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Abstract 

 

Recently, with the remarkable development of deep learning, various data 

have been accumulated. As the structure of big data becomes more diversified 

and complex, complex data that is difficult to process with existing hardware 

has emerged. Examples of complex data include sequential data and graph data. 

Sequential data has characteristics that the current state reflects the input history 

and the pattern is not constant and difficult to predict. Graph-type data is 

difficult to be expressed in vector form since graphical data includes the 

connections between entities. To process such complex data, novel data 

processing techniques are required. 

In the first part of this study, a method for processing time-series data with a 

nonvolatile memristor is proposed. Recent advances in physical reservoir 

computing, which is a type of temporal kernel, have made it possible to perform 

complicated timing-related tasks using a linear classifier. However, the fixed 

reservoir dynamics in previous studies have limited application fields. In this 

study, temporal kernel computing was implemented with a physical kernel that 

consisted of a W/HfO2/TiN memristor, a capacitor, and a resistor, in which the 

kernel dynamics could be arbitrarily controlled by changing the circuit 

parameters. After the capability of the temporal kernel to identify the static 

MNIST data was proven, the system was adopted to recognize the sequential 

data, ultrasound (malignancy of lesions), and electrocardiogram (arrhythmia), 



 

 ii 

that had a significantly different time constant (10-7 vs. 1 s). The suggested 

system feasibly performed the tasks by simply varying the capacitance and 

resistance. These functionalities demonstrate the high adaptability of the 

present temporal kernel compared to the previous ones. 

In the second part of this study, a method for processing non-Euclidean 

graphs using self-rectifying memristor arrays is proposed. Many big data have 

interconnected and dynamic graph structures growing over time. Analyzing 

these graphical data requires identifying the hidden relationship between the 

nodes in the graphs, which has conventionally been achieved by finding the 

effective similarity. However, graphs are generally non-Euclidean, which does 

not allow finding it. In this study, the non-Euclidean graphs were mapped to a 

specific crossbar array (CBA) composed of the self-rectifying memristors and 

metal cells at the diagonal positions. When all bit lines of CBA are connected 

to the ground, the sneak current is suppressed, and CBA can be used to search 

for adjacent nodes. When a single bit line is connected to the ground, the sneak 

current, an intrinsic physical property of the CBA, allows for identifying the 

similarity function. Sneak current-based similarity function indicates the 

distance between nodes, the probability that unconnected nodes will be 

connected in the future, connectivity between communities, and cortical 

connections in a brain. This work demonstrates the physical calculation 

methods applied to various graphical problems using the CBA composed of the 

self-rectifying-memristor based on the HfO2 switching layer. Moreover, such 
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applications suffer less from the memristors' inherent issues related to their 

stochastic nature.  

 

Keywords: Resistive switching memory, ReRAM, Memory, Hafnium oxide, 

Self-rectifying memristor, Complex data, Kernel, Temporal 

kernel, Sequential data, Medical diagnosis, Crossbar-array, 

Sneak current, Graph algorithm, Process-in-memory 
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Table 2-2: The frequency of the appearance of inputs in the preprocessed 

MNIST dataset, in which '0000' appeared overwhelmingly, 

followed by the inputs '1111', '1000', '0011', '0001', '1100', '0111' 

and '1110' in the table (Due to the nature of the picture, the pixels 

were continuously blanked or filled in most cases. Therefore, 

inputs with consecutive high or low signals mainly appeared, and 

there were a few inputs with alternating high and low signals such 

as '1010' and '0101'.) 

Table 2-3: Comparison of the results of the MNIST recognition using 

memristive temporal kernel computing systems and a software-

based system (single-layer FCN), showing very fast processing 

and the highest accuracy in this study 

Table 2-4: Results of MNIST recognition using various kernel combinations. 

For the recognition, kernel conditions of Figure 2-9a, b, and f of 

the main text were used. A combination of 'Figure 2-9a+Figure 2-

9f' showed an accuracy of 91.8%. For a 196x10 input vector, two 

kernels processed the input, and a 392x10 readout layer was used 

(588x10 readout for the 3 kernels). On the other hand, when the 
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pulse width was modified without changing the conditions RL, C, 

and pulse height in the condition of Figure 2-9f, an accuracy of 

92.4 % was obtained in the combination of '200ns+2µs+5µs'. By 

combining various kernels or changing pulse conditions for the 

same kernel machine, the imperfections of one kernel could be 

compensated for by another kernel, and the accuracy could be 

improved. 

Table 2-5: The accuracy when cycle to cycle variation, cell to cell variation, 

and both are considered (kernel condition of Figure 2-9f of main 

text was used). Each variation was calculated based on variation 

measurement results in Figure 2-1. Up to 1 sigma of each variation 

was considered, and when both cycle to cycle and cell-to-cell 

variations were included in the simulation, the accuracy decreased 

by 0.5 %. 

Table 2-6: Results of MNIST recognition using two-layer FCN for the readout 

layer of the TK system. The table shows the number of training 

parameters used in each two-layer FCN and the accuracy of the 

TK system (nBPK = 4). When 196x38x10 FCN was used, 7,828 

training parameters were used, and the TK system accuracy was 

95.1 %. 

Table 2-7: Results of the MNIST recognition while increasing the number of 

bits processed in the temporal kernel, showing that as nBPK 

increased, both the size of the used readout layer and the 
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recognition accuracy decreased. 
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List of Figures 

 

Figure 2-1. Experimental results on device reliability and reproducibility. a, 

Cycle-to-cycle variation of the WHT memristor. Except for the 

first cycle out of 100 DC cycles (2.5 ~ -3.2 V), there was a slight 

variation in the I-V curve. The inset of (a) shows the read current 

at 0.5V for each cycle number. b, Endurance of the WHT 

memristor. The WHT memristor showed stable resistive 

switching behavior during ~105 pulse cycles. For endurance 

measurement, a 3.3 V height 1 µs width SET pulse and -3.35V 

height 1.5 µs width RESET pulse were used. The read current was 

recorded with DC read at 0.9 V and a WHT memristor with 4 µm 

cell size was used for measurement. c, d, Cell-to-cell variation of 

the WHT memristor. A total of 80 devices were measured with 20 

devices each of 4 µm x 4 µm, 6 µm x 6 µm, 8 µm x 8 µm, and 10 

µm x 10 µm. An I-V curve was obtained in each device through a 

2.5 V ~ -3.2 V DC cycle (c), and the read current was extracted at 

0.5 V of each I-V curve (d). Data shown in red is read current in 

HRS and data shown in blue is read current in LRS. 

 

Figure 2-2: Retention measurement result of the WHT device. The WHT 

device has a nonvolatile characteristic in the low 
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conductance range (a) and a retention time of about 100 

days at 25 °C, which is the result of extrapolation based on 

60 ~ 150 °C retention data (b). Meanwhile, the WHT device 

has a volatile characteristic in a high conductance region (c). 

This is because the trap depth exerted on the electrons is 

different according to the conductance state (trapped 

electron density). In the above case, the trapped electron 

density was increased by increasing pulse height. Then, the 

relatively easier de-trapping of the heavily trapped WHT 

device induced the decay of conductance with time. This 

can be used as a fading memory. 

 

Figure 2-3: The structure of the 1M1R1C temporal kernel system and the I-V 

characteristics of the memristor used in the temporal kernel. a, The 

structure of the 1M1R1C temporal kernel system proposed in this 

study. The temporal kernel system can recognize images in the 

MNIST database through feature projection and classification. b, 

The I-V curve of the W/HfO2/TiN memristor. The sweep order is 

marked in the figure. SET and RESET occurred in the positive 

bias and the negative bias, respectively, and gradual switching 

occurred in both switching conditions. Since the filament 

formation process is not required in this electronic switching 

device, no electroforming process is seen in the first sweep. 
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Figure 2-4: Analysis of the AC characteristics, and device structure of 

the W/HfO2/TiN memristor. a, Changes in conductance of 

memristor according to pulse number. Pulse number 1~13 

correspond to SET pulse, 14~26 correspond to RESET 

pulse, and read voltage was 0.5 V. The SET and RESET 

pulse heights were 4 V and -4 V, respectively, and the width 

of both was 200 µs. b, The conductance of the memristor 

according to the 2.5~4 V SET pulse height. Multilevel 

switching is possible for both SET and RESET, but the 

change in conductance according to the pulse number is 

non-linear (a). Also, the change in conductance according 

to the pulse height is non-linear as the pulse height 

decreases (b). Both nonlinearities were used for the non-

linear transformation of the input in the temporal kernel. c, 

Scanning transmission electron microscopy (STEM) cross-

sectional image and energy-dispersive x-ray spectroscopy 

(EDS) analysis results (right portion) of the fabricated 

W/HfO2/TiN memristor with a depth profile. d, XPS 

spectra of the W 4f region with a depth profile and fitting 

results for the W/HfO2/TiN memristor. The square dot 

shows the measurement result (Exp), and the black and red 

lines show the fitting result (Fit) and back ground (BG), 

respectively. Blue, green, and purple lines show XPS peaks 
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of tungsten (W), tungsten oxide (WO3), and tungsten 

suboxide (WOx), respectively. The sample was measured 

immediately after the deposition. c, d show that tungsten 

oxide was generated in the memristor. 

Figure 2-5: The effects of the temperature and the cell area on the electrical 

properties of the device. a, The I-V curve at various temperatures 

(45~105 °C). b, The I-V graph of the LRS at various temperatures 

(45~105 °C). c, d, The cell area dependence of the resistance 

measured in 10 devices in HRS (c) and LRS (d). 

Figure 2-6: The trap depth of the WHT memristor calculated from the time-

dependent current-relaxation characteristics of the on and off 

states at various temperatures. For this test, the current was 

measured at the 0.5 V read voltage and the temperature was varied 

from 35 °C to 150 °C. a, b, The relaxation curves at various 

temperatures of the HRS (a) and LRS (b). Here, the read current 

was normalized to the initial current at t = 0. The data show that 

the read current rose (a) and decayed (b) over time as the trapped 

electrons were being trapped (a) and detrapped (b). These 

relaxation curves were fitted into the stretched exponential 

function [𝑓!(𝑡) = 𝐴𝑒"#
!
"$
#

+ 𝐵] to attain the time constant (τ) at 

each temperature. c, d, The Arrhenius plots of ln (τ) versus 1/kT 

of the HRS and LRS cases. The analysis showed 0.45 eV and 0.13 
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eV activation energy, which correspond to the trap depth for the 

HRS and LRS, respectively, of the system. 

Figure 2-7: The circuit used as a temporal kernel in the experiment, and the V-

t graphs obtained from the DUT and CH2 of this circuit. a, A 

temporal kernel circuit composed of a memristor, resistors, and a 

capacitor. CH1 shows the shape of the input pulse stream, and 

CH2 shows the voltage applied to a 1M ohm resistor. The voltage 

across the DUT (green graph) is obtained by subtracting the CH2 

voltage from the CH1 voltage. The left panel shows the circuit 

used in the pulse set (marked by pink) and the right panel shows 

the circuit used in DC read (marked by blue). b, The voltages 

applied to the memristor with a '0101+reference pulse' (left) and a 

'1010+reference pulse' (right). c, The voltages applied to the 

corresponding CH2, where the 4 V and 0 V voltage amplitudes 

represent ‘1’ and ‘0,’ respectively. The voltage across CH2 shows 

that the charging and discharging rates of the capacitor were 

asymmetric. 

Figure 2-8: Fading memory test of the WHT memristor at the low and high 

conductance levels. a, Response of the 1M1R1C kernel machine 

to input patterns of '1111', '1010', '1000', and '0001' in the low 

conductance range. In the low conductance region, the WHT 

memristor has nonvolatile characteristics, so the effect of the high 
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signal is accumulated and the fading memory is not implemented. 

In contrast, the WHT memristor has a volatile characteristic in a 

high conductance region, and a fading memory is implemented in 

this region (b). c, d, Voltage applied to CH1 and CH2 for the input 

patterns of '1111', '1010', '1000', and '0001' in the low (c) and high 

(d) conductance level of the cell 1. During the measurement, a 180 

pF capacitor and 390 Ω resistor were used for the 1M1R1C kernel 

machine. 4 V height 1 µs width pulse was used as the signal pulse 

and 1 V height 1 µs width pulse was used as the read pulse. 

Figure 2-9: Experiment results to analyze the effect of changing parameters on 

the kernel characteristics in the temporal kernel system. The read 

current at 0.5 V of the memristor for the pulse stream '0000'~'1111' 

corresponds to 0~15 in the inset table in e. a, The read current at 

0.5V of the memristor for each input under the conditions of 1 MΩ 

RL, 4 V signal pulse height, 100 µs width, 4 V REF pulse height, 

and 100 µs width. b-e, The read current at 0.5 V of the memristor 

for each input when RL, pulse width, pulse height, and REF pulse 

height are changed respectively from the condition of a. The 

various parameter settings for each figure were summarized in 

Table I. The kernel responses for each input of the temporal kernel 

optimized for the MNIST recognition are shown in f. Responses 

to inputs showing high prevalence in the dataset were well 

separated (marked by red circles). 
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Figure 2-10: The V-t graphs for the '0000'~'1111' inputs under the conditions 

of a 1 MΩ RL with a 4 V signal pulse height and a 100 µs width, 

and a 4 V REF pulse height and a 100 µs REF pulse width. 

Figure 2-11: The V-t graphs for the '0000'~'1111' inputs under the conditions 

of a 120 kΩ RL with a 4 V signal pulse height and a 100 µs width, 

and a 4 V REF pulse height with a 100 µs width. 

Figure 2-12: The V-t graphs for the '0000'~'1111' inputs under the conditions 

of 1 MΩ RL with a 4 V signal pulse height and a  200 µs width, 

and a 4 V REF pulse height with a 200 µs width. 

Figure 2-13: The V-t graphs for the '0000'~'1111' inputs under the conditions 

of a 1 MΩ RL with a 3.5 V signal pulse height and a 100 µs width, 

and a 3.5 V REF pulse height and a 100 µs width. 

Figure 2-14: The V-t graphs for the '0000'~'1111' inputs under the conditions 

of a 1 MΩ RL with a 4 V signal pulse height and a 100 µs width, 

and a 3 V REF pulse height, and a 100 µs width. 

Figure 2-15: Analysis of the separation of inputs that generated net 1 spikes 

('0000', '0001', '0011', '0111', and '1111'). From the conditions of a 

4 V signal pulse height and a 100 µs width, and a 4 V REF pulse 

height and a 100 µs width, RL varies from 1 MΩ to 10 kΩ. a-c, 

The V-t graphs for the inputs that generated net 1 spikes when 1 

MΩ, 120 kΩ, and 10 kΩ RL, were used. d-f, The read current of 

the memristor for the '0000~1111' inputs under the conditions in 

a-c. When the 1 MΩ RL was used, since the voltage distributed to 
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the memristor was small, SET switching did not occur after the 

first spike (a). Therefore, the responses to the inputs that generated 

net one spike (0, 1, 3, 7, and 15) were not separated (d). As RL 

decreased, the voltage distributed to the memristor increased (b-

c), and thus, the responses to the corresponding inputs were 

separated (e and f). 

Figure 2-16: Analysis of the input that caused maximum conductance. a-b, The 

V-t graphs for the '1000' and '1010' inputs under the conditions of 

a 4 V signal pulse height and a 100 µs width. REF pulse has 4 V 

height and 100 µs width. 1 MΩ and 120 kΩ RL were used for a 

and b. c-d, The read current of the memristor for the '0000~1111' 

inputs under the conditions in a-b. Since the large RL caused slow 

discharging, a sufficient interval after the first spike is necessary 

to generate a spike that can cause large SET switching. Under the 

conditions in a, maximum conductance occurred at the '1000' 

input due to the slow discharging by the 1MΩ RL (c). On the other 

hand, under the conditions in b, second and third spikes of 

sufficient magnitude to cause SET switching occurred at the '1010' 

input due to the fast discharging by the 120 kΩ RL. Therefore, 

maximum conductance occurred at the '1010' input (d). 
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Figure 2-17: a, The V-t graphs for the '0000'~'1111' inputs under the conditions 

of 10 kΩ RL with a 3.5 V signal pulse height and a 500 ns width, 

and a 3 V REF pulse height and a 500 ns width. b, The read current 

of the memristor for the '0000'~'1111' inputs. Insufficient charging 

further increased the separability for the consecutive high signals 

since the capacitor was not fully charged even though consecutive 

high signals were applied. This is suitable for situations in which 

consecutive signals mainly appear, such as in MNIST. 

Figure 2-18: Temporal kernels with different time constants (100 ns ~ 1 s). 

Load resistance, parallel capacitance, and input interval used in 

each temporal kernel are indicated in each figure. a-e, The V-t 

graphs for the '1000' input under the condition of a 3.5 V signal 

pulse height. a-c represents a temporal kernel with similar 

characteristics to the temporal kernel in Figure 2-9a of main text, 

but with a different time constant. d-f represents a temporal kernel 

with similar characteristics to the temporal kernel in Figure 2-9f 

of main text, but with a different time constant. 

Figure 2-19: Result of the I-V curve fitting for the WHT memristor and power 

consumption in the 1M1R1C kernel machine during processing 

one input. a, I-V curve fitting of the WHT memristor (HRS state) 

based on the conduction mechanisms. b, Power consumption in 

the 1M1R1C kernel machine (Figure 2-9f kernel condition) during 

input processing. Since the resistance of the WHT memristor is 
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dependent on the voltage, the current passing through the 

memristor was obtained with the HSPICE simulation using the 

result of the I-V curve fitting in a. The energy (∫ 𝑃𝑜𝑤𝑒𝑟(𝑡) ∙ 𝑑𝑡% ) 

consumed to process one input was calculated as ~25 pJ. 

Figure 2-20: The temporal kernel responses were measured while increasing 

the number of bits processed in the temporal kernel from 3 bits to 

6 bits. a-d, The temporal kernel responses for the '000~111', 

'0000~1111', '00000~11111', and '000000~111111' inputs under 

the conditions of 10 kΩ RL with a 3.5 V signal pulse height and a 

200 ns width, and a 3 V REF pulse height and a 200 ns width. As 

the number of bits processed in the temporal kernel increased, the 

separation of the responses to each input deteriorated. 

Figure 2-21: The confusion matrices comparing the recognized digit and the 

desired digit for the MNIST test dataset (4 situations, from the top 

left: nBPK = 3 bits to the bottom right: nBPK = 6 bits) showing 

that the number of correct inferences decreased as the nBPK 

increased. 

Figure 2-22: The automatic medical diagnosis system using the 1M1R1C 

temporal kernel and the experiment results in the two sections. a, 

A system for diagnosing the malignancy of breast lesions, which 

is much simpler than in the existing method (inset in a). In this 

system, ultrasonic signals are applied directly to the kernel 
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machine, so the imaging step is omitted. b, V-t graph for one echo 

line of a benign sample (inset in Figure 2-22b). c, A part of the 

electrocardiogram of a patient with arrhythmia. Long intervals 

caused by abnormal beats discharged the capacitor, and the 

conductance of the memristor increased in the next pulse. d, Five-

minute temporal kernel monitoring based on the ECG of one 

normal patient (case 1) and two arrhythmic patients (cases 2 and 

3). When arrhythmia occurred, the conductance of the memristor 

increased. Case 3, which had the most severe arrhythmia 

symptoms, showed the highest conductance. 

Figure 2-23: The increase in the conductance of the memristor varied 

according to the degree of arrhythmia. When arrhythmia was 

severe, SET switching occurred in the memristor due to long 

discharging. a-c, The ECG-based V-t graphs for three cases of 

normal, arrhythmia, and severe arrhythmia. The electrical signal 

of the ECG from the heartbeat was converted into a 2.5 V, 200 ms 

pulse and applied to the memristor. d, The read current of the 

memristor according to the degree of arrhythmia. The more severe 

the arrhythmia was, the more the memristor conductance 

increased. 

Figure 2-24: The hardware structure needed to create an array of temporal 

kernels that can adjust the kernel configuration. a, A structure in 

which the resistors are sequentially connected to several metal 
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lines. In this structure, the resistance value of the temporal kernel 

can be adjusted by selecting several metal lines connected to the 

resistors. b, A structure in which memristors are connected in 

series to the WHT memristors and parallel to the capacitors (b left 

panel). The 1M1R1C circuit can be implemented in a three-

dimensional structure by stacking TiN, W metals in multi-layers 

and depositing a dielectric layer and top electrode in the hole after 

hole etching (b right panel). In this structure, the resistance of the 

memristor can be set to the desired resistance value using a 

method such as the incremental step pulse program (ISPP). c, Cell 

area of the diffusive memristor-based reservoir and 1M1R1C 

kernel. The diffusive memristor-based reservoir is implemented 

using a passive array composed of memristors. Therefore, 4F2 is 

required per cell (c left panel). If the 1M1R1C kernel is 

implemented with the structure in a, a minimum area of 8F2 is 

required per cell when using a vertical pillar transistor (T), and the 

area increases by 4F2 each time a serial resistor is added (c middle 

panel). The structure proposed in b requires an area of 4F2/cell (c 

right panel). This structure does not require an increase of 

area/cell even with additional elements (RL, C) other than the 

memristor through a 3D integration process. 

Figure 2-25: Implementation of various time constants of 1M1R1C kernel 

using MIS capacitor and WHT memristor (HSPICE simulation). 
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a, 1M1R1C circuit used in SPICE simulation. b, C-V curve of 

MIS capacitor and I-V curve of WHT memristor used for 

simulation and their fitting results (red line). In the simulation, an 

MIS capacitor (sample device) showing a capacitance of 100 pF 

~ 2.2 nF was used, and the WHT memristor fitting result of Figure 

2-19 was used. c-g, V-t graphs of the kernel showing fast 

discharging (left panel) and slow discharging (right panel) 

characteristics (pulse width 50 ns ~ 1 ms). h, V-t graphs in the 

kernel condition of 4 ~ 3.5 V pulse height, 2 ~ 1 µs pulse width, 

and 10 kΩ RCH2. h shows the effect of changing pulse height on 

the capacitance of the TK system. 

Figure 3-1. Graph to mCBA mapping. The resistance state of the (n, m) 

device corresponds to the weight of the (n, m) edge. The (n, n) 

metal cell represents the zero weight, which is the connection of 

the node itself. 

Figure 3-2. Two operation methods of mCBA. a, Multi-ground method 

(MGM). b, Single-ground method (SGM). 

Figure 3-4. Simulation results for two operation methods of mCBA. a, 

HSPICE array simulation results for MGM at N1. b, The 

adjacency search result of MGM at N1. c, HSPICE array 

simulation results for SGM of N1 to N9. The major and sub-

current paths are marked in red and orange, respectively. d, 

Multiple paths between N1 and N9 which are not directly 
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connected. The shortest and sub-current paths are displayed in red 

and orange, which correspond to the current flow of c. 

Figure 3-5. The main current ratio in the SGM at the various mCBA 

configurations. a-c, mCBA mapping (upper panel) and I-V fitting 

curves (red lines) for the unit cell memristor (lower panel). The 

main current ratios for the 9 × 9 and 100 × 100 mapping were 0.60 

and 0.45, respectively, when metal cells were placed on the 

diagonal cells, while self-rectifying cells were placed on the rest 

cells. d, The result of calculating the ratio of Imain path and Ioutput in 

9 × 9, 100 × 100 mCBA under conditions of a, b, and c. 

Figure 3-6. mCBA-array fabrication and the electrical analysis of the 

PAHT memristor. a, Scanning electron microscope (left) images 

of 9 x 9 mCBA and a cross-section transmission electron 

microscope image (right) of the PAHT memristor. b, I-V 

characteristic of the PAHT memristor at various set sweep 

voltages (2.7 V to 3.5 V). The inset of b is the PAHT memristor 

stack schematic. c, The surface plot of the three levels of 

conductance data of 9x9 mCBA. 

Figure 3-7. Chemical and physical analysis of the PAHT memristor. a-c, Hf 

4f, O 1s, and Al 3d X-ray photoelectron spectroscopy (XPS) 

analysis at the Al2O3/HfO2 interface in the PAHT device. d, 

Energy-dispersive X-ray spectroscopy (EDS) mapping result of 

the PAHT memristor in cross-section TEM. 
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Figure 3-8. Retention of the PAHT memristor. a, Retention of the PAHT 

memristor measured at various temperatures (40 ~ 100 °C). b, 

Arrhenius plots of ln (τ) versus 1/kT of the LRS retention. A 

retention time of ~ 1 year (relaxation time from LRS level to HRS 

level) was obtained at room temperature by extrapolating 

retention data at 40 ~ 100 °C. 

Figure 3-9. The process flow of the mCBA fabrication. 

Figure 3-10. Multi-level and dc cycle results of the PAHT memristor. a, I-

V curve when the DC sweep (SET) voltage is set to 2.4, 2.5, 2.6, 

2.7, 2.8, 2.9, 3.0, 3.1, and 3.5 V (9 states). b, Result of the 300 DC 

cycle of the PAHT memristor (set sweep: 3.5 V, reset sweep: -2.5 

V).  

Figure 3-11. Measurement setup for the 9x9 mCBA. Flow chart of the 9x9 

mCBA measurement. The 9x9 mCBA was measured in the setup 

of the 9x1 custom multiprobe, switch matrix, and semiconductor 

parameter analyzer. 

Figure 3-12. Reconfigurability of the mCBA. a, 9x9 mCBA (upper panel) to 

which the graph of the lower panel was mapped. b, Affected area 

of the mCBA (upper panel) and affected edges of the graph (lower 

panel) when a hard breakdown occurs in the (3, 7) cell of the array. 

c, Results of remapping the affected part in mCBA (upper panel) 

and the recovered graph (lower panel). For the restoration, the 

edge data connected to nodes 3 and 7 are moved to BL8, BL9, WL8, 
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and WL9, and the cells of BL3, BL7, WL3, and WL7 are changed 

to HRS. d, The current path and value of the SGM in the original 

graph, breakdown case, and the restored graph. 

Figure 3-13. An example weighted network. The red arrow indicates various 

paths from node 1 to node 9. 

Figure 3-14. mCBA-based pathfinding algorithm. a, Process of finding the 

shortest path from N1 to N9 with the mCBA-based pathfinding 

algorithm. Pathfinding consists of two steps: 1. Search neighbor 

nodes (NNs) and the actual distance to the neighbor node with the 

MGM, and calculate the distance from the neighbor node to the 

target node (TN) as the reciprocal of the SGM. 2. Go to the 

adjacent node with the lower sum of the cumulative sum of the 

actual distance (source node to present node) and the estimated 

distance (NN to TN). 

Figure 3-15. MGM and SGM current path at N1. At the source 

node (N1), the neighboring nodes, N2, N4, and N5, are searched 

for by the MGM. (left upper panel) From the SGM of the neighbor 

node of N1 to the target node, it can be seen that N5 is closest to 

the target node. 

Figure 3-16. MGM and SGM current value at N1. a, MGM result at node 5. 

Based on the current level, the weights of adjacent nodes of node 

5 can be identified, which coincides with the inset figure. b, SGM 

results from the neighbor node of node 5 to the target node. 
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Figure 3-17. The path-finding result for all 72 paths of the graph in Figure 

3-13. The average number of attempts (red) and incorrect results 

(blue) according to the heuristic scale factor 𝑘 were plotted. 

Figure 3-18. Distance calculation method in non-Euclidean graph based on 

mCBA and software algorithm. 

Figure 3-19. Comparison of the mCBA and Landmark algorithm for the 

pathfinding results. a, Comparison of SGM currents of mCBA 

and software algorithm-based distance estimation. Euclidean 

distance and Manhattan distance were obtained using a landmark 

algorithm (2 nodes were set as landmarks), and the bit line current 

obtained using SGM was plotted according to the actual distance. 

b, Average attempts of landmark algorithm and mCBA-based 

algorithm. 

Figure 3-20. Schematic diagrams of link prediction algorithm and 

community detection algorithm using similarity index based 

on SGM and MGM. 

Figure 3-21. MGM+SGM similarity score. a and b, MGM and SGM results 

in case 1 (node 3, 6) and case 2 (node 1, 8). Calculation procedures 

of S(3, 6) and S(1, 8). For the non-edge (3, 6), MGM3 = 3, MGM6 

= 3, SGM(3, 6) = 1.13 pA and S(3, 6) = 10.17. For the non-edge (1, 

8), MGM1 = 2, MGM8 = 2, SGM(1, 8) = 0.44 pA and S(1, 8) = 1.76. 

Figure 3-22. Similarity values assigned to non-edges and sampled non-

edges after 20% sampling in the example graph of Figure 3-
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20. Since sampled non-edges are created by cutting the original 

edges, high S values are assigned due to peripheral connections. 

Figure 3-23. Performance results (area under ROC curve) for Zachary's 

karate club, Books about US politics, and Twitter retweet 

network datasets of SGM+MGM, CN, AA, and Jaccard 

indices. SGM+MGM showed the highest and most consistent 

performance in the four datasets. 

Figure 3-24. SGM distribution and ROC curves of each algorithm for the 

Zachary’s karate club dataset. a, Distribution plot of the 

SGM+MGM index values. b, Receiver operating characteristic 

(ROC) curve of the SGM+MGM index values. 

Figure 3-25. The flow chart that describes the community detection 

algorithm using SGM-similarity in a small social network 

composed of 9 people. 

Figure 3-26. Schematic diagrams of community detection algorithm using 

similarity index based on SGM. 

Figure 3-27. SGM-similarity for community detection. a, SGM currents in 

total 45 node pairs. b, SGM currents in 1-hop pairs. 

Figure 3-28. A schematic of the dendrogram. The dendrogram can confirm 

the results of community aggregation according to the progress of 

the algorithm. (left panel) Modularity changes according to 

community agglomeration. (right panel). 

Figure 3-29. The modularity change in each iteration and a schematic of 
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the dendrogram. This result can confirm the results of 

community aggregation according to the algorithm's progress. 

(inset) Modularity changes according to community 

agglomeration. After obtaining the modularity according to the 

branch formation of the dendrogram, the branch is cut-off at the 

point corresponding to the highest value (≈ 0.37, at iteration 7). In 

the inset dendrogram, each bar from right to left corresponds to 

nodes 1 to 9. 

Figure 3-30. The whole process of the SGM-based community detection 

algorithm. a-f, Similarity matrices and community formation at 

each iteration step. After initially creating the SGM-similarity 

matrix, the aggregation is shown in the schematic diagram in the 

pair with the highest value in the matrix. After the aggregation 

process, the SGM-similarity matrix is updated by calculating a 

new similarity between nodes and communities, and between 

communities according to the UPGMA linkage criteria. Finally, 

the algorithm is repeated until a single community remains (h). 

Figure 3-31. Algorithm performance evaluation results using various 

graph data. a, The dendrogram plot according to the sequential 

community agglomeration in Zachary's karate club, Twitter 

retweet network, and Books about US politics dataset, and the 

modularity calculated at each branch of the dendrogram. b, 

Schematics of community detection results at points with 
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maximum modularity. 

Figure 3-32. The maximum modularity of the SGM-based method was 

compared with conventional community detection algorithms. 

Figure 3-35. A schematic diagram of ADHD classification and identifying 

ADHD determining brain region based on the brain network 

analysis using mCBA. The intracortical connections of the brain 

region are mapped to square areas symmetrical to the main 

diagonal of the mCBA, and the intercortical connections are 

mapped between each square. SGM extracts features from the 

brain network of each subject, and a 2-layer readout network is 

trained with the SGM vector. Based on the classification result, 

brain regions where the difference in neural activity was 

prominent were mapped to the brain figure. 

Figure 3-34. SGM current distribution of ADHD and NC subjects in three 

determining pairs with AUC greater than 0.8. 

Figure 3-35. Flow chart of the entire process of ADHD classification using 

mCBA. Connectivity matrices are obtained by calculating 

correlation coefficients after the parcellation of raw fMRI 

data. The connectivity matrix is mapped to mCBA, and 

6612x1 SGM current vector is generated in each brain 

network. Among the 6,612 components in the given SGM 

vectors of the training sets (180 subjects), the 150 determining 

pairs that distinguish ADHD and NC were selected and used 
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as the input vector to train the feedforward network. The hop 

number can be identified according to the current level. 

Figure 3-36. Performance of the mCBA-based ADHD classification. a, 

Train and test accuracy per epoch when SGM current vector of 1-

hop, 2-hop, and 3-hop pairs were all used as inputs in ADHD 

classification. b, Accuracy and AUC of SGM-based method and 

existing studies in ADHD classification. 
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1. Introduction 

 

1.1. Memristor-based Physical Computing for Complex 

Data Processing 

 

As the amount of information to be processed is rapidly increasing with the 

advances in deep learning technology, the limited processing efficiency of 

conventional hardware became a serious problem that impedes performance 

enhancement in the modern computing system. This motivates the need of 

exploring new data processing techniques using novel hardware structures to 

enable the processing of complex data. In this regard, resistive switching 

random access memory (ReRAM) is a potential candidate for futuristic physical 

computing implementation. Using the intrinsic physical properties of 

memristive hardware enables effective data analysis.  

Temporal data has a wide range of frequencies, and the kernel characteristics 

required for each data vary. Recent advances in physical reservoir computing, 

which is a type of temporal kernel, have made it possible to perform 

complicated timing-related tasks using a linear classifier. However, the fixed 

reservoir dynamics in previous studies have limited application fields. This 

study proposed memristor (M), resistor (R), and capacitor (C)-combined 

structure showing unique circuit characteristics due to the nonlinear I-V of 

memristors. The 1M1R1C structure can serve as a kernel capable of processing 
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various temporal signals. The 1M1R1C temporal kernel was used to identify 

the static MNIST data, and showed high performance in terms of accuracy, 

energy efficiency, and processing speed. The system was adopted to recognize 

the sequential data, ultrasound (malignancy of lesions), and electrocardiogram 

(arrhythmia), which had a significantly different time constant (10-7 vs. 1 s). 

The suggested system feasibly performed the tasks by simply varying the 

capacitance and resistance. These functionalities demonstrate the high 

adaptability of the present temporal kernel compared to the previous ones.[1]-[4] 

Another type of complex data is graph data. Graph data differs from other 

data in that it includes connectivity between entities. Graph data is mostly non-

Euclidean type and is difficult to vectorize, making it difficult to process in the 

existing hardware structure. In this study, graph data was analyzed using the 

induced sneak current of the self-rectifying memristor crossbar array. The 

results of implementing various graph algorithms based on memristive CBA 

and applying them to real-world problems show that the intrinsic properties of 

crossbars are very effective in analyzing graph structures. 
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1.2. Objective and Chapter Overview 

 

The objective of the present thesis is focused on complex data processing 

with memristor-based physical computing. Intrinsic physical properties (R-C 

delay, I-V nonlinearity, sneak current) of the memristive hardware were used 

for physical computing. 

Chapter 2 describes a new method of sequential data processing using a 

nonvolatile memristor-based temporal kernel with time constants 

controllability. A temporal kernel was constructed using memristors (M), 

resistors (R), and capacitors (C) for effective sequential data processing. The 

unit cell has a 1M1R1C structure in which a memristor is connected in series 

with a resistor and a capacitor, and the resistor and capacitor are connected in 

parallel with each other. The 1M1R1C kernel has the advantage of being 

applicable to various situations as it can have various time constants through R 

and C control. 1M1R1C-based MNIST recognition showed high accuracy (90%) 

with high energy efficiency and fast processing speed. In addition, the 1M1R1C 

kernel was applied to ultrasound[5] and electrocardiogram-based medical 

diagnosis[6] with very different time constants (frequency range of 1 to 10 MHz). 

Chapter 3 introduces a method for processing non-Euclidean graphs using 

self-rectifying memristor arrays is proposed. The non-Euclidean graphs were 

mapped to the metal-cell-at-diagonal crossbar-array (mCBA), composed of the 

self-rectifying memristors. The sneak current, an intrinsic physical property in 
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the mCBA, allows identifying the similarity function. Sneak current-based 

similarity function indicates the distance between nodes, connectivity between 

communities and nodes, the probability that unconnected nodes will be 

connected in the future, and the neural activity between cortices. This work 

shows a feasible demonstration of the memristor-based physical calculation, 

being applied to various graphical problems. 

Finally, in chapter 4, the conclusion of the thesis is made. 
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2. Time-varying data processing with nonvolatile 

memristor-based temporal kernel 

 

2.1. Introduction 

 

Convolutional neural networks (CNN), which are composed of a 

convolutional layer and a fully connected layer[1], show outstanding 

performance in static image processing (recognition and classification).[2], [3] 

However, when the temporal order of each input vector and the correlation 

between the input vectors are essential, such as for natural language recognition 

or translation, a method of processing the input over time is required, and CNN 

are not suitable for this purpose.[4] Such an event sequence or time-dependent 

network operation can generally be represented by the relationship between the 

present network state, the input, and the previous network state. 

A typical network with such characteristics is a recurrent neural network 

(RNN) with the long-short-term memory learning rule,[5] which mitigates the 

vanishing gradient descent problem of the classical RNN.[6] Nonetheless, these 

artificial neural networks perform vast amounts of multiplication and 

accumulation (MAC) operations during the learning and inference steps. When 

these calculations are performed using the conventional architecture in which 

the computing unit and memory are separated, even with the latest graphics 
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processing unit, the cost of achieving the required processing speed and the 

energy consumption are enormous.[7]  

In this regard, the recent upsurge of studies on neural networks that use a 

memristor-based cross-bar array (CBA) based on Ohm's law and Kirchoff's law 

is notable.[8]-[13] If the memristor used in such neural networks can process the 

event-sequence-related and temporal information, it can achieve RNN 

functionality. An even more desirable functionality is to extract the features of 

the input information (raw data vector) using a temporal kernel (TK) and feed 

them to the next classification layer. A representative example of such a 

computing system is reservoir computing (RC), which is composed of a 

reservoir and a readout layer (FCN).[14], [15]  

The core part of the RC system is the reservoir, where the non-linear 

transformation of the input signal is performed based on the fading memory 

properties, and the characteristics of the input signal are projected into a rich 

enough feature space. The result of the projection is called the reservoir state.[16]  

The nonlinear dynamic filtering of RC can be regarded as a specific type of 

a more general TK[17]-[19], in which the time-varying data can be efficiently 

handled by the fading-memory functionality of the reservoir. Nonetheless, RC 

may have severe limitations in adapting different time scale of the input data 

due to its fixed time constant of the specific fading memory function. This may 

not be the case for other types of TK, based on a physical kernel combined with 

other circuit elements, as shown in this work. Also, non-fading (or nonvolatile) 



 

 8 

memory can be used as the TK because the time-varying input can be encoded 

into the TK by the effects of the time constant of the entire circuit element. 

When a memristor is used as the TK, its resistance must be determined by the 

different input pulse signals with varying amplitudes and the intervals between 

such input signals. If the input signals have simple and obviously 

distinguishable patterns, a memristor can sufficiently discern them by assigning 

different resistance values. However, for complicated and similar input patterns, 

high separability is required, which is usually challenging to achieve with a 

given type of memristor.[20], [21] Also, the input signals could have substantially 

different time constants, which further severely limits the memristor-based 

temporal kernel (reservoir).[22], [23] In this case, a high-performance kernel 

machine applicable to diverse circumstances can be created by incorporating 

additional circuit components. 

Recently, various studies were conducted on hardware-based RC systems 

that use volatile memristors, in which a volatile memristor was used to process 

a time-varying input.[20]-[23] In those studies, the reservoirs were constructed 

based on ionic diffusion dynamics (diffusive memristors), in which the the 

spotaneously decaying conductance of low-resistance state (LRS) of the 

diffusive memristor provided the fading memory function of a reservoir.  

However, there are several limitations in using such reservoir dynamics. 

Firstly, the duration and interval of the input signal are limited to the time range 

in which sufficient conductance decay occurs. For this reason, in the previous 
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studies, it took 1 to 20 ms for one memristor to process 4-bit data, which is 

insufficient for processing a large amount of data.[20],[21] Secondly, obtaining a 

reproducible reservoir state could be challenging. An Ag-filament-based 

diffusive memristor exhibits stochastic switching,[20] so the variation of the 

reservoir state will be large. Finally, reservoir adaptation could be difficult to 

achieve, given that the reservoir dynamics are totally determined by the 

material property, which renders the previous system useful only for 

applications with a time scale similar to that of the specific memristor.[21]-[23]  

In this study, a device based on an electron trap/detrap mechanism was used 

to solve the aforementioned issues.[24], [25] A W/HfO2/TiN (WHT) memristor 

goes into an LRS when the trap is filled with electrons and shifts to a high-

resistance state (HRS) when the trapped electrons are detrapped. Since the 

resistance switching is based on the electron trapping and not the ionic 

movement, reproducible results can be achieved (Figure 2-1).[26], [27] In addition, 

since the work functions between the top and bottom electrodes differ only 

slightly, there is limited built-in potential, so the device has high retention 

properties (Figure 2-2a, b).[25], [28] Although the WHT memristor has different 

time constants of operation according to its conductance level (Figure 2-2c), it 

is insufficient to achieve adaptability with a sufficiently large time constant 

range. This problem could be solved by combining the memristor with a 

capacitor (C) and a normal resistor (R). Under this circumstance, the R-C time 

constant of the circuit can be varied, and the memristor response to the temporal 
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arrangement of the inputs can be controlled. 
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Figure 2-1:  Experimental results on device reliability and reproducibility. a, 

Cycle-to-cycle variation of the WHT memristor. Except for the 

first cycle out of 100 DC cycles (2.5 ~ -3.2 V), there was a slight 

variation in the I-V curve. The inset of (a) shows the read current 

at 0.5V for each cycle number. b, Endurance of the WHT 

memristor. The WHT memristor showed stable resistive 

switching behavior during ~105 pulse cycles. For endurance 

measurement, a 3.3 V height 1 µs width SET pulse and -3.35V 

height 1.5 µs width RESET pulse were used. The read current was 

recorded with DC read at 0.9 V and a WHT memristor with 4 µm 

cell size was used for measurement. c, d, Cell to cell variation of 
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the WHT memristor. A total of 80 devices were measured with 20 

devices each of 4 µm x 4 µm, 6 µm x 6 µm, 8 µm x 8 µm, and 10 

µm x 10 µm. An I-V curve was obtained in each device through a 

2.5 V ~ -3.2 V DC cycle (c), and the read current was extracted at 

0.5 V of each I-V curve (d). Data shown in red is read current in 

HRS and data shown in blue is read current in LRS. 
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Figure 2-2: Retention measurement result of the WHT device. The WHT 

device has a nonvolatile characteristic in the low conductance 

range (a) and a retention time of about 100 days at 25 °C, which 

is the result of extrapolation based on 60 ~ 150 °C retention data 

(b). Meanwhile, the WHT device has a volatile characteristic in a 

high conductance region (c). This is because the trap depth exerted 

on the electrons is different according to the conductance state 

(trapped electron density). In the above case, the trapped electron 

density was increased by increasing pulse height. Then, the 

relatively easier detrapping of the heavily trapped WHT device 

induced the decay of conductance with time. This can be used as 

the fading memory. 
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2.2. Experimental 

 

The array of cross-bar-type W/HfO2/TiN memristors was fabricated. A 50 

nm-thick TiN layer was sputtered (Endura, Applied Materials) on an SiO2/Si 

substrate, and the TiN layer was patterned into a line shape to form a BE. The 

2- to 10 µm-wide TiN BEs were patterned using conventional photolithography 

and the dry-etching system. After the patterning, the residual photoresist was 

removed with acetone and cleaned sequentially with deionized water. Then 4 

nm HfO2 was deposited using atomic layer deposition (ALD) at a 280 °C 

substrate temperature using a traveling-wave-type ALD reactor (CN-1 Co. Plus 

200). A tetrakis-ethlylmethylamido hafnium (TEMA-Hf) and O3 were used as 

precursors for Hf and oxygen, respectively. On the HfO2 layer, 50-nm-thick W 

TEs were sputtered using the MHS-1500 sputtering system and patterned into 

2- to 10 µm-wide lines using the conventional lift-off process. After the 

fabrication, the WHT device was analyzed using x-ray photoelectron 

spectroscopy (XPS, AXIS SUPRA, Kratos) and energy-dispersive x-ray 

spectroscopy (EDS, JEOL, JEM-ARM200F) to observe the formation of the 

tungsten oxide layer. Cross-sectional transmission electron microscope (TEM) 

images of the WHT memristor were observed using scaning transmission 

electron microscopy (STEM, JEOL, JEM-ARM200F). 
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2.3. Results and Discussions 

 

Figure 2-3a shows the TK system that can control the kernel dynamics 

using a memristor, a normal resistor, and a capacitor (1M1R1C). This is a 

structure in which the reservoir is replaced with a 1M1R1C temporal kernel 

while maintaining the computing scheme of the RC system. In this TK system, 

the charging and discharging of the capacitor transforms the signals applied to 

the device into various forms so that the conductance state of the memristor can 

be varied depending on the magnitude and sequential arrangement of the input 

signal (Figure 2-4a, b). The results of input processing in the kernel form a 

memristor conductance vector (MCV), which becomes the input of the 

subsequent FCN readout layer. Such a configuration of the TK system allows 

the arbitrary variation of the response dynamics by adjusting the sizes of the 

resistor, capacitor, and pulse width, etc. Therefore, the optimized TK system 

can be configured for tasks with vastly different time scales.  

 

Device analysis. Figure 2-3b shows the measured current-voltage (I-V) curve 

of the WHT device. During the electrical measurement, the W top electrode 

(TE) was biased, while the TiN bottom electrode (BE) was electrically 

grounded. The resistance of the device was changed from HRS to LRS by a 

positive bias (SET), and reverse switching was achieved by a negative bias 
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(RESET). In both SET and RESET, gradual switching appeared, as shown in 

Figure 2-3b and Figure 2-4a, b, which contributed to the high performance of 

the TK system. Figure 2-4c shows the cross-sectional scanning transmission 

electron microscopy (STEM) image of the WHT device, which revealed the W 

TE, the TiN BE, and the 4 nm-thick HfO2 layer between the TE and BE. Figure 

2-4d shows the X-ray photoelectron spectroscopy (XPS) analysis of the 

W/HfO2 interface in the WHT device. Analysis of the W peak in the XPS data 

revealed the presence of tungsten sub-oxide (WOx, x<2) and a WO3 layer. The 

energy-dispersive X-ray spectroscopy line scan result (Figure 2-4c, right 

portion) along the vertical line from TE to BE in the STEM image implies that 

a thin WO3 was formed at the W/HfO2 interface and WOx (x << 3) was formed 

within the W bulk. Therefore, the WOx may work as a voltage divider when the 

voltage is applied to the device, which will cause gradual SET and RESET 

performance.[29] This is a favorable characteristic, allowing the TK to have 

various states. Moreover, this WHT device does not have an electroforming 

step (Figure 2-3b), which also contributed to the stable resistance switching 

operation (Figure 2-5 and 2-6). W and TiN have similar work functions of ~ 4.5 

eV, which may render the energy band profile symmetric.[30], [31] The symmetric 

energy band profile is unfavorable for fluent electronic bipolar resistive 

switching (eBRS).[25], [28] However, the WO3 layer formed at the W/HfO2 

interface can induce a Schottky barrier, whereas the HfO2/TiN interface 

constitutes a quasi ohmic contact.[29], [32] Especially, the chemical interaction 
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between the HfO2 and TiN layers can produce defects within the HfO2 layer, 

which provide the system with the electron traps that are necessary to induce 

the eBRS mechanism. With the application of the positive bias to the TE, the 

traps were filled with electrons that were injected from the TiN BE through the 

quasi-ohmic contact, which switched the device to the LRS. Conversely, when 

the negative bias was applied, the device switched back to the HRS as the 

trapped electrons were detrapped, while the electron injection from the TE was 

blocked by the Schottky barrier at the W/HfO2 interface.[28] Due to the presence 

of the WOx layer, there was no need to set current compliance (CC) during the 

operation. 
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Figure 2-3: The structure of the 1M1R1C temporal kernel system and the I-V 

characteristics of the memristor used in the temporal kernel. a, The 

structure of the 1M1R1C temporal kernel system proposed in this 

study. The temporal kernel system can recognize images in the 

MNIST database through feature projection and classification. b, 

The I-V curve of the W/HfO2/TiN memristor. The sweep order is 

marked in the figure. SET and RESET occurred in the positive 

bias and the negative bias, respectively, and gradual switching 
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occurred in both switching conditions. Since the filament 

formation process is not required in this electronic switching 

device, no electroforming process is seen in the first sweep. 
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Figure 2-4: Analysis of the AC characteristics, and device structure of the 

W/HfO2/TiN memristor. a, Changes in conductance of memristor 

according to pulse number. Pulse number 1~13 correspond to SET 

pulse, 14~26 correspond to RESET pulse, and read voltage was 

0.5 V. The SET and RESET pulse heights were 4 V and -4 V, 

respectively, and the width of both was 200 µs. b, The 

conductance of the memristor according to the 2.5~4 V SET pulse 

height. Multilevel switching is possible for both SET and RESET, 

but the change in conductance according to the pulse number is 

non-linear (a). Also, the change in conductance according to the 

pulse height is non-linear as the pulse height decreases (b). Both 

nonlinearities were used for the non-linear transformation of the 

input in the temporal kernel. c, Scanning transmission electron 
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microscopy (STEM) cross-sectional image and energy-dispersive 

x-ray spectroscopy (EDS) analysis results (right portion) of the 

fabricated W/HfO2/TiN memristor with a depth profile. d, XPS 

spectra of the W 4f region with a depth profile and fitting results 

for the W/HfO2/TiN memristor. The square dot shows the 

measurement result (Exp), and the black and red lines show the 

fitting result (Fit) and back ground (BG), respectively. Blue, green, 

and purple lines show XPS peaks of tungsten (W), tungsten oxide 

(WO3), and tungsten suboxide (WOx), respectively. The sample 

was measured immediately after the deposition. c, d show that 

tungsten oxide was generated in the memristor. 
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Figure 2-5: The effects of the temperature and the cell area on the electrical 

properties of the device. a, The I-V curve at various temperatures 

(45~105 °C). b, The I-V graph of the LRS at various temperatures 

(45~105 °C). c, d, The cell area dependence of the resistance 

measured in 10 devices in HRS (c) and LRS (d). 
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Figure 2-6: The trap depth of the WHT memristor calculated from the time-

dependent current-relaxation characteristics of the on and off 

states at various temperatures. For this test, the current was 

measured at the 0.5 V read voltage and the temperature was varied 

from 35 °C to 150 °C. a, b, The relaxation curves at various 

temperatures of the HRS (a) and LRS (b). Here, the read current 

was normalized to the initial current at t = 0. The data show that 

the read current rose (a) and decayed (b) over time as the trapped 

electrons were being trapped (a) and detrapped (b). These 

relaxation curves were fitted into the stretched exponential 

function [𝑓!(𝑡) = 𝐴𝑒"#
!
"$
#

+ 𝐵] to attain the time constant (τ) at 

each temperature. c, d, The Arrhenius plots of ln (τ) versus 1/kT 

of the HRS and LRS cases. The analysis showed 0.45 eV and 0.13 

eV activation energy, which correspond to the trap depth for the 

HRS and LRS, respectively, of the system. 
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Temporal kernel generation. We implemented the TK by configuring the 

circuit, as shown in Figure 2-7a. Pulse streams were generated by a pulse 

generator (PG), where input signal ‘1’ is converted to a high level, and ‘0’ is 

converted to a low level. These pulse streams were delivered to channel 1 (CH1) 

and channel 2 (CH2) of an oscilloscope (OSC). A 50 Ω resistor was assigned to 

CH1, which allowed monitoring of the input pulse shape. In CH2, a 1 MΩ 

resistor was connected to the device-under-test (DUT, the memristor) in series. 

From the estimated voltage from the CH2 resistor, the voltage applied to the 

DUT was inferred. Since the oscilloscope fixes the size of the CH2 resistor at 

1 MΩ, the overall series resistance to the memristor was adjusted by connecting 

a load resistor (RL), as shown in the figure. Also, a capacitor was connected to 

the CH2 resistor in parallel, which stored the charge supplied by the applied 

pulse voltage. In this specific experimental setup, its value was fixed at 180 pF, 

but the dynamic time constant of the TK system was varied by changing RL and 

the capacitance. The measurement consisted of two steps. In the first step, a 

pulse was generated at the PG, which caused SET switching in the memristor, 

while the circuit part with the semiconductor parameter analyzer (SPA) was 

deactivated (Figure 2-7a left panel). In the second step, the conductance state 

of the memristor was read through the DC sweep using the SPA, while the other 

parts of the circuit were deactivated (Figure 2-7a right panel). To compose the 

temporal kernel circuit, the WHT device with an area of 10 µm × 10 µm was 

connected to the pulse generator (PG, Agilent 81110A) and an oscilloscope 
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(OSC). A 1M1R1C circuit was constructed by adding a load resistor to the 

circuit and setting the resistance values of CH1 and CH2 in the OSC to 50 Ω 

and 1 MΩ, respectively. A semiconductor parameter analyzer (SPA, Hewlett-

Packard 4145B) was connected to the WHT device to monitor the DC sweeps. 

To process the static and sequential data, the device states after the pulse 

streams were measured. After the measurement, the device was reset to the HRS 

state and the process was repeated. The TK state was constructed based on the 

recorded device states, and the readout layer was trained based on it. 

Figure 2-7b shows the voltages transients over the memristor with a 

‘0101+reference pulse’ (left) and a ‘1010+reference pulse’ (right), and Figure 

2-7c shows the corresponding voltage transients read at CH2. In these 

operations, 4 V, 200 µs, and 0 V, 200 µs pulses were programmed to represent 

‘1’ and ‘0’, respectively. The initial resistance of the WHT memristor was set 

to 50 MΩ when measured at 0.5 V.  The role of the last reference pulse is 

explained as follows. The left panels of Figure 2-7b and c show that since the 

first signal was ‘0’, no voltage appeared up to 0.2 ms. When the first ‘1’ signal 

was applied, the DUT showed a peak of up to ~ 3.5 V due to the involvement 

of the capacitive charging current, and it decayed to ~ 1.5 V after the capacitor 

charging was completed. At the same time, the CH2 voltage showed a 

corresponding gradual increase in the capacitor voltage, which was saturated at 

~ 2.5 V. When the second ‘0’ signal came in, the capacitor was discharged and 

the reverse current flowed into the DUT, which made its voltage negative, while 
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the CH2 showed gradual decay of the capacitor voltage. It was noted from the 

CH2 voltage that the capacitor was not completely discharged during the 0.2 

ms duration of ‘0’ signal, so when the subsequent ‘1’ signal came in, the 

capacitive charging current was not as high as in the previous ‘1’ signal case 

(where the DUT voltage peaked only up to ~ 2.5 V). Such an effect can be more 

evidently seen with the subsequent ‘1’ signal (the reference pulse), as there was 

almost no peak in the DUT. Therefore, in this case, the effective number of SET 

pulses applied to the DUT was only two (the first and second ‘1’ among the 

total three ‘1’s in the ‘01011’ sequence). After the entire pulse sequence was 

over, the memristor resistance was 28.2 MΩ.  

In the case of the right panels in Figure 2-7b and c, in contrast, each of 

the 1 signals is separated by 0 signals, and all the three ‘1’s in the ‘10101’ 

sequence are effective, and they switched the DUT to the SET state, which 

made its resistance 26.7 MΩ, despite the application of the same number of set 

pulses (three) in the two cases. It should be noted, however, that the last two 

peaks had a lower effect in decreasing the memristor resistance than the first 

one due to its lower peak height, which was induced by the incomplete 

discharging of the capacitor during the intervening ‘0’ pulse cycle. This is not 

a demerit but actually a merit of this TK system, which allowed even higher 

separability and adaptability. Therefore, this TK system can recognize not only 

the different input pulse numbers but also their timing. Figure 2-7b and c show 

several notable features. First, due to the built-in asymmetry of the band profile 
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of the WHT memristor, the resistance at the positive bias of ~ 2.5 V was ~ 100 

times lower than that at the negative bias of ~ 1.5 V. Therefore, the charging 

was much faster than the discharging. This is the first factor that allows the TK 

system to have higher separability and adaptability. Second, the capacitance and 

RL can be arbitrarily taken to vary the charging and discharging times, which 

can eventually affect the effectiveness of the voltage pulse application to the 

memristor. Third, the input voltage pulse height and duration are another knob 

that can further change the TK dynamics. These features rendered the TK 

system flexible and adaptable to the various requirements, as shown in the next 

sections. Without the last reference pulse, such a systematic variation and 

examination of the memristor state control would have been improbable. 

The WHT memristor in this study shows both nonvolatile and volatile 

memory properties, when its conductance is low and high, respectively. In this 

study, the WHT memristor was operated within the conductance range showing 

nonvolatile characteristics, but outside that range, the WHT device shows 

fading conductance state (Figure 2-2c). Therefore, depending on the operation 

scheme, the 1M1R1C kernel can also perform a reservoir function, and the 

results are shown in Figure 2-8. In this study, time series data were processed 

based on the unique characteristics of 1M1R1C, not the fading memory. 
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Figure 2-7: The circuit used as a temporal kernel in the experiment, and the V-

t graphs obtained from the DUT and CH2 of this circuit. a, A 

temporal kernel circuit composed of a memristor, resistors, and a 

capacitor. CH1 shows the shape of the input pulse stream, and 
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CH2 shows the voltage applied to a 1M ohm resistor. The voltage 

across the DUT (green graph) is obtained by subtracting the CH2 

voltage from the CH1 voltage. The left panel shows the circuit 

used in the pulse set (marked by pink) and the right panel shows 

the circuit used in DC read (marked by blue). b, The voltages 

applied to the memristor with a '0101+reference pulse' (left) and a 

'1010+reference pulse' (right). c, The voltages applied to the 

corresponding CH2, where the 4 V and 0 V voltage amplitudes 

represent ‘1’ and ‘0,’ respectively. The voltage across CH2 shows 

that the charging and discharging rates of the capacitor were 

asymmetric. 
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Figure 2-8: Fading memory test of the WHT memristor at the low and high 

conductance levels. a, Response of the 1M1R1C kernel machine 

to input patterns of '1111', '1010', '1000', and '0001' in the low 

conductance range. In the low conductance region, the WHT 

memristor has nonvolatile characteristics, so the effect of the high 

signal is accumulated and the fading memory is not implemented. 

In contrast, the WHT memristor has a volatile characteristic in a 

high conductance region, and a fading memory is implemented in 

this region (b). c, d, Voltage applied to CH1 and CH2 for the input 

patterns of '1111', '1010', '1000', and '0001' in the low (c) and high 

(d) conductance level of the cell 1. During the measurement, 180 

pF capacitor and 390 Ω resistor were used for the 1M1R1C kernel 
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machine. 4 V height 1 µs width pulse was used as signal pulse and 

1 V height 1 µs width pulse was used as the read pulse. 
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Modifying the temporal kernel dynamics. In this TK system with the given 

WHT memristor property and capacitance, RL and the pulse height/duration 

were varied to examine the separability of the memristor. The capacitance could 

also be varied, but it was fixed in this experiment section. Figure 2-9 shows 

several examples of the different degrees of separability of the TK system when 

these parameters were varied. The examples show the current value read at 0.5 

V after the 16 different input patterns, from ‘0000’ to ‘1111’, were programmed 

to the PG, with the additional reference pulse added last. Since the output 

current depends on the initial resistance, the resistance of the WHT memristor 

in this experiment was reset to a constant value (50 MΩ at 0.5 V) before 

measurement. The x-axis numbers correspond to the different input patterns 

described in the inset table in Figure 2-9e, and the different parameters, such as 

RL, the input pulse, and the reference pulse, for each graph in Figure 2-9 are 

summarized in Table 2-1. It should be noted that in Figure 2-9, the y-axis scales 

of each graph were varied to easily compare them. All the detailed pulse 

responses and analyses are included in Figures 2-10 to 2-14. In Figure 2-9a, 

wherein RL = 1 MΩ, the signal pulse = 4 V, 100 µs, and the reference pulse = 4 

V, 100 µs, the five patterns, ‘0000’, ‘0001’, ‘0011’, ‘0111’, and ‘1111’ are not 

clearly distinguished (an analysis of the separation of these inputs is shown in 

Figure 2-15). It was also noted that the ‘1000’ pattern resulted in the highest 

memristor conductance, although there were only two SET pulses (the first 1 

and the reference pulse at the last SET pulse). This is because the reference 
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pulse induced the highest peak voltage to the memristor because the interval 

between the two pulses, during which the capacitor was fully discharged, was 

the longest (the details are shown in Figure 2-16). 

Of the six graphs in Figure 2-9, Figure 2-9c shows well the critical 

features of this TK system. The only difference of Figure 2-9c from Figure 2-

9a is the pulse length [100 µs (in a) vs. 200 µs (in c)]. As the pulse width 

increases, the capacitor discharging during the 0 input increased, and the 

subsequent ‘1’ induced a higher peak voltage. The conductance levels in Figure 

2-9c can be clearly grouped into three levels, which are determined by the 

number of 1’s immediately after the ‘0’ (not the total number of ‘1’). For 

example, ‘0000’ has only one 1 after 0 (the reference pulse), so it induced the 

lowest conductance. Interestingly, ‘1111’ has the same low conductance even 

though it had five 1 inputs (including the reference pulse). This is because the 

only effective ‘1’ was the first one because all the other ‘1’s do not have the 

preceding ‘0’s, so they cannot produce peak voltage.  

Another characteristic and most desirable setting could be seen in Figure 

2-9f, in which RL was decreased to 10 kΩ and the pulse width was decreased to 

200 ns. This setting makes the capacitor charging per one voltage pulse (‘1’ 

signal) insufficient and its discharging during the ‘0’ signals faster. Overall, this 

makes the memristor conductance more linearly dependent on the total number 

of ‘1’s, as shown in Figure 2-9f (an example of insufficient charging and details 

of the effects are included in Figure 2-17). A short pulse length is also beneficial 
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to rapidly process the input vectors.  

By appropriately changing both the C and RL, the kernel characteristics 

obtained in Figure 2-9 could be implemented at different time scales. Additional 

kernels are configured as the time constants in Figure 2-18. Based on the 

analysis of the effect of each parameter change, a kernel condition suitable for 

the task is determined through kernel adaptation, and ex-situ training is 

performed, which is followed by inference. 

 

  



 

 35 

 

 
Figure 2-9: Experiment results to analyze the effect of changing parameters on 

the kernel characteristics in the temporal kernel system. The read 

current at 0.5 V of the memristor for the pulse stream '0000'~'1111' 

corresponds to 0~15 in the inset table in e. a, The read current at 

0.5V of the memristor for each input under the conditions of 1 MΩ 

RL, 4 V signal pulse height, 100 µs width, 4 V REF pulse height, 

and 100 µs width. b-e, The read current at 0.5 V of the memristor 

for each input when RL, pulse width, pulse height, and REF pulse 

height are changed respectively from the condition of a. The 

various parameter settings for each figure were summarized in 

Table I. The kernel responses for each input of the temporal kernel 

optimized for the MNIST recognition are shown in f. Responses 
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to inputs showing high prevalence in the dataset were well 

separated (marked by red circles). 
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Figure 2-10: The V-t graphs for the '0000'~'1111' inputs under the conditions 

of a 1 MΩ RL with a 4 V signal pulse height and a 100 µs width, 

and a 4 V REF pulse height and a 100 µs REF pulse width. 
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Figure 2-11: The V-t graphs for the '0000'~'1111' inputs under the conditions 

of a 120 kΩ RL with a 4 V signal pulse height and a 100 µs width, 

and a 4 V REF pulse height with a 100 µs width. 
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Figure 2-12: The V-t graphs for the '0000'~'1111' inputs under the conditions 

of 1 MΩ RL with a 4 V signal pulse height and a  200 µs width, 

and a 4 V REF pulse height with a 200 µs width. 

 



 

 40 

 

Figure 2-13: The V-t graphs for the '0000'~'1111' inputs under the conditions 

of a 1 MΩ RL with a 3.5 V signal pulse height and a 100 µs width, 

and a 3.5 V REF pulse height and a 100 µs width. 
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Figure 2-14: The V-t graphs for the '0000'~'1111' inputs under the conditions 

of a 1 MΩ RL with a 4 V signal pulse height and a 100 µs width, 

and a 3 V REF pulse height and a 100 µs width. 
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Figure 2-15: Analysis of the separation of inputs that generated net 1 spikes 

('0000', '0001', '0011', '0111', and '1111'). From the conditions of a 

4 V signal pulse height and a 100 µs width, and a 4 V REF pulse 

height and a 100 µs width, RL varies from 1 MΩ to 10 kΩ. a-c, 

The V-t graphs for the inputs that generated net 1 spikes when 1 

MΩ, 120 kΩ, and 10 kΩ RL, were used. d-f, The read current of 

the memristor for the '0000~1111' inputs under the conditions in 

a-c. When the 1 MΩ RL was used, since the voltage distributed to 

the memristor was small, SET switching did not occur after the 

first spike (a). Therefore, the responses to the inputs that generated 

net one spike (0, 1, 3, 7, and 15) were not separated (d). As RL 

decreased, the voltage distributed to the memristor increased (b-

c), and thus, the responses to the corresponding inputs were 

separated (e and f).  
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Figure 2-16: Analysis of the input that caused maximum conductance. a-b, The 

V-t graphs for the '1000' and '1010' inputs under the conditions of 

a 4 V signal pulse height and a 100 µs width. REF pulse has 4 V 

height and 100 µs width. 1 MΩ and 120 kΩ RL were used for a 

and b. c-d, The read current of the memristor for the '0000~1111' 

inputs under the conditions in a-b. Since the large RL caused slow 

discharging, a sufficient interval after the first spike is necessary 

to generate a spike that can cause large SET switching. Under the 

conditions in a, maximum conductance occurred at the '1000' 

input due to the slow discharging by the 1MΩ RL (c). On the other 

hand, under the conditions in b, second and third spikes of 

sufficient magnitude to cause SET switching occurred at the '1010' 

input due to the fast discharging by the 120 kΩ RL. Therefore, 

maximum conductance occurred at the '1010' input (d). 
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Figure 2-17: a, The V-t graphs for the '0000'~'1111' inputs under the conditions 

of 10 kΩ RL with a 3.5 V signal pulse height and a 500 ns width, 

and a 3 V REF pulse height and a 500 ns width. b, The read current 

of the memristor for the '0000'~'1111' inputs. Insufficient charging 

further increased the separability for the consecutive high signals 

since the capacitor was not fully charged even though consecutive 

high signals were applied. This is suitable for situations in which 

consecutive signals mainly appear, such as in MNIST. 
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Figure 2-18: Temporal kernels with different time constants (100 ns ~ 1 s). 

Load resistance, parallel capacitance, and input interval used in 

each temporal kernel are indicated in each figure. a-e, The V-t 

graphs for the '1000' input under the condition of a 3.5 V signal 

pulse height. a-c represents a temporal kernel with similar 

characteristics to the temporal kernel in Figure 2-9a of main text, 

but with a different time constant. d-f represents a temporal kernel 

with similar characteristics to the temporal kernel in Figure 2-9f 

of main text, but with a different time constant.  
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Table 2-1: The temporal kernel conditions (RL, signal pulse, and REF pulse) 

used in Figure 2-9a-e   
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Task Optimization: MNIST. To perform the task of recognizing digit images 

in the Modified National Institute of Standards and Technology (MNIST) 

Database[33], the kernel dynamics were optimized to implement a TK system 

suitable for the task. To do this, the raw MNIST data set, composed of 784 

pixels (28 x 28), had to be reconfigured to meet the requirement of this specific 

TK system, which is basically a binary system (0 and 1 inputs). Therefore, the 

data in the 784 pixel images were binarized and chopped by 4 bits, which 

resulted in 196 4-bit input signals. To make the task analysis more efficient, the 

frequency of the appearance of inputs in the dataset was investigated, and it was 

confirmed that ‘0000’ appeared most frequently, followed by ‘1111,’ ‘1000,’ 

‘0011,’ and ‘0001’ (Table 2-2). Therefore, in this task-optimized TK system, the 

task was performed effectively by setting the operation parameters so that the 

TK system could readily separate the responses to the inputs with a high 

frequency of appearance rather than separating the responses to all the 16 inputs. 

The data points indicated by the red circle in Figure 2-9f correspond to these 

frequently appearing signal sets. Accordingly, the 196 4-bit input image data 

were converted to the 196-membered MCV, where the measurements were 

performed on a single 1M1R1C circuit, based on Figure 2-9f. Using the 50,000 

training images in the MNIST data set, 50,000 training MCVs were generated. 

These MCVs were used to train the 196 x 10 FCN (weights and biases), which 

were generated in a PyTorch simulation. The logistic regression algorithm was 

used to train the readout layer for the MNIST recognition and breast lesion 
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classification. The TK state (x) in the form of an n × 1 vector (n = 784 ~ 112 

for the MNIST recognition and n = 510 for the breast lesion classification) was 

multiplied by the weight matrix (W) of the readout layer to yield the weighted 

sum (z).  

𝐳	 = 	𝐖& ∙ 𝐱	                        (1) 

The weighted sum was applied to the following softmax function to yield an 

output (𝐲8). 

𝐲8' = 	σ(𝐳)' =	
𝒆𝒛𝒋

∑ 𝒆𝒛𝒌𝒏
𝒌(𝟏

	𝑓𝑜𝑟	𝑗 = 1,… , 𝑛.          (2) 

The sum of the elements of the output vector became 1 and the output of the 

softmax function was perceived as a 'probability.' The cross-entropy loss was 

used for the loss function, which is defined as: 

𝑙𝑜𝑠𝑠 = − *
+
∑ [𝒚,𝑙𝑜𝑔(𝐲8,) + (1 − 𝒚,)𝑙𝑜𝑔(1 − 𝐲8,)]+
,-*  ,  (3) 

wherein N is the number of samples, and 𝒚, is the target output for input 𝒙,. 

To minimize the loss, a gradient-descent-based Adam optimizer[34] was 

identically used for the readout layer and 784 × 10 FCN. Full-batch-type 

learning of the readout layer and 784 × 10 FCN was performed in PyTorch. The 

trained TK system was used to infer the 10,000 MNIST test images, and the 

achieved accuracy was 90.1 % (see Table 2-3 and Table 2-4, 2-5 for the results 

of combining various kernels and the results of considering cycle-to-cycle and 

cell-to-cell variations). When one hidden layer composed of 200 neurons is 

added to the FCN, the accuracy was increased to 96.5 %. 

This kernel machine took 200 ns of time and ~25 pJ of energy (Figure 
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2- 19) to process one input pulse, which is 103 ~ 104 times shorter and 100 ~ 

400 times lower than in the previous studies.[20]-[22] Table 2-3 shows the 

comparison with other RC results using the diffusive memristors and the 

software-based single-layer FCN. This study focuses on the only memristive 

TK system that performs kernel adaptation and that showed the best 

performance in terms of accuracy and latency. Table 2-6 shows the results for 

the case where the 2-layer FCN is used as the readout layer, and when 

196×38×10 FCN is used, it offers 95.1 % accuracy. The number of training 

parameters in this network (7,828) is slightly smaller than that of the software-

based FCN (7,840). The readout network size of the TK system could be further 

decreased as the number of bits processed by the kernel (nBPK) increases, for 

as long as the separability for the higher nBPK is guaranteed. Figure 2-20 shows 

the different read currents for the 3 to 6 bits (8 to 64 input patterns). Obviously, 

the separability decayed as the nBPK increased, but they were still be used to 

recognize the MNIST data set because not all the input patterns mattered 

equally. Table 2-7 shows the variation in the test accuracy of the MNIST data 

set using the same method as above, but with different nBPKs. As the nBPK 

increased from 3 to 6, which was accompanied by a decrease in the required 

memristor number from 252 to 112, the accuracy decreased from 90.7% to 86.3% 

(the confusion matrices are included in Figure 2-21), which is not much lower 

than in the software-based FCN (784 x 10). The next section demonstrates the 

most crucial merit of this TK system by showing its capacity to process time-



 

 50 

series data using medical diagnostic data. 
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Figure 2-19: Result of the I-V curve fitting for the WHT memristor and power 

consumption in the 1M1R1C kernel machine during processing 

one input. a, I-V curve fitting of the WHT memristor (HRS state) 

based on the conduction mechanisms. b, Power consumption in 

the 1M1R1C kernel machine (Figure 2-9f kernel condition) during 

input processing. Since the resistance of the WHT memristor is 

dependent on the voltage, the current passing through the 

memristor was obtained with the HSPICE simulation using the 

result of the I-V curve fitting in a. The energy (∫ 𝑃𝑜𝑤𝑒𝑟(𝑡) ∙ 𝑑𝑡% ) 

consumed to process one input was calculated as ~25 pJ.  
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Figure 2-20: The temporal kernel responses were measured while increasing 

the number of bits processed in the temporal kernel from 3 bits to 

6 bits. a-d, The temporal kernel responses for the '000~111', 

'0000~1111', '00000~11111', and '000000~111111' inputs under 

the conditions of 10 kΩ RL with a 3.5 V signal pulse height and a 

200 ns width, and a 3 V REF pulse height and a 200 ns width. As 

the number of bits processed in the temporal kernel increased, the 

separation of the responses to each input deteriorated. 
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Figure 2-21: The confusion matrices comparing the recognized digit and the 

desired digit for the MNIST test dataset (4 situations, from the top 

left: nBPK = 3 bits to the bottom right: nBPK = 6 bits) showing 

that the number of correct inferences decreased as the nBPK 

increased. 
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Table 2-2: The frequency of the appearance of inputs in the preprocessed 

MNIST dataset, in which '0000' appeared overwhelmingly, 

followed by the inputs '1111', '1000', '0011', '0001', '1100', '0111' 

and '1110' in the table (Due to the nature of the picture, the pixels 

were continuously blanked or filled in most cases. Therefore, 

inputs with consecutive high or low signals mainly appeared, and 

there were a few inputs with alternating high and low signals such 

as '1010' and '0101'.)  
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Table 2-3: Comparison of the results of the MNIST recognition using 

memristive temporal kernel computing systems[21],[20] and a 

software-based system[1] (single-layer FCN), showing very fast 

processing and the highest accuracy in this study  
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Table 2-4: Results of MNIST recognition using various kernel combinations. 

For the recognition, kernel conditions of Figure 2-9a, b, and f of 

main text were used. A combination of 'Figure 2-9a+Figure 2-9f' 

showed an accuracy of 91.8%. For a 196x10 input vector, two 

kernels processed the input, and a 392x10 readout layer was used 

(588x10 readout for the 3 kernels). On the other hand, when the 

pulse width was modified without changing the conditions RL, C, 

and pulse height in the condition of Figure 2-9f, an accuracy of 

92.4 % was obtained in the combination of '200ns+2µs+5µs'. By 

combining various kernels or changing pulse conditions for the 

same kernel machine, the imperfections of one kernel could be 

compensated for by another kernel, and the accuracy could be 

improved.  
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Table 2-5: The accuracy when cycle to cycle variation, cell to cell variation, 

and both are considered (kernel condition of Figure 2-9f of main 

text was used). Each variation was calculated based on variation 

measurement results in Figure 2-1. Up to 1 sigma of each variation 

was considered, and when both cycle to cycle and cell to cell 

varaition were included in the simulation, the accuracy decreased 

by 0.5 %. 
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Table 2-6: Results of MNIST recognition using two-layer FCN for the readout 

layer of TK system. The table shows the number of training 

parameters used in each two-layer FCN and the accuracy of the 

TK system (nBPK = 4). When 196x38x10 FCN was used, 7,828 

training parameters were used, and the TK system accuracy was 

95.1 %.  
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Table 2-7: Results of the MNIST recognition while increasing the number of 

bits processed in the temporal kernel, showing that as nBPK 

increased, both the size of the used readout layer and the 

recognition accuracy decreased.  
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Task Optimization: Medical Diagnosis. Medical diagnosis often requires 

analyzing time-varying data and making a quick diagnosis, but there are 

inevitable limitations such as high dependence on operators and high variability 

across different medical institutions. For a more accurate and objective medical 

diagnosis, a universal diagnosis system adaptable to various situations is 

essential. Automatic medical diagnosis using deep learning has considerable 

potential, and several studies have been conducted on it,[35]-[37] but most of them 

rely on the conventional image classification method, such as CNN. This means 

that the traditional medical diagnosis produces data images and analyzes them 

later, mostly ex-situ. This study suggests a method for in-situ medical diagnosis 

in real-time using a 1M1R1C kernel. The diagnostic application consists of two 

sections. The first section is breast cancer diagnosis using ultrasound images, 

and the second section is arrhythmia diagnosis based on electrocardiogram 

(ECG) results. These two applications have vastly different operating signal 

frequencies (MHz to Hz). In this study, a system for efficient medical diagnosis 

was implemented by optimizing the TK system for each task. 

1) Diagnosis of malignancy in breast lesions. Breast cancer is the most common 

cancer in women. Ultrasound is used to diagnose and monitor this disease. In 

contrast to the conventional CNN, where the preprocessed images are identified, 

the proposed TK system in this study directly uses ultrasonic raw data without 

an imaging process, as shown in Figure 2-22a. In the conventional ultrasound 

diagnosis, the ultrasound is transmitted to the piezoelectric material, where 
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electrical signals are generated. The signal processor processes these signals to 

generate an ultrasound image, which the operator analyzes to diagnose the 

disease. However, if the TK can directly process the ultrasonic signal, the 

imaging process can be skipped, and an automatic diagnosis will be made at the 

readout layer. Therefore, this system makes real-time diagnosis simpler than in 

the existing ultrasound diagnosis. 

The dataset used in the experiment consisted of an open-access database 

of raw ultrasound signals acquired from malignant and benign breast lesions.[38] 

Each sample consisted of 510 ultrasound (10 MHz) echo lines. After they were 

preprocessed for measurement convenience, they were converted into pulse 

streams and applied to the memristor (Methods section). Figure 2-22b shows 

the results of the voltage-time (V-t) measurement for one echo line of a benign 

sample (inset in Figure 2-22b). The test set consisted of 36 samples randomly 

extracted out of the total 100 samples, and the training set consisted of the 

remaining 64 samples. The readout was performed by repeating the process of 

randomly extracting the test set from the entire dataset 30 times, and an average 

accuracy of 94.6% was obtained.  

This method has two main advantages over the existing ultrasound 

diagnosis using CNN. First, diagnosis is performed using a much simpler 

system without a pre-imaging process. Second, one of the major difficulties in 

ultrasound analysis is the presence of artifacts.[35] CNN may have difficulty in 

recognizing such artifacts because it performs learning and inference with the 
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information on the artifacts. Using 1M1R1C, even with additional stimulation 

by artifacts, the capacitor only maintains the charging state. Therefore, the 

kernel state is determined by the overall contour rather than by fine artifacts, 

and it can show higher performance. 

2) Real-time arrhythmia diagnosis. Arrhythmia is a condition in which the heart 

has an irregular rhythm or an abnormal heart rate. Since malignant arrhythmia 

can cause sudden death due to a heart attack,[39] real-time ECG monitoring and 

diagnosis are required. The purpose of this experiment is to implement a system 

capable of real-time diagnosis of arrhythmia in response to an electrical signal 

caused by a heartbeat. For the experiment, a part of the MIT-BIH arrhythmia 

database[40] was used, and a task-optimized kernel was utilized to distinguish 

between arrhythmia and normal cases. A TK capable of responding to a signal 

with a frequency of 0.8 to 1.2 Hz was constructed using a 1 µF capacitor parallel 

to CH2. In this case, a simple temporal kernel machine composed of only one 

1M1R1C kernel could be used. Figure 2-22c shows a part of the ECG of a 

patient with arrhythmia. The electrical signal is generated at approximately 0.8-

s intervals, and then arrhythmia occurs at 1.6 s (marked by a red arrow). When 

an electrical signal from a heartbeat is applied to the kernel machine, the 

capacitor maintains a high charging level at a normal beat. When an arrhythmia 

occurs, the capacitor is discharged at a longer interval than in the normal case, 

and SET switching occurs in the memristor by the next pulse (Figure 2-23). 

Since this kernel responds only to arrhythmia, the memristor conductance can 
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reflect the pulse of the arrhythmia patient in real-time. Figure 2-22d shows the 

results of 5-minute TK monitoring based on ECG data of normal (case 1) and 

arrhythmic (cases 2 and 3) patients. In cases 2 and 3, 49 and 81 arrhythmias 

occurred, respectively. As a result, the conductance of the TK monitoring in 

case 3 was the highest, and the memristor conductance was clearly 

distinguished according to the degree of arrhythmia. This single TK system was 

able to detect different arrhythmia conditions in real-time with low energy using 

a simple 1M1R1C circuit. 
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Figure 2-22: The automatic medical diagnosis system using the 1M1R1C 

temporal kernel and the experiment results in the two sections. a, 

A system for diagnosing the malignancy of breast lesions, which 

is much simpler than in the existing method (inset in a). In this 

system, ultrasonic signals are applied directly to the kernel 

machine, so the imaging step is omitted. b, V-t graph for one echo 

line of a benign sample (inset in Figure 2-22b). c, A part of the 

electrocardiogram of a patient with arrhythmia. Long intervals 

caused by abnormal beats discharged the capacitor, and the 

conductance of the memristor increased in the next pulse. d, Five-

minute temporal kernel monitoring based on the ECG of one 

normal patient (case 1) and two arrhythmic patients (cases 2 and 
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3). When arrhythmia occurred, the conductance of the memristor 

increased. Case 3, which had the most severe arrhythmia 

symptoms, showed the highest conductance.  
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Figure 2-23: The increase in the conductance of the memristor varied 

according to the degree of arrhythmia. When arrhythmia was 

severe, SET switching occurred in the memristor due to long 

discharging. a-c, The ECG-based V-t graphs for three cases of 

normal, arrhythmia, and severe arrhythmia. The electrical signal 

of the ECG from the heartbeat was converted into a 2.5 V, 200 ms 

pulse and applied to the memristor. d, The read current of the 

memristor according to the degree of arrhythmia. The more severe 

the arrhythmia was, the more the memristor conductance 

increased. 
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2.4. Conclusion 

 

In this study, an TK system with high kernel separability and dynamics 

controllability was demonstrated using a W/HfO2/TiN memristor. A dynamic 

kernel was generated by composing a 1M1R1C circuit. From asymmetric 

charging/discharging of the capacitor caused by the memristor, separability, 

which is the basic property of the TK, was achieved. In addition, the manner in 

which the kernel reacted to the input signal was modified by changing various 

parameters such as the load resistor, capacitance, pulse width, and pulse height. 

Using these characteristics, the TK system was optimized to perform static 

data-based MNIST recognition applications and sequential data-based medical 

diagnoses (ultrasound diagnosis and ECG-based diagnosis). For the MNIST 

recognition, a task-optimized system was used to improve the separability of 

the inputs that frequently appeared in the dataset. Furthermore, the tradeoff 

between the reduction of the readout layer size and the performance was 

confirmed by increasing the nBPK. TK system-aided diagnosis was conducted 

for two situations with contrasting input frequencies (1 Hz and 10 MHz). By 

implementing a kernel configuration suitable for each task (kernel adaptation), 

the excellent performance was achieved. In particular, the most crucial point of 

this study is its demonstration that dynamic signals with vastly different time 

constants can be well distinguished by changing the resistor or capacitor added 

to the circuit using only one type of memristor. 



 

 68 

The two types of hardware needed to implement the 1M1R1C TK system 

and analysis on the area/cell are shown in Figure 2-24. In both cases, using a 

metal-insulator-semiconductor capacitor, the capacitance can be adjusted by 

modifying the R and pulse height (Figure 2-25). Therefore, it is expected that 

the fabrication of the hardware for the array configuration will be simple and 

that the TK dynamics can easily be changed even in the fabricated hardware. 
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Figure 2-24: The hardware structure needed to create an array of temporal 

kernels that can adjust the kernel configuration. a, A structure in 

which the resistors are sequentially connected to several metal 

lines. In this structure, the resistance value of the temporal kernel 

can be adjusted by selecting several metal lines connected to the 

resistors. b, A structure in which memristors are connected in 

series to the WHT memristors and parallel to the capacitors (b left 

panel). The 1M1R1C circuit can be implemented in a three-

dimensional structure by stacking TiN, W metals in multi-layers 

and depositing a dielectric layer and top electrode in the hole after 

hole etching (b right panel). In this structure, the resistance of the 

memristor can be set to the desired resistance value using a 

method such as the incremental step pulse program (ISPP). c, Cell 
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area of the diffusive memristor-based reservoir and 1M1R1C 

kernel. The diffusive memristor-based reservoir is implemented 

using a passive array composed of memristors. Therefore, 4F2 is 

required per cell (c left panel). If the 1M1R1C kernel is 

implemented with the structure in a, a minimum area of 8F2 is 

required per cell when using a vertical pillar transistor (T), and the 

area increases by 4F2 each time a serial resistor is added (c middle 

panel). The structure proposed in b requires an area of 4F2/cell (c 

right panel). This structure does not require an increase of 

area/cell even with additional elements (RL, C) other than the 

memristor through a 3D integration process.  
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Figure 2-25: Implementation of various time constants of 1M1R1C kernel 

using MIS capacitor and WHT memristor (HSPICE simulation). 

a, 1M1R1C circuit used in SPICE simulation. b, C-V curve of 

MIS capacitor and I-V curve of WHT memristor used for 
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simulation and their fitting results (red line). In the simulation, an 

MIS capacitor (sample device) showing a capacitance of 100 pF 

~ 2.2 nF was used, and the WHT memristor fitting result of Figure 

2-19 was used. c-g, V-t graphs of the kernel showing fast 

discharging (left panel) and slow discharging (right panel) 

characteristics (pulse width 50 ns ~ 1 ms). h, V-t graphs in the 

kernel condition of 4 ~ 3.5 V pulse height, 2 ~ 1 µs pulse width, 

and 10 kΩ RCH2. h shows the effect of changing pulse height on 

the capacitance of the TK system. 
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3. Graph analysis with multi-functional self-

rectifying memristive crossbar array  

 

3.1. Introduction 

 

A memristive crossbar array (CBA) is exploited as high-density nonvolatile 

memory or storage. [1–6] It also showed great potential in implementing the 

hardware of diverse neuromorphic networks as the synaptic weight-

representing device or temporal/physical kernels. [7–10] For both applications, 

the passive configuration of the CBA renders the sneak current a severe 

problem. Sneak current flows in the plurality of parallel paths where the 

minimum resistance is formed. For the standard memory and several 

neuromorphic applications, the adverse effects from the sneak current flow 

were suppressed by adopting a selector or transistor.[1],[11],[12] 

Nonetheless, the full potential of the memristive CBA has not been exploited 

yet. Especially there could be other applications than the standard memory and 

synaptic devices, which may utilize the parallel configuration of the array with 

the sneak current. The CBA may be used to solve mathematically complicated 

graphical problems. Moreover, considering the two-dimensional (or even three-

dimensional) layout of the CBA, it may find an even higher potential for 

graphical problems.  

A graph is a data structure that models a set of nodes connected by edges. 
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Several critical problems, such as the traveling salesman problem, can be 

intuitively represented in graph form. [13],[14] Therefore, they are gaining greater 

attention in the contemporary computing fields, such as understanding social 

networks, molecular structures, virus transmission networks, and the World 

Wide Web.[15–19] They have also been used in social science and biology.[20–24] 

This work exploits another potential of CBA utilizing the sneak current to solve 

several challenging problems, which the graphs can represent. These attempts 

include path-finding, link prediction, community detection problems, and brain 

network analysis, which have customarily been attempted by the software 

algorithms based on the appropriate similarity function.[25–28] However, these 

similarity function is not always optimal, and the software codes cannot find 

the solutions for several graphical problems without pre-processing, especially 

when the graphs are non-Euclidean.[29],[30]  

Solving such challenging problems using the physical mechanism, 

such as utilizing the sneak current in CBA, could be a feasible option, as 

shown in this work. For this purpose, however, the sneak current must not 

be allowed to flow arbitrarily but in a controlled manner. 
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3.2. Experimental 

 

The array of crossbar Pt/Al2O3/HfO2/TiN memristors was fabricated through 

the following procedure. First, a 50 nm-thick TiN layer was sputtered (Endura, 

Applied Materials) on a SiO2/Si substrate, and the TiN layer was patterned into 

a line shape to form a bottom electrode. The 2- to 10-µm-wide TiN BEs were 

patterned using conventional photolithography and the dry-etching system. 

Then, 4-nm-thick HfO2 and 4-nm-thick Al2O3 were sequentially deposited 

using atomic layer deposition (ALD) at a 280 °C substrate temperature using a 

traveling-wave-type ALD reactor (CN-1 Co. Plus 200). A 

Tetrakis(dimethylamino)hafnium, trimethylaluminum, and O3 were used as 

precursors for Hf, Al, and oxygen, respectively. Finally, 30-nm-thick Pt top 

electrodes were deposited using an electron beam evaporator (Sorona, SRN-

200i) and patterned into 2- to 10-µm-wide lines using the conventional lift-off 

process. After the fabrication, the PAHT device was analyzed using x-ray 

photoelectron spectroscopy (XPS, AXIS SUPRA, Kratos) and energy-

dispersive x-ray spectroscopy (EDS, JEOL, JEM-ARM200F) to observe the 

interfacial layer formation. Cross-sectional images of the PAHT memristor 

were examined using scanning transmission electron microscopy (STEM, 

JEOL, JEM-ARM200F).  

The DC I-V characteristics of a single device were measured using the 

semiconductor parameter analyzer (SPA, HP4145B). During the single 
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device measurement, the top electrode (TE) was biased, and the bottom 

electrode (BE) was grounded. The AC pulse measurement was performed 

using SPA, pulse generator (PG, Agilent 81110A), and oscilloscope 

(OSC, Tektronix TDS 684C). The measurement of 9 × 9 mCBA was 

conducted in the setup of the 9 × 1 custom multiprobe (MS-TECH), 

switch matrix (Keithley 708A), and SPA (HP 4155B). During the mCBA 

measurement, TE and BE were used as a word line and a bit line, 

respectively, and were contacted by two 9 × 1 multiprobe. All electrical 

measurements were carried out with an interface based on LabViEWTM. 

  



 

 82 

3.3. Results and Discussions 

 

3.3.1. SELF-RECTIFYING MEMRISTOR AND METAL CELL AT DIAGONAL CBA 

 

 

Figure 3-1. Graph to mCBA mapping. The resistance state of the (n, m) 

device corresponds to the weight of the (n, m) edge. The (n, n) 

metal cell represents the zero weight, which is the connection of 

the node itself. 



 

 83 

 

Figure 3-1 shows how a non-Euclidean graph is mapped onto the 

hypothetical CBA. The connected edge weights are mapped to the low 

resistance of the memristors, while the unconnected edges are represented by 

the high resistance of the corresponding memory cells. The cells at the diagonal 

positions, (n, n), denote the connections between the node itself, represented by 

the shorted circuit at those locations. For example, the graphic representation 

of node 1 is implemented in the hardware CBA by allocating the metal vias at 

(1, 1) locations. Such a specific CBA is named "metal cell at diagonal CBA 

(mCBA)," which provides a crucial effect in implementing the desired sneak 

current-based graph algorithm using the self-rectifying memristors. 
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Figure 3-2. Two operation methods of mCBA. a, Multi-ground method 

(MGM). b, Single-ground method (SGM).  

 

Figure 3-2 shows the mCBA-based methods to extract information in the 

non-Euclidean graph. The multi-ground method (MGM, Figure 3-2a) and the 

single-ground method (SGM, Figure 3-2b) are used as an adjacency search 

function that searches for nearby nodes, and a similarity function that represents 

the relationship between the two nodes, respectively. For example, in the MGM 

of word line 1 (WL1), current in bit line 2 (BL2) means that the adjacent node 

of node 1 of the inset graph is node 2. The current flow in the SGM between 

WL1 and BL4 indicates that node 1 arrives at node 4 through node 2. Figure 3-

3 shows the general method of how the mCBA solves graphical problems. 1) 

Graph to mCBA mapping. 2) Analysis of similarity between graph nodes. (for 

all or part of total pairs) 3) Deriving desired results, such as the distance, 

probability of link formation, community formation order, and connectome 

classification, based on the identified similarity. As an example, a weighted, 
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undirected, non-Euclidean graph consisting of 9 nodes and 16 edges can be 

mapped to 9x9 mCBA of Figure 3-3. In the mCBA, 9 red rectangles on the 

diagonal represent the metal (9 nodes), and blue rectangles represent various 

RRAM device states (The lighter the color, the lower the resistance, the lower 

the weight), and dark rectangles represent the RRAM device in HRS. (non-

edges) The mapped weights are implemented to the multi-resistance states of 

the self-rectifying memristor. In mCBA, to which the graph is mapped, the 

similarity between nodes can be extracted without the graph embedding process. 

Various applications such as path-finding, link prediction, community detection, 

and connectome analysis can effectively be performed based on the extracted 

information. 

Figure 3-4a, c shows the HSPICE simulation results of MGM and SGM at 

the graph in Figure 3-3. Figure 3-4a shows MGM, in which the WL1 

corresponding to the source, or selected node in the graph, is biased, while all 

other BLs are grounded. MGM finds out the adjacency nodes, directly 

connected to the source. (Figure 3-4b) In this case, no sneak current is allowed. 

Figure 3-4c shows the SGM, where the selected WL1 is biased, with only the 

target BL9 being grounded (all other BLs are floated). By this connection, SGM 

can delineate the hidden information related to the connection between the 

source and the target by the sneak current through the metal. In addition, the 

main current path of SGM corresponds to the shortest path of the graph. (red 

dash and dot lines in Figure 3-4d) 
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Figure 3-3. The process of analyzing non-Euclidean graphs with mCBA 

and the implementable applications. 
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Figure 3-4. Simulation results for two operation methods of mCBA. a, 

HSPICE array simulation results for MGM at N1. b, The 

adjacency search result of MGM at N1. c, HSPICE array 

simulation results for SGM of N1 to N9. The major and sub-

current paths are marked in red and orange, respectively. d, 

Multiple paths between N1 and N9 which are not directly 

connected. The shortest and sub-current paths are displayed in red 

and orange, which correspond to the current flow of c. 
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Figure 3-5. The main current ratio in the SGM at the various mCBA 

configurations. a-c, mCBA mapping (upper panel) and I-V fitting 
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curves (red lines) for the unit cell memristor (lower panel). The 

main current ratios for the 9 × 9 and 100 × 100 mapping were 0.60 

and 0.45, respectively, when metal cells were placed on the 

diagonal cells, while self-rectifying cells were placed on the rest 

cells. d, The result of calculating the ratio of Imain path and Ioutput in 

9 × 9, 100 × 100 mCBA under conditions of a, b, and c. 

 

Figure 3-5 shows the simulated SGM results when the WL1 is biased with 1 

V, and BL9 and BL100 are grounded in various 9 × 9 and 100 × 100 CBA 

configurations, respectively. In the simulation, the finite wire line resistance of 

50 Ω was considered due to the possible process issues. (The calculated line 

resistance was ~ 2 Ω calculated based on the resistivity of Pt [23] and TiN [23] and 

the dimension of the line in the fabricated mCBA) However, The line resistance 

did not significantly affect the read and write operations due to the 

Pt/Al2O3/HfO2/TiN (PAHT) memristor's high resistance level (RLRS = 26 GΩ at 

VRead = 1 V). In Figure 3-5a, due to the presence of parallel sneak paths, the 

current flows along diverse routes, and the ratio of current following the main 

path to all current paths is 0.60. This presence of the main current path was 

possible due to the metal cells at (n,n) positions, although the adopted PAHT 

memristor has a self-rectifying property. The sneak current can also flow when 

the sneak path involves the (n,n) positions; otherwise, the suppressed reverse 

current of the self-rectifying PAHT will not allow the sneak current to flow.  
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An interesting finding was that no meaningful current flow was achieved 

using the symmetrical memristor, i.e., non-rectifying I-V characteristics, which 

is supposed to have a higher sneak current (Figure 3-5b). This abnormal 

behavior could be owing to an overlap of the anti-directional sneak current 

flows at specific cells. Therefore, it was concluded that the mCBA 

configuration with the self-rectifying memristor was the most useful hardware 

to implement the suggested graph algorithms.  

Besides, when the (n,n) cells were programmed to even the lowest resistance 

of the PAHT memristor, with the identical weight distribution at other cells, the 

ratio became negligible (0.004, Figure 3-5c). This result is due to the suppressed 

current flow under the reverse bias condition of the PAHT memristor, even with 

the lowest resistance. (Figure 3-5d). 
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Figure 3-6. mCBA-array fabrication and the electrical analysis of the 

PAHT memristor. a, Scanning electron microscope (left) 

images of 9 x 9 mCBA and a cross-section transmission electron 

microscope image (right) of the PAHT memristor. b, I-V 

characteristic of the PAHT memristor at various set sweep 

voltages (2.7 V to 3.5 V). The inset of b is the PAHT memristor 

stack schematic. c, The surface plot of the three levels of 

conductance data of 9x9 mCBA. 
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The adopted PAHT self-rectifying memristor is composed of the top 

electrode Pt/4nm-Al2O3/4nm-HfO2/bottom electrode TiN structure, where the 

Al2O3 and HfO2 layers were grown by the atomic layer deposition, while the Pt 

and TiN layers were grown by the electron-beam evaporation and reactive 

sputtering, respectively. Figure 3-6a shows the scanning electron microscope 

(SEM, left panel) and the cross-section transmission electron microscope (TEM, 

right panel) images of 9 x 9 mCBA.  

Figure 3-6b shows the current-voltage (I-V) curve of the PAHT memristor at 

various maximum sweep voltages (2.7, 3.1, and 3.5 V) during the set switching. 

The PAHT memristor has stable counterclockwise bipolar resistive switching 

behavior and exhibits multi-states, self-rectifying, forming-free, and gradual 

switching characteristics. At 1.5 V of reading voltage, the conductance of the 

PAHT memristor was continuously increased from 0.01 nS to 0.62 nS with the 

2.7 ~ 3.5 V of set voltage. Figure 3-6c shows the distribution of the HRS and 

three LRS conductance values of 9 x 9 mCBA cells.  
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Figure 3-7. Chemical and physical analysis of the PAHT memristor. a-c, Hf 

4f, O 1s, and Al 3d X-ray photoelectron spectroscopy (XPS) 

analysis at the Al2O3/HfO2 interface in the PAHT device. d, 

Energy-dispersive X-ray spectroscopy (EDS) mapping result of 

the PAHT memristor in cross-section TEM. 
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The physical and chemical structures of the PAHT devices are reported in 

Figure 3-7. The X-ray photoelectron spectroscopy (XPS) analysis of the 

Al2O3/HfO2 interface in the PAHT device revealed the presence of Hafnium 

sub-oxide (HfOx) and Hf elements. HfOx is expected to be formed by the 

thermal ALD process of Al2O3 on the HfO2 layer, while the metallic Hf could 

be induced by the in-situ etching of the top electrode during the XPS analysis. 

The ALD process of Al2O3 made the HfO2 layer have a high trap density, which 

enabled the device to have a high On/Off ratio and long retention (Figure 3-8) 

[6]. In addition, Al2O3 in the device acts as a voltage divider to suppress the 

abrupt resistive switching of HfO2. It also forms a high Schottky barrier at the 

interface with upper Pt, which makes the device have good rectifying properties. 
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Figure 3-8. Retention of the PAHT memristor. a, Retention of the PAHT 

memristor measured at various temperatures (40 ~ 100 °C). b, 

Arrhenius plots of ln (τ) versus 1/kT of the LRS retention. A 

retention time of ~ 1 year (relaxation time from LRS level to 

HRS level) was obtained at room temperature by extrapolating 

retention data at 40 ~ 100 °C. 
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Figure 3-9. The process flow of the mCBA fabrication. 

 

Figure 3-9 shows the fabrication process of the PAHT mCBA. To shorten the 

main diagonal cells with the top electrode material, the switching layer at those 

locations was etched during the BL contact open step of the conventional CBA 

process. 
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Figure 3-10. Multi-level and dc cycle results of the PAHT memristor. a, I-

V curve when the DC sweep (SET) voltage is set to 2.4, 2.5, 2.6, 

2.7, 2.8, 2.9, 3.0, 3.1, and 3.5 V (9 states). b, Result of the 300 

DC cycle of the PAHT memristor (set sweep: 3.5 V, reset sweep: 

-2.5 V).  

I-V curves of the PAHT memristor for more than three states are included in 

Figure 3-10a. Figure 3-10b shows the results of the 300 consecutive I-V curves 

of the PAHT memristor, showing the low cycle-to-cycle variation.  
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Figure 3-11. Measurement setup for the 9x9 mCBA. Flow chart of the 9x9 

mCBA measurement. The 9x9 mCBA was measured in the setup 

of the 9x1 custom multiprobe, switch matrix, and semiconductor 

parameter analyzer. 

The detailed measurement setup and the measurement flow are described in 

Figure 3-11. 
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Figure 3-12. Reconfigurability of the mCBA. a, 9x9 mCBA (upper panel) to 

which the graph of the lower panel was mapped. b, Affected area 

of the mCBA (upper panel) and affected edges of the graph 

(lower panel) when a hard breakdown occurs in the (3, 7) cell of 
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the array. c, Results of remapping the affected part in mCBA 

(upper panel) and the recovered graph (lower panel). For the 

restoration, the edge data connected to nodes 3 and 7 are moved 

to BL8, BL9, WL8, and WL9, and the cells of BL3, BL7, WL3, and 

WL7 are changed to HRS. d, The current path and value of the 

SGM in the original graph, breakdown case, and the restored 

graph. 

 

On the other hand, an issue in which a cell expressing an edge becomes 

inoperable may occur during mCBA operation. If hard breakdown occurs in the 

mCBA cell, it will cause problems in SGM-based graph data analysis. In this 

case, the original graph data can be restored by remapping the affected edge 

data based on the reconfigurability of the mCBA (Figure 3-12). 

 

3.3.2. PATH-FINDING PROBLEM 

 

Figure 3-13. An example weighted network. The red arrow indicates various 

paths from node 1 to node 9. 
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Figure 3-14. mCBA-based pathfinding algorithm. a, Process of finding the 

shortest path from N1 to N9 with the mCBA-based pathfinding 

algorithm. Pathfinding consists of two steps: 1. Search neighbor 

nodes (NNs) and the actual distance to the neighbor node with 
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the MGM, and calculate the distance from the neighbor node to 

the target node (TN) as the reciprocal of the SGM. 2. Go to the 

adjacent node with the lower sum of the cumulative sum of the 

actual distance (source node to present node) and the estimated 

distance (NN to TN). 

 

This part describes how the MGM and SGM in mCBA can solve the path-

finding problem. For this purpose, a non-Euclidean graph of Figure 3-13 is 

mapped onto the mCBA, and 1.0 V of reading voltage was used in the MGM 

and SGM. This method aims to find the minimum value of the F score that can 

be calculated as follows: 

 
, where F, t, i, j, MGMi, f(x), SGMi,j, a, and k are the F score, the number of 

attempts, source node, target node, MGM current for node i, step function 

according to MGM output current, SGM current from node i to j, scaling 

constant, and heuristic scale factor, respectively. In addition, Idegree1, Idegree2, 

Idegree3, a, and k were set to 10 pA, 5 pA, 1 pA, 5x10-13, and 1.5, respectively. A 

more detailed explanation of Eq (1) is included in the discussion related to 

Figure 3-14, 15.  

The first step is to find the nodes connected to the starting node 1, which can 
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be accomplished by finding the MGM current from node 1 (or WL1, Figure 3-

15a). As a result, it was identified that nodes 2, 4, and 5 are connected to node 

1, as the BL2, BL4, and BL5 currents were detected. The next step is identifying 

which one should be chosen among the three connected nodes (Figure 3-15b-

d). MGM and SGM at the three nodes allow for determining the shortest path. 
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Figure 3-15. MGM and SGM current path at N1. At the source node (N1), 

the neighboring nodes, N2, N4, and N5, are searched for by the 

MGM. (left upper panel) From the SGM of the neighbor node of 

N1 to the target node, it can be seen that N5 is closest to the target 

node. 
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Figure 3-16. MGM and SGM current value at N1. a, MGM result at node 5. 

Based on the current level, the weights of adjacent nodes of node 

5 can be identified, which coincides with the inset figure. b, 

SGM results from the neighbor node of node 5 to the target node. 
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For example, Figure 3-16a shows the results of MGM operation at node 5, 

which is a part of the path-finding process from node 1 to node 9. The BLs with 

currents above Idegree3 are 1, 2, 3, 4, 6, and 8, which correspond to the node 

numbers directly connected to node 5 of the inset figure. The grey box in Figure 

3-16a indicates the current level of each weight in discrete quantities. MGM 

current level can determine the distance to the neighboring node. Figure 3-16b 

shows the SGM results from the neighboring nodes of node 5 to the target node. 

The node pair (6, 9) shows a higher BL current than other node pairs because 

the distance from node 6 to node 9 is the shortest (highest conductance at (6,9) 

node of the mCBA), as shown in the inset figure. Besides, since node 6 also 

had the highest MGM current in Figure 3-16a, it is determined that node 6 is 

the next node to go to from node 5. Although node 3 had the same highest 

current as node 6, the SGM current of the (3,9) pair was lower in Figure 3-16b, 

suggesting that the path involving node 3 is not the shortest. When a similar 

analysis was performed for nodes 2 and 4, all the output BL current was lower 

than the optimal one (1 à 5 à 6 à 9). Therefore, MGM and SGM can be used 

as a method to obtain information on adjacent nodes and as a method for 

estimating an approximate distance, respectively. The minimum value of the F 

score is obtained by updating the node where the cumulative f(MGM) is the 

minimum, and the SGM is the maximum in each trial t.  

In MGM, the sneak current is suppressed, allowing accurate information to 

be achieved. However, only approximate information is obtained in SGM 
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because the sneak current is used. 

The heuristic scale factor, k, in Equation (1) gives flexibility to the path-

finding algorithm by adjusting the weight of the SGM. As shown in Figure 3-

17, as k increases, the average number of attempts decreases, but the number of 

incorrect attempts increases. Conversely, as k decreases, the average number of 

trials increases, but an optimal solution with zero incorrect is guaranteed. By 

appropriately adjusting k, it is possible to implement a path-finding algorithm 

according to the desired accuracy or efficiency. Generally, the SGM score 

includes a higher error, especially when the attempt is made at a location far 

from the target node. Therefore, the score value becomes more accurate as the 

attempt number increases. 
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Figure 3-17. The path-finding result for all 72 paths of the graph in Figure 

3-13. The average number of attempts (red) and incorrect results 

(blue) according to the heuristic scale factor 𝑘 were plotted. 

 

The SGM-based estimated distance was compared with the Landmark 

embedding distance, widely used for vectorizing non-Euclidean graphs (Figure 

3-18) [24]. From the Figure 3-13 graph, 2~5 landmarks were randomly 

designated and embedded in multidimensional space to obtain Euclidean 

distance and Manhattan distance. 
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Figure 3-18. Distance calculation method in non-Euclidean graph based on 

mCBA and software algorithm. 
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Figure 3-19. Comparison of the mCBA and Landmark algorithm for the 

pathfinding results. a, Comparison of SGM currents of mCBA 

and software algorithm-based distance estimation. Euclidean 

distance and Manhattan distance were obtained using a landmark 

algorithm (2 nodes were set as landmarks), and the bit line 

current obtained using SGM was plotted according to the actual 

distance. b, Average attempts of landmark algorithm and mCBA-

based algorithm. 
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Figure 3-19a compares the Euclidean distance obtained using two landmarks, 

the Manhattan distance and the BL current obtained using the SGM, and the 

actual distance. In the case of landmarks, the deviation according to the 

randomly extracted landmarks is enormous, so the landmark distance does not 

effectively represent the actual distance. In contrast, each SGM current level 

expresses the actual distance well (the smaller the current, the longer the 

distance), showing the excellence of the SGM embedding method. This high 

performance is because the non-Euclidean graph is directly mapped to mCBA, 

so there is no loss due to the data pre-processing. Next, the average number of 

trials according to the number of landmarks was compared with the average 

number of trials of the proposed MGM + SGM embedding method (Figure 3-

19b). The proposed method of this study was superior to the result of using four 

landmarks. Each time a landmark increases, the cost to be performed in pre-

processing increases. When embedding a graph consisting of N nodes by setting 

L landmarks, the time complexity of embedding the graph is O(L×N2) [25]. On 

the other hand, the time complexity of similarity calculation in the mCBA is 

O(1) since only one SGM is required for the graph data stored in the mCBA. 

Therefore, the MGM+SGM method shows excellent embedding performance 

without pre-processing for the path-finding tasks, even in non-Euclidean space. 
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3.3.3. LINK PREDICTION 

 

The combined operation of the MGM and SGM can also be used to predict 

the evolution of graphic networks, such as friend recommendations in social 

network service (SNS) [26], [27] and product recommendations in e-commerce [28], 

[29]. These are generally regarded as link prediction problems. The mCBA can 

efficiently implement the link prediction using the MGM- and SGM-based 

similarity indices. For link prediction, the similarity indices can be used as a 

similarity score 𝑆(𝑖, 𝑗), defined as Eq. (2) 

𝑆(𝑖, 𝑗) = 𝑀𝐺𝑀, ∙ 𝑀𝐺𝑀' ∙ 𝑆𝐺𝑀,,'  (2) 

, where 𝑀𝐺𝑀,  and 𝑀𝐺𝑀'  indicate the number of edges (degree, d) 

connected to node 𝑖 and 𝑗, respectively, which can be calculated by the MGM 

current. 𝑆𝐺𝑀,,' indicates the SGM current between the node 𝑖 and 𝑗. 
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Figure 3-20. Schematic diagrams of link prediction algorithm and 

community detection algorithm using similarity index based 

on SGM and MGM. 

 

For the social network graph of Figure 3-20, the MGM+SGM-based link 

prediction system predicts which non-edge among (3,6) and (1,8) will change 

to edge at time t+1 step in Gt+1 graph. Similarity scores are assigned to each 

unconnected pair; the higher the score, the higher the probability that the pair 

will be connected. If there are many low-hop connections between two nodes 

and the degree of each node is high, a high similarity index is assigned in this 

MGM+SGM-based link prediction algorithm. For example, in prediction case 
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1, there are two 2-hop connections between nodes 3 and 6, and the degree of 

nodes 3 and 6 is high, so prediction case 1 will be assigned a higher similarity 

than prediction case 2, which has 4-hop connections and a low degree. To make 

this prediction, 𝑀𝐺𝑀,, 𝑀𝐺𝑀' and 𝑆𝐺𝑀,,' values (1.0 V of reading voltage) 

for each source-target combination are calculated (Figure 3-21), which 

eventually generate the S(3,6) = 10.17 and S(1,8) = 1.76 (Figure 3-20). 

Therefore, the link between persons 3 and 6 will be made, but the link between 

persons 1 and 8 will not be at Gt+1 stage. When seeing the sneak current paths 

for SGM in Figure 3-21, the short paths containing 3→4→6 and 3→5→6 (2-

hop) comprise the main current path. In contrast, there are many more paths 

between 1 and 8, but none are 2-hop paths, so the effective current is lower. 

This circumstance represents the connection configuration of Gt precisely, and 

thus, the link prediction must be accurate. 

Graph sampling is used to evaluate the performance of scores for static 

graphs. Figure 3-22 shows the S value distribution of non-edges and sampled 

non-edges. Sampled non-edges had the highest score, indicating that the S value 

predicts links reflecting the graphical structure. The performance of this 

MGM+SGM method is compared with other software-based algorithms for 

various datasets. The receiver operating characteristics (ROC) curve and the 

area under the ROC curve (AUC) were used as the evaluation metrics. 
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Figure 3-21. MGM+SGM similarity score. a and b, MGM and SGM results 

in case 1 (node 3, 6) and case 2 (node 1, 8). Calculation 

procedures of S(3, 6) and S(1, 8). For the non-edge (3, 6), MGM3 

= 3, MGM6 = 3, SGM(3, 6) = 1.13 pA and S(3, 6) = 10.17. For the 

non-edge (1, 8), MGM1 = 2, MGM8 = 2, SGM(1, 8) = 0.44 pA and 

S(1, 8) = 1.76. 
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Figure 3-22. Similarity values assigned to non-edges and sampled non-

edges after 20% sampling in the example graph of Figure 3-

20. Since sampled non-edges are created by cutting the original 

edges, high S values are assigned due to peripheral connections. 
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Figure 3-23. Performance results (area under ROC curve) for Zachary's 

karate club, Books about US politics, and Twitter retweet 

network datasets of SGM+MGM, CN, AA, and Jaccard 

indices. SGM+MGM showed the highest and most consistent 

performance in the four datasets. 
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Figure 3-23 shows that for all the tasks, the MGM+SGM method 

outperforms all other competitors, demonstrating the superiority of the 

suggested approach.  

Unlike existing methods based on counting the number of nodes that satisfy a 

specific condition, mCBA-based link prediction utilizes SGM. Therefore, 

MGM+SGM metrics can score inter-node connectivity precisely and 

continuously. 
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Figure 3-24. SGM distribution and ROC curves of each algorithm for the 

Zachary’s karate club dataset. a, Distribution plot of the 

SGM+MGM index values. b, Receiver operating characteristic 

(ROC) curve of the SGM+MGM index values. 

 

Several rising points in the ROC curve of Figure 3-24 show how this 

characteristic brings high performance in Zachary's karate club dataset. Many 

rising points in the ROC curve mean that similarities between 'non-edge' and 

'edge to non-edge' are well separated, and the ROC curve is located above the 

dashed diagonal. There are many rising points in the ROC curve of 

MGM+SGM because continuous scoring can distinguish subtle connectivity 

differences that node-counting-based algorithms cannot. In Zachary's karate 

club dataset, the number of rising points of MGM+SGM, CN, AA, and Jaccard 

are 15, 6, 8, and 8, respectively. 
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3.3.4. COMMUNITY DETECTION 

 

Another application of mCBA-based hardware is community detection, 

which binds dense groups within a given community based on similarity. 
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Figure 3-25. The flow chart that describes the community detection 

algorithm using SGM-similarity in a small social network 

composed of 9 people. 

 

Figure 3-25 shows a schematic diagram that describes the community 

detection algorithm using SGM-similarity matrix 𝑆, defined as Eq. (3) [30]. 

𝑆 = M
𝑆𝐺𝑀*,* ⋯ 𝑆𝐺𝑀*,'

⋮ ⋱ ⋮
𝑆𝐺𝑀,,* ⋯ 𝑆𝐺𝑀,,'

Q (3) 

 

 
Figure 3-26. Schematic diagrams of community detection algorithm using 

similarity index based on SGM. 
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Figure 3-26 shows the schematic diagram of the mCBA-based community 

detection algorithm. In the SGM-based community detection algorithm, a node 

(or community) pair having a high SGM current (similarity) forms a 

community first. Unlike link prediction, the community detection algorithm 

proceeds by comparing edges, not non-edges. The more the low-hop bypasses 

in addition to the direct connection (edge), the greater the similarity and the 

higher the connectivity. After repeating community formation until the entire 

graph becomes one community, the step with the most increased clustering is 

identified, and the algorithm is terminated.  
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Figure 3-27. SGM-similarity for community detection. a, SGM currents in 

total 45 node pairs. b, SGM currents in 1-hop pairs. 

 

All the estimated SGM-similarity values (1.0 V of reading voltage) between 

the two nodes in the graph of Figure 3-26 are shown in Figure 3-27a. The 

numbers in the figure indicate the estimated current values, representing the 

similarity. The highest current (28.4 pA) value is achieved for 𝑆𝐺𝑀/,0 (Figure 

3-27b), indicating that the connection between nodes 2 and 4 is strongest among 

others. This strong connection is due to a direct (1-hop) connection between 

nodes 2 and 4 and the additional 2-hop connection through nodes 1 and 3. 

Therefore, the first community is formed in pairs (2, 4). In the next step, the 

similarity between the just-formed community and other nodes is calculated by 

averaging the similarity between individual nodes within the community and 

the node [31]. After that, the similarity matrix is updated and repeated until it is 

grouped into a single community. 
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Figure 3-28. A schematic of the dendrogram. The dendrogram can confirm 

the results of community aggregation according to the progress 

of the algorithm. (left panel) Modularity changes according to 

community agglomeration. (right panel). 

 

However, as readily anticipated, the single community containing all 

members shown in Figure 3-25 does not bear sufficient meaning, so the 

communities must be cut off at an appropriate branch in the dendrogram that 

can confirm community agglomeration at each step. This cut-off can be 

accomplished by estimating the modularity (Figure 3-28) [32]. While no definite 

value for the optimum modularity is known, a value above 0.3 is considered an 

appropriate criterion. 

 

 

 



 

 125 

 

Figure 3-29. The modularity change in each iteration and a schematic of 

the dendrogram. This result can confirm the results of 

community aggregation according to the algorithm's progress. 

(inset) Modularity changes according to community 

agglomeration. After obtaining the modularity according to the 

branch formation of the dendrogram, the branch is cut-off at the 

point corresponding to the highest value (≈ 0.37, at iteration 7). 

In the inset dendrogram, each bar from right to left corresponds 

to nodes 1 to 9. 

 

The optimum community cut-off can be found when the modularity reaches 

the maximum, 0.372 (Figure 3-29). It can be understood that this modularity 

coincides with the case where the three communities (1, 2, 3, 4), (5, 6), and (7, 

8, 9) are formed. 
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Figure 3-30. The whole process of the SGM-based community detection 

algorithm. a-f, Similarity matrices and community formation at 

each iteration step. After initially creating the SGM-similarity 

matrix, the aggregation is shown in the schematic diagram in the 

pair with the highest value in the matrix. After the aggregation 

process, the SGM-similarity matrix is updated by calculating a 

new similarity between nodes and communities, and between 

communities according to the UPGMA linkage criteria. Finally, 

the algorithm is repeated until a single community remains (h). 

 

Figure 3-30 shows the community formation process and the resulting 

similarity matrix. The state with the maximum modularity corresponds to 

Figure 3-30h. 
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Figure 3-31. Algorithm performance evaluation results using various 

graph data. a, The dendrogram plot according to the sequential 

community agglomeration in Zachary's karate club, Twitter 

retweet network, and Books about US politics dataset, and the 

modularity calculated at each branch of the dendrogram. b, 

Schematics of community detection results at points with 

maximum modularity. 

Figure 3-31 shows the results of SGM matrix-based community formation in 

several datasets. Each graph data is displayed in a different color for each 

community and shows that the cluster is well detected.  
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Figure 3-32. The maximum modularity of the SGM-based method was 

compared with conventional community detection 

algorithms. 

The performance of the SGM-based suggested method was compared with 

conventional community detection algorithms for various datasets (Figure 3-

32). In general, the SGM-based method always belongs to the group with the 

highest modularity, demonstrating the higher performance of the suggested 

method. 
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3.3.5. BRAIN NETWORK-BASED ADHD CLASSIFICATION 

 

To further highlight the strength of mCBA proposed in this study, mCBA-

based brain network (connectome) analysis and attention-deficit/hyperactivity 

disorder (ADHD) diagnosis are performed. A connectome is a brain map that 

comprehensively expresses the connections of neurons in the brain. Each region 

of the human brain interacts structurally and functionally at multiple levels and 

modes [33], [34]. The connectome analysis is essential because it provides 

information about the brain and psychiatric disorders. However, human 

connectomes are highly complex and vast, making it challenging to use 

conventional image analysis techniques. This study generates connectomes 

from functional magnetic resonance imaging (fMRI) scan data from the 

subjects with ADHD and the healthy subjects (neurotypical controls, NC), and 

mapped them to mCBA. For this purpose, using only SGM was sufficient. 
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Figure 3-35. A schematic diagram of ADHD classification and identifying 

ADHD determining brain region based on the brain network 

analysis using mCBA. The intracortical connections of the brain 

region are mapped to square areas symmetrical to the main 

diagonal of the mCBA, and the intercortical connections are 

mapped between each square. SGM extracts features from the 

brain network of each subject, and a 2-layer readout network is 

trained with the SGM vector. Based on the classification result, 

brain regions where the difference in neural activity was 

prominent were mapped to the brain figure. 
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ADHD is diagnosed by effectively extracting the features of each 

connectome using the SGM method and training the readout network based on 

SGM current vector. (Figure 3-35) 

The SGM current in the mCBA can quickly identify the link in the 

connectome and classify the connection's hop number (distance) according to 

the current level. In this study, SGM current data are obtained from the mapped 

mCBA to confirm connectivities of the connectomes in the ADHD and NC 

subjects.  

Among the distributions of ADHD and NC subjects for various pairs, pairs 

with the most separated (high AUC) data from the two groups are selected as 

determining pairs. Determining pairs are classified into 1, 2, and 3-hop 

according to the SGM current level and sorted based on the AUC calculated 

from each distribution. 

 



 

 132 

 
Figure 3-34. SGM current distribution of ADHD and NC subjects in three 

determining pairs with AUC greater than 0.8. 

 

Figure 3-34 shows the SGM current (1.0 V of reading voltage) distribution 

in pairs of L-Occipital-PrimVisual (17) – R-Cerebellum-Cerebellum, R-

Occipital-PrimVisual (17) – R-Cerebellum-Cerebellum, and L-Prefrontal-

PreMot+SuppMot (6) – L-Temporal-Temporalpole (38), which are the 2-hop 

pairs among the determining pairs. The SGM currents from ADHD and NC 

subjects are significantly separated in these three pairs. However, several other 

pairs showed notable differences between the two subjects, which can also be 

used in classifying ADHD and NC subjects (Figure 3-35 for more details about 

the network formation). 
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Figure 3-35. Flow chart of the entire process of ADHD classification using 

mCBA. Connectivity matrices are obtained by calculating 
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correlation coefficients after the parcellation of raw fMRI data. 

The connectivity matrix is mapped to mCBA, and 6612x1 SGM 

current vector is generated in each brain network. Among the 

6,612 components in the given SGM vectors of the training sets 

(180 subjects), the 150 determining pairs that distinguish ADHD 

and NC were selected and used as the input vector to train the 

feedforward network. The hop number can be identified 

according to the current level. 

The pairs containing the crucial information were selected, and their SGM 

current value vectors (150 Components) were used as the input vectors to train 

the fully-connected feedforward readout network. The network could be trained 

well when multi-hop pairs with high AUC were used as inputs. The accuracy 

was low when the 1-hop, 2-hop, and 3-hop pairs of the determining pair were 

individually trained. 

 However, when they were trained together, the accuracy was 77.5% (Figure 

3-36a). Therefore, this result indicates that both the intracortical and 

intercortical connections are different in ADHD and NC subjects. It 

outperforms many existing algorithms regarding accuracy and AUC. (Figure 3-

36b) This is because the information of the multi-hop pair contributed 

significantly to the accurate diagnosis, which can be extracted efficiently in 

mCBA. For example, to check the 3-hop connection, matrix multiplication 

should be performed twice. In the conventional GPU method, it is necessary to 
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perform MAC operations ~2.7x106 times for the matrix size used in this task. 

However, in this mCBA, it is possible to check whether a connection is made 

by applying a voltage once, which significantly simplifies the computation. 

Therefore, training the network becomes feasible even for the connectomes 

with deep links. This connectome processing method can ensure accuracy while 

inducing significant energy savings. In the mCBA, a deep connection can be 

identified with one SGM, in which 0.39 pW of power is consumed with a 

reading voltage of 1 V. In the brain network-based ADHD classification, a 

maximum of 150 connections were used for training the readout network, and 

the required power consumption corresponds to 58.5 pW. Meanwhile, in the 

memristor-CMOS system [35], designed for efficient MAC operation, a power 

of 1.9 mW is consumed for the MAC operations to check the 3-hop deep 

connection. 
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Figure 3-36. Performance of the mCBA-based ADHD classification. a, 

Train and test accuracy per epoch when SGM current vector of 

1-hop, 2-hop, and 3-hop pairs were all used as inputs in ADHD 

classification. b, Accuracy and AUC of SGM-based method and 

existing studies in ADHD classification. 
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3.4. Conclusion 

 

Analog computing based on physical means has been an appealing contender 

to solve several computationally hard problems, such as NP-hard problems. 

Those problems may not have an algorithmically appropriate solution or take 

an excessively long time to reach a reasonable answer. The issues dealt with in 

the above sections correspond to these problems. Memristors have been 

exploited to apply to specific hardware that may physically solve these 

problems. Nonetheless, the stochastic nature of the switching mechanism 

generally hinders the reliable operation of the hardware. The neuromorphic 

inference machine based on the CBA of memristors, which rapidly processes 

the vector-matrix multiplication (VMM), is a typical system that suffers from 

these issues. In contrast, there could be other applications for physical 

computation, which less or do not suffer from the non-uniformity and 

repeatability issues.  

 The mCBA structure in this work performs the physical calculation to 

realize the similarity and adjacency search functions in the graphic data 

structures. The graphic data structure can be non-Euclidean, which may not 

necessarily be transformed into the Euclidean one by even the most complicated 

method in the vector space. In this case, the known algorithmic solution using 

the similarity function may not work. However, the SGM in mCBA can extract 

the similarity, the hidden information, between the nodes in any graph using the 
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non-ideality of the array structure. This process does not require any pre-

processing of the graphic data, even if they are of the non-Euclidean form.  

 Also, the similarity function is only used for the relative comparison, 

not the deterministic calculation, and thus, suffers far less from the random 

variation than the VMM. It is mainly determined by the number of connecting 

nodes, not by the resistance of each cell. Besides, MGM provides a physical 

mean for the adjacency search function, which searches the nearby (or directly 

connected) nodes. Therefore, mCBA can be used for both the similarity and 

adjacency search functions, corresponding to the process and memory functions, 

respectively. In other words, the mCBA is an optimized process-in-memory 

device performing both data process and memory functions. 

The mCBA can efficiently identify deep connections in a huge graph, 

which grows in the real world. Checking multi-hop connections in a large graph 

requires considerable computation using existing hardware. mCBA can easily 

extract hidden information (deep connection) in the graph and reduce the 

analytical complexity of the real-world graph. 

 This work demonstrates that the various graphic structures can 

be mapped onto the mCBA, and the physical calculations using the 

suggested mCBA outperform the previous software-based algorithms. 

The mCBA can be used for any type of graph, e.g., directed or weighted. 

Stacking the two-dimensional mCBA or even vertical integration of the 
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mCBA in three-dimensional space will allow applying it to a 

multidimensional graphic network. 
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4. Conclusion 

 

In this dissertation, complex data processing with memristor-based physical 

computing was established using intrinsic physical properties (R-C delay, I-V 

nonlinearity, sneak current) of the memristive hardware.  

First, a new method of sequential data processing using a nonvolatile 

memristor-based temporal kernel with time constants controllability was 

proposed. A temporal kernel was constructed using memristors (M), resistors 

(R), and capacitors (C) for effective sequential data processing. The unit cell 

has a 1M1R1C structure in which a memristor is connected in series with a 

resistor and a capacitor, and the resistor and capacitor are connected in parallel 

with each other. The 1M1R1C kernel has the advantage of being applicable to 

various situations as it can have various time constants through R and C control. 

1M1R1C-based MNIST recognition showed high accuracy (90%) with high 

energy efficiency and fast processing speed. In addition, the 1M1R1C kernel 

was applied to ultrasound and electrocardiogram-based medical diagnosis with 

very different time constants (frequency range of 1 to 10 MHz). 

Second, a method for processing non-Euclidean graphs using self-rectifying 

memristor arrays was proposed. Non-Euclidean graphs were represented using 

a metal-cell-at-diagonal crossbar-array (mCBA), made up of self-rectifying 

memristors. The mCBA's sneak current, a natural physical property, can be 

used to determine similarity. The sneak current-based similarity function can 
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be used to measure the distance between nodes, connections between 

communities and nodes, and the likelihood of unconnected nodes becoming 

connected in the future. This research demonstrates the practical use of 

memristor-based physical calculations for solving various types of graph-

related problems. 

This dissertation presents a new breakthrough for the next-generation 

physical computing using memristor-based novel hardware for complex data, 

such as time-varying data and graph data. The results in this thesis could shed 

light on this novel data processing field by suggesting a new pathway that is a 

step forward from the conventional approach. 
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Abstract (in Korean) 
 

최근 deep learning의 대두로 다양한 data들이 축적되고 학습에 사

용되었다. Big data는 그 구조가 더욱 다양화되고 복잡해지면서 기존 

하드웨어로 처리하기 힘든 complex data 가 등장했다. Complex 

data의 예시로는 Sequential data, graph data 가 있다. Sequential 

data는 현재 스테이트가 인풋 히스토리를 반영하면서 그 패턴이 일

정하지 않고 예측하기 힘든 특성이 있다. 그래프 타입의 데이터는 

주체와 주체간의 연결성들을 다루기에 vector 형태로 표현되기 어

려워, 기존 하드웨어 구조에서 처리하기 힘들다는 문제가 있다. 이

런 복잡한 data를 처리하기 위해서는 novel data processing 

technique이 요구된다. 

본 연구의 첫번째 파트에서는, 효과적인 시퀀셜 데이터 처리를 위해

서 멤리스터, 리지스터, 캐패시터를 이용해 temporal kernel 을 구

성하였다. 전체적인 컴퓨팅 스킴은 conventional reservoir system 

과 동일하여 input 이 temporal kernel 에서 처리된 데이터가 멤리

스터에 저장된다. 이후 이러한 멤리스터 컨덕턴스 벡터를 인풋으로 

readout network 를 학습시킨다. 유닛셀은 멤리스터가 리지스터, 캐

패시터와 직렬연결되어 있고 리지스터와 캐패시터는 서로 병렬 연

결되어 있는 1M1R1C 구조를 가진다. 1M1R1C kernel은 R, C 조절

을 통해 다양한 time constant 를 가질 수 있어 다양한 상황에 적용

가능하다는 장점이 있다. 본 연구에서는 1M1R1C 기반 MNIST 

recognition에서 높은 에너지 효율과 빠른 처리속도로 높은 정확도 

(90 %)를 보였다. 한편 1M1R1C kernel은 시간 상수가 매우 다른 

ultrasound, electrocardiogram 기반 medical diagnosis에도 적용되

어 1 ~ 10 MHz 의 넓은 주파수 영역에서 성공적으로 task를 수행하

였다. 

본 연구의 두번째 파트에서는, 자가정류 멤리스터 어레이를 이용해 
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비유클리드 그래프를 처리하는 방법이 다뤄진다. 비유클리드 그래프

에서는 유사도를 구할 수 없어 그래프 임베딩 등의 복잡한 전처리 

과정이 요구되며 그 과정에서 정보의 손실도 발생한다. 본 연구에서

는 비유클리드 그래프를 벡터화하지 않고 그 본래 데이터 그대로 

맵핑하고 분석하는 방법을 제안한다. 

 

주요어: 저항변화 메모리, ReRAM, 메모리, 하프늄 옥사이드, HfO2, 

자가정류 멤리스터, 컴플렉스 데이터, 커널, 시간 커널, 시계열 

데이터, 의료 진단, 크로스바 어레이, 누설전류, 그래프 알고리즘, 

프로세스 인 메모리    
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