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Abstract 

 

kinetic Monte Carlo (kMC) 

Simulation of Charged 

Nanoparticles and Thin Film 

Microstructure Based on 

Electrostatic Energy Calculation 
 

Mingyo Byeon 

Department of Materials Science and Engineering 

The Graduate School 

Seoul National University 

 
To study the dynamics of non-classical crystallization system 

comprising charged nanoparticles (CNPs), the electrostatic potential 

energy between CNPs was calculated and kinetic Monte Carlo (kMC) 

simulations were performed based on the calculated electrostatic 

potential energy. For the calculation of the potential energy, both 

numerical and analytical calculation methods were used for 

comparison and as occasion demands. The numerical method is finite 

element method (FEM) and the analytical calculation is performed 

using the capacitance coefficients of conductor systems. 
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Firstly, the evolution of a particle depletion zone around the large 

CNP during the low-temperature chemical vapor deposition (CVD) 

of Si was investigated. The calculation results showed that small and 

large CNPs having like charges attracted each other when they were 

in close proximity, because opposite charges were induced on the 

surfaces of particles adjacent to each other. The kMC simulation 

results showed that this attraction resulted in a relatively small 

particle depletion zone around the large CNP. During the formation of 

the depletion zone, charges accumulated on the large CNP. The 

accumulated charge resulted in repulsion between the small and large 

CNPs, and a gradual expansion of the particle depletion zone. Further 

analysis indicated that the imbalance between the numbers of 

positively and negatively charged CNPs influenced the structural 

evolution of the particle depletion zone. 

Secondly, abnormal coarsening phenomenon of Si particles 

during CVD of Si were numerically studied through the simulation as 

another peculiar microstructure. The kMC simulation results showed 

that the abnormal growth occurred by electrostatic attraction with 

both positively and negatively CNPs under the condition that the 

charge signs of CNPs are balanced. During the growth of the 

deposited CNPs, sufficient CNP density in the gas phase was also 

found to be an important factor for the abnormal growth of deposited 
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CNPs. Further analysis indicated that gas flow velocity influenced the 

growth of deposited CNPs. Fast gas flow velocity caused abnormal 

growth even in the slightly unbalanced charge signs of CNPs. 

Thirdly, the growth behaviors and rates of deposited CNPs were 

investigated through the simulation by varying the electrical property 

of the substrates: grounded conductor, floating conductor and 

insulator. When the CNPs are balanced, the results showed that the 

growth rates were accelerated when the substrate is floating 

conductor or insulator compared to the grounded conductor. When 

the CNPs are imbalanced, the long-term growth rate on the grounded 

substrate was the fastest. On the floating conductor and the insulator 

substrate, the growth was restricted by charge accumulation after a 

certain period of time where growth proceeded. Especially, in the 

particle etching conditions, the deposited CNPs did not grow but were 

etched away by repelling with the CNPs in the gas phase after charge 

accumulation. 

Finally, the electrostatic potential energy was calculated for the 

CNP-charged nanowire systems and how it affected to the 

anisotropic growth of the charged nanowires under the CNP-

existing system was investigated using FEM. The calculation 

results showed that the electrostatic interaction favors the 

anisotropic growth when the CNP in the gas phase and deposited 
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charged nanowire have like-charge: CNPs approaching in the tip 

direction have weaker repulsive interaction than those approaching 

in the side direction. Comparing the energy barrier difference when 

CNP approaches to the charge nanowire in each direction, higher 

charge ratios of charged nanowire to CNP tend to favor anisotropic 

growth. In the case of the length of nanowires, there appears to be 

an appropriate length at which anisotropic growth is most favorable. 

For the anisotropic growth of the charged nanowires by 

electrostatic interaction, the charge sign of the CNPs should be 

imbalanced, which makes interactions between the charged 

nanowires and CNPs with the same sign mainly exist. 

Overall, it was found that the most important factor in 

determining the microstructure in non-classical crystallization, in 

which CNPs in the gas phase are the growth unit of thin film 

deposition, is the CNP charge sign ratio. 

 

 

Keyword : Non-classical crystallization, Charged nanoparticles, 
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Figure 1.1 Sequential in-situ TEM images showing the initial 

nucleation and growth of Pt3Fe nanowires in the molecular 

precursor solution. Displayed time unit is minutes : seconds. 

 

Figure 1.2 Schematic outline of the ‘Theory of charged 

nanoparticles’. 

 

Figure 1.3 (a) Diamond deposited on a silicon substrate and (b) 

soot deposited on an iron substrate with equal conditions. 

 

Figure 1.4 Schematic of experimental set-up for the CVD reactor 

with the DMA-FCE system for measurements of CNPs generated 

during atmospheric CVD. 

 

Figure 1.5 Number concentrations and size distributions of 

negatively (open) and positively (closed)CNPs with N2 flow rates of 

500 and 1000 sccm. 

 

Figure 1.6 Scanning electron microscope (SEM) images of 

microstructures evolution on (a) floating and (b) grounded Si 

substrates when N2 flow rate is 500 sccm. 

 

Figure 1.7 SEM images of (a) plane view (b) cross section of films 

deposited on a floating Si substrate and (c) plane view and (d) 

cross section of films deposited on a grounded Si substrate at a N2 

flow rate of 1000 sccm. 

 

Figure 1.8 Field-emission scanning electron microscope (FESEM) 

images of microstructures evolution during Si CVD at flow rates of 

He-diluted SiH4(10 % SiH4-90 % He), H2 and N2 being 

respectively 5, 50 and 1000 sccm on glass substrate after 24 h 

deposition with 5 min of the AC bias of ±50V at 1 Hz treatment. 

(b) is the enlargement image of (a) and (c), (d) and (e) are the 

enlargement images of respectively of the zones I, II and III of (b). 

 

Figure 1.9 Various ZnO nanostructures synthesized by thermal 

evaporation of solid powders except for (c): (a) nanocombs, (b) 

tetralegs, (c) hexagonal disks/rings (synthesized by solution-based 

chemical synthesis), (d) nanopropellers, (e) deformation-free 



 

 x 

nanohelixes, (f) spiral of a nanobelt, (g) nanosprings, (h) single 

crystal seamless nanoring, (i) a nanoarchitecture composed of a 

nanorod, nanobow and nanoring, (j) double-side nanocombs, (k) 

nanobow structure, and (l) rigid helix. 

 

Figure 2.1 (a) Linear (b) Quadratic Lagrange basis functions for 

one-dimensional elements. 

 

Figure 3.1 A system of two spherical CNPs. 

 

Figure 3.2 𝑊 (solid line), excluding self-energy, as a function of 𝑠 

for the two-particle system, with 𝑅 = 250 nm and 𝑟 = 10 nm: (a) 

𝑄 =  +5𝑒 and 𝑞 =  −𝑒; (b) 𝑄 =  +5𝑒 and 𝑞 =  +𝑒. The results of 𝑊 

are compared with the 𝑊𝑚𝑜𝑛𝑜𝑝𝑜𝑙𝑒 of the charged two point particles: 

𝑊𝑚𝑜𝑛𝑜𝑝𝑜𝑙𝑒 =
1

4𝜋𝜖0

𝑄𝑞

𝑅+𝑟+𝑠
 (dashed line). 

 

Figure 3.3 (a) 𝑊, excluding self-energy, divided by 𝑞2 as a 

function of 𝑠 for the two-particle system (𝑅 = 250 nm, 𝑟 = 10 nm) 

(charge ratio 𝑄/𝑞: 1–100); the values of 𝑠∗ and 𝑊∗/𝑞2 are 

expressed for each 𝑄/𝑞. (b) The values of 𝑠∗ and 𝑊∗/𝑞2 as a 

function of 𝑄/𝑞 for the same system. 

Figure 3.4 𝑠∗ as a function of 𝑄/𝑞, as revealed by electrostatic 

potential energy calculations for a system consisting of two CNPs 

with charges of 𝑞 and 𝑄, radii of 𝑟 = 20 nm and 𝑅 = 100 − 500 nm. 

Figure 3.5 Induced surface charge densities of the two-particle 

system (𝑅 = 250 nm, 𝑄 = +5𝑒; 𝑟 = 10 nm, 𝑞 = +𝑒), with 

representative 𝑠 of (a) 5, (b) 10, and (c) 20 nm. The left and right 

color legends are for the large and small particles, respectively. (d) 

𝑊 as a function of 𝑠 for the system; the figure depicts 𝑊 values of 

(a)–(c). 

Figure 3.6 𝑊 excluding self-energy, as a function of 𝑠 for the 

two-dielectric particle system, with 𝑅 = 250 nm, 𝑟 = 10 nm, 𝑄 =

 +5𝑒 and 𝑞 =  +𝑒. (dielectric constant 𝜖𝑟 : 1.1–1000) The results of 

𝑊 are compared with the 𝑊 of the charge two conducting particles. 

Figure 3.7 x-direction polarization Px of the two-dielectric particle 

system (𝜖𝑟 = 11.7,  𝑅 = 250 nm, 𝑄 = +5𝑒; 𝑟 = 10 nm, 𝑞 = +𝑒), with 

representative 𝑠 of (a) 5, (b) 10, and (c) 20 nm. The color legend 

indicates the magnitude of the polarization. The sign of polarization 

means the direction relative to the x-direction. 
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Figure 3.8 FEM error (%) as a function of surface distance (𝑠) for 

all combinations of 𝑟 = 5, 10 nm and 𝑄 = +10𝑒, +50𝑒. The other 

parameters are 𝑅 = 250 nm and 𝑞 = +𝑒. 

Figure 4.1 Field-emission scanning electron microscopy images of 

Si microstructures after the 24 h chemical vapor deposition of 

charged Si nanoparticles on a glass substrate located in a low-

temperature zone of 500℃. For the first 5 mins, an AC bias of 

±50V at 1 Hz was applied to the glass substrate holder. The flow 

rates of He-diluted SiH4 (10% SiH4 – 90% He), H2 and N2 were 11, 

50, and 300 sccm, respectively. (b) A higher-magnification image 

of (a); the scale bar is 100 nm. 

 

Figure 4.2 (a) kMC simulation results: Snapshots and trajectories of 

three small particles interacting with a large particle of the same 

charge at three simulation times (𝜏0). The centered black circle 

represents the large particle, while the green dots and black lines 

represent the positions of small unit particles and their trajectories 

at each simulation time, respectively. (b) Final discrimination of the 

three small particles after a kMC sweep. The red dot and blue cross 

represent the initial positions of small particles attracted and not 

attracted to the large particle, respectively. The dashed circle 

represents the domain boundary of the kMC simulation. The 

simulation parameters are 𝑅 = 250 nm, 𝑟 = 10 nm, 𝑄 = +5𝑒, 𝑞 = +𝑒, 

and 𝑇 = 773 K, and the dimensions of each box are 1500 nm ×

 1500 nm. 

Figure 4.3 kMC simulation results: Charge-dependent variation in 

the final discrimination results of 104 small particles interacting with 

a large particle of the same charge, for 𝑄 = (a) +𝑒, (b) +50𝑒, and 

(c) +100𝑒. The centered black circle represents the large particle; 

the red dot and blue cross represent the initial positions of small 

particles attracted and not attracted to the large particle, 

respectively; the inner dashed circle denotes the discrimination 

boundary between the small particles attracted and not attracted to 

the large particle; the numbers denote the thickness of the 

discrimination boundary (nm); and the outer dashed circle 

represents the domain boundary of kMC simulation. The simulation 

parameters are 𝑅 = 250 nm, 𝑞 =  +𝑒, 𝑟 = 10 nm, and 𝑇 = 773 K, and 

the dimensions of each box are 1500 nm ×  1500 nm. 

Figure 4.4 kMC simulation results: Snapshots of systems with small 

CNPs and a large CNP at different simulation times (𝜏0). Positively 
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and negatively charged small particles coexist. Three values of 

𝛾+were considered: (a) 0.5, (b) 0.7, and (c) 0.9. Five thousand 

small CNPs were randomly positioned in a square of 1500 nm ×

 1500 nm and outside the large CNP without any overlap. The white 

circles represent the position and size of the CNPs. The initial 

parameters for the simulation are 𝑄0 =  +5𝑒, 𝑞0 =  ±5𝑒, 𝑅 = 250 nm,

𝑟0 = 3 nm, and  𝑇 = 773 K, and the dimensions of each box are 

2000 nm ×  2000 nm. 

Figure 4.5 Charge ratio (𝑄/|𝑞0|) as a function of 𝑡 (𝜏0), obtained 

from the kMC simulation results in Figure 4.4, for 𝛾+ = 0.5–0.9. 

Figure 4.6 Particle size distributions in a higher-magnification 

image of Figure 4.1(a). In (a), the particle zones are divided into 

two parts (Part 1 and Part 2). In (b), the particle size distribution 

results are normalized to represent the probability. 

Figure 5.1 Scanning electron microscopy (SEM) images of Si-

deposited surfaces at three deposition times. 4 × 4 μm2 specimens 

of SiNx (x = 0.56) are placed on an SiO2 surface. The images show 

magnifications of one of the SiNx specimens presented below. (a) 

At 480 s, many fine nanoparticles are selectively deposited on all 

SiNx specimens. (b) At 720 s, very large nanoparticle is evident 

among the fine nanoparticles on a few SiNx specimens. (c) At 960 s, 

most SiNx specimens are covered with single large nanoparticles, 

although some lack nanoparticles. 

Figure 5.2 kMC simulation results: Snapshots of systems with CNPs 

in the gas phase and deposited CNPs at different simulation times 

(𝜏0). Three values of the charge sign ratio 𝛾+ were explored: (a) 

0.5, (b) 0.6, and (c) 0.7. Blue and black spheres represent the 

positions and sizes of CNPs in the gas phase and deposited CNPs, 

respectively. The initial parameters for simulation were 𝑟0 = 20 nm, 

𝑞0 = ±𝑒, 𝜂 = 0.03, 𝑇 = 1223 K, 𝑘etch = 0.05 nm/𝜏0, and 𝑣flow = 5 nm/𝜏0. 

The dimensions of each domain were 1000 × 1000 × 1000 nm3. 

Figure 5.3 (a) The radius 𝑅max and (b) the charge 𝑄max of the 

largest deposited particle as a function of 𝑡 (𝜏0), as indicated by the 

kMC simulation results of Figure 5.2, for 𝛾+ = 0.5 − 0.9. 

Figure 5.4 kMC simulation results: Snapshots of systems with CNPs 

in the gas phase and deposited CNPs at different simulation times 

(𝜏0). Three values of the volume fraction 𝜂 were explored: (a) 
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0.005, (b) 0.02, and (c) 0.03. The blue and black spheres represent 

the positions and sizes of CNPs in the gas phase and deposited 

CNPs, respectively. The initial parameters for simulation were 𝑟0 =

20 nm, 𝑞0 = ±𝑒, 𝛾+ = 0.5, 𝑇 = 1223 K, 𝑘etch = 0.05 nm/𝜏0, and 𝑣flow =

5 nm/𝜏0. The dimensions of each domain were 1000 × 1000 ×

1000 nm3. 

Figure 5.5 The radius 𝑅max of the largest deposited particle as a 

function of 𝑡 (𝜏0), obtained from the kMC simulation results in 

Figure 5.4, for 𝜂 = 0.005 − 0.05. 

Figure 5.6 kMC simulation results: Snapshots of systems with CNPs 

in the gas phase and deposited CNPs at different simulation times 

(𝜏0.). Three gas flow velocities 𝑣flow were explored: (a) 0 (no 

flow), (b) 10, and (c) 15 nm/𝜏0. The blue and black spheres 

represent the positions and sizes of CNPs in the gas phase and 

deposited CNPs, respectively. The initial parameters for simulation 

were 𝑟0 = 20 nm, 𝑞0 = ±𝑒, 𝛾+ = 0.6, 𝜂 = 0.03, 𝑇 = 1223 K, and 𝑘etch =

0.05 nm/𝜏0. The dimensions of each domain were 1000 × 1000 ×

1000 nm3. 

Figure 5.7 The radius 𝑅max of the largest deposited particle as a 

function of 𝑡 (𝜏0), obtained from the kMC simulation results in 

Figure 5.6, for 𝑣flow = 0 − 20 nm/𝜏0. 

Figure 6.1 Time evolution of deposition behavior of Si on the (a) Mo 

and (b) SiO2 substrate with the SiH4 : HCl : H2 gas ratio of 1 : 2 : 97 

under a reactor pressure of 100 Torr at a substrate temperature of 

950 ℃. 

 

Figure 6.2 A schematic of system with a spherical CNP and 

substrate. The substrate is (a) grounded conductor (b) floating 

conductor. The green circle denotes a CNP in the gas phase with a 

radius 𝑟 and a charge 𝑞. The blue rectangular parallelepiped and 

black circle denote the substrate and deposited CNP on the 

substrate, respectively. 

Figure 6.3 𝑊, excluding self-energy of CNP, divided by 𝑞2 as a 

function of 𝑠 for the CNP-grounded conductive substrate system. 

The radius of CNP 𝑟 varies from 5 nm to 20 nm. For comparison, 

the value of 𝑊 for point charge is also plotted. 

Figure 6.4 𝑊, excluding self-energy of CNP as a function of 𝑠 for 
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the CNP-floating conductive substrate system (𝑟 = 5 nm, 𝑞 =  +𝑒,

𝑠0 = 100 nm). The surface charge density of the substrate 𝜎 varies 

from −2 ∗ 10−4𝑒/nm2 to +2 ∗ 10−4𝑒/nm2. For the positive 𝜎, the 

values of transition separation distance 𝑠∗ are expressed for each 

𝜎. 

Figure 6.5 kMC simulation results: Snapshots of systems with CNPs 

in the gas phase and deposited CNPs at different simulation times 

(𝜏0). Three types of the substrates were explored: (a) grounded 

conductor, (b) floating conductor, and (c) insulator. Red and black 

spheres represent the positions and sizes of CNPs in the gas phase 

and deposited CNPs, respectively. The initial parameters for 

simulation were 𝑟0 = 5 nm, 𝑞0 = ±𝑒, 𝛾+ = 0.5, 𝜂 = 0.001, 𝑇 = 773 K, 

𝑘etch = 0 nm/𝜏0, and 𝑣flow = 5 nm/𝜏0. The dimensions of each 

displayed domain were 1000 × 1000 × 200 nm3. 

Figure 6.6 kMC simulation results: Snapshots of systems with CNPs 

in the gas phase and deposited CNPs at different simulation times 

(𝜏0). Three types of the substrates were explored: (a) grounded 

conductor, (b) floating conductor, and (c) insulator. The simulation 

parameters are same with those of Figure 6.5 except for 𝛾+ = 0.7. 

Figure 6.7 kMC simulation results: Snapshots of systems with CNPs 

in the gas phase and deposited CNPs at different simulation times 

(𝜏0). Three types of the substrates were explored: (a) grounded 

conductor, (b) floating conductor, and (c) insulator. The simulation 

parameters are same with those of Figure 6.5 except for 𝛾+ = 0.9. 

Figure 6.8 The film thickness 𝑑 as a function of t (𝜏0), as indicated 

by the kMC simulation results of (a) Figure 6.5 (𝛾+ = 0.5), (b) 

Figure 6.6 (𝛾+ = 0.7), and (c) Figure 6.7 (𝛾+ = 0.9). The solid, 

dashed and dotted line denotes the thickness on the grounded 

conductor, floating conductor, and insulator substrate, respectively. 

(d) The surface charge density 𝜎 of the floating substrate for 𝛾+ =

0.5 − 0.9. 

Figure 6.9 Etching rate of particle as a function of its radius 𝑟 from 

Equation (51) using 𝛾 = 1.23 𝐽/𝑚2, 𝑉𝑚 = 1.206 × 10−5 𝑚3/mol and 𝑇 =

773 K. 

Figure 6.10 kMC simulation results: Snapshots of systems with 

CNPs in the gas phase and deposited CNPs at different simulation 

times (𝜏0). Three types of the substrates were explored: (a) 
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grounded conductor, (b) floating conductor, and (c) insulator. Red 

and black spheres represent the positions and sizes of CNPs in the 

gas phase and deposited CNPs, respectively. The initial parameters 

for simulation were 𝑟0 = 5 nm, 𝑞0 = ±𝑒, 𝛾+ = 0.5, 𝜂 = 0.01, 𝑇 = 773 K, 

𝑘etch
flat = 0.01 nm/𝜏0, and 𝑣flow = 5 nm/𝜏0. The dimensions of each 

displayed domain were 1000 × 1000 × 200 nm3. 

Figure 6.11 kMC simulation results: Snapshots of systems with 

CNPs in the gas phase and deposited CNPs at different simulation 

times (𝜏0). Three types of the substrates were explored: (a) 

grounded conductor, (b) floating conductor, and (c) insulator. The 

simulation parameters are same with those of Figure 6.10 except 

for 𝛾+ = 0.7. 

Figure 6.12 kMC simulation results: Snapshots of systems with 

CNPs in the gas phase and deposited CNPs at different simulation 

times (𝜏0). Three types of the substrates were explored: (a) 

grounded conductor, (b) floating conductor, and (c) insulator. The 

simulation parameters are same with those of Figure 6.10 except 

for 𝛾+ = 0.9. 

Figure 6.13 The film thickness 𝑑 as a function of t (𝜏0), as indicated 

by the kMC simulation results of (a) Figure 6.10 (𝛾+ = 0.5), (b) 

Figure 6.11 (𝛾+ = 0.7), and (c) Figure 6.12 (𝛾+ = 0.9). The solid, 

dashed and dotted line denotes the thickness on the grounded 

conductor, floating conductor, and insulator substrate, respectively. 

(d) The surface charge density 𝜎 of the floating substrate for 𝛾+ =

0.5 − 0.9. 

Figure 7.1 Microstructures evolution on (a) Mo, (b) Si, (c) SiO2 , 

(d) Si3N4 substrates after 3 min deposition under 10 Torr of reactor 

pressure and 950 ℃ of temperature substrate with a gas ratio of 

SiH4 : HCl : H2 = 3 : 1 : 96. 

 

Figure 7.2 A system of a charged nanowire and a CNP. The 

separation distance 𝑠 is varied in (a) the side direction and (b) the 

tip direction of the charged nanowire. 

Figure 7.3 Contour of electrostatic potential energy 𝑊 when the 

center of charged nanowire with 𝑄 = +5𝑒, 𝑁 = 30, 𝑟 = 10 nm is fixed 

at the origin. The color at each position means the 𝑊 value of the 

system when the CNP with 𝑞 =  +𝑒, 𝑟 = 10 nm is located there. 
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Figure 7.4 𝑊, excluding self-energy, as a function of 𝑠 in the side 

and tip directions for the charge nanowire and CNP system, with 

𝑟 = 3 nm, 𝑁 = 10, 𝑄 =  +5𝑒, and (a) 𝑞 = +𝑒; (b) 𝑞 = −𝑒.  

Figure 7.5 𝑊, excluding self-energy, divided by 𝑞2 as a function of 

𝑠 in the side (dashed lines) and tip (solid lines) directions for the 

charged nanowire and CNP system (𝑟 = 3 nm). (a)  𝑁 = 10, 𝑄/𝑞 ∶  1 −

50; (b) 𝑄/𝑞 = 5, 𝑁 ∶  5 − 50. 

Figure 7.6 (∆𝑊side − ∆𝑊tip)/𝑞2 as multivariate function of 𝑄/𝑞 and 𝑁 

for the charged nanowire and CNP system (𝑟 = 3 nm). The blue dots 

represent the calculated values and the surface to which the values 

are fitted is displayed using piecewise cubic interpolation. 

Figure 7.7 Induced surface charge densities of the charged 

nanowire and CNP system (𝑟 = 3 nm, 𝑠 = 5 nm, 𝑞 =  +𝑒, (a)-(b) 𝑄 =

+10𝑒, 𝑁 = 10; (c)-(d) 𝑄 =  +5𝑒, 𝑁 = 10; (e)-(f) 𝑄 =  +10𝑒, 𝑁 = 50. 

The CNP is positioned at (a), (c), (e) side direction; (b), (d), (f) tip 

direction of the charged nanowire. 
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Table 4.1 Experimental diffusion coefficients 𝐷exp and theoretical 

diffusion coefficients: 𝐷th = 𝑘𝐵𝑇/6𝜋𝜇𝑟 in experimental studies or 𝐷th 

set in simulation studies. The diffusion coefficients are expressed in 

units of nm2/s . 

Table 7.1 The charge ratio 𝛾+ of all CNPs and CNPs smaller than 

30 nm by experimentally observed using DMA-FCE system. The 

value of 𝛾+ is displayed in two ways, the number ratio and the 

volume ratio of the CNPs with the materials and observed 

nanostructures.  
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 Chapter 1. Introduction 
 

 

1.1. Non-classical crystallization and theory of 

charged nanoparticles 
 

 

According to the classical crystallization, individual atoms, ions 

and molecules are the building blocks for crystal growth. [1-3] 

However, various studies on the mechanism of crystal growth have 

shown that the building blocks for the growth of several crystals are 

nanoparticles, not individual atoms. This newly discovered 

mechanism is named “non-classical crystallization”. [4-7] When 

this mechanism was first suggested, it was difficult to be accepted 

because there was only indirect evidence for the existence of 

nanoparticles due to their small size to be observed. However, since 

the direct observation through in-situ liquid-cell transmission 

electron microscope (TEM) [8-11], the mechanism has become well 

established. Figure 1.1 shows that small nanoparticles are formed and 

coalesced into nanowires, a representative example of the direct 

observation of non-classical crystallization through in-situ TEM. 

Not only have several related review papers and books been 

published, but also symposiums have been held by many academic 

societies. 
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Non-classical crystallization has been studied extensively by 

numerous researchers in the field of crystal growth like in solution, 

biominerallization, etc. [21-30] showed that most nanoparticle 

building blocks generated in the gas-phase synthesis of thin films 

and microstructures through chemical vapor deposition (CVD) are 

electrically charged, and they played a critical role in non-classical 

crystallization. By emphasizing the importance of the electric charges 

contained in the nanoparticles, the underlying theory was named 

“theory of charged nanoparticles”. [22]  

As shown in the schematic of ‘theory of charged nanoparticles’ 

in Figure 1.2, the charged nanoparticles (CNPs) which are 

spontaneously generated in the gas phase during most CVD 

processes act as building blocks in forming the microstructures or 

nanostructures. Theory of CNPs could well explain paradoxical 

phenomena which could not be explained by classical crystallization 

theory. As a representative example and the beginning of suggestion 

of the theory, there is a phenomenon that occurred during diamond 

CVD. Figure 1.3 shows that considerably porous and graphitic soot 

particles grow on an iron substrate while crystalline diamond films 

grow on the silicon substrate under the equal deposition conditions. 

[22,31] These different deposition results are originated from the 

charge transfer rate of substrates, which means that diamond films 
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in Figure 1.3(a) are deposited on the substrate with a low charge 

transfer rate while soot is deposited on the substrate with a high 

charge transfer rate.  

Hwang et al. explained that the diamond CNPs in the gas phase 

remain their original phase and electric charge when they are 

deposited on the substrate with a low charge transfer rate. [31] 

Therefore, these diamond CNPs undergo self-assembly caused by 

their charge and form crystalline diamond film like in Figure 1.3(a). 

When the diamond CNPs in the gas phase are deposited on the 

substrate with a high charge transfer rate, however, the electric 

charges on the CNPs are rapidly transferred to the substrate and 

nanoparticles that have lost charges change their structure from the 

original diamond to graphite phase. Figure 1.3(b) shows these neutral 

graphites having undergone random Brownian coagulation and 

forming porous soot. 

Hwang et al. [31] compared the deposition behavior between 

grounded and floating iron substrates in order to confirm the 

assumption that the electric charge stabilized diamond. The grounded 

iron substrate was set by being placed on a steel and the floating one 

was placed on a quartz. Herein, after 2h of deposition, graphitic soot 

grew on the grounded iron substrate whereas diamond was deposited 

on the floating iron substrate. 
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Additionally, Hwang et al. [31] and Huh et al. [32] reported that 

the deposition of diamond or graphitic soot strongly depends on the 

charge transfer rate of substrates by showing the deposition behavior 

on a variety of substrates. Graphitic soot was deposited on the 

substrates with a high charge transfer rate like Pd, Pt, Ni, etc. 

whereas diamond was deposited on the substrates with a low charge 

transfer rate like W, Ag, Cu, etc. Thus, these results show that the 

role of electric charge which stabilizes the diamond was confirmed. 

The proofs of CNPs existence were reported not only in diamond, 

but also in CVD processes of various materials. The size distribution 

of CNPs as well as their generation were measured using a 

differential mobility analyzer (DMA) coupled with Faraday cup 

electrometer (FCE). The schematic of experimental set-up of 

DMA-FCE system is shown in Figure 1.4. Existence of ZnO [33], 

Carbon [34], Silicon [35,36], Silicon Nitride [37] and GaN [38] CNPs 

during CVD processes was confirmed using the DMA-FCE system. 

Similar to the diamond experiment mentioned above, Youn et al. [23] 

performed experiments to compare the deposition behavior between 

floating and grounded Si substrates during the atmospheric CVD of 

Si. At the same time during the experiment, the generation of CNPs 

was confirmed using the DMA-FCE system shown in Figure 1.4. The 

generation of CNPs in the gas phase as well as number concentrations 
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and size distributions were experimentally confirmed as shown in 

Figure 1.5. While confirming that both positively and negatively CNPs 

were abundantly generated in the gas phase, different deposition 

behaviors were observed on the floating and grounded substrates. 

Figure 1.6 shows the results where Si nanowires with the diameter 

of 10 ~ 30 nm were deposited on the floating substrates [Figure 

1.6(a)] whereas not nanowires but nanoparticles were deposited on 

the grounded substrates [Figure 1.6(b)] when flow rate of N2 is 500 

sccm. 

The proposed nanowire growth mechanisms include the vapor-

liquid-solid (VLS) [39] and oxide-assisted growth (OAG) [40] 

mechanisms. However, since either catalytic metal or seed of silicon 

oxide is needed for the suggested mechanisms, another mechanism 

is required for the explanation of the nanowire growth. In the 

experimental conditions, the only difference is whether the substrate 

is floating or grounded, which indicates the growth of silicon 

nanowires must be attributed to charge build-up on the floating 

substrate. In other words, electrostatic interaction between CNPs 

and the substrate affected the growth of the Si nanowires. In addition, 

from the results that the nanowires grow as a single crystal with a 

smooth surface not pearl necklace-like or chain-like structure, it 

was shown that the each CNP underwent epitaxial growth and 
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charges in them enhance the atomic diffusion kinetics. Therefore, 

these results also support the assumption that the CNPs acted like a 

“quasi-solid” or “liquid-like” which indicates their atomic 

diffusion is enhanced that it seems like liquid phase suggested in the 

charged cluster model [31]. 

When flow rate of N2 carrier gas increases to 1000 sccm, not Si 

nanowires but Si films were deposited on the floating substrates like 

grounded one as shown in Figure 1.7. Figure 1.7 shows the results 

of deposited Si films on the floating and grounded Si substrates. 

Figures 1.7(a) and (b) show top view and cross section view of Si 

films deposited on the floating Si substrates, respectively. Figures 

1.7(c) and (d) also show top and cross section view of Si films, 

respectively. The difference of the deposition behaviors of Si 

between floating and grounded Si substrates is obviously observed 

as shown in Figure 1.7. A dense film with a thickness of ~220nm was 

deposited on the floating substrate in Figures 1.7(a) and (b) while a 

porous film with a thickness of ~190nm was deposited on the 

grounded substrate in Figures 1.7(c) and (d). The thickness 

difference also appeared to be due to the effect of electrostatic 

interactions between CNPs by different electrical conductivity of the 

substrate. The electrostatic interaction between the charge built up 

film and the CNPs in the gas phase caused more deposition only on 
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the floating substrate. Charge build-up on the floating substrate also 

affected the density of deposited films and it seems that a dense film 

was made by liquid-like property of CNP retaining charge on the 

floating substrate as mentioned earlier.  

As can be seen from the described results, Hwang et al. studied 

extensively the non-classical crystallization in the CVD process and 

has proved the theory of CNPs in various ways publishing ~100 SCI 

papers to date [41-45] including 3 review papers [4,22,27] and 1 

textbook [21]. In the past, non-classical crystallization was mainly 

applied to the crystal growth in the solution. However, he suggested 

that it can be applied to the gas phase synthesis of thin films and 

microstructures by chemical vapor deposition (CVD), physical vapor 

deposition (PVD) and aerosol deposition (AD).  
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Figure 1.1 Sequential in-situ TEM images showing the initial 

nucleation and growth of Pt3Fe nanowires in the molecular 

precursor solution. Displayed time unit is minutes : seconds. 

[8] 
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Figure 1.2 Schematic outline of the ‘Theory of charged 

nanoparticles’. 
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Figure 1.3 (a) Diamond deposited on a silicon substrate 

and (b) soot deposited on an iron substrate with equal 

conditions. [22,31] 
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Figure 1.4 Schematic of experimental set-up for the CVD reactor 

with the DMA-FCE system for measurements of CNPs generated 

during atmospheric CVD. [21] 
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Figure 1.5 Number concentrations and size distributions of 

negatively (open) and positively (closed)CNPs with N2 flow rates of 

500 and 1000 sccm. [23] 
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Figure 1.6 Scanning electron microscope (SEM) images of 

microstructures evolution on (a) floating and (b) grounded Si 

substrates when N2 flow rate is 500 sccm. [23] 
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Figure 1.7 SEM images of (a) plane view (b) cross section of 

films deposited on a floating Si substrate and (c) plane view 

and (d) cross section of films deposited on a grounded Si 

substrate at a N2 flow rate of 1000 sccm. [23] 



 

 １５ 

 

1.2. Peculiar microstructures by electrostatic 

interactions 
 

 

One of the dramatic differences between classical crystal growth 

theory and theory of CNPs is the effects of electrostatic interactions 

or potential energy by electrical charges in CNPs. In addition to the 

results described above in chapter 1.1, a number of peculiar and 

puzzling microstructures have been reported that cannot be explained 

by classical crystal growth theory based on the atomic and molecular 

growth unit, which also does not have electrical charge. 

As an example of such peculiar microstructures, Figure 1.8 

shows evolution of puzzling structures during Si CVD [21]. Figure 

1.8(a) shows three concentric circles with different structures. 

Starting with a white circle in the center, a dark circle surrounds it, 

and another white circle surrounds the entire outermost circle. Figure 

1.8(b) shows the magnification of Figure 1.8(a) and concentric 

circles are divided into zones I, II, and III, respectively. Si nanowires 

grow in both zones I and II [Figures 1.8(c) and (d)] but the number 

density is higher in zone I than zone II. In zone III, nanoparticles 

rather than nanowires were mainly and densely deposited as can be 

seen in Figure 1.8(e). This evolution of microstructure is too difficult 

and complicated to explain precisely. However, considering such 
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peculiar structures are evolved on insulating substrates where 

electric charges would be retained and built up after CNPs are 

deposited, electrostatic interactions between CNPs in the gas phase 

and the deposited films on the substrate should be responsible for 

the puzzling structures. 

In studies of ZnO synthesis using thermal evaporation or 

carbothermal reductions, various peculiar structures with interesting 

morphologies were also observed such as nanowires [46], nanobelts, 

nanorings [47,48], nanocoils [49], nanocombs [50] and etc. [51]. 

Figure 1.9 shows various synthesized ZnO nanostructures [51]. For 

explaining the growth mechanism of such nanostructures, Kong et al. 

[47] and Wang [52] suggested that electrostatic interaction played a 

critical role in the morphological evolution of ZnO and proposed an 

electrostatic charging model whose origin of the charge is the polar 

nature of ZnO. Similarly, Cheng et al. suggested that the electric field 

generation from the decomposition of SiO plays a crucial role in the 

growth of SiO nanowires. However, the origin of the electrostatic 

potential energy is still uncertain and unclear. Instead, considering 

the generation of CNPs were observed during the synthesis of ZnO 

nanostructures [33], and Si nanowires [35], the electrostatic 

interactions is most likely originated from the generation of CNPs. 
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Figure 1.8 Field-emission scanning electron microscope (FESEM) 

images of microstructures evolution during Si CVD at flow rates of 

He-diluted SiH4(10 % SiH4-90 % He), H2 and N2 being 

respectively 5, 50 and 1000 sccm on glass substrate after 24 h 

deposition with 5 min of the AC bias of ±50V at 1 Hz treatment. (b) 

is the enlargement image of (a) and (c), (d) and (e) are the 

enlargement images of respectively of the zones I, II and III of (b). 

[21] 
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Figure 1.9 Various ZnO nanostructures synthesized by thermal 

evaporation of solid powders except for (c): (a) nanocombs, (b) 

tetralegs, (c) hexagonal disks/rings (synthesized by solution-based 

chemical synthesis), (d) nanopropellers, (e) deformation-free 

nanohelixes, (f) spiral of a nanobelt, (g) nanosprings, (h) single 

crystal seamless nanoring, (i) a nanoarchitecture composed of a 

nanorod, nanobow and nanoring, (j) double-side nanocombs, (k) 

nanobow structure, and (l) rigid helix. [51] 
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1.3. Purpose of research 
 

 

According to the theory of CNPs, all the peculiar and puzzling 

microstructures unexplainable through the classical crystal growth 

theory where the growth unit is atoms or molecules appear to be 

affected by electrostatic interactions between CNPs. The effects of 

electrostatic interactions on several deposition behaviors and 

microstructures has been successfully elucidated through qualitative 

analyzes or simple calculations. 

Nevertheless, more systematic and quantitative analyzes or 

calculations are needed to understand the mechanism by which the 

peculiar microstructures are evolved. Furthermore, it is necessary to 

investigate the kinetics of CNPs driven by electrostatic potential 

energy to prove the existence of CNPs.  

Therefore, the main purpose of this research is to investigate the 

underlying physical mechanism of the evolution of peculiar 

microstructures using CNPs model based on the theory of CNPs 

through quantitative calculations of electrostatic potential energy 

between CNPs and kinetic Monte Carlo (kMC) simulations. First, the 

electrostatic potential energies in two spherical CNP systems were 

calculated and their physical meaning and origin were also 

investigated in Chapter 3.  
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Next, as a relatively simple microstructure among many peculiar 

ones, the formation of depletion zone around a large particle during 

low-temperature Si CVD process was first investigated using CNPs 

model in Chapter 4.  

As another puzzling phenomenon, abnormal growth of Si particles 

selectively deposited on SiNx patterned on SiO2 during Si CVD in a 

Si-Cl-H system reported by Kumomi et al. [53-55] was 

investigated using three dimensional CNPs model in Chapter 5. 

Similarly, in Chapters 6 and 7, the difference in deposition 

behavior depending on the electrical conductivity of the substrate and 

the nanowire growth only on the insulator were investigated, 

respectively, and the effect of the electrostatic interactions among 

CNPs on the deposition behaviors, which is the ultimate purpose, was 

studied. 
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Chapter 2. Theoretical background 
 

 

2.1. Electrostatic potential energy and capacitance 
 

 

When a point charge 𝑄𝑖 is brought from infinity to a point 𝐱𝑖  in a 

region of localized electric fields described by the scalar potential 𝑉 

which converges to zero at infinity, the work done on the charge, i.e. 

its electrostatic potential energy 𝑊𝑖 is 

 𝑊𝑖 = 𝑄𝑖𝑉(𝐱𝑖) (1) 

   

The potential 𝑉 can be expressed as produced by total (𝑛 − 1) 

number of charges 𝑄𝑗(𝑗 = 1,2, ⋯ , 𝑛 − 1)  at positions 𝐱𝑗 . Then the 

potential 𝑉 is given by 

 
𝑉(𝐱𝑖) =

1

4𝜋𝜖0
∑

𝑄𝑗

|𝐱𝑖 − 𝐱𝑗|

𝑛−1

𝑗=1

 (2) 

   

so that the electrostatic potential energy 𝑊𝑖 of the charge 𝑄𝑖 is 

 
𝑊𝑖 =  

𝑄𝑖

4𝜋𝜖0
∑

𝑄𝑗

|𝐱𝑖 − 𝐱𝑗|

𝑛−1

𝑗=1

 (3) 

   

Therefore, the ‘total’ electrostatic potential energy 𝑊 of all the 

charges formed by all the electrostatic forces between them is 

expressed as follows: 
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𝑊 =  

1

4𝜋𝜖0
∑ ∑

𝑄𝑖𝑄𝑗

|𝐱𝑖 − 𝐱𝑗|
𝑗<𝑖

𝑛

𝑖=1

 

 

(4) 

   

As another expression, symmetric form can be expressed by half 

of summing over 𝑖 and 𝑗 without any constraints except for 𝑖 = 𝑗 to 

omit the infinite self-energy of point charges as follows: 

 
𝑊 =  

1

8𝜋𝜖0
∑ ∑

𝑄𝑖𝑄𝑗

|𝐱𝑖 − 𝐱𝑗|
𝑗𝑖

 (5) 

   

For a continuum matter with charge distribution, not a point 

charge, the total electrostatic potential energy form changes to: 

 
𝑊 =  

1

8𝜋𝜖0
∬

𝜌(𝐱)𝜌(𝐱′)

|𝐱 − 𝐱′|
𝑑3x𝑑3x′ (6) 

   

where 𝜌(𝐱) is charge density at position 𝐱. Using the relationship 

between scalar potential 𝑉 and charge density which is given by  

 
𝑉(𝐱) =

1

4𝜋𝜖0
∫

𝜌(𝐱′)

|𝐱 − 𝐱′|
𝑑3x′ (7) 

   

, the total electrostatic potential energy can be written by 

 
𝑊 =

1

2
∫ 𝜌(𝐱)𝑉(𝐱) 𝑑3x (8) 
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Additionally, if you want to use the electric field 𝐄 to obtain the 

electrostatic potential energy, the Poisson’s equation describing the 

electric field 𝐄  and scalar potential 𝑉  of a system from charge 

density 𝜌  can be applied to the electrostatic potential energy 

equation. It is expressed by  

 ∇ ∙ 𝐄 =
𝜌

𝜖0
 (9) 

 𝐄 =  − ∇𝑉 (10) 

 

where 𝜖0 is the vacuum permittivity. Applying the Poisson’s equation 

to the electrostatic potential energy, it is written by 

 𝑊 =  −
𝜖0

2
∫ 𝑉 ∇2𝑉 𝑑3x 

=
𝜖0

2
∫|∇𝑉|2 𝑑3x =  

𝜖0

2
∫|𝐄|2 𝑑3x 

(11) 

   

where the integration is over all space. Note that integration by parts 

is used. Therefore, if the electric field in the system can be calculated, 

the electrostatic potential energy can also be calculated through the 

above equation. 

In the systems composed of 𝑛 conductors whose total charges 

and potentials are 𝑄𝑖  and 𝑉𝑖  (𝑖 = 1,2, ⋯ , 𝑛) , respectively, the total 

charge of 𝑖 
𝑡ℎ conductor relationship can be written by 
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𝑄𝑖 = ∑ 𝐶𝑖𝑗𝑉𝑗

𝑛

𝑗=1

 (𝑖 = 1,2, ⋯ , 𝑛) (12) 

   

Herein the coefficients 𝐶𝑖𝑖 , 𝑖 = 𝑗  are called capacities or 

capacitances while 𝐶𝑖𝑗  , 𝑖 ≠ 𝑗  are called coefficients of induction. 

Note that 𝐶𝑖𝑗 = 𝐶𝑗𝑖 . In this study, regardless of the equality of 𝑖 and 𝑗, 

the name of 𝐶𝑖𝑗 will be referred to as capacitance coefficients. The 

total electrostatic potential energy Equation (8) for the system of 

conductors is written by  

 
𝑊 =

1

2
∑ 𝑄𝑖𝑉𝑖

𝑛

𝑖=1

 (13) 

   

When calculating the 𝑊 between CNPs, since the total charges 

of each particles are set as the boundary condition, it is necessary to 

replace the equation potential with total charges and capacitance 

coefficients. Considering two-conductor system and Equations (12) 

and (13), total electrostatic potential energy and total charges are 

written by  

𝑊 =
1

2
(𝑄1𝑉1 + 𝑄2𝑉2) 

𝑄1 = 𝐶11𝑉1 + 𝐶12𝑉2 

𝑄2 = 𝐶12𝑉1 + 𝐶22𝑉2 

(14) 
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From the second and third equations in (14), the potentials of 

conductors are expressed as 

𝑉1 =
𝑄1𝐶22 − 𝑄2𝐶12

𝐶11𝐶22 − 𝐶12
2  

𝑉2 =
𝑄2𝐶11 − 𝑄1𝐶12

𝐶11𝐶22 − 𝐶12
2  

(15) 

  

From the first equation in (14) and equations (15), the total 

electrostatic potential energy is as follows: 

𝑊 =
𝑄1

2𝐶22 − 2𝑄1𝑄2𝐶12 + 𝑄2
2𝐶11

2(𝐶11𝐶22 − 𝐶12
2 )

 (16) 

  

Therefore, we can calculate the total electrostatic potential 

energy for specified total charges 𝑄𝑖 set as boundary condition, if we 

know the capacitance coefficients 𝐶𝑖𝑗. 

Further details are well documented in reference [56,57]. 
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2.2. Finite element method (FEM) 
 

 

Finite element method is a method for numerically solving partial 

differential equations widely used in fields of electromagnetism, 

structural mechanics, fluid flow, and etc. Its basic principle is 

obtaining approximated solution by subdividing the entire domain into 

many smaller and simplified elements called ‘finite elements’. The 

divided elements have node points, and the solution is calculated 

based on the physical values at the node points called boundary 

conditions and specified basis (shape) function. [58] 

In the case the Lagrange basis function is used, each element is 

expressed as a polynomial in which the basis function is combined 

according to the degree. Figure 2.1 shows Lagrange basis functions 

in one-dimensional elements. The x-axis denotes the normalized 

element and all points where the value of the basis functions becomes 

0 are node points: the node points for linear Lagrange functions in 

Figure 2.1(a) are η = 0 and 1 while they are η = 0, 0.5 and 1 for 

quadratic Lagrange functions in Figure 2.1(b). 

Since the basis functions used in this study is quadratic Lagrange 

basis functions, it will be mainly described. Basis functions in Figure 

2.1(b) 𝑁2n (𝑛 = 1,2,3) are given by 
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𝑁21 = 2(𝜂 − 1)(𝜂 − 0.5) 

𝑁22 = 4𝜂(1 − 𝜂) 

𝑁23 = 2𝜂(𝜂 − 0.5) 

(17) 

Note that only the value of nth node points of 𝑁2n is 1, and the 

others are 0. The function of each elements 𝑢(𝜂) is approximated 

from this basis functions in the form of a quadratic polynomials as 

follows: 

𝑢(𝜂) = 𝑢1𝑁21 + 𝑢2𝑁22 + 𝑢3𝑁23 

= ∑ 𝑢𝑛𝑁2𝑛

3

𝑛=1

 

(18) 

These finite elements are assembled into a larger domain of 

target equations and the FEM then obtain the approximated solution 

by minimizing an associated error function via the calculus of 

variations. 
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Figure 2.1 (a) Linear (b) Quadratic Lagrange basis functions for 

one-dimensional elements. 
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2.3. kinetic Monte Carlo(kMC) simulation 
 

 

kinetic Monte Carlo (kMC) simulation is motivated from Monte 

Carlo simulation using random numbers for evolving systems 

dynamically or over time. It is widely used in the field of diffusion 

and growth, radiation, surface adsorption, dislocation mobility, etc. In 

this study it was applied to examine the aggregation dynamics or 

growth dynamics of the CNP system including their diffusion. The 

fundamental idea and method of kMC simulation for the nanoparticle 

diffusion was proposed by Jha et al. [59] for studying the dynamic 

self-assembly of nanoparticles in solutions. 

The method is based on Smoluchowski diffusion equation which 

describes the time evolution of the probability density function of the 

Brownian particle position affected by an external Force 𝐹(𝑟). In 

one-dimension, it is written by 

𝜕𝑡𝑃(𝑟, 𝑡) = 𝜕𝑟𝑗(𝑟, 𝑡) (19) 

 

where 𝑃(𝑟, 𝑡) is the probability density function for a particle to be 

located at time 𝑡  and position 𝑟 . The flux 𝑗(𝑟, 𝑡) is expressed as 

follows: 

𝑗(𝑟, 𝑡) = 𝐷[𝜕𝑟𝑃(𝑟, 𝑡) −
1

𝑘𝐵𝑇
𝐹(𝑟)𝑃(𝑟, 𝑡)] (20) 

where 𝑘𝐵  and 𝑇  are the Boltzmann constant and temperature, 
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respectively. Assuming space and time discretizations as 𝑟𝑚 = 𝑑𝑚 

and 𝑡𝑛 = 𝑛∆𝑡, a difference Equation (19) can be rewritten by 

(𝑃𝑚
𝑛+1 − 𝑃𝑚

𝑛)

∆𝑡
=

1

𝑑
∫ 𝜕𝑟𝑗(𝑟)𝑑𝑟 =

1

𝑑
(𝑗

𝑚+
1
2

− 𝑗
𝑚−

1
2

)
𝑟

𝑚+
1
2

𝑟
𝑚−

1
2

    (21) 

  

where 𝑃𝑚
𝑛  denotes the probability density of the particle being at 

location 𝑟𝑚  at time 𝑡𝑛  in the Forward Euler scheme. Here the 

simultaneous application of consecutive integral form and 

discretization form in Equation (20) shows that the total probability 

stays constant. 

Thus, the discretization of partial difference equation form is 

confirmed. In the next step, to derive the master equation, an 

auxiliary field is defined as 

𝑤(𝑟) = 𝑃(𝑟)𝑒
𝑈(𝑟)
𝑘𝐵𝑇  (22) 

  

where 𝑈(𝑟) is the potential energy of particle at location 𝑟. Then 

with the relationship between force and potential energy where 

𝐹(𝑟) = −𝑑𝑈(𝑟)/𝑑𝑟 the Equation (20) can be rewritten by  

𝑗(𝑟) = 𝐷𝑒
−

𝑈(𝑟)
𝑘𝐵𝑇

𝑑𝑤(𝑟)

𝑑𝑟
  (23) 

By rearranging Equation (23) for 
𝑑𝑤(𝑟)

𝑑𝑟
 and integrating both sides 

from 𝑟𝑚 to 𝑟𝑚+1 which is discretized interval, the following equation 
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is obtained: 

∫
𝑑𝑤(𝑟)

𝑑𝑟

𝑟𝑚+1

𝑟𝑚

𝑑𝑟 = 𝑤𝑚+1 − 𝑤𝑚 = 𝑃𝑚+1𝑒
𝑈𝑚+1
𝑘𝐵𝑇 − 𝑃𝑚𝑒

𝑈𝑚
𝑘𝐵𝑇 

=
1

𝐷
∫ 𝑗(𝑟)𝑒

𝑈(𝑟)
𝑘𝐵𝑇

𝑟𝑚+1

𝑟𝑚

𝑑𝑟 ≈
1

D
𝑗

𝑚+
1
2

𝑑

2
[𝑒

𝑈𝑚+1
𝑘𝐵𝑇 + 𝑒

𝑈𝑚
𝑘𝐵𝑇] 

(24) 

 

Here, the approximate equal sign comes from that 𝑒
𝑈𝑚
𝑘𝐵𝑇 changes 

much drastically than the flux 𝑗(𝑟). From Equation (24), the master 

equation is obtained as follows: 

𝑗
𝑚+

1
2

=
2𝐷

𝑑
[𝑃𝑚+1

𝑒
−

𝑈𝑚
𝑘𝐵𝑇

𝑒
−

𝑈𝑚
𝑘𝐵𝑇 + 𝑒

−
𝑈𝑚+1
𝑘𝐵𝑇

− 𝑃𝑚

𝑒
−

𝑈𝑚+1
𝑘𝐵𝑇

𝑒
−

𝑈𝑚
𝑘𝐵𝑇 + 𝑒

−
𝑈𝑚+1
𝑘𝐵𝑇

] 

=
2𝐷

𝑑
[𝑃𝑚+1𝐾(𝑚 + 1 → 𝑚) − 𝑃𝑚𝐾(𝑚 → 𝑚 + 1)] 

(25) 

where 𝐾(𝑚 + 1 → 𝑚)  and 𝐾(𝑚 → 𝑚 + 1)  is the dimensionless 

transition rates. These rates are identical with the definition of 

transition probability in Glauber transition probability [60] where for 

a change in states 𝑠𝑖 → 𝑠𝑓 with energies of 𝐸𝑖 and 𝐸𝑓, respectively, 

the transition probability is defined as 

𝑝(𝑠𝑖 → 𝑠𝑓) =
1

1 + exp (
𝐸𝑓 − 𝐸𝑖

𝑘𝐵𝑇 )

 (26) 

Finally, using the master Equation (25), the numerical solution of 

the Smoluchowski diffusion Equation (19) can be obtained through 

the simulation if we know the relation between the time step ∆𝑡 and 
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step size in space 𝑑. Considering one-dimensional diffusion problem 

with a constant drift Force 𝐹 where makes potential energy 𝑈(𝑟) =

 −𝐹𝑟, particle would move from a position 𝑟𝑛 to 𝑟𝑛+1  ∈ {𝑟𝑛, 𝑟𝑛 ± 𝑑} in a 

Monte Carlo step 𝑑 . Then, the transition probability for the 

movement is given from Glauber equation (26) by 

𝑝(𝑟𝑛 → 𝑟𝑛 ± 𝑑) =
1

2
(

1

1 + 𝑒
∓

𝐹𝑑
𝑘𝐵𝑇

) ≈
1

4
(1 ±

𝐹𝑑

𝑘𝐵𝑇
) (27) 

where the drift force 𝐹 is sufficiently small. Note that the half term 

is the selection probability for the either + or – direction. The mean 

drift is given by  

〈𝑟𝑛+1〉 = 〈𝑟𝑛〉 + 𝑑𝑝+ − 𝑑𝑝− ≈ 𝑟𝑛 +
𝐹𝑑2

4𝑘𝐵𝑇
 (28) 

and the mobility 𝜇 can be expressed by 

𝜇 =
〈𝑟𝑛+1〉 − 〈𝑟𝑛〉

𝐹∆𝑡
=

𝑑2

4𝑘𝐵𝑇∆𝑡
  (29) 

 

Using Einstein’s relation, 𝐷 =  𝜇𝑘𝐵𝑇, the time step is defined as 

∆𝑡 =  𝑑2/4𝐷 and is generalized to an arbitrary dimension 𝑚 as  

∆𝑡 =
𝑑2

4𝑚𝐷
  (30) 

Therefore, for three-dimensional systems of 𝑚 = 3 , ∆𝑡 =

 𝑑2/12𝐷. From the results derived above, the numerical solution of 

diffusion equation can be obtained with time evolution 𝑁∆𝑡 for 𝑁 

Monte-Carlo steps. 
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Chapter 3. Electrostatic potential energy of 

two-particle systems 
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3.1. Introduction 
 

 

As the first step to investigate the effects of electrostatic 

interactions between CNPs, the accurate calculation of electrostatic 

potential energy is needed. Considering CNPs in the gas phase are 

mainly in the spherical forms, electrostatics between electrically 

charged spheres was mainly discussed.  

Two methods of calculation were used: using capacitance 

coefficients, an analytical method, and finite element method (FEM), 

a numerical method. The capacitance coefficients method can only be 

used for conductors and only when the values of the capacitance 

coefficients of the system are known, but has the advantage of being 

fast in calculation rate. On the other hand, the FEM can be used for 
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both dielectric materials and conductors, but its calculation rate is 

slow and requires separate software for calculation. 

In the previous studies, the capacitance coefficients of the two-

particle systems are known [57,61] and electrostatic interaction 

between two conducting was studied using various ways including 

capacitance coefficients [57], image charges [62,63], etc.  

In this chapter, the electrostatic potential energies of various 

two-particle systems were calculated and investigated using two 

methods mentioned above. Furthermore, the physical origin of its 

property was also investigated through analysis of surface charge 

density of CNPs: it could be only analyzed using FEM, numerical 

method. Comparison of two methods was also included.  

 

3.2. Computational Details 
 

 

3.2.1 Capacitance coefficients method 

 

We used Equation (16) which describes the electrostatic 

potential energy of systems featuring two conducting CNPs modeled 

in Figure 3.1. The two CNPs were modeled as spheres with radii of 

𝑅 and 𝑟, respectively. For convenience of calculation, let 𝑅 be the 

radius of the large CNP and 𝑟 the radius of the small CNP. Assuming 
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that the CNPs serve as solid conductors in a continuum, the 

electrostatic potential energy 𝑊  is obtained from Equation (16) 

where 𝑄 and 𝑞 are the charges on each CNPs and 𝐶𝑖𝑗(𝑖 = 1,2, 𝐶12 =

𝐶21) are the capacitance coefficients of the two CNPs. When the 

CNPs are spherical conductors, the capacitance coefficients are: 

[57,61] 

𝐶11 = 4𝜋𝜖0𝑅𝑟 sinh 𝑈  ∑[𝑅 sinh 𝑛𝑈 + 𝑟 sinh(𝑛 + 1)𝑈]−1

∞

𝑛=0

  (31) 

𝐶22 = 4𝜋𝜖0𝑅𝑟 sinh 𝑈 ∑[𝑟 sinh 𝑛𝑈 + 𝑅 sinh(𝑛 + 1)𝑈]−1

∞

𝑛=0

 (32) 

and  

𝐶12 = −4𝜋𝜖0

𝑅𝑟

𝑐
sinh 𝑈 ∑[sinh 𝑛𝑈]−1

∞

𝑛=0

 (33) 

where 𝜖0 is the vacuum permittivity, 𝑟𝑖(𝑖 = 1,2) the radii of the CNPs, 

𝑐 = 𝑅 + 𝑟 + 𝑠  the center-to-center distance between the two 

spherical CNPs, and a dimensionless parameter 𝑈 is: 

𝑈 = cosh−1 (
𝑐2 − 𝑅2 − 𝑟2

2𝑅𝑟
) (34) 

In this study, we approximated the values of 𝐶𝑖𝑗 (to an accuracy 

of 10−7) via finite summation of the infinite series shown in Equations 

(31)-(33). 

 

3.2.2 FEM calculations 
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We used Poisson’s equation expressed in Equations (9) and (10), 

which describes the electric field and potential of a system, to 

calculate the electrostatic potential energy 𝑊 and surface charge 

density (conductors) or polarization (dielectrics) of systems 

composed of both conducting and dielectric CNPs. The 𝑊 is obtained 

from Equation (11) and surface charge density 𝜎 for conductor and 

polarization 𝐏 for dielectric is obtained as 

𝜎 = 𝜖0(𝐄 ∙ �̂�) 

𝐏 =  𝜖0(𝜖𝑟 − 1)𝐄 
(35) 

where �̂� denotes the normal vector to the surface of a CNP and 𝜖𝑟 

denotes the dielectric constant of the linear, homogeneous and 

isotropic dielectric CNP. 

We numerically solved the equation using FEM and COMSOL 

Multiphysics AC/DC Module [64]. Large and small CNPs were 

modeled as spheres with radii of 𝑅 and 𝑟, respectively [see Figure 

3.1]. They were considered solid of continuum matter. We used a 

spherical infinite element domain scheme with a finite radius of 𝑅∞, 

implemented in COMSOL. The two spheres were placed in a vacuum 

with a relative permittivity of 1. A fine mesh of approximately 

270,000 tetrahedral quadratic Lagrange elements was used. The 

elements of the boundaries of small particles were manually adjusted 
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for higher accuracy, while the other elements were automatically 

generated with the ‘finer’ mesh setting in COMSOL. The outer 

surface of the infinite element domain was set to ground, and the 

surface charges of the particles were set to 𝑄 and 𝑞, respectively. 

Here, the ‘terminal’ physics setting in COMSOL was used for setting 

the surface charges of conducting particles while the ‘surface charge 

density’ physics setting was used for dielectric particles. Note that 

the dielectric constant 𝜖𝑟 should be set for the system with dielectric 

particles. We varied the separation distance 𝑠 between the surfaces 

of the particles to calculate the potential energy and surface charge 

density of the system [see Figure 3.1]. 
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Figure 3.1 A system of two spherical CNPs. 
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3.3. Results and discussions 
 

 

3.3.1 Electrostatic potential energy of two-conducting particle 

systems 

 

First, using the capacitance method and FEM implemented in 

COMSOL, we calculated the 𝑊 between two spherical conducting 

CNPs. From here on, unless otherwise specified, all CNPs are 

considered as conductors. Figure 3.1 shows the two spherical CNPs, 

where 𝑅 and 𝑄 denote the radius and charge of the large particle, 

respectively; 𝑟  and 𝑞  denote the radius and charge of the small 

particle, respectively; and 𝑠  denotes the separation distance 

between the surfaces of both particles. 

When the large and small CNPs have opposite charges, 

electrostatic interparticle interaction is always attractive. 𝑊 , 

excluding self-energy, more sharply decreases as 𝑠  decreases 

compared with the 𝑊  of a monopole ( 𝑊𝑚𝑜𝑛𝑜𝑝𝑜𝑙𝑒 ) of the two 

oppositely charged point particles. [see Figure 3.2(a)].  

In the case the two CNPs have like charges, the electrostatic 

interparticle interaction looks complex. Figure 3.2(b) shows the 

electrostatic potential energy 𝑊 excluding self-energy as a function 

of 𝑠 for the two-particle system (𝑅 = 250 nm, 𝑄 = +5𝑒; 𝑟 = 10 nm, 
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𝑞 = +𝑒 ). 

With increasing 𝑠 , 𝑊  rapidly increases and then slowly 

decreases; the trend depends on the relationship between 𝑠 and the 

transition separation distance 𝑠∗ . The results indicate that 

interparticle interaction is attractive when 𝑠  is less than 𝑠∗  and 

repulsive when 𝑠 is greater than 𝑠∗. 𝑠∗ is 55 nm in Figure 3.2(b). 

This interesting behavior of particles with like charges contrasts with 

the repulsive monopole interaction between point particles with like 

charges. 

This attraction between particles with like charges appears to be 

related to the structural evolution of nanoparticles during CVD. CNPs 

act as building blocks for the growth of thin films and nanostructures 

during CVD. Such electrostatic interactions can clarify the deposition 

behavior and microstructural evolution of thin films and 

nanostructures in CVD. 

For the structural evolution of CNPs, when the particles are 

farther away from 𝑠∗, to attract each other they need to overcome 

the 𝑊∗ at 𝑠∗. The values of 𝑠∗ and 𝑊∗ determine the probability of 

coalescence between the two particles. To understand the 

characteristics of 𝑠∗ and 𝑊∗, we examined 𝑊 as a function of 𝑠 for 

different 𝑄/𝑞 values. Figure 3.3(a) compares the dependences of 

𝑊/𝑞2 on 𝑠 for different 𝑄/𝑞 ratios (1–100). For each value of 𝑄/𝑞, 
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the values of 𝑠∗  and 𝑊/𝑞2  are expressed as red points. 𝑠∗ 

decreases with increasing 𝑄/𝑞. At a 𝑄/𝑞 of 1, 5, 10, 25, 50, and 100, 

the thickness of the attraction zone of the system, expressed as 𝑠∗, 

is 144.5, 55.0, 34.6, 17.2, 8.9, and 3.4 nm, respectively. 𝑊∗/𝑞2 

increases with increasing 𝑄/𝑞. At a 𝑄/𝑞 of 1, 5, 10, 25, 50, and 100, 

𝑊∗/𝑞2  is 0.003, 0.020, 0.044, 0.120, 0.252, and 0.524 eV/𝑒2 , 

respectively. 

Additionally, to explore the more details of the electrostatic 

interactions between CNPs with like charges, we investigated the 

characteristic behavior of 𝑠∗  by varying large particle radius 𝑅 . 

Figure 3.4 plots 𝑠∗ as a function of 𝑄/𝑞 for two CNP systems with 

charges of 𝑞 and 𝑄, radii of 𝑟 = 20 nm, and 𝑅 = 100 − 500 nm. For 

any given 𝑅 , 𝑠∗  commonly decreases when 𝑄/𝑞  increases. Thus, 

the smaller the charge accumulation of deposited CNPs, the longer 

the attractive interaction range. Figure 3.4 also shows that for any 

given 𝑄/𝑞, 𝑠∗ increases as the radius 𝑅 of a (large) CNP increases. 

Thus, larger CNPs tend to engage in attractive interactions with more 

CNPs (with like charges), further increasing 𝑅. 
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Figure 3.2 𝑊 (solid line), excluding self-energy, as a function of 𝑠 

for the two-particle system, with 𝑅 = 250 nm and 𝑟 = 10 nm: (a) 

𝑄 =  +5𝑒 and 𝑞 =  −𝑒; (b) 𝑄 =  +5𝑒 and 𝑞 =  +𝑒. The results of 𝑊 

are compared with the 𝑊𝑚𝑜𝑛𝑜𝑝𝑜𝑙𝑒 of the charged two point particles: 

𝑊𝑚𝑜𝑛𝑜𝑝𝑜𝑙𝑒 =
1

4𝜋𝜖0

𝑄𝑞

𝑅+𝑟+𝑠
 (dashed line). 
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Figure 3.3 (a) 𝑊, excluding self-energy, divided by 𝑞2 as a 

function of 𝑠 for the two-particle system (𝑅 = 250 nm, 𝑟 = 10 nm) 

(charge ratio 𝑄/𝑞: 1–100); the values of 𝑠∗ and 𝑊∗/𝑞2 are 

expressed for each 𝑄/𝑞. (b) The values of 𝑠∗ and 𝑊∗/𝑞2 as a 

function of 𝑄/𝑞 for the same system. 
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Figure 3.4 𝑠∗ as a function of 𝑄/𝑞, as revealed by electrostatic 

potential energy calculations for a system consisting of two CNPs 

with charges of 𝑞 and 𝑄, radii of 𝑟 = 20 nm and 𝑅 = 100 − 500 nm. 
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3.3.2 Physical origin of interparticle electrostatic interactions 

 

To further understand the physical interaction between two 

conducting spherical CNPs with like charges, we investigated the 

surface charge redistribution of the two CNPs, which is induced by 

their mutual polarization, by calculating the surface charge density of 

the particles. The total surface charge density (𝜎tot) calculated with 

COMSOL consists of net charge (𝜎net) and induced charge (𝜎ind). We 

obtained 𝜎ind  associated with surface charge redistribution by 

subtracting 𝜎net from 𝜎tot. The 𝜎net values for the large and small 

CNPs are 𝑄/4𝜋𝑟2  and  𝑞/4𝜋𝑟2, respectively. 

Figure 3.5 shows the results calculated with 𝑄 = +50𝑒, 𝑞 = +𝑒 

𝑅 = 250 nm, and 𝑟 = 10 nm for the three representative 𝑠 values. In 

the color scale of Figures 3.5(a)–(c), the reddest and bluest colors 

represent the most positive and negative values of surface charge 

density, respectively; the thin blue region on the surface near the 

right pole of the large particle indicates that a negative charge is 

induced on the surface of the large CNP adjacent to the small CNP. 

This region is thickest at 𝑠 = 5 nm (Figure 3.5(a)) and thinnest at 

𝑠 = 20 nm (Figure 3.5(c)). This indicates that the induced surface 

charge density of the large CNP is strongest at 𝑠 = 5 nm and weakest 

at 𝑠 = 20 nm. Figure 3.5(d) plots the  𝑊 of this system as a function 
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of 𝑠. The 𝑊 values for the interaction depicted in Figure 3.5(a)–(c) 

are indicated on the graph of Figure 3.5(d). At  𝑠 = 5 nm, the large 

and small CNPs attract each other (Figure 3.5(a)). At 𝑠 = 10 nm (i.e., 

𝑠∗; Figure 3.5(b)), the 𝑊 (i.e., 𝑊∗) is the highest (Figure 3.5(b)). 

At 𝑠 = 20 nm, the interparticle interaction is repulsive (Figure 3.5(c)). 

Figures 3.5(a)–(c) reveal the s-dependent distribution patterns 

of the surface charge density of the small CNP. At 𝑠 = 5 nm (the 

attraction zone), positive charges are induced on the surface area of 

the small CNP adjacent to the large CNP, while negative charges are 

induced on the remaining surface area of the small CNP (Figure 

3.5(a)). Thus, the adjacent areas of the two CNPs have opposite 

charges, which will induce interparticle attraction. At 𝑠 = 10 nm 

(i.e.,𝑠∗), weaker positive charges than those at 𝑠 = 5 nm are induced 

on the left and right poles of the small CNP, while weaker negative 

charges are induced on the other areas (Figure 3.5(b)). 

Consequently, the net force is zero, and the two CNPs are neither 

attractive nor repulsive. When the small CNP is away from the 

attraction zone or in the repulsion zone (𝑠 = 20 nm; Figure 3.5(c)), 

the surface charge distribution is opposite to that at 𝑠 = 5 nm . 

Negative charges are induced on the surface area of the small CNP 

adjacent to the large CNP, while positive charges are induced on the 

remaining surface area of the small CNP. Thus, the adjacent areas of 
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the two CNPs have negative charges, which will induce interparticle 

repulsion. 
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Figure 3.5 Induced surface charge densities of the two-particle system 

(𝑅 = 250 nm, 𝑄 = +5𝑒; 𝑟 = 10 nm, 𝑞 = +𝑒), with representative 𝑠 of (a) 

5, (b) 10, and (c) 20 nm. The left and right color legends are for the 

large and small particles, respectively. (d) 𝑊 as a function of 𝑠 for the 

system; the figure depicts 𝑊 values of (a)–(c). 
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3.3.3 Electrostatic potential energy of two-dielectric particle 

systems 

 

Since not only conductor particles but also dielectric particles 

are used a lot in actual deposition, their electrostatic potential 

energy needs to be investigated as well. Thus, we calculated the 

electrostatic potential energy 𝑊 for varying dielectric constants of 

particles 𝜖𝑟 under the system calculated in Figure 3.2(b). Note that 

the surface bound charge density is assumed to be constant as 

𝑄/4𝜋𝑟2  and  𝑞/4𝜋𝑟2, respectively. 

Figure 3.6 plots the 𝑊 as a function of 𝑠 for two dielectric 

particle systems with dielectric constant 𝜖𝑟 from 1.1 to 1000 

including 𝜖𝑟 = 11.7 of Si, radii of 𝑅 = 250 nm and 𝑟 = 10 nm, and 

charges of 𝑄 =  +5𝑒 and 𝑞 =  −𝑒. The 𝑊 of two conducting particles 

shown in Figure 3.2(b) is also plotted for comparison. For any given 

𝜖𝑟, 𝑊 decreases when 𝜖𝑟 increases. Note that for conductors, 𝜖𝑟 is 

infinite. As the distance 𝑠 increases, the 𝑊 becomes almost the 

same regardless of the value of 𝜖𝑟. However, as the distance 𝑠 

between the two particles gets closer, the effect of 𝜖𝑟 on 𝑊 

increase. The smaller the dielectric constant, the more dominant the 

interparticle repulsion rather than the interparticle attraction. To 

further analyze the effect of the dielectric constant 𝜖𝑟 on 𝑊, we 
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investigated the polarization 𝐏 inside the particles. When the 

particles are conductors in Figure 3.5, excess charges are 

distributed over the surface and move freely on the surface, which 

makes induced surface charge distribution 𝜎𝑖𝑛𝑑. However, if the 

particle is dielectric, instead of the excess charge moving freely, it 

creates an electric field that opposes the external electric field 

called polarization 𝐏 inside the particle. Considering the spherical 

symmetry, the distance 𝑠 was controlled on the basis of the x-

axis, and the polarization 𝐏 represented a vector in the x-direction,  

Px in the xy-plane. 

Figure 3.7 shows the results calculated with 𝜖𝑟 = 11.7, 𝑄 = +50𝑒, 

𝑞 = +𝑒 𝑅 = 250 nm, and 𝑟 = 10 nm for the three 𝑠 values. In the color 

scale of Figure 3.7, the red and blue colors represent the positive and 

negative x-direction magnitude of polarization, respectively. Note 

that the polarization vector denotes a positive charge of electric 

dipoles at the end of the vector and a negative charge of electric 

dipoles at the beginning of the vector as shown in Figure 3.7. The 

blue region near the right pole of the large particle indicates that x-

direction polarization Px was formed in the negative direction on the 

large CNP adjacent to the small CNP. This region is the largest at 

𝑠 = 5 nm (Figure 3.7(a)) and smallest at 𝑠 = 20 nm (Figure 3.7(c)). 

This indicates that the Px of the large CNP is strongest at 𝑠 = 5 nm 
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and weakest at 𝑠 = 20 nm. 

Figure 3.7 reveals the s-dependent Px patterns of the of the 

small CNP. Since the value of 𝑊 as a function of 𝑠 is almost same as 

Figure 3.5(d), 𝑊 in Figures 3.7(a)-(c) can also be seen as described in 

Figure 3.5(d). At 𝑠 = 5 nm  (the attraction zone), negative Px  is 

formed in the the small CNP adjacent to the large CNP, while positive 

Px is formed on the remaining surface area of the small CNP (Figure 

3.7(a)). Thus, the adjacent areas of the two CNPs have same 

direction of Px, which will induce interparticle attraction. At 𝑠 = 10 nm 

(i.e., 𝑠∗ ), smaller region of negative Px  than those at 𝑠 = 5 nm  is 

formed on the left while larger region of positive Px is formed on the 

right of the small CNP (Figure 3.7(b)). Consequently, the net force 

is zero, and the two CNPs are neither attractive nor repulsive. When 

the small CNP is away from the attraction zone or in the repulsion 

zone (𝑠 = 20 nm; Figure 3.7(c)), only positive Px is formed on the 

region of the small CNP adjacent to the large CNP. Thus, the adjacent 

areas of the two CNPs have opposite direction of Px, which will induce 

interparticle repulsion. 
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Figure 3.6 𝑊 excluding self-energy, as a function of 𝑠 for the 

two-dielectric particle system, with 𝑅 = 250 nm, 𝑟 = 10 nm, 𝑄 =

 +5𝑒 and 𝑞 =  +𝑒. (dielectric constant 𝜖𝑟 : 1.1–1000) The results of 

𝑊 are compared with the 𝑊 of the charge two conducting particles. 
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Figure 3.7 x-direction polarization Px of the two-dielectric particle 

system (𝜖𝑟 = 11.7,  𝑅 = 250 nm, 𝑄 = +5𝑒; 𝑟 = 10 nm, 𝑞 = +𝑒), with 

representative 𝑠 of (a) 5, (b) 10, and (c) 20 nm. The color legend 

indicates the magnitude of the polarization. The sign of polarization 

means the direction relative to the x-direction. 
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3.3.4 Comparison of analytical and numerical methods 

 

Finally, in order to confirm the validity and accuracy of the 

numerical method, FEM, the error was investigated from the 

analytical method, capacitance coefficients method. The error 

equation used is given by: 

(𝑒𝑟𝑟𝑜𝑟) (%) =
𝑊𝑛𝑢𝑚 − 𝑊𝑎𝑛𝑎

𝑊𝑎𝑛𝑎
× 100 (36) 

where 𝑊𝑛𝑢𝑚  and 𝑊𝑎𝑛𝑎  represent the calculated electrostatic 

potential energy by numerical method, FEM and analytical method, 

capacitance coefficients method, respectively. As shown in the 

Equation (36), the analytical method was used as basis for error 

calculation. 

Figure 3.8 shows the error of calculated 𝑊𝑛𝑢𝑚  by FEM as a 

function of 𝑠 for various conditions. For all given 𝑠 and conditions, 

the error values are located between -0.03% and -0.04% in our FEM 

settings used: the negative sign means 𝑊𝑛𝑢𝑚 is always smaller than 

𝑊𝑎𝑛𝑎. Therefore, the error values appeared to be negligible, and it 

was confirmed that numerical method FEM setup we used was 

sufficiently valid and accurate. 
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Figure 3.8 FEM error (%) as a function of surface distance (𝑠) for 

all combinations of 𝑟 = 5, 10 nm and 𝑄 = +10𝑒, +50𝑒. The other 

parameters are 𝑅 = 250 nm and 𝑞 = +𝑒. 
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3.4. Conclusion 
 

 

In this chapter, using capacitance coefficients and FEM, we 

investigated the electrostatic potential energy of two-particle 

systems and the physical origin of the electrostatic interaction of 

CNPs. When the large and small CNPs have opposite charges, 

electrostatic interparticle interaction is always attractive. The 

electrostatic potential energy, 𝑊 , more sharply decreases as 𝑠 

decreases compared with the 𝑊𝑚𝑜𝑛𝑜𝑝𝑜𝑙𝑒  of the two oppositely 

charged point particles. In the case the two CNPs have like charges, 

with increasing 𝑠, 𝑊 rapidly increases and then slowly decreases. 

Herein, the transition separation distance 𝑠∗ was newly observed. 

The 𝑠∗ indicates that interparticle interaction is attractive when 𝑠 is 

less than 𝑠∗  and repulsive when 𝑠  is greater than 𝑠∗ , which 

contrasts with the repulsive monopole interaction between point 

particles with like charges. 

The value of 𝑠∗  is determined by many parameters. In this 

chapter, the results generally show a tendency to increase as the 

charge ratio 𝑄/𝑞 value decreases, the radius of the large particle 𝑅 

increases, and the dielectric constant 𝜖𝑟  value increases and 

approaches the conductor. 

The physical origin of these electrostatic interaction is the 
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surface charge signs (conductors) or direction of polarization vectors 

(dielectrics) of adjacent areas of particles. When 𝑠 < 𝑠∗ , so the 

interparticle interaction is attractive, the adjacent areas have 

opposite charge signs or the polarization vectors have same direction. 

When 𝑠 > 𝑠∗, so the particles are repulsive, the adjacent areas have 

same charge signs or the polarization vectors have opposite direction. 
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Chapter 4. Effects of electrostatic interaction 

on the formation of a particle depletion zone  
 

 

Reprinted with permission from Cryst. Growth Des. 2022, 22, 

2490-2498 [42]. Copyright 2022 American Chemical Society. 

 

 

4.1. Introduction 
 

 

A previous study observed the microstructural evolution of 

charged Si nanoparticles grown via CVD on a glass substrate 

located in a low-temperature zone of 500℃. [21, pp.245-248] 

Figure 4.1(a) shows a field-emission scanning electron microscopy 

(FESEM) image of a large particle and a particle depletion zone; 

small Si particles occur outside the particle depletion zone. Figure 

4.1(b) shows a magnified image of Figure 4.1(a). Electrostatic 

interactions between CNPs appear to play a crucial role in the 

structural evolution of the system, which consists of a large CNP 

and many small CNPs at low temperatures. The physical mechanism 

underlying the formation of the particle depletion zone around the 

large CNP during the deposition of numerous small CNPs remains 

unclear. 
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The aim of this chapter was to investigate the underlying 

physical mechanism of the formation and structural evolution of a 

particle depletion zone around a large CNP during the low-

temperature CVD of Si. We used a system consisting of many small 

CNPs and a large CNP as a particle model. We calculated the 

electrostatic interactions between CNPs using the methods 

introduced in Chapter 3. We performed a kinetic Monte Carlo (kMC) 

simulation to elucidate the dynamics of the multi-CNP system. 

Through these processes, we examined the role of electrostatic 

interactions between CNPs in the formation of the particle depletion 

zone (Figure 4.1) and the structural evolution of the zone. 
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Figure 4.1 Field-emission scanning electron microscopy images 

of Si microstructures after the 24 h chemical vapor deposition 

of charged Si nanoparticles on a glass substrate located in a 

low-temperature zone of 500℃. For the first 5 mins, an AC 

bias of ±50V at 1 Hz was applied to the glass substrate holder. 

The flow rates of He-diluted SiH4 (10% SiH4 – 90% He), H2 

and N2 were 11, 50, and 300 sccm, respectively. (b) A higher-

magnification image of (a); the scale bar is 100 nm. [21, p. 

247] 
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4.2. Computational Details 
 

 

4.2.1 kMC simulation 

 

We performed kMC simulations to examine the aggregation 

dynamics of the CNP system, which consists of a large CNP and 

many small CNPs. Owing to electrostatic interactions between 

CNPs, a characteristic microstructure was formed around the large 

CNP fixed at the origin. The electrostatic energies of the CNPs 

were obtained through the methods used in chapter 3. The CNPs 

were modeled as spheres. To improve computational efficiency, we 

considered the angular symmetry of the distribution of the small 

CNPs around the large CNP. Simulations were performed in a two-

dimensional domain, with the side length of the boundary square as 

8R. The kMC simulation procedures were as follows:  

 

1. Small CNPs with radius 𝑟0 and charge ±𝑞 were initially 

generated at random positions outside the large particle with 

radius 𝑅 and charge 𝑄. 

 

2. The trial displacement 𝑑 of a randomly picked small CNP of 

radius r relative to its center was 𝑑 = (𝑑 cos 𝜃 , 𝑑 sin 𝜃), where 
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𝑑 is the displacement magnitude, and 𝜃 is a uniformly 

distributed random variable between 0 and 2π. 

 

 We assumed that when two small CNPs of charges 𝑞𝑖 and 

radii 𝑟𝑖  (𝑖 = 1,2) were in contact (𝑠 ≤ 0), they quickly 

coalesced into a spherical particle; therefore, the charge and 

radius of the coalesced particle become 𝑞 = 𝑞1 + 𝑞2 and 𝑟 =

(𝑟1
3 + 𝑟2

3)1/3 (𝑟 > 𝑟0), respectively. 

 

The trial displacement magnitude 𝑑 of a particle with 

radius 𝑟 is related to the trial time step Δ𝑡 = 𝑑2/12𝐷 , where 

𝐷 is the diffusion coefficient of the particle from Equation 

(30). For all particles of spherical compact clusters, the 

relationship between the diffusion coefficient 𝐷 and radius 𝑟 

of a particle of size 𝑛 is 𝐷 ~ 𝑛−1/3 ~ 𝑉−1/3 ~ 𝑟−1, where 𝑉 is 

the particle volume. [65] If Δ𝑡 is inputted into the above 

relationship, the trial displacement magnitude 𝑑 for the 

particle of radius 𝑟 is derived as 𝑑 = 𝑑0(𝑟0/𝑟)1/2 where 𝑑0 is 

the trial displacement magnitude of a particle with radius 𝑟0. 

For our kMC simulations, we empirically set 𝑑0 to 0.1𝑟0. 

This value is small enough such that systematic errors 

generated by a finite step size of 𝑑 do not considerably 
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affect the particle behavior, and it is large enough such that 

simulations are computationally efficient. Moreover, we used 

a characteristic time scale, 𝜏0 = 4𝑟0
2/𝐷0 as a time unit. 

 

3. Move is accepted or rejected based on the Metropolis 

transition probability 𝑝 = min [1, exp (−
Δ𝐸

𝑘B𝑇
)], where Δ𝐸 is the 

change in 𝑊 with trial displacement, 𝑘B is the Boltzmann 

constant, and 𝑇 is the temperature of the system. [66] 

 

In order to perform the kMC simulations, we coded the kMC 

program using the MATLAB R2021b software. [67] In the 

simulations, we used parameters containing information on 

attributes of each particle. The parameters are described by a 

matrix of size N × 4, where the number of rows, N, is the total 

number of particles in the system and the four columns represent x 

and y coordinates, a radius, and charge for each particle. During the 

kMC simulation, the components in this matrix are updated 

according to the kMC process described above. 
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4.2.2 Binary classification 

 

During the kMC simulations of the multi-particle system with 

only electrostatic interactions between the large and small CNPs, 

the small-unit CNPs near the large particle were attracted to and 

coalesced with it. In the final discrimination plot, red dots and blue 

crosses represent the initial positions of small CNPs attracted and 

not attracted to the large CNP, respectively. To estimate the final 

discrimination boundary of the small CNPs around the large CNP, 

we classified the final discrimination using the binary logistic 

regression method based on machine learning. This method 

provided the probability of coalescence between small CNPs and the 

large CNP. Given that 𝑠 affects the final discrimination, the method 

included one predictor 𝑠 and the response variable 𝑋(𝑠), which 

represented the final discrimination of the small CNPs. The 𝑋(𝑠) 

values are defined as follows: 

 

𝑋(𝑠) = {

0, (𝑖𝑓 𝑎 𝑠𝑚𝑎𝑙𝑙 𝐶𝑁𝑃 𝑐𝑜𝑎𝑙𝑒𝑠𝑐𝑒𝑠
 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒 𝐶𝑁𝑃)

   1,          (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)                              
 (37) 

 

A sigmoid function,  𝑆(𝑤0 + 𝑤1𝑠), was used to express the 

probability that 𝑋 = 1, which is expressed by  
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𝑃(𝑋 = 1) = 1 − P(X = 0) =
1

1 + exp(−(𝑤0 + 𝑤1𝑠))
 (38) 

 

where 𝑤0 and 𝑤1 are regression intercept and coefficients for 𝑠, 

respectively. To obtain the values of 𝑤0 and 𝑤1 through the binary 

logistic regression method, we used the 

sklearn.linear_model.LogisticRegression class in the Scikit-learn 

module, a machine learning module. [68] The discrimination 

boundary is estimated as the separation distance s = −𝑤0/𝑤1, where 

𝑃(𝑋 = 1) = 𝑃(𝑋 = 0) = 0.5. 

 

4.3. Results and discussions 
 

 

4.3.1 kMC simulation of two-particle systems with large and 

small CNPs 

 

To explain the experimental observation of the CNP depletion 

zone during CVD (Figure 4.1), we need to consider a multi-CNP 

system consisting of one large CNP and numerous small CNPs. 

Using the above electrostatic interparticle interaction energies 

obtained from methods in chapter 3, we simulated the dynamics of 

the multi-CNP system. All simulations describe the structural 
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evolution of the system before the small CNPs reside on the 

substrate. 

Before considering complicated systems with numerous small 

CNPs, we simulated the dynamics of simplified systems with only 

electrostatic interactions between the large and small CNPs using 

the kMC method. Figure 4.2(a) shows snapshots of the kMC 

simulation results at different simulation times (𝜏0) for a system 

with three representative small CNPs. The temperature 𝑇 was set 

to 773 K, which corresponds to the temperature around the 

deposition area. The centered black circle in Figure 4.2 represents 

the large CNP (𝑅 = 250 nm and 𝑄 =  +5𝑒). The green dots in Figure 

4.2(a) represent the positions of small CNPs (𝑟 = 10 nm and 𝑞 =

 +𝑒) at each simulation time. The black lines attached to the green 

dots in Figure 4.2(a) denote the trajectory of each particle. The 

outer dashed circle in Figure 4.2 represents the domain boundary of 

the kMC simulation. A total kMC sweep includes kMC steps of 𝑁 =

105, corresponding to 20.8𝜏0 in the time scale. When the small CNP 

touches the large CNP or the outer domain boundary, the kMC 

simulation stops at earlier steps. The small CNP nearest to the 

large CNP is attracted to the large CNP and coalesces with it; the 

other two CNPs [Figure 4.2(a)] remain outside the large particle or 

touch the outer domain boundary. The coalescence features are 
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presented in the final discrimination result [Figure 4.2(b)], in which 

the red dot and blue cross represent the initial positions of small 

CNPs attracted and not attracted to the large CNP, respectively. 

The results demonstrate that the small CNPs near the large CNP 

have a strong tendency to coalesce with it. 

To examine the coalescence features of systems with a 

sufficiently large number of small CNPs and their Q-dependent 

tendencies, we simulated a system with only electrostatic 

interactions between 104 small-unit CNPs and a large CNP at T = 

773 K using the kMC method. The charges of the large CNP were 

set to 𝑄 =  +𝑒 [Figure 4.3(a)], +50𝑒 [Figure 4.3(b)], and +100𝑒  

[Figure 4.3(c)]. The initial positions of CNPs within the circular 

area were randomly selected; the circular area, with the large black 

CNP at its center, had a radius of 650 nm. The outer domain 

boundary, denoted by the outer dashed circle, had a radius of 750 

nm. Except for the Q value and number of small particles, the other 

simulation conditions were the same as those of the simulation 

depicted in Figure 4.2. 

Figure 4.3 shows the Q-dependent final discrimination results 

of the system with only electrostatic interactions between 104 

small-unit CNPs and a large CNP; the red dots and blue crosses 

represent the initial positions of the small CNPs attracted and not 
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attracted to the large CNP until the end of a kMC sweep, 

respectively. As shown in Figure 4.3, most of the small CNPs near 

the large CNP are attracted to it, in contrast to those away from it. 

From the viewpoint of microstructure evolution, the attracted 

small-unit CNPs coalesce with the large CNP. Figure 4.3 shows the 

depletion of small CNPs near the large particle. The small CNPs far 

from the large CNP appear to be located outside or near the 

discrimination boundary; this result was obtained from binary 

logistic regression calculations based on machine learning. The 

discrimination boundary thickness, defined as the radial difference 

between the discrimination boundary and surface of the large CNP, 

decreases with increasing 𝑄. At a 𝑄 of +𝑒, +50𝑒, and +100𝑒, the 

discrimination boundary thickness is 197.6 nm [Figure 4.3(a)], 93.5 

nm [Figure 4.3(b)], and 32.3 nm [Figure 4.3(c)], respectively. This 

trend is consistent with the decrease in 𝑠∗ with increasing 𝑄 

(Figure 3.3). 
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Figure 4.2 (a) kMC simulation results: Snapshots and trajectories of 

three small particles interacting with a large particle of the same 

charge at three simulation times (𝜏0). The centered black circle 

represents the large particle, while the green dots and black lines 

represent the positions of small unit particles and their trajectories 

at each simulation time, respectively. (b) Final discrimination of the 

three small particles after a kMC sweep. The red dot and blue cross 

represent the initial positions of small particles attracted and not 

attracted to the large particle, respectively. The dashed circle 

represents the domain boundary of the kMC simulation. The 

simulation parameters are 𝑅 = 250 nm, 𝑟 = 10 nm, 𝑄 = +5𝑒, 𝑞 = +𝑒, 

and 𝑇 = 773 K, and the dimensions of each box are 1500 nm ×

 1500 nm. 
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Figure 4.3 kMC simulation results: Charge-dependent variation in the 

final discrimination results of 104 small particles interacting with a 

large particle of the same charge, for 𝑄 = (a) +𝑒, (b) +50𝑒, and (c) 

+100𝑒. The centered black circle represents the large particle; the 

red dot and blue cross represent the initial positions of small 

particles attracted and not attracted to the large particle, 

respectively; the inner dashed circle denotes the discrimination 

boundary between the small particles attracted and not attracted to 

the large particle; the numbers denote the thickness of the 

discrimination boundary (nm); and the outer dashed circle represents 

the domain boundary of kMC simulation. The simulation parameters 

are 𝑅 = 250 nm, 𝑞 =  +𝑒, 𝑟 = 10 nm, and 𝑇 = 773 K, and the dimensions 

of each box are 1500 nm ×  1500 nm. 
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4.3.2 kMC simulation of multi-particle systems with a large 

CNP and many small CNPs 

 

In the simulations depicted in Figures 4.2 and 4.3, we 

considered the electrostatic interaction between the small and large 

CNPs to obtain characteristic features of the dynamics of the two-

CNP system. However, the experimental situation was more 

complicated, and we needed to consider the electrostatic 

interactions among all CNPs. For this, we simulated systems with 

one large CNP and numerous small CNPs using the kMC method, 

considering the electrostatic interactions and coalescence among all 

particles. A large CNP of 𝑅 = 250 nm was fixed at the center. Five 

thousand small particles were randomly positioned in a square of 

1500 nm ×  1500 nm and outside the large CNP without any overlap. 

To realistically model the multi-CNP system, we considered the 

coexistence of positively and negatively charged small-unit 

nanopaticles. The initial ratio of positively charged small particles to 

the total small CNPs (𝛾+) is expressed as 𝛾+ = 𝑁0
+/𝑁0, where 𝑁0 is 

the initial value of the total number of small CNPs (𝑁), and 𝑁0
+ is 

the initial value of the number of the positively charged small 

particles (𝑁+). The initial 𝑄0 and 𝑞0 were +5𝑒 and ±5𝑒, 

respectively. During the kMC simulations, coalescence of particles 
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causes a change in 𝑄, 𝑞, and 𝑟, 𝑁, and 𝑁+; however, 𝑅 is fixed, as 

the change caused by coalescence is negligible. 

Figure 4.4 shows snapshots of kMC simulations at different 

simulation times for three representative initial values of 𝛾+. The 

black area and white circles represent the substrate and particles, 

respectively. The thickness of the particle depletion zone near the 

large particle increases with increasing 𝛾+ (from 0.5 to 0.7 to 0.9). 

In particular, at 𝛾+ = 0.5, the particle depletion zone does not 

expand over time, whereas at 𝛾+ = 0.7 and 0.9, it does expand over 

time [see Figures 4.4(b) and (c)].  

The value of 𝑄/𝑞 significantly influences the electrostatic 

interaction between large and small CNPs and is thus expected to 

also influence the particle depletion zone depicted in Figure 4.4. 

Therefore, we investigated the change in 𝑄/|𝑞0| over simulation 

time 𝑡. Figure 4.5 shows the results of  𝑄/|𝑞0| for each value of the 

representative 𝛾+. The absolute value of the initial |𝑞0| = +5𝑒 was 

used as the denominator because the  𝑞 of each small particle 

varied during the simulation. 

At 𝛾+ = 0.5 [Figures 4.4(a) and 4.5], the numbers of positively 

and negatively charged CNPs are balanced. Moreover, small 

particles with unlike charges continuously coalescence, indicated by 

the steady increase in the size of small particles over time [Figure 



 

 ７３ 

4.4(a)]. The change in value and sign of 𝑄/|𝑞0| in Figure 4.5 

indicates that the large and small CNPs also steadily coalesce. In 

addition, the large CNP considerably coalesces with nearby small 

CNPs, as indicated by the fluctuation in the value of 𝑄/|𝑞0| until 𝑡 =

100𝜏0. The coalescence process continues, and 𝑄/|𝑞0| reaches a 

minimum (-10) at 𝑡 = 480𝜏0. The positively charged small particles 

are more attracted to the large particle because of its accumulated 

negative charge 𝑄, and the value of 𝑄/|𝑞0| becomes 0 at 𝑡 = 800𝜏0. 

Therefore, the accumulation of charges is weakened, and the value 

of 𝑄/|𝑞0| becomes near-zero. This results in a weak electrostatic 

interaction between the large and small CNPs outside the attraction 

boundary; thus, only the small CNPs within the attraction boundary 

of the large CNP coalesce with it. This explains the formation of a 

smaller particle depletion zone at 𝛾+ = 0.5 than at 𝛾+ = 0.7, 0.9 

[see Figure 4.4]. 

At 𝛾+ = 0.7 [Figures 4.4(b) and 4.5], the negatively charged 

small particles, which account for 30% of the total particles, 

coalesce with positively charged particles before 𝑡 = 100𝜏0, and only 

positively charged CNPs are left. After 𝑡 = 100𝜏0, small CNPs hardly 

coalesce, as indicated by the almost constant size of the small 

particles over time shown in Figure 4.4(b). As shown in Figure 4.5, 

the value of 𝑄/|𝑞0| fluctuates between 20 and 30 before 𝑡 = 50𝜏0 
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and steadily increases from 21 to 22 after 𝑡 = 80𝜏0. This result 

indicates that small CNPs actively coalesce with the large CNP in 

the initial stage, but rarely after 𝑡 = 80𝜏0. It also shows that 𝑄 

accumulates until 𝑡 = 80𝜏0, and a particle depletion zone 

simultaneously forms and then gradually expands because of 

electrostatic repulsion between the positively charged large and 

small particles. 

At 𝛾+ = 0.9 [Figures 4.4(c) and 4.5], the negatively charged 

small particles, which account for 10% of the total particles, 

coalesce with the positively charged particles before 𝑡 = 50𝜏0, 

earlier than 𝑡 = 80𝜏0 for 𝛾+ = 0.7, and only positively charged 

CNPs are left. This behavior is similar to that depicted in Figure 

4.4(b). However, the small CNPs are smaller, because fewer of 

these CNPs coalesce compared with the cases at higher values of 

𝛾+. Figure 4.5 shows that the value of 𝑄/|𝑞0| increases sharply to 

55 before 𝑡 = 50𝜏0 and then remains constant. The formation and 

expansion processes of the particle depletion zone are similar to 

those at 𝛾+ = 0.7. However, the depletion zone at 𝛾+ = 0.9 is 

wider than those at 𝛾+ = 0.5 and 0.7 [Figures 4.4(a) and (b)], even 

though the 𝑡 at 𝛾+ = 0.9 (600𝜏0) is lower than that at 𝛾+ = 0.7 

(𝑡 = 1050𝜏0). Because of a more severe charge imbalance at 𝛾+ = 

0.9, the accumulated positive 𝑄 on the large CNP was 
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approximately three times that at 𝛾+ = 0.7, which explains the 

wider depletion zone at 𝛾+ = 0.9. 

According to the simulation results, the particle depletion zone 

is formed over two stages, both of which are attributable to the 

electrostatic interaction between large and small CNPs. In stage 1, 

the large CNP coalesces with nearby small CNPs having the same 

charge, which results in charge accumulation on the large CNP. 𝑄 

becomes larger, as the charge imbalance among the initial small-

unit CNPs is more severe (Figure 4.5). In stage 2, the large CNP 

with accumulated charge 𝑄 repels other small particles with the 

same charge, which expands the particle depletion zone. Therefore, 

the farther 𝛾+ is away from 0.5, the wider the particle depletion 

zone formed. 
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Figure 4.4 kMC simulation results: Snapshots of systems with small 

CNPs and a large CNP at different simulation times (𝜏0). Positively and 

negatively charged small particles coexist. Three values of 𝛾+were 

considered: (a) 0.5, (b) 0.7, and (c) 0.9. Five thousand small CNPs 

were randomly positioned in a square of 1500 nm ×  1500 nm and 

outside the large CNP without any overlap. The white circles represent 

the position and size of the CNPs. The initial parameters for the 

simulation are 𝑄0 =  +5𝑒, 𝑞0 =  ±5𝑒, 𝑅 = 250 nm, 𝑟0 = 3 nm, and  𝑇 = 773 K, 

and the dimensions of each box are 2000 nm ×  2000 nm. 
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Figure 4.5 Charge ratio (𝑄/|𝑞0|) as a function of 𝑡 (𝜏0), obtained 

from the kMC simulation results in Figure 4.4, for 𝛾+ = 0.5–0.9. 
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4.3.3 Characteristic time scale and formation of a band near the 

depletion zone 

 

Herein we discuss the characteristic time scale 𝜏0 and the 

diffusion coefficients 𝐷0 in the kMC simulations. Figures 4.4(b) and 

(c) showed the kMC simulation results similar to the experimental 

result in Figure 4.1 when 𝑡 ∼ 103𝜏0. Since the experiment time in 

Fig. 4.1 was 24 hours, the time scale of 𝜏0 is estimated to be 

around 102 s. However, considering that the experiment time 

includes the formation of the large particle which is not considered 

in the simulations, the time scale of 𝜏0 is likely to be around 101 s. 

Assuming 𝜏0 = 10 s, the diffusion coefficient of unit CNP 𝐷0 is 

3.6 nm2/s from equation 𝜏0 = 4𝑟0
2/𝐷0. For comparison, the theoretical 

diffusion coefficient is given by 𝐷th = 𝑘𝐵𝑇/6𝜋𝜇𝑟 from the Stokes-

Einstein value of the molecular self-diffusion coefficient where 𝜇 

is the solution viscosity. [69] In our experimental condition, the 

solution is gaseous phase with He-diluted SiH4, H2 and N2. Thus, 

assuming the gaseous viscosity 𝜇 = 10−6 𝑃𝑎 ∙ 𝑠, theoretical diffusion 

coefficients 𝐷0,th is calculated by  1.23 × 108nm2/s, which is 8 orders 

of magnitude larger than 𝐷0. Note that gaseous viscosity is ranged 

from 10-6 - 10-5 and liquid viscosity is ranged from 10-4 - 100. 

[70,71] 
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Table 4.1 shows the experimental diffusion coefficients 𝐷exp 

and theoretical diffusion coefficients (𝐷th = 𝑘𝐵𝑇/6𝜋𝜇𝑟 in 

experimental studies or 𝐷th set in simulation studies) from 

nanoparticle diffusion studies. [59,65,72-75] It can be seen that 

𝐷exp is reported to be 5-10 orders of magnitude smaller than 𝐷th. 

This phenomenon is called hindered nanoparticle diffusion or 

nanoparticle diffusion hinderances. Various hypotheses for the 

diffusion hinderances were suggested including increased drag 

force near the window surface, [73,76] surface roughness, [73] 

highly viscous ordered liquid layers, [73,74] strong NP-window 

interactions, [73,74,77] and electrostatically-induced surface 

diffusion. [72] It seems clear that the diffusion hinderance effect is 

due to close distance to the surface, however, the accurate 

mechanism causing the decreased mobility of nanoparticle still 

remains unclear. It is expected that the time scale and diffusion 

coefficients will be predicted more accurately through more studies.  

Additionally, Figures 4.4(b) and (c) also showed the formation 

of a band near the outer boundary of the depletion zone, where 

particle sizes are larger in comparison with those in the farther 

region from the center of the large particle. This feature was also 

observed in the experimental result of Figure 4.1. In order to 

explain this behavior, we investigated the final particle size 
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distribution for the experimental result in Figure 4.1(b) using 

ImageJ software [79]. Since the particle sizes near the outer 

boundary of the depletion zone are larger than those in the farther 

region outside the depletion zone, we divided the region of Figure 

4.1(b) into two parts, the one (Part 1) containing the boundary and 

the other (Part 2) [see Figure 4.6(a)]. Here, the particle size 

distribution results in Figure 4.6(b) are normalized to represent the 

probability. As shown in Figure 4.6(b), most of particle sizes range 

from 5 nm to 20 nm in diameter. Some particle sizes exceeding 20 

nm in diameter are also seen in Part 1. Regarding this phenomenon, 

it is noted that, after charge accumulation on the large CNP, many 

small CNPs are repelled from the large CNP, with their electrostatic 

energy decreasing with the inter-particle distance between large 

and small CNPs, as shown in Figures 4.4(b) and (c). The density of 

small CNPs near the outer boundary of the depletion zone becomes 

higher than that in the farther region outside the depletion zone. 

Thereby, the particle sizes increase by the coalescence of CNPs in 

the high particle density region near the outer boundary of the 

depletion zone. This well explains the formation of a band near the 

outer boundary of the depletion zone, where particle sizes are 

larger in comparison with those in the farther region from the 

center of the large particle. (see Figure 4.6) 
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 𝐷exp 𝐷th Ref. 

Our study 3.6 1.23 × 108   

Experiment 

studies 

0.1 − 7 1.63 × 107 [72] 

0.048 ∼ 108 [73] 

7 4.1 × 105 [74] 

0.165 − 0.268 ∼ 108 
[75], 

 𝜇 from [78]  

Simulation 

studies 

- 4 × 107  [59] 

- 102 − 106  [65] 

Table 4.1 Experimental diffusion coefficients 𝐷exp and theoretical 

diffusion coefficients: 𝐷th = 𝑘𝐵𝑇/6𝜋𝜇𝑟 in experimental studies or 

𝐷th set in simulation studies. The diffusion coefficients are 

expressed in units of nm2/s . 
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Figure 4.6 Particle size distributions in a higher-magnification 

image of Figure 4.1(a). In (a), the particle zones are divided into 

two parts (Part 1 and Part 2). In (b), the particle size distribution 

results are normalized to represent the probability. 
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4.4. Conclusion 
 

 

In this chapter, using kMC simulations, we investigated the 

dynamics of small CNPs in the presence of a large CNP, 

respectively. The results of kMC simulation, in which all small 

particles were assumed to be electrically charged, showed that a 

particle depletion zone was formed around the large particle in two 

stages. In the first stage, a relatively small particle depletion zone 

was formed around the large CNP owing to its attraction and 

coalescence with nearby small particles having the same charge. 

Charges were accumulated on the large CNP during this process. In 

the second stage, the particle depletion zone was expanded owing 

to the repulsion of distant small particles from the large particle 

because of the accumulated charge. Further analysis showed that 

the imbalance between the numbers of positively and negatively 

charged small particles was the most important factor influencing 

the formation of the particle depletion zone. The formation and 

expansion of the zone at a 𝛾+ close to 1 were more intense than 

those at other 𝛾+ values. The results showed that kMC based on 

the electrostatic potential energy calculation is a powerful tool for 

studying non-classical crystallization with CNPs as building blocks. 
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Chapter 5. Effects of electrostatic interaction 

on abnormal growth of deposited particles  
 

 

Reprinted with permission from M. G. Byun, J. H. Park, J. W. Yang, 

N. M. Hwang, J. Park, and B. D. Yu, “The effects of electrostatic 

interactions on abnormal growth of particles deposited by charged 

nanoparticles during chemical vapor deposition of silicon,” 

Electronic Materials Letters, pp. 1–11, 2022 [44]. Copyright © 2022 

Springer Publishing Company, LLC. 

 

 

5.1. Introduction 
 

 

An additional (puzzling) phenomenon is not explained by the 

classical crystallization theory. Kumomi et al. [53-55] reported an 

unusual feature during CVD of silicon (Si) in a Si-Cl-H system 

(Figure 5.1). Si deposition and etching proceeded simultaneously 

when Si was selectively deposited on SiNx patterned on SiO2 [55]. 

Figure 5.1 shows the microstructural evolution of substrate-

deposited Si particles at three deposition times. At 480 s [Figure 

5.1(a)], many fine Si particles were selectively deposited on 

4 × 4 μm2 square portions of SiNx (x = 0.56). At 720 s [Figure 

5.1(b)], one large particle was apparent; the fine particles had 

disappeared (because they were etched). Notably, at 960 s [Figure 

5.1(c)], abnormal growth of one large particle was observed in 

most SiNx specimens; vacancies attributable to complete particle 
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etch removal were observed in only a few SiNx specimens. Large 

particle growth is not a feature of classical crystal growth theory, in 

which the units of both deposition and etching are atomic. Hwang 

[21,80] employed a theory involving CNPs to explain such abnormal 

growth, assuming that CNPs nucleated in the gas phase became the 

building blocks. In such a case, gaseous atomic Si is depleted by 

gas-phase nucleation of Si nanoparticles; the depleted gas drives 

the etching of Si nanoparticles by atomic units. Thereby, the units 

of deposition are CNPs, but the units of etching are atomic. 

However, why did only one particle grow abnormally? Hwang [80] 

suggested that electrostatic interactions among CNPs play crucial 

roles in abnormal growth. However, the physical mechanism 

underlying such growth during Si CVD remains unclear. 

Here, we theoretically explore that physical mechanism. We 

consider CNPs generated in the gas phase. We performed kinetic 

Monte Carlo (kMC) simulations to investigate the growth behaviors 

of a three-dimensional multi-CNP system based on the 

electrostatic potential energy among CNPs. We explored the effects 

of electrostatic interactions and other growth parameters on the 

abnormal growth of deposited particles. 
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Figure 5.1 Scanning electron microscopy (SEM) images of Si-

deposited surfaces at three deposition times. 4 × 4 μm2 specimens 

of SiNx (x = 0.56) are placed on an SiO2 surface. The images show 

magnifications of one of the SiNx specimens presented below. (a) 

At 480 s, many fine nanoparticles are selectively deposited on all 

SiNx specimens. (b) At 720 s, very large nanoparticle is evident 

among the fine nanoparticles on a few SiNx specimens. (c) At 960 

s, most SiNx specimens are covered with single large nanoparticles, 

although some lack nanoparticles. (adapted from ref [55]) 
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5.2. Computational Details 
 

 

We performed kMC simulations to examine the growth 

dynamics of many-CNP systems. The electrostatic energies of the 

systems for the simulation were obtained by calculating the 

capacitance coefficients used in Chapter 3. [see Equations (16), 

(31)-(34)]. We approximated the values of 𝐶𝑖𝑗 (to an accuracy of 

10−7 via finite summation of the infinite series shown in Equations 

(31)-(33). We used the truncated form of the electrostatic 

potential energy 𝑊 to improve computational efficiency as follows: 

𝑊cut(𝑐) = {
𝑊(𝑐) − 𝑊(𝑐cut)          𝑐 ≤ 𝑐cut

0                                       𝑐 > 𝑐cut
 (39) 

 

The cutoff distance 𝑐cut was set to 5(𝑟1 + 𝑟2). Thus, only 

particles that lie closer than 𝑐cut = 5(𝑟1 + 𝑟2) engage in mutual 

electrostatic interactions. 

The CNPs were modeled as spheres. Simulations were 

performed in a three-dimensional cubic domain with side lengths of 

𝐿. The kMC simulation procedures were as follows: 

 

1.  CNPs of radius 𝑟0 and charge ±𝑞0 were initially generated 

at random positions (without overlaps) within the simulation 

domain. The initial particle number was 𝑁0 = 𝜂𝐿3/
4𝜋

3
𝑟0

3, and 
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the particle volume fraction 𝜂 (this is the fraction of the 

volume occupied by CNPs in the gas phase). The particle 

volume fraction 𝜂 was maintained constant by generating 

new CNPs with radii 𝑟0 in the gas phase whenever the value 

assigned to 𝜂 fell. Note that all particles in contact with the 

substrate were considered to be deposited (their positions 

were thus fixed). Only particles in the gas phase moved 

during simulation. 

 

2.  We next selected one random CNP in the gas phase. The 

trial displacement relative to the center thereof was 𝑑 =

𝑑(sin 𝜙 cos 𝜃 , sin 𝜙 sin 𝜃 , cos 𝜙) where 𝑑 is the displacement 

magnitude. The polar angle 𝜙 = arccos(2𝑢 − 1) and the 

azimuthal angle 𝜃 = 2𝜋𝑣 were selected from the uniformly 

distributed random variables 𝑢 and 𝑣, respectively; these 

ranged from 0 to 1. 

 

We assumed that when two CNPs with charges 𝑞𝑖, radii 𝑟𝑖, 

and center positions 𝑅𝑖
⃗⃗ ⃗⃗  (𝑖 = 1,2) came into contact (𝑐 ≤ 𝑟1 +

𝑟2), they quickly coalesced into a spherical particle; the 

charge and radius of which became 𝑞 = 𝑞1 + 𝑞2 and 𝑟 =

(𝑟1
3 + 𝑟2

3)1/3 respectively. The position �⃗⃗� of a coalesced 
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particle is determined by the center of mass of the two 

CNPs when both are either in the gas phase or deposited: 

�⃗⃗� = (�⃗⃗�1r1
3 + �⃗⃗�2𝑟2

3)/(𝑟1
3 + 𝑟2

3). When one (𝑖 = 1) is deposited and 

the other (𝑖 = 2) is in the gas phase, the position �⃗⃗� of the 

coalesced particle is the same as that of the deposited 

particle: �⃗⃗� =  �⃗⃗�1. 

 

During a trial time step Δ𝑡 = 𝑑2/12𝐷, where 𝐷 is the 

diffusion coefficient of a particle of radius 𝑟, the trial 

displacement magnitude 𝑑 was 𝑑 = 𝑑0(𝑟0/𝑟)1/2, wherein 𝑑0 

is the trial displacement magnitude of a particle of radius 𝑟0. 

[42] Note that the relationship between the diffusion 

coefficient 𝐷 and the radius 𝑟 of a particle is 𝐷 ∼ 𝑟−1. [65] 

𝑑0 was empirically set to 0.1𝑟0 and a characteristic time 

scale 𝜏0 = 4𝑟0
2/𝐷0 served as the time unit during simulation. 

[42,59,65,81] 

     

3. Move was accepted or rejected based on the Glauber 

transition probability 𝑝 = [1 + exp (
Δ𝐸

𝑘B𝑇
)]

−1

 where Δ𝐸 is the 

change in the potential energy 𝑊 with the trial 
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displacement, 𝑘B is the Boltzmann constant, and 𝑇 is the 

temperature. [60] 

 

Turning to etching by a gaseous atmosphere depleted of atomic 

Si, it was necessary to add an etching factor that reduced the 

particle size. The etching rate is proportional to the surface area 

𝐴 = 4𝜋𝑟2 of a CNP of radius 𝑟. The rate at which the particle 

volume decreases is 𝑑𝑉/𝑑𝑡 = −𝑘etch𝐴 = −𝑘etch(4𝜋𝑟2) where 𝑘etch is 

an etching rate constant. Given 𝑉 = 4𝜋𝑟3/3, we obtain an etching 

equation: 𝑑𝑟/𝑑𝑡 = −𝑘etch. We also considered the gas-flow effect 

during CVD; we assumed a steady gas flow along the x direction. 

All particles in the gaseous phase moved with velocity 𝑣flow along 

the x direction. Therefore, the x coordinates of all gaseous CNPs 

increase by Δ𝑥 = 𝑣flowΔ𝑡 at each time step Δ𝑡 of the simulation.  
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5.3. Results and Discussions 
 

 

To explore the experimental observation of the abnormal 

growth of deposited Si CNPs during CVD, we simulated a system 

with many CNPs in the gaseous phase. Employing the electrostatic 

interparticle potential energy obtained from the capacitance 

coefficients of two conducting spherical CNPs, we used a kMC 

model to simulate the dynamics of three-dimensional multi-CNP 

systems. We first considered an important growth parameter, thus 

the charge sign ratio of the CNPs (𝛾+). This was written as 𝛾+ =

𝑁0
+/𝑁0, where 𝑁0 and 𝑁0

+ are the initial numbers of total and 

positively CNPs. We also considered the volume fraction of CNPs 

(𝜂) associated with the particle density in the gaseous phase. The 

particle volume fraction 𝜂 was written 𝑉g/(𝑉s − 𝑉d), where 𝑉g, 𝑉s, and 

𝑉d are the volumes of the CNPs in the gas phase, the simulation 

domain and the deposited CNPs respectively. When the value of 𝜂 

became smaller than the initial value (CNPs escaped the domain or 

engaged in etching), new CNPs of radii 𝑟0 and charges 𝑞0 were 

generated at random positions in the gas phase. Their charge signs 

𝑞0 were positive (negative) with probabilities of 𝛾+ (1 − 𝛾+). In 

addition, we considered the drift of the gas-phase CNPs with the 

gas flow velocity 𝑣flow along the x-direction. 
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5.3.1 Effect of the charge-sign CNP ratio 

 

We first performed kMC simulations using CNPs of various 

charge-sign ratios (𝛾+) to investigate 𝛾+-dependent growth 

behaviors. Figure 5.2 shows snapshots of the simulations at 

different times for three values of 𝛾+, thus = 0.5, 0.6, and 0.7. It is 

noted that the sign reversal of CNPs does not affect the simulation 

results due to the charge symmetry of electrostatic energy 𝑊 

including the terms of 𝑄1
2, 𝑄1𝑄2, and 𝑄2

2 of the two CNP charges 𝑄1 

and 𝑄2 [see Equation (16)]. Thereby, the simulation conditions 𝛾+ 

and (1 − 𝛾+) show the same growth behavior. The 𝑣flow = 5 nm/𝜏0  

for gas drift velocity was held low to accelerate the growth 

dynamics. The blue and black spheres represent CNPs in the gas 

phase and deposited CNPs on the substrate (in the xy-plane), 

respectively. To explore the details, we plotted the radii 𝑅max and 

charges 𝑄max of the largest deposited particles over time. Figure 

5.3 shows the 𝑅max and 𝑄max for each value of (representative) 

𝛾+ = 0.5 − 0.9. Although not shown in Figure 5.2, the results for 𝛾+ =

0.8 and 0.9 appear in Figure 5.3 (for comparison). 

At the 𝛾+ = 0.5 of Figure 5.2(a), the numbers of positively and 

negatively CNPs in the gas phase are balanced. Figure 5.2(a) shows 

that many small CNPs in the gas phase become deposited on the 
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substrate around 𝑡 = 100𝜏0 and that one such CNPs grows 

continuously over time. This mirrors the experimental data; only 

one CNP grew. Figure 5.3(a) shows the detailed evolution of 

abnormal deposited CNP growth. The change in 𝑅max at 𝛾+ = 0.5 

evident in Figure 5.2(a) indicates that a specific CNP grows 

continuously by coalescing with other CNPs. The drastic increases 

in 𝛾+ observed at 𝑡 ≈ 2500𝜏0 and 4000𝜏0 indicate that coalescence 

with other large deposited CNPs is also in play. When 𝑡 attains ∼

9000𝜏0, 𝑅max becomes saturated near 600 nm, thus the maximum 

value in the simulation domain. Herein we briefly remark the choice 

of the cutoff distance 𝑐cut set to 5(𝑟1 + 𝑟2). The 𝑐cut value was 

chosen so that the value of (
𝑑𝑊

𝑑𝑐
)

𝑐=𝑐cut

, the electrostatic potential 

energy gradient at 𝑐cut, was small enough not to cause any 

noticeable simulation errors. To assess the validity of the 𝑐cut value 

set above, we also performed test calculations for the time at which 

𝑅max becomes saturated near 600 nm, the maximum value in the 

simulation domain, for 𝛾+ = 0.5 in Figure 5.3(a), using the larger 

𝑐cut value of 5.5(𝑟1 + 𝑟2). The test calculations showed that the 

saturation time for 𝑅max changed less than 0.1%. Thus, the 𝑐cut 

value of 5(𝑟1 + 𝑟2) used here is sufficient for the purpose of the 

present study. 
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A physical explanation of this abnormal growth becomes 

apparent on analysis of the 𝑄max value in Figure 5.3(b) and the 

electrostatic interactions between the largest deposited CNPs and 

CNPs in the gas. Figure 5.3(b) shows that the values of 𝑄max at 

𝛾+ = 0.5 fluctuate between −100𝑒 and 130𝑒. This indicates that the 

charges of the deposited CNPs do not accumulate; both positively 

and negatively CNPs in the gas actively coalesce. In terms of the 

electrostatic interactions between deposited CNPs and CNPs in the 

gas phase, we considered two cases: when the charges were unlike 

and like. In the former case, interactions are always attractive, 

accelerating the growth of deposited CNPs. Such interactions 

become stronger as the separation distance 𝑠 shortens and the 

numbers of unlike charges increase. 

In the latter case (like charges), the electrostatic interactions 

depend on the separation distance 𝑠. CNPs with like charges are 

attractive when that distance  𝑠 is smaller than the transition 

separation distance 𝑠∗ (which depends on the CNP charges and 

radii). Chapter 3 and our previous study [42] showed that positive 

charges are induced on the surface area of the small CNP adjacent 

to the large CNP, while negative charges are induced on the surface 

area of the large one adjacent to the small one when they are closer 

than 𝑠∗. Thus, the adjacent areas of the two CNPs have oppositely 
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induced surface charges, which causes attractive interactions 

between the two CNPs. Conversely, when the distance exceeds 𝑠∗, 

the CNPs engage in mutual repulsion. Figure 3.4 plots 𝑠∗ as a 

function of 𝑄/𝑞 for two CNP systems with charges of 𝑞 and 𝑄, 

radii of 𝑟 = 20 nm, and 𝑅 = 100 − 500 nm. For any given 𝑅, 𝑠∗ 

decreases when 𝑄/𝑞 increases. Thus, the smaller the charge 

accumulation of deposited CNPs, the longer the attractive 

interaction range. Figure 3.4 also shows that for any given 𝑄/𝑞, 𝑠∗ 

increases as the radius 𝑅  of a (large) CNP increases. Thus, larger 

deposited CNPs tend to engage in attractive interactions with more 

CNPs (with like charges) in the gas phase, further increasing 𝑅max. 

These interactions of 𝑠∗ with 𝑄max and 𝑅max explain the abnormal 

growth of the largest deposited CNP at 𝛾+ = 0.5 well. 

At 𝛾+ = 0.6 in Figure 5.2(b), the positively CNPs account for 

60% of all CNPs; charge is thus imbalanced. Figure 5.2(b) shows 

that some CNPs from the gas phase become deposited on the 

substrate around 𝑡 = 100𝜏0, and that further growth of such 

deposited CNPs is limited, although some do to a certain extent. At 

the value of 𝑅max at 𝛾+ = 0.6 of Figure 5.3(a), the radius of the 

largest CNP barely exceeds 200 nm. The value of 𝑄max at 𝛾+ = 0.6 

of Figure 5.3(b) shows that the charge of the largest deposited CNP 

gradually increases (with some fluctuations) over time, in contrast 
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to the behavior noted at 𝛾+ = 0.5. Figure 3.4 shows that the values 

of 𝑠∗ for systems of two CNPs with 𝑅 = 200 nm and 𝑄/𝑞 = 101 − 102 

(corresponding to an 𝑅max and a 𝑄max of the largest deposited CNP 

at 𝛾+ = 0.6 respectively) are much smaller compared to what is 

apparent at 𝛾+ = 0.5. Thus, the largest deposited CNP is associated 

with a narrower, attractive interaction zone with CNPs of like 

charge in the gas phase than is the case at 𝛾+ = 0.5. Thereby, 

coalescence of CNPs in the gas phase is activated, at the cost of the 

growth of a deposited CNP. Figure 5.2(b) shows CNPs with radii of 

∼ 100 nm or larger in the gas phase at 𝑡 = 5000𝜏0 and 15000𝜏0. 

Notably, such aggregated gaseous CNPs always appear during the 

time over which 𝑅max decreases markedly. Representative 

examples of such time ranges include 𝑡 = 2300 − 4700𝜏0, 5500 −

7500𝜏0, and 11500 − 13300𝜏0. Aggregated CNPs move slowly in gas 

because their radii �̃�̃ are large (D ∼ 1/�̃�)̃; residence time in the gas 

phase is long. The slow diffusion/long residence time in the gas 

prevent rapid growth of deposited CNPs. These features of CNPs 

limit the supply of small gaseous CNPs to deposited CNPs. Thus, 

abnormal growth of deposited CNPs is reduced compared to that at 

𝛾+ = 0.5. 

At 𝛾+ = 0.7, positively CNPs account for 70% of all CNPs; sign 

imbalance is more severe than that at 𝛾+ = 0.6. Figure 5.2(c) shows 
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that the sizes of deposited CNPs are smaller than those at 𝛾+ = 0.6 

[Figure 5.2(b)]. Similar behaviors are observed at 𝛾+ = 0.8 and 0.9. 

In Figure 5.3(a), the values of 𝑅max at 𝛾+ = 0.7, 0.8, and 0.9 all 

remain within 100-150 nm, which is smaller than that at 𝛾+ = 0.6.  

Figure 5.3(b) shows the faster charge accumulation on the 

deposited CNPs at 𝛾+ = 0.7 − 0.9, as compared with that at 𝛾+ = 0.6. 

Thereby, the largest deposited CNP at 𝛾+ = 0.7 − 0.9 has a narrow 

attractive interaction zone of smaller 𝑠∗ with CNPs of like-charge 

in the gas phase, as compared with that at 𝛾+ = 0.6. Similar to what 

is noted at 𝛾+ = 0.6, deposited CNPs do not grow; rather, gaseous 

CNPs coalesce. Figure 5.2(c) (𝛾+ = 0.7) reveals CNPs of radii ∼

100 nm or greater in the gas at 𝑡 = 6000 and 15000𝜏0. The slow 

diffusion/long residence time of large CNPs in the gas phase limits 

the supply of small CNPs to deposited CNPs. Abnormal growth of 

deposited CNPs at 𝛾+ = 0.7 − 0.9 with a high charge sign imbalance 

was reduced, as was also apparent at 𝛾+ = 0.6. 
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Figure 5.2 kMC simulation results: Snapshots of systems with CNPs 

in the gas phase and deposited CNPs at different simulation times 

(𝜏0). Three values of the charge sign ratio 𝛾+ were explored: (a) 

0.5, (b) 0.6, and (c) 0.7. Blue and black spheres represent the 

positions and sizes of CNPs in the gas phase and deposited CNPs, 

respectively. The initial parameters for simulation were 𝑟0 = 20 nm, 

𝑞0 = ±𝑒, 𝜂 = 0.03, 𝑇 = 1223 K, 𝑘etch = 0.05 nm/𝜏0, and 𝑣flow = 5 nm/𝜏0. 

The dimensions of each domain were 1000 × 1000 × 1000 nm3. 
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Figure 5.3 (a) The radius 𝑅max and (b) the charge 𝑄max of the 

largest deposited particle as a function of 𝑡 (𝜏0), as indicated by the 

kMC simulation results of Figure 5.2, for 𝛾+ = 0.5 − 0.9. 
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5.3.2 Effect of volume fraction of CNPs 

 

We next investigated the growth behaviors of deposited CNPs 

when the volume fraction 𝜂 of CNPs in the gas phase varied. Note 

that 𝜂 is similar to the number density of CNPs in the gas phase 

under experimental conditions. We used 𝛾+ = 0.5 to balance charges 

of CNPs in the gas phase and 𝑣flow = 5 nm/𝜏0 to accelerate the 

growth dynamics. 

Figure 5.4 shows snapshots of kMC simulations at different 

times for three values of 𝜂 (0.005, 0.02, and 0.03). To obtain the 

details, we plotted the radius (𝑅max) of the largest deposited CNP 

over time. Figure 5.5 shows the 𝑅max values for representative 𝜂 =

0.005 − 0.05. Although not shown in Figure 5.4, the results for 𝜂 =

0.01, 0.04 and 0.05 are shown in Figure 5.5 (for comparison). 

At 𝜂 = 0.005 in Figure 5.4(a), some CNPs are deposited; 

however, they barely grow. The value of 𝑅max at 𝜂 = 0.005 in 

Figure 5.4 remains less than 70 nm during the entire simulation. 

This implies that the growth rate of deposited CNPs is even smaller 

than the etching rate afforded by the low CNP number density in the 

gas phase. At 𝜂 = 0.01 in Figure 5.5, the value of 𝑅max is always 

less than 120 nm during the simulation. Although 𝑅max is larger 

than that at 𝜂 = 0.005 (because there are more CNPs in the gas 
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phase), the CNP density at 𝜂 = 0.01 does not allow the growth rate 

to exceed the etching rate. 

At 𝜂 = 0.02 in Figure 5.4(b), several CNPs of similar radii 

(about 150 nm) are deposited at 𝑡 = 10000𝜏0; grow steadily; and 

coalesce into one large CNP before 𝑡 = 20000𝜏0. Thereafter, the 

large CNP continuously grows (as shown at 𝑡 = 30000𝜏0). The 𝑅max 

at 𝜂 = 0.02 of Figure 5.5 shows that growth of the largest deposited 

CNP stagnates around 𝑅max = 175 nm until 𝑡 ≈ 15500𝜏0. A drastic 

increase in 𝑅max occurs at 𝑡 ≈ 15500𝜏0, attributable to coalescence 

with adjacent, large deposited CNPs. After 𝑡 ≈ 15500𝜏0, the largest 

deposited CNP grows even further. At 𝑡 ≈ 24000𝜏0, 𝑅max attains 

about 600 nm, thus the maximum radius of the simulation domain. 

At the 𝜂 = 0.03 of Figure 5.4(c), the growth rate of deposited 

CNPs is faster than that at the 𝜂 = 0.02 of Figure 5.4(b). The value 

of 𝑅max of Figure 5.5 shows that the largest deposited CNP at 𝜂 =

0.03 grows faster than that at 𝜂 = 0.02. 𝑅max attains about 600 nm 

at 𝑡 ≈ 9000𝜏0. At the 𝜂 = 0.04, 0.05 of Figure 5.5, the times taken to 

attain 𝑅max ≈ 600 nm are 𝑡 ≈ 4700𝜏0 and 2800𝜏0, respectively, thus 

shorter than that at 𝜂 = 0.03. These results are explained by more 

frequent coalescence between deposited CNPs and CNPs in the gas 

phase as the particle volume fraction 𝜂 increases. Thus, abnormal 
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growth of deposited CNPs is enhanced when the volume fraction 𝜂 

of CNPs in the gas phase increases. 
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Figure 5.4 kMC simulation results: Snapshots of systems with CNPs 

in the gas phase and deposited CNPs at different simulation times 

(𝜏0). Three values of the volume fraction 𝜂 were explored: (a) 

0.005, (b) 0.02, and (c) 0.03. The blue and black spheres represent 

the positions and sizes of CNPs in the gas phase and deposited 

CNPs, respectively. The initial parameters for simulation were 𝑟0 =

20 nm, 𝑞0 = ±𝑒, 𝛾+ = 0.5, 𝑇 = 1223 K, 𝑘etch = 0.05 nm/𝜏0, and 𝑣flow =

5 nm/𝜏0. The dimensions of each domain were 1000 × 1000 ×

1000 nm3. 
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Figure 5.5 The radius 𝑅max of the largest deposited particle as a 

function of 𝑡 (𝜏0), obtained from the kMC simulation results in 

Figure 5.4, for 𝜂 = 0.005 − 0.05. 
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5.3.3 Effect of gas flow velocity 

 

Above, we show that the charge sign balance (𝛾+) and volume 

fraction (𝜂) of the CNPs in the gas phase were important in terms 

of abnormal growth of deposited CNPs. However, 𝛾+ and 𝜂 are 

difficult to experimentally control. Thus, we now consider the drift 

velocity 𝑣flow of CNPs in the gas phase; this can be controlled. We 

varied 𝑣flow at 𝛾+ = 0.6 and 𝜂 = 0.03 and compared the results to 

those of Figure 5.2(b) at 𝑣flow = 5 nm/𝜏0. 

Figure 5.6 shows snapshots of kMC simulations at different 

times for three values of 𝑣flow (0, 10, and 15 nm/𝜏0). To explore 

the details, we plotted the radius 𝑅max of the largest deposited CNP 

over time. Figure 5.7 shows the 𝑅max results for each 

representative 𝑣flow = 0 − 20 nm/𝜏0. The results at 𝑣flow = 5 nm/𝜏0 

are shown in Figure 5.2(b). Although not shown in Figure 5.6, the 

data at 𝑣flow = 20 nm/𝜏0 are shown in Figure 5.7 (for comparison). 

At the 𝑣flow = 0 nm/𝜏0 of Figure 5.6(a), there is no gas flow; 

CNPs in the gas phase diffuse only via electrostatic interactions. At 

the 𝑅max at 𝑣flow = 0 nm/𝜏0 of Figure 5.7, the radius of the largest 

deposited CNP is below 190 nm during the entire simulation, thus 

similar to what is apparent in Figure 5.2(b) at 𝑣flow = 5 nm/𝜏0, 

where abnormal growth of deposited CNPs was inhibited. 
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At the 𝑣flow = 10 nm/𝜏0 of Figure 5.6(b), the gas flow velocity is 

twice that of Figure 5.2(b). Two deposited CNPs with 𝑅 = 250 nm 

(approximately) are observed at 𝑡 = 5000𝜏0; they steadily grow and 

coalesce into a single CNP before 𝑡 = 7500𝜏0;. The value of 𝑅max at 

𝑣flow = 10 nm/𝜏0 in Figure 5.7 indicates that the coalescence time is 

𝑡 = 7240𝜏0, at which time the value of 𝑅max drastically increases. 

After coalescence, the largest deposited CNP grows continuously. 

At 𝑡 ≈ 9000𝜏0, 𝑅max attains about 600 nm, thus the maximum radius 

of the simulation domain.  

At the 𝑣flow = 15 nm/𝜏0 of Figure 5.6(c), the growth rate of 

deposited CNPs is faster than that at the 𝑣flow = 10 nm/𝜏0 of Figure 

5.6(b). The value of 𝑅max in Figure 5.7 shows that the largest 

deposited CNP at 𝑣flow = 15 nm/𝜏0 grows faster than that deposited 

at 𝑣flow = 10 nm/𝜏0. 𝑅max attains about 600 nm at 𝑡 ≈ 5000𝜏0. At the 

𝑣flow = 20 nm/𝜏0 of Figure 5.7, the time taken to attain 𝑅max ≈

600 nm is 2500𝜏0, thus shorter than that at 𝑣flow = 15 nm/𝜏0. 

The values of 𝑅max at 𝑣flow = 0 − 20 nm/𝜏0 in Figure 5.7 clearly 

show that abnormal growth of deposited CNPs is accelerated by 

increasing the gas flow velocity 𝑣flow. To explore the details, we 

investigated the CNP distributions in the gas phase. The snapshot 

taken at 𝑡 = 5000𝜏0 of Figure 5.6(b) of 𝑣flow = 10 nm/𝜏0 shows a 

drastic decrease in the number of large CNPs (radii over 100 nm) 
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in the gas phase compared to that of snapshot taken at the 𝑡 =

5000𝜏0 of Figure 5.2(b) of 𝑣flow = 5 nm/𝜏0. The simulation showed 

that increased gas flow reduced the residence times of CNPs in gas 

by pushing them out of the simulation domain. Thus, a higher 𝑣flow 

inhibits the formation of large CNPs in the gas phase, in turn 

reducing abnormal growth of deposited CNPs. When large-CNP 

formation in the gas phase is suppressed, small CNPs newly 

generated in the gas increase, and more coalesce with larger 

deposited CNPs. These effects of 𝑣flow explain the abnormal growth 

of deposited CNPs well. 
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Figure 5.6 kMC simulation results: Snapshots of systems with CNPs 

in the gas phase and deposited CNPs at different simulation times 

(𝜏0.). Three gas flow velocities 𝑣flow were explored: (a) 0 (no 

flow), (b) 10, and (c) 15 nm/𝜏0. The blue and black spheres 

represent the positions and sizes of CNPs in the gas phase and 

deposited CNPs, respectively. The initial parameters for simulation 

were 𝑟0 = 20 nm, 𝑞0 = ±𝑒, 𝛾+ = 0.6, 𝜂 = 0.03, 𝑇 = 1223 K, and 𝑘etch =

0.05 nm/𝜏0. The dimensions of each domain were 1000 × 1000 ×

1000 nm3. 
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Figure 5.7 The radius 𝑅max of the largest deposited particle as a 

function of 𝑡 (𝜏0), obtained from the kMC simulation results in 

Figure 5.6, for 𝑣flow = 0 − 20 nm/𝜏0. 
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5.3.4 Characteristic time scale and characteristic feature for 

CNP growth 

 

We briefly turn to the characteristic time scale, 𝜏0, of the kMC 

simulations. Figure 5.6(b) that employs 𝛾+ = 0.6, 𝜂 = 0.03, and 

𝑣flow = 10 nm/𝜏0 yielded simulation results similar to those of 

experiments [Figure 5.1(c)] at 𝑡 ≈ 10000𝜏0. As the experimental 

time was ≈ 1000 s in Figure 5.1(c), the time scale of 𝜏0 is roughly 

0.1 s. Assuming 𝜏0 = 0.1 s, the diffusion coefficient 𝐷0 of unit CNP 

with radius 𝑟0 = 20 nm in the gas phase is calculated as 𝐷0 =

1.6 × 104 nm2/s from 𝜏0 = 4𝑟0
2/𝐷0. Then, diffusion coefficient of CNP 

with a radius of 𝑟 = 3 nm is calculated as 𝐷(𝑟 = 3nm) = 1.07 ×

105 nm2/ s from 𝐷 ∼ 𝑟−1, which is 5 orders of magnitude larger than 

its value 𝐷exp = 3.6 nm2/ s obtained from Chapter 4. (see Table 4.1) 

In other words, it is much closer to the theoretical value 𝐷th ≈

 108 nm2/ s. Considering that the difference between the 

experimental and theoretical values comes from the surface effect, 

the simulation models used in Chapter 5 seem to be much less 

affected by the substrate surface: CNPs in the gas phase relatively 

far from the substrate surface are mainly dealt with. 

The lower panel in Figure 5.1(c) shows vacancies on a few 

SiNx units. We suggest that these reflect effects exerted by 
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surrounding units with abnormally large deposited CNPs. A detailed 

evaluation is beyond the scope of the present work; we have 

focused on the abnormal growth of large deposited CNPs on single 

SiNx units. Further studies will be revealing. 

We also briefly mention the characteristic feature for CNP 

growth under specific conditions of 𝜂 = 0.02 in Figures 5.4(b) and 

5.5 and of 𝑣flow = 10 nm/𝜏0 in Figures 5.6(b) and 5.7. The 

simulation results under those specific conditions for the abnormal 

growth of deposited CNPs showed the steady growth of large 

deposited CNPs with the similar size as seen at 𝑡 = 10000 in Figure 

5.4(b) and 𝑡 = 5000 in Figure 5.6(b). Thereafter, the large CNPs 

coalesced into one large CNP, which continuously grew. It was 

found that the largest deposited CNP grew even further when 𝑅max 

exceeded a certain critical size. The critical radii were in the ranges 

of 200-250 nm at 𝜂 = 0.02 in Figure 5.5 and 250-350 nm at 

𝑣flow = 10 nm/𝜏0 in Figure 5.7. For detailed information about the 

critical radius for the abnormal growth of deposited CNPs, more 

studies will be needed. 
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5.4. Conclusion 
 

 

To understand the physics underlying of the abnormal growth 

of deposited Si particles during CVD, we performed kMC 

simulations of three-dimensional multi-CNP systems featuring 

electrostatic interactions. We investigated the growth behaviors of 

CNPs on substrates. CNPs were generated in the gas and etching 

proceeded at a constant rate. We discovered three important 

parameters that affected the growth of deposited CNPs. The first, 

𝛾+, was the ratio of positively CNPs to all CNPs in the gas. When 

the charge was balanced (𝛾+ = 0.5), abnormal growth of the 

deposited CNPs was favored; this was not the case when the charge 

was imbalanced. The second parameter was 𝜂, thus the volume 

fraction of CNPs in the gas phase. When 𝜂 = 0.02 or higher, 

abnormal growth of deposited CNPs was favored given the frequent 

coalescence between deposited CNPs and CNPs in the gas. The last 

parameter was 𝑣flow, thus the gas flow velocity along the lateral 

surface. Abnormal growth of deposited CNPs was favored at larger 

𝑣flow: Faster flow suppressed the formation of large CNPs in the 

gas, in turn inhibiting abnormal growth of deposited CNPs. The 

increased supply of small CNPs newly generated in the gas 

enhanced their coalescence with larger deposited CNPs. In 
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summary, our kMC simulations based on non-classical 

crystallization theory (thus the use of CNPs as the building blocks 

for particle growth) explain the abnormal growth of deposited 

particles well. 
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Chapter 6. Effects of substrate electrical 

conductivity on growth of deposited particles  
 

 

6.1. Introduction 
 

 

It has been reported that different deposition behaviors are 

observed depending on the electrical conductivity of the substrate. 

As mentioned in Chapter. 1, Figure 1.3 shows that considerably 

porous and graphitic soot particles grow on an iron substrate while 

crystalline diamond films grow on the silicon substrate under the 

equal deposition conditions. [22,31] Figure 1.7 shows the results of 

deposited Si films on the floating and grounded Si substrates. [23] 

A dense film with a thickness of ~220nm was deposited on the 

floating substrate in Figures 1.7(a) and (b) while a porous film with 

a thickness of ~190nm was deposited on the grounded substrate in 

Figures 1.7(c) and (d). Similarly, Cheong et al. [82] also compared 

the deposition behavior of Si between the Si and Fe substrates. 

They reported that the results of deposited Si films microstructures 

on Fe and Si substrates. A porous film with a thickness of ~5mm 

was observed on the Fe substrate while dense film with only ~3μm 

was deposited on the Si substrate. 

There is a phenomenological tendency that deposition occurs on 

the conducting area but does not occur on the non-conducting area 
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in the CVD process. Applying this tendency, selective CVD process 

is extensively utilized for the formation of films in microelectronics. 

[83-85] A target metal is controlled to deposit selectively on a 

specific pattern on the growth surface, typically a metal or a 

semiconductor, in the presence of a non-growth surface, a 

dielectric or insulating material. These selective CVD processes 

have been mainly called selective growth selective epitaxial growth 

(SEG) [86-88] or selective nucleation-based epitaxy (SENTAXY) 

[53-55, 89]. 

Hwang et al. [80] compared the deposition behavior during Si 

CVD between five different substrates; SiO2, Si3N4 (insulators), Si 

(semi-conductor), Mo and Pt (conductor). Figure 6.1 shows the 

deposition behavior of Si on the (a) Mo, conducting substrate, (b) 

SiO2, insulator. On the conducting substrates, Si deposited steadily 

as time elapses as shown in Figure 6.1(a). On the insulator 

substrates, however, the deposition behavior drastically changed as 

shown in Figure 6.1(b). After 3 min, Si were rarely seen on the 

substrate but after 6 min, an appreciable number density (~ 109 

cm-2) of Si particles was observed. After 12min, most of the Si 

particles had disappeared and they were hardly seen after 24 min.  

As mentioned above, differences in deposition behavior are 

clearly observed depending on the electrical conductivity of 
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substrate. It is qualitatively speculated that the electrostatic 

interaction of CNPs in the gas phase and the substrate is due to this 

difference, the exact physical mechanism still remains unknown. 

Thus, it is necessary to investigate the effect of electrostatic 

interaction on deposition behavior through accurate calculation of 

electrostatic potential energy between CNPs in the gas phase and 

substrate.  

In this chapter, the electrostatic potential energy between a 

CNP and three types of substrate was investigated: grounded 

conductor, floating conductor, and insulator. Then, we performed 

kinetic Monte Carlo (kMC) simulations similar to that used in 

Chapter. 5, but the underlying electrostatic potential energy 

includes between CNPs and substrate as well as among CNPs. We 

explored the effects of electrical conductivity of substrates to the 

growth rates of deposited particles and compared the simulation 

results with the experimental results. 
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Figure 6.1 Time evolution of deposition behavior of Si on the (a) Mo 

and (b) SiO2 substrate with the SiH4 : HCl : H2 gas ratio of 1 : 2 : 97 

under a reactor pressure of 100 Torr at a substrate temperature of 

950 ℃. [80] 
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6.2. Computational Details 
 

 

We performed kMC simulations to compare the growth 

dynamics of many-CNP systems depending on the electrical 

properties of the substrates. The simulation processes are same 

with that of Chapter 5.2. However, during the kMC simulations in 

this chapter, electrostatic potential energy term between CNPs and 

the substrate is added when the substrate is 1) a grounded 

conductor and 2) a floating conductor. Note that when the substrate 

is 3) an insulator, the processes are perfectly same with that of 

Chapter 5.2. 

When substrate is a grounded conductor, the CNPs with charge 

𝑞 in the gas phase lose their charge as soon as they are deposited 

on the substrate (i.e., the value of 𝑞 becomes zero). Unlike when 

the substrate is an insulator, electrostatic potential energy is 

formed between CNPs in the gas phase and the conductor substrate 

due to the induced charge. The CNP in the gas phase was modeled 

as sphere with radius of 𝑟 and charge of 𝑞 [see Figure 6.2(a)]. 

Assuming that the CNPs serve as solid conductors in a continuum, 

the electrostatic potential energy 𝑊𝑖𝑛𝑑𝑢𝑐𝑒𝑑 is given by [90] 

𝑊𝑖𝑛𝑑𝑢𝑐𝑒𝑑 =
𝑞2

2𝐶
 (40) 
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where 𝐶 is the capacitance coefficient between the CNP and the 

conductive substrate expressed by  

𝐶 = 4𝜋𝜖0𝑟 sinh 𝛼  ∑[sinh 𝑛𝛼]−1

∞

𝑛=1

 (41) 

Here, a dimensionless parameter 𝛼 is  

𝛼 =
𝑠 + 𝑟

𝑟
 (42) 

where 𝑠 is the separation distance between the CNP and the 

substrate as shown in Figure 6.2(a). The values of 𝐶 was 

approximated to an accuracy of 10−7 via finite summation of the 

infinite series shown in Equations (41). 

When substrate is a floating conductor, the charge is distributed 

uniformly across the deposited CNPs and the substrate surface [see 

Figure 6.2(b)]. Thus, the surface charge density 𝜎 becomes the 

same, which is defined as: 

𝜎 =
𝑄

𝐴
 (43) 

where 𝑄 is the total accumulated by the deposited CNPs and 𝐴 is 

the surface area of the substrate and the deposited CNPs. The 

deposited CNPs with radius of 𝑟𝑖 have charge of 𝑞𝑖 = 𝜎(4𝜋𝑟𝑖
2). 

The electric field generated by an infinite flat conductor with a 

uniform surface charge density 𝜎 is 𝐸 =
𝜎

2𝜖0
 in the direction 

perpendicular to the plane. Note that the substrate is large enough 
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that it can be assumed to be infinite relative to the size of the CNPs. 

Then, the small force 𝑑𝐹 acting on the small area 𝑑𝐴 with small 

charge 𝑑𝑞 of the CNP in Figure 6.2(b) is 

𝑑𝐹 = 𝐸𝑑𝑞 = 𝐸(2𝜋𝑟2𝜎𝑝 sin 𝜙𝑑𝜙) (44) 

where 𝜎𝑝 and 𝜙 is the surface charge density of the CNP and angle 

to the direction of the electric field, respectively, as displayed in 

Figure 6.2(b). The value of 𝜎𝑝 is given by [56] 

𝜎𝑝 =
𝑞

4𝜋𝑟2
+ 3𝜖0𝐸 cos 𝜙 (45) 

By integrating equation (44) for 𝜙 from 0 to 𝜋, then the force 

𝐹 acting on the CNP by electric field 𝐸 from the substrate is 

expressed by 𝐹 = 𝑞𝐸 =
𝑞𝜎

2𝜖0
. Note that the value of force is 

independent on the size of the CNP. Therefore, the electrostatic 

potential energy 𝑊𝐶𝑜𝑢𝑙𝑜𝑚𝑏 can be obtained by integrating the force 

in the negative direction as follows: 

Δ𝑊𝐶𝑜𝑢𝑙𝑜𝑚𝑏 =  ∫ −𝐹𝑑𝑠
𝑠

𝑠0

= −
𝑞𝜎

2𝜖0
Δ𝑠 

𝑊𝐶𝑜𝑢𝑙𝑜𝑚𝑏 (𝑠) =  𝑊𝐶𝑜𝑢𝑙𝑜𝑚𝑏(𝑠0) −
𝑞𝜎

2𝜖0

(𝑠 − 𝑠0) = −
𝑞𝜎

2𝜖0

(𝑠 − 𝑠0) 

(46) 

where 𝑠0 is arbitrary standard separation distance where 

𝑊𝐶𝑜𝑢𝑙𝑜𝑚𝑏 (𝑠0) = 0 to decide the value of electrostatic potential 

energy. Considering the substrate is conductive, the potential 

energy term by induced charge should be also considered. 
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Therefore, combining equations (40) and (46), the total potential 

energy is given by 

𝑊(𝑠) =  𝑊𝐶𝑜𝑢𝑙𝑜𝑚𝑏 (𝑠) + 𝑊𝑖𝑛𝑑𝑢𝑐𝑒𝑑(𝑠) = −
𝑞𝜎

2𝜖0

(𝑠 − 𝑠0) +
𝑞2

2𝐶
 (47) 

where the capacitance coefficient is given by equations (41) and 

(42). 
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(a) 

(b) 

Figure 6.2 A schematic of system with a spherical CNP and 

substrate. The substrate is (a) grounded conductor (b) floating 

conductor. The green circle denotes a CNP in the gas phase with a 

radius 𝑟 and a charge 𝑞. The blue rectangular parallelepiped and 

black circle denote the substrate and deposited CNP on the 

substrate, respectively. 
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6.3. Results and Discussions 
 

 

6.3.1 Electrostatic potential energy between a CNP and 

conductive substrate 

 

First, we calculated the electrostatic potential energy between a 

CNP and grounded conductive substrate. Figure 6.3 shows the 𝑊 

value divided by 𝑞2 as a function of separation distance 𝑠 between 

a CNP and a grounded substrate. With increasing 𝑠, 𝑊 increases 

and the rate of increase decreases. As the radius of CNP 𝑟 

decreases, the increase rate of 𝑊 increases. Note that this 

tendency is independent of the sign of the CNPs since the square of 

charge 𝑞2 is included in the term. These results indicate that the 

both positively and negatively CNPs are always attractive to the 

grounded conductive substrate from 𝐹𝑠 = −
𝑑𝑊

𝑑𝑠
. The closer to the 

CNP is to the grounded conductive substrate, the smaller the CNP, 

and the greater the charge of the CNP, the stronger the attractive 

interaction. 

When the substrate is a floating conductor, the charges are 

accumulated on the substrate by the deposited CNPs during the 

CVD processes since there is no path for the charge to escape. 

Thus, Coulomb electrostatic potential energy between the CNPs and 



 

 １２４ 

the charges accumulated on the substrate is added compared to the 

grounded substrate. Figure 6.4 shows the value of 𝑊 as a function 

of 𝑠 for the system with the CNP with radius 𝑟 = 5 nm and charge 

𝑞 = +𝑒 and floating conductive substrate with surface charge 

density 𝜎 =  −2 ∗ 10−4  −  +2 ∗ 10−4𝑒/nm2. The standard separation 

distance 𝑠0 is defined as 100 nm so 𝑊(𝑠0 = 100 nm) becomes 0. 

Note that the value of 𝑊 is same with that of 𝑟 = 5 nm in Figure 6.3 

when 𝜎 = 0, i.e. the substrate is grounded conductor. When 𝜎 ≤  0, 

the value of 𝑊 always increases and the increase rate decreases 

with increasing 𝑠 and the absolute value of surface charge density, 

|𝜎|. These indicate the positively CNPs always have attractive 

interaction with the substrate and the interaction becomes stronger 

as the CNPs get closer to the substrate and more negative charges 

are accumulated on the floating substrate.  

When 𝜎 > 0, the values of 𝑊 rapidly increases and then slowly 

decreases with increasing 𝑠, which shows similar tendency with the 

results in Figures. 3.2(b) and 3.3. The gradient of 𝑊 depends on 

the transition separation distance 𝑠∗ defined in Chapter 3.3.1; the 

interaction between the CNP and the substrate becomes attractive 

when 𝑠 < 𝑠∗ and repulsive when 𝑠 > 𝑠∗. At 𝜎 = 1 ∗ 10−4, 2 ∗

10−4𝑒/nm2, the values of 𝑠∗ are 15, 9.3 nm, respectively, as shown 

in Figure 6.4. The values of 𝑊∗, which is the value of 𝑊 when 𝑠 =
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𝑠∗, are 0.0589, 0.139 eV at 𝜎 = 1 ∗ 10−4, 2 ∗ 10−4𝑒/nm2, respectively. 

With increasing value of 𝜎, the value of 𝑠∗ decreases and 𝑊∗ 

increases, whjch indicates the CNP repels stronger as the value of 

𝜎 becomes larger. In other words, the more charges of the same 

sign with the CNP are accumulated on the substrate, the stronger 

the repulsive interaction. 
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Figure 6.3 𝑊, excluding self-energy of CNP, divided by 𝑞2 as a 

function of 𝑠 for the CNP-grounded conductive substrate system. 

The radius of CNP 𝑟 varies from 5 nm to 20 nm. For comparison, 

the value of 𝑊 for point charge is also plotted. 
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Figure 6.4 𝑊, excluding self-energy of CNP as a function of 𝑠 for 

the CNP-floating conductive substrate system (𝑟 = 5 nm, 𝑞 =  +𝑒,

𝑠0 = 100 nm). The surface charge density of the substrate 𝜎 varies 

from −2 ∗ 10−4𝑒/nm2 to +2 ∗ 10−4𝑒/nm2. For the positive 𝜎, the 

values of transition separation distance 𝑠∗ are expressed for each 

𝜎. 
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6.3.2 Substrate conductivity effects on growth behaviors and 

rates of deposited CNPs: non-etching conditions 

 

To investigate the experimental results of the growth behavior 

and rate of deposited CNPs depending on the conductivity of the 

substrate, we simulated the system composed of many-CNPs in the 

gaseous phase by changing the electrical property of the substrate. 

The simulation parameters 𝛾+, 𝜂, 𝑘etch, and 𝑣flow are defined the 

same as in Chapter. 5 and the value of 𝑘etch was set to 0 nm/𝜏0 to 

assume non-etching environment. The values of 𝜂 and 𝑣flow were 

set to 0.001 and 5 nm/𝜏0, respectively. 

We first performed kMC simulations of CNPs for three types of 

substrates by varying the value of 𝛾+. Figure 6.5, 6.6, and 6.7 show 

the snapshots of the simulation results for different times when the 

value of 𝛾+ is 0.5, 0.7 and 0.9, respectively, for three types of 

substrates: (a) grounded conductor, (b) floating conductor, and (c) 

insulator. The red and black spheres represent the CNPs in the gas 

phase and deposited CNPs on the substrate in the xy-plane, 

respectively. To explore the details, we plotted the film thickness 𝑑 

obtained by dividing the total volume of the deposited CNPs by the 

area of the substrate domain 𝐿2 = (103 nm)2 = 106 nm2 and the 

surface charge density 𝜎 for the floating conductor substrates. 
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Figure 6.8(a)-(c) shows the value of 𝑑 for 𝛾+ = 0.5, 0.7, and 0.9, 

respectively. It is plotted for three types of the substrates. Figure 

6.8(d) shows the 𝜎 for 𝛾+ = 0.5 − 0.9 for the floating conductive 

substrate.  

At the 𝛾+ = 0.5 of Figure 6.5, the numbers of the positively and 

negatively CNPs in the gas phase are balanced. The deposited CNPs 

on the grounded conductor grow more slowly than the floating 

conductor and insulator comparing the results of Figure 6.5(a)-(c). 

Figure 6.8(a) shows the detailed growth rates of the deposited 

CNPs. The thickness increase rates at 𝛾+ = 0.5 in Figure 6.8(a) 

indicate a markedly slow growth on the grounded conductive 

substrate.  

In the case that the charge signs of the CNPs in the gas phase 

are balanced, 𝛾+ = 0.5, the coalescence between CNPs often occurs, 

resulting in large-sized CNPs with small charges (𝑞). Then, when 

the substrate is grounded conductor [Figure 6.5(a)], the attractive 

interaction between CNPs in the gas phase and the substrate is 

weakened as can be seen in Figure 6.3. In addition, since the 

deposited CNPs lose charge by the grounded substrate, CNPs in the 

gas phase interact and coalesce with each other rather than with the 

deposited CNPs. 
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When the substrate is floating conductor [Figure 6.5(b)], a 

constant surface charge density 𝜎 is distributed throughout the 

substrate and deposited CNPs and the change of 𝜎 value with time 

is plotted in Figure 6.8(d) at 𝛾+ = 0.5. The value of 𝜎 fluctuates 

around 0 before 𝑡 = 5000𝜏0, but after that it stays near zero. This 

indicates that the charges do not accumulate on the substrate and 

deposited CNPs. Instead, both positively and negatively CNPs 

coalesce into the deposited CNPs more actively compared to the 

grounded conductive substrate by stronger electrostatic attraction. 

Similarly, when the substrate is insulator [Figure 6.5(c)], CNPs of 

both signs in the gas phase actively coalesce with the deposited 

CNPs due to electrostatic interactions by retaining charges even 

after the deposition. Since the number of positively and negatively 

CNPs are balanced, the charges of deposited CNPs do not 

accumulate on them and coalescence can occur actively by 

electrostatic attraction with both signs of CNPs. A similar topic was 

discussed in detail in Chapter 5.3.2; the substrate was also assumed 

to be an insulator. 

At the 𝛾+ = 0.7 of Figure 6.6, the positively CNPs in the gas 

phase account for 70% of all CNPs; charge is thus imbalanced. 

Figure 6.6(a)-(c) and 6.8(b) show that the deposited CNPs grew 

fastest on the grounded conductor substrate [Figure 6.6(a)], next 
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on floating conductor substrate [Figure 6.6(b)], and slowest on 

insulator substrate [Figure 6.6(c)]. These results contrast with the 

charge-balanced condition 𝛾+ = 0.5, the physical cause of which 

appears to be charge accumulation. Figure 6.8(d) at 𝛾+ = 0.7 shows 

about surface charge density 𝜎 of 7 − 8 × 10−4 𝑒/nm2 is formed on 

the substrate and the deposited CNPs when the substrate is a 

floating conductor. This charge accumulation causes electrostatic 

repulsion between CNPs in the gas phase and deposited CNPs, 

which inhibits the growth of the deposited CNPs. 

When the substrate is an insulator, charges are locally 

accumulated only on the deposited CNPs. In the early stages of the 

deposition, the amount of deposition and charge accumulation is 

small, so the CNPs in the gas phase are relatively free from 

electrostatic repulsion. Therefore, the initial growth rate is faster 

than on the floating conductor substrate. [see 𝑡 < 104𝜏0 in Figure 

6.8(b)]. However, as the charge accumulation continues and the 

amount of deposited CNPs increases, more and more strong 

electrostatic repulsion with CNPs in the gas phase occurs, and the 

deposition rate gradually decreases. It can be seen at 𝑡 > 104𝜏0 in 

Figure 6.8(b) by comparing to that of floating conductive substrate. 

At the 𝛾+ = 0.9 of Figure 6.7, the positively CNPs in the gas 

phase account for 90% of all CNPs; charge imbalance is more 
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severe than that at 𝛾+ = 0.7. The tendency of growth rate depending 

on the substrates is similar with that at 𝛾+ = 0.7 as shown in Figure 

6.7(a)-(c) and 6.8(b). Figure 6.8(d) at 𝛾+ = 0.9 shows 𝜎 value 

gradually increases with time by charge accumulation and it 

saturates ~3 × 10−3 𝑒/nm2 around 𝑡 ≈ 15000𝜏0, which indicates more 

charges accumulate by more severe charge sign imbalance than 

𝛾+ = 0.7.  

To compare the simulation results with the experimental 

results, we considered the experiment performed by Youn et al. 

[23] which compared the deposition behavior between floating and 

grounded substrates. A dense film with a thickness of ~220nm was 

deposited on the floating silicon substrate [see Figures 1.7(a) and 

(b)] while a porous film with a thickness of ~190nm was deposited 

on the grounded silicon substrate [see Figures 1.7(c) and (d)]. 

This result indicates the growth rate on the floating substrate was 

faster than that on the grounded substrate. Considering the film on 

the grounded substrate was porous, the growth rate difference was 

larger than the ratio of thickness (220/190). 

According to the simulation results, the numbers of positively 

and negatively CNPs should be balanced (𝛾+ = 0.5) for the growth 

rate on the floating conductor substrate to be faster than on the 

grounded conductor substrate. Thus, the sign of CNPs in the gas 
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phase in the experiment appears to be balanced. When the N2 flow 

is 1000 sccm in Figure 1.5, the number concentrations of positively 

and negatively CNPs are similar, which is also consistent with the 

simulation results. 
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Figure 6.5 kMC simulation results: Snapshots of systems with CNPs 

in the gas phase and deposited CNPs at different simulation times 

(𝜏0). Three types of the substrates were explored: (a) grounded 

conductor, (b) floating conductor, and (c) insulator. Red and black 

spheres represent the positions and sizes of CNPs in the gas phase 

and deposited CNPs, respectively. The initial parameters for 

simulation were 𝑟0 = 5 nm, 𝑞0 = ±𝑒, 𝛾+ = 0.5, 𝜂 = 0.001, 𝑇 = 773 K, 

𝑘etch = 0 nm/𝜏0, and 𝑣flow = 5 nm/𝜏0. The dimensions of each 

displayed domain were 1000 × 1000 × 200 nm3. 
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Figure 6.6 kMC simulation results: Snapshots of systems with CNPs 

in the gas phase and deposited CNPs at different simulation times 

(𝜏0). Three types of the substrates were explored: (a) grounded 

conductor, (b) floating conductor, and (c) insulator. The simulation 

parameters are same with those of Figure 6.5 except for 𝛾+ = 0.7. 
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Figure 6.7 kMC simulation results: Snapshots of systems with CNPs 

in the gas phase and deposited CNPs at different simulation times 

(𝜏0). Three types of the substrates were explored: (a) grounded 

conductor, (b) floating conductor, and (c) insulator. The simulation 

parameters are same with those of Figure 6.5 except for 𝛾+ = 0.9. 
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Figure 6.8 The film thickness 𝑑 as a function of t (𝜏0), as indicated 

by the kMC simulation results of (a) Figure 6.5 (𝛾+ = 0.5), (b) 

Figure 6.6 (𝛾+ = 0.7), and (c) Figure 6.7 (𝛾+ = 0.9). The solid, 

dashed and dotted line denotes the thickness on the grounded 

conductor, floating conductor, and insulator substrate, respectively. 

(d) The surface charge density 𝜎 of the floating substrate for 𝛾+ =

0.5 − 0.9. 
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6.3.3 Substrate conductivity effects on growth behaviors and rates 

of deposited CNPs: etching conditions 

 

We next investigated the growth behaviors and rated of 

deposited CNPs when the ambient atmosphere is the etching 

condition. In Chapter 5, the value of 𝑘etch was assumed to be 

constant to consider the atomic etching CNPs. However, since small 

CNPs < 5 nm were mainly dealt with in this chapter in contrast to 

particles of ~ 20 nm or larger in Chapter 5, the Gibbs-Thompson 

effect was considered [91,92]. The Gibbs-Thompson effect is a 

phenomenon in which the etching (dissolution in solutions) rate of 

CNPs is accelerated by surface energy. The etching activation 

energy Δ𝜇etch
particle

 of the particles with radius 𝑟 is given by  

Δ𝜇etch
particle(𝑟) =  Δ𝜇etch

flat −
2𝛾𝑉𝑚

𝑟
 (48) 

where Δ𝜇etch
flat , 𝛾, and 𝑉𝑚 are the activation energy of the flat 

interface where 𝑟 = ∞, the surface energy, and molar volume, 

respectively. Through the activation energy barrier, the relation 

between etching rate constant of particle 𝑘etch
particle

 and that of flat 

interface 𝑘etch
flat  is expressed by  

𝑘etch
particle(𝑟) =  𝐵exp (−

Δ𝜇etch
particle(𝑟)

𝑅𝑇
) = 𝑘etch

flat exp(−
2𝛾𝑉𝑚

𝑟𝑅𝑇
 ) (49) 
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where 𝐵, 𝑅, and 𝑇 are constant with the same dimension as the 

rate constant, ideal gas constant, and temperature, respectively. 

Atomic etching flux 𝐽etch from particle toward to the gas 

(solution) is given by 

𝐽etch = −4𝜋𝑟2𝑘etch
particle(𝑟) = −4𝜋𝑟2𝑘etch

flat exp (−
2𝛾𝑉𝑚

𝑟𝑅𝑇
 ) 

𝐽etch =
𝑑𝑉

𝑑𝑡
= (4𝜋𝑟2)

𝑑𝑟

𝑑𝑡
 

(50) 

Therefore, the change in radius with time is expressed from 

equation (50) as follows: 

𝑑𝑟

𝑑𝑡
=  −𝑘etch

particle(𝑟) =  −𝑘etch
flat exp (−

2𝛾𝑉𝑚

𝑟𝑅𝑇
 ) (51) 

Using the surface energy 𝛾 = 1.23 𝐽/𝑚2 of {111} Si [93], molar 

volume 𝑉𝑚 = 1.206 × 10−5 𝑚3/mol of Si [94], and temperature of our 

simulation 𝑇 = 773 K, Figure 6.9 shows the etching rate of the 

particle 𝑑𝑟/𝑑𝑡 =  −𝑘etch
particle(𝑟) as a function of the radius of the 

particle 𝑟 when 𝑘etch
flat = 0.01 nm/𝜏0. It can be seen that the smaller 

the particle, the faster the etching rate. Especially when the 

particles are smaller than 5 nm, it can be inferred that they will 

disappear quickly due to the rapid etching rate. 

We simulated the system composed of many-CNPs in the 

gaseous phase for three types of the substrate. The simulation 

parameters  𝜂, 𝑘etch
flat , and 𝑣flow was set to 0.01, 0.01 nm/𝜏0 and 5 

nm/𝜏0, respectively. 
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Figure 6.10, 6.11, and 6.12 show the snapshots of the 

simulation results for different times when the value of 𝛾+ is 0.5, 

0.7 and 0.9, respectively, for three types of substrates: (a) 

grounded conductor, (b) floating conductor, and (c) insulator. To 

explore the details, we plotted the film thickness 𝑑 evaluated by 

the same method in Chapter 6.3.2 and the surface charge density 𝜎 

for the floating conductor substrates. Figure 6.13(a)-(c) shows the 

value of 𝑑 for 𝛾+ = 0.5, 0.7, and 0.9, respectively, and it is plotted 

for three types of the substrates. Figure 6.13(d) shows the 𝜎 for 

𝛾+ = 0.5 − 0.9 for the floating conductive substrate.  

When 𝛾+ = 0.5 (Figure 6.10), the numbers of the positively and 

negatively CNPs in the gas phase are balanced. The deposited CNPs 

on the floating conductor and insulator grow more faster than the 

grounded conductor as shown in Figure 6.10(a)-(c). The growth 

rates at 𝛾+ = 0.5 in Figure 6.13(a) indicate a markedly slow growth 

on the grounded conductive substrate. These results are 

attributable to the similar causes to those in the case of non-

etching conditions. 

When 𝛾+ = 0.7 (Figures 6.11), the numbers of the positively 

and negatively CNPs in the gas phase are imbalanced. In the initial 

stage the growth rate on the floating conductor (𝑡 < 1500𝜏0) and 

insulator (𝑡 < 1000𝜏0) was faster than that on the grounded 
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substrate. After the initial stage, the deposited CNPs were etched 

away instead of growing, and the thickness converges to 2 nm on 

floating conductor, and 1 nm on insulator. These results are 

attributable to the like-charge attraction in the initial stage, and 

repulsive interaction after that between deposited CNPs and CNPs 

in the gas phase.  

When 𝛾+ = 0.9 (Figures 6.12), the charge imbalance becomes 

more severe than when 𝛾+ = 0.7. Unlike the case of 𝛾+ = 0.7, the 

deposited CNPs grow rapidly only on the insulator in the initial 

stage and stop growing quickly (𝑡 ≈ 200𝜏0) on the floating conductor 

(d ~ 1 nm). After 𝑡 = 1000𝜏0, the deposited CNPs were etched away 

and the thickness decreases to 2 nm on insulator. The deposited 

CNPs on the grounded conductor grow steadily and the growth rate 

is faster than that when 𝛾+ = 0.7. The cause seems to be that the 

attraction with the conductor substrate becomes stronger as the 

charge imbalance intensifies, the size of the CNPs in the gas phase 

becomes smaller or the charge amount increases. 

According to the simulation results, it is when the numbers of 

positively and negatively CNPs are imbalanced (𝛾+ ≠ 0.5) that the 

simulation and experimental results show similar tendencies. That 

is, while CNPs are steadily deposited on the grounded conductor 

substrate [see Figures 6.1(a), 6.11(a), and 6.12(a)], CNPs are 
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deposited initially on the insulator substrate and then etched away 

over time [see Figures 6.1(b), 6.11(c), and 6.12(c)]. Thus, the 

sign of CNPs in the gas phase in the experiment appears to be 

imbalanced. However, in the simulation results in Figures 6.13(b) 

and (c), the initial growth rate on the insulator substrate is faster 

than that on the grounded conductor substrate, which is contrary to 

the experimental results in Figure 6.1. This is analyzed to be 

caused by the underestimation of the attraction between the CNPs 

in the gas phase and the grounded conductor substrate during the 

simulation processes. To get the simulation results closer to the 

experimental results, we suggest the following three 

considerations: 1. Considering interfacial energy effect of substrate 

material; 2. Increasing the gap 𝑑 of CNP generation in the gas 

phase from the substrate; 3. Increasing the unit charge of CNPs 𝑞. 
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Figure 6.9 Etching rate of particle as a function of its radius 𝑟 from 

Equation (51) using 𝛾 = 1.23 𝐽/𝑚2, 𝑉𝑚 = 1.206 × 10−5 𝑚3/mol and 𝑇 =

773 K. 
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Figure 6.10 kMC simulation results: Snapshots of systems with 

CNPs in the gas phase and deposited CNPs at different simulation 

times (𝜏0). Three types of the substrates were explored: (a) 

grounded conductor, (b) floating conductor, and (c) insulator. Red 

and black spheres represent the positions and sizes of CNPs in the 

gas phase and deposited CNPs, respectively. The initial parameters 

for simulation were 𝑟0 = 5 nm, 𝑞0 = ±𝑒, 𝛾+ = 0.5, 𝜂 = 0.01, 𝑇 = 773 K, 

𝑘etch
flat = 0.01 nm/𝜏0, and 𝑣flow = 5 nm/𝜏0. The dimensions of each 

displayed domain were 1000 × 1000 × 200 nm3. 
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Figure 6.11 kMC simulation results: Snapshots of systems with 

CNPs in the gas phase and deposited CNPs at different simulation 

times (𝜏0). Three types of the substrates were explored: (a) 

grounded conductor, (b) floating conductor, and (c) insulator. The 

simulation parameters are same with those of Figure 6.10 except 

for 𝛾+ = 0.7. 
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Figure 6.12 kMC simulation results: Snapshots of systems with 

CNPs in the gas phase and deposited CNPs at different simulation 

times (𝜏0). Three types of the substrates were explored: (a) 

grounded conductor, (b) floating conductor, and (c) insulator. The 

simulation parameters are same with those of Figure 6.10 except 

for 𝛾+ = 0.9. 
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Figure 6.13 The film thickness 𝑑 as a function of t (𝜏0), as indicated 

by the kMC simulation results of (a) Figure 6.10 (𝛾+ = 0.5), (b) 

Figure 6.11 (𝛾+ = 0.7), and (c) Figure 6.12 (𝛾+ = 0.9). The solid, 

dashed and dotted line denotes the thickness on the grounded 

conductor, floating conductor, and insulator substrate, respectively. 

(d) The surface charge density 𝜎 of the floating substrate for 𝛾+ =

0.5 − 0.9. 
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6.4. Conclusion 
 

 

Using kMC simulations, the growth behaviors and rates of 

deposited CNPs were investigated by varying the electrical 

property of the substrates: grounded conductor, floating conductor 

and insulator. When the CNPs are balanced, 𝛾+ = 0.5, the results of 

the kMC simulation showed that the growth rates were accelerated 

when the substrate is floating conductor or insulator compared to 

the grounded conductor. When the CNPs are imbalanced, 𝛾+ = 0.7, 

and 0.9, the long-term growth rate on the grounded substrate was 

the fastest. On the floating conductor and the insulator substrate, 

the growth was restricted by charge accumulation after a certain 

period of time where growth proceeded. Especially, although the 

growth rate on the insulator substrate was faster than that on the 

grounded conductor in initial stage by strong like-charge attraction, 

the deposited CNPs were etched away by repelling with the CNPs 

in the gas phase after charge accumulation. The simulation results 

correspond to the experimental results and hypothesis: 1. The 

growth rate was faster on the floating substrate than grounded 

substrate when the CNPs are balanced and in non-etching 

condition; 2. The CNPs are selectively deposited on the grounded 



 

 １４９ 

conductor substrate rather than on the insulator substrate when the 

CNPs are in etching atmosphere. 
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Chapter 7. Effects of electrostatic interaction 

on anisotropic growth of nanowire 
 

 

7.1. Introduction 
 

 

In the previous results, Hwang et al. [95] grew Si nanowires 

without any catalytic metals and in a reducing atmosphere, using the 

CVD reactor where the gas ratio condition for the growth was SiH4 : 

HCl : H2 = 3 : 1 : 96 with a reactor pressure of 10 Torr and a 

substrate temperature of 950 ℃. Figure 7.1 shows the evolution of 

microstructures after 3 min on (a) Mo, (b) Si, (c) SiO2, and (d) Si3N4 

substrates. Figure 7.1(a) shows a silicon film was deposited on the 

Mo substrate which is a conductor. However, on the Si substrate 

nanowires started to form as shown in Figure 7.1(b), and 

considerable amounts of nanowires grew on SiO2 and Si3N4 

substrates as can be seen in Figure 7.1(c) and (d), respectively. 

Similarly, as mentioned in Chapter 1, Youn et al. [23] also 

reported that Si nanowires were deposited on the floating substrate 

whereas Si film was deposited on the conductor substrate when flow 

rate of N2 is 500 sccm. [see Figure 1.6]. Besides, the growth of 

nanowires without catalytic metals was observed and reported in 

many studies. [96-99] 

The proposed nanowire growth mechanisms include the vapor-
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liquid-solid (VLS) [39] and oxide-assisted growth (OAG) [40] 

mechanisms. However, since either catalytic metal or seed of silicon 

oxide should exist for the suggested mechanisms, other nanowire 

growth mechanisms clearly exist considering the experimental 

results.  

Considering the results of nanowire growth only on a floating 

substrate and the generation of the CNPs in the gas phase, [23,95] 

the electrostatic interaction between CNPs in the gas phase and the 

deposited nanowires composed of CNPs should affect the anisotropic 

growth of the Si nanowires. Youn et al. [23] and Hwang [21, pp.177-

179] qualitatively explained the electrostatic interaction effects: 

When a positively CNP approaches a positively-charged nanowire in 

the radial (side) direction, the electrostatic interaction would be 

repulsive. On the other hand, when it approaches in the axial (tip) 

direction, the interaction would be attractive. Thus, the small CNPs 

would be selectively deposited in the axial-tip direction, leading to 

extensive anisotropic growth of nanowires. 

Nevertheless, quantitative analysis is still needed to analyze the 

effects of the electrostatic interaction on the anisotropic growth of 

nanowires. For this, the electrostatic potential energy of CNP- 

charged nanowire system was calculated through FEM in this chapter. 

We explored how the electrostatic interactions affect the anisotropic 
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growth of the nanowires by CNPs in the gas phase and investigate 

the underlying physical mechanism. 
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Figure 7.1 Microstructures evolution on (a) Mo, (b) Si, (c) SiO2 , (d) Si3N4 

substrates after 3 min deposition under 10 Torr of reactor pressure and 

950 ℃ of temperature substrate with a gas ratio of SiH4 : HCl : H2 = 3 : 1 : 

96. [95] 
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7.2. Computational Details 
 

 

FEM described in detail in Chapter. 3.2.2 was used to solve the 

Poisson’s equation expressed in Equations (9) and (10) for 

calculating the electrostatic potential energy 𝑊 and surface charge 

density.  

The charged nanowire was modelled as rod with hemispherical 

tips of radius 𝑟 and length 𝐿 = 2𝑟𝑁 from tip to tip where 𝑁 is the 

number of CNPs constituting the charged nanowire. The CNP was 

modelled as sphere with radius of 𝑟 [see Figure 7.2]. Note that the 

radii of the charged nanowire tip and the CNP are same. They were 

considered solid conductors of continuum matter. We used a 

spherical infinite element domain scheme with a finite radius of 𝑅∞, 

implemented in COMSOL. The CNP and the charged nanowire were 

placed in a vacuum with a relative permittivity of 1. A fine mesh of 

approximately 180,000 tetrahedral quadratic Lagrange elements was 

used. The elements of the boundaries of rod and sphere were 

manually adjusted for higher accuracy, while the other elements were 

automatically generated with the ‘fine’ mesh setting in COMSOL. The 

outer surface of the infinite element domain was set to ground, and 

the surface charges of the charged nanowire and CNP were set to 𝑄 

and 𝑞, respectively. At first, the xy-plane was divided into 5 × 5 nm2 
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square meshes, CNPs were placed at each vertex, and the 

electrostatic energy was plotted to observe the overall energy 

distribution. Next, we varied the separation distance 𝑠 between the 

surfaces of the charged nanowire and CNP in the side [Figure 7.2(a)] 

and tip [Figure 7.2(b)] directions to calculate the potential energy 

and surface charge density of the system. 
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Figure 7.2 A system of a charged nanowire and a CNP. The 

separation distance 𝑠 is varied in (a) the side direction and (b) 

the tip direction of the charged nanowire. 
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7.3. Results and Discussions 
 

 

First, we calculated the electrostatic potential energy 𝑊 by 

dividing the xy-plane into 5 × 5 nm2 square meshes and placing the 

CNPs with 𝑞 =  +𝑒, 𝑟 = 10 nm at each vertex. Here, the charged 

nanowire with 𝑄 =  +5𝑒, 𝑁 = 30, 𝑟 = 10 nm was fixed at the origin. 

Figure 7.3 shows the value of 𝑊 using color bar where red is high 

energy and blue is low energy. Comparing the energy barriers in 

side (red color in Figure 7.3, 0.3536 eV) and tip (green color in 

Figure 7.3, 0.3373 eV) directions, it can be seen that a significantly 

smaller potential energy barrier exists in the tip direction. 

To explore the energy barrier difference between the tip and 

side directions in more detail, we calculated values of 𝑊 as a 

function of separation distance 𝑠 in side and tip directions, 

excluding self-energy of the charged nanowire and the CNP, in 

Figure 7.4 as a representative example. The calculation parameters 

𝑟, 𝑁, 𝑄, and 𝑞 were 3 nm, 10, +5𝑒, and (a) +𝑒, (b) −𝑒, respectively.  

When they have same sign of charges, the electrostatic 

interaction is always repulsive: 𝑊, excluding self-energy, 

decreases as separation distance 𝑠 increases as shown in Figure 

7.4(a). Comparing the energy gradient of each direction, 

approaching in the tip direction has a weaker repulsive interaction 



 

 １５８ 

than approaching in the side direction when a CNP approaches the 

charged nanowire. 

Conversely, when they have opposite charges, the electrostatic 

interaction is always attractive: 𝑊, excluding self-energy, 

increases as separation distance 𝑠 increases as shown in Figure 

7.4(b). Approaching in the side direction has a stronger attractive 

interaction than approaching in the sip direction. 

From the results, when they have the same sign of charge, the 

CNPs favor deposition at the tip of the charged nanowires, resulting 

in one-dimensional growth or anisotropic growth. On the other 

hand, when they have opposite charges, the CNPs are more likely to 

deposit on the side of the charged nanowire, which hinders 

anisotropic growth. Therefore, for the nanowire to grow 

anisotropically by electrostatic interaction, the charge sign of the 

CNPs should be imbalanced, so interactions between the charged 

nanowires and CNPs with the same sign mainly exist. 

To establish a criterion for the energy barrier difference, the 

probability 𝑃 ~ exp (−Δ𝑊/𝑘B𝑇) to overcome the potential energy 

barrier Δ𝑊 from the Arrhenius equation was considered. In this 

study, the energy barrier is considered as Δ𝑊 = 𝑊𝑓 − 𝑊𝑖 = 𝑊𝑚𝑎𝑥 −

𝑊(𝑠 = 100 nm) where 𝑊𝑚𝑎𝑥 is the largest energy value at 𝑠 <

100 nm, and 𝑊(𝑠 = 100 nm) is the energy value when 𝑠 = 100 nm 



 

 １５９ 

[see Figure 7.4(a)]. Then, the ratio of probability to overcome the 

energy barrier in each direction is expressed by 
𝑃tip

𝑃side
 ~ exp [(Δ𝑊side −

Δ𝑊tip)/𝑘B𝑇], and the numerator inside the exponential term (Δ𝑊side −

Δ𝑊tip), the energy barrier difference, was used as a measure to 

evaluate the anisotropic growth of charged nanowires. 

For the anisotropic growth of the charged nanowires, energy 

barrier difference (Δ𝑊side − Δ𝑊tip) determine the direction of growth 

where the greater the difference, the greater the probability of 

growing in the tip direction. To understand the characteristic of 

(Δ𝑊side − Δ𝑊tip), we examined the value of 𝑊/𝑞2 as a function of 𝑠 

for different 𝑄/𝑞 and 𝑁 values. Figure 7.5(a) and (b) compare the 

value of 𝑊/𝑞2 for different 𝑄/𝑞 (1-50) and different 𝑁 values 

(5-50), respectively. Note that for same value of 𝑄/𝑞, the value of 

𝑊/𝑞2 was same and plotted in Figure 7.5. For that reason, 

[(Δ𝑊side − Δ𝑊tip)/𝑞2] was evaluated, which allowed us to consider a 

wider range of conditions. 

The value of [(Δ𝑊side − Δ𝑊tip)/𝑞2] increases as the value of 𝑄/𝑞 

increases as shown in Figure 7.5(a). At 𝑄/𝑞 values of 1, 5, 10, 25, 

and 50, the value of [(Δ𝑊side − Δ𝑊tip)/𝑞2 are 0.021, 0.111, 0.236, 

0.662, and 1.302 eV/𝑒2, respectively, when 𝑟 = 3 nm and 𝑁 = 10. 

This indicates that for any fixed value of 𝑞 (charge of CNP) the 
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higher the value of 𝑄 (charge of charged nanowire) the higher the 

probability of anisotropic growth. 

The value of [(Δ𝑊side − Δ𝑊tip)/𝑞2] decreases as the value of 𝑁 

increases as shown in Figure 7.5(b). At 𝑁 values of 5, 10, 25, and 

50, the value of [(Δ𝑊side − Δ𝑊tip)/𝑞2] are 0.1533, 0.111, 0.057, and 

0.034 eV/𝑒2, respectively, when 𝑟 = 3 nm and 𝑄/𝑞 = 5, which 

indicates that longer lengths of charged nanowires are detrimental 

to its anisotropic growth. 

In order to explore the tendency of the energy barrier 

difference [(Δ𝑊side − Δ𝑊tip)/𝑞2] depending on the value of 𝑄/𝑞 and 

𝑁 under more conditions, the value of [(Δ𝑊side − Δ𝑊tip)/𝑞2] was 

plotted three-dimensionally as multivariate function of 𝑄/𝑞 and 𝑁 

with its fitting surface in Figure 7.6. The results in Figure 7.6 

shows the energy barrier difference values increase with increasing 

value of charge ratio 𝑄/𝑞 corresponding with the results of Figure 

7.5. In the case of 𝑁, there exists appropriate value of nanowire 

length 𝑁 that maximizes the energy barrier difference. Note that 

when 𝑁 is 1, the nanowire becomes spherical and isotropic, which 

cancels the energy barrier difference. 

Assuming a situation where charged nanowires grow, the 

gradual growth of the charged nanowire is an increase in the 𝑁 

value regardless of the degree of balance of the CNP sign. As 
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shown in Figure 7.6, comparing the growth paths when the CNP 

sign ratio is balanced and imbalanced, it appears that the 

electrostatic energy barrier physically induces the anisotropic 

growth of nanowires in the imbalanced CNP sign ratio by charge 

accumulation on the charged nanowires. The balanced CNP sign 

ratio does not appear to physically contribute to the anisotropic 

growth of the charged nanowires at all due to no charge 

accumulation. 

To further understand the physical origin of the electrostatic 

interaction between charged nanowire and CNP, we investigated the 

surface charged redistribution of them, which is induced by their 

mutual polarization, by calculating their surface charged density. We 

obtained the induced charge density 𝜎ind associated with the 

surface charge redistribution. (For related details, see Chapter 

3.3.2.) 

Figures 7.7(a) and (b) show the results calculated with 𝑟 =

3 nm, 𝑠 = 5 nm, 𝑞 = +𝑒, 𝑁 = 10, 𝑄 = +10𝑒 in (a) side; (b) tip 

direction, respectively. For comparison, Figures 7.7(c)-(f) show 

the calculated surface charge density under the same conditions as 

Figures (a) and (b) expect for (c) and (d) 𝑄 = +5𝑒;  (e) and (f) 

𝑁 = 50. Here, Figures 7.7(c) and (e) show when the CNP is near 

the side surface of the charged nanowire, and Figures 7.7(d) and 
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(f) show when it is near the tip surface of the charged nanowire. In 

the color scale of Figure 7.7, the reddest and bluest colors 

represent the most positive and negative values of 𝜎ind, 

respectively. 

Figure 7.7(a) and (b) unveil the physical origin of the energy 

barrier difference. When the CNP is near the side surface of the 

charged nanowire [Figure 7.7(a)], the negative charges are induced 

on the surface area of the CNP and charged nanowire adjacent to 

each other, which will induce their repulsive interaction. The 

positive charges are induced on the opposite surface of the CNP and 

both tips of the charge nanowire. When the CNP is near the tip 

surface of the charged nanowire [Figure 7.7(b)], the charge density 

distribution on the CNP is similar with that of Figure 7.7(a). In the 

case of the charged nanowire, the positive charges are induced on 

the both tips, but weaker positive charges on the adjacent tip to the 

CNP are induced than the opposite one. The opposite charges on 

their adjacent surface area induce their attractive interaction. The 

results in Figures 7.7(a) and (b) well explain why Δ𝑊side is larger 

than Δ𝑊tip when they have like charge. 

When the value of 𝑄 decreases to +5𝑒 and the CNP is near the 

side surface [Figure 7.7(c)], the induced negative charges on their 

surface area of the CNP and charged nanowire adjacent to each 



 

 １６３ 

other are weaker compared with those in Figure 7.7(a), which 

makes weaker repulsive interaction. When the CNP is near the tip 

surface [Figure 7.7(d)], weak negative charges are induced on the 

tip surface adjacent to the CNP, which induces repulsive interaction 

between the CNP and the charged nanowire. The results in Figures 

7.7(a)-(d) correspond with the results in Figures 7.5(a) and 7.6 

where the value of [(Δ𝑊side − Δ𝑊tip)/𝑞2] increases with increasing 

value of 𝑄/𝑞. 

When the value of 𝑁 increases to 50 and the CNP is near the 

side surface [Figure 7.7(e)], the charges on the CNP are hardly 

induced while the negative charges are still charged on the side 

surface area. This indicates the repulsive interaction between them 

is significantly weaker than that in Figure 7.7(a). When the CNP is 

near the tip surface, the CNP and the charged nanowire have weak 

repulsive interaction as shown in Figure 7.7(f). Considering the 

induced charge on the CNP is very weak regardless of its position, 

the energy barrier difference should be small. These results well 

explain the results in Figures 7.5(a) and 7.6 where the value of 

[(Δ𝑊side − Δ𝑊tip)/𝑞2] decreases with increasing value of 𝑁. 

To confirm the correlation between nanostructure and charge 

ratio of the CNPs, the experimentally measured number 

concentration of CNPs was investigated with the deposited 
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structures. Table 7.1 shows that the charge ratio 𝛾+ of all CNPs 

and CNPs smaller than 30 nm by experimentally observed using 

DMA-FCE system shown in Figure 1.4. Values of 𝛾+ greater than 

0.7 or less than 0.3 are indicated in bold as a criterion for charge 

imbalance. Considering the possibility that larger CNPs could have 

more charges, the value of 𝛾+ are displayed in two ways, the 

number ratio and the volume ratio of the CNPs with the materials 

and observed nanostructures. The value of d means the diameter 

for nanowires, nanosheets, CNTs and particles, the thickness for 

films, and the size for hexagons. In order for nanowires to grow in 

CNP units, the diameter of the CNP should be similar to or smaller 

than that of the nanowire. Kim et al. [35] reported that the 

nanowires were not deposited but the particles were deposited 

when CNPs smaller than 30 nm were absent and the size of 

deposited particles was similar with the diameter of the highest 

number concentration. Thus, assuming that the maximum size of 

CNP involved in nanowire growth is 30 nm, the charge ratio of 

CNPs smaller than 30 nm were also investigated as shown in Table 

7.1.  

When Si nanowires were deposited on the floating substrate by 

Youn et al. [39], the values of 𝛾+ for the CNPs smaller than 30 nm 
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were 0.89 and 0.88 for the number and volume, respectively, which 

corresponds to the calculation results. For other Si nanowires 

deposition results by Kim et al. [35], however, the values of 𝛾+ for 

the CNPs smaller than 30 nm were ranged from 0.16 to 0.62. In this 

case, there are 𝛾+ values around 0.5 where charge is balanced in 6 

out of 8 cases, so it seems that a factor other than electrostatic 

interaction affects it. For GaN, [38] ZnO nanowires, [33] CNT and 

Carbon nanofiber deposition, [34] most of the values of 𝛾+ for the 

CNPs smaller than 30 nm were greater than 0.7 and less than 0.3, 

which is consistent with the calculation results. 
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Figure 7.3 Contour of electrostatic potential energy 𝑊 when the 

center of charged nanowire with 𝑄 = +5𝑒, 𝑁 = 30, 𝑟 = 10 nm is fixed 

at the origin. The color at each position means the 𝑊 value of the 

system when the CNP with 𝑞 =  +𝑒, 𝑟 = 10 nm is located there. 
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Figure 7.4 𝑊, excluding self-energy, as a function of 𝑠 in the side 

and tip directions for the charge nanowire and CNP system, with 

𝑟 = 3 nm, 𝑁 = 10, 𝑄 =  +5𝑒, and (a) 𝑞 = +𝑒; (b) 𝑞 = −𝑒.  
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Figure 7.5 𝑊, excluding self-energy, divided by 𝑞2 as a function of 

𝑠 in the side (dashed lines) and tip (solid lines) directions for the 

charged nanowire and CNP system (𝑟 = 3 nm). (a)  𝑁 = 10, 𝑄/𝑞 ∶  1 −

50; (b) 𝑄/𝑞 = 5, 𝑁 ∶  5 − 50. 
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Figure 7.6 (Δ𝑊side − Δ𝑊tip)/𝑞2 as multivariate function of 𝑄/𝑞 and 𝑁 

for the charged nanowire and CNP system (𝑟 = 3 nm). The blue dots 

represent the calculated values and the surface to which the values 

are fitted is displayed using piecewise cubic interpolation. 
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Figure 7.7 Induced surface charge densities of the charged 

nanowire and CNP system (𝑟 = 3 nm, 𝑠 = 5 nm, 𝑞 =  +𝑒, (a)-(b) 𝑄 =

+10𝑒, 𝑁 = 10; (c)-(d) 𝑄 =  +5𝑒, 𝑁 = 10; (e)-(f) 𝑄 =  +10𝑒, 𝑁 = 50. 

The CNP is positioned at (a), (c), (e) side direction; (b), (d), (f) tip 

direction of the charged nanowire. 
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Materials Structures d (nm) 

𝛾+ 
(total) 

𝛾+ 
(r<30 nm) Ref. 

Num Vol Num Vol 

Si 

Film 190 – 220 .54 .56 .53 .52 
[23] 

Nanowire ~10 – 30 .56 .60 .11 .12 

Particles 
~50 .54 .57 Not 

observed 

[35] 

~110 .53 .54 

Nanowire 

~50 .57 .53 .16 .20 

~50 .52 .51 .54 .56 

~50 .55 .58 .39 .40 

~24 .57 .62 .56 .59 

~35 .54 .55 .55 .56 

~61 .63 .59 .17 .19 

~65 .54 .53 .52 .54 

~40 .57 .58 .62 .62 

GaN 

Nanowire ~20 – 30 .02 .00 .10 .12 

[38] 
Hexagon 

~1000 .50 .55 Not 

observed ~560 .24 .32 

ZnO 

Nanowire 
~100 .30 .36 .30 .36 

[33] 

~100 .30 .32 .27 .28 

Nanosheets 

~100 .10 .15 .10 .15 

~100 .42 .58 .42 .58 

~100 .10 .16 .10 .16 

Rugged 

Structure 
- .50 .40 .50 .40 

C 
CNT 

~20 .52 .33 .52 .33 

[34] 

~60 .79 .78 .88 .89 

~130 .52 .52 .53 .52 

~210 .85 .86 .85 .86 

~290 .86 .80 .96 .97 

~300 .34 .30 .39 .35 

- .85 .85 .87 .88 

Nanofiber - .82 .71 .86 .84 

Table 7.1 The charge ratio 𝛾+ of all CNPs and CNPs smaller than 

30 nm by experimentally observed using DMA-FCE system. The 

value of 𝛾+ is displayed in two ways, the number ratio and the 

volume ratio of the CNPs with the materials and observed 

nanostructures.  
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7.4. Conclusion 
 

 

Using FEM, the electrostatic potential energy was calculated for 

the CNP-charged nanowire systems and how it affected to the 

anisotropic growth of the charged nanowires under the CNP-

existing system was investigated. The calculation results showed 

that the electrostatic interaction favors the anisotropic growth when 

the CNP in the gas phase and deposited charged nanowire have 

like-charge: CNPs approaching in the tip direction have weaker 

repulsive interaction than those approaching in the side direction. 

When they have opposite charge, the electrostatic interaction 

adversely affects the anisotropic growth by CNPs approaching in 

the side direction having stronger attractive interaction than those 

approaching in the tip direction. Comparing the energy barrier 

difference Δ𝑊side − Δ𝑊tip when CNP approaches to the charge 

nanowire in each direction, higher charge ratios of charged 

nanowire to CNP 𝑄/𝑞 tend to favor anisotropic growth. In the case 

of nanowire length, there exists appropriate value of nanowire 

length that maximizes the energy barrier difference. For 

electrostatic potential energy to physically affect the anisotropic 

growth of nanowires by CNPs, the sign ratio of CNPs should be 

imbalanced. 
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Abstract in Korean 

 

하전된 나노입자로 이루어진 비고전적 결정성장 계의 역학을 

연구하기 위해 하전된 나노입자 간의 정전기적 퍼텐셜 에너지를 

계산하고, 계산된 에너지를 바탕으로 kinetic Monte Carlo (kMC) 

시뮬레이션을 수행하였다. 퍼텐셜 에너지 계산을 위한 방법으로 수치 

계산법과 해석적 방법이 모두 사용되었다. 수치 계산은 유한요소법 

(FEM) 을, 해석적 방법은 도체 계의 정전 용량 계수를 사용하였다.  

첫번째로, 실리콘의 화학 증착법 (CVD) 과정 중 생긴 현상 중, 큰 

입자 주위에 입자가 전혀 관찰되지 않는 입자 고갈 영역이 생기는 

현상에 대해 연구하였다. 에너지 계산결과로부터 큰 입자와 작은 입자가 

같은 부호의 하전을 가진채로 서로 근접해 있으면 인접한 표면에 생기는 

반대 부호의 유도 전하로 인해 인력이 작용한다는 것이 확인되었다. 

kMC 시뮬레이션 결과로부터 이러한 인력으로 인해 큰 입자 주변에 

상대적으로 작은 고갈 영역이 생기고, 이를 통해 큰 입자에 전하가 

축적되는 것이 확인되었다. 축적된 전하는 작은 입자와 큰 입자 사이의 

반발력을 형성하고 이로 인해 입자 고갈 영역이 점진적으로 확장되었다. 

양으로 하전된 나노입자와 음으로 하전된 나노입자의 개수 불균형이 

입자 고갈 영역 형성에 영향을 미치는 것으로 확인되었다. 

두번째로, 또 다른 특이한 미세구조 중 하나로써, 실리콘의 화학 

증착법 중 실리콘 입자의 비정상적 성장 현상을 시뮬레이션을 통해 
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수치적으로 연구하였다. kMC 시뮬레이션 결과는 하전된 나노입자의 

전하 부호가 균형을 이루는 조건에서 양과 음으로 하전된 나노입자 

모두의 정전기적 인력으로 인해 증착 입자의 비정상적 성장이 발생함을 

보여주었다. 증착 입자가 성장하는 동안 기상에 존재하는 입자의 충분한 

개수 밀도 역시 비정상 성장에 중요한 요인인 것으로 밝혀졌다. 증착 

과정 중 기체 유속 역시 증착 입자의 성장에 영향을 주는데, 빠른 기체 

유속은 약간 불균형한 전하 부호에서도 비정상적 성장을 유도하는 

결과를 보여주었다. 

세번째로, 기판의 전기적 성질에 따라 증착 입자의 성장 거동과 

속도를 연구하였다. 기판의 종류는 접지된 도체, 플로팅 도체, 그리고 

절연체 세 가지 경우가 고려되었다. 하전된 나노입자의 부호가 균형을 

이룰 때, 접지된 도체 기판에 비해 플로팅 도체 및 절연체 기판 위에서 

성장속도가 가속되는 결과를 보여주었다. 하전된 나노입자의 부호가 

불균형할 때는, 접지된 도체 기판위에서 장기적인 성장 속도는 가장 

빨랐다. 플리팅 도체 및 절연체 기판 위에서는 성장이 어느정도 진행된 

이후에, 전하 축적에 의해 성장이 제한되었다. 에칭 조건에서는, 증착된 

입자가 전하 축적 후 기상의 입자와 반발하여 오히려 에칭되었다. 

마지막으로, 유한요소법을 이용하여 하전된 나노입자와 하전된 

나노와이어 계의 정전기 퍼텐셜 에너지를 계산하고, 이 에너지가 하전된 

나노입자가 존재하는 계에서 어떻게 하전된 나노와이어의 비등방적 

성장에 영향을 미치는지에 대해 연구하였다. 계산결과로부터 기상의 

입자와 증착된 나노와이어가 같은 부호의 전하를 가지고 있을 때, 
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비등방적 성장에 유리한 것으로 나타났다. 이는 나노와이어의 팁 

방향으로 접근하는 입자가 측면 방향으로 접근하는 입자보다 반발력이 

약한 것에서 기인한다. 각 방향에서 입자가 나노와이어의 접근할 때 

에너지 장벽 차이를 비교했을 때, 나노와이어가 짧을수록, 그리고 

나노와이어와 입자의 전하량 비율이 클수록, 비등방적 성장에 유리하게 

작용하는 경향이 나타났다. 정전기적 상호작용에 의해 하전된 

나노와이어가 비등방적 성장을 하기 위해서는 하전된 나노입자의 전하 

부호가 불균형해 동일한 부호를 가질 때의 정전기적 상호작용이 주로 

존재해야 하는 것으로 나타났다. 

종합적으로, 기상의 하전된 나노입자가 박막 성장의 기본 단위가 

되는 비고전적 결정성장에서 박막의 미세구조를 결정하는데 가장 중요한 

요인은 하전된 나노입자의 전하 부호 비율인 것으로 나타났다. 
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