2-22: The automatic medical diagnosis system using the IMIRI1C
temporal kernel and the experiment results in the two sections. a,
A system for diagnosing the malignancy of breast lesions, which
is much simpler than in the existing method (inset in a). In this

system, ultrasonic signals are applied directly to the kernel

XViil A =



machine, so the imaging step is omitted. b, V-t graph for one echo
line of a benign sample (inset in Figure 2-22b). ¢, A part of the
electrocardiogram of a patient with arrhythmia. Long intervals
caused by abnormal beats discharged the capacitor, and the
conductance of the memristor increased in the next pulse. d, Five-
minute temporal kernel monitoring based on the ECG of one
normal patient (case 1) and two arrhythmic patients (cases 2 and
3). When arrhythmia occurred, the conductance of the memristor
increased. Case 3, which had the most severe arrhythmia
symptoms, showed the highest conductance.

Figure 2-23: The increase in the conductance of the memristor varied
according to the degree of arrhythmia. When arrhythmia was
severe, SET switching occurred in the memristor due to long
discharging. a-c¢, The ECG-based V-t graphs for three cases of
normal, arrhythmia, and severe arrhythmia. The electrical signal
of the ECG from the heartbeat was converted into a 2.5 V, 200 ms
pulse and applied to the memristor. d, The read current of the
memristor according to the degree of arrhythmia. The more severe
the arrhythmia was, the more the memristor conductance
increased.

Figure 2-24: The hardware structure needed to create an array of temporal
kernels that can adjust the kernel configuration. a, A structure in

which the resistors are sequentially connected to sevglral metal
. K, [, — |
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lines. In this structure, the resistance value of the temporal kernel
can be adjusted by selecting several metal lines connected to the
resistors. b, A structure in which memristors are connected in
series to the WHT memristors and parallel to the capacitors (b left
panel). The IMIRIC circuit can be implemented in a three-
dimensional structure by stacking TiN, W metals in multi-layers
and depositing a dielectric layer and top electrode in the hole after
hole etching (b right panel). In this structure, the resistance of the
memristor can be set to the desired resistance value using a
method such as the incremental step pulse program (ISPP). ¢, Cell
area of the diffusive memristor-based reservoir and 1IM1RIC
kernel. The diffusive memristor-based reservoir is implemented
using a passive array composed of memristors. Therefore, 4F? is
required per cell (c left panel). If the IMIRIC kernel is
implemented with the structure in a, a minimum area of 8F is
required per cell when using a vertical pillar transistor (T), and the
area increases by 4F” each time a serial resistor is added (¢ middle
panel). The structure proposed in b requires an area of 4F%/cell (¢
right panel). This structure does not require an increase of
area/cell even with additional elements (R, C) other than the
memristor through a 3D integration process.

Figure 2-25: Implementation of various time constants of 1IM1R1C kernel

using MIS capacitor and WHT memristor (HSPICE sil_pulation).
] [»
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Figure 3-1.

Figure 3-2.

Figure 3-4.

a, IMIRIC circuit used in SPICE simulation. b, C-V curve of
MIS capacitor and [-V curve of WHT memristor used for
simulation and their fitting results (red line). In the simulation, an
MIS capacitor (sample device) showing a capacitance of 100 pF
~ 2.2 nF was used, and the WHT memristor fitting result of Figure
2-19 was used. c-g, V-t graphs of the kernel showing fast
discharging (left panel) and slow discharging (right panel)
characteristics (pulse width 50 ns ~ 1 ms). h, V-t graphs in the
kernel condition of 4 ~ 3.5 V pulse height, 2 ~ 1 pus pulse width,
and 10 kQ Rcro. h shows the effect of changing pulse height on
the capacitance of the TK system.

Graph to mCBA mapping. The resistance state of the (n, m)
device corresponds to the weight of the (n, m) edge. The (n, n)
metal cell represents the zero weight, which is the connection of
the node itself.

Two operation methods of mCBA. a, Multi-ground method
(MGM). b, Single-ground method (SGM).

Simulation results for two operation methods of mCBA. a,
HSPICE array simulation results for MGM at N1. b, The
adjacency search result of MGM at NI1. ¢, HSPICE array
simulation results for SGM of N1 to N9. The major and sub-
current paths are marked in red and orange, respectively. d,

Multiple paths between N1 and N9 which are not directly
Xxi A
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Figure 3-5.

Figure 3-6.

connected. The shortest and sub-current paths are displayed in red
and orange, which correspond to the current flow of c.

The main current ratio in the SGM at the various mCBA
configurations. a-¢c, nCBA mapping (upper panel) and [-V fitting
curves (red lines) for the unit cell memristor (lower panel). The
main current ratios for the 9 x 9 and 100 x 100 mapping were 0.60
and 0.45, respectively, when metal cells were placed on the
diagonal cells, while self-rectifying cells were placed on the rest
cells. d, The result of calculating the ratio of Imain pat and Louput in
9 x 9,100 x 100 mCBA under conditions of a, b, and c.
mCBA-array fabrication and the electrical analysis of the
PAHT memristor. a, Scanning electron microscope (left) images
of 9 x 9 mCBA and a cross-section transmission electron
microscope image (right) of the PAHT memristor. b, [-V
characteristic of the PAHT memristor at various set sweep
voltages (2.7 V to 3.5 V). The inset of b is the PAHT memristor
stack schematic. ¢, The surface plot of the three levels of

conductance data of 9x9 mCBA.

Figure 3-7. Chemical and physical analysis of the PAHT memristor. a-c, Hf

4f, O 1s, and Al 3d X-ray photoelectron spectroscopy (XPS)
analysis at the Al,O3/HfO, interface in the PAHT device. d,
Energy-dispersive X-ray spectroscopy (EDS) mapping result of

the PAHT memristor in cross-section TEM.
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Figure 3-8. Retention of the PAHT memristor. a, Retention of the PAHT

memristor measured at various temperatures (40 ~ 100 °C). b,
Arrhenius plots of In (1) versus 1/kT of the LRS retention. A
retention time of ~ 1 year (relaxation time from LRS level to HRS
level) was obtained at room temperature by extrapolating

retention data at 40 ~ 100 °C.

Figure 3-9. The process flow of the mCBA fabrication.

Figure 3-10.

Figure 3-11.

Figure 3-12.

Multi-level and dc cycle results of the PAHT memristor. a, I-
V curve when the DC sweep (SET) voltage is set to 2.4, 2.5, 2.6,
2.7,2.8,2.9,3.0,3.1,and 3.5 V (9 states). b, Result of the 300 DC
cycle of the PAHT memristor (set sweep: 3.5 V, reset sweep: -2.5
V).

Measurement setup for the 9x9 mCBA. Flow chart of the 9x9
mCBA measurement. The 9x9 mCBA was measured in the setup
of the 9x1 custom multiprobe, switch matrix, and semiconductor
parameter analyzer.

Reconfigurability of the mCBA. a, 9x9 mCBA (upper panel) to
which the graph of the lower panel was mapped. b, Affected area
of the mCBA (upper panel) and affected edges of the graph (lower
panel) when a hard breakdown occurs in the (3, 7) cell of the array.
¢, Results of remapping the affected part in mCBA (upper panel)
and the recovered graph (lower panel). For the restoration, the

edge data connected to nodes 3 and 7 are moved to BLg, BLg, WLz,
*» | G — | |
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and WL, and the cells of BL3, BL7, WL3, and WL7 are changed
to HRS. d, The current path and value of the SGM in the original
graph, breakdown case, and the restored graph.

Figure 3-13. An example weighted network. The red arrow indicates various
paths from node 1 to node 9.

Figure 3-14. mCBA-based pathfinding algorithm. a, Process of finding the

shortest path from N1 to N9 with the mCBA-based pathfinding
algorithm. Pathfinding consists of two steps: 1. Search neighbor
nodes (NNs) and the actual distance to the neighbor node with the
MGM, and calculate the distance from the neighbor node to the
target node (TN) as the reciprocal of the SGM. 2. Go to the
adjacent node with the lower sum of the cumulative sum of the
actual distance (source node to present node) and the estimated
distance (NN to TN).
Figure 3-15. MGM and SGM current path at N1. At the source
node (N1), the neighboring nodes, N2, N4, and N5, are searched
for by the MGM. (left upper panel) From the SGM of the neighbor
node of N1 to the target node, it can be seen that N5 is closest to
the target node.

Figure 3-16. MGM and SGM current value at N1. a, MGM result at node 5.
Based on the current level, the weights of adjacent nodes of node
5 can be identified, which coincides with the inset figure. b, SGM

results from the neighbor node of node 5 to the target node.
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Figure 3-17. The path-finding result for all 72 paths of the graph in Figure
3-13. The average number of attempts (red) and incorrect results
(blue) according to the heuristic scale factor k were plotted.

Figure 3-18. Distance calculation method in non-Euclidean graph based on
mCBA and software algorithm.

Figure 3-19. Comparison of the mCBA and Landmark algorithm for the
pathfinding results. a, Comparison of SGM currents of mCBA
and software algorithm-based distance estimation. Euclidean
distance and Manhattan distance were obtained using a landmark
algorithm (2 nodes were set as landmarks), and the bit line current
obtained using SGM was plotted according to the actual distance.
b, Average attempts of landmark algorithm and mCBA-based
algorithm.

Figure 3-20. Schematic diagrams of link prediction algorithm and
community detection algorithm using similarity index based
on SGM and MGM.

Figure 3-21. MGM+SGM similarity score. a and b, MGM and SGM results
in case 1 (node 3, 6) and case 2 (node 1, 8). Calculation procedures
of S(3, 6) and S(1, 8). For the non-edge (3, 6), MGM3 = 3, MGMs
=3, SGMg, 6= 1.13 pA and S(3, 6) = 10.17. For the non-edge (1,
8), MGM, =2, MGMs = 2, SGM(1,5)= 0.44 pA and S(1, 8) = 1.76.

Figure 3-22. Similarity values assigned to non-edges and sampled non-

edges after 20% sampling in the example graph of Figure 3-
¥ | ) ' |1
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20. Since sampled non-edges are created by cutting the original
edges, high S values are assigned due to peripheral connections.

Figure 3-23. Performance results (area under ROC curve) for Zachary's
karate club, Books about US politics, and Twitter retweet
network datasets of SGM+MGM, CN, AA, and Jaccard
indices. SGM+MGM showed the highest and most consistent
performance in the four datasets.

Figure 3-24. SGM distribution and ROC curves of each algorithm for the
Zachary’s karate club dataset. a, Distribution plot of the
SGM+MGM index values. b, Receiver operating characteristic
(ROC) curve of the SGM+MGM index values.

Figure 3-25. The flow chart that describes the community detection
algorithm using SGM-similarity in a small social network
composed of 9 people.

Figure 3-26. Schematic diagrams of community detection algorithm using
similarity index based on SGM.

Figure 3-27. SGM-similarity for community detection. a, SGM currents in
total 45 node pairs. b, SGM currents in 1-hop pairs.

Figure 3-28. A schematic of the dendrogram. The dendrogram can confirm
the results of community aggregation according to the progress of
the algorithm. (left panel) Modularity changes according to
community agglomeration. (right panel).

Figure 3-29. The modularity change in each iteration and a schematic of
] 21 O 1]
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the dendrogram. This result can confirm the results of
community aggregation according to the algorithm's progress.
(inset) Modularity changes according to community
agglomeration. After obtaining the modularity according to the
branch formation of the dendrogram, the branch is cut-off at the
point corresponding to the highest value (= 0.37, at iteration 7). In
the inset dendrogram, each bar from right to left corresponds to
nodes 1 to 9.

Figure 3-30. The whole process of the SGM-based community detection
algorithm. a-f, Similarity matrices and community formation at
each iteration step. After initially creating the SGM-similarity
matrix, the aggregation is shown in the schematic diagram in the
pair with the highest value in the matrix. After the aggregation
process, the SGM-similarity matrix is updated by calculating a
new similarity between nodes and communities, and between
communities according to the UPGMA linkage criteria. Finally,
the algorithm is repeated until a single community remains (h).

Figure 3-31. Algorithm performance evaluation results using various
graph data. a, The dendrogram plot according to the sequential
community agglomeration in Zachary's karate club, Twitter
retweet network, and Books about US politics dataset, and the
modularity calculated at each branch of the dendrogram. b,

Schematics of community detection results at points with

.. ] « —11
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maximum modularity.

Figure 3-32. The maximum modularity of the SGM-based method was

Figure 3-35.

Figure 3-34.

Figure 3-35.

compared with conventional community detection algorithms.
A schematic diagram of ADHD classification and identifying
ADHD determining brain region based on the brain network
analysis using mCBA. The intracortical connections of the brain
region are mapped to square areas symmetrical to the main
diagonal of the mCBA, and the intercortical connections are
mapped between each square. SGM extracts features from the
brain network of each subject, and a 2-layer readout network is
trained with the SGM vector. Based on the classification result,
brain regions where the difference in neural activity was
prominent were mapped to the brain figure.

SGM current distribution of ADHD and NC subjects in three
determining pairs with AUC greater than 0.8.

Flow chart of the entire process of ADHD classification using
mCBA. Connectivity matrices are obtained by calculating
correlation coefficients after the parcellation of raw fMRI
data. The connectivity matrix is mapped to mCBA, and
6612x1 SGM current vector is generated in each brain
network. Among the 6,612 components in the given SGM
vectors of the training sets (180 subjects), the 150 determining

pairs that distinguish ADHD and NC were selected and used
XXVII1 ]



as the input vector to train the feedforward network. The hop
number can be identified according to the current level.
Figure 3-36. Performance of the mCBA-based ADHD classification. a,
Train and test accuracy per epoch when SGM current vector of 1-
hop, 2-hop, and 3-hop pairs were all used as inputs in ADHD
classification. b, Accuracy and AUC of SGM-based method and

existing studies in ADHD classification.
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List of Abbreviations

IMIR1C One Memristor — One Resistor — One Capacitor
3D Three-Dimensional
ADHD Attention-Deficit/Hyperactivity Disorder
ALD Atomic Layer Deposition
Area Under The Receiver Operating Characteristics
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BE Bottom Electrode
BG Back Ground
BL Bit Line
BRS Bipolar Resistive Switching
C Capacitor
CBA Crossbar Array
CC Current Compliance
CH1 Channel 1
CH2 Channel 2
CNN Convolutional neural networks
DC Direct Current
DUT Device-Under-Test
eBRS Electronic Bipolar Resistive Switching
ECG Electrocardiogram
EDS Energy-Dispersive X-ray Spectroscopy
F Feature Size
FCN Fully Connected Network
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fMRI Functional Magnetic Resonance Imaging

HRS High Resistance State

HSPICE Hewlett-Simulation Program with Integrated Circuit
Emphasis

I Current

Iread Read Current

ISPP incremental step pulse program

k Heuristic Constant

L Number of Landmarks

LM Landmark

LRS Low Resistance State
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MAC Multiplication and Accumulation

mCBA Metal-Cell-at-Diagonal CBA

MCV Memristor Conductance Vector

MGM Multi-Ground Method

N Number of Nodes

nBPK Number of Bits Processed by the Kernel
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Memristor’s Low Resistance Level
Recurrent Neural Network
Receiver Operating Characteristics
Scanning Electron Microscope
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Scaning Transmission Electron Microscopy
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1. Introduction

1.1. Memristor-based Physical Computing for Complex

Data Processing

As the amount of information to be processed is rapidly increasing with the
advances in deep learning technology, the limited processing efficiency of
conventional hardware became a serious problem that impedes performance
enhancement in the modern computing system. This motivates the need of
exploring new data processing techniques using novel hardware structures to
enable the processing of complex data. In this regard, resistive switching
random access memory (ReRAM) is a potential candidate for futuristic physical
computing implementation. Using the intrinsic physical properties of
memristive hardware enables effective data analysis.

Temporal data has a wide range of frequencies, and the kernel characteristics
required for each data vary. Recent advances in physical reservoir computing,
which is a type of temporal kernel, have made it possible to perform
complicated timing-related tasks using a linear classifier. However, the fixed
reservoir dynamics in previous studies have limited application fields. This
study proposed memristor (M), resistor (R), and capacitor (C)-combined
structure showing unique circuit characteristics due to the nonlinear I-V of

memristors. The IM1R1C structure can serve as a kernel capable of processing
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various temporal signals. The IM1R1C temporal kernel was used to identify
the static MNIST data, and showed high performance in terms of accuracy,
energy efficiency, and processing speed. The system was adopted to recognize
the sequential data, ultrasound (malignancy of lesions), and electrocardiogram
(arrhythmia), which had a significantly different time constant (107 vs. 1 s).
The suggested system feasibly performed the tasks by simply varying the
capacitance and resistance. These functionalities demonstrate the high
adaptability of the present temporal kernel compared to the previous ones.!'*!

Another type of complex data is graph data. Graph data differs from other
data in that it includes connectivity between entities. Graph data is mostly non-
Euclidean type and is difficult to vectorize, making it difficult to process in the
existing hardware structure. In this study, graph data was analyzed using the
induced sneak current of the self-rectifying memristor crossbar array. The
results of implementing various graph algorithms based on memristive CBA
and applying them to real-world problems show that the intrinsic properties of

crossbars are very effective in analyzing graph structures.



1.2. Objective and Chapter Overview

The objective of the present thesis is focused on complex data processing
with memristor-based physical computing. Intrinsic physical properties (R-C
delay, I-V nonlinearity, sneak current) of the memristive hardware were used
for physical computing.

Chapter 2 describes a new method of sequential data processing using a
nonvolatile memristor-based temporal kernel with time constants
controllability. A temporal kernel was constructed using memristors (M),
resistors (R), and capacitors (C) for effective sequential data processing. The
unit cell has a IM1R1C structure in which a memristor is connected in series
with a resistor and a capacitor, and the resistor and capacitor are connected in
parallel with each other. The 1IM1R1C kernel has the advantage of being
applicable to various situations as it can have various time constants through R
and C control. IM1R1C-based MNIST recognition showed high accuracy (90%)
with high energy efficiency and fast processing speed. In addition, the IM1R1C
kernel was applied to ultrasound®™ and electrocardiogram-based medical
diagnosis'® with very different time constants (frequency range of 1 to 10 MHz).

Chapter 3 introduces a method for processing non-Euclidean graphs using
self-rectifying memristor arrays is proposed. The non-Euclidean graphs were
mapped to the metal-cell-at-diagonal crossbar-array (mCBA), composed of the

self-rectifying memristors. The sneak current, an intrinsic physical property in



the mCBA, allows identifying the similarity function. Sneak current-based
similarity function indicates the distance between nodes, connectivity between
communities and nodes, the probability that unconnected nodes will be
connected in the future, and the neural activity between cortices. This work
shows a feasible demonstration of the memristor-based physical calculation,
being applied to various graphical problems.

Finally, in chapter 4, the conclusion of the thesis is made.
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2. Time-varying data processing with nonvolatile

memristor-based temporal kernel

2.1. Introduction

Convolutional neural networks (CNN), which are composed of a
convolutional layer and a fully connected layer!' show outstanding
performance in static image processing (recognition and classification).”?" I*!
However, when the temporal order of each input vector and the correlation
between the input vectors are essential, such as for natural language recognition
or translation, a method of processing the input over time is required, and CNN
are not suitable for this purpose.*! Such an event sequence or time-dependent
network operation can generally be represented by the relationship between the
present network state, the input, and the previous network state.

A typical network with such characteristics is a recurrent neural network
(RNN) with the long-short-term memory learning rule,” which mitigates the
vanishing gradient descent problem of the classical RNN.! Nonetheless, these
artificial neural networks perform vast amounts of multiplication and
accumulation (MAC) operations during the learning and inference steps. When
these calculations are performed using the conventional architecture in which

the computing unit and memory are separated, even with the latest graphics



processing unit, the cost of achieving the required processing speed and the
energy consumption are enormous.!”

In this regard, the recent upsurge of studies on neural networks that use a
memristor-based cross-bar array (CBA) based on Ohm's law and Kirchoff's law

U3 If the memristor used in such neural networks can process the

is notable."!
event-sequence-related and temporal information, it can achieve RNN
functionality. An even more desirable functionality is to extract the features of
the input information (raw data vector) using a temporal kernel (TK) and feed
them to the next classification layer. A representative example of such a
computing system is reservoir computing (RC), which is composed of a
reservoir and a readout layer (FCN).['4-[13]

The core part of the RC system is the reservoir, where the non-linear
transformation of the input signal is performed based on the fading memory
properties, and the characteristics of the input signal are projected into a rich
enough feature space. The result of the projection is called the reservoir state.!'")
The nonlinear dynamic filtering of RC can be regarded as a specific type of

7H1 " in which the time-varying data can be efficiently

a more general TK!
handled by the fading-memory functionality of the reservoir. Nonetheless, RC
may have severe limitations in adapting different time scale of the input data
due to its fixed time constant of the specific fading memory function. This may

not be the case for other types of TK, based on a physical kernel combined with

other circuit elements, as shown in this work. Also, non-fading (or nonvolatile)



memory can be used as the TK because the time-varying input can be encoded
into the TK by the effects of the time constant of the entire circuit element.
When a memristor is used as the TK, its resistance must be determined by the
different input pulse signals with varying amplitudes and the intervals between
such input signals. If the input signals have simple and obviously
distinguishable patterns, a memristor can sufficiently discern them by assigning
different resistance values. However, for complicated and similar input patterns,
high separability is required, which is usually challenging to achieve with a

£ [200. 121

given type of memristo I Also, the input signals could have substantially

different time constants, which further severely limits the memristor-based

22 B3] In this case, a high-performance kernel

temporal kernel (reservoir).!
machine applicable to diverse circumstances can be created by incorporating
additional circuit components.

Recently, various studies were conducted on hardware-based RC systems
that use volatile memristors, in which a volatile memristor was used to process

20H23) 1ny those studies, the reservoirs were constructed

a time-varying input.!
based on ionic diffusion dynamics (diffusive memristors), in which the the
spotaneously decaying conductance of low-resistance state (LRS) of the
diffusive memristor provided the fading memory function of a reservoir.
However, there are several limitations in using such reservoir dynamics.

Firstly, the duration and interval of the input signal are limited to the time range

in which sufficient conductance decay occurs. For this reason, in the previous



studies, it took 1 to 20 ms for one memristor to process 4-bit data, which is

20],

insufficient for processing a large amount of data.l*”"*!) Secondly, obtaining a

reproducible reservoir state could be challenging. An Ag-filament-based

200 g0 the variation of the

diffusive memristor exhibits stochastic switching,!
reservoir state will be large. Finally, reservoir adaptation could be difficult to
achieve, given that the reservoir dynamics are totally determined by the
material property, which renders the previous system useful only for
applications with a time scale similar to that of the specific memristor.!*'**]
In this study, a device based on an electron trap/detrap mechanism was used
to solve the aforementioned issues.**" **) A W/HfO,/TiN (WHT) memristor
goes into an LRS when the trap is filled with electrons and shifts to a high-
resistance state (HRS) when the trapped electrons are detrapped. Since the
resistance switching is based on the electron trapping and not the ionic
movement, reproducible results can be achieved (Figure 2-1).*°» 27 [n addition,
since the work functions between the top and bottom electrodes differ only
slightly, there is limited built-in potential, so the device has high retention
properties (Figure 2-2a, b).*: 28 Although the WHT memristor has different
time constants of operation according to its conductance level (Figure 2-2c), it
is insufficient to achieve adaptability with a sufficiently large time constant
range. This problem could be solved by combining the memristor with a

capacitor (C) and a normal resistor (R). Under this circumstance, the R-C time

constant of the circuit can be varied, and the memristor response to the temporal



arrangement of the inputs can be controlled.
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Figure 2-1:

Experimental results on device reliability and reproducibility. a,
Cycle-to-cycle variation of the WHT memristor. Except for the
first cycle out of 100 DC cycles (2.5 ~ -3.2 V), there was a slight
variation in the I-V curve. The inset of (a) shows the read current
at 0.5V for each cycle number. b, Endurance of the WHT
memristor. The WHT memristor showed stable resistive
switching behavior during ~10° pulse cycles. For endurance
measurement, a 3.3 V height 1 us width SET pulse and -3.35V
height 1.5 ps width RESET pulse were used. The read current was

recorded with DC read at 0.9 V and a WHT memristor with 4 um

cell size was used for measurement. ¢, d, Cell to cell variation of
11
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the WHT memristor. A total of 80 devices were measured with 20
devices each of 4 pm x 4 pm, 6 pm x 6 pm, 8 pm x § um, and 10
um x 10 um. An [-V curve was obtained in each device through a
2.5V ~-3.2VDC cycle (c), and the read current was extracted at
0.5 V of each I-V curve (d). Data shown in red is read current in

HRS and data shown in blue is read current in LRS.
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Figure 2-2: Retention measurement result of the WHT device. The WHT
device has a nonvolatile characteristic in the low conductance
range (a) and a retention time of about 100 days at 25 °C, which
is the result of extrapolation based on 60 ~ 150 °C retention data
(b). Meanwhile, the WHT device has a volatile characteristic in a
high conductance region (c¢). This is because the trap depth exerted
on the electrons is different according to the conductance state
(trapped electron density). In the above case, the trapped electron
density was increased by increasing pulse height. Then, the
relatively easier detrapping of the heavily trapped WHT device
induced the decay of conductance with time. This can be used as

the fading memory.
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2.2. Experimental

The array of cross-bar-type W/HfO»/TiN memristors was fabricated. A 50
nm-thick TiN layer was sputtered (Endura, Applied Materials) on an SiO/Si
substrate, and the TiN layer was patterned into a line shape to form a BE. The
2-to 10 pm-wide TiN BEs were patterned using conventional photolithography
and the dry-etching system. After the patterning, the residual photoresist was
removed with acetone and cleaned sequentially with deionized water. Then 4
nm HfO, was deposited using atomic layer deposition (ALD) at a 280 °C
substrate temperature using a traveling-wave-type ALD reactor (CN-1 Co. Plus
200). A tetrakis-ethlylmethylamido hafnium (TEMA-Hf) and O3 were used as
precursors for Hf and oxygen, respectively. On the HfO; layer, 50-nm-thick W
TEs were sputtered using the MHS-1500 sputtering system and patterned into
2- to 10 pum-wide lines using the conventional lift-off process. After the
fabrication, the WHT device was analyzed using x-ray photoelectron
spectroscopy (XPS, AXIS SUPRA, Kratos) and energy-dispersive x-ray
spectroscopy (EDS, JEOL, JEM-ARM?200F) to observe the formation of the
tungsten oxide layer. Cross-sectional transmission electron microscope (TEM)
images of the WHT memristor were observed using scaning transmission

electron microscopy (STEM, JEOL, JEM-ARM200F).
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2.3. Results and Discussions

Figure 2-3a shows the TK system that can control the kernel dynamics
using a memristor, a normal resistor, and a capacitor (IM1R1C). This is a
structure in which the reservoir is replaced with a IMIR1C temporal kernel
while maintaining the computing scheme of the RC system. In this TK system,
the charging and discharging of the capacitor transforms the signals applied to
the device into various forms so that the conductance state of the memristor can
be varied depending on the magnitude and sequential arrangement of the input
signal (Figure 2-4a, b). The results of input processing in the kernel form a
memristor conductance vector (MCV), which becomes the input of the
subsequent FCN readout layer. Such a configuration of the TK system allows
the arbitrary variation of the response dynamics by adjusting the sizes of the
resistor, capacitor, and pulse width, etc. Therefore, the optimized TK system

can be configured for tasks with vastly different time scales.

Device analysis. Figure 2-3b shows the measured current-voltage (I-V) curve
of the WHT device. During the electrical measurement, the W top electrode
(TE) was biased, while the TiN bottom electrode (BE) was electrically
grounded. The resistance of the device was changed from HRS to LRS by a

positive bias (SET), and reverse switching was achieved by a negative bias
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(RESET). In both SET and RESET, gradual switching appeared, as shown in
Figure 2-3b and Figure 2-4a, b, which contributed to the high performance of
the TK system. Figure 2-4c shows the cross-sectional scanning transmission
electron microscopy (STEM) image of the WHT device, which revealed the W
TE, the TiN BE, and the 4 nm-thick HfO, layer between the TE and BE. Figure
2-4d shows the X-ray photoelectron spectroscopy (XPS) analysis of the
W/HTO; interface in the WHT device. Analysis of the W peak in the XPS data
revealed the presence of tungsten sub-oxide (WOy, x<2) and a WO3 layer. The
energy-dispersive X-ray spectroscopy line scan result (Figure 2-4c, right
portion) along the vertical line from TE to BE in the STEM image implies that
a thin WO3 was formed at the W/HfO; interface and WO (x << 3) was formed
within the W bulk. Therefore, the WO, may work as a voltage divider when the
voltage is applied to the device, which will cause gradual SET and RESET
performance.™ This is a favorable characteristic, allowing the TK to have
various states. Moreover, this WHT device does not have an electroforming
step (Figure 2-3b), which also contributed to the stable resistance switching
operation (Figure 2-5 and 2-6). W and TiN have similar work functions of ~ 4.5

30131 The symmetric

eV, which may render the energy band profile symmetric.!
energy band profile is unfavorable for fluent electronic bipolar resistive
switching (eBRS).** ¥ However, the WO; layer formed at the W/HfO,
interface can induce a Schottky barrier, whereas the HfO,/TiN interface

32

constitutes a quasi ohmic contact.”” 2 Especially, the chemical interaction
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between the HfO, and TiN layers can produce defects within the HfO, layer,
which provide the system with the electron traps that are necessary to induce
the eBRS mechanism. With the application of the positive bias to the TE, the
traps were filled with electrons that were injected from the TiN BE through the
quasi-ohmic contact, which switched the device to the LRS. Conversely, when
the negative bias was applied, the device switched back to the HRS as the
trapped electrons were detrapped, while the electron injection from the TE was
blocked by the Schottky barrier at the W/HfO, interface.?®! Due to the presence
of the WOy layer, there was no need to set current compliance (CC) during the

operation.

17 7 ]



1. Mapping to temporal kernel

T TP T
ImEm
e

BN

MCV

-
=

Tt

2. Readout

AT
T

b 10?2
]
104 }
< 0%}
E 10-8::
|
8 10-10 !
10-12 J
[ 1st sweep
“ [ 2nd sweep
10°
4 -3 2 101 2 3
Voltage (V)

Figure 2-3: The structure of the IM1R1C temporal kernel system and the I-V
characteristics of the memristor used in the temporal kernel. a, The
structure of the IM1R1C temporal kernel system proposed in this
study. The temporal kernel system can recognize images in the
MNIST database through feature projection and classification. b,
The I-V curve of the W/HfO,/TiN memristor. The sweep order is
marked in the figure. SET and RESET occurred in the positive
bias and the negative bias, respectively, and gradual switching
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occurred in both switching conditions. Since the filament
formation process is not required in this electronic switching

device, no electroforming process is seen in the first sweep.
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Figure 2-4: Analysis of the AC characteristics, and device structure of the
W/HfO»/TiN memristor. a, Changes in conductance of memristor
according to pulse number. Pulse number 1~13 correspond to SET
pulse, 14~26 correspond to RESET pulse, and read voltage was
0.5 V. The SET and RESET pulse heights were 4 V and -4 V,
respectively, and the width of both was 200 ps. b, The
conductance of the memristor according to the 2.5~4 V SET pulse
height. Multilevel switching is possible for both SET and RESET,
but the change in conductance according to the pulse number is
non-linear (a). Also, the change in conductance according to the
pulse height is non-linear as the pulse height decreases (b). Both
nonlinearities were used for the non-linear transformation of the

input in the temporal kernel. ¢, Scanning transmission electron
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microscopy (STEM) cross-sectional image and energy-dispersive
x-ray spectroscopy (EDS) analysis results (right portion) of the
fabricated W/HfO,/TiN memristor with a depth profile. d, XPS
spectra of the W 4f region with a depth profile and fitting results
for the W/HfO,/TiN memristor. The square dot shows the
measurement result (Exp), and the black and red lines show the
fitting result (Fit) and back ground (BG), respectively. Blue, green,
and purple lines show XPS peaks of tungsten (W), tungsten oxide
(WO3), and tungsten suboxide (WOx), respectively. The sample
was measured immediately after the deposition. ¢, d show that

tungsten oxide was generated in the memristor.
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Figure 2-5: The effects of the temperature and the cell area on the electrical

properties of the device. a, The I-V curve at various temperatures

(45~105 °C). b, The I-V graph of the LRS at various temperatures

(45~105 °C). ¢, d, The cell area dependence of the resistance

measured in 10 devices in HRS (¢) and LRS (d).
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Figure 2-6: The trap depth of the WHT memristor calculated from the time-

dependent current-relaxation characteristics of the on and off
states at various temperatures. For this test, the current was
measured at the 0.5 V read voltage and the temperature was varied
from 35 °C to 150 °C. a, b, The relaxation curves at various
temperatures of the HRS (a) and LRS (b). Here, the read current
was normalized to the initial current at t = 0. The data show that
the read current rose (a) and decayed (b) over time as the trapped
electrons were being trapped (a) and detrapped (b). These

relaxation curves were fitted into the stretched exponential

B
function [f3(t) = Ae_(?) + B] to attain the time constant (T) at

each temperature. ¢, d, The Arrhenius plots of In (t) versus 1/kT
of the HRS and LRS cases. The analysis showed 0.45 eV and 0.13
eV activation energy, which correspond to the trap depth for the

HRS and LRS, respectively, of the system.
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Temporal kernel generation. We implemented the TK by configuring the
circuit, as shown in Figure 2-7a. Pulse streams were generated by a pulse
generator (PG), where input signal ‘1’ is converted to a high level, and ‘0’ is
converted to a low level. These pulse streams were delivered to channel 1 (CH1)
and channel 2 (CH2) of an oscilloscope (OSC). A 50 Q resistor was assigned to
CHI1, which allowed monitoring of the input pulse shape. In CH2, a 1 MQ
resistor was connected to the device-under-test (DUT, the memristor) in series.
From the estimated voltage from the CH2 resistor, the voltage applied to the
DUT was inferred. Since the oscilloscope fixes the size of the CH2 resistor at
1 MQ, the overall series resistance to the memristor was adjusted by connecting
a load resistor (Rr), as shown in the figure. Also, a capacitor was connected to
the CH2 resistor in parallel, which stored the charge supplied by the applied
pulse voltage. In this specific experimental setup, its value was fixed at 180 pF,
but the dynamic time constant of the TK system was varied by changing Ry and
the capacitance. The measurement consisted of two steps. In the first step, a
pulse was generated at the PG, which caused SET switching in the memristor,
while the circuit part with the semiconductor parameter analyzer (SPA) was
deactivated (Figure 2-7a left panel). In the second step, the conductance state
of the memristor was read through the DC sweep using the SPA, while the other
parts of the circuit were deactivated (Figure 2-7a right panel). To compose the
temporal kernel circuit, the WHT device with an area of 10 pm % 10 pm was

connected to the pulse generator (PG, Agilent 81110A) and an oscilloscope
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(OSC). A IMIRIC circuit was constructed by adding a load resistor to the
circuit and setting the resistance values of CH1 and CH2 in the OSC to 50 Q
and 1 MQ, respectively. A semiconductor parameter analyzer (SPA, Hewlett-
Packard 4145B) was connected to the WHT device to monitor the DC sweeps.
To process the static and sequential data, the device states after the pulse
streams were measured. After the measurement, the device was reset to the HRS
state and the process was repeated. The TK state was constructed based on the
recorded device states, and the readout layer was trained based on it.

Figure 2-7b shows the voltages transients over the memristor with a
‘0101+reference pulse’ (left) and a ‘1010+reference pulse’ (right), and Figure
2-7c shows the corresponding voltage transients read at CH2. In these
operations, 4 V, 200 us, and 0 V, 200 pus pulses were programmed to represent
‘1” and ‘0’, respectively. The initial resistance of the WHT memristor was set
to 50 MQ when measured at 0.5 V. The role of the last reference pulse is
explained as follows. The left panels of Figure 2-7b and ¢ show that since the
first signal was ‘0’, no voltage appeared up to 0.2 ms. When the first ‘1’ signal
was applied, the DUT showed a peak of up to ~ 3.5 V due to the involvement
of the capacitive charging current, and it decayed to ~ 1.5 V after the capacitor
charging was completed. At the same time, the CH2 voltage showed a
corresponding gradual increase in the capacitor voltage, which was saturated at
~ 2.5 V. When the second ‘0’ signal came in, the capacitor was discharged and

the reverse current flowed into the DUT, which made its voltage negative, while
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the CH2 showed gradual decay of the capacitor voltage. It was noted from the
CH2 voltage that the capacitor was not completely discharged during the 0.2
ms duration of ‘0’ signal, so when the subsequent ‘1’ signal came in, the
capacitive charging current was not as high as in the previous ‘1’ signal case
(where the DUT voltage peaked only up to ~ 2.5 V). Such an effect can be more
evidently seen with the subsequent ‘1’ signal (the reference pulse), as there was
almost no peak in the DUT. Therefore, in this case, the effective number of SET
pulses applied to the DUT was only two (the first and second ‘1’ among the
total three ‘1’s in the ‘01011° sequence). After the entire pulse sequence was
over, the memristor resistance was 28.2 MQ.

In the case of the right panels in Figure 2-7b and c, in contrast, each of
the 1 signals is separated by O signals, and all the three ‘1’s in the ‘10101’
sequence are effective, and they switched the DUT to the SET state, which
made its resistance 26.7 MQ, despite the application of the same number of set
pulses (three) in the two cases. It should be noted, however, that the last two
peaks had a lower effect in decreasing the memristor resistance than the first
one due to its lower peak height, which was induced by the incomplete
discharging of the capacitor during the intervening ‘0’ pulse cycle. This is not
a demerit but actually a merit of this TK system, which allowed even higher
separability and adaptability. Therefore, this TK system can recognize not only
the different input pulse numbers but also their timing. Figure 2-7b and ¢ show

several notable features. First, due to the built-in asymmetry of the band profile
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of the WHT memristor, the resistance at the positive bias of ~2.5 V was ~ 100
times lower than that at the negative bias of ~ 1.5 V. Therefore, the charging
was much faster than the discharging. This is the first factor that allows the TK
system to have higher separability and adaptability. Second, the capacitance and
Ry can be arbitrarily taken to vary the charging and discharging times, which
can eventually affect the effectiveness of the voltage pulse application to the
memristor. Third, the input voltage pulse height and duration are another knob
that can further change the TK dynamics. These features rendered the TK
system flexible and adaptable to the various requirements, as shown in the next
sections. Without the last reference pulse, such a systematic variation and
examination of the memristor state control would have been improbable.

The WHT memristor in this study shows both nonvolatile and volatile
memory properties, when its conductance is low and high, respectively. In this
study, the WHT memristor was operated within the conductance range showing
nonvolatile characteristics, but outside that range, the WHT device shows
fading conductance state (Figure 2-2c). Therefore, depending on the operation
scheme, the IM1RIC kernel can also perform a reservoir function, and the
results are shown in Figure 2-8. In this study, time series data were processed

based on the unique characteristics of IM1R1C, not the fading memory.
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Figure 2-7: The circuit used as a temporal kernel in the experiment, and the V-

t graphs obtained from the DUT and CH2 of this circuit. a, A

temporal kernel circuit composed of a memristor, resistors, and a

capacitor. CH1 shows the shape of the input pulse stream, and
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CH2 shows the voltage applied to a 1M ohm resistor. The voltage
across the DUT (green graph) is obtained by subtracting the CH2
voltage from the CHI1 voltage. The left panel shows the circuit
used in the pulse set (marked by pink) and the right panel shows
the circuit used in DC read (marked by blue). b, The voltages
applied to the memristor with a '0101+reference pulse' (left) and a
'1010+reference pulse' (right). ¢, The voltages applied to the
corresponding CH2, where the 4 V and 0 V voltage amplitudes
represent ‘1” and ‘0,” respectively. The voltage across CH2 shows
that the charging and discharging rates of the capacitor were

asymmetric.
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Figure 2-8: Fading memory test of the WHT memristor at the low and high
conductance levels. a, Response of the IM1RI1C kernel machine
to input patterns of '1111', '1010', '1000', and '0001' in the low
conductance range. In the low conductance region, the WHT
memristor has nonvolatile characteristics, so the effect of the high
signal is accumulated and the fading memory is not implemented.
In contrast, the WHT memristor has a volatile characteristic in a
high conductance region, and a fading memory is implemented in
this region (b). ¢, d, Voltage applied to CH1 and CH2 for the input
patterns of '1111','1010', '1000', and '0001" in the low (¢) and high
(d) conductance level of the cell 1. During the measurement, 180

pF capacitor and 390 Q resistor were used for the IM1R1C kernel
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machine. 4 V height 1 pus width pulse was used as signal pulse and

1 V height 1 ps width pulse was used as the read pulse.
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Modifying the temporal kernel dynamics. In this TK system with the given
WHT memristor property and capacitance, Rr and the pulse height/duration
were varied to examine the separability of the memristor. The capacitance could
also be varied, but it was fixed in this experiment section. Figure 2-9 shows
several examples of the different degrees of separability of the TK system when
these parameters were varied. The examples show the current value read at 0.5
V after the 16 different input patterns, from ‘0000’ to ‘1111°, were programmed
to the PG, with the additional reference pulse added last. Since the output
current depends on the initial resistance, the resistance of the WHT memristor
in this experiment was reset to a constant value (50 MQ at 0.5 V) before
measurement. The x-axis numbers correspond to the different input patterns
described in the inset table in Figure 2-9e, and the different parameters, such as
R1, the input pulse, and the reference pulse, for each graph in Figure 2-9 are
summarized in Table 2-1. It should be noted that in Figure 2-9, the y-axis scales
of each graph were varied to easily compare them. All the detailed pulse
responses and analyses are included in Figures 2-10 to 2-14. In Figure 2-9a,
wherein Rp = 1 MQ, the signal pulse =4V, 100 ps, and the reference pulse = 4
V, 100 ps, the five patterns, ‘0000°, ‘0001°, ‘00117, ‘0111°, and ‘1111” are not
clearly distinguished (an analysis of the separation of these inputs is shown in
Figure 2-15). It was also noted that the ‘1000’ pattern resulted in the highest
memristor conductance, although there were only two SET pulses (the first 1

and the reference pulse at the last SET pulse). This is because the reference
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pulse induced the highest peak voltage to the memristor because the interval
between the two pulses, during which the capacitor was fully discharged, was
the longest (the details are shown in Figure 2-16).

Of the six graphs in Figure 2-9, Figure 2-9¢ shows well the critical
features of this TK system. The only difference of Figure 2-9c from Figure 2-
9a is the pulse length [100 ps (in a) vs. 200 ps (in c)]. As the pulse width
increases, the capacitor discharging during the 0 input increased, and the
subsequent ‘1’ induced a higher peak voltage. The conductance levels in Figure
2-9¢ can be clearly grouped into three levels, which are determined by the
number of 1’s immediately after the ‘0’ (not the total number of ‘1°). For
example, ‘0000’ has only one 1 after 0 (the reference pulse), so it induced the
lowest conductance. Interestingly, ‘1111 has the same low conductance even
though it had five 1 inputs (including the reference pulse). This is because the
only effective ‘1’ was the first one because all the other ‘1’s do not have the
preceding ‘0’s, so they cannot produce peak voltage.

Another characteristic and most desirable setting could be seen in Figure
2-9f, in which Ry was decreased to 10 kQ and the pulse width was decreased to
200 ns. This setting makes the capacitor charging per one voltage pulse (‘1°
signal) insufficient and its discharging during the ‘0’ signals faster. Overall, this
makes the memristor conductance more linearly dependent on the total number
of ‘1’s, as shown in Figure 2-9f (an example of insufficient charging and details

of the effects are included in Figure 2-17). A short pulse length is also beneficial
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to rapidly process the input vectors.

By appropriately changing both the C and Ry, the kernel characteristics
obtained in Figure 2-9 could be implemented at different time scales. Additional
kernels are configured as the time constants in Figure 2-18. Based on the
analysis of the effect of each parameter change, a kernel condition suitable for
the task is determined through kernel adaptation, and ex-situ training is

performed, which is followed by inference.
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Figure 2-9: Experiment results to analyze the effect of changing parameters on
the kernel characteristics in the temporal kernel system. The read
current at 0.5 V of the memristor for the pulse stream '0000'~'1111"
corresponds to 0~15 in the inset table in e. a, The read current at
0.5V of the memristor for each input under the conditions of 1 MQ
Ry, 4 V signal pulse height, 100 us width, 4 V REF pulse height,
and 100 pus width. b-e, The read current at 0.5 V of the memristor
for each input when Ry, pulse width, pulse height, and REF pulse
height are changed respectively from the condition of a. The
various parameter settings for each figure were summarized in
Table I. The kernel responses for each input of the temporal kernel

optimized for the MNIST recognition are shown in f. Responses
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to inputs showing high prevalence in the dataset were well

separated (marked by red circles).
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Figure 2-11: The V-t graphs for the '0000'~'1111" inputs under the conditions
of'a 120 kQ Ry, with a 4 V signal pulse height and a 100 ps width,

and a 4 V REF pulse height with a 100 ps width.
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Figure 2-12: The V-t graphs for the '0000'~'1111" inputs under the conditions

0000+REF 0001+REF 0010+REF 0011+REF
= V(ch1) :Z = V(ch1) :z —V(ch1) 40 = V(ch1)
—Veon s —Voon s —Veon b —Voun
2;5 25 25
S 2 S 2 S 2
g 15 g 15 g’ 15
10 10 10
% 05 % 05 % 05
> 00 > 00 > 00
05 05 05
10 10 -10
-5 -5 -15
20 20 20
0.0 05 1.0 15 2.0 00 05 10 15 20 00 05 10 15 20 50 05 10 15 20
Time (ms) Time (ms) Time (ms) Time (ms)
0100+REF 0101+REF 0110+REF 0111+REF
45 45 45
—— V(ch1) 40 —— V(ch1) 40 — V(ch1) 40 = V(eh1)
—Voin s Vo s Voin s Vo
2! 1 I
s s s
o 15 © 15 o 15 A
oy y g
k g 5 g 5 = g
o > 00 > 00 > 00 Caad
K’ 05 05 05
10 10 -10
15 15 15
20 20 K 20
00 05 10 15 20 %00 05 1.0 15 20 #0005 10 15 20 20005 10 15 20
Time (ms) Time (ms) Time (ms) Time (ms)
1000+REF 1001+REF 1010+REF 1011+REF
- 51:;) :g — 31::20 :g oy — x{:;i :g — x(:;)
Voo 3 Ve s Ve s Vo
— 25 — 25 ,f‘ — 25
> 20 > 20 > 20
‘g' 15 ‘8: 15 W :3’, 15
g 10 g 10 g 10
S0 __\_:, S H H S0
05 /"" 05 05
-10 -10 ( -10
15 -15 -15
-20 20 20
0.0 05 10 15 20 00 05 10 15 20 00 05 10 15 20 00 05 10 15 20
Time (ms) Time (ms) Time (ms) Time (ms)
1100+REF 1101+REF 1110+REF 1111+REF
= o = o —— o =
— Voo » — Voo bot — v bt — Vi
— 25 — 25 — 25
3 20 2{ 20 3 20
Y 15 S 15 [ g 15 A
X X 10
£ 5 E g5 g 5
> 00 > o0 S - S oo} el -
05 /”‘ 05 (’ 05 //'W
1.0 -10 -10
15 15 -15
20 20 20
25 25 25

0.0 05 10 15 20
Time (ms)

of 1 MQ Ry with a 4 V signal pulse height and a 200 ps width,

0.0 05 10 15 20
Time (ms)

0.0 05 10 15 20
Time (ms)

0.0 05 10 15 20
Time (ms)

and a 4 V REF pulse height with a 200 ps width.

39

W



0000+REF 0001+REF 0010+REF 0011+REF
40 40 40 40
b - ot =V It =V bt ]
30 —voun 30 —voun 30 —voun 30 —vioun
25 25 25 25
20 20 < 20 < 20
S 15 S 15 2 15 2 15
g) 10 g) 10 % 10 % 10
£ o0s £ o0s £ o5 £ o5
g 00 § 00 g 00 § 00
05 05 05 05
-10 -10 -10 -10
15 -15 -15 -15
20 20 20 20
00 _ 05 1.0 00 _ 05 1.0 00 _ 05 1.0 00 _ 05 1.0
Time (ms) Time (ms) Time (ms) Time (ms)
0100+REF 0101+REF 0110+REF 0111+REF
40 40 40 40
35 :y:;y 35 :5‘3;’ 35 :\é(g:;) 35 :;(::;»
a0 —Voon a0 —Von %0 —Von a0 —Vam
25 25 25 25
< 20 < 20 < 20 < 20
% 15 % 15 % 15 % 15
o 10 o 10 o 10 o 10
£ 05 £ 05 £ s 8 s
g 00 § 00 g 00 g 00
05 05 05 05
-10 -10 -10 -10
-15 -15 -15 -15
20 -20 -20 20
0.0 0.5 1.0 0.5 1.0 0 0.5 1.0 0.0 05 1.0
Time (ms) Time (ms) Time (ms) Time (ms)
1000+REF 1001+REF 1010+REF 1011+REF
40 40 40 40
35 :z}:;; 35 :xgg 35 :xg;i 35 :x::;:
30 —voun 30 —voun 30 —voun 30 —vioun
25 25 25 25
< 20 < 20 < 20 < 20
a 15 a 15 2’ 15 2’ 15
gl 10 \\\ gl 10 g! 10 g! 10
£ o5 £ o5 £ o5 £ o5
2 o R S w0 S o ~ S o
05 05 05 05
10 /‘ 10 10 -10
15 -15 -15 -15
20 20 20 20
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Time (ms) Time (ms) Time (ms) Time (ms)
1100+REF 1101+REF 1110+REF 1111+REF
40 40 40 40
35 — V() 35 —Vlen) 35 —Vlen) 35 —Vien1)
a0 Ve a0 Ve a0 Vo 30 Voo
25 25 25 25
< 20 < 20 < 20 < 20
a 15 a 15 3 15 2’ 15
S \ & S S
£ o5 £ o5 £ os £ os
g 00 [ § 00 § 00 ! § 00 |
05 05 05 05
-10 -10 -10 -10
15 //- -15 -15 / -15 /
20 20 20 20
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Time (ms) Time (ms) Time (ms) Time (ms)

Figure 2-13: The V-t graphs for the '0000'~'1111" inputs under the conditions
ofa 1 MQ Ry with a 3.5 V signal pulse height and a 100 ps width,

and a 3.5 V REF pulse height and a 100 ps width.
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Figure 2-14: The V-t graphs for the '0000'~'1111" inputs under the conditions
of a 1 MQ Ry with a 4 V signal pulse height and a 100 pus width,

and a 3 V REF pulse height and a 100 ps width.
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Figure 2-15: Analysis of the separation of inputs that generated net 1 spikes
('0000','0001','0011",'0111", and '1111"). From the conditions of a
4 V signal pulse height and a 100 ps width, and a 4 V REF pulse
height and a 100 ps width, Ry varies from 1 MQ to 10 kQ. a-c,
The V-t graphs for the inputs that generated net 1 spikes when 1
MQ, 120 kQ, and 10 kQ Ry, were used. d-f, The read current of
the memristor for the '0000~1111" inputs under the conditions in
a-c. When the 1 MQ Ry was used, since the voltage distributed to
the memristor was small, SET switching did not occur after the
first spike (a). Therefore, the responses to the inputs that generated
net one spike (0, 1, 3, 7, and 15) were not separated (d). As Rp
decreased, the voltage distributed to the memristor increased (b-
¢), and thus, the responses to the corresponding inputs were

separated (e and f).
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Figure 2-16:

Analysis of the input that caused maximum conductance. a-b, The
V-t graphs for the '1000' and '1010' inputs under the conditions of
a 4 V signal pulse height and a 100 ps width. REF pulse has 4 V
height and 100 ps width. 1 MQ and 120 kQ Ry were used for a
and b. c-d, The read current of the memristor for the '0000~1111"
inputs under the conditions in a-b. Since the large R1. caused slow
discharging, a sufficient interval after the first spike is necessary
to generate a spike that can cause large SET switching. Under the
conditions in a, maximum conductance occurred at the '1000'
input due to the slow discharging by the IMQ Ry (¢). On the other
hand, under the conditions in b, second and third spikes of
sufficient magnitude to cause SET switching occurred at the '1010'
input due to the fast discharging by the 120 kQ Ry. Therefore,

maximum conductance occurred at the '1010" input (d).

43 2 A k'_. T ¢



a 0000+REF 0001+REF 0010+REF 0011+REF

, == | NE= ) =) Al NEE
5 S . ,M 2
s £2 g 7 £2
£ & g g
=y 1 2 2 I e
00 20 40 6.0 0 0 40 6.0 00 0 40 ®0 00 20 40 60
Time (us) Time (us) Time, (us) Time (us)
0100+REF 0101+REF 0110+REF 0111+REF —
' =) I v E= . == . E Y
54 h s | s4 (1h s- > 22x108 o, °
3 | 5 § H o] ° o 90
2 2, 2 2 ~ e E ° °
' b ‘ ‘, V ‘ ty - - = 2.0x10 . %y .
o °
%0 fime (.‘:sc)l ¢ ¢ T.r?me(.fé? &0 0 Ti'r(:\e(:é(; 50 ° Tziﬁ\e(:sg &0 S 1.8x10%® °
1000+REF 1001+REF 1010+REF 1011+REF E
(=) B E= =% 1, 3
5 NS NN N ‘H O 16x10
s: h s: ( s ITh s: | ° b
g, JLPL\ §. I 5. ® 14x108} °
3 H ] ]
= - - Ui Zop L x 20246 810121416
o I e
00 0 40 .0 00 20 40 60 0. 0 40 6.0 00 20 40 60 InpUt
Time (us) Time (us) Time (us) Time (us)
1100+REF 1101+REF 1110+REF 1111+REF
== == =)
‘kh s N 5 s ‘k
s N s: | s s
8 5. g, 5,
K 0 LN | g 2
s 17
0. 0 40 ®.0 0 40 60 0 20 40 60 00 20 40 6.
Time (us) Time (us) Time (us) Time, (us)

Figure 2-17: a, The V-t graphs for the '0000'~'1111" inputs under the conditions
of 10 kQ Ry with a 3.5 V signal pulse height and a 500 ns width,
and a 3 V REF pulse height and a 500 ns width. b, The read current
of the memristor for the '0000'~'1111" inputs. Insufficient charging
further increased the separability for the consecutive high signals
since the capacitor was not fully charged even though consecutive
high signals were applied. This is suitable for situations in which

consecutive signals mainly appear, such as in MNIST.
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Figure 2-18: Temporal kernels with different time constants (100 ns ~ 1 s).
Load resistance, parallel capacitance, and input interval used in
each temporal kernel are indicated in each figure. a-e, The V-t
graphs for the '1000' input under the condition of a 3.5 V signal
pulse height. a-c represents a temporal kernel with similar
characteristics to the temporal kernel in Figure 2-9a of main text,
but with a different time constant. d-f represents a temporal kernel
with similar characteristics to the temporal kernel in Figure 2-9f

of main text, but with a different time constant.
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TK Condition R, Signal Pulse REF Pulse
a 1 M0 4V,100 us 4V,100 us
b 120 k2 47,100 us 4V,100 us
c 1 M0 4V,200 us 4V,100 us
d 1MQ 3.5V,100 us 3.5V,100 us
e 1MQ 4V,100 us 3V,100 us
f 10 k02 3.5V,200ns 3V,200ns

Table 2-1: The temporal kernel conditions (Ry, signal pulse, and REF pulse)

used in Figure 2-9a-e
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Task Optimization: MNIST. To perform the task of recognizing digit images
in the Modified National Institute of Standards and Technology (MNIST)
Database!®), the kernel dynamics were optimized to implement a TK system
suitable for the task. To do this, the raw MNIST data set, composed of 784
pixels (28 x 28), had to be reconfigured to meet the requirement of this specific
TK system, which is basically a binary system (0 and 1 inputs). Therefore, the
data in the 784 pixel images were binarized and chopped by 4 bits, which
resulted in 196 4-bit input signals. To make the task analysis more efficient, the
frequency of the appearance of inputs in the dataset was investigated, and it was
confirmed that ‘0000’ appeared most frequently, followed by 1111,” 1000,
‘0011,” and 0001’ (Table 2-2). Therefore, in this task-optimized TK system, the
task was performed effectively by setting the operation parameters so that the
TK system could readily separate the responses to the inputs with a high
frequency of appearance rather than separating the responses to all the 16 inputs.
The data points indicated by the red circle in Figure 2-9f correspond to these
frequently appearing signal sets. Accordingly, the 196 4-bit input image data
were converted to the 196-membered MCV, where the measurements were
performed on a single IM1R1C circuit, based on Figure 2-9f. Using the 50,000
training images in the MNIST data set, 50,000 training MCV's were generated.
These MCVs were used to train the 196 x 10 FCN (weights and biases), which
were generated in a PyTorch simulation. The logistic regression algorithm was

used to train the readout layer for the MNIST recognition and breast lesion
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classification. The TK state (x) in the form of an n x 1 vector (n = 784 ~ 112
for the MNIST recognition and n = 510 for the breast lesion classification) was
multiplied by the weight matrix (W) of the readout layer to yield the weighted
sum (z).

z = WT-x (1)

The weighted sum was applied to the following softmax function to yield an

output (¥).
. J] .
yi=o(@);= Z}é:ﬁ forj=1,..,n 2)

The sum of the elements of the output vector became 1 and the output of the
softmax function was perceived as a 'probability.' The cross-entropy loss was

used for the loss function, which is defined as:
loss = — =TI, [y;log(§,) + (1 — y)log(1 — )] . (3)

wherein N is the number of samples, and y; is the target output for input x;.

To minimize the loss, a gradient-descent-based Adam optimizer®*!

was
identically used for the readout layer and 784 x 10 FCN. Full-batch-type
learning of the readout layer and 784 x 10 FCN was performed in PyTorch. The
trained TK system was used to infer the 10,000 MNIST test images, and the
achieved accuracy was 90.1 % (see Table 2-3 and Table 2-4, 2-5 for the results
of combining various kernels and the results of considering cycle-to-cycle and
cell-to-cell variations). When one hidden layer composed of 200 neurons is

added to the FCN, the accuracy was increased to 96.5 %.

This kernel machine took 200 ns of time and ~25 pJ of energy (Figure
48 o I = T |



2- 19) to process one input pulse, which is 10* ~ 10* times shorter and 100 ~
400 times lower than in the previous studies.*"/ Table 2-3 shows the
comparison with other RC results using the diffusive memristors and the
software-based single-layer FCN. This study focuses on the only memristive
TK system that performs kernel adaptation and that showed the best
performance in terms of accuracy and latency. Table 2-6 shows the results for
the case where the 2-layer FCN is used as the readout layer, and when
196x38x10 FCN is used, it offers 95.1 % accuracy. The number of training
parameters in this network (7,828) is slightly smaller than that of the software-
based FCN (7,840). The readout network size of the TK system could be further
decreased as the number of bits processed by the kernel (nBPK) increases, for
as long as the separability for the higher nBPK is guaranteed. Figure 2-20 shows
the different read currents for the 3 to 6 bits (8 to 64 input patterns). Obviously,
the separability decayed as the nBPK increased, but they were still be used to
recognize the MNIST data set because not all the input patterns mattered
equally. Table 2-7 shows the variation in the test accuracy of the MNIST data
set using the same method as above, but with different nBPKs. As the nBPK
increased from 3 to 6, which was accompanied by a decrease in the required
memristor number from 252 to 112, the accuracy decreased from 90.7% to 86.3%
(the confusion matrices are included in Figure 2-21), which is not much lower
than in the software-based FCN (784 x 10). The next section demonstrates the

most crucial merit of this TK system by showing its capacity to process time-
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series data using medical diagnostic data.
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Figure 2-19: Result of the I-V curve fitting for the WHT memristor and power
consumption in the IMIR1C kernel machine during processing
one input. a, [-V curve fitting of the WHT memristor (HRS state)
based on the conduction mechanisms. b, Power consumption in
the IM1R1C kernel machine (Figure 2-9f kernel condition) during
input processing. Since the resistance of the WHT memristor is
dependent on the voltage, the current passing through the

memristor was obtained with the HSPICE simulation using the

result of the [-V curve fitting in a. The energy (/. . Power(t) - dt)

consumed to process one input was calculated as ~25 pJ.
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Figure 2-20: The temporal kernel responses were measured while increasing

the number of bits processed in the temporal kernel from 3 bits to

6 bits. a-d, The temporal kernel responses for the '000~111",

'0000~1111", '00000~11111', and '000000~111111" inputs under

the conditions of 10 kQ Ry with a 3.5 V signal pulse height and a

200 ns width, and a 3 V REF pulse height and a 200 ns width. As

the number of bits processed in the temporal kernel increased, the

separation of the responses to each input deteriorated.
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Figure 2-21: The confusion matrices comparing the recognized digit and the

desired digit for the MNIST test dataset (4 situations, from the top

left: nBPK = 3 bits to the bottom right: nBPK = 6 bits) showing

that the number of correct inferences decreased as the nBPK

increased.
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Inputs # of Inputs Percentage [%]
0000 9,078,931 77.2017
0001 355,307 3.0213
0010 24,104 0.2049
0011 356,362 3.0302
0100 23,171 0.1970
0101 806 0.0068
0110 105,121 0.8938
0111 276,838 2.3540
1000 364,691 3.1011
1001 11,919 0.1013
1010 959 0.0081
1011 8,580 0.0729
1100 346,940 2.9501
1101 9,044 0.0769
1110 262,350 2.2308
1111 534,877 4.5482
Total 11,760,000 100

Table 2-2: The frequency of the appearance of inputs in the preprocessed
MNIST dataset, in which '0000' appeared overwhelmingly,
followed by the inputs '1111', '1000', '0011', '0001", '1100', '0111"
and '1110" in the table (Due to the nature of the picture, the pixels
were continuously blanked or filled in most cases. Therefore,
inputs with consecutive high or low signals mainly appeared, and

there were a few inputs with alternating high and low signals such

as '1010"and '0101".)
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Latency in Kernel Network Image
Group Accuracy kernel Adaptation Size Size Ete.
90 %
. o 196x10
This Study (95.I1 % - two 1us (0] (196x38x10) 28x28
ayer)
Wei. D. Lu 85 % 10 ms X 88x10 22x20 1‘?"(.)00/2’000
Training/Test set
Joshua Yang 83 % 1ms X 220x10 22x20 In situ training
Software 91 % - - 784x10 28x28

(784x10 FCN)

Table 2-3: Comparison of the results of the MNIST recognition using
memristive temporal kernel computing systems!?

software-based system'!! (single-layer FCN), showing very fast

11,[20]

processing and the highest accuracy in this study
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Kernel Accuracy Input vector Readout Layer
at+b 90.7% 196x10 392x10
a+f 91.8% 196x10 392x10
b+f 91.7% 196x10 392x10

a+b+f 91.7% 196x10 588x10

Kernel Accuracy Input vector Readout Layer

200 ns + 2 us 91.4% 196x10 392x10
200 ns + 5 us 91.6% 196x10 392x10
2us +5us 91.5% 196x10 392x10
200ns+2us +5us 92.4% 196x10 588x10

Table 2-4: Results of MNIST recognition using various kernel combinations.
For the recognition, kernel conditions of Figure 2-9a, b, and f of
main text were used. A combination of 'Figure 2-9a+Figure 2-9f
showed an accuracy of 91.8%. For a 196x10 input vector, two
kernels processed the input, and a 392x10 readout layer was used
(588x10 readout for the 3 kernels). On the other hand, when the
pulse width was modified without changing the conditions Ry, C,
and pulse height in the condition of Figure 2-9f, an accuracy of
92.4 % was obtained in the combination of '200ns+2us+5us'. By
combining various kernels or changing pulse conditions for the
same kernel machine, the imperfections of one kernel could be
compensated for by another kernel, and the accuracy could be

improved.
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Variation Accuracy

no variation 90.1%

cycle to cycle 89.7%

cell to cell 90.0%

cycle to cycle + cell to cell 89.6%

Table 2-5: The accuracy when cycle to cycle variation, cell to cell variation,
and both are considered (kernel condition of Figure 2-9f of main
text was used). Each variation was calculated based on variation
measurement results in Figure 2-1. Up to 1 sigma of each variation
was considered, and when both cycle to cycle and cell to cell
varaition were included in the simulation, the accuracy decreased

by 0.5 %.
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Readout layer Training parameters nBPK Accuracy
196 x 38 x 10 7,828 4 95.1 %
196 x 50 x 10 10,300 4 95.5 %
196 x 110 x 10 22,660 4 96.1 %
196 x 200 x 10 41,200 4 96.5 %

Table 2-6: Results of MNIST recognition using two-layer FCN for the readout

layer of TK system. The table shows the number of training

parameters used in each two-layer FCN and the accuracy of the

TK system (nBPK = 4). When 196x38x10 FCN was used, 7,828

training parameters were used, and the TK system accuracy was

95.1 %.
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nBPK Readout Layer Size Accuracy

3 252x10 90.7%
4 196x10 90.1%
5 140x10 88.1%
6 112x10 86.3%

Table 2-7: Results of the MNIST recognition while increasing the number of
bits processed in the temporal kernel, showing that as nBPK
increased, both the size of the used readout layer and the

recognition accuracy decreased.
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Task Optimization: Medical Diagnosis. Medical diagnosis often requires
analyzing time-varying data and making a quick diagnosis, but there are
inevitable limitations such as high dependence on operators and high variability
across different medical institutions. For a more accurate and objective medical
diagnosis, a universal diagnosis system adaptable to various situations is
essential. Automatic medical diagnosis using deep learning has considerable
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potential, and several studies have been conducted on it,!
rely on the conventional image classification method, such as CNN. This means
that the traditional medical diagnosis produces data images and analyzes them
later, mostly ex-situ. This study suggests a method for in-situ medical diagnosis
in real-time using a IM1R1C kernel. The diagnostic application consists of two
sections. The first section is breast cancer diagnosis using ultrasound images,
and the second section is arrhythmia diagnosis based on electrocardiogram
(ECQ) results. These two applications have vastly different operating signal
frequencies (MHz to Hz). In this study, a system for efficient medical diagnosis
was implemented by optimizing the TK system for each task.

1) Diagnosis of malignancy in breast lesions. Breast cancer is the most common
cancer in women. Ultrasound is used to diagnose and monitor this disease. In
contrast to the conventional CNN, where the preprocessed images are identified,
the proposed TK system in this study directly uses ultrasonic raw data without

an imaging process, as shown in Figure 2-22a. In the conventional ultrasound

diagnosis, the ultrasound is transmitted to the piezoelectric material, where
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electrical signals are generated. The signal processor processes these signals to
generate an ultrasound image, which the operator analyzes to diagnose the
disease. However, if the TK can directly process the ultrasonic signal, the
imaging process can be skipped, and an automatic diagnosis will be made at the
readout layer. Therefore, this system makes real-time diagnosis simpler than in

the existing ultrasound diagnosis.

The dataset used in the experiment consisted of an open-access database
of raw ultrasound signals acquired from malignant and benign breast lesions.**!
Each sample consisted of 510 ultrasound (10 MHz) echo lines. After they were
preprocessed for measurement convenience, they were converted into pulse
streams and applied to the memristor (Methods section). Figure 2-22b shows
the results of the voltage-time (V-t) measurement for one echo line of a benign
sample (inset in Figure 2-22b). The test set consisted of 36 samples randomly
extracted out of the total 100 samples, and the training set consisted of the
remaining 64 samples. The readout was performed by repeating the process of
randomly extracting the test set from the entire dataset 30 times, and an average
accuracy of 94.6% was obtained.

This method has two main advantages over the existing ultrasound
diagnosis using CNN. First, diagnosis is performed using a much simpler
system without a pre-imaging process. Second, one of the major difficulties in
ultrasound analysis is the presence of artifacts.”*) CNN may have difficulty in

recognizing such artifacts because it performs learning and inference with the
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information on the artifacts. Using IM1R1C, even with additional stimulation
by artifacts, the capacitor only maintains the charging state. Therefore, the
kernel state is determined by the overall contour rather than by fine artifacts,

and it can show higher performance.

2) Real-time arrhythmia diagnosis. Arrhythmia is a condition in which the heart
has an irregular rhythm or an abnormal heart rate. Since malignant arrhythmia
can cause sudden death due to a heart attack,”” real-time ECG monitoring and
diagnosis are required. The purpose of this experiment is to implement a system
capable of real-time diagnosis of arrhythmia in response to an electrical signal
caused by a heartbeat. For the experiment, a part of the MIT-BIH arrhythmia
database!”! was used, and a task-optimized kernel was utilized to distinguish
between arrhythmia and normal cases. A TK capable of responding to a signal
with a frequency of 0.8 to 1.2 Hz was constructed using a 1 uF capacitor parallel
to CH2. In this case, a simple temporal kernel machine composed of only one
IMIRI1C kernel could be used. Figure 2-22c shows a part of the ECG of a
patient with arrhythmia. The electrical signal is generated at approximately 0.8-
s intervals, and then arrhythmia occurs at 1.6 s (marked by a red arrow). When
an electrical signal from a heartbeat is applied to the kernel machine, the
capacitor maintains a high charging level at a normal beat. When an arrhythmia
occurs, the capacitor is discharged at a longer interval than in the normal case,
and SET switching occurs in the memristor by the next pulse (Figure 2-23).
Since this kernel responds only to arrhythmia, the memristor conductance can
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reflect the pulse of the arrhythmia patient in real-time. Figure 2-22d shows the
results of 5-minute TK monitoring based on ECG data of normal (case 1) and
arrhythmic (cases 2 and 3) patients. In cases 2 and 3, 49 and 81 arrhythmias
occurred, respectively. As a result, the conductance of the TK monitoring in
case 3 was the highest, and the memristor conductance was clearly
distinguished according to the degree of arrhythmia. This single TK system was
able to detect different arrhythmia conditions in real-time with low energy using

a simple IM1R1C circuit.
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Figure 2-22: The automatic medical diagnosis system using the IMIR1C
temporal kernel and the experiment results in the two sections. a,
A system for diagnosing the malignancy of breast lesions, which
is much simpler than in the existing method (inset in a). In this
system, ultrasonic signals are applied directly to the kernel
machine, so the imaging step is omitted. b, V-t graph for one echo
line of a benign sample (inset in Figure 2-22b). ¢, A part of the
electrocardiogram of a patient with arrhythmia. Long intervals
caused by abnormal beats discharged the capacitor, and the
conductance of the memristor increased in the next pulse. d, Five-
minute temporal kernel monitoring based on the ECG of one

normal patient (case 1) and two arrhythmic patients (cases 2 and
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3). When arrhythmia occurred, the conductance of the memristor
increased. Case 3, which had the most severe arrhythmia

symptoms, showed the highest conductance.
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Figure 2-23: The increase in the conductance of the memristor varied

according to the degree of arrhythmia. When arrhythmia was

severe, SET switching occurred in the memristor due to long

discharging. a-c¢, The ECG-based V-t graphs for three cases of

normal, arrhythmia, and severe arrhythmia. The electrical signal

of the ECG from the heartbeat was converted into a 2.5 V, 200 ms

pulse and applied to the memristor. d, The read current of the

memristor according to the degree of arrhythmia. The more severe

the arrhythmia was, the more the memristor conductance

increased.
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2.4. Conclusion

In this study, an TK system with high kernel separability and dynamics
controllability was demonstrated using a W/HfO,/TiN memristor. A dynamic
kernel was generated by composing a IMIRI1C circuit. From asymmetric
charging/discharging of the capacitor caused by the memristor, separability,
which is the basic property of the TK, was achieved. In addition, the manner in
which the kernel reacted to the input signal was modified by changing various
parameters such as the load resistor, capacitance, pulse width, and pulse height.
Using these characteristics, the TK system was optimized to perform static
data-based MNIST recognition applications and sequential data-based medical
diagnoses (ultrasound diagnosis and ECG-based diagnosis). For the MNIST
recognition, a task-optimized system was used to improve the separability of
the inputs that frequently appeared in the dataset. Furthermore, the tradeoff
between the reduction of the readout layer size and the performance was
confirmed by increasing the nBPK. TK system-aided diagnosis was conducted
for two situations with contrasting input frequencies (1 Hz and 10 MHz). By
implementing a kernel configuration suitable for each task (kernel adaptation),
the excellent performance was achieved. In particular, the most crucial point of
this study is its demonstration that dynamic signals with vastly different time
constants can be well distinguished by changing the resistor or capacitor added

to the circuit using only one type of memristor.
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The two types of hardware needed to implement the IM1R1C TK system
and analysis on the area/cell are shown in Figure 2-24. In both cases, using a
metal-insulator-semiconductor capacitor, the capacitance can be adjusted by
modifying the R and pulse height (Figure 2-25). Therefore, it is expected that
the fabrication of the hardware for the array configuration will be simple and

that the TK dynamics can easily be changed even in the fabricated hardware.
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Figure 2-24: The hardware structure needed to create an array of temporal
kernels that can adjust the kernel configuration. a, A structure in
which the resistors are sequentially connected to several metal
lines. In this structure, the resistance value of the temporal kernel
can be adjusted by selecting several metal lines connected to the
resistors. b, A structure in which memristors are connected in
series to the WHT memristors and parallel to the capacitors (b left
panel). The IMIRIC circuit can be implemented in a three-
dimensional structure by stacking TiN, W metals in multi-layers
and depositing a dielectric layer and top electrode in the hole after
hole etching (b right panel). In this structure, the resistance of the
memristor can be set to the desired resistance value using a
method such as the incremental step pulse program (ISPP). ¢, Cell
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area of the diffusive memristor-based reservoir and 1IM1R1C
kernel. The diffusive memristor-based reservoir is implemented
using a passive array composed of memristors. Therefore, 4F? is
required per cell (¢ left panmel). If the IMIRIC kernel is
implemented with the structure in a, a minimum area of 8F is
required per cell when using a vertical pillar transistor (T), and the
area increases by 4F” each time a serial resistor is added (¢ middle
panel). The structure proposed in b requires an area of 4F%/cell (¢
right panel). This structure does not require an increase of
area/cell even with additional elements (R, C) other than the

memristor through a 3D integration process.
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simulation and their fitting results (red line). In the simulation, an
MIS capacitor (sample device) showing a capacitance of 100 pF
~ 2.2 nF was used, and the WHT memristor fitting result of Figure
2-19 was used. c-g, V-t graphs of the kernel showing fast
discharging (left panel) and slow discharging (right panel)
characteristics (pulse width 50 ns ~ 1 ms). h, V-t graphs in the
kernel condition of 4 ~ 3.5 V pulse height, 2 ~ 1 us pulse width,
and 10 kQ Rcmo. h shows the effect of changing pulse height on

the capacitance of the TK system.
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3. Graph analysis with multi-functional self-

rectifying memristive crossbar array

3.1. Introduction

A memristive crossbar array (CBA) is exploited as high-density nonvolatile
memory or storage. ['"% It also showed great potential in implementing the
hardware of diverse neuromorphic networks as the synaptic weight-

7191 For both applications,

representing device or temporal/physical kernels. !
the passive configuration of the CBA renders the sneak current a severe
problem. Sneak current flows in the plurality of parallel paths where the
minimum resistance is formed. For the standard memory and several
neuromorphic applications, the adverse effects from the sneak current flow
were suppressed by adopting a selector or transistor.['}!!H12]

Nonetheless, the full potential of the memristive CBA has not been exploited
yet. Especially there could be other applications than the standard memory and
synaptic devices, which may utilize the parallel configuration of the array with
the sneak current. The CBA may be used to solve mathematically complicated
graphical problems. Moreover, considering the two-dimensional (or even three-
dimensional) layout of the CBA, it may find an even higher potential for

graphical problems.

A graph is a data structure that models a set of nodes connected by edges.
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Several critical problems, such as the traveling salesman problem, can be
intuitively represented in graph form. !"*}('YI Therefore, they are gaining greater
attention in the contemporary computing fields, such as understanding social
networks, molecular structures, virus transmission networks, and the World
Wide Web.!'>"! They have also been used in social science and biology.?’2*!
This work exploits another potential of CBA utilizing the sneak current to solve
several challenging problems, which the graphs can represent. These attempts
include path-finding, link prediction, community detection problems, and brain
network analysis, which have customarily been attempted by the software

25281 However, these

algorithms based on the appropriate similarity function.!
similarity function is not always optimal, and the software codes cannot find
the solutions for several graphical problems without pre-processing, especially
when the graphs are non-Euclidean. 3]

Solving such challenging problems using the physical mechanism,
such as utilizing the sneak current in CBA, could be a feasible option, as

shown in this work. For this purpose, however, the sneak current must not

be allowed to flow arbitrarily but in a controlled manner.
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3.2. Experimental

The array of crossbar Pt/Al,O3/HfO»/TiN memristors was fabricated through
the following procedure. First, a 50 nm-thick TiN layer was sputtered (Endura,
Applied Materials) on a SiO,/Si substrate, and the TiN layer was patterned into
a line shape to form a bottom electrode. The 2- to 10-um-wide TiN BEs were
patterned using conventional photolithography and the dry-etching system.
Then, 4-nm-thick HfO, and 4-nm-thick Al,O; were sequentially deposited
using atomic layer deposition (ALD) at a 280 °C substrate temperature using a
traveling-wave-type  ALD  reactor (CN-1 Co. Plus 200). A
Tetrakis(dimethylamino)hafnium, trimethylaluminum, and O3 were used as
precursors for Hf, Al, and oxygen, respectively. Finally, 30-nm-thick Pt top
electrodes were deposited using an electron beam evaporator (Sorona, SRN-
2001) and patterned into 2- to 10-um-wide lines using the conventional lift-off
process. After the fabrication, the PAHT device was analyzed using x-ray
photoelectron spectroscopy (XPS, AXIS SUPRA, Kratos) and energy-
dispersive x-ray spectroscopy (EDS, JEOL, JEM-ARMZ200F) to observe the
interfacial layer formation. Cross-sectional images of the PAHT memristor
were examined using scanning transmission electron microscopy (STEM,
JEOL, JEM-ARM200F).

The DC I-V characteristics of a single device were measured using the

semiconductor parameter analyzer (SPA, HP4145B). During the single
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device measurement, the top electrode (TE) was biased, and the bottom
electrode (BE) was grounded. The AC pulse measurement was performed
using SPA, pulse generator (PG, Agilent 81110A), and oscilloscope
(OSC, Tektronix TDS 684C). The measurement of 9 x 9 mCBA was
conducted in the setup of the 9 x 1 custom multiprobe (MS-TECH),
switch matrix (Keithley 708A), and SPA (HP 4155B). During the mCBA
measurement, TE and BE were used as a word line and a bit line,
respectively, and were contacted by two 9 % 1 multiprobe. All electrical

measurements were carried out with an interface based on LabViEW™,
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3.3. Results and Discussions

3.3.1. SELF-RECTIFYING MEMRISTOR AND METAL CELL AT DIAGONAL CBA

Node 1
i )
o & Vvetal
wis @ Self-rectifying memristor (LRS)

() Self-rectifying memristor (HRS)

N1-N2 edge
. ) &

¢ ¢ m
© © 5_

N1-N4 non-edge <

3

Figure 3-1. Graph to mCBA mapping. The resistance state of the (n, m)
device corresponds to the weight of the (n, m) edge. The (n, n)
metal cell represents the zero weight, which is the connection of

the node itself.
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Figure 3-1 shows how a non-Euclidean graph is mapped onto the
hypothetical CBA. The connected edge weights are mapped to the low
resistance of the memristors, while the unconnected edges are represented by
the high resistance of the corresponding memory cells. The cells at the diagonal
positions, (n, n), denote the connections between the node itself, represented by
the shorted circuit at those locations. For example, the graphic representation
of node 1 is implemented in the hardware CBA by allocating the metal vias at
(1, 1) locations. Such a specific CBA is named "metal cell at diagonal CBA
(mCBA)," which provides a crucial effect in implementing the desired sneak

current-based graph algorithm using the self-rectifying memristors.
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Figure 3-2. Two operation methods of mCBA. a, Multi-ground method

(MGM). b, Single-ground method (SGM).

Figure 3-2 shows the mCBA-based methods to extract information in the
non-Euclidean graph. The multi-ground method (MGM, Figure 3-2a) and the
single-ground method (SGM, Figure 3-2b) are used as an adjacency search
function that searches for nearby nodes, and a similarity function that represents
the relationship between the two nodes, respectively. For example, in the MGM
of word line 1 (WL1), current in bit line 2 (BL,) means that the adjacent node
of node 1 of the inset graph is node 2. The current flow in the SGM between
WL, and BL4indicates that node 1 arrives at node 4 through node 2. Figure 3-
3 shows the general method of how the mCBA solves graphical problems. 1)
Graph to mCBA mapping. 2) Analysis of similarity between graph nodes. (for
all or part of total pairs) 3) Deriving desired results, such as the distance,
probability of link formation, community formation order, and connectome

classification, based on the identified similarity. As an example, a weighted,
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undirected, non-Euclidean graph consisting of 9 nodes and 16 edges can be
mapped to 9x9 mCBA of Figure 3-3. In the mCBA, 9 red rectangles on the
diagonal represent the metal (9 nodes), and blue rectangles represent various
RRAM device states (The lighter the color, the lower the resistance, the lower
the weight), and dark rectangles represent the RRAM device in HRS. (non-
edges) The mapped weights are implemented to the multi-resistance states of
the self-rectifying memristor. In mCBA, to which the graph is mapped, the
similarity between nodes can be extracted without the graph embedding process.
Various applications such as path-finding, link prediction, community detection,
and connectome analysis can effectively be performed based on the extracted
information.

Figure 3-4a, ¢ shows the HSPICE simulation results of MGM and SGM at
the graph in Figure 3-3. Figure 3-4a shows MGM, in which the WL,
corresponding to the source, or selected node in the graph, is biased, while all
other BLs are grounded. MGM finds out the adjacency nodes, directly
connected to the source. (Figure 3-4b) In this case, no sneak current is allowed.
Figure 3-4c shows the SGM, where the selected WL, is biased, with only the
target BLo being grounded (all other BLs are floated). By this connection, SGM
can delineate the hidden information related to the connection between the
source and the target by the sneak current through the metal. In addition, the
main current path of SGM corresponds to the shortest path of the graph. (red

dash and dot lines in Figure 3-4d)

85 21 2 11 &1



Non-Euclidean «| Multi-functional
graph structure crossbar array

\ 4
Pathfinding Link prediction
Graph analysis > ,
\\
. o----0 >
g 13 | Gt > Gt
10 ‘ Community Brain network
€ detection

() RN

analysis

Figure 3-3. The process of analyzing non-Euclidean graphs with mCBA

and the implementable applications.
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Figure 3-4. Simulation results for two operation methods of mCBA. a,
HSPICE array simulation results for MGM at N1. b, The
adjacency search result of MGM at NI1. ¢, HSPICE array
simulation results for SGM of N1 to N9. The major and sub-
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Multiple paths between N1 and N9 which are not directly
connected. The shortest and sub-current paths are displayed in red
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Figure 3-5. The main current ratio in the SGM at the various mCBA

configurations. a-c, mCBA mapping (upper panel) and -V fitting
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curves (red lines) for the unit cell memristor (lower panel). The
main current ratios for the 9 x 9 and 100 x 100 mapping were 0.60
and 0.45, respectively, when metal cells were placed on the
diagonal cells, while self-rectifying cells were placed on the rest
cells. d, The result of calculating the ratio of Imain pah and Loutpur in

9 x 9,100 x 100 mCBA under conditions of a, b, and c.

Figure 3-5 shows the simulated SGM results when the WL, is biased with 1
V, and BL¢ and BLigy are grounded in various 9 x 9 and 100 x 100 CBA
configurations, respectively. In the simulation, the finite wire line resistance of
50 Q was considered due to the possible process issues. (The calculated line
resistance was ~ 2 Q calculated based on the resistivity of Pt **) and TiN ! and
the dimension of the line in the fabricated mCBA) However, The line resistance
did not significantly affect the read and write operations due to the
Pt/Al,O3/HfO,/TiN (PAHT) memristor's high resistance level (Rirs =26 GQ at
Vread = 1 V). In Figure 3-5a, due to the presence of parallel sneak paths, the
current flows along diverse routes, and the ratio of current following the main
path to all current paths is 0.60. This presence of the main current path was
possible due to the metal cells at (n,n) positions, although the adopted PAHT
memristor has a self-rectifying property. The sneak current can also flow when
the sneak path involves the (n,n) positions; otherwise, the suppressed reverse

current of the self-rectifying PAHT will not allow the sneak current to flow.
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An interesting finding was that no meaningful current flow was achieved
using the symmetrical memristor, i.e., non-rectifying [-V characteristics, which
is supposed to have a higher sneak current (Figure 3-5b). This abnormal
behavior could be owing to an overlap of the anti-directional sneak current
flows at specific cells. Therefore, it was concluded that the mCBA
configuration with the self-rectifying memristor was the most useful hardware
to implement the suggested graph algorithms.

Besides, when the (n,n) cells were programmed to even the lowest resistance
of the PAHT memristor, with the identical weight distribution at other cells, the
ratio became negligible (0.004, Figure 3-5¢). This result is due to the suppressed
current flow under the reverse bias condition of the PAHT memristor, even with

the lowest resistance. (Figure 3-5d).
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Figure 3-6. mCBA-array fabrication and the electrical analysis of the

PAHT memristor. a, Scanning electron microscope (left)
images of 9 x 9 mCBA and a cross-section transmission electron
microscope image (right) of the PAHT memristor. b, I-V
characteristic of the PAHT memristor at various set sweep
voltages (2.7 V to 3.5 V). The inset of b is the PAHT memristor

stack schematic. ¢, The surface plot of the three levels of

conductance data of 9x9 mCBA.
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The adopted PAHT self-rectifying memristor is composed of the top
electrode Pt/4nm-Al,O3/4nm-HfO,/bottom electrode TiN structure, where the
Al,O3 and HfO; layers were grown by the atomic layer deposition, while the Pt
and TiN layers were grown by the electron-beam evaporation and reactive
sputtering, respectively. Figure 3-6a shows the scanning electron microscope
(SEM, left panel) and the cross-section transmission electron microscope (TEM,
right panel) images of 9 x 9 mCBA.

Figure 3-6b shows the current-voltage (I-V) curve of the PAHT memristor at
various maximum sweep voltages (2.7, 3.1, and 3.5 V) during the set switching.
The PAHT memristor has stable counterclockwise bipolar resistive switching
behavior and exhibits multi-states, self-rectifying, forming-free, and gradual
switching characteristics. At 1.5 V of reading voltage, the conductance of the
PAHT memristor was continuously increased from 0.01 nS to 0.62 nS with the
2.7 ~ 3.5V of set voltage. Figure 3-6¢ shows the distribution of the HRS and

three LRS conductance values of 9 x 9 mCBA cells.
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Figure 3-7. Chemical and physical analysis of the PAHT memristor. a-c, Hf
4f, O 1s, and Al 3d X-ray photoelectron spectroscopy (XPS)
analysis at the AlO3/HfO, interface in the PAHT device. d,

Energy-dispersive X-ray spectroscopy (EDS) mapping result of

the PAHT memristor in cross-section TEM.
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The physical and chemical structures of the PAHT devices are reported in
Figure 3-7. The X-ray photoelectron spectroscopy (XPS) analysis of the
ALLO3/HfO; interface in the PAHT device revealed the presence of Hafnium
sub-oxide (HfOy) and Hf elements. HfOy is expected to be formed by the
thermal ALD process of Al,O3; on the HfO; layer, while the metallic Hf could
be induced by the in-situ etching of the top electrode during the XPS analysis.
The ALD process of Al,O3 made the HfO» layer have a high trap density, which
enabled the device to have a high On/Off ratio and long retention (Figure 3-8)
6] In addition, AL,O; in the device acts as a voltage divider to suppress the
abrupt resistive switching of HfO,. It also forms a high Schottky barrier at the

interface with upper Pt, which makes the device have good rectifying properties.
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Figure 3-8. Retention of the PAHT memristor. a, Retention of the PAHT
memristor measured at various temperatures (40 ~ 100 °C). b,
Arrhenius plots of In (1) versus 1/kT of the LRS retention. A
retention time of ~ 1 year (relaxation time from LRS level to
HRS level) was obtained at room temperature by extrapolating

retention data at 40 ~ 100 °C.
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Figure 3-9. The process flow of the mCBA fabrication.

Figure 3-9 shows the fabrication process of the PAHT mCBA. To shorten the

main diagonal cells with the top electrode material, the switching layer at those

locations was etched during the BL contact open step of the conventional CBA

process.
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Figure 3-10. Multi-level and dc cycle results of the PAHT memristor. a, I-
V curve when the DC sweep (SET) voltage is set to 2.4, 2.5, 2.6,
2.7,2.8,29,3.0, 3.1, and 3.5 V (9 states). b, Result of the 300
DC cycle of the PAHT memristor (set sweep: 3.5 V, reset sweep:
-2.5V).

I-V curves of the PAHT memristor for more than three states are included in

Figure 3-10a. Figure 3-10b shows the results of the 300 consecutive I-V curves

of the PAHT memristor, showing the low cycle-to-cycle variation.
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Figure 3-11. Measurement setup for the 9x9 mCBA. Flow chart of the 9x9
mCBA measurement. The 9x9 mCBA was measured in the setup
of the 9x1 custom multiprobe, switch matrix, and semiconductor
parameter analyzer.

The detailed measurement setup and the measurement flow are described in

Figure 3-11.
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which the graph of the lower panel was mapped. b, Affected area
of the mCBA (upper panel) and affected edges of the graph

(lower panel) when a hard breakdown occurs in the (3, 7) cell of

99 : -’H :E 1_'.” &



the array. ¢, Results of remapping the affected part in mCBA
(upper panel) and the recovered graph (lower panel). For the
restoration, the edge data connected to nodes 3 and 7 are moved
to BLs, BLg, WLg, and WL, and the cells of BL3, BL;, WL3, and
WL; are changed to HRS. d, The current path and value of the
SGM in the original graph, breakdown case, and the restored

graph.

On the other hand, an issue in which a cell expressing an edge becomes
inoperable may occur during mCBA operation. If hard breakdown occurs in the
mCBA cell, it will cause problems in SGM-based graph data analysis. In this
case, the original graph data can be restored by remapping the affected edge

data based on the reconfigurability of the mCBA (Figure 3-12).

3.3.2. PATH-FINDING PROBLEM

\, o, e ’
\ 4
. %
. ,
.
-
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~

Figure 3-13. An example weighted network. The red arrow indicates various

paths from node 1 to node 9.
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Figure 3-14. mCBA-based pathfinding algorithm. a, Process of finding the
shortest path from N1 to N9 with the mCBA-based pathfinding
algorithm. Pathfinding consists of two steps: 1. Search neighbor

nodes (NNs) and the actual distance to the neighbor node with
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the MGM, and calculate the distance from the neighbor node to

the target node (TN) as the reciprocal of the SGM. 2. Go to the

adjacent node with the lower sum of the cumulative sum of the

actual distance (source node to present node) and the estimated

distance (NN to TN).

This part describes how the MGM and SGM in mCBA can solve the path-

finding problem. For this purpose, a non-Euclidean graph of Figure 3-13 is

mapped onto the mCBA, and 1.0 V of reading voltage was used in the MGM

and SGM. This method aims to find the minimum value of the F score that can

be calculated as follows:

a
FF:Z MGM,) +——— -k,
= D FMGM) +
t-1 -
1' Idegreel <x
f(x) =<2, Idegreez Sx< Idegreel
3' IdegreeS =x< Idegreez

€y

, where F, t, 1, j, MGM,;, f(x), SGMjj, a, and k are the F score, the number of

attempts, source node, target node, MGM current for node i, step function

according to MGM output current, SGM current from node i to j, scaling

constant, and heuristic scale factor, respectively. In addition, licgreet, lLdcgree2,

Ldegree3, @, and k were set to 10 pA, 5 pA, 1 pA, 5x1073, and 1.5, respectively. A

more detailed explanation of Eq (1) is included in the discussion related to

Figure 3-14, 15.

The first step is to find the nodes connected to the starting node 1, which can
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be accomplished by finding the MGM current from node 1 (or WL, Figure 3-
15a). As a result, it was identified that nodes 2, 4, and 5 are connected to node
1, as the BL,, BL4, and BLs currents were detected. The next step is identifying
which one should be chosen among the three connected nodes (Figure 3-15b-

d). MGM and SGM at the three nodes allow for determining the shortest path.
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Figure 3-15. MGM and SGM current path at N1. At the source node (N1),

the neighboring nodes, N2, N4, and N3, are searched for by the

MGM. (left upper panel) From the SGM of the neighbor node of

N1 to the target node, it can be seen that N5 is closest to the target
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Based on the current level, the weights of adjacent nodes of node

5 can be identified, which coincides with the inset figure. b,

SGM results from the neighbor node of node 5 to the target node.
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For example, Figure 3-16a shows the results of MGM operation at node 5,
which is a part of the path-finding process from node 1 to node 9. The BLs with
currents above lyeeree3 are 1, 2, 3, 4, 6, and 8, which correspond to the node
numbers directly connected to node 5 of the inset figure. The grey box in Figure
3-16a indicates the current level of each weight in discrete quantities. MGM
current level can determine the distance to the neighboring node. Figure 3-16b
shows the SGM results from the neighboring nodes of node 5 to the target node.
The node pair (6, 9) shows a higher BL current than other node pairs because
the distance from node 6 to node 9 is the shortest (highest conductance at (6,9)
node of the mCBA), as shown in the inset figure. Besides, since node 6 also
had the highest MGM current in Figure 3-16a, it is determined that node 6 is
the next node to go to from node 5. Although node 3 had the same highest
current as node 6, the SGM current of the (3,9) pair was lower in Figure 3-16b,
suggesting that the path involving node 3 is not the shortest. When a similar
analysis was performed for nodes 2 and 4, all the output BL current was lower
than the optimal one (1 = 5 = 6 2 9). Therefore, MGM and SGM can be used
as a method to obtain information on adjacent nodes and as a method for
estimating an approximate distance, respectively. The minimum value of the F
score is obtained by updating the node where the cumulative f{MGM) is the
minimum, and the SGM is the maximum in each trial t.

In MGM, the sneak current is suppressed, allowing accurate information to

be achieved. However, only approximate information is obtained in SGM
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because the sneak current is used.

The heuristic scale factor, k, in Equation (1) gives flexibility to the path-
finding algorithm by adjusting the weight of the SGM. As shown in Figure 3-
17, as k increases, the average number of attempts decreases, but the number of
incorrect attempts increases. Conversely, as k decreases, the average number of
trials increases, but an optimal solution with zero incorrect is guaranteed. By
appropriately adjusting k, it is possible to implement a path-finding algorithm
according to the desired accuracy or efficiency. Generally, the SGM score
includes a higher error, especially when the attempt is made at a location far
from the target node. Therefore, the score value becomes more accurate as the

attempt number increases.
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Figure 3-17. The path-finding result for all 72 paths of the graph in Figure
3-13. The average number of attempts (red) and incorrect results

(blue) according to the heuristic scale factor k were plotted.

The SGM-based estimated distance was compared with the Landmark
embedding distance, widely used for vectorizing non-Euclidean graphs (Figure
3-18) . From the Figure 3-13 graph, 2~5 landmarks were randomly
designated and embedded in multidimensional space to obtain Euclidean

distance and Manhattan distance.

108 .__;rx;! _CI:I : 1_-_]



Graph data

Distance (d)

Conventional
method

Landmark Setting

1 a
"~ similarity ~ SGMy; x>

Distance (d)

mCBA mapping
) |
This =
study ¥ ¥ 9§ s
¥ ¥ 43
T Y Y 8§
TYYS S
Yy 4§ 34
IR
4444 ! 1 ‘
Graph embedding
Dijkstra
at each
landmarks

Figure 3-18. Distance calculation method in non-Euclidean graph based on

d= jZ(d(Li,Nl) - (L)’

(Euclidean)

=) |dw) - Ao
(Manhattan)

mCBA and software algorithm.

109



10-10 S
A SGM
N @ Euclidean m
g “ | @ Manhattan| |
£10M m T
= ﬂg ®
5] ¢
b _
E 2| ® A
= 10
o A
10-‘13 L
1 2 3 4
Distance

Aye|iws saewpue]
Average Attempts

5.0

4.5+

4.0¢

3.5

3.0

A SGM

B Manhattan

50

® Euclidean

A

SGM  2LM

3LM

4LM  5LM

Figure 3-19. Comparison of the mCBA and Landmark algorithm for the

pathfinding results. a, Comparison of SGM currents of mCBA

and software algorithm-based distance estimation. Euclidean

distance and Manhattan distance were obtained using a landmark

algorithm (2 nodes were set as landmarks), and the bit line

current obtained using SGM was plotted according to the actual

distance. b, Average attempts of landmark algorithm and mCBA-

based algorithm.

110

A 2 tff &
¥ | I -



Figure 3-19a compares the Euclidean distance obtained using two landmarks,
the Manhattan distance and the BL current obtained using the SGM, and the
actual distance. In the case of landmarks, the deviation according to the
randomly extracted landmarks is enormous, so the landmark distance does not
effectively represent the actual distance. In contrast, each SGM current level
expresses the actual distance well (the smaller the current, the longer the
distance), showing the excellence of the SGM embedding method. This high
performance is because the non-Euclidean graph is directly mapped to mCBA,
so there is no loss due to the data pre-processing. Next, the average number of
trials according to the number of landmarks was compared with the average
number of trials of the proposed MGM + SGM embedding method (Figure 3-
19b). The proposed method of this study was superior to the result of using four
landmarks. Each time a landmark increases, the cost to be performed in pre-
processing increases. When embedding a graph consisting of N nodes by setting
L landmarks, the time complexity of embedding the graph is O(LxN?) 3. On
the other hand, the time complexity of similarity calculation in the mCBA is
O(1) since only one SGM is required for the graph data stored in the mCBA.
Therefore, the MGM+SGM method shows excellent embedding performance

without pre-processing for the path-finding tasks, even in non-Euclidean space.
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3.3.3. LINK PREDICTION

The combined operation of the MGM and SGM can also be used to predict
the evolution of graphic networks, such as friend recommendations in social
network service (SNS) ****") and product recommendations in e-commerce 2%
(91 These are generally regarded as link prediction problems. The mCBA can
efficiently implement the link prediction using the MGM- and SGM-based
similarity indices. For link prediction, the similarity indices can be used as a
similarity score S(i,j), defined as Eq. (2)

S(i,j) = MGM; - MGM; - SGM; ; 2)

, where MGM; and MGM; indicate the number of edges (degree, d)

connected to node i and j, respectively, which can be calculated by the MGM

current. SGM; ; indicates the SGM current between the node i and j.
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Figure 3-20. Schematic diagrams of link prediction algorithm and
community detection algorithm using similarity index based

on SGM and MGM.

For the social network graph of Figure 3-20, the MGM-+SGM-based link
prediction system predicts which non-edge among (3,6) and (1,8) will change
to edge at time ¢+1 step in G'*! graph. Similarity scores are assigned to each
unconnected pair; the higher the score, the higher the probability that the pair
will be connected. If there are many low-hop connections between two nodes
and the degree of each node is high, a high similarity index is assigned in this

MGM+SGM-based link prediction algorithm. For example, in prediction case
113 b T I_":



1, there are two 2-hop connections between nodes 3 and 6, and the degree of
nodes 3 and 6 is high, so prediction case 1 will be assigned a higher similarity
than prediction case 2, which has 4-hop connections and a low degree. To make
this prediction, MGM;, MGM; and SGM;; values (1.0 V of reading voltage)
for each source-target combination are calculated (Figure 3-21), which
eventually generate the S(3,6) = 10.17 and S(1,8) = 1.76 (Figure 3-20).
Therefore, the link between persons 3 and 6 will be made, but the link between
persons 1 and 8 will not be at G'*! stage. When seeing the sneak current paths
for SGM in Figure 3-21, the short paths containing 3—4—6 and 3—5—6 (2-
hop) comprise the main current path. In contrast, there are many more paths
between 1 and 8, but none are 2-hop paths, so the effective current is lower.
This circumstance represents the connection configuration of G’ precisely, and
thus, the link prediction must be accurate.

Graph sampling is used to evaluate the performance of scores for static
graphs. Figure 3-22 shows the S value distribution of non-edges and sampled
non-edges. Sampled non-edges had the highest score, indicating that the S value
predicts links reflecting the graphical structure. The performance of this
MGM+SGM method is compared with other software-based algorithms for
various datasets. The receiver operating characteristics (ROC) curve and the

area under the ROC curve (AUC) were used as the evaluation metrics.
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Figure 3-21. MGM+SGM similarity score. a and b, MGM and SGM results
in case 1 (node 3, 6) and case 2 (node 1, 8). Calculation
procedures of S(3, 6) and S(1, 8). For the non-edge (3, 6), MGM3
=3, MGM;s =3, SGMg, 6= 1.13 pA and S(3, 6) = 10.17. For the
non-edge (1, 8), MGM; =2, MGM; = 2, SGM(1, 3)= 0.44 pA and

S(1, 8) = 1.76.
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Figure 3-22.
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Similarity values assigned to non-edges and sampled non-

edges after 20% sampling in the example graph of Figure 3-

20. Since sampled non-edges are created by cutting the original

edges, high S values are assigned due to peripheral connections.
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Figure 3-23. Performance results (area under ROC curve) for Zachary's
karate club, Books about US politics, and Twitter retweet
network datasets of SGM+MGM, CN, AA, and Jaccard
indices. SGM+MGM showed the highest and most consistent

performance in the four datasets.
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Figure 3-23 shows that for all the tasks, the MGM+SGM method
outperforms all other competitors, demonstrating the superiority of the
suggested approach.

Unlike existing methods based on counting the number of nodes that satisfy a
specific condition, mCBA-based link prediction utilizes SGM. Therefore,
MGM+SGM metrics can score inter-node connectivity precisely and

continuously.
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Figure 3-24. SGM distribution and ROC curves of each algorithm for the
Zachary’s karate club dataset. a, Distribution plot of the

SGM+MGM index values. b, Receiver operating characteristic

(ROC) curve of the SGM+MGM index values.

Several rising points in the ROC curve of Figure 3-24 show how this
characteristic brings high performance in Zachary's karate club dataset. Many
rising points in the ROC curve mean that similarities between 'non-edge' and
'edge to non-edge' are well separated, and the ROC curve is located above the
dashed diagonal. There are many rising points in the ROC curve of
MGM+SGM because continuous scoring can distinguish subtle connectivity
differences that node-counting-based algorithms cannot. In Zachary's karate
club dataset, the number of rising points of MGM+SGM, CN, AA, and Jaccard
are 15, 6, 8, and 8, respectively.
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3.3.4. COMMUNITY DETECTION

Another application of mCBA-based hardware is community detection,

which binds dense groups within a given community based on similarity.
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Figure 3-25. The flow chart that describes the community detection
algorithm using SGM-similarity in a small social network

composed of 9 people.

Figure 3-25 shows a schematic diagram that describes the community

detection algorithm using SGM-similarity matrix S, defined as Eq. (3) B%.
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Figure 3-26. Schematic diagrams of community detection algorithm using

similarity index based on SGM.
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Figure 3-26 shows the schematic diagram of the mCBA-based community
detection algorithm. In the SGM-based community detection algorithm, a node
(or community) pair having a high SGM current (similarity) forms a
community first. Unlike link prediction, the community detection algorithm
proceeds by comparing edges, not non-edges. The more the low-hop bypasses
in addition to the direct connection (edge), the greater the similarity and the
higher the connectivity. After repeating community formation until the entire
graph becomes one community, the step with the most increased clustering is

identified, and the algorithm is terminated.
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Figure 3-27. SGM-similarity for community detection. a, SGM currents in

total 45 node pairs. b, SGM currents in 1-hop pairs.

All the estimated SGM-similarity values (1.0 V of reading voltage) between
the two nodes in the graph of Figure 3-26 are shown in Figure 3-27a. The
numbers in the figure indicate the estimated current values, representing the
similarity. The highest current (28.4 pA) value is achieved for SGM, , (Figure
3-27b), indicating that the connection between nodes 2 and 4 is strongest among
others. This strong connection is due to a direct (1-hop) connection between
nodes 2 and 4 and the additional 2-hop connection through nodes 1 and 3.
Therefore, the first community is formed in pairs (2, 4). In the next step, the
similarity between the just-formed community and other nodes is calculated by
averaging the similarity between individual nodes within the community and
the node P!l After that, the similarity matrix is updated and repeated until it is
grouped into a single community.
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Figure 3-28. A schematic of the dendrogram. The dendrogram can confirm
the results of community aggregation according to the progress
of the algorithm. (left panel) Modularity changes according to

community agglomeration. (right panel).

However, as readily anticipated, the single community containing all
members shown in Figure 3-25 does not bear sufficient meaning, so the
communities must be cut off at an appropriate branch in the dendrogram that
can confirm community agglomeration at each step. This cut-off can be
accomplished by estimating the modularity (Figure 3-28) ®%. While no definite
value for the optimum modularity is known, a value above 0.3 is considered an

appropriate criterion.
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Figure 3-29. The modularity change in each iteration and a schematic of
the dendrogram. This result can confirm the results of
community aggregation according to the algorithm's progress.
(inset) Modularity changes according to community
agglomeration. After obtaining the modularity according to the
branch formation of the dendrogram, the branch is cut-off at the
point corresponding to the highest value (= 0.37, at iteration 7).
In the inset dendrogram, each bar from right to left corresponds

tonodes 1t0 9.

The optimum community cut-off can be found when the modularity reaches
the maximum, 0.372 (Figure 3-29). It can be understood that this modularity
coincides with the case where the three communities (1, 2, 3, 4), (5, 6), and (7,

8, 9) are formed.
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Figure 3-30. The whole process of the SGM-based community detection
algorithm. a-f, Similarity matrices and community formation at
each iteration step. After initially creating the SGM-similarity
matrix, the aggregation is shown in the schematic diagram in the
pair with the highest value in the matrix. After the aggregation
process, the SGM-similarity matrix is updated by calculating a
new similarity between nodes and communities, and between
communities according to the UPGMA linkage criteria. Finally,

the algorithm is repeated until a single community remains (h).

Figure 3-30 shows the community formation process and the resulting
similarity matrix. The state with the maximum modularity corresponds to

Figure 3-30h.

126 AR



—

—1
Al Hmmj el

002 015 032 049 066

o3 a5
Modularity Modularity Modularity

Figure 3-31. Algorithm performance evaluation results using various
graph data. a, The dendrogram plot according to the sequential
community agglomeration in Zachary's karate club, Twitter
retweet network, and Books about US politics dataset, and the
modularity calculated at each branch of the dendrogram. b,
Schematics of community detection results at points with
maximum modularity.

Figure 3-31 shows the results of SGM matrix-based community formation in

several datasets. Each graph data is displayed in a different color for each

community and shows that the cluster is well detected.
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Figure 3-32. The maximum modularity of the SGM-based method was

compared with

algorithms.

conventional

community detection

The performance of the SGM-based suggested method was compared with

conventional community detection algorithms for various datasets (Figure 3-

32). In general, the SGM-based method always belongs to the group with the

highest modularity, demonstrating the higher performance of the suggested

method.
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3.3.5. BRAIN NETWORK-BASED ADHD CLASSIFICATION

To further highlight the strength of mCBA proposed in this study, mCBA-
based brain network (connectome) analysis and attention-deficit/hyperactivity
disorder (ADHD) diagnosis are performed. A connectome is a brain map that
comprehensively expresses the connections of neurons in the brain. Each region
of the human brain interacts structurally and functionally at multiple levels and

modes (33 (341

. The connectome analysis is essential because it provides
information about the brain and psychiatric disorders. However, human
connectomes are highly complex and vast, making it challenging to use
conventional image analysis techniques. This study generates connectomes
from functional magnetic resonance imaging (fMRI) scan data from the

subjects with ADHD and the healthy subjects (neurotypical controls, NC), and

mapped them to mCBA. For this purpose, using only SGM was sufficient.
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Figure 3-35. A schematic diagram of ADHD classification and identifying
ADHD determining brain region based on the brain network
analysis using mCBA. The intracortical connections of the brain
region are mapped to square areas symmetrical to the main
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ADHD is diagnosed by effectively extracting the features of each
connectome using the SGM method and training the readout network based on
SGM current vector. (Figure 3-35)

The SGM current in the mCBA can quickly identify the link in the
connectome and classify the connection's hop number (distance) according to
the current level. In this study, SGM current data are obtained from the mapped
mCBA to confirm connectivities of the connectomes in the ADHD and NC
subjects.

Among the distributions of ADHD and NC subjects for various pairs, pairs
with the most separated (high AUC) data from the two groups are selected as
determining pairs. Determining pairs are classified into 1, 2, and 3-hop
according to the SGM current level and sorted based on the AUC calculated

from each distribution.
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Figure 3-34. SGM current distribution of ADHD and NC subjects in three

determining pairs with AUC greater than 0.8.

Figure 3-34 shows the SGM current (1.0 V of reading voltage) distribution
in pairs of L-Occipital-PrimVisual (17) — R-Cerebellum-Cerebellum, R-
Occipital-PrimVisual (17) — R-Cerebellum-Cerebellum, and L-Prefrontal-
PreMot+SuppMot (6) — L-Temporal-Temporalpole (38), which are the 2-hop
pairs among the determining pairs. The SGM currents from ADHD and NC
subjects are significantly separated in these three pairs. However, several other
pairs showed notable differences between the two subjects, which can also be
used in classifying ADHD and NC subjects (Figure 3-35 for more details about

the network formation).
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correlation coefficients after the parcellation of raw fMRI data.
The connectivity matrix is mapped to mCBA, and 6612x1 SGM
current vector is generated in each brain network. Among the
6,612 components in the given SGM vectors of the training sets
(180 subjects), the 150 determining pairs that distinguish ADHD
and NC were selected and used as the input vector to train the
feedforward network. The hop number can be identified
according to the current level.

The pairs containing the crucial information were selected, and their SGM
current value vectors (150 Components) were used as the input vectors to train
the fully-connected feedforward readout network. The network could be trained
well when multi-hop pairs with high AUC were used as inputs. The accuracy
was low when the 1-hop, 2-hop, and 3-hop pairs of the determining pair were
individually trained.

However, when they were trained together, the accuracy was 77.5% (Figure
3-36a). Therefore, this result indicates that both the intracortical and
intercortical connections are different in ADHD and NC subjects. It
outperforms many existing algorithms regarding accuracy and AUC. (Figure 3-
36b) This is because the information of the multi-hop pair contributed
significantly to the accurate diagnosis, which can be extracted efficiently in
mCBA. For example, to check the 3-hop connection, matrix multiplication

should be performed twice. In the conventional GPU method, it is necessary to
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perform MAC operations ~2.7x10° times for the matrix size used in this task.
However, in this mCBA, it is possible to check whether a connection is made
by applying a voltage once, which significantly simplifies the computation.
Therefore, training the network becomes feasible even for the connectomes
with deep links. This connectome processing method can ensure accuracy while
inducing significant energy savings. In the mCBA, a deep connection can be
identified with one SGM, in which 0.39 pW of power is consumed with a
reading voltage of 1 V. In the brain network-based ADHD classification, a
maximum of 150 connections were used for training the readout network, and
the required power consumption corresponds to 58.5 pW. Meanwhile, in the
memristor-CMOS system 1**!, designed for efficient MAC operation, a power
of 1.9 mW is consumed for the MAC operations to check the 3-hop deep

connection.
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Figure 3-36. Performance of the mCBA-based ADHD classification. a,
Train and test accuracy per epoch when SGM current vector of
1-hop, 2-hop, and 3-hop pairs were all used as inputs in ADHD
classification. b, Accuracy and AUC of SGM-based method and

existing studies in ADHD classification.
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3.4. Conclusion

Analog computing based on physical means has been an appealing contender
to solve several computationally hard problems, such as NP-hard problems.
Those problems may not have an algorithmically appropriate solution or take
an excessively long time to reach a reasonable answer. The issues dealt with in
the above sections correspond to these problems. Memristors have been
exploited to apply to specific hardware that may physically solve these
problems. Nonetheless, the stochastic nature of the switching mechanism
generally hinders the reliable operation of the hardware. The neuromorphic
inference machine based on the CBA of memristors, which rapidly processes
the vector-matrix multiplication (VMM), is a typical system that suffers from
these issues. In contrast, there could be other applications for physical
computation, which less or do not suffer from the non-uniformity and
repeatability issues.

The mCBA structure in this work performs the physical calculation to
realize the similarity and adjacency search functions in the graphic data
structures. The graphic data structure can be non-Euclidean, which may not
necessarily be transformed into the Euclidean one by even the most complicated
method in the vector space. In this case, the known algorithmic solution using
the similarity function may not work. However, the SGM in mCBA can extract

the similarity, the hidden information, between the nodes in any graph using the



non-ideality of the array structure. This process does not require any pre-
processing of the graphic data, even if they are of the non-Euclidean form.

Also, the similarity function is only used for the relative comparison,
not the deterministic calculation, and thus, suffers far less from the random
variation than the VMM. It is mainly determined by the number of connecting
nodes, not by the resistance of each cell. Besides, MGM provides a physical
mean for the adjacency search function, which searches the nearby (or directly
connected) nodes. Therefore, mCBA can be used for both the similarity and
adjacency search functions, corresponding to the process and memory functions,
respectively. In other words, the mCBA is an optimized process-in-memory
device performing both data process and memory functions.

The mCBA can efficiently identify deep connections in a huge graph,
which grows in the real world. Checking multi-hop connections in a large graph
requires considerable computation using existing hardware. mCBA can easily
extract hidden information (deep connection) in the graph and reduce the
analytical complexity of the real-world graph.

This work demonstrates that the various graphic structures can
be mapped onto the mCBA, and the physical calculations using the
suggested mCBA outperform the previous software-based algorithms.
The mCBA can be used for any type of graph, e.g., directed or weighted.

Stacking the two-dimensional mCBA or even vertical integration of the
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mCBA in three-dimensional space will allow applying it to a

multidimensional graphic network.
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4. Conclusion

In this dissertation, complex data processing with memristor-based physical
computing was established using intrinsic physical properties (R-C delay, I-V
nonlinearity, sneak current) of the memristive hardware.

First, a new method of sequential data processing using a nonvolatile
memristor-based temporal kernel with time constants controllability was
proposed. A temporal kernel was constructed using memristors (M), resistors
(R), and capacitors (C) for effective sequential data processing. The unit cell
has a IMIRIC structure in which a memristor is connected in series with a
resistor and a capacitor, and the resistor and capacitor are connected in parallel
with each other. The IM1R1C kernel has the advantage of being applicable to
various situations as it can have various time constants through R and C control.
IM1R1C-based MNIST recognition showed high accuracy (90%) with high
energy efficiency and fast processing speed. In addition, the IM1R1C kernel
was applied to ultrasound and electrocardiogram-based medical diagnosis with
very different time constants (frequency range of 1 to 10 MHz).

Second, a method for processing non-Euclidean graphs using self-rectifying
memristor arrays was proposed. Non-Euclidean graphs were represented using
a metal-cell-at-diagonal crossbar-array (mCBA), made up of self-rectifying
memristors. The mCBA's sneak current, a natural physical property, can be

used to determine similarity. The sneak current-based similarity function can
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be used to measure the distance between nodes, connections between
communities and nodes, and the likelihood of unconnected nodes becoming
connected in the future. This research demonstrates the practical use of
memristor-based physical calculations for solving various types of graph-
related problems.

This dissertation presents a new breakthrough for the next-generation
physical computing using memristor-based novel hardware for complex data,
such as time-varying data and graph data. The results in this thesis could shed
light on this novel data processing field by suggesting a new pathway that is a

step forward from the conventional approach.

146 2]



Curriculum Vitae

Yoon Ho Jang

Department of Materials Science and Engineering E-mail: dbsgh0147@snu.ac.kr
College of Engineering Tel.: +82-10-5651-8839
Seoul National University Fax.:+82-2-880-8643

1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea

I. Educations

2014. 03.-2018.08. B.S.
Department of Materials Science and Engineering

Seoul National University, Seoul, Korea

2018. 09. —2023.02 Integrated M. S. & Ph. D.
Department of Materials Science and Engineering

Seoul National University, Seoul, Korea



I1. Research Areas

Analysis of the switching mechanism of the ReRAM

Characterization of electronic properties of ReRAM with MIM structure

Characterization of electronic properties of ReRAM CBA using multi-point

probing system

Time-dependent measurement of ReRAM with parasitic components

Finite-element method simulation of ReRAM structure using physical attributes

(Electric field, Joule heating)

Compact modeling of ReRAM devices for simulation

Extraction of ReRAM modeling parameters based on the measurement results

Designing ReRAM compact model for analog-circuit simulators

Resistive switching memory device fabrication and electrical measurements

Deposition / etching / lithography / electrical characterizations

148 3



- Studies on the switching mechanism of resistive switching memory device

4. Data processing with the memristor-based physical computing system

- Multi-layer perceptron and conventional neural network simulation using

Graphical Processing Unit
- Temporal data processing with memristive temporal kernel
- Chaotic time-series prediction

- Graph data processing with self-rectifying memristor crossbar array

III. Experimental Skills

1. Deposition methods

- Atomic layer deposition for oxide (Hafnium oxide, Aluminium oxide, Tantalum

oxide, Titanium oxide)

- DC & RF magnetron sputtering and E-beam evaporation for electrode materials

2. Annealing methods

149 3



Rapid thermal process
Analysis methods

X-ray photoelectron spectroscopy (XPS, UK VG, Sigma Probe) for analysis of

the chemical states of the elements

Transmission Electron Microscopy (TEM, JEOL, JEM-2100F, JEM-3000F,

JEM-200CX) for microstructure analysis of thin film

Energy Dispersive Spectroscopy (EDS, Oxford Instrument, AZtec) incorporated
by Scanning Transmission Electron Microscopy (STEM, JEOL, JEM-2100F,

JEM-3000F) for elemental analysis.

Auger electron spectroscopy (AES, ULVAC-PHI, PHI-700) for analysis of

impurity.

Scanning electron microscopy (SEM, Hitachi, S-4800) and Atomic Force

Microscopy (AFM, JEOL, JSPM-5200) for analysis of the topography

Spectroscopic Ellipsometer (SE, J.A. Woollam, M-2000) for analysis of optical

properties and thicknesses of thin films

Pulse/pattern generator (Agilent, 81110A/81111A) and digital oscilloscope for
pulse switching measurements / B15S00A with WGFMU and RSU units for faster

measurements

150 ._:| ] "j'.: - 11



Programs apprentice

HSPICE (Synopsys) for analog circuit simulation

Pytorch with Python for neural network simulation

MATLAB (Mathworks) for general calculation and analysis

COMSOL (COMSOL) for simulation with the finite-element method

IV. Academic Honors

Excellent Paper Award, BK21 4™ phase, Department of Materials Science and
Engineering, College of Engineering, Seoul National University (June 2022)
Excellent Graduate Students Award, BK21 4™ phase, Seoul National University
(June 2022)

Excellence Award, Al Model Presentation, Korea Research Institute of Standards
and Science (August 2022)

17th Semiconductor Scholarship, Korea Semiconductor Industry Association

(October 2022)

151 ._;." O 1



List of publications

1. Refereed Journal Articles (SCI)

1.

1.1 Domestic

1.2. International
Yoon Ho Jang, Woohyun Kim, Jihun Kim, Kyung Seok Woo, Hyun Jae Lee,
Jeong Woo Jeon, Sung Keun Shim, Janguk Han, and Cheol Seong Hwang”,
“Time-varying data processing with nonvolatile memristor-based temporal
kernel”, Nature Communications, 12, 5727 (2021)
Seung Kyu Ryoo, Kyung Do Kim, Hyeon Woo Park, Yong Bin Lee, Suk Hyun
Lee, In Soo Lee, Seungyong Byun, Doosup Shim, Jaec Hoon Lee, Hani Kim,
Yoon Ho Jang, Min Hyuk Park, and Cheol Seong Hwang*, “Investigation of
Optimum Deposition Conditions of Radio Frequency Reactive Magnetron
Sputtering of Al0.7Sc0.3N Film with Thickness down to 20 nm”, Advanced
Electronic Materials, 2200726 (2022)
Kyung Seok Woo, Jachyun Kim, Janguk Han, Woohyun Kim, Yoon Ho Jang &
Cheol Seong Hwang, “Probabilistic computing using Cuo.1Teos/HfO2/Pt
diffusive memristors”, Nature Communications, 13, 5762 (2022)
Hyeon Woo Park, Minsik Oh, In Soo Lee, Seungyong Byun, Yoon Ho Jang,

Yong Bin Lee, Beom Yong Kim, Suk Hyun Lee, Seung Kyu Ryoo, Doosup Shim,

152 ._;." .,j_':_ 11



Jae Hoon Lee, Hani Kim, Kyung Do Kim, and Cheol Seong Hwang*, “Double
S-Shaped Polarization — Voltage Curve and Negative Capacitance from Al2Os3-
Hfo 5Z1r0.502-Al>0s Triple-Layer Structure”, Adv. Funct. Mater. 2206637, (2022)
5. Yoon Ho Jang, Janguk Han, Jihun Kim, Woohyun Kim, Kyung Seok Woo,
Jaehyun Kim, and Cheol Seong Hwang, “Graph analysis with multi-functional

self-rectifying memristor array”, Advanced Materials, 2209503 (2022)

2. CONFERENCES

2.1 Domestic

1. Yoon Ho Jang, Jihun Kim, Jachyun Kim, and Cheol Seong Hwang, “Analysis
Of Multi-bit Resistive Switching Of W/HfO2/TiN Memristor Based On
Electronic Bipolar Resistive Switching Mechanism”, The 27th Korean
Conference on Semiconductors (February 2020), Poster

2. Woohyun Kim, Manick Ha, Chanyoung Yoo, Jeong Woo Jeon, Wonho Choi,
Byongwoo Park, Gil Seop Kim, Kyung Seok Woo, Jihun Kim, Yoon Ho Jang,
Eui-Sang Park, Yoon Kyeung Lee, and Cheol Seong Hwang, Atomic Layer
Deposited N-doped GeSe for Leaky-Integrate-and-Fire Neuron Application, The
28th Korean Conference on Semiconductors (January 2021), Oral

3. Yoon Ho Jang, Ji Hun Kim, Jeong Woo Jeon, Woo Hyun Kim, and Cheol Seong
Hwang, Memristive Reservoir Computing for Medical Diagnosis, The 28th

Korean Conference on Semiconductors (January 2021), Oral

153 3 .__'-_ . 5.__“:



Jang Uk Han, Yoon Ho Jang, and Cheol Seong Hwang, Analysis of the Role of
the Al203 Layers in Self-Rectifying and FormingFree
Pt/A1203/HfO2/A1203/TiN Memristor, The 29th Korean Conference on
Semiconductors (January 2022), Poster

Sung Keun Shim, Yoon Ho Jang, and Cheol Seong Hwang, Demonstration of
Adaptable Artificial Nerve Using 2Memristor-1Capacitor Structure, The 29th
Korean Conference on Semiconductors (January 2022), Poster

Yoon Ho Jang, Janguk Han, and Cheol Seong Hwang, Demonstration of Sneak
Current-Based A* Pathfinding Algorithm, The 29th Korean Conference on
Semiconductors (January 2022), Oral

Jang Uk Han, Yoon Ho Jang, and Cheol Seong Hwang, Analysis of sneak
current through n cell in the memristive-crossbar array, The 30th Korean
Conference on Semiconductors (February 2023), Poster

Sung Keun Shim, Yoon Ho Jang, and Cheol Seong Hwang, Time-Series Data
Processing using 2Memristor-1Capacitor Integrated Temporal Kernel, The 30th
Korean Conference on Semiconductors (February 2023), Poster

Yoon Ho Jang, Janguk Han, and Cheol Seong Hwang, Graph analysis using
self-rectifying memristor crossbar array, The 30th Korean Conference on

Semiconductors (February 2023), Poster

154 ] 2 11



2.2 International
Woohyun Kim, Manick Ha, Chanyoung Yoo, Jeong Woo Jeon, Wonho Choi,
Byongwoo Park, Gil Seop Kim, Kyung Seok Woo, Jihun Kim, Yoon Ho Jang,
Eui-Sang Park, Yoon Kyeung Lee, and Cheol Seong Hwang, “High-Reliable
Atomic Layer Deposited N-doped GeSeand Its Leaky-Integrate-and-Fire
Neuron Application”, AVS 21st International Conference on Atomic Layer
Deposition, Virtual Meeting, June 27-30, 2021, Poster
Jang Uk Han, Yoon Ho Jang, Ji Hun Kim, Woo Hyun Kim, and Cheol Seong
Hwang, “Demonstration of a diagonal shorted self-rectifying memristive
crossbar array for performing graph algorithms”, The 2022 E-MRS Fall Meeting,
Warsaw University of Technology, Sep 19 to 22, Poster
Yoon Ho Jang, Sung Keun Shim, Janguk Han, Jihun Kim, Woohyun Kim, and
Cheol Seong Hwang, “Time series data processing using non-volatile
memristor-based temporal kernel”, The 2022 E-MRS Fall Meeting, Warsaw
University of Technology, Sep 19 to 22, Poster
Sung Keun Shim, Yoon Ho Jang, Janguk Han, Jeong Woo Jeon, and Cheol
Seong Hwang, “Energy-Efficient Time-Series Data Processing Using HfO»-
Based 2Memristor-1Capacitor Integrated Temporal Kernel”, 2022 MRS Fall

Meeting & Exhibit, Boston, Nov 27 to Dec 2, Poster

155 ] 2 11



Abstract (in Korean)
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