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Abstract

Recently, with the remarkable development of deep learning, various data
have been accumulated. As the structure of big data becomes more diversified
and complex, complex data that is difficult to process with existing hardware
has emerged. Examples of complex data include sequential data and graph data.
Sequential data has characteristics that the current state reflects the input history
and the pattern is not constant and difficult to predict. Graph-type data is
difficult to be expressed in vector form since graphical data includes the
connections between entities. To process such complex data, novel data
processing techniques are required.

In the first part of this study, a method for processing time-series data with a
nonvolatile memristor is proposed. Recent advances in physical reservoir
computing, which is a type of temporal kernel, have made it possible to perform
complicated timing-related tasks using a linear classifier. However, the fixed
reservoir dynamics in previous studies have limited application fields. In this
study, temporal kernel computing was implemented with a physical kernel that
consisted of a W/HfO,/TiN memristor, a capacitor, and a resistor, in which the
kernel dynamics could be arbitrarily controlled by changing the circuit
parameters. After the capability of the temporal kernel to identify the static
MNIST data was proven, the system was adopted to recognize the sequential

data, ultrasound (malignancy of lesions), and electrocardiogram (arrhythmia),



that had a significantly different time constant (107 vs. 1 s). The suggested
system feasibly performed the tasks by simply varying the capacitance and
resistance. These functionalities demonstrate the high adaptability of the
present temporal kernel compared to the previous ones.

In the second part of this study, a method for processing non-Euclidean
graphs using self-rectifying memristor arrays is proposed. Many big data have
interconnected and dynamic graph structures growing over time. Analyzing
these graphical data requires identifying the hidden relationship between the
nodes in the graphs, which has conventionally been achieved by finding the
effective similarity. However, graphs are generally non-Euclidean, which does
not allow finding it. In this study, the non-Euclidean graphs were mapped to a
specific crossbar array (CBA) composed of the self-rectifying memristors and
metal cells at the diagonal positions. When all bit lines of CBA are connected
to the ground, the sneak current is suppressed, and CBA can be used to search
for adjacent nodes. When a single bit line is connected to the ground, the sneak
current, an intrinsic physical property of the CBA, allows for identifying the
similarity function. Sneak current-based similarity function indicates the
distance between nodes, the probability that unconnected nodes will be
connected in the future, connectivity between communities, and cortical
connections in a brain. This work demonstrates the physical calculation
methods applied to various graphical problems using the CBA composed of the

self-rectifying-memristor based on the HfO, switching layer. Moreover, such



applications suffer less from the memristors' inherent issues related to their

stochastic nature.

Keywords: Resistive switching memory, ReRAM, Memory, Hafnium oxide,
Self-rectifying memristor, Complex data, Kernel, Temporal
kernel, Sequential data, Medical diagnosis, Crossbar-array,
Sneak current, Graph algorithm, Process-in-memory

Student ID: 2018-24630

Yoon Ho Jang

iii o



Table of Contents

ADSITACE ...ttt i
Table Of CONENLS .......oveeriiiiiriieiieieeee e v
List Of Tables....c.eiiiriiiiiierieeiereei et vi
LiSt Of FIGUIES ...couviiiiieiieie et ix
List of AbBBIeviations.........covevuerierienieeienienienieseeeere e Xvil
1. INtroduction .........eeeeeeeecccnneneecssccnseneccssssnsssnecsssnssssees 1

1.1. Memristor-based Physical Computing for Complex Data

PrOCESSING ....eoiviiiieeiieiie ettt et e 1
1.2.  Objective and Chapter OVEIVIEW ..........cceevveerieereeenieenreennen. 3
1.3, References.....ccccoviriiriiiiiiieiieieceseeee e 5

2. Time-varying data processing with nonvolatile

memristor-based temporal kernel.........cccveeeeeeeeeeeceee 6
2.1, INtroduction ........c.ceoueeiiriiiiienieniceeceseee e 6
2.2, EXperimental ........ccccoeciivieiiiiiniieieeieeie e 14
2.3. Results and DiSCUSSIONS ......cccuereieruieierienieeienieneeeeee e 15
2.4, CONCIUSION ....ovviiiiiiiiieiiiieeetet e 67
2.5, ReferencCes.....ccceviiriiiiiiiiiiiectetee e 73

3. Graph analysis with multi-functional self-rectifying

11173 11 T E] 1) G ) o ) RN 78
3.1, INtroduCtion ..c...ovueeierieriieieeies e 78
3.2, Experimental .........cccooceiiiiiniiiiiieniieiiee e 80



3.3. Results and DISCUSSIONS .....cceeveieieiiiiiiiieiiieeeeeeeeeeee 82

3.4, CONCIUSION ..uvviiiiieeiiieiieeie ettt ens 137
3.5, REfOIreNCES...ccuviiiieiiieiieeieeieeee e 140
T T ©71) 1 T U1 T (1) | 145
(01109 ¢ TU11 11011 BT 172 1 147
List of publications .........cccccicicininicncssssnnnnnnneeeeeccccsssssssnnes 151
Abstract (in Korean)........ccccceieeicicncnccccccecneneneeeessssssssssssses 156



List of Tables

Table 2-1: The temporal kernel conditions (Ry, signal pulse, and REF pulse)

used in Figure 2-9a-e

Table 2-2: The frequency of the appearance of inputs in the preprocessed

Table 2-3:

MNIST dataset, in which '0000' appeared overwhelmingly,
followed by the inputs '1111', '1000', '0011', '0001", '1100', '0111"
and '1110" in the table (Due to the nature of the picture, the pixels
were continuously blanked or filled in most cases. Therefore,
inputs with consecutive high or low signals mainly appeared, and
there were a few inputs with alternating high and low signals such
as '1010"and '0101".)

Comparison of the results of the MNIST recognition using
memristive temporal kernel computing systems and a software-
based system (single-layer FCN), showing very fast processing

and the highest accuracy in this study

Table 2-4: Results of MNIST recognition using various kernel combinations.

For the recognition, kernel conditions of Figure 2-9a, b, and f of
the main text were used. A combination of 'Figure 2-9a+Figure 2-
9f' showed an accuracy of 91.8%. For a 196x10 input vector, two
kernels processed the input, and a 392x10 readout layer was used
(588x10 readout for the 3 kernels). On the other hand, when the
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pulse width was modified without changing the conditions Ry, C,
and pulse height in the condition of Figure 2-9f, an accuracy of
92.4 % was obtained in the combination of '200ns+2us+5us'. By
combining various kernels or changing pulse conditions for the
same kernel machine, the imperfections of one kernel could be
compensated for by another kernel, and the accuracy could be
improved.

Table 2-5: The accuracy when cycle to cycle variation, cell to cell variation,
and both are considered (kernel condition of Figure 2-9f of main
text was used). Each variation was calculated based on variation
measurement results in Figure 2-1. Up to 1 sigma of each variation
was considered, and when both cycle to cycle and cell-to-cell
variations were included in the simulation, the accuracy decreased
by 0.5 %.

Table 2-6: Results of MNIST recognition using two-layer FCN for the readout
layer of the TK system. The table shows the number of training
parameters used in each two-layer FCN and the accuracy of the
TK system (nBPK = 4). When 196x38x10 FCN was used, 7,828
training parameters were used, and the TK system accuracy was
95.1 %.

Table 2-7: Results of the MNIST recognition while increasing the number of
bits processed in the temporal kernel, showing that as nBPK

increased, both the size of the used readout layer_l and the
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recognition accuracy decreased.
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List of Figures

Figure 2-1. Experimental results on device reliability and reproducibility. a,
Cycle-to-cycle variation of the WHT memristor. Except for the
first cycle out of 100 DC cycles (2.5 ~ -3.2 V), there was a slight
variation in the I-V curve. The inset of (a) shows the read current
at 0.5V for each cycle number. b, Endurance of the WHT
memristor. The WHT memristor showed stable resistive
switching behavior during ~10° pulse cycles. For endurance
measurement, a 3.3 V height 1 us width SET pulse and -3.35V
height 1.5 ps width RESET pulse were used. The read current was
recorded with DC read at 0.9 V and a WHT memristor with 4 um
cell size was used for measurement. ¢, d, Cell-to-cell variation of
the WHT memristor. A total of 80 devices were measured with 20
devices each of 4 pm x 4 pm, 6 pm x 6 um, 8 um x § pm, and 10
um x 10 um. An [-V curve was obtained in each device through a
2.5V ~-3.2VDC cycle (¢), and the read current was extracted at
0.5 V of each I-V curve (d). Data shown in red is read current in

HRS and data shown in blue is read current in LRS.

Figure 2-2: Retention measurement result of the WHT device. The WHT

device has a nonvolatile characteristic in the low



conductance range (a) and a retention time of about 100
days at 25 °C, which is the result of extrapolation based on

60 ~ 150 °C retention data (b). Meanwhile, the WHT device

has a volatile characteristic in a high conductance region (c¢).

This is because the trap depth exerted on the electrons is
different according to the conductance state (trapped
electron density). In the above case, the trapped electron
density was increased by increasing pulse height. Then, the
relatively easier de-trapping of the heavily trapped WHT
device induced the decay of conductance with time. This

can be used as a fading memory.

Figure 2-3: The structure of the IM1R1C temporal kernel system and the [-V
characteristics of the memristor used in the temporal kernel. a, The
structure of the IM1R1C temporal kernel system proposed in this
study. The temporal kernel system can recognize images in the
MNIST database through feature projection and classification. b,
The I-V curve of the W/HfO,/TiN memristor. The sweep order is
marked in the figure. SET and RESET occurred in the positive
bias and the negative bias, respectively, and gradual switching
occurred in both switching conditions. Since the filament
formation process is not required in this electronic switching

device, no electroforming process is seen in the first sweep.
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Figure 2-4: Analysis of the AC characteristics, and device structure of
the W/HfO»/TiN memristor. a, Changes in conductance of
memristor according to pulse number. Pulse number 1~13
correspond to SET pulse, 14~26 correspond to RESET
pulse, and read voltage was 0.5 V. The SET and RESET
pulse heights were 4 V and -4 V, respectively, and the width
of both was 200 ps. b, The conductance of the memristor
according to the 2.5~4 V SET pulse height. Multilevel
switching is possible for both SET and RESET, but the
change in conductance according to the pulse number is
non-linear (a). Also, the change in conductance according
to the pulse height is non-linear as the pulse height
decreases (b). Both nonlinearities were used for the non-
linear transformation of the input in the temporal kernel. ¢,
Scanning transmission electron microscopy (STEM) cross-
sectional image and energy-dispersive x-ray spectroscopy
(EDS) analysis results (right portion) of the fabricated
W/HfO>/TiN memristor with a depth profile. d, XPS
spectra of the W 4f region with a depth profile and fitting
results for the W/HfO»/TiN memristor. The square dot
shows the measurement result (Exp), and the black and red
lines show the fitting result (Fit) and back ground (BG),

respectively. Blue, green, and purple lines show XPS peaks
. ¥ | ] B |1

X1 A



of tungsten (W), tungsten oxide (WOs3), and tungsten
suboxide (WOy), respectively. The sample was measured
immediately after the deposition. ¢, d show that tungsten
oxide was generated in the memristor.

Figure 2-5: The effects of the temperature and the cell area on the electrical
properties of the device. a, The I-V curve at various temperatures
(45~105 °C). b, The I-V graph of the LRS at various temperatures
(45~105 °C). ¢, d, The cell area dependence of the resistance
measured in 10 devices in HRS (¢) and LRS (d).

Figure 2-6: The trap depth of the WHT memiristor calculated from the time-
dependent current-relaxation characteristics of the on and off
states at various temperatures. For this test, the current was
measured at the 0.5 V read voltage and the temperature was varied
from 35 °C to 150 °C. a, b, The relaxation curves at various
temperatures of the HRS (a) and LRS (b). Here, the read current
was normalized to the initial current at t = 0. The data show that
the read current rose (a) and decayed (b) over time as the trapped
electrons were being trapped (a) and detrapped (b). These

relaxation curves were fitted into the stretched exponential

t

B
function [f5(t) = Ae_(?) + B] to attain the time constant (T) at

each temperature. ¢, d, The Arrhenius plots of In (t) versus 1/kT

of the HRS and LRS cases. The analysis showed 0.45 eV and 0.13
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eV activation energy, which correspond to the trap depth for the

HRS and LRS, respectively, of the system.

Figure 2-7: The circuit used as a temporal kernel in the experiment, and the V-
t graphs obtained from the DUT and CH2 of this circuit. a, A
temporal kernel circuit composed of a memristor, resistors, and a
capacitor. CH1 shows the shape of the input pulse stream, and
CH2 shows the voltage applied to a 1M ohm resistor. The voltage
across the DUT (green graph) is obtained by subtracting the CH2
voltage from the CHI1 voltage. The left panel shows the circuit
used in the pulse set (marked by pink) and the right panel shows
the circuit used in DC read (marked by blue). b, The voltages
applied to the memristor with a '0101+reference pulse' (left) and a
'1010+reference pulse' (right). ¢, The voltages applied to the
corresponding CH2, where the 4 V and 0 V voltage amplitudes
represent ‘1” and ‘0,” respectively. The voltage across CH2 shows
that the charging and discharging rates of the capacitor were

asymmetric.

Figure 2-8: Fading memory test of the WHT memristor at the low and high
conductance levels. a, Response of the IM1RI1C kernel machine
to input patterns of '1111', '1010', '1000', and '0001' in the low
conductance range. In the low conductance region, the WHT

memristor has nonvolatile characteristics, so the effect of the high
xiii A =
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signal is accumulated and the fading memory is not implemented.
In contrast, the WHT memristor has a volatile characteristic in a
high conductance region, and a fading memory is implemented in
this region (b). ¢, d, Voltage applied to CH1 and CH2 for the input
patterns of '1111','1010', '1000', and '0001" in the low (c) and high
(d) conductance level of the cell 1. During the measurement, a 180
pF capacitor and 390 Q resistor were used for the IM1R1C kernel
machine. 4 V height 1 ps width pulse was used as the signal pulse
and 1 V height 1 ps width pulse was used as the read pulse.
Figure 2-9: Experiment results to analyze the effect of changing parameters on
the kernel characteristics in the temporal kernel system. The read
current at 0.5 V of the memristor for the pulse stream '0000'~'1111"
corresponds to 0~15 in the inset table in e. a, The read current at
0.5V of the memristor for each input under the conditions of 1 MQ
Ry, 4 V signal pulse height, 100 us width, 4 V REF pulse height,
and 100 pus width. b-e, The read current at 0.5 V of the memristor
for each input when Ry, pulse width, pulse height, and REF pulse
height are changed respectively from the condition of a. The
various parameter settings for each figure were summarized in
Table I. The kernel responses for each input of the temporal kernel
optimized for the MNIST recognition are shown in f. Responses
to inputs showing high prevalence in the dataset were well

separated (marked by red circles).
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Figure 2-10: The V-t graphs for the '0000'~'1111" inputs under the conditions
of a 1 MQ Ry with a 4 V signal pulse height and a 100 pus width,
and a 4 V REF pulse height and a 100 ps REF pulse width.

Figure 2-11: The V-t graphs for the '0000'~'1111" inputs under the conditions
of'a 120 kQ Ry, with a 4 V signal pulse height and a 100 ps width,
and a 4 V REF pulse height with a 100 ps width.

Figure 2-12: The V-t graphs for the '0000'~'1111" inputs under the conditions
of 1 MQ Ry with a 4 V signal pulse height and a 200 ps width,
and a 4 V REF pulse height with a 200 ps width.

Figure 2-13: The V-t graphs for the '0000'~'1111" inputs under the conditions
ofa 1 MQ Ry with a 3.5 V signal pulse height and a 100 ps width,
and a 3.5 V REF pulse height and a 100 ps width.

Figure 2-14: The V-t graphs for the '0000'~'1111" inputs under the conditions
of a 1 MQ Ry with a 4 V signal pulse height and a 100 pus width,
and a 3 V REF pulse height, and a 100 ps width.

Figure 2-15: Analysis of the separation of inputs that generated net 1 spikes
('0000','0001','0011'",'0111", and '1111"). From the conditions of a
4V signal pulse height and a 100 ps width, and a 4 V REF pulse
height and a 100 ps width, Ry varies from 1 MQ to 10 kQ. a-c,
The V-t graphs for the inputs that generated net 1 spikes when 1
MQ, 120 kQ, and 10 kQ Ry, were used. d-f, The read current of
the memristor for the '0000~1111" inputs under the conditions in

a-c. When the 1 MQ Ry was used, since the voltage dist_lribut_ed to

¥ _ ]
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Figure 2-16:

the memristor was small, SET switching did not occur after the
first spike (a). Therefore, the responses to the inputs that generated
net one spike (0, 1, 3, 7, and 15) were not separated (d). As Rp
decreased, the voltage distributed to the memristor increased (b-
¢), and thus, the responses to the corresponding inputs were
separated (e and f).

Analysis of the input that caused maximum conductance. a-b, The
V-t graphs for the '1000' and '1010" inputs under the conditions of
a 4 V signal pulse height and a 100 ps width. REF pulse has 4 V
height and 100 ps width. 1 MQ and 120 kQ Ry were used for a
and b. c-d, The read current of the memristor for the '0000~1111"
inputs under the conditions in a-b. Since the large R1. caused slow
discharging, a sufficient interval after the first spike is necessary
to generate a spike that can cause large SET switching. Under the
conditions in a, maximum conductance occurred at the '1000'
input due to the slow discharging by the IMQ R (¢). On the other
hand, under the conditions in b, second and third spikes of
sufficient magnitude to cause SET switching occurred at the '1010'
input due to the fast discharging by the 120 kQ Ry. Therefore,

maximum conductance occurred at the '1010" input (d).

XVi A ==



Figure 2-17: a, The V-t graphs for the '0000'~'1111" inputs under the conditions
of 10 kQ Ry with a 3.5 V signal pulse height and a 500 ns width,
and a 3 V REF pulse height and a 500 ns width. b, The read current
of the memristor for the '0000'~'1111" inputs. Insufficient charging
further increased the separability for the consecutive high signals
since the capacitor was not fully charged even though consecutive
high signals were applied. This is suitable for situations in which
consecutive signals mainly appear, such as in MNIST.

Figure 2-18: Temporal kernels with different time constants (100 ns ~ 1 s).
Load resistance, parallel capacitance, and input interval used in
each temporal kernel are indicated in each figure. a-e, The V-t
graphs for the '1000' input under the condition of a 3.5 V signal
pulse height. a-c represents a temporal kernel with similar
characteristics to the temporal kernel in Figure 2-9a of main text,
but with a different time constant. d-f represents a temporal kernel
with similar characteristics to the temporal kernel in Figure 2-9f
of main text, but with a different time constant.

Figure 2-19: Result of the I-V curve fitting for the WHT memristor and power
consumption in the IMIR1C kernel machine during processing
one input. a, [-V curve fitting of the WHT memristor (HRS state)
based on the conduction mechanisms. b, Power consumption in
the IM1R1C kernel machine (Figure 2-9f kernel condition) during

input processing. Since the resistance of the WHT me_llnristor is

XVil A
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dependent on the voltage, the current passing through the

memristor was obtained with the HSPICE simulation using the

result of the [-V curve fitting in a. The energy (/. . Power(t) - dt)

consumed to process one input was calculated as ~25 pJ.

Figure 2-20: The temporal kernel responses were measured while increasing
the number of bits processed in the temporal kernel from 3 bits to
6 bits. a-d, The temporal kernel responses for the '000~111",
'0000~1111", '00000~11111", and '000000~111111" inputs under
the conditions of 10 kQ Ry with a 3.5 V signal pulse height and a
200 ns width, and a 3 V REF pulse height and a 200 ns width. As
the number of bits processed in the temporal kernel increased, the
separation of the responses to each input deteriorated.

Figure 2-21: The confusion matrices comparing the recognized digit and the
desired digit for the MNIST test dataset (4 situations, from the top
left: nBPK = 3 bits to the bottom right: nBPK = 6 bits) showing
that the number of correct inferences decreased as the nBPK
increased.

Figure 2-22: The automatic medical diagnosis system using the IMIRI1C
temporal kernel and the experiment results in the two sections. a,
A system for diagnosing the malignancy of breast lesions, which
is much simpler than in the existing method (inset in a). In this

system, ultrasonic signals are applied directly to the kernel

XViil A =



machine, so the imaging step is omitted. b, V-t graph for one echo
line of a benign sample (inset in Figure 2-22b). ¢, A part of the
electrocardiogram of a patient with arrhythmia. Long intervals
caused by abnormal beats discharged the capacitor, and the
conductance of the memristor increased in the next pulse. d, Five-
minute temporal kernel monitoring based on the ECG of one
normal patient (case 1) and two arrhythmic patients (cases 2 and
3). When arrhythmia occurred, the conductance of the memristor
increased. Case 3, which had the most severe arrhythmia
symptoms, showed the highest conductance.

Figure 2-23: The increase in the conductance of the memristor varied
according to the degree of arrhythmia. When arrhythmia was
severe, SET switching occurred in the memristor due to long
discharging. a-c¢, The ECG-based V-t graphs for three cases of
normal, arrhythmia, and severe arrhythmia. The electrical signal
of the ECG from the heartbeat was converted into a 2.5 V, 200 ms
pulse and applied to the memristor. d, The read current of the
memristor according to the degree of arrhythmia. The more severe
the arrhythmia was, the more the memristor conductance
increased.

Figure 2-24: The hardware structure needed to create an array of temporal
kernels that can adjust the kernel configuration. a, A structure in

which the resistors are sequentially connected to sevglral metal
. K, [, — |

X1X ._"i | H



lines. In this structure, the resistance value of the temporal kernel
can be adjusted by selecting several metal lines connected to the
resistors. b, A structure in which memristors are connected in
series to the WHT memristors and parallel to the capacitors (b left
panel). The IMIRIC circuit can be implemented in a three-
dimensional structure by stacking TiN, W metals in multi-layers
and depositing a dielectric layer and top electrode in the hole after
hole etching (b right panel). In this structure, the resistance of the
memristor can be set to the desired resistance value using a
method such as the incremental step pulse program (ISPP). ¢, Cell
area of the diffusive memristor-based reservoir and 1IM1RIC
kernel. The diffusive memristor-based reservoir is implemented
using a passive array composed of memristors. Therefore, 4F? is
required per cell (c left panel). If the IMIRIC kernel is
implemented with the structure in a, a minimum area of 8F is
required per cell when using a vertical pillar transistor (T), and the
area increases by 4F” each time a serial resistor is added (¢ middle
panel). The structure proposed in b requires an area of 4F%/cell (¢
right panel). This structure does not require an increase of
area/cell even with additional elements (R, C) other than the
memristor through a 3D integration process.

Figure 2-25: Implementation of various time constants of 1IM1R1C kernel

using MIS capacitor and WHT memristor (HSPICE sil_pulation).
] [»

XX A e



Figure 3-1.

Figure 3-2.

Figure 3-4.

a, IMIRIC circuit used in SPICE simulation. b, C-V curve of
MIS capacitor and [-V curve of WHT memristor used for
simulation and their fitting results (red line). In the simulation, an
MIS capacitor (sample device) showing a capacitance of 100 pF
~ 2.2 nF was used, and the WHT memristor fitting result of Figure
2-19 was used. c-g, V-t graphs of the kernel showing fast
discharging (left panel) and slow discharging (right panel)
characteristics (pulse width 50 ns ~ 1 ms). h, V-t graphs in the
kernel condition of 4 ~ 3.5 V pulse height, 2 ~ 1 pus pulse width,
and 10 kQ Rcro. h shows the effect of changing pulse height on
the capacitance of the TK system.

Graph to mCBA mapping. The resistance state of the (n, m)
device corresponds to the weight of the (n, m) edge. The (n, n)
metal cell represents the zero weight, which is the connection of
the node itself.

Two operation methods of mCBA. a, Multi-ground method
(MGM). b, Single-ground method (SGM).

Simulation results for two operation methods of mCBA. a,
HSPICE array simulation results for MGM at N1. b, The
adjacency search result of MGM at NI1. ¢, HSPICE array
simulation results for SGM of N1 to N9. The major and sub-
current paths are marked in red and orange, respectively. d,

Multiple paths between N1 and N9 which are not directly
Xxi A
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Figure 3-5.

Figure 3-6.

connected. The shortest and sub-current paths are displayed in red
and orange, which correspond to the current flow of c.

The main current ratio in the SGM at the various mCBA
configurations. a-¢c, nCBA mapping (upper panel) and [-V fitting
curves (red lines) for the unit cell memristor (lower panel). The
main current ratios for the 9 x 9 and 100 x 100 mapping were 0.60
and 0.45, respectively, when metal cells were placed on the
diagonal cells, while self-rectifying cells were placed on the rest
cells. d, The result of calculating the ratio of Imain pat and Louput in
9 x 9,100 x 100 mCBA under conditions of a, b, and c.
mCBA-array fabrication and the electrical analysis of the
PAHT memristor. a, Scanning electron microscope (left) images
of 9 x 9 mCBA and a cross-section transmission electron
microscope image (right) of the PAHT memristor. b, [-V
characteristic of the PAHT memristor at various set sweep
voltages (2.7 V to 3.5 V). The inset of b is the PAHT memristor
stack schematic. ¢, The surface plot of the three levels of

conductance data of 9x9 mCBA.

Figure 3-7. Chemical and physical analysis of the PAHT memristor. a-c, Hf

4f, O 1s, and Al 3d X-ray photoelectron spectroscopy (XPS)
analysis at the Al,O3/HfO, interface in the PAHT device. d,
Energy-dispersive X-ray spectroscopy (EDS) mapping result of

the PAHT memristor in cross-section TEM.
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Figure 3-8. Retention of the PAHT memristor. a, Retention of the PAHT

memristor measured at various temperatures (40 ~ 100 °C). b,
Arrhenius plots of In (1) versus 1/kT of the LRS retention. A
retention time of ~ 1 year (relaxation time from LRS level to HRS
level) was obtained at room temperature by extrapolating

retention data at 40 ~ 100 °C.

Figure 3-9. The process flow of the mCBA fabrication.

Figure 3-10.

Figure 3-11.

Figure 3-12.

Multi-level and dc cycle results of the PAHT memristor. a, I-
V curve when the DC sweep (SET) voltage is set to 2.4, 2.5, 2.6,
2.7,2.8,2.9,3.0,3.1,and 3.5 V (9 states). b, Result of the 300 DC
cycle of the PAHT memristor (set sweep: 3.5 V, reset sweep: -2.5
V).

Measurement setup for the 9x9 mCBA. Flow chart of the 9x9
mCBA measurement. The 9x9 mCBA was measured in the setup
of the 9x1 custom multiprobe, switch matrix, and semiconductor
parameter analyzer.

Reconfigurability of the mCBA. a, 9x9 mCBA (upper panel) to
which the graph of the lower panel was mapped. b, Affected area
of the mCBA (upper panel) and affected edges of the graph (lower
panel) when a hard breakdown occurs in the (3, 7) cell of the array.
¢, Results of remapping the affected part in mCBA (upper panel)
and the recovered graph (lower panel). For the restoration, the

edge data connected to nodes 3 and 7 are moved to BLg, BLg, WLz,
*» | G — | |
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and WL, and the cells of BL3, BL7, WL3, and WL7 are changed
to HRS. d, The current path and value of the SGM in the original
graph, breakdown case, and the restored graph.

Figure 3-13. An example weighted network. The red arrow indicates various
paths from node 1 to node 9.

Figure 3-14. mCBA-based pathfinding algorithm. a, Process of finding the

shortest path from N1 to N9 with the mCBA-based pathfinding
algorithm. Pathfinding consists of two steps: 1. Search neighbor
nodes (NNs) and the actual distance to the neighbor node with the
MGM, and calculate the distance from the neighbor node to the
target node (TN) as the reciprocal of the SGM. 2. Go to the
adjacent node with the lower sum of the cumulative sum of the
actual distance (source node to present node) and the estimated
distance (NN to TN).
Figure 3-15. MGM and SGM current path at N1. At the source
node (N1), the neighboring nodes, N2, N4, and N5, are searched
for by the MGM. (left upper panel) From the SGM of the neighbor
node of N1 to the target node, it can be seen that N5 is closest to
the target node.

Figure 3-16. MGM and SGM current value at N1. a, MGM result at node 5.
Based on the current level, the weights of adjacent nodes of node
5 can be identified, which coincides with the inset figure. b, SGM

results from the neighbor node of node 5 to the target node.
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Figure 3-17. The path-finding result for all 72 paths of the graph in Figure
3-13. The average number of attempts (red) and incorrect results
(blue) according to the heuristic scale factor k were plotted.

Figure 3-18. Distance calculation method in non-Euclidean graph based on
mCBA and software algorithm.

Figure 3-19. Comparison of the mCBA and Landmark algorithm for the
pathfinding results. a, Comparison of SGM currents of mCBA
and software algorithm-based distance estimation. Euclidean
distance and Manhattan distance were obtained using a landmark
algorithm (2 nodes were set as landmarks), and the bit line current
obtained using SGM was plotted according to the actual distance.
b, Average attempts of landmark algorithm and mCBA-based
algorithm.

Figure 3-20. Schematic diagrams of link prediction algorithm and
community detection algorithm using similarity index based
on SGM and MGM.

Figure 3-21. MGM+SGM similarity score. a and b, MGM and SGM results
in case 1 (node 3, 6) and case 2 (node 1, 8). Calculation procedures
of S(3, 6) and S(1, 8). For the non-edge (3, 6), MGM3 = 3, MGMs
=3, SGMg, 6= 1.13 pA and S(3, 6) = 10.17. For the non-edge (1,
8), MGM, =2, MGMs = 2, SGM(1,5)= 0.44 pA and S(1, 8) = 1.76.

Figure 3-22. Similarity values assigned to non-edges and sampled non-

edges after 20% sampling in the example graph of Figure 3-
¥ | ) ' |1
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20. Since sampled non-edges are created by cutting the original
edges, high S values are assigned due to peripheral connections.

Figure 3-23. Performance results (area under ROC curve) for Zachary's
karate club, Books about US politics, and Twitter retweet
network datasets of SGM+MGM, CN, AA, and Jaccard
indices. SGM+MGM showed the highest and most consistent
performance in the four datasets.

Figure 3-24. SGM distribution and ROC curves of each algorithm for the
Zachary’s karate club dataset. a, Distribution plot of the
SGM+MGM index values. b, Receiver operating characteristic
(ROC) curve of the SGM+MGM index values.

Figure 3-25. The flow chart that describes the community detection
algorithm using SGM-similarity in a small social network
composed of 9 people.

Figure 3-26. Schematic diagrams of community detection algorithm using
similarity index based on SGM.

Figure 3-27. SGM-similarity for community detection. a, SGM currents in
total 45 node pairs. b, SGM currents in 1-hop pairs.

Figure 3-28. A schematic of the dendrogram. The dendrogram can confirm
the results of community aggregation according to the progress of
the algorithm. (left panel) Modularity changes according to
community agglomeration. (right panel).

Figure 3-29. The modularity change in each iteration and a schematic of
] 21 O 1]
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the dendrogram. This result can confirm the results of
community aggregation according to the algorithm's progress.
(inset) Modularity changes according to community
agglomeration. After obtaining the modularity according to the
branch formation of the dendrogram, the branch is cut-off at the
point corresponding to the highest value (= 0.37, at iteration 7). In
the inset dendrogram, each bar from right to left corresponds to
nodes 1 to 9.

Figure 3-30. The whole process of the SGM-based community detection
algorithm. a-f, Similarity matrices and community formation at
each iteration step. After initially creating the SGM-similarity
matrix, the aggregation is shown in the schematic diagram in the
pair with the highest value in the matrix. After the aggregation
process, the SGM-similarity matrix is updated by calculating a
new similarity between nodes and communities, and between
communities according to the UPGMA linkage criteria. Finally,
the algorithm is repeated until a single community remains (h).

Figure 3-31. Algorithm performance evaluation results using various
graph data. a, The dendrogram plot according to the sequential
community agglomeration in Zachary's karate club, Twitter
retweet network, and Books about US politics dataset, and the
modularity calculated at each branch of the dendrogram. b,

Schematics of community detection results at points with

.. ] « —11
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maximum modularity.

Figure 3-32. The maximum modularity of the SGM-based method was

Figure 3-35.

Figure 3-34.

Figure 3-35.

compared with conventional community detection algorithms.
A schematic diagram of ADHD classification and identifying
ADHD determining brain region based on the brain network
analysis using mCBA. The intracortical connections of the brain
region are mapped to square areas symmetrical to the main
diagonal of the mCBA, and the intercortical connections are
mapped between each square. SGM extracts features from the
brain network of each subject, and a 2-layer readout network is
trained with the SGM vector. Based on the classification result,
brain regions where the difference in neural activity was
prominent were mapped to the brain figure.

SGM current distribution of ADHD and NC subjects in three
determining pairs with AUC greater than 0.8.

Flow chart of the entire process of ADHD classification using
mCBA. Connectivity matrices are obtained by calculating
correlation coefficients after the parcellation of raw fMRI
data. The connectivity matrix is mapped to mCBA, and
6612x1 SGM current vector is generated in each brain
network. Among the 6,612 components in the given SGM
vectors of the training sets (180 subjects), the 150 determining

pairs that distinguish ADHD and NC were selected and used
XXVII1 ]



as the input vector to train the feedforward network. The hop
number can be identified according to the current level.
Figure 3-36. Performance of the mCBA-based ADHD classification. a,
Train and test accuracy per epoch when SGM current vector of 1-
hop, 2-hop, and 3-hop pairs were all used as inputs in ADHD
classification. b, Accuracy and AUC of SGM-based method and

existing studies in ADHD classification.
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List of Abbreviations

IMIR1C One Memristor — One Resistor — One Capacitor
3D Three-Dimensional
ADHD Attention-Deficit/Hyperactivity Disorder
ALD Atomic Layer Deposition
Area Under The Receiver Operating Characteristics
AUC
Curve
BE Bottom Electrode
BG Back Ground
BL Bit Line
BRS Bipolar Resistive Switching
C Capacitor
CBA Crossbar Array
CC Current Compliance
CH1 Channel 1
CH2 Channel 2
CNN Convolutional neural networks
DC Direct Current
DUT Device-Under-Test
eBRS Electronic Bipolar Resistive Switching
ECG Electrocardiogram
EDS Energy-Dispersive X-ray Spectroscopy
F Feature Size
FCN Fully Connected Network
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fMRI Functional Magnetic Resonance Imaging

HRS High Resistance State

HSPICE Hewlett-Simulation Program with Integrated Circuit
Emphasis

I Current

Iread Read Current

ISPP incremental step pulse program

k Heuristic Constant

L Number of Landmarks

LM Landmark

LRS Low Resistance State

M Memristor

MAC Multiplication and Accumulation

mCBA Metal-Cell-at-Diagonal CBA

MCV Memristor Conductance Vector

MGM Multi-Ground Method

N Number of Nodes

nBPK Number of Bits Processed by the Kernel

NC Neurotypical Controls

NN Neighbor Node

0OSC Oscilloscope

PAHT Pt/Al,O3/HfO,/TiN device

PG Pulse Generator

R Resistor

RC Reservoir Computing
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ReRAM

Rurs

Re

Rirs

RNN

ROC

SEM

SGM

SNS
SPA

STEM

TE
TEM

TK

TN

Veni
Ve

VDUT

VMM

WHT

WL

Resistive Switching Memory

Memristor’s High Resistance Level
Load Resistor

Memristor’s Low Resistance Level
Recurrent Neural Network
Receiver Operating Characteristics
Scanning Electron Microscope
Single-Ground Method

Social Network Service

Semiconductor Parameters Analyzer
Scaning Transmission Electron Microscopy
Time

Transistor

Top Electrode

Transmission Electron Microscopy

Temporal Kernel
Target Node

Voltage

Voltage at Channel 1
Voltage at Channel 2
Voltage of the Device-Under-Test

Vector-Matrix Multiplication
W/HfO,/TiN device

Word Line
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X-ray Photoelectron Spectroscopy

Time Constant

XXX1il



1. Introduction

1.1. Memristor-based Physical Computing for Complex

Data Processing

As the amount of information to be processed is rapidly increasing with the
advances in deep learning technology, the limited processing efficiency of
conventional hardware became a serious problem that impedes performance
enhancement in the modern computing system. This motivates the need of
exploring new data processing techniques using novel hardware structures to
enable the processing of complex data. In this regard, resistive switching
random access memory (ReRAM) is a potential candidate for futuristic physical
computing implementation. Using the intrinsic physical properties of
memristive hardware enables effective data analysis.

Temporal data has a wide range of frequencies, and the kernel characteristics
required for each data vary. Recent advances in physical reservoir computing,
which is a type of temporal kernel, have made it possible to perform
complicated timing-related tasks using a linear classifier. However, the fixed
reservoir dynamics in previous studies have limited application fields. This
study proposed memristor (M), resistor (R), and capacitor (C)-combined
structure showing unique circuit characteristics due to the nonlinear I-V of

memristors. The IM1R1C structure can serve as a kernel capable of processing
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various temporal signals. The IM1R1C temporal kernel was used to identify
the static MNIST data, and showed high performance in terms of accuracy,
energy efficiency, and processing speed. The system was adopted to recognize
the sequential data, ultrasound (malignancy of lesions), and electrocardiogram
(arrhythmia), which had a significantly different time constant (107 vs. 1 s).
The suggested system feasibly performed the tasks by simply varying the
capacitance and resistance. These functionalities demonstrate the high
adaptability of the present temporal kernel compared to the previous ones.!'*!

Another type of complex data is graph data. Graph data differs from other
data in that it includes connectivity between entities. Graph data is mostly non-
Euclidean type and is difficult to vectorize, making it difficult to process in the
existing hardware structure. In this study, graph data was analyzed using the
induced sneak current of the self-rectifying memristor crossbar array. The
results of implementing various graph algorithms based on memristive CBA
and applying them to real-world problems show that the intrinsic properties of

crossbars are very effective in analyzing graph structures.



1.2. Objective and Chapter Overview

The objective of the present thesis is focused on complex data processing
with memristor-based physical computing. Intrinsic physical properties (R-C
delay, I-V nonlinearity, sneak current) of the memristive hardware were used
for physical computing.

Chapter 2 describes a new method of sequential data processing using a
nonvolatile memristor-based temporal kernel with time constants
controllability. A temporal kernel was constructed using memristors (M),
resistors (R), and capacitors (C) for effective sequential data processing. The
unit cell has a IM1R1C structure in which a memristor is connected in series
with a resistor and a capacitor, and the resistor and capacitor are connected in
parallel with each other. The 1IM1R1C kernel has the advantage of being
applicable to various situations as it can have various time constants through R
and C control. IM1R1C-based MNIST recognition showed high accuracy (90%)
with high energy efficiency and fast processing speed. In addition, the IM1R1C
kernel was applied to ultrasound®™ and electrocardiogram-based medical
diagnosis'® with very different time constants (frequency range of 1 to 10 MHz).

Chapter 3 introduces a method for processing non-Euclidean graphs using
self-rectifying memristor arrays is proposed. The non-Euclidean graphs were
mapped to the metal-cell-at-diagonal crossbar-array (mCBA), composed of the

self-rectifying memristors. The sneak current, an intrinsic physical property in



the mCBA, allows identifying the similarity function. Sneak current-based
similarity function indicates the distance between nodes, connectivity between
communities and nodes, the probability that unconnected nodes will be
connected in the future, and the neural activity between cortices. This work
shows a feasible demonstration of the memristor-based physical calculation,
being applied to various graphical problems.

Finally, in chapter 4, the conclusion of the thesis is made.
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2. Time-varying data processing with nonvolatile

memristor-based temporal kernel

2.1. Introduction

Convolutional neural networks (CNN), which are composed of a
convolutional layer and a fully connected layer!' show outstanding
performance in static image processing (recognition and classification).”?" I*!
However, when the temporal order of each input vector and the correlation
between the input vectors are essential, such as for natural language recognition
or translation, a method of processing the input over time is required, and CNN
are not suitable for this purpose.*! Such an event sequence or time-dependent
network operation can generally be represented by the relationship between the
present network state, the input, and the previous network state.

A typical network with such characteristics is a recurrent neural network
(RNN) with the long-short-term memory learning rule,” which mitigates the
vanishing gradient descent problem of the classical RNN.! Nonetheless, these
artificial neural networks perform vast amounts of multiplication and
accumulation (MAC) operations during the learning and inference steps. When
these calculations are performed using the conventional architecture in which

the computing unit and memory are separated, even with the latest graphics



processing unit, the cost of achieving the required processing speed and the
energy consumption are enormous.!”

In this regard, the recent upsurge of studies on neural networks that use a
memristor-based cross-bar array (CBA) based on Ohm's law and Kirchoff's law

U3 If the memristor used in such neural networks can process the

is notable."!
event-sequence-related and temporal information, it can achieve RNN
functionality. An even more desirable functionality is to extract the features of
the input information (raw data vector) using a temporal kernel (TK) and feed
them to the next classification layer. A representative example of such a
computing system is reservoir computing (RC), which is composed of a
reservoir and a readout layer (FCN).['4-[13]

The core part of the RC system is the reservoir, where the non-linear
transformation of the input signal is performed based on the fading memory
properties, and the characteristics of the input signal are projected into a rich
enough feature space. The result of the projection is called the reservoir state.!'")
The nonlinear dynamic filtering of RC can be regarded as a specific type of

7H1 " in which the time-varying data can be efficiently

a more general TK!
handled by the fading-memory functionality of the reservoir. Nonetheless, RC
may have severe limitations in adapting different time scale of the input data
due to its fixed time constant of the specific fading memory function. This may

not be the case for other types of TK, based on a physical kernel combined with

other circuit elements, as shown in this work. Also, non-fading (or nonvolatile)



memory can be used as the TK because the time-varying input can be encoded
into the TK by the effects of the time constant of the entire circuit element.
When a memristor is used as the TK, its resistance must be determined by the
different input pulse signals with varying amplitudes and the intervals between
such input signals. If the input signals have simple and obviously
distinguishable patterns, a memristor can sufficiently discern them by assigning
different resistance values. However, for complicated and similar input patterns,
high separability is required, which is usually challenging to achieve with a

£ [200. 121

given type of memristo I Also, the input signals could have substantially

different time constants, which further severely limits the memristor-based

22 B3] In this case, a high-performance kernel

temporal kernel (reservoir).!
machine applicable to diverse circumstances can be created by incorporating
additional circuit components.

Recently, various studies were conducted on hardware-based RC systems
that use volatile memristors, in which a volatile memristor was used to process

20H23) 1ny those studies, the reservoirs were constructed

a time-varying input.!
based on ionic diffusion dynamics (diffusive memristors), in which the the
spotaneously decaying conductance of low-resistance state (LRS) of the
diffusive memristor provided the fading memory function of a reservoir.
However, there are several limitations in using such reservoir dynamics.

Firstly, the duration and interval of the input signal are limited to the time range

in which sufficient conductance decay occurs. For this reason, in the previous



studies, it took 1 to 20 ms for one memristor to process 4-bit data, which is

20],

insufficient for processing a large amount of data.l*”"*!) Secondly, obtaining a

reproducible reservoir state could be challenging. An Ag-filament-based

200 g0 the variation of the

diffusive memristor exhibits stochastic switching,!
reservoir state will be large. Finally, reservoir adaptation could be difficult to
achieve, given that the reservoir dynamics are totally determined by the
material property, which renders the previous system useful only for
applications with a time scale similar to that of the specific memristor.!*'**]
In this study, a device based on an electron trap/detrap mechanism was used
to solve the aforementioned issues.**" **) A W/HfO,/TiN (WHT) memristor
goes into an LRS when the trap is filled with electrons and shifts to a high-
resistance state (HRS) when the trapped electrons are detrapped. Since the
resistance switching is based on the electron trapping and not the ionic
movement, reproducible results can be achieved (Figure 2-1).*°» 27 [n addition,
since the work functions between the top and bottom electrodes differ only
slightly, there is limited built-in potential, so the device has high retention
properties (Figure 2-2a, b).*: 28 Although the WHT memristor has different
time constants of operation according to its conductance level (Figure 2-2c), it
is insufficient to achieve adaptability with a sufficiently large time constant
range. This problem could be solved by combining the memristor with a

capacitor (C) and a normal resistor (R). Under this circumstance, the R-C time

constant of the circuit can be varied, and the memristor response to the temporal



arrangement of the inputs can be controlled.
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Figure 2-1:

Experimental results on device reliability and reproducibility. a,
Cycle-to-cycle variation of the WHT memristor. Except for the
first cycle out of 100 DC cycles (2.5 ~ -3.2 V), there was a slight
variation in the I-V curve. The inset of (a) shows the read current
at 0.5V for each cycle number. b, Endurance of the WHT
memristor. The WHT memristor showed stable resistive
switching behavior during ~10° pulse cycles. For endurance
measurement, a 3.3 V height 1 us width SET pulse and -3.35V
height 1.5 ps width RESET pulse were used. The read current was

recorded with DC read at 0.9 V and a WHT memristor with 4 um

cell size was used for measurement. ¢, d, Cell to cell variation of
11
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the WHT memristor. A total of 80 devices were measured with 20
devices each of 4 pm x 4 pm, 6 pm x 6 pm, 8 pm x § um, and 10
um x 10 um. An [-V curve was obtained in each device through a
2.5V ~-3.2VDC cycle (c), and the read current was extracted at
0.5 V of each I-V curve (d). Data shown in red is read current in

HRS and data shown in blue is read current in LRS.
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Figure 2-2: Retention measurement result of the WHT device. The WHT
device has a nonvolatile characteristic in the low conductance
range (a) and a retention time of about 100 days at 25 °C, which
is the result of extrapolation based on 60 ~ 150 °C retention data
(b). Meanwhile, the WHT device has a volatile characteristic in a
high conductance region (c¢). This is because the trap depth exerted
on the electrons is different according to the conductance state
(trapped electron density). In the above case, the trapped electron
density was increased by increasing pulse height. Then, the
relatively easier detrapping of the heavily trapped WHT device
induced the decay of conductance with time. This can be used as

the fading memory.
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2.2. Experimental

The array of cross-bar-type W/HfO»/TiN memristors was fabricated. A 50
nm-thick TiN layer was sputtered (Endura, Applied Materials) on an SiO/Si
substrate, and the TiN layer was patterned into a line shape to form a BE. The
2-to 10 pm-wide TiN BEs were patterned using conventional photolithography
and the dry-etching system. After the patterning, the residual photoresist was
removed with acetone and cleaned sequentially with deionized water. Then 4
nm HfO, was deposited using atomic layer deposition (ALD) at a 280 °C
substrate temperature using a traveling-wave-type ALD reactor (CN-1 Co. Plus
200). A tetrakis-ethlylmethylamido hafnium (TEMA-Hf) and O3 were used as
precursors for Hf and oxygen, respectively. On the HfO; layer, 50-nm-thick W
TEs were sputtered using the MHS-1500 sputtering system and patterned into
2- to 10 pum-wide lines using the conventional lift-off process. After the
fabrication, the WHT device was analyzed using x-ray photoelectron
spectroscopy (XPS, AXIS SUPRA, Kratos) and energy-dispersive x-ray
spectroscopy (EDS, JEOL, JEM-ARM?200F) to observe the formation of the
tungsten oxide layer. Cross-sectional transmission electron microscope (TEM)
images of the WHT memristor were observed using scaning transmission

electron microscopy (STEM, JEOL, JEM-ARM200F).
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2.3. Results and Discussions

Figure 2-3a shows the TK system that can control the kernel dynamics
using a memristor, a normal resistor, and a capacitor (IM1R1C). This is a
structure in which the reservoir is replaced with a IMIR1C temporal kernel
while maintaining the computing scheme of the RC system. In this TK system,
the charging and discharging of the capacitor transforms the signals applied to
the device into various forms so that the conductance state of the memristor can
be varied depending on the magnitude and sequential arrangement of the input
signal (Figure 2-4a, b). The results of input processing in the kernel form a
memristor conductance vector (MCV), which becomes the input of the
subsequent FCN readout layer. Such a configuration of the TK system allows
the arbitrary variation of the response dynamics by adjusting the sizes of the
resistor, capacitor, and pulse width, etc. Therefore, the optimized TK system

can be configured for tasks with vastly different time scales.

Device analysis. Figure 2-3b shows the measured current-voltage (I-V) curve
of the WHT device. During the electrical measurement, the W top electrode
(TE) was biased, while the TiN bottom electrode (BE) was electrically
grounded. The resistance of the device was changed from HRS to LRS by a

positive bias (SET), and reverse switching was achieved by a negative bias

15 2] 2 1



(RESET). In both SET and RESET, gradual switching appeared, as shown in
Figure 2-3b and Figure<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>