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Abstract 

Thermomechanical homogenization of 

fiber-reinforced composite materials 

using artificial intelligence 
 

Jae-Hyuk Choi 

Department of Materials Science and Engineering 

College of Engineering 

The Graduate School 

Seoul National University 

 

Fiber-reinforced plastics (FRPs) have replaced metals in various industrial 

products to achieve weight reduction due to their excellent specific properties 

(i.e., high mechanical properties and low density). The capability to predict 

the homogenized thermomechanical properties of FRPs is essential to 

facilitate the product design process. Prediction of these effective properties, 

however, is not straightforward due to the microstructural variation of fibers 

(e.g., arrangement, orientation, or size) in FRPs. In this study, a machine 

learning-assisted thermomechanical homogenization framework considering 

the microstructural variation, which can calculate the effective 

thermomechanical properties with high accuracy, will be presented. 

    In Chapter 2, a machine learning-assisted tensile strength prediction 

model of unidirectional (UD) FRP considering the randomness of the 
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microstructural fiber array is proposed. Stress concentration factor (SCF) 

generated by the broken fiber is a dominating feature to determine the tensile 

strength of UD FRP. In general, however, no analytical model has been 

proposed for SCF calculation in randomly distributed fibers in UD composite. 

The author proposes a novel machine learning-assisted modelling of SCF in 

UD composites. Extensive finite element simulations were performed, 

calculating SCF for UD composites with various random fiber arrays. Then, 

an artificial neural network (ANN) was trained with the obtained SCF data 

and used it to predict the SCF for composites with an arbitrary random fiber 

array. A tensile strength prediction model was developed based on a new 

recurrence relation for fiber fracture propagation and a determination 

algorithm for the fracture sequence for random fiber arrays. The tensile 

strength of UD composites was predicted over a range of values, 

demonstrating that accuracy was superior to conventional prediction methods. 

    In Chapter 3, a machine-learning assisted two-step homogenization 

framework for short fiber-reinforced plastics (SFRPs) is proposed. 

Consideration of orientation is very important because the anisotropy of 

thermomechanical properties is differently generated depending on the 

orientation of inclusion. A series-parallel ANN system was constructed and 

trained to facilitate the time-consuming reconstruction of orientation 

distribution function and pseudograin decomposition procedures. Then, we 

implemented the series-parallel ANN system, Mori-Tanaka model, and Voigt 

model into ABAQUS user material subroutine (UMAT). The elastic modulus 
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values predicted by UMAT were in a good agreement with both DIGIMAT 

and experimental values, The low computation time of UMAT also justified 

the application of machine learning approach to the two-step thermo-

mechanical homogenization framework. 

    In Chapter 4, the previously developed two-step homogenization 

framework for SFRP will be expanded to describe more general case by 

introducing the concept of interphase with constant nano-scale thickness 

between matrix and inclusion. This third phase enabled us to take inclusion 

size effect into account. The applicability of the extended three-phase 

homogenization framework in material design will be confirmed by 

comparing the effective thermomechanical properties obtained via finite 

element simulation.  

 

Keywords: Fiber-reinforced plastics, composite materials, two-step 

homogenization, thermomechanical, microstructure, artificial neural network 

Student Number: 2017-24086 
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Chapter 1. Introduction 

 

1.1. Fiber-reinforced plastics (FRPs) 

Fiber-reinforced plastic (FRP) or fiber-reinforced composite, comprised of 

polymer matrix and reinforcing fiber, have replaced metals in various 

industrial products to achieve weight reduction [14-22] due to their excellent 

specific properties (Figure 1-1 [3]). Thermosetting polymers (e.g., epoxy, 

polyester, vinyl ester) or thermoplastic polymers (e.g., polypropylene, 

polyamide, polyether ether ketone) are widely used as matrix materials, while 

synthetic fibers (e.g., carbon, E-glass, aramid) or natural fibers (e.g., jute, flax, 

coir) are widely used as reinforcing materials. 

    FRPs can be categorized into continuous, discontinuous, and hybrid 

FRPs. Continuous and discontinuous FRPs are classified according to the 

length of the reinforced fibers (Figure 1-2(a) and Figure 1-2(b)). Hybrid 

FRPs are combination of multiple fiber types in a single matrix (Figure 1-

2(c)) [4]. Continuous FRPs are manufactured via Hand Lay-up method, 

Vacuum-Assisted Resin Infusion (VARI), Resin Transfer Molding (RTM), 

Vacuum-assisted resin transfer molding (VARTM), Pre-impregnated (prepreg) 

form, Compression Molding, or Autoclave Molding etc. Discontinuous FRPs 

are manufactured via Extrusion Compounding, or Injection Molding etc. 

    The thermomechanical properties of FRPs strongly depend on the 

properties of constituents, relative volume fractions, microstructural 

information (e.g., orientation distribution, shape, size of fibers). The 
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orientation of the reinforcing fibers definitely affects the isotropy of 

thermomechanical properties. Unidirectional (UD) FRP, which is a typical 

example of continuous FRPs with aligned reinforcing long fibers, exhibit 

anisotropic nature in general. UD FRP is used in the form of a cross-ply 

laminate with minimized anisotropy, unless it is used for a component that 

requires maximum properties in a specific direction. Short fiber-reinforced 

plastics (SFRPs), which is a typical example of discontinuous FRPs with 

randomly oriented reinforcing short fibers, exhibit isotropic nature in general. 

However, fibers may align in a specific direction due to the processing 

conditions and then the composites may become anisotropic. The main 

advantage of FRPs is that the thermomechanical properties can be controlled 

to have desired amount of anisotropy by designing and manufacturing FRPs 

with appropriate fiber orientation. 
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Figure 1-1 Specific strength and stiffness values of conventional materials 

and FRPs [3] 
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Figure 1-2 Schematic illustrations of FRP composites: (a) continuous FRP 

composites, (b) discontinuous FRP composites, (c) hybrid composites [4] 
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1.2. Artificial intelligence (AI) for FRPs 

Artificial intelligence (AI) has been fundamental to almost all fields of 

science and engineering thanks to the recent advances in computing power. 

The term machine learning (ML), which is a branch of AI, was first 

introduced by Arthur Samuel, who defined machine learning as “A field of 

study that gives computers the ability to learn without being explicitly 

programmed” [23]. Alpaydin defined machine learning in other word that 

“Programming computers to optimize a performance criterion using example 

data or past experience” [24]. Naqa et al. summarized these various 

definitions that “Coaching computers to intelligently perform tasks beyond 

traditional number crunching by learning the surrounding environment 

through repeated examples” [25]. In other word, machine learning is a field 

of data science that predicts the outcome of future events based on given data 

(or experience) in similar situations. The general flow of machine learning is 

1) accumulating data, 2) manipulating data, 3) training model, and 4) 

evaluation. 

All the process parameters, including shape, size, composition of 

inclusions, should be considered for design, identification, and 

characterization of FRP materials since they greatly affect the overall 

properties of FRPs [26-29]. Traditionally, experiments have played a very 

important role in investigating such process parameters. However, defining a 

constitutive equation between these parameters is extremely strenuous, and 
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sometimes even impossible to define. Moreover, many experiments must be 

accompanied for reliable characterization, which usually requires enormous 

resources and time. To cope with such a high cost, researchers in the materials 

field are attempting an approach through experimentation and integration of 

computer simulations (i.e., computational prediction and experimental 

validation) when designing materials. Despite the recent advances in 

computing power, the limitations of computer simulation (e.g., Molecular 

Dynamics (MD) and finite element method (FEM)) that still requires a lot of 

computing resources have arisen the need for researchers to find an 

alternative solution. Application of the machine learning approaches, or data-

driven strategies is widely studied nowadays [7, 30-39]. These strategies are 

composed of two steps. The first step is the generation of input dataset output 

(target) dataset. The second step is to establish a relation between input and 

target properties numerically (Figure 1-3 [5]). Pattnaik et al. developed a 

flexible process methodology that can be used from the beginning of selection 

of raw materials to final output performance characteristics for laboratory 

scale applications, which also emphasizes the role of machine learning at the 

various stages of processing of FRPs (Figure 1-4 [6]). 

The outstanding point of using machine learning in the field of materials 

is that machine learning models trained with traditional input data can suggest 

unexpected composite designs with good or even higher properties. Gu et al. 

demonstrated a new bio-inspired hierarchical composite structure using 

machine learning approach (Figure 1-5 [7]). They showed that their machine 
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learning-based model can generate a composite material with new 

microstructural patterns not included in the input data that has tougher and 

stronger properties. 
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Figure 1-3 The key elements of machine learning in materials science, (a) 

schematic view of an example data set, (b) statement of the learning problem, 

and (c) creation of a surrogate prediction model via the fingerprinting and 

learning steps [5] 
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Figure 1-4 Role of machine learning in FRPs [6] 
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Figure 1-5 Machine learning generated designs, (a) strength and toughness 

ratios of designs computed from training data and ML output designs, (b) 

Effects of learning time on ML models, and (c) microstructures from 

partitions A and B [7] 
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1.3. Mean-field homogenization of FRPs 

The mean-field homogenization based on Eshelby’s single inclusion problem 

[40] is used to predict the effective thermomechanical properties of FRPs with 

arbitrary microstructures. 

Consider a two-phase composite RVE with domain  and volume  

consisting of the matrix phase (  and ) and inclusion phase (  and 

). Both matrix and inclusion phases are assumed to be isotropic and elastic, 

and the interface between two phases is assumed to be perfectly bonded. The 

volume averaging operator quantity is defined as follows. 

        Equation 1-1 

where   refers to an arbitrary integrable field. The relation between the 

volume average quantity of the RVE and matrix/inclusion can be expressed 

as follows. 

       Equation 1-2 

where  and  are the volume fraction of matrix phase 

and inclusion phase, respectively. When the RVE exhibits the macro-strain 

field  , the average micro-strain field in each phase can be correlated 

using the strain concentration tensor  as follows. 

                        Equation 1-3 

Combining Equation 1-2 with respect to the strain field and Equation 1-3 

provides the following two relations between the macro-strain field and the 
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micro-strain field in each phase: 

           Equation 1-4 

          Equation 1-5 

where  is the fourth-order symmetric identity tensor. Substituting Equation 

Equation 1-4 and Equation 1-5 into Equation Equation 1-2 with respect to 

the stress field, we obtain, 

       Equation 1-6 

where   and   are the stiffness tensor of the matrix and inclusion, 

respectively. Therefore, the effective stiffness tensor of the RVE   is 

derived as follows. 

        Equation 1-7 

Various homogenization models proposed thus far are distinguished by the 

definition of the strain concentration tensor  , such as Generalized self-

consistent model, Mori-Tanaka model, Voigt model, Reuss model, Bridging 

model, and Double inclusion model, etc. An exemplary comparison of these 

homogenization models in predicting the modulus of a composite materials 

is provided in Figure 1-6 [8]. 

    Among the various homogenization models, Mori-Tanaka model, and 

Voigt model, which is used in this study, will be explained in the following 

sections. 
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Figure 1-6 Example of the most traditional approach in micromechanics to 

compare models’ predictions with experimental data [8] 
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1.3.1. Mori–Tanaka model 

The Mori–Tanaka model [41, 42] assumes that each ellipsoidal inclusion is 

embedded in an infinite matrix, which is the same premise of Eshelby's single 

inclusion problem. Therefore, the Mori–Tanaka model is suitable for two-

phase composites with a low volume fraction of approximately 30 % or less 

[43]. The single inclusion strain concentration tensor provided by the Mori–

Tanaka model  is as follows. 

            Equation 1-8 

where  is Eshelby’s tensor. The details of the Eshelby’s tensor component 

for an ellipsoidal or cylindrical inclusion are discussed in Section 1.3.3. As 

described in the introduction, the Mori–Tanaka model was used in the first 

step of a two-step homogenization procedure in which each pseudograin is 

homogenized. 

 

1.3.2. Voigt model 

The Voigt model [44] adopts the iso-strain assumption that each phase of the 

two-phase composite has a parallel connection, which can be expressed as 

follows. 

                 Equation 1-9 

A comparison of Equation 1-9 and Equation 1-3 reveals that the strain 

concentration tensor of the Voigt model  should be identical with the 

fourth-order symmetric identity tensor . Thus, Equation 1-7 is simplified to 
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               Equation 1-10 

which is the final form of the Voigt model. 

 

1.3.3. Eshelby tensor 

The details of the Eshelby tensor’s component for an ellipsoidal inclusion is 

provided by Mura's study [45]. 

    Consider an ellipsoidal inclusion   (Equation 1-11) with principal 

half axes of  in an isotropic infinite body, where  is given by, 

           Equation 1-11 

Then, Green’s function is defined by, 

 Equation 1-12 

After some manipulation, one can obtain the strain components ( ) the 

surface integrals ( , , and ) can be reduced to simple integrals based 

on an attractive conclusion that the strain and stress is uniform inside the 

inclusion as follows: 

       Equation 1-13 

           Equation 1-14 

         Equation 1-15 

       Equation 1-16 
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where  . These surface integrals are 

expressed by the standard elliptic integrals as follows.  

     Equation 1-17 

     Equation 1-18 

If we write Equation 1-13 as 

                   Equation 1-19 

then, 

     Equation 1-20 

     Equation 1-21 

     Equation 1-22 

        Equation 1-23 

All other non-zero components can be obtained via cyclic permutation.  

is called Eshelby tensor. 

    The elliptic integrals in Equation 1-14 to Equation 1-16 can be 

simplified by assuming the shape of the inclusion. In case of prolate spheroid 

inclusion (  ), which is a typical shape of short fibers in FRPs, 

elliptic integrals are defined analytically as follows (Equation 1-24 to 

Equation 1-29), and consequently Eshelby tensor   can be easily 

obtained using Equation 1-20 to Equation 1-23. 
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         Equation 1-24 

     Equation 1-25 

        Equation 1-26 

             Equation 1-27 

       Equation 1-28 

         Equation 1-29 
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1.4. Research objective 

In Chapter 2, a machine learning-assisted tensile strength prediction model of 

unidirectional (UD) FRP considering the randomness of the microstructural 

fiber array is proposed. Stress concentration factor (SCF) generated by the 

broken fiber is a dominating feature to determine the tensile strength of UD 

FRP. In general, however, no analytical model has been proposed for SCF 

calculation in randomly distributed fibers in UD composite. The author 

proposes a novel machine learning-assisted modelling of SCF in UD 

composites. Extensive finite element simulations were performed, calculating 

SCF for UD composites with various random fiber arrays. Then, an artificial 

neural network (ANN) was trained with the obtained SCF data and used it to 

predict the SCF for composites with an arbitrary random fiber array. A tensile 

strength prediction model was developed based on a new recurrence relation 

for fiber fracture propagation and a determination algorithm for the fracture 

sequence for random fiber arrays. The tensile strength of UD composites was 

predicted over a range of values, demonstrating that accuracy was superior to 

conventional prediction methods. 

    In Chapter 3, a machine-learning assisted two-step homogenization 

framework for short fiber-reinforced plastics (SFRPs) is proposed. 

Consideration of orientation is very important because the anisotropy of 

thermomechanical properties is differently generated depending on the 

orientation of inclusion. A series-parallel ANN system was constructed and 
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trained to facilitate the time-consuming reconstruction of orientation 

distribution function and pseudograin decomposition procedures. Then, we 

implemented the series-parallel ANN system, Mori-Tanaka model, and Voigt 

model into ABAQUS user material subroutine (UMAT). The elastic modulus 

values predicted by UMAT were in a good agreement with both DIGIMAT 

and experimental values, The low computation time of UMAT also justified 

the application of machine learning approach to the two-step thermo-

mechanical homogenization framework. 

    In Chapter 4, the previously developed two-step homogenization 

framework for SFRP will be expanded to describe more general case by 

introducing the concept of interphase with constant nano-scale thickness 

between matrix and inclusion. This third phase enabled us to take inclusion 

size effect into account. The applicability of the extended three-phase 

homogenization framework in material design will be confirmed by 

comparing the effective thermomechanical properties obtained via 

experimental and finite element simulation. 
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Chapter 2. Machine learning-assisted modelling of 

stress concentration factor in unidirectional fiber 

composites 

 

2.1. Research background 

An excellent mechanical properties of unidirectional (UD) fiber-reinforced 

composites are not fully utilized due to the significant variations in tensile 

strength [46, 47] caused by the differences in material properties [48-51] or 

microstructural randomness [52-55]. The safety factor of UD fiber-reinforced 

composites is therefore considerably higher than that of metals. Many 

researchers have tried to understand and model the uncertainty in UD fiber-

reinforced composites [56-61], but have not yet developed predictive models 

of tensile strength that consider its uncertainty. An accurate model for 

predicting tensile strength capable of quantifying uncertainty is required to 

improve the applicability of fiber-reinforced composite materials. 

The most widely used approach for tensile strength prediction uses a 

failure criterion, such as those of Tsai–Hill [62], Tsai–Wu [63], and Puck [64]. 

However, despite its outstanding intuitiveness, failure criteria-based tensile 

strength prediction is a posterior method that requires experimental data on 

tensile strength. Therefore, this approach cannot account for the degree of 

randomness involved. By contrast, the alternative constituent-level approach 

could be used to calculate tensile strength, taking the origin of the uncertainty 

into account when predicting the tensile strength. 
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There are currently two approaches to predicting the tensile strength of 

UD composites: statistical and analytical models. The former models consider 

UD composites as arrays of representative volume elements in which broken 

fibers are surrounded by a perfectly bonded cylinder of matrix [65]. Assuming 

that each element’s strength follows the Weibull distribution, the fracture 

probability of an element when an external load is applied to the 

representative volume element array is determined. A failed element causes a 

local stress concentration in the nearest elements [66], resulting in multiple 

fractures. This approach is referred to as cumulative weakening theory; the 

statistical tensile strength of the UD composite is obtained by combining a 

failure criterion [67] with this theory. In an analytical model, the tensile 

strength of UD composites is calculated based on the shear lag theory, which 

accounts for the interfacial shear strength between each fiber and the matrix 

[68, 69]. This model does not consider multiple sequential fiber fractures; 

instead, it considers an existing broken fiber cluster. These statistical and 

analytical models have different perspectives on multiple fractures of fibers 

and interfacial shear strength, each with its own advantages and 

disadvantages. 

Recently, Na et al. [1] proposed an integrated tensile strength prediction 

model that combines the statistical and analytical models. They assumed that 

continuous fibers within UD composites are in a hexagonal close packing 

(HCP) array, which leads to simplification of the recurrence relation for fiber 

fracture propagation and stress concentration factor (SCF) calculation. This 
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assumption, however, is unrealistic because various X-ray computed 

tomography analyses have demonstrated that the continuous fibers are 

randomly embedded in real UD composites [70-73].  

    In this chapter, we propose a series of machine learning-assisted 

modeling procedures that can predict the tensile strength of UD composites 

considering the uncertainty, i.e., the randomness of the microstructural fiber 

array. First, we derive the recurrence relation for fiber fracture propagation in 

an arbitrary random fiber array (RFA). Next, we introduce a machine learning 

approach to develop a model capable of predicting the SCF in an arbitrary 

RFA. For this, we performed extensive finite element calculations for 1,500 

different RFAs to accumulate more than 20,000 pieces of SCF data. We then 

used these SCF data to construct an artificial neural network (ANN) model 

that can predict the SCF of UD composites with an arbitrary RFA. Finally, we 

propose a prediction model using the new recurrence relation and ANN model. 
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2.2. Methods 

2.2.1. A new recurrence relation for fiber fracture propagation 

Consider a situation in which a tensile stress  is applied to a fiber array with 

a simple HCP structure, as shown in Figure 2-1(a). Note that all fibers are 

under the isostress ( ) condition. Thus, without loss of generality, it can be 

assumed that a fracture occurs in the central fiber (fiber 1) according to the 

probability calculated by the Weibull distribution [74, 75] in the form of 

               Equation 2-1 

where  is the failure probability of a single fiber with length  under 

stress  ,   is a reference length, and   and   are Weibull distribution 

parameters. 

    Let us define  as the probability of  multiple fractures; then,  is 

equal to : 

                        Equation 2-2 

Next, consider a situation in which a second fracture (fiber 2) occurs after 

fiber 1 breaks according to , as shown in Figure 2-1(b). The rest of the 

fibers in the HCP fiber array experience greater stress to compensate for the 

loss of fiber 1’s load-carrying capacity. The ratio of this extra stress is defined 

as the SCF, , where the subscript indicates the SCF generated in the jth 

fiber due to fracture of the ith fiber. Details of the SCF calculation using finite 

element analysis are provided in the following section. The transitional 
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probability ( ) is defined as [65]: 

                   Equation 2-3 

where the subscript  indicates that  is the probability that the fracture 

will propagate to the jth fiber due to overstress caused by the ith broken fiber. 

    According to the numerical simulation results of Na et al. [1], the SCF 

in the HCP fiber array tends to decrease as the distance from the broken fiber 

increases, and its value is the same for all fibers at the same distance. There 

are six geometrically identical fibers for which the highest SCF is near fiber 1; 

thus, they are all candidates for fiber 2 (brown fibers in Figure 2-1(b)). 

Without loss of generality, suppose fiber 2 is the fiber directly above fiber 1. 

Then, the probability of a second fracture   can be expressed as the 

conditional probability that   will occur given that   has already 

occurred: 

                         Equation 2-4 

This can be converted into the probability of a complementary event, as 

follows: 

,                   Equation 2-5 

which will help us understand the recurrence relationship later in the 

derivation process. Similarly, consider a situation in which a third fracture 

occurs (fiber 3) after fibers 1 and 2 break according to  , as shown in 

Figure 2-1(c). After the second fracture, more than one broken fiber becomes 
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involved in fracture propagation. Hence, it is necessary to assume that the 

previous fiber’s fracture independently affects fracture propagation to the 

next fiber. Under this assumption, there are two geometrically identical fibers 

with the highest SCF being near fibers 1 and 2; they are both candidates for 

fiber 3 (brown fibers in Figure 2-1(c)). Without loss of generality, suppose 

that fiber 3 is the fiber on the left of fibers 1 and 2. Let us define  as the 

overall transitional probability of the kth fiber (fiber k) due to there being k-1 

broken fibers. Then, the probability of there being no fracture transition of 

fiber 3 ( ) due to fibers 1 and 2 can be expressed using  and , as:  

                 Equation 2-6 

The probability of fracture transition of fiber 3 ( ) due to fiber 1 or 2 is 

                 Equation 2-7 

The probability of a third fracture  can then be expressed by multiplying 

 and Equation (2-7): 

               Equation 2-8 

    The fourth or subsequent fractures can be considered using the same 

logical procedure, as shown in Figure 2-1(d). We can deduce that only 

Equation (2-6) and Equation (2-7) will change as the order of the fracture 

increases. For the kth fracture, Equation (2-7) can be rewritten as:  

                   Equation 2-9 

Therefore, the recurrence relation for the fiber fracture propagation in an HCP 

23e



 

 ２６ 

fiber array can be generalized as:  

               Equation 2-10 

whose initial value  can be obtained by Equation (2-2). Equation (2-10) 

is our final form of the recurrence relation for fiber fracture propagation. 
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Figure 2-1 Schematic diagram of multiple fracture propagation in a 

hexagonal close packing fiber array under a tensile stress, . Black denotes a 

fiber that is already broken. Brown and orange denote fibers with the highest 

and second highest transition probabilities, respectively. (a) Initiation of first 

fiber fracture (fiber 1); (b) six candidates for the next fiber fracture (fiber 2); 

(c) two candidates for fiber 3; and (d) three candidates for fiber 4 
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2.2.2. Determination of the fiber fracture sequence 

Fracture sequence determination in an HCP fiber array is straightforward 

because all the distances from a broken fiber are multiples of the nearest 

distance. Because all fibers are geometrically identical, the fiber fracture 

follows an arbitrary sequence (e.g., clockwise; Figure 2-2(a)) without loss of 

generality in the fracture sequence. In an RFA, however, the fracture sequence 

is somewhat ambiguous (Figure 2-2(b)). All pairs of fibers in an RFA have 

different distances separating them, resulting in different transitional 

probabilities. Hence, determination of the fracture sequence in an RFA should 

be performed based on a quantitative comparison of the transitional 

probabilities. Once the methodology for determining the fracture sequence of 

an arbitrary RFA is established, the recurrence relation (Equation 2-10) can 

be applied directly without modification. 

    An algorithm for determining the fracture sequence is shown in 

Figure 2-3. Our algorithm requires the number of fibers ( ) in a target RFA 

and the coordinate matrix  of all fibers. Assume that fiber 1 is at the 

center of the unit cell, and its coordinates are . The initial value of 

 is set to 2 once the input data above are inputted into the algorithm, which 

means that the algorithm will sequentially seek the fiber with the highest 

transitional probability for the second fracture. The initial values of  and  

are 1 and  , respectively. For given   and   values, the algorithm will 

calculate the distance ( ) between  and , SCF ( ), and the 
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transitional probability (  ). This calculation process is repeated until the 

values of  and  reach  and , respectively. Because all possible  

values are obtained, the overall transitional probability of the jth fiber ( ) can 

easily be calculated using Equation 2-9. The algorithm then determines 

which fiber has the maximum   value and swaps the   and 

 coordinates in the original  matrix, which sorts the matrix 

according to the fracture sequence. These iterations are then repeated until the 

value of  reaches . 

  

N
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Figure 2-2 Comparison of the fracture sequence between (a) a hexagonal 

close packing (HCP) fiber array and (b) random fiber array (RFA) 
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Figure 2-3 Flowchart to determine the fiber fracture sequence in a random 

fiber array 
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2.2.3. Machine learning-assisted tensile strength prediction 

The analytical composite strength ( ) can be calculated by [1, 69], 

   Equation 2-11 

where  is the fiber volume fraction,  is the fiber radius,  and  are 

the Weibull distribution parameters,  is the ineffective length, and  is the 

interfacial shear stress. The statistical composite strength (  ) 

corresponds to an applied stress whose expectation value of multiple fractures 

exceeds unity:  

         Equation 2-12 

According to Na et al. [1], the tensile strength of the UD composite is 

determined as the intersection of the analytical and statistical composite 

strength plots, and the corresponding multiple fracture number is called the 

critical multiple fracture number. 

To use the composite strength prediction methodology above, we need a 

model that can calculate the SCF ( ) of a fiber in an arbitrary environment. 

However, no analytical equation has been proposed for the calculation of SCF 

in general, so this can only be obtained through finite element simulation. 

Machine learning-assisted modeling can be a useful method because it can 

obtain a good solution to problems where no analytical equation has been 

established. As can be seen in recent studies using tens to millions of data 

points for training machine learning models in the field of composite 
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materials [7, 30-39], the quantity of data provided would determine the 

quality of a machine learning-assisted SCF model. Hence, it is essential to 

establish a fully automated procedure capable of obtaining a massive amount 

of SCF data. 
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2.2.4. Calculation of stress concentration factors 

Our fully automated procedure for calculating the SCF consists of two steps: 

generation of RFAs using MATLAB R2022a software and finite element 

simulation using ABAQUS/CAE 2018 software. Various RFA generation 

algorithms have been proposed, including random sequential adsorption, 

nearest neighbor, modified nearest neighbor, random sequential expansion, 

and random fiber removal [76-81]. In the present study, we implemented a 

random sequential adsorption algorithm into MATLAB, generating 1,500 

RFAs with volume fractions ( ) of 25−60%. From among these, 15 typical 

examples are presented in Figure 2-4(a), with the volume fraction histogram 

of all arrays presented in Figure 2-4(b). Note that the size of an RFA is 

, where  is the diameter of a fiber. This is because, according to 

Barzegar et al.’s calculation of the SCF in an RFA [82], the SCF converges to 

0 if the distance between the centers of the fibers is greater than 4. The number 

of fibers  and fiber coordinate data  of each RFA were saved and 

utilized later for determination of the fiber fracture sequence in Section 2.2.2. 

    A simulation model for an RFA was generated by transferring 

geometrical information (e.g., fiber coordinates and diameter) to 

ABAQUS/CAE. A typical example of a simulation model is shown in 

Figure 2-5. Note that the diameter of a fiber ( ) is 7.0 μm and the depth ( ) 

of the simulation model in the z-direction was sufficiently long (  ) to 

ensure a stress recovery of over 99% (see Figure 2-6). A broken plane was 
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introduced into the center of the simulation model (Figure 2-5(a)). A broken 

fiber was defined based on the geometry of the central fiber in the broken 

plane. A cohesive layer with a thickness of 5% of  was introduced into the 

broken fiber at the center, as shown in Figure 2-5(b). The other fibers’ 

cohesive layers were not considered because the interfacial influence was not 

significant, and their consideration increased computational cost. 

    The material properties listed in Table 2-1 were assigned to the fiber, 

matrix, and cohesive layers. Perfect bonding was assumed for all interfaces, 

including fiber-to-matrix, fiber-to-cohesive layer, and matrix-to-cohesive 

layer bonding. The fibers and matrix were meshed as six-noded linear 

triangular prisms (C3D6) with mesh size of   better describe the 

cylindrical geometries. The cohesive layer was meshed as eight-noded three-

dimensional cohesive elements (COH3D8). Note that a finer mesh with size 

of  was generated around the broken plane and cohesive layer to better 

simulate the stress concentration phenomenon, as shown in Figure 2-5(c) and 

Figure 2-5(d). A schematic diagram of the boundary conditions applied to the 

simulation model is shown in Figure 2-5(e). Displacement (  = 0.1% strain) 

and pinned (   = 0) boundary conditions were applied to both planes 

perpendicular to the z-axis. x- (  =  =  = 0) and y-symmetry 

(  =  =  = 0) boundary conditions were applied to the planes 

perpendicular to the x- and y-axes, respectively. Note that periodic boundary 

conditions were not applied because these increased the calculation time but 
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did not change the calculation result significantly. The ABAQUS/CAE 

modeling procedures described above were implemented using Python and 

repeated for all 1,500 RFAs. 
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Table 2-1 Material properties of unidirectional carbon fiber–polyamide 

composites for stress concentration factor simulation [1] 

Material property Value 

Fiber longitudinal tensile modulus ( ) 217.0 GPa 

Fiber transverse tensile modulus ( ) 21.7 GPa 

Fiber Poisson’s ratio ( ) 0.2 

Matrix tensile modulus ( ) 3.0 GPa 

Matrix Poisson’s ratio ( ) 0.3 

Normal interfacial shear stress ( ) 100.0 GPa 

Tangential interfacial shear stress ( ) 20.0 GPa 

Interface fracture energy ( ) 270.0 J/m2 
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Figure 2-4 (a) Typical examples and (b) volume fraction histogram of 1,500 

random fiber arrays generated in MATLAB 
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Figure 2-5 Typical example of (a, b) simulation model, (c, d) simulation mesh, 

and (e) boundary conditions of a random fiber array used for calculating the 

SCF 
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Figure 2-6 Determination of ineffective length for given simulation condition 
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2.3. Results and Discussion 

2.3.1. Data accumulation for the stress concentration factor 

A typical result of the simulation procedure in Section 2.2.4. is shown in 

Figure 2-7. To observe the stress concentration behavior of the surrounding 

fibers due to the broken fiber at the center, we cut each simulation model with 

a broken plane, as shown in Figure 2-7(b). The SCF of a fiber whose 

normalized center distance from the broken fiber is  in a fiber array 

consisting of , , and  can be expressed as: 

       Equation 2-13 

where  is the distance from the broken fiber and  is the sum of the 

reaction forces across the fiber cross-section, and the subscript  

corresponds to the cross-section location. Note that  corresponds to 

the broken plane’s depth and  corresponds to the plane where the stress 

concentration is fully recovered. An RFA contains 13−27 fibers depending on 

the fiber volume fraction. The total number of fibers across the 1,500 RFAs 

was 28,500. Hence, the number of   data points 

accumulated through the simulation was 28,500. 

Figure 2-8(a) shows a three-dimensional scatter plot of the SCF data. A 

two-dimensional scatter plot is presented in Figure 2-8(b) to better show the 

volume fraction dependency of the SCF. There is a difference in SCF for low 

and high-volume fraction composites. If there are stochastically many 
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undamaged fibers around the broken fibers, i.e., high volume fraction case, 

the stress concentration caused by the broken fibers will be dispersed easily, 

resulting in relatively low SCF. Otherwise, the stress concentration caused by 

the broken fibers will be concentrated, resulting in relatively high SCF. This 

trend can be observed in Figure 2-8(b). Like the numerical calculation result 

of Barzegar et al. [82]; note that the SCF tends to decrease as  or  

increases. 

The scatter plots In Figure 2-8 indicate that, due to the microstructural 

randomness of RFAs, the SCF of a fiber at a specific normalized center 

distance from a broken fiber under a particular volume fraction is not unique. 

Using such highly variable data to train a machine learning regression model 

will inevitably yield unsatisfactory results, because such methods provide 

only one possible solution under each set of given conditions. In the present 

paper, we used a statistical approach to manipulate the SCF data. First, a two-

dimensional mesh grid was generated on the   plane. Then, we 

calculated the average value (  ) and 99% confidence 

interval ( ) of all the SCF data contained in the grid, as follows: 

      Equation 2-14 

     Equation 2-15 

where  and  are the number and variance of the datapoints in the grid, 

respectively. Note that the t-distribution was used to calculate the . 
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The concept underlying this procedure is summarized in Figure 2-9. We 

performed the procedure repeatedly for all grids in the  plane. All 

stress concentration data within the grid were replaced with the corresponding 

average and   data. All 28,500 manipulated data points are presented in 

Figure 2-10. 
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Figure 2-7 Typical example of simulation results in (a) three- and (b) two-

dimensional views on the broken plane 
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Figure 2-8 Scatter plot of stress concentration factor versus normalized center 

distance from the broken fiber in (a) three- and (b) two-dimensional views 
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Figure 2-9 Schematic diagram of the statistical process for manipulating the 

stress concentration factor data 
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Figure 2-10 Scatter plots of the (a) average and (b) confidence interval for 

28,500 manipulated stress concentration factor data points 
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2.3.2. Training an ANN with stress concentration factor data 

An ANN is a computing system inspired by biological neural networks [83]. 

There have been many attempts to apply ANNs in the field of composites 

research [84-92]. Herein, we trained an ANN with the manipulated SCF data 

using MATLAB Deep Learning Toolbox. 

The optimal ANN architecture was determined. For the input and output 

layers, two input variables ( , ) and two output variables (  and ) 

were considered. When inappropriate numbers of hidden layers and neurons 

are used, low training accuracy or overfitting may occur. Vujicic et al. [93] 

compared methods proposed for determining the number of hidden neurons, 

and concluded that the best way to determine the optimal topology of a neural 

network to address a specific problem is to train and test the network using 

different numbers of hidden layers and neurons, where different methods 

provide different results depending on the dataset. 

To determine the most appropriate hidden layer architecture to address 

our problem, preliminary training was performed by varying the numbers of 

hidden layers and neurons in each layer between 1 and 10. A Bayesian 

regularization backpropagation algorithm (trainbr) was used for model 

training. Mean squared error (mse) was the performance metric. The 

hyperbolic tangent sigmoid (tansig) transfer function was applied to the input 

and hidden layers, while a linear transfer function (purelin) was applied to the 

output layer. The input data (28,500) were randomly divided into training, 
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testing, and validation datasets (proportions of 70%, 15%, and 15%, 

respectively). To prevent overfitting, the training epoch was stopped if the 

error increased more than six times during the validation procedure 

(max_fail). The preliminary training results, i.e., the training time and 

validation performance as functions of the number of hidden layers and 

neurons, are presented in Figure 2-11(a) and Figure 2-11(b), respectively. 

Note that the logarithm of the mse shown in Figure 2-11(b) was calculated to 

show the trends more clearly. The tensile strength prediction results calculated 

using the method described later in Section 2.3.3 are presented in Figure 2-

11(c). It was confirmed that the tensile strength prediction results converged 

when the combination of hidden layer and hidden neuron was between 3/3 

and 7/7. The tensile strength predictions were out of trend in extreme cases 

(e.g., 1/1, 10/1, and 10/10), because of the underfitting or overfitting problem 

due to improper hidden layer architectures [94]. 

Among the converged combinations, both training time and validation 

performance were excellent when there were six hidden layers and six 

neurons. Therefore, the optimal ANN configuration was determined to be six 

hidden neurons in each of six hidden layers, as shown in Figure 2-12. 

The 28,500 input and output datasets were trained with the optimized 

ANN configuration. The max_fail value was set to 20, while the rest of the 

conditions the same those for the preliminary training. The training results are 

presented as a regression plot, “training state” plot, performance plot, and 

error histogram in Figure 2-13. The best performance was achieved at the 
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382nd epoch (R = 0.99924). This result confirmed that an ANN model is 

capable of providing statistical information about the average value ( ) and 

uncertainty ( ) of the SCF for a UD composite material with arbitrary fiber 

volume fraction ( ) and distance from the broken fiber ( ). 
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Figure 2-11 The effect of the number of hidden layer and neurons on (a) 

training time, (b) validation performance, and (c) tensile strength prediction 

result 

 

 

Figure 2-12 Optimized artificial neural network configuration with six 

hidden neurons in each of six hidden layers 
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Figure 2-13 Training results for the 28,500 SCF and  datasets obtained 

using the optimized ANN configuration. (a) Regression plot, (b) training state 

plot, (c) performance plot, and (d) error histogram 
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2.3.3. Tensile strength prediction and validation 

We sequentially calculated , , and  using the neural network model 

described above. To validate the model, 30 RFAs with a volume fraction of 

51% were generated and used for strength prediction; we later compared these 

predictions with experimental data. Details of the experimental procedure can 

be found in a previous study [1]. First, the analytical composite strengths 

( ) of 30 RFAs were obtained using Equation 2-14, as described in 

Section 2.3.1. Next, their statistical composite strengths (  ) were 

calculated using the recurrence relation (Equation 2-10 in Section 2.2.1.), 

fiber fracture sequence determination algorithm (Section 2.2.2.), and ANN 

model (Section 2.3.2.). Figure 2-14(a) shows a typical example plot of 

 and . We also predicted these strengths for an HCP fiber 

array, as presented in Figure 2-14(b). The  plot in Figure 2-14(b) 

is smoother than that in Figure 2-14(a) because the inter-fiber distance is 

constant in the HCP array. 

    Finally, the tensile strength of each of the 30 RFAs was obtained by 

finding the intersections of their analytical and statistical composite strength 

plots, as discussed in Section 2.2.3. The details of the parameters are provided 

in Table 2-2, and the results are shown in Figure 2-15. The composite 

strength obtained by assuming an HCP fiber array is also presented for 

comparison. Note that, in the figure, the scatter and error bars originate from 

the array’s intrinsic randomness and the SCF’s . Across the 30 RFAs, the 
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difference between the maximum and minimum values of the calculated 

composite strength is 27.51 MPa. 

We then considered the microstructural features of the generated RFAs 

to identify essential factors for determining tensile strength. Because the HCP 

structure is ideal for dispersing stress concentration, the composite strength is 

highest for composites with HCP arrays. Indeed, Figure 2-15 shows that the 

calculated composite strength assuming an HCP fiber array lies at the upper 

limit of the experimental data. Therefore, it can easily be deduced that the 

strength of a composite will be determined by the similarity of its fiber 

arrangement to HCP, i.e., the maximum and minimum values will be for the 

most and least similar to HCP, respectively. We investigated this considering 

the inter-fiber distance, as follows. 

Figure 2-16 shows the probability density function of the smallest inter-

fiber distance in the array, serving as a quantitative measure of that array’s 

similarity to HCP. Because the smallest inter-fiber distances are all the same 

in an HCP fiber array, its probability density function appears as a very sharp 

peak at 1.0. Therefore, the probability density functions of the RFAs showing 

the highest strengths exhibit more positive kurtosis than those with the lowest 

tensile strengths. Note that, in Figure 2-16, the smallest inter-fiber distances 

obtained from all 30 RFAs were used for the calculation.  

The cross-section of a real UD composite is a combination of various 

structures; in particular, the extreme cases of HCP and fibers with large 

separation can coexist. When external stress is applied to a composite with 
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this structure, the initiation of a single fiber fracture occurs probabilistically 

according to the Weibull distribution in both phases. The stress concentration 

will be well dispersed in the HCP-like phase, and the critical multiple fracture 

number will not be reached easily. By contrast, the concentration will not be 

well dispersed in the other phase, and this number will be reached at a lower 

stress. In this case, the fibers fail simultaneously after the statistical composite 

stress exceeds the analytical composite strength. The composite failure 

behavior is governed by the macroscopic damage propagation. Thus, the 

lowest strength value (i.e., the weakest part) determines the composite 

strength. Figure 2-15 shows that the lowest strength of the simulated RFAs 

predicts the experimental tensile strength values with better accuracy than the 

HCP array. In conclusion, the macroscopic composite strength is determined 

by the critical multiple fractures initiated in a phase that is least similar to 

HCP. The tensile strength ranges from 1,552.2 to 1,579.7 MPa depending on 

the fiber arrangement; in particular, its microstructural similarity to HCP. This 

demonstrates that the model developed in this paper predicts tensile strength 

suitably, while also quantifying uncertainty. 

    In this study, the range of the fiber volume fraction with range of 25 ~ 

60 % was chosen due to the following two reasons. First, this range was 

chosen to ensure the stress concentration between the fibers. In the case of 

UD composite with a low volume fraction, the probability that the breakage 

of one fiber affects the other fiber will decrease because the distance between 

fibers is stochastically longer. Second, the continuous fibers in UD 
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composites are closely packed due to the pressure applied during the 

manufacturing processes such as resin transfer or autoclave molding. As a 

result, UD composites exhibit high volume fraction (> 20 %). Due to the 

nature of artificial neural network (artificial neural network will show good 

performance within the training range), the performance of the current model 

for UD composite with fiber volume fraction less than 20%, outside our 

training range (25 ~ 60 %), cannot be guaranteed. UD composites with lesser 

fiber volume fraction (< 20 %) will be considered and reported in a near future. 
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Table 2-2 Definitions and values of parameters in Equation 2-11 [1] 

Parameter Value 

Fiber volume fraction ( ) 51.0 % 

Fiber radius ( ) 3.5 μm 

Weibull distribution parameter ( ) 12.01 

Weibull distribution parameter ( ) 3.93 GPa 

Ineffective length ( ) 18.8 μm 

Reference length ( ) 10.0 mm 

Interfacial shear stress ( ) 37.0 MPa 
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Figure 2-14 Typical example of an analytical and statistical composite 

strength plot for (a) a random fiber array (RFA) and (b) a hexagonal close 

packing (HCP) fiber array, according to the fracture number 
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Figure 2-15 Comparison of composite strength prediction results for 

hexagonal close packing (HCP) arrays and random fiber arrays (RFAs), and 

experimental values 
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Figure 2-16 Probability density function of the smallest inter-fiber distance, 

plotted for the random fiber arrays with the highest and lowest tensile 

strengths 
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2.4. Summary 

Stress concentration factor (SCF) is the dominant factor to determine the 

tensile strength of UD fiber-reinforced composites because it can effectively 

model a progressive contribution of broken fibers to the tensile strength. 

Nevertheless, an analytical model for calculating the SCF of randomly 

distributed fibers in UD composites has not been proposed. A machine 

learning approach was proposed to predict SCF by constructing and training 

an ANN with extensive finite element analysis results. Then, SCFs could be 

obtained whenever needed without actual finite element calculation, enabling 

to develop a novel method for predicting the tensile strength of UD fiber-

reinforced composites. A new algorithm for determining the fiber fracture 

sequence was also developed and combined with the ANN, confirming the 

applicability of machine learning-assisted modelling strategy of SCF. Overall, 

the predicted tensile strength showed a good agreement with experiments, 

however its variability was predicted about 30 MPa, which was four times 

lower than the variation observed in the experimental tensile strength. For 

more realistic uncertainty modeling of the tensile strength, other parameters, 

e.g., microstructural randomness such as the variation in fiber diameter or 

misalignment in the longitudinal direction should be considered in the ANN. 

  



 

 ６２ 

Chapter 3. Machine learning-assisted pseudograin 

decomposition procedure in short fiber composites 

 

3.1. Research background 

The demand for short fiber-reinforced plastics (SFRPs) in the automotive and 

the aerospace industries is increasing owing to their design freedom, cost 

effectiveness, and superior specific mechanical properties [95-98]. 

Automotive parts made of SFRPs are generally subjected to complex loading, 

thus necessitating a capability of predicting or simulating such complex 

behavior of the parts. Therefore, a fundamental approach that can simulate 

the mechanical response of SFRPs is required. 

The most versatile method for simulating the mechanical responses of 

such SFRPs involves performing direct finite element simulation to obtain the 

effective properties of the representative volume element (RVE) containing 

all geometric information, including polymer matrix and short fibers with a 

specific orientation [99-101]. However, this direct simulation method is 

extremely time consuming even with modern computing power [101]. Instead, 

mean-field homogenization methods based on Eshelby’s single inclusion 

theory [40], such as the Mori–Tanaka model [41], self-consistent model [102], 

double-inclusion model [103], and differential-scheme model [104], are 

widely used. However, these homogenization models are unsuitable for 

interpreting SFRPs as they lead to physically unacceptable results because 

these models require the target composite to have inclusions of similar shape 
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and orientation [105]. 

To overcome these limitations, a two-step homogenization procedure 

based on pseudograin approach was first proposed by Pierard et al. [105] and 

has been studied by numerous studies [106-113]. The first step of the two-

step homogenization procedure is the decomposition of SFRP RVE into a set 

of pseudograins, followed by mean-field homogenization of each 

pseudograin based on the Mori–Tanaka model or Double-Inclusion model. 

The second step of the two-step homogenization procedure is performing 

homogenization of all pseudograins based on uniform strain assumption 

(Voigt model [44]), uniform stress assumption (Reuss model [114]), or a 

combination of both (Voigt–Reuss model [111]). The matrix phase is assumed 

to be viscoelastic [115-119] or viscoelastic–viscoplastic [110, 120-123]. The 

short fibers within each pseudograin are assumed to be elastic and 

unidirectionally aligned in a representative orientation, which is determined 

by processing orientation distribution function (ODF) with equivalent 

orientation approach [124] or iso-size facets algorithm [125]. 

Local microstructures of SFRP vary depending on the geometry or the 

flow conditions of the manufacturing process (i.e., injection molding) [126-

128]. Hence, ODF information must be acquired at all positions within the 

injection-molded SFRPs to effectively perform the two-step homogenization. 

Injection molding simulations can obtain local microstructures; however, they 

provide only orientation tensor information by solving the Folgar–Tucker 

equation owing to the numerical cost issue. Therefore, reconstructing ODF 
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from orientation tensor is essential, and the two widely used reconstruction 

methods are maximum entropy (ME) [129] and spherical harmonics (SH) 

methods [130]. ME method is known to be suitable for reconstructing ODF 

of injection molded SFRPs [131, 132], of which local microstructures have 

fiber orientations that maximize the entropy [133]. However, this method 

includes an iterative minimization problem to determine the optimum 

parameters of bivariate Bingham distribution to obtain the ODF with the 

highest entropy and therefore may not be suitable for massive simulation of 

the SFRP part. 

Numerous attempts have been made to apply an artificial neural network 

(ANN) in the field of constitutive modeling of composite materials to reduce 

computational costs, owing to increasing computing power and advanced 

algorithms [90]. Recently, several studies [101, 134-136] utilized the machine 

learning approach to predict the elastic or elasto–plastic properties of SFRPs. 

Breuer et al. [101] randomly generated approximately thousands of SFRP 

RVEs with various parameter combinations, including the elastic modulus of 

matrix, fiber aspect ratio, fiber volume fraction, and fiber orientation tensor. 

Short fibers were randomly distributed within the RVEs according to the ODF. 

The effective stiffness tensor of each RVE was calculated through numerical 

simulation with periodic boundary conditions rather than the two-step 

homogenization procedure. RVE parameters and effective stiffness tensor 

components were set as input features and output features of ANN, 

respectively. They reported that the trained ANN model exhibited equal or 
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slightly better performance compared with the two-step homogenization 

procedure. However, RVE-based approach has a limitation that an additional 

time-consuming data accumulation and training procedures are required for 

new materials with properties outside the input feature training range. 

Therefore, a combination of machine learning approach and two-step 

homogenization is essential. 

In this chapter, we proposed a machine learning-assisted two-step 

homogenization framework of SFRPs. First, 10,000 pieces of arbitrary 

orientation tensor were generated. Subsequently, the ODF reconstruction 

procedure was performed using these data via the ME method. Next, the 

pseudograin decomposition procedure was performed with reconstructed 

ODF using the weighted  -means clustering algorithm. Subsequently, the 

orientation tensor, reconstructed ODF, and pseudograin decomposition data 

were used to construct and train several ANNs in a series–parallel 

arrangement. Finally, the machine learning-assisted two-step homogenization 

procedure comprising ANNs, Mori–Tanaka model, and Voigt model was 

implemented into the ABAQUS user material subroutine (UMAT), and its 

validity was confirmed via comparison with the experimental tensile test 

results. The graphical abstract of the overall procedure of this chapter is 

provided in Figure 3-1. 
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Figure 3-1 Graphical abstract of the overall procedure; the color change of 

the arrow indicates the rotation of the coordinates 
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3.2. Methods 

3.2.1. Fiber orientation distribution function (ODF) and tensor 

The fiber orientation unit vector  of a single ellipsoidal short fiber can be 

defined as follows. 

             Equation 3-1 

where  is the angle between the  axis and the projection of  on the 

  plane; and   is the angle between   and the   plane (see 

Figure 3-2). To ensure the uniqueness of combinations, the ranges of 

both  and  are limited to . 

Given that numerous short fibers exist per unit volume of SFRP, treating 

all these orientation vectors is practically impossible. Therefore, to process 

orientation vector information statistically, the concept of orientation 

distribution function (ODF) , which corresponds to the probability of 

obtaining the fiber in direction , was proposed. The normalization condition 

of the ODF within the domain  is given by 

.                    Equation 3-2 

To obtain the ODF information of SFRP manufactured via the injection 

molding process, the following Fokker–Plank equation, which describes the 

change of a distribution function of fluctuating macroscopic variables, is 

solved [132, 137]. 

,              Equation 3-3 
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where   is the fiber interaction coefficient determined by experimental 

results. However, solving Equation 3-3 for 3D injection molding simulation 

is extremely time consuming. Instead, the commercial injection molding 

simulation software (such as MOLDEX3D and MOLDFLOW) adopts the 

fiber orientation model, i.e., Folgar–Tucker equation [138] (Equation 3-4), 

to describe the change of the second-order fiber orientation tensor  during 

the manufacturing process, as follows. 

, Equation 3-4 

where  is the vorticity tensor;  is the deformation rate tensor; and  

is the fourth-order fiber orientation tensor, which should be obtained from the 

orthotropic [139] or hybrid [140] closure approximation. Bauer has reported 

details on how to obtain the orientation tensor   or   from the ODF 

 [141]. 
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Figure 3-2 Schematic of the fiber orientation unit vector   of a single 

ellipsoidal short fiber in the global Cartesian coordinate system 
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3.2.2. ODF reconstruction 

Using the orientation tensor for the mechanical simulation of SFRP presents 

a critical problem because two completely different ODFs (e.g., 

unidirectional with two maxima and planar isotropy [132]) may have the 

same orientation tensor. Therefore, a reconstruction model that can specify an 

ODF for a given orientation tensor is required. The most widely used model 

is maximum entropy (ME) method [129], which was developed based on 

empirical observation that the microstructures of injection molded SFRPs 

tend to have the maximum entropy. In this study, the interpretation of Breuer 

et al. [132] to determine the ODF with maximum entropy with a bivariate 

Bingham distribution on the unit sphere was adopted. 

The first step of the ME reconstruction is to divide   of a unit 

sphere into several equivalent triangular meshes based on the icosphere 

concept. The 0th-order icosphere is a regular icosahedron comprising 20 

equivalent triangular meshes. Note that the coordinates of the centroid of each 

triangle represent the orientation unit vector . The (n+1)th-order icosphere 

is generated by dividing each triangular mesh of the nth-order icosphere into 

four smaller triangles. 

Next,  is defined as a unit direction vector vertical 

to the kth surface of icosphere as shown in Figure 3-3. Accordingly,  

is defined using the following form of a bivariate Bingham distribution. 

,               Equation 3-5 
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where   and   are two Bingham distribution parameters; and   is a 

normalization constant obtained from the normalize condition in Equation 3-

2. The orientation tensor  and the entropy  in the given situation can be 

calculated using the following Equation 3-6 and Equation 3-7. 

,                Equation 3-6 

.              Equation 3-7 

The final step is the determination of  and  values that maximize 

the entropy via minimization procedure. However, this procedure is not 

straightforward because it requires minimizing two objective functions  

and  simultaneously: 

,          Equation 3-8 

,            Equation 3-9 

where   is the target orientation tensor; and   is the global 

maximum entropy of 8.54 corresponding to . Herein, a 

Pareto optimization method was employed to minimize two objective 

functions simultaneously. 
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Figure 3-3 Unit direction vector vertical to the kth surface of 0th-order 

icosphere 
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3.2.3. Pseudograin decomposition 

Upon completion of the reconstruction procedure, the ODF is decomposed 

into several pseudograins with unidirectionally aligned short fibers. The 

decomposition procedure is intended to satisfy the requirement of the 

homogenization models that the target composite must have inclusions of 

similar shape and orientation. 

Typically, pseudograin decomposition methodologies are of two types: 

iso-facets algorithm and equivalent orientation approach. Numerous 

homogenization studies [111, 142] employed the iso-size facet algorithm 

proposed by Weber et al. [125] to form infinitesimal pseudograins. In this 

algorithm, the surface of the unit sphere is divided into facets of almost equal 

areas with the equal-sized increments of  and the corresponding values of 

 . Each facet represents a single pseudograin, and typically, hundreds to 

thousands of infinitesimal pseudograins can be defined. Gommers et al. [124] 

introduced a new concept of “equivalent orientations.” The requirement for 

the equivalent orientations is that they have the same 4th order orientation 

tensor  as the original ODF. The solution could be found by treating the 

set of non-linear equations as a minimization problem. 

Ogierman et al. [112] performed comparative analysis between the 

abovementioned two pseudograin decomposition methods. They fixed the 

number of equivalent orientations at nine and 18 and found the optimum 

orientations using an evolutionary algorithm. Two conclusions of the study 
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conducted by Ogierman et al. can be summarized as follows. 1) Nine 

pseudograins were sufficient for an appropriate representation of the original 

ODF. 2) Equivalent orientation determined by the evolutionary algorithm 

provided more accurate result compared with the existing studies. However, 

the high computational cost caused by the evolutionary algorithm was a 

problem to be solved. In this study, a weighted -means clustering algorithm 

was employed instead of evolutionary algorithm to dramatically reduce the 

computation time while maintaining a high accuracy. 

-means clustering algorithm, also known as Lloyd’s algorithm [143], is 

an algorithm that partitions a set of  data points  into 

  (  ) clusters. The algorithm starts with defining a set of   arbitrary 

centroids  that is chosen uniformly at random from . 

Each data point in   is assigned to the nearest centroid in terms of the 

Euclidean distance, and the data points assigned to the same centroid form a 

cluster. Thereafter, Centroid   is updated with the center of mass of data 

points in the same cluster, and this process is repeated until the change in 

centroid position becomes smaller than the tolerance value. Different from 

general  -means clustering, weighted  -means clustering assigns weights 

  to each data point   when calculating the new 

center of mass . 
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3.3. Experimental 

3.3.1. Materials and specimens 

The proposed homogenization framework in this study was validated by 

comparing tensile test results with numerical simulation results of SFRP 

named as PP-GF30, in which short glass fibers (GF) with a weight fraction of 

30 % were embedded in a polypropylene (PP) matrix. Note that a fiber weight 

fraction of 30 % corresponds to the fiber volume fraction of 13.09 %. The 

material properties of constituents PP and GF are listed in Table 3-1. 

The PP pellet and GF were mixed and were injection-molded into a flat 

mold with dimensions of 300 × 160 × 4 mm3. Tensile test specimens were cut 

from the center region of PP-GF30 plate in accordance with Type 1A test 

specimen dimension of ISO 527-2 standard [144]. Five PP-GF30-0D 

specimens were prepared, whereby they were cut parallel to the flow direction. 

The details of the tensile test specimen are provided in Figure 3-4. 
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Table 3-1 Material properties of polypropylene (PP) and short glass fiber (GF) 

Material PP PP 

Density ( ) 0.90 g/cm3 2.56 g/cm3 

Elastic modulus ( ) 1.91 GPa 72.40 GPa 

Poisson’s ratio ( ) 0.43 0.22 

Fiber aspect ratio ( ) - 25 
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Figure 3-4 Schematic of (a) Type 1A test specimen dimension of ISO 527-2 

standard and (b) PP-GF30-0D from PP-GF30 plate 
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3.3.2. Tensile test conditions 

Tensile tests were performed using a tensile testing machine (Instron 8801; 

Instron, Norwood, MA, USA) at a recommended test speed of 5 mm/min and 

room temperature (25 ℃). A digital image correlation (DIC) system (Vic-3D 

v7; Correlated Solutions, Inc., Irmo, SC, USA) was used to obtain the full-

field displacement distribution and tensile strain. Black-and-white speckled 

patterns were sprayed on the tensile test specimens for DIC measurement. 

The details of the experiment are shown in Figure 3-5. 
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Figure 3-5 (a) Experimental setup for the tensile test with DIC system, and 

(b) five tensile test specimens with black-and-white speckled pattern 
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3.4. Results and Discussion 

3.4.1. Implementation of pseudograin decomposition procedure 

The details of the implementation of ODF reconstruction and pseudograin 

decomposition procedure in MATLAB are discussed. Note that only diagonal 

orientation tensors were considered because any arbitrary orientation tensor 

with an off-diagonal term can be transformed into a diagonal tensor by 

coordinate transformation (using eigen values and vectors). In this section, an 

example of ODF reconstruction result using ME and pseudograin 

decomposition result using weighted  -means clustering for a diagonal 

orientation tensor of  is explained. A workstation with 

Intel(R) Core(TM) i7-10700K CPU @ 3.80 GHz (8 cores) and 16GB RAM 

is used. 
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3.4.1.1. Implementation of ODF reconstruction procedure 

The ODF reconstruction procedure introduced in Section 3.2.2 was 

implemented in MATLAB. As previously mentioned, ODF reconstruction 

using ME model requires two objective functions  (Equation 3-8) and 

 (Equation 3-9) to be minimized simultaneously to obtain the optimum  

and  values of a bivariate Bingham distribution in Equation 3-5. However, 

this multi-objective optimization problem is rather complicated because the 

solution is not a single point where both objective functions are at their 

optimum but rather a set of non-dominated points where one objective 

function cannot be improved without having a detrimental effect on the other 

[145]. These sets of non-dominated points are also called Pareto front. Pareto 

optimization method [146] based on genetic algorithm was used to determine 

the Pareto front of our reconstruction problem. 

The 4th-order icosphere with 5,120 triangular meshes (see Figure 3-6(a)) 

was used for the reconstruction problem, which demonstrated adequate 

performance in terms of both the computational cost and accuracy. Note that 

half of the total triangular meshes was considered, essentially accounting for 

the symmetry of a unit sphere. The target diagonal orientation tensor and the 

ranges of both   and   were set to   and  , 

respectively. A random initial population of   and   was created with a 

uniform distribution. Pareto optimization was performed under these 

conditions (see Figure 3-7). A total of 20 red circles can be observed in 
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Figure 3-7, each corresponding to a local minimum for a given multi-

objective optimization problem. Given that the target diagonal orientation 

tensor must be strictly recovered, the red circle located at the top left was 

selected as the final ODF reconstruction result. If another red circle is selected, 

a high entropy value can be obtained, but the original purpose is lost because 

the difference with the target orientation tensor becomes large. The finally 

determined values of  and  were 0.09 and 3.91, respectively. The  and 

  values provide the diagonal orientation tensor of 

  and entropy of 7.84. The 3D plot of 

reconstructed ODF is shown in Figure 3-6(b), which indicates the feasibility 

of the reconstruction procedure. 
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Figure 3-6 (a) Total of 5,120 triangular meshes of 4th-order icosphere and (b) 

reconstructed ODF from the diagonal orientation tensor 
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Figure 3-7 Pareto front of the reconstruction problem of the diagonal 

orientation tensor  ; the objective functions 1 and 2 

correspond to Equation 3-8 and Equation 3-9, respectively 
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3.4.1.2. Implementation of pseudograin decomposition procedure 

The pseudograin decomposition procedure using a weighted  -means 

clustering algorithm was implemented in MATLAB. In our problem of 

applying weighted  -means clustering to pseudograin decomposition 

procedure, the 6th-order icosphere with 81,920 triangular meshes was used, 

which demonstrated adequate performance in terms of both computational 

cost and accuracy. Note that half of the total triangular meshes were 

considered due to the symmetry of a unit sphere. The set of data points  is 

defined with a unit direction vector vertical to the surfaces of the 6th-order 

icosphere, as follows. 

.             Equation 3-10 

The set of weights  of each data point in  is defined with the ODF  

defined in Equation 3-5, as follows. 

.        Equation 3-11 

An illustration of the sets   and   in   space for the 

reconstructed ODF in Figure 3-6(b) is given in Figure 3-8(a). The number 

of clusters, i.e., pseudograins, were fixed to 12 [112, 147]. As can be seen in 

Figure 3-8(a), the bivariate Bingham distribution used for ODF 

reconstruction was symmetric with respect to the x-axis, y-axis, and the origin 

of  space. Therefore, a strategy was proposed to obtain a total of 12 

pseudograins by performing   = 3 clustering in the first quadrant and 

reflecting the result about the x-axis, y-axis, and the origin in sequence. This 
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strategy will not only reduce the computational cost of the decomposition 

procedure itself but also enhance the trainability of artificial neural network 

by simplifying the data structure. For defining a set of initial arbitrary 

centroids,  -means++ seeding algorithm proposed by Arthur and 

Vassilvitskii [148] was used. 

    The first quadrant of Figure 3-8(a) was decomposed into three 

pseudograins via weighted -means clustering using the above datasets under 

the aforementioned conditions, and the clustering result is shown in Figure 

3-8(b). The centroid of each cluster indicated by “x” mark corresponds to the 

equivalent orientation ( , ) of each pseudograin. The sum of ODF in each 

cluster  corresponds to the volume fraction of a pseudograin. 

These data for pseudograin 1 (PG1), pseudograin 2 (PG2), and pseudograin 3 

(PG3) are summarized in Table 3-2. Note that the sequence of the 

pseudograins was determined by the centroid’s distance from the origin. 
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Table 3-2 Equivalent orientations and volume fractions of pseudograins in 

Figure 3-8(b) 

Pseudograin Equivalent orientation Volume fraction 

PG1 (0.24, 0.19) 58.36 % 

PG2 (0.29, 0.65) 22.96 % 

PG3 (0.93, 0.40) 18.68 % 
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Figure 3-8 (a) Illustration of the sets   and   in   space for the 

reconstructed ODF in Figure 3-6(b); sets  and  are represented with 

circles and colormap, respectively. (b) Pseudograin decomposition result of 

the first quadrant of (a); the centroid of each pseudograin is indicated by “x” 

mark 
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3.4.2. Construction of artificial neural network system 

ODF reconstruction and pseudograin decomposition procedure implemented 

in MATLAB are based on iterative minimization procedures. When these are 

combined with user material subroutines for part-level simulation with 

different orientation tensor information for each element, the computation 

time inevitably increases exponentially. Therefore, a concept of ANN trained 

with an extensive amount of pre-calculated ODF reconstruction and 

pseudograin decomposition data was adopted herein. 
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3.4.2.1. Series–parallel artificial neural network system 

A series–parallel ANN system consisting of five fully connected ANNs was 

proposed to train ODF reconstruction and pseudograin decomposition 

procedures. The schematic of this ANN system is presented in Figure 3-9. 

The first ANN is named “OT2AB”, which implies that it outputs  and  

(AB) of bivariate Bingham distribution from the diagonal orientation tensor 

(OT) input data. The same nomenclature was adopted for the rest of the ANNs. 

The 2nd–4th ANNs are named “AB2TPi” ( ), which imply that they 

provide equivalent orientations ( , ) of PG1, PG2, and PG3, respectively, 

from  and  input data obtained from OT2AB. The last ANN is named 

“AB2VF”, which implies that it outputs volume fractions of PG1, PG2, and 

PG3 from   and   input data obtained from OT2AB. The remaining 

information of PG4 to PG12 were generated by reflecting the information of 

PG1–PG3 about the x-axis, y-axis, and the origin in sequence. 
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Figure 3-9 Schematic of a series–parallel artificial neural network system 
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3.4.2.2. Generation of input data and calculation of output data 

To train the series–parallel artificial neural network system, 10,000 diagonal 

orientation tensors were generated from 10   intervals, as presented in 

Table 3-3. To generate one input diagonal orientation tensor data 

,  is chosen uniformly at random from an interval, and the 

remaining two components   and   are determined based on the 

following two conditions (   and  ). The 

intervals and number of data are concentrated on both extremes to capture the 

sharp change of the reconstruction result. 

    ODF reconstruction and pseudograin decomposition procedures 

implemented in Section 3.4.1 were repeatedly performed using the generated 

input data. A typical example for orientation tensors [0.98, 0.01, 0.01], [0.56, 

0.27, 0.14], [0.49, 0.49, 0.02], and [0.34, 0.33, 0.33] are presented in Table 

3-4 and Figure 3-10. 
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Table 3-3 Ten  intervals in which input diagonal orientation tensor data 

are generated 

 interval Number of data  interval Number of data 

[0.333, 0.340) 1000 [0.700, 0.800) 1000 

[0.340, 0.400) 1000 [0.800, 0.900) 1000 

[0.400, 0.500) 1000 [0.900, 0.950) 1000 

[0.500, 0.600) 1000 [0.950, 0.995) 1000 

 

Table 3-4 Typical example of ODF reconstruction and pseudograin 

decomposition result 

 [0.97, 0.02, 0.01] [0.56, 0.27, 0.14] [0.49, 0.48, 0.03] [0.35, 0.33, 0.32] 

 29.21 1.98 16.67 0.08 

 23.91 1.21 0.13 0.15 

 (0.07, 0.04) (0.32, 0.21) (0.24, 0.14) (0.32, 0.49) 

 (0.08, 0.15) (0.44, 0.74) (0.77, 0.14) (1.13, 0.30) 

 (0.24, 0.07) (1.12, 0.33) (1.29, 0.14) (1.02, 1.01) 

 (0.50, 0.25, 0.25) (0.47, 0.18, 0.35) (0.32, 0.35, 0.33) (0.42, 0.34, 0.24) 
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Figure 3-10 Typical example of ODF reconstruction and pseudograin 

decomposition result for orientation tensors (a) [0.97, 0.02, 0.01], (b) [0.56, 

0.27, 0.14], (c) [0.49, 0.48, 0.03], and (d) [0.35, 0.33, 0.32] 
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3.4.2.3. Training series-parallel ANN system 

Herein, the proposed series–parallel ANN system was trained with the 

accumulated data from Section 3.4.2.2. using MATLAB Deep Learning 

Toolbox. All ANNs (OT2AB, AB2PG1, AB2PG2, AB2PG3, and AB2VF) 

were designed to have five hidden layers and 10 hidden neurons in each of 

hidden layer. Bayesian regularization backpropagation algorithm was used, 

and the mean squared error was used as the performance metric. The 

hyperbolic tangent sigmoid transfer function was applied to the input and 

hidden layers. The linear transfer function was applied to the output layer. 

Furthermore, 10,000 input data were randomly divided into training, testing, 

and validation datasets in proportions of 70, 15, and 15 %, respectively. The 

training epoch was stopped if the error increased more than 20 times during 

the validation procedure to prevent overfitting. 

    The training result for OT2AB is presented in Figure 3-11 as a 

regression plot and training state plot. The best performance was achieved at 

the 764th epoch with an approximated R-square value of 1, thus indicating 

that the training process was successful. The training results for the remaining 

four ANNs (AB2PG1, AB2PG2, AB2PG3, and AB2VF) are also presented in 

Figure 3-12, essentially demonstrating the successful training process again. 
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Figure 3-11 Regression and training state plot of OT2AB training result 
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Figure 3-12 Regression and training state plots of (a) AB2PG1, (b) AB2PG2, 

(c) AB2PG3, and (d) AB2VF training results 
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3.4.3. Numerical implementation and validation 

A machine learning-assisted two-step homogenization procedure comprising 

a series–parallel ANN system, Mori–Tanaka model, and Voigt model (recall 

Figure 3-1) was implemented in ABAQUS using a user material subroutine 

(UMAT). First, the algorithmic implementation of UMAT was validated by 

solving a simple tensile problem using both UMAT and DIGIMAT. Next, the 

UMAT was validated by comparing the UMAT re-simulation result with the 

experimental tensile test result. 
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3.4.3.1. Comparison of UMAT results with DIGIMAT for a simple 

tensile problem 

A simple tensile problem was performed using both UMAT and DIGIMAT to 

validate the algorithmic implementation of UMAT. A cubic geometry of 

dimension 4 × 4 × 4 mm3 was created and meshed with a C3D8 element of 

dimension 0.04 × 0.04 × 0.04 mm3. The x- (U1 = UR2 = UR3 = 0), y- (U2 = 

UR1 = UR3 = 0), and z-symmetry (U3 = UR1 = UR2 = 0) boundary 

conditions were applied to the plane perpendicular to the x-, y-, and z-axis in 

the negative direction, respectively. A displacement boundary condition of 

0.004 mm was applied to the plane perpendicular to the x-axis in the positive 

direction, such that the applied tensile strain was 0.1 %. 

Two extreme diagonal orientation tensors and six non-diagonal 

orientation tensors were considered. The effective stiffness tensors 

corresponding to each orientation tensor were calculated using the UMAT and 

DIGIMAT-MF module with the material properties in Table 3-1. Note that 

the skin-core structure of SFRP is not considered in this case. The tensile 

stress–strain curves and von Mises stress distribution obtained by UMAT and 

DIGIMAT are compared in Figure 3-13 and Figure 3-14, respectively. 

Evidently, the tensile stress–strain curves obtained by UMAT exhibited 

computation time within 1 s, and good performance within 2 % error on 

average compared with DIGIMAT regardless of the features of target 

orientation tensor.  
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Figure 3-13 Comparison of tensile stress–strain curves obtained by UMAT 

and DIGIMAT 
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Figure 3-14 Comparison of von Mises stress distribution obtained by UMAT 

(right) and DIGIMAT (left); the orientation tensor information is consistent 

with Figure 3-13 
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3.4.3.2. Comparison of UMAT results with tensile test results 

The UMAT was validated by comparing its results with experimental ones. 

First, the tensile test results of PP-GF30-0D were obtained. Next, the 

orientation tensor of the tensile specimen was obtained by performing 

injection molding simulation with MOLDEX3D software. Finally, the tensile 

test procedure was re-simulated using UMAT, and was compared with 

experimental results. 

Four experimental tensile stress–strain curves among the five specimens 

are presented in Figure 3-15. The experimental elastic tensile modulus of PP-

GF30-0D was determined to be 6.97 ± 0.44 GPa by the linear regression slope 

in the tensile strain interval, [0.05 %, 0.25 %]. 

    The injection molding of a PP-GF30 plate in Figure 3-4(b) was 

simulated using MOLDEX3D to obtain the internal microstructural 

information, which is necessary for re-simulating the tensile test procedure. 

iARD-RPR model developed by Tseng et al. [149, 150] was used as a fiber 

orientation model. All the material properties including the shear rate-

viscosity curve, PVT diagram, crystallinity, specific heat, thermal 

conductivity, etc. were referred to Thermylene® P6-30FM-Y249B (Asahi 

Kasei Corp., Tokyo, Japan) in MOLDEX3D material database, which has 

similar properties to our constituents. The sprue gate with upper diameter of 

5 mm and lower diameter of 8 mm was used. The simulation geometry and 

result are shown in Figure 3-16(a). 15 probes were chosen and the first 

orientation components (  ) were extracted along the through-thickness 
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direction in each probe (see Figure 3-16(b)). Two skin layers with 

preferential orientation to the flow direction and a core layer with orientation 

perpendicular to the flow direction were investigated as in previous studies 

[151, 152]. The orientation of the skin layer was consistent in all probes. In 

the core layer, however, the value of  varied from 0.66 to 0.76. This is 

because the side edges of the plate also act as a cooling source, causing slower 

cooling rate and lower shearing [153]. For this reason, the tensile test results 

may vary depending on where the tensile specimen was cut from the plate, 

which can explain the significant standard deviation of the experimental 

tensile modulus in Figure 3-15. 

The re-simulation of tensile test was performed. The orientation tensor 

from MOLDEX3D simulation (donor mesh) was mapped to 5 tensile 

specimens’ geometries in ABAQUS (receiving mesh) using DIGIMAT-MAP 

module. These procedures are summarized in Figure 3-17. Note that C3D8 

element was used, and finer mesh was used in thickness direction. The elastic 

stiffness tensor of each element was calculated by UMAT using the material 

properties in Table 3-1 and mapped orientation tensor. An encastre boundary 

condition and displacement boundary condition of 1.092 mm (corresponding 

to 1% strain) was applied to the left and right side of the grip regions, 

respectively.  

The re-simulation results are presented in Figure 3-18. The tensile stress 

was extracted from the center of the specimens and averaged as shown in 

Figure 3-18(a). The comparison between average experimental and UMAT 
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re-simulation stress–strain curves are shown in Figure 3-18(b). The elastic 

tensile modulus was determined to be 6.62 ± 0.08 GPa by UMAT (recall 

experimental tensile modulus of 6.97 ± 0.44 GPa). The proposed UMAT was 

confirmed to predict the elastic behavior of SFRP with high accuracy (3.68 % 

error) with low computation time (less than 6 s per specimen), thus 

demonstrating that the application of a series–parallel ANN system for UMAT 

simulation is a valid strategy. However, as the tensile strain increases, the 

increase in difference is inevitable owing to the viscoelastic–viscoplastic 

nature of the PP matrix. To overcome such discrepancies, the homogenization 

scheme proposed in this study will be expanded to include the viscoelastic–

viscoplastic behavior of matrix in the future study. 
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Figure 3-15 Four experimental tensile stress–strain curves of PP-GF30-0D 
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Figure 3-16 (a) Injection molding simulation geometry and result. (b) 

Distribution of the first orientation components ( ) along through-thickness 

direction 
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Figure 3-17 (a) Schematic diagram of orientation tensor mapping procedure, 

and (b) mapping result 

  



 

 １０９ 

 

Figure 3-18 (a) Five von Mises stress distribution, and (b) comparison 

between average experimental and UMAT re-simulation stress–strain curves 
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3.5. Summary 

In this chapter, a machine learning-assisted two-step homogenization 

framework of SFRPs was proposed. ME reconstruction model and weighted 

-means clustering algorithm were used to construct 12 pseudograins with 

effective orientations and volume fractions for a given arbitrary orientation 

tensor. However, this methodology was computationally intensive and 

unsuitable for implementation in user material subroutine of commercial 

finite element analysis software because both models are based on the 

iterative optimization procedures. A series–parallel ANN system was 

constructed and trained with pre-calculated input and output data to overcome 

the limitation. The series–parallel ANN system, Mori–Tanaka model, and 

Voigt model were implemented into ABAQUS UMAT subroutine to form a 

two-step homogenization framework. The predicted elastic modulus values 

using UMAT exhibited good performance within 3.68 % error compared with 

experimental values. The total time required for specimen-level UMAT 

simulation was less than 10 s in a workstation with Intel(R) Core(TM) i7-

10700K CPU @ 3.80 GHz (8 cores) and 16GB RAM, thus demonstrating that 

our machine learning-assisted homogenization framework is highly suitable 

for implementation into UMAT subroutine. 
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Chapter 4. Machine learning-assisted 

thermomechanical homogenization framework 

considering size effect of inclusion 

 

4.1. Research background 

In general, FRPs are excellent in terms of mechanical properties, but has the 

weaknesses of low electrical and thermal conductivity. However, the need for 

multifunctionality as well as mechanical property is also growing as it is 

increasingly used in various industrial fields. For example, high electrical 

conductivity to deal with lightning strike and high thermal conductivity to 

deal with ice accumulation in aerospace engineering [154] (see Figure 4-1 

[4]). Therefore, recent trend in the field of FRPs focuses on the development 

of so called smart FRPs or multifunctional FRPs, which are combination of 

traditional FRPs (comprised of a polymer matrix and reinforcing fibers) with 

functional materials (such as metal alloys, and carbon nanomaterials) to 

achieve enhanced material properties including mechanical, thermal, or 

electrical properties. 

Among various functional materials, carbon-based nanomaterials such 

as carbon nanotube (CNT) and graphene is determined to be most promising 

thanks to their outstanding mechanical, thermal, and electrical properties 

[155]. CNT or graphene are introduced into FRPs either via matrix 

modification (i.e., dispersion into matrix) or reinforcement modification (i.e., 
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grafting on reinforcing fibers). Schematic illustration of these is provided by 

Islam et al. in Figure 4-2 [4]. 

    Imran et al. introduced 1.0 % of graphene nanoplatelets (GNPs) into 

epoxy resin and fabricated GNP-carbon fiber (CF)-epoxy composite by hand 

lay-up followed by vacuum bagging and compression molding [156]. The 

electrical conductivity of GNP-CF/epoxy composite was increased by 

1.31×10-3 S m-1 (+132%) compared to the normal CF/epoxy composite. Wang 

et al. introduced reduced graphene oxide (rGO) into epoxy resin and 

fabricated rGO-CF/epoxy composite by percolating-assisted resin film 

infusion (RFI) method [157]. The electrical conductivity of rGO-CF/epoxy 

composite was increased by 4.40 S m-1 compared to the normal CF/epoxy 

composite. 

    Diez-Pascual et al. introduced 1.0 % of single-walled CNT (SWCNT) 

into Polyether ether ketone (PEEK) thermoplastic resin and fabricated 

SWCNT-glass fiber (GF)-PEEK composite by hot press method [158]. The 

thermal conductivity of SWCNT-GF/PEEK composite was increased by 0.34 

W m-1 K-1 (+53%) compared to the normal GF-PEEK composite. Kandare et 

al. introduced 1.0 % of GNP into epoxy resin and fabricated GNP-CF/epoxy 

composite by wet lay-up method [159]. The thermal conductivity of GNP-

CF/epoxy was increased by 0.42 W m-1 K-1 (+9%) compared to the normal 

CF/epoxy composite. 

    Kamaraj et al. introduced 0.1 % of GNP into epoxy resin and fabricated 

GNP-Flax/epoxy composite by vacuum-assisted resin infusion (VARI) 
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method [160]. The tensile strength of GNP-Flax/epoxy composite was 

increased by 61%. Wang et al. introduced 0.5 % of multi-walled CNT 

(MWCNT) into epoxy resin and fabricated MWCNT-Flax/epoxy composite 

by hand lay-up method [161]. The tensile strength and modulus were 

increased by 31.8 % and 12.1 %, respectively. 

    In this chapter, we will expand the machine learning-assisted mechanical 

homogenization framework developed in Chapter 3 to solve thermo-

mechanical homogenization problem for smart FRPs with carbon-based 

nanofillers. First, the concept of the third phase called “interphase” with 

constant thickness will be introduced to describe the size effect during 

homogenization. Next, the proposed thermomechanical homogenization 

models will be studied. Finally, thermomechanical homogenization models 

considering matrix, fiber, and interphase will be implemented into MATLAB. 

The validity of this work will be confirmed by comparing experimental or 

simulation results provided by another research. 
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Figure 4-1 A chart comparing smart FRPs performance for various industrial 

applications [4] 
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Figure 4-2 Schematic illustration of fabrication techniques of conventional 

FRP composites and CNT/graphene-based FRP composites using 

reinforcement modification (chemical grafting) or resin modification (resin 

mixed) [4] 
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4.2. Limitation of conventional homogenization scheme 

As mentioned in Section 4.1., many experimental achievements of 

incorporating carbon-based nanofillers into polymeric matrix for 

enhancement of mechanical, thermal, or electrical properties. However, 

design of such smart FRPs has not been actively conducted due to the 

following two reasons. 

    First, conventional homogenization methodologies do not consider the 

effect of inclusion size. Experimental works revealed that the size of the 

inclusion clearly affects not only elastic property but also other material 

properties such as thermal conductivity or electrical conductivity [162, 163]. 

However, Eshelby’s original formulation is based on classical elasticity, and 

the resulting Eshelby tensor for an ellipsoidal inclusion depends only on 

Poisson’s ratio of the matrix and the aspect ratio of the inclusion (see Section 

1.3.3.). Consequently, homogenization methods developed using classical 

elasticity-based Eshelby tensors cannot account for the inclusion size effect 

on the elastic properties. 

    Second, there has not been general methodology to consider orientations 

of nanofillers and reinforcing fibers timely. Most of the homogenization 

studies regarding the hybridized FRPs was limited to isotropic spherical 

particles to avoid consideration of orientation of nanofillers. Recently, to 

account for the orientation information of nanofillers, related studies 

generated a representative volume element (RVE) with all the geometrical 
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information implemented [11, 164] (sufficient inclusions embedded in the 

matrix to describe given orientation distribution function) or adopted a simple 

numerical orientation averaging method [13]. 
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4.3. A new homogenization approach considering interphase 

4.3.1. The concept of interphase 

We will consider a concept of the third phase called “interphase” between 

polymeric matrix and reinforcing fibers [9, 165-167] to enable 

homogenization scheme to take the effect of size inclusion into account. 

    The interphase properties differ from the matrix properties even though 

it is basically a part of the matrix phase. This is because the matrix atoms in 

the vicinity of reinforcing atoms are in different chemical situation due to the 

non-bonding interaction (i.e., van der Waals interaction) between them (see 

Figure 4-3). The interphase properties can be either stiffer or weaker 

compared to the original matrix phase. If the effect of van der Waals non-

bonding interactions between the inclusion atoms and the matrix atoms are 

dominant, a stiffer interphase is defined (e.g., SiC particles in epoxy matrix 

[9]). On the other hand, a weak interphase is defined if the inclusion acts as a 

defect rather than reinforcing material (glass fiber in epoxy matrix [10]). 
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Figure 4-3 Relation between the nanoparticle curvature and the effective 

number of non-bond pairs [9]  
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4.3.2. Characterization of the interphase properties 

There are three major approaches to characterize the interphase properties 

(including stiffness tensor, thermal conductivity, or thickness): 1) 

Experimental, 2) Molecular Dynamics (MD) simulation, or 3) Assumption. 

The first approach is to characterize the interphase properties 

experimentally by directly observing it using Atomic Force Microscope 

(AFM). AFM is a type of scanning probe microscopy with resolution of a 

nanometer. The information of a material surface is gathered using a 

mechanical probe with piezoelectric elements. Riaño et al. cut the 

unidirectional glass fiber-reinforced epoxy composite perpendicular to the 

fiber, and observed the elastic modulus at the vicinity of a fiber using AFM 

(Figure 4-4 [10]). The interphase thickness was determined to be 200 nm 

whereas the diameter of the fiber was 15 μm, and the interphase elastic 

modulus was determined to be 1.7 GPa. Bhuiyan et al. fabricated CNT/PP 

composite by injection molding and determined the thickness and modulus of 

CNT/PP interphase using AFM (see Figure 4-5 [11]). The interphase 

thickness was determined to be 20 nm whereas the diameter of the CNT was 

25 nm, and the interphase elastic modulus was determined to be 0.7 GPa. In 

both cases, the interphase in each of the material system can be categorized 

into weak interphase, since Young’s modulus of matrix was stiffer than the 

interphase. 

    The second approach is to characterize the interphase properties 

theoretically by MD simulations, FE simulations, or a combination of both. 
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Choi et al. proposed a model to design the elastic mechanical properties for 

particulate polymer nanocomposites, which involves matching the analysis 

results of MD and FE simulations [9]. Strong non-bonding interaction 

between nanoparticle surface and polymer segments significantly affects the 

properties of overall composites due to massive surface-to-volume ratio. The 

curvature effect is rapidly diminished after the particle diameter becomes 

larger than 10 nm, although the system still has nano-reinforcement features. 

The key conclusion of their work is that one can apply the saturated interphase 

thickness and its mechanical properties under a given volume fraction with 

sufficiently large particle diameter (see Figure 4-3). Another study 

characterized effective interfacial thermal conductivities containing three 

different CNTs by non-equilibrium molecular dynamics (NEMD) simulation 

(see Figure 4-6 [12]). 

    The last approach is to find the optimum interphase properties by means 

of curve fitting, which give reasonable match between experimental results 

when the interphase is considered.  
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Figure 4-4 Elastic modulus observation of unidirectional glass fiber-

reinforced epoxy composite using AFM [10] 
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Figure 4-5 AFM phase image and property gradient profile used to determine 

the thickness and modulus of CNT/PP interphase [11] 
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Figure 4-6 Concept of NEMD simulation for radial thermal conduction in 

nanocomposites and its interphase, and interphase characteristics of three 

different nanocomposites [12] 
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4.3.3. Expected outcomes 

Based on the conclusion of the studies discussed in the previous Section 

4.3.2., we will assume that both reinforcing fibers with microscale and 

carbon-based nanofillers with nanoscale have constant (i.e., saturated) 

interphase properties. Note that thermomechanical properties of interphase 

can be either stiffer or weak, and the thickness of the interphase is nm scale 

(non-bonding interaction in nanoscale). 

    To understand the expected effect of the consideration of interphase 

during homogenization, assume a two-dimensional RVE comprised of three-

phase (matrix, inclusion, and interphase) with the length of 5. 

    First, let us define the radius of a microscale inclusion as 1, the thickness 

of interphase as 0.05. In this case, the radius-to-thickness ratio is 20. The 

schematic illustration of this system is shown in Figure 4-7. Then, the area 

fraction of inclusion is equal to 12.57 %, whereas the area fraction of 

interphase is 1.29 %. As a next step, divide an inclusion into four identical 

inclusions with radius of 0.5, and the thickness of the interphase remains the 

same as 0.05. In this case, the radius-to-thickness ratio is 10. Then, the area 

fraction of inclusion remains the same as 12.57 %, whereas the area fraction 

of interphase is increased to 2.64 % (+104 %). Although the area fraction of 

interphase increased more than twice, the effect of interphase during 

homogenization is negligible because the absolute amount is very small. 

    Next, let us define the radius of a nanoscale inclusion as 1, the thickness 

of interphase as 0.25. In this case, the radius-to-thickness ratio is 4 (recall the 
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radius-to-thickness ratio of 20 in case of microscale inclusion). The schematic 

illustration of this system is shown in Figure 4-8. Then, the area fraction of 

inclusion is equal to 12.57 %, whereas the area fraction of interphase is 7.07 %. 

As a next step, divide an inclusion into four identical inclusions with radius 

of 0.5, and the thickness of the interphase remains the same as 0.25. In this 

case, the radius-to-thickness ratio is 2. Then, the area fraction of inclusion 

remains the same as 12.57 %, whereas the area fraction of interphase is 

increased to 15.71 % (+122 %). The area fraction of interphase increased 

more than twice, and the effect of interphase during homogenization is not 

negligible since its absolute amount is bigger than the inclusion. 

    As a result, we can say that introduction of an interphase with constant 

thickness to a material system enable us to take the size effect of inclusion 

into account. 
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Figure 4-7 The effect of interphase on homogenization of microscale 

inclusions 
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Figure 4-8 The effect of interphase on homogenization of nanoscale 

inclusions 
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4.4. Thermal homogenization models 

In this chapter, two representative thermomechanical homogenization models 

to calculate the effective thermal conductivity (ETC) tensor ( ) of SFRPs, 

which are reformulated by Mokarizadehhaghighishirazi et al. [13], will be 

presented. 

Among those two models, the reformulation of Mori-Tanaka model for 

thermomechanical homogenization will be used in this chapter. 
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4.4.1. Reformulation of Giordano’s model 

The first model is the reformulation of Giordano’s model [168], which was 

originally developed for calculation of effective electric permittivity of 

pseudo-oriented inclusions (Equation 4-1 and Equation 4-2). 

       Equation 4-1 

      Equation 4-2 

where   is the fiber volume fraction,   and   are the thermal 

conductivity of fiber and matrix, respectively.  is the depolarization factor 

defined with the fiber aspect ratio ( ) as follows. 

        Equation 4-3 

  is the orientational factor, which can be calculated by the following 

Equation 4-4. 

       Equation 4-4 

Typical examples of the orientation factor  are:  when all fibers 

are aligned in x-direction, and  when all fibers are perfectly randomly 
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oriented. Since the decomposed pseudograins are unidirectional (see Section 

3.2.3.),  can be applied. Therefore, Equation 4-1 and Equation 4-2 are 

simplified as follows. 

       Equation 4-5 

       Equation 4-6 

In this model, the ETC tensor (  ) of the composite is assumed to be 

transversely isotropic as follows. 

        Equation 4-7 

  



 

 １３２ 

4.4.2. Reformulation of Mori-Tanaka model 

Recall the general formulation of Mori-Tanaka model in Section 1.3.3. 

Mokarizadehhaghighishirazi et al. [13] reformulated to predict ETC of SFRPs, 

        Equation 4-8 

where  corresponds to the similar concept as the strain concentration 

tensor  in elasticity, which correlates the average temperature gradient of 

inclusions with composite. 

The following Equation 4-9 will be used to define , which was 

proposed by Lielens et al. [169]. 

       Equation 4-9 

Herein, the definition of  is as follows. 

  Equation 4-10 

with interpolating factor .  

  is Eshelby tensor for thermal conductance, which depends on the 

shape of the inclusions. In case of prolate spheroid inclusion ( ),  

can be calculated as follows (recall Equation 1-25). 

    Equation 4-11 
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4.5. Results and Discussion 

4.5.1. Effect of interphase on mechanical homogenization 

For mechanical homogenization, machine learning-assisted two-step 

homogenization framework developed in Chapter 3 was used. CNT can be 

represented as a hollow cylinder, but it is known that analytical solution of 

Eshelby tensor for hollow cylinders is not available yet [170]. Therefore, 

some simplifications suggested by Yanase et al. were also applied to this 

chapter: 1) CNT will be treated as a solid cylinder that neglects the hollow 

nature of CNT, and 2) any possible relative motion between the individual 

shells or tubes in a MWCNT will not be taken into account [171]. 

    Consider an epoxy matrix reinforced with CNT with a volume fraction 

of 1.5 % (Guru et al. [2]). CNTs are aligned in one direction. The outer radius 

( ) and inner radius ( ) of CNT is 0.7125 nm and 0.3725 nm, respectively. 

As mentioned above, CNT is assumed to be an infinite solid cylindrical shape 

for convenience in calculation, of which effective modulus (  ) is 

defined from the original modulus (  ) of hollow cylindrical shape as 

follows. 

        Equation 4-12 

The interphase thickness ( ) is assumed to be 0.17, 0.34, and 0.45 nm, 

while effective modulus of interphase ( ) was calculated similarly from 

the original modulus ( ) using Equation 4-12. The material properties and 
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geometric characteristics of CNT, epoxy matrix, and CNT/epoxy interphase 

are summarized in Table 4-1. Note that interphase thicknesses of 0.17 nm, 

0.34 nm, and 0.45 nm are considered. 

    The comparison of obtained effective elastic modulus (  ) of 

CNT/epoxy composite by finite element simulation [2] and machine learning-

assisted two-step homogenization framework is shown in Figure 4-9. Note 

that the data were obtained and manipulated using MATLAB GRABIT, since 

the original data were not distinguishable. From Figure 4-9, it was confirmed 

that our machine learning-assisted two-step homogenization scheme has the 

capability to obtain similar results to finite element simulation when 

interphase is considered. 
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Table 4-1 Mechanical properties and geometric characteristics of the 

constituents of CNT/epoxy composites [2] 

Phase CNT Epoxy Interphase 

Young’s modulus 866.45 GPa 4.06 GPa 40.60 GPa 

Poisson’s ratio 0.3 0.3 0.3 

Outer radius 0.71 nm - 0.88, 1.05, 1.16 nm 

Inner radius 0.37 nm - 0.71 nm 
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Figure 4-9 Comparison of obtained effective elastic modulus of CNT/epoxy 

composites considering interphase by FEM [2] and machine learning-assisted 

two-step homogenization framework 
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4.5.2. Effect of interphase on thermal homogenization 

For thermal homogenization, machine learning-assisted two-step 

homogenization framework developed in Chapter 3 was used. Only 

mechanical-based Mori-Tanaka model was replaced with the reformulated 

Mori-Tanaka model in Section 4.4.2. ODF reconstruction from the given 

orientation tensor, and pseudograin decomposition procedures were 

performed. 

    Consider a PA6 matrix reinforced with short glass fibers with a volume 

fraction of 10 % (Mokarizadehhaghighishirazi et al. [13]). The length and 

diameter of an ellipsoidal short glass fiber is 50 μm and 5 μm, respectively. 

The orientation tensor is [0.33 0.33 0.33]. The isotropic thermal 

conductivities of matrix and fibers are 72.0 and 32.0 W m-1 K-1, respectively. 

The interphase thickness ( ) is assumed to be 0.1 μm, 1.0 μm, 2 μm, and 5 μm, 

while thermal conductivity of interphase is assumed to be 45.0 W m-1 K-1. 

    The comparison of obtained effective thermal conductivity of short glass 

fiber-reinforced composite by finite element simulation [13] and machine 

learning-assisted two-step homogenization framework is shown in Figure 4-

10. Note that author was not able to find the reference of FEM simulation of 

thermal homogenization, and therefore only FEM result with zero interphase 

thickness is given in Figure 4-10. From Figure 4-10, it was confirmed that 

our machine learning-assisted two-step homogenization scheme has 

capability to consider interphase in thermal problem. 
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Figure 4-10 Comparison of obtained effective thermal conductivity of 

injection molded SFRP by FEM [13] and machine learning-assisted two-step 

homogenization framework 
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4.6. Summary 

Recent trend in the field of FRPs focuses on the development of so called 

smart FRPs or multifunctional FRPs, which are combination of traditional 

FRPs (comprised of a polymer matrix and reinforcing fibers) with functional 

materials (such as metal alloys, and carbon nanomaterials) to achieve 

enhanced material properties including mechanical, thermal, or electrical 

properties. In this chapter, proposed machine learning-assisted two-step 

homogenization scheme in Chapter 3 was updated to describe the 

thermomechanical behavior of carbon-based (CNT and graphene) smart FRPs 

in the following two ways. First, interphase, which is the third phase between 

inclusion and matrix, was considered. Next, the reformulated Mori-Tanaka 

model to describe thermal behavior was introduced. With updated machine 

learning-assisted two-step homogenization scheme, finite element simulation 

results considering all the microstructures were successfully reproduced with 

simple homogenization technique, demonstrating the excellence of our work. 
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Chapter 5. Concluding remarks 

In this study, a machine learning-assisted thermomechanical homogenization 

framework considering the microstructural variation was presented. 

    In Chapter 2, we applied machine learning strategy to predict stress 

concentration factor (SCF) of UD FRPs where the constitutive equation is not 

defined. SCF is the dominant factor to determine the tensile strength of UD 

fiber-reinforced composites because it can effectively model a progressive 

contribution of broken fibers to the tensile strength. Nevertheless, an 

analytical model for calculating the SCF of randomly distributed fibers in UD 

composites has not been proposed. A machine learning approach was 

proposed to predict SCF by constructing and training an ANN with extensive 

finite element analysis results. Then, SCFs could be obtained whenever 

needed without actual finite element calculation, enabling to develop a novel 

method for predicting the tensile strength of UD fiber-reinforced composites. 

A new algorithm for determining the fiber fracture sequence was also 

developed and combined with the ANN, confirming the applicability of 

machine learning-assisted modelling strategy of SCF. Overall, the predicted 

tensile strength showed a good agreement with experiments, however its 

variability was predicted about 30 MPa, which was four times lower than the 

variation observed in the experimental tensile strength. For more realistic 

uncertainty modeling of the tensile strength, other parameters, e.g., 
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microstructural randomness such as the variation in fiber diameter or 

misalignment in the longitudinal direction should be considered in the ANN. 

    In Chapter 3, we applied machine learning strategy to model orientation 

distribution function (ODF) reconstruction and pseudograin decomposition 

procedures of SFRPs, which are based on iterative calculation and therefore 

very time-consuming. ME reconstruction model and weighted  -means 

clustering algorithm were used to construct 12 pseudograins with effective 

orientations and volume fractions for a given arbitrary orientation tensor. 

However, this methodology was computationally intensive and unsuitable for 

implementation in user material subroutine of commercial finite element 

analysis software because both models are based on the iterative optimization 

procedures. A series–parallel ANN system was constructed and trained with 

pre-calculated input and output data to overcome the limitation. The series–

parallel ANN system, Mori–Tanaka model, and Voigt model were 

implemented into ABAQUS UMAT subroutine to form a two-step 

homogenization framework. The predicted elastic modulus values using 

UMAT exhibited good performance within 3.68 % error compared with 

experimental values. The total time required for specimen-level UMAT 

simulation was less than 10 s in a workstation with Intel(R) Core(TM) i7-

10700K CPU @ 3.80 GHz (8 cores) and 16GB RAM, thus demonstrating that 

our machine learning-assisted homogenization framework is highly suitable 

for implementation into UMAT subroutine. 
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    In Chapter 4, our proposed machine learning-assisted two-step 

homogenization scheme in Chapter 3 was updated to describe the 

thermomechanical behavior of carbon-based (CNT and graphene) smart FRPs. 

Recent trend in the field of FRPs focuses on the development of so called 

smart FRPs or multifunctional FRPs, which are combination of traditional 

FRPs (comprised of a polymer matrix and reinforcing fibers) with functional 

materials (such as metal alloys, and carbon nanomaterials) to achieve 

enhanced material properties including mechanical, thermal, or electrical 

properties. The homogenization scheme was updated in the following two 

ways. First, interphase, which is the third phase between inclusion and matrix, 

was considered. Next, the reformulated Mori-Tanaka model to describe 

thermal behavior was introduced. With updated machine learning-assisted 

two-step homogenization scheme, finite element simulation results 

considering all the microstructures were successfully reproduced with simple 

homogenization technique, demonstrating the excellence of our work. 
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Abstract in Korean 

섬유강화 플라스틱(FRP)은 우수한 비물성(낮은 밀도에 비하여 높

은 기계적 특성 등)으로 인해 다양한 산업 제품에서 금속을 대체하여 중

량 감소를 달성하는데 성공하였다. 섬유강화 플라스틱의 균질화 된 열기

계적 특성을 예측하는 기능은 제품 설계 프로세스를 용이하게 하는 데 

필수적이다. 그러나 이러한 특성의 균질화 과정은 섬유강화 플라스틱 내

의 섬유가 갖는 미세 구조의 다양성으로 인해 간단하게 진행될 수 없다. 

본 연구에서는 미세구조의 다양성을 고려하여 균질화 된 열기계적 특성

을 높은 정확도로 계산할 수 있는 머신러닝 기반의 열기계적 균질화 프

레임워크를 제시하고자 한다. 

    2장에서는 미세구조 섬유배열의 무작위성을 고려한 단방향(UD) 섬

유강화 플라스틱의 기계학습 기반 인장강도 예측모델을 제안한다. 끊어

진 섬유에 의해 생성된 응력집중계수(SCF)는 단방향 섬유강화 플라스

틱의 인장강도를 결정하는 지배적인 특성이다. 그러나 일반적으로 단방

향 섬유강화 플라스틱의 무작위로 분포된 섬유에 대하여 응력집중계수 

계산을 위한 구성방정식은 제안 되어있지 않다. 저자는 임의의 단방향 

섬유강화 플라스틱에서 응력집중계수를 일반적으로 계산해낼 수 있는 새

로운 기계 학습 기반 모델링을 제안한다. 다양한 무작위 섬유 배열을 갖

는 단방향 섬유강화 플라스틱에 대하여 막대한 양의 유한 요소 시뮬레이

션을 수행하여 응력집중계수 데이터를 축적하였다. 획득한 응력집중계수 

데이터로 인공 신경망(ANN)을 훈련하였고, 이를 사용하여 임의의 무작

위 섬유 배열이 있는 복합 재료의 응력집중계수를 예측할 수 있는 것을 

확인하였다. 인장 강도 예측 모델의 경우 섬유 파단 전파에 대한 새로운 

점화식과 무작위 섬유 배열에 대한 파단 순서 결정 알고리즘을 기반으로 

개발되었다. 개발된 방법론을 검증하기 위해 실제 단방향 섬유강화 플라

스틱의 물성을 활용하여 인장 강도를 예측하고 이를 실험값과 비교하였

으며, 이를 통해 기존 예측 방법보다 우수함이 입증되었다. 

    3장에서는 단섬유 강화 플라스틱(SFRP)에 대한 기계 학습 기반의 
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2단계 균질화 프레임워크를 제안한다. 함유물의 배향에 따라 열기계적 

물성의 이방성이 서로 다르게 발현하기 때문에 배향에 대한 고려가 매우 

중요하다. 시간이 많이 소요되는 섬유 배향 분포함수 재구축 및 유사결

정립 분해 과정을 용이하게 하기 위해 직병렬 구조의 인공신경망 시스템

을 구성하고 충분히 많은 양의 데이터로 훈련하였다. 직병렬 구조의 인

공신경망 시스템, Mori-Tanaka 균질화 모델 및 Voigt 균질화 모델을 

ABAQUS UMAT(User Material Subroutine)에 구현하였다. 개발된 

UMAT에 의해 예측된 탄성 계수 값은 실험 값과 비교하여 잘 일치하는 

것이 확인되었으며, 낮은 계산 소요를 보여주어 머신러닝 적용의 당위성 

또한 확인되었다. 

    4장에서는 단섬유 강화 플라스틱에 대해 이전 장에서 개발된 2단계 

균질화 프레임워크를 확장하기 위하여, 섬유와 함유물 사이에 일정한 나

노 크기의 두께를 갖는 계면상의 개념을 도입하였고, 이를 통해 보다 일

반적인 재료를 설명할 수 있게 되었다. 이 세 번째 계면상의 도입을 통

해 추가적으로 함유물의 크기 효과 또한 균질화 프레임워크에서 고려될 

수 있음이 확인되었다. 확장된 균질화 프레임워크의 재료 설계에의 적용 

가능성이 유한 요소 시뮬레이션을 통해 얻은 균질화 된 열기계적 특성과 

비교 검증되어 확인되었다. 

 

주요어: 섬유강화 플라스틱, 복합재료, 2단계 균질화, 열기계적, 미세구조, 

인공신경망 
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