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Abstract 

 

Spatial omics profiling technologies have been recognized recently for its 

ability to decipher the genetic molecules that are structurally relevant in pathology. 

Especially, in tumor biology, tumor is not the group of malignant tumor cells, but 

rather group of various cells such as tumor cells, immune cells, fibroblasts, etc. 

gathers together, constructing the tumor microenvironments. Technologies to 

analyze such microstructures have evolved from bulk sequencing, single cell 

sequencing to spatial omics profiling technologies. Spatial omics profiling 

technologies have highly influenced in decoding cancerous mechanisms by 

questioning the tumor heterogeneity, tumor microenvironment and spatial 

biomarkers. 

Most of the spatial omics technologies focus on mapping the spatial omics 

landscape in a large scale. They rather introduces the spatially-barcoded capture 

probes or fluorescence labeled target probes to spatially locate the genetic molecules. 

The information depth and the scalability of the techniques varies according to the 



ii 

 

purpose of the spatial assay techniques. Such technologies are capable of discovering 

the spatial heterogeneity and the spatial landscape of the consisting cell types due to 

relatively low depth of the omics information. To effectively address the target 

molecules for therapeutics or diagnostics, higher depth of the omics information are 

required. To meet the needs, region of interest (ROI)-based spatial technologies 

isolated the target regions and applies chemistries for higher coverage omics data.  

Conventional cell sorters utilizes microfluidic channels to sort cells of interest 

which requires cell dissociation in a solution phase. For instance, Fluorescence 

activated cell sorter (FACS) or Magnetic-activated cell sorting (MACS) uses 

fluorescence or magnetic particles, respectively, to designate the cells of interest in 

dissociated cell solutions. Spatially isolating techniques such as laser capture 

microdissection (LCM) is able to sort out the ROIs while preserving the spatial 

context, but it approximately takes an hour for isolating the targets. Also, it uses 

rather UV laser to dissect out cells or IR-activated melting of polymers to stick out 

cells which might cause damage to cells.  
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Here, I developed the automated spatially resolved laser activated cell sorter 

that isolates the cells in target per second while preserving the spatial context of the 

cells. Specific region of indium tin oxide (ITO) coated slide glass evaporates when 

illuminated by IR laser pulse, plunging the cells into the desired reservoir. The 

applicability of the suggested cell sorter are demonstrated in omics profiling 

chemistries such as DNA sequencing, RNA sequencing, mass spectrometry, etc.  

  

Keywords: Spatial omics, Spatially resolved laser-activated cell sorting (SLACS), 

Laser capture microdissection, Image processing 

Student Number: 2018-24629  
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Chapter 1.  

 

Introduction 

 

 

In this chapter, recent developments of the spatial omics profiling technologies 

and its application to cancer biology is presented. Novel discoveries in tumor biology 

have been performed by tools to analyze cellular biology such as bulk sequencing 

and single-cell sequencing. Tumor forms the tumor architectures consisting of group 

of various types of cells, affecting the underlying cancerous mechanisms. Therefore, 

it is important to decipher the cancer while preserving the spatial context. The spatial 

omics profiling technologies can be mainly categorized into spatial landscape 

mapping technologies and ROI profiling technologies. The purpose of each 

technologies differs according to the cell throughput and information depth of the 

omics profiles. Novel techniques to map tissues in spatial context or ROI-based 

omics profiling have greatly discovered the oncological problems in terms of tumor 

heterogeneity, tumor microenvironment, or geographically localized biomarkers.  
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1.1. The Need for Spatial Profiling in Cancer Biology 

1.1.1. Historical Review of Technologies to Address Cancer Research 

Cancer biology is similar to astronomy studying an unknown universe in terms 

that despite the knowledge that we have stacked, there are astronomical amount of 

researches remaining. Looking back in the history of astronomy, the field has grown 

along with the advances in tools to interpret space. Ancient astronomers mapped the 

constellations by staring at the dark sky with bare eyes. The desire to better stare at 

the stars led to the development of the telescopes, from Galileo Galilei, Satellites, 

and Hubble telescope all the way to today’s James Webb. And based on these 

technological developments, the findings matured from simply identifying the 

moons of the planets in the past, discovering new extrasolar planets and measuring 

space expansion rate in the 2000s, to gathering more details on black hole4 and 

analyzing the space atmosphere in recent years. Each telescope has a different 

purpose leading to different scientific findings, but they share the ultimate goal of 

understanding the universe: where we are, and from when we were. 

Similarly, when considering the cancer history, the first definition of cancer as 

a disease have been proceeded by ancient biologists as early as 2500 B.C. and they 

even tried to eliminate it via surgery. However, due to the lack of tools to decipher 

the cellular analysis, the cancer was described as a disease which is caused by an 

excess of the black bile [1]. It was 17th century when the cells were first identified 

under the microscope by Robert Hooke [2]. Johannes Müller then characterized the 
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abnormal phenomenon in cancer cells by observing cells under the microscope [3]. 

He was able to define the carcinoma subtypes suggesting the heterogeneity of 

cancer[4]. In the mid-19th century, Rudolph Virchow have discovered the cancer cells 

were from normal cells, and published the Microscopic Atlas of Pathology, 

suggesting the various cancer types [4,5].  

Microscope itself has greatly contributed in cancer research, but thrived in the 

aid of the various staining methods. Joseph von Gerlach first came up with the 

concept of staining tissues with carmine [6], which eventually contributed in the 

development of hematoxylin and eosin (H&E) staining [7]. H&E staining method is 

still used these days to simply identify the cellular organization [8]. Additional 

methods such as immunostaining methods or fluorescent in situ hybridization (FISH) 

have been developed to label the specific cells of interest. It was in 1941 that 

immunostaining methods was first developed using the antigen-antibody interactions 

[9,10] and in 1969, the in situ hybridization methods was first suggested to target 

genetic molecules under microscope [11]–[13]. Both methods have highly affected 

in stacking the knowledge of the cellular mechanisms of cancer and heterogenetic 

landscapes [14].  

Beside from visual examination of the cellular phenotypes, other methods to 

profile the genetic molecules have been developed such as next generation 

sequencing methods. After the Human genome project which has outputted the full 

genome sequence of the human, it has been suggested that the cancer cells might 

have been derived from the genetic mutation of normal cells [15],[16]. In 2005, the 
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cancer genome atlas project was launched to obtain the cancer-related genetic 

sequences and was completed in 2018 [17]. It has been highly recognized that 

cellular heterogeneity exists in cancer cells, and the single cell sequencing 

technologies have also been developed to answer the composition of tumor cells, 

intratumoral heterogeneity and tumor progression [18]–[20]. 

 

Figure 1.1 Cancer biology is similar to the universe 

Through the advances in technologies to decipher the tumor biology, it has been 

discovered that the tumor constructs the tumor architecture resulting in the 

underlying cancerous mechanisms [21]. Growing number of research insists the 

importance in analyzing the tumor architectures in spatial context, questioning the 

mechanisms under tumor initiation, progression, evolution, metastasis and following 

diagnostics and therapeutics strategies. It is reported that various cell types affect 

tumor cells, constructing the tumor microenvironment consisted of B cells, T cells, 

macrophage, dendritic cells, fibroblasts, etc. Clinical outcome is greatly relevant to 

the spatial composition of the tumor microenvironment (TME) and cancer subtypes 

[22]–[27]. The need for the spatial analysis of tumor architecture have been 
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emphasized to analyze the tumor heterogeneity, TME, and spatial biomarkers[27]-

[33]. 

 

 

Figure 1.2 Technologies for investigating the tumoral lanscape and technologies for 

expefiting the region of interests. 

Recently, a number of spatial omics technologies have been developed recently 

to address the questions in cell spatial biology. Just as telescopes have been 

developed to delineate the universal landscape, there are spatial omics profiling 

technologies developed to delineate the spatial landscape of the tissues [31]. On the 

other hand, there are technologies developed to characterize the specific regions of 

interest, just as spacecraft dive into specific planet for in-depth characterizations. 
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1.2. Spatial Landscape Profiling Technologies 

1.2.1. Spatial transcriptomics profiling technologies 

Spatial transcriptomics technologies was recognized by Nature Methods journal 

as the ‘Method of the year’ in 2020 [31], [32]. Thinking of the fact that bulk 

sequencing technologies have been selected as the ‘Method of year’ in 2005, and 

single cell sequencing in 2013, the spatial transcriptomics technologies are thought 

to bring a critical impact in cellular biology [33]. Currently developed spatial 

transcriptomics technologies have been considered as two common approaches, 

fluorescently tagged microscopic approach and in situ barcoded next generation 

sequencing approach [32]- [35]. 

 

 

Figure 1.3 Spatial transcriptomics technologies for cataloging the cancer universe. 

As addressed in the history of cancer research, microscopic approach is capable 

of observing the overall landscape of the tissue. By labelling the genetic molecules 

by fluorescence directly on the expressed position of cells, FISH is a historically 
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long-used technique to image transcripts [11], [13], [36]–[38]. It uses the 

fluorescence labeled target probes to detect the target transcripts. However, due to 

the spectrum overlap of the fluorescence molecules, there has been limitation in 

number of co-detectable transcripts. Various technologies have been attempted to 

increase the number of co-detectable targets with higher detection accuracy.  

Single-molecule FISH (smFISH) used single capture probe to target the certain 

transcript, but further the method to target the different regions of the same transcript 

was developed to increase the signal-to-noise ratio [39], [40]. To effectively quantify 

the expressions of the transcripts, signal amplifiers were introduced in FISH methods 

[41], [42]. For instance, RNA scope implements the Z shaped capture probe to 

capture the target transcripts and labels the fluorescence probed to the capture probes, 

highly increasing the signal intensity [43]. FISH method has an intrinsic limitations, 

but due to its simplicity and specificity, FISH has been generally used to discover 

the local expressions of the target transcripts [44]– [48].  

The iterative fluorescence approach to effectively increase the multiplicity of 

co-detectable targets. SeqFISH and MERFISH is the representative methods of 

iterative FISH. SeqFISH repeats the fluorescence hybridization and de-hybridization 

steps to identify the target probes [49]. It had to design the multiple fluorescently 

labelled target capture probes for each genes to increase the signal intensity. The 

process was highly time consuming and expensive, so they developed the SeqFISH+ 

method which introduced the signal amplifier concept increasing the signal intensity. 

SeqFISH is now commercialized by Spatial Genomics [50]. MERFISH also uses the 
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iterative methods to detect the signals, but instead they uses the signal amplifier to 

effectively identify the transcripts and adopted the error correction scheme which 

might occur during the iteration step [51], [52]. MERFISH is commercialized by 

Vizgen.  

In situ sequencing methods were suggested which can sequence the genetic 

regions in situ [53]. Padlock barcodes were designed to target the transcripts for in 

situ amplifications by rolling circle amplifications (RCA) of the sequences and 

repeated the sequencing steps of the barcodes [54], [55]. In situ sequencing 

approaches are currently commercialized as Xenium. It has been applied to analyze 

the tumoral heterogeneity in breast cancer tissues [53], [56]. It minimized the design 

of the fluorescently labelled capture probes, reducing the cost of the assay. Similar 

concept were also developed as FISSEQ and STARmap which can directly sequence 

the targets on the tissue [57],[58], [59],[60].  

In situ capturing of the transcripts in the spatially localized regions have been 

suggested enabling the de novo detection of the expressed transcripts. Spatially 

barcoded poly(dT) capture probes capture the Poly A tail of the mRNAs and are 

retrieved into the solution phase [61]. Then after next generation sequencing, the 

transcripts are deconvoluted as the spatial regions. Such unbiased way for mapping 

the transcripts enables the patterning of the cell types in a spatial landscape [62], [63]. 

The method has been commercialized as Visium by 10X genomics. It is still 

developing its technologies to increase the resolution and information depth [62], 

[63],[64],[65]. The technology have been actively developed to increase the 
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information depth of the transcriptome it can provide [66]–[69]. Additional 

microfluidic channel based in situ barcoding approach has been conducted as DBiT-

seq. Such barcoding approach has limitation that only the 3’ end of the transcript can 

be sequenced.  

1.2.2. Spatial Omics Technologies 

Currently, spatial transcriptomics is the technology that has been recognized a 

lot since transcriptomes can indirectly infer the snapshot of the cell status. Observing 

the spatial landscape of the transcriptomes infers the overall cellular outlines of the 

tissue, but additional information are required to understand the cell dynamics. 

Proteome are the functional unit of the cells and genome are described as the 

blueprint of the cells. Epigenome are responsible for regulating the genome for 

encoding the transcriptome. Therefore, to fully understand the cellular dynamics, 

multi-dimensional integration of the omics data are required for understanding the 

cellular functions. When compared to spatial transcriptomics, other omics profiling 

technologies are in its early states. Increasing number of researches are developed 

recently, and not many of those technologies has been commercialized yet. 
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Figure 1.4 Spatial omics technologies for defining the onco-verse 

Spatial genomics are important for defining the tumor progressing by analyzing 

the genomic aberrations of the cancer cells. FISH techniques has been also developed 

for targeting DNA sequences in tissue [70], [71]. In situ DNA FISH had been 

contributes in defining the cancer subtypes by defining single-nucleotide 

polymorphism [72], [73]. DNA FISH also shared the intrinsic limitations of the 

number of co-detectable genes due to the wavelength interference. To increase the 

number of the genes, various sequential FISH methods has been suggested recently. 

DNA seqFISH+ [74]. In situ genome sequencing (IGS) has introduced the iterative 
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imaging of the fluorescence labels and Slide-DNA-seq has adopted the in situ 

barcoding approach [75]. Until now, the genomic coverage of the listed technologies 

are not high enough to be directly applied to therapeutic target discoveries, but still 

spatial genomic profiling technologies are currently being applied to deciphering the 

tumor evolution, and spatial clonal populations.  

Spatial epigenomics profiling technologies are in its very early stage. Since a 

number of epigenome assay chemistries have been developed recently, the approach 

to spatially index the spatial location via in situ barcoding and then apply the 

available epigenome chemistries are being developed [76], [77]. It was built on the 

microfluidic channel based in situ barcoding developed by DBiT-seq. The set of 

barcodes are delivered to the spatial region in perpendicular rounds, generating the 

grid of barcodes. Cut & Tag and ATAC-seq has been applied after the barcoding 

rounds to decipher the chromatin modification and chromatic accessibility [78], [79]. 

 Proteins are the functional unit of the cellular mechanisms, and it has been 

developed for a long time to spatially map the protein expressions. As addressed in 

the history of the cancer biology, H&E staining and immunostaining methods have 

been detecting the surface marker proteins, helping researchers to draw the cell 

outlines or distinguish the cell types. To increase the number of protein targets, 

iterative methods for immunostaining have been developed to overcome the 

fluorescence overlap issue [80]–[82]. During the iterative process, cells go through 

the harsh antigen retrieval steps. Therefore, there is a limitation in the number of the 

detectable proteins. Gentler methods to strip off the previous fluorophores have been 
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developed by bleaching the fluorophore or introducing the intermediate reporter 

probes. The co-detection by indexing method (CODEX) uses the DNA-conjugated 

antibody and detects the antibody by fluorescence labelled DNA probes [83], [84]. 

By iterative fluorescence detection process of the DNA-conjugated antibodies, it has 

highly increased the number of the protein targets up to 60 targets. Spatial protein 

signatures reflects the cellular dynamics of the tissue, further stacking the 

understandings in cancer biology [85].  

Furthermore, multi-dimensional integration of the omics information are 

applied for better understandings of the cancer cell biology [86]. Co-detection of the 

transcripts and the target proteins are relatively accessible when introducing the 

DNA-conjugated antibodies. DBiT-seq, a microfluidic channel based in situ 

barcoding approach is capable of indexing the transcripts with the protein targets by 

introducing the DNA-conjugated-antibodies [87]. Also, CITE-seq, a chemistry 

developed to analyze the target proteins and whole transcriptome sequencing, has 

also been spatially integrated using the microfluidic in situ barcoding platform [88]. 

Nanostring has developed the iterative FISH technique which can co-detect the 

transcripts with the proteins [89].  

SM-Omics platform suggest the automated integration of the multiple single-

omics profiling technologies [90]. It has integrated the protein measurement 

techniques using the DNA conjugated antibody or immunostaining, with the 

conventionally available spatial transcriptomics profiling technologies as well as the 

cellular phenotypes such as H&E staining image. Increasing number of researches 



１３ 

 

suggests the method of integrating two or more dimensions of omics information.  

Spatial landscape technologies have advantage in that it can be applied to a 

large-scale patterning of the omics profiles. It has been contributed in the novel 

spatial findings in oncology in terms of spatial heterogeneity, cell types consisting 

the tumor microenvironment, and gene counts of the overall tissue. However, most 

of the spatial landscape technologies show low information depth. For instance, 

iterative FISH and in situ sequencing methods need the targeting of the transcripts, 

therefore, only the gene counts can be yielded. Also, in situ capturing technologies 

captures only the 3’ or 5’ end of the transcripts, resulting in the information of only 

the gene counts or the sequence of the 3’ or 5’ end region. Therefore, in current state, 

it is more focused on profiling the overall patterns rather than suggesting the specific 

therapeutics or diagnostics target biomarkers.  

Table 1.1 Tumor research driven by spatial landscape technologies 

Target Technology Findings Types Applications in Cancer  

RNA Visium Biomarker 

Prostate cancer (Erickson et al. (2022)[69], Tuong et al. 

(2021)[91]), Melanoma (Hunter et al. (2021)[92]), DCIS 

(Nagasawa et al. (2021)[93], Bladder Cancer (Gouin III et al. 

(2021)[94]) 

 
Visium Heterogeneity 

Prostate cancer (Joseph et al. (2021)[95]) Breast cancer 

(Andersson et al. (2021)[64]), Carcinoma (Luca et al. 

(2021)[96]), Pancreatic cancer (Sun et al. (2021)[97], Ma et 

al. (2022)[98]) 

 
Visium TME 

Carcinoma (Ji et al. (2020)[99]), Breast cancer (Wu et al. 

(2021)[100]), Colorectal cancer (Wu et al. (2022)[22], Qi et 

al. (2022)[101]), Lung cancer (Dhainaut et al. (2022)[102]), 
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Glioblastoma (Ravi et al. (2022)[103]), Neuroblastoma (Van 

de Velde et al. (2021)[104]), Mixed (Nieto et al. (2021)[105]) 

 
Visium Integrated 

Melanoma (Thrane etal. (2018)[106]), DCIS (Wei et al. 

(2022)[107]), Pancreatic cancer (Moncada et al. (2020)[108]) 

    

 
MERFISH TME 

Glioblastoma (Hara et al. (2021)[109]), Carcinoma(Magen et 

al. (2022)[110]) 

    

 
RNAscope Biomarker Gastric cancer(Tamma et al. (2018)[111]) 

 RNAscope Heterogeneity 
Breast cancer(Annaratone et al. (2017)[47]), Cancer cell lines 

(Rowland et al. (2019)[48]) 

    

 
ISS Biomarker 

Breast cancer (Ke et al. (2013)[53]), Glioblastoma (Ruiz-

Moreno et al. (2022)[112]) 

 ISS Heterogeneity Breast cancer (Svedlund et al. (2019)[56]) 

 Fisseq Biomarker Breast cancer (Alon et al. (2021)[113]) 

    

Protein Nanostring Biomarker Medulloblastoma (Zagozewski et al. (2022)[114]),  

 Nanostring TME 

Carcinoma (Sharma et al. (2020)[115]), Colorectal cancer 

(Pelka et al. (2021)[116]) , Melanoma (Van Krimpen et al. 

(2022)[117]), Lung cancer (Wong-Rolle et al. (2022)[118]) 

 Nanostring Integrated 

PDAC (Han et al. (2022)[119]), Carcinoma (Sadeghirad et al. 

(2022)[120]), Prostate cancer (Brady et al. (2021)[121]), 

Breast cancer(Kulasinghe et al. (2022)[122], McNamara et al. 

(2021)[123]), Oral cancer (Schmitd et al. (2022)[124]) 

    

 mIHC TME 

Colorectal Cancer (Zhang et al. (2020)[125], Che et al. 

(2021)[126]), Glioblastoma (Pombo Antunes et al. 

(2021)[127]) 

    

 CODEX TME Colorectal Cancer (Schürch et al. (2020)[128]) 

 CODEX Integrated 
Lymphoma (Mondello et al. (2021)[129], Phillips et al. 
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(2021)[130]), Bladder cancer (Gouin et al. (2021)[94]) 

 

1.3. Spatial ROI-profiling technology 

1.3.1. Previous sorting systems for spatial omics 

There are spatial omics profiling technologies that focuses on in-depth 

characterizations of a specific region of interest, just as spacecraft focuses on getting 

deeper insight of the specific celestial bodies. Needle biopsy was initially used to 

biopsy the specific cancer regions, and proceed the post-processing chemistries [131], 

[132]. Emmert-Buck suggested the first Laser Capture Microdissection (LCM) 

which can dissect out the specific region from the tumor tissue sections [133]. 

Currently, LCM has two commercialized technologies; one using the UV-laser to 

dissect out the tissue, and one using the IR-activated EVA polymer to stick out the 

regions of interest [134]. LCM has a distinct advantage in that it can isolate the tumor 

regions and integrate the existing molecular assays. In the 20th century to early 2000s, 

LCM was introduced for DNA genotyping, RNA-sequencing, and protein analysis. 

Currently, LCM is being applied in various cancer researches providing detailed 

insights towards cancer [135], [136].  
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Figure 1.5 Spatial ROI profiling technologies for in-depth characterization 

Unlike other spatial landscape technologies which provides low-depth in situ 

genomics analysis, LCM has been used to address the de novo genomic mutations 

such as single nucleotide variants (SNV) or copy number alterations (CNV) in 

heterogeneous tumoral regions or to trace the cancer evolution by tracking the 

genomic features of the subclones [137], [138]. Also, combined with RNA 

sequencing, de novo transcriptomic features were also deciphered in the spatial 

context. When combined with RNA-sequencing, isoforms or epitranscriptomic 

features can be thoroughly studied [139],[140]. Spatially differentially expressed 

biomarkers or pathway analysis of tumor progression or evolution has been studied 

through in-depth transcriptomic analysis. It was also introduced in proteomic 

analysis combined with the mass-spectrometry or other quantative profiling tools for 

protein analysis [141], [142]. Particularly, the biomarker discovery for diagnostics 

or therapeutics targets has been proceeded. The LCM-MS has a key advantage of de 
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novo identification of protein expression when compared to those that needs the 

design of specific antibodies to detect the expressed proteins. Also, since epigenomic 

research is in its early stage in the spatial omics field, ROI-profiling technologies has 

its advantage in that it can be applied to the cutting edge epigenomic assays [143], 

[144].  

Table 1.2 Tumor research driven by spatial ROI profiling technologies 

Target Technology Finding Type Applications in Cancer 

RNA LCM Biomarker 

Prostate cancer (Cato et al.(2019)[145]), Breast cancer (Gómez-

Cuadrado et al.(2022)[146]), Lung cancer (Chowdhuri et al. (2

012)[147], Malapelle et al. (2011)[148])  

 LCM Heterogeneity Nasopharyngeal cancer (Tay et al.(2022)[149]) 

 SLACS Biomarker Breast cancer (Lee et al.(2022)) 

    

DNA LCM Biomarker 

Prostate cancer (Rubin et al. (2000)[150]), Bladder cancer (Che

ng et al. (2001)[151], Cheng et al. (2004)[152]) Breast cancer 

(Bertheau et al. (2001)[153]), Carcinoma (Zhang et al. (2009)

[154], Ellis et al. (2020)[138]) 

 LCM Heterogeneity 

Breast cancer (Wild et al. (2000)[155]), Carcinoma (Cheng et al. 

(2002)[156], Jones et al. (2005)[157]), Melanoma (Katona et a

l. (2007)[158]), Mixed (Olafsson et al.(2021)[159]) 

 SLACS  Heterogeneity Breast cancer (Kim et al (2022)) 

    

Protein LCM Biomarker 

Breast cancer (Cowherd et al.(2004)[160]), Ovarian cancer (Bu

ckanovich et al. (2007)[161]), Glioblastoma (Lam et al.(2022)[1

62]), Carcinoma () 

    

Epigenome LCM Biomarker Lung adenocarcinoma (Selamat et al. (2012)[163]) 

 LCM Heterogeneity Adrenocortical carcinoma (Schillebeeckx et al.(2013)[164]) 

 LCM CTC  Lung cancer (Zhao et al.(2021)[165]) 

    

DNA + RNA LCM Biomarker Breast cancer (Jovanovic et al. (2017)[166]) 

 LCM Heteogeneity 
Carcinoma (Chen et al. (2022)[167]), Lung cancer (Krysan et 

al. (2019)[168]), TNBC (Zhu et al. (2021)[169]) 
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1.3.2. The need for the development of automated spatially-resolved 

cell sorter 

 

Figure 1.6 Conventional cell sorting technologies 

Fluorescence activated cell sorting (FACS) and Magnetic activated cell sorting 

technologies (MACS) are mostly wide used cell sorting techniques in current state. 

FACS uses the fluorescence tags to target the cells of interest, and MACS uses the 

magnetic particles. FACS uses the microfluidic channel to flow the cell to the 

cytometry machine in a single cell level, then computes the fluorescent information 

and tags the corresponding electrical charge label to sort the cells to the reservoir. 

The multiplexity of the single sorting process of the conventional FACS is up to 3 
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and unless 105 ~ 106 cells are needed for the sorting process. In case of MACS, 

magnetic particles are added to tag the cells of interest, then pulls the cells of interest 

via magnetic interactions. Then remnant cells are washed out, keeping the tagged 

cells to the desired reservoir. Another novel cell sorting technologies were developed 

to sort out the cells of interest by using the cellular phenotype information using 

Raman imaging and machine learning [170], [171]. However, the listed technologies 

all need the dissociation of the cells to the solution phase to sort out the cells via 

microfluidic flow or magnetic interactions, therefore, losing the spatial context of 

the tissue. Still, they were recognized by its throughput and applicability to the post-

processing chemistries and have contributed in thriving the single cell sequencing 

field.  
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Figure 1.7 Appications to existing molecular profiling technologies 

Conventional spatially resolved cell sorters introduced in section 1.3.1 spatial 

sorting systems such as LCM and SLACS have the capability of sorting out the 

region of interest and apply the listed post processing chemistries, but it still has 

unsolved problems to be generally applied to the life scientists. Conventional LCM 

device has low throughput that it takes about an hour to sort two regions. Also, the 

devices used for the dissection such as UV or the EVA polymer might induce the cell 

damage during the dissection step. For instance, it is applicable to pull out the single 

or few region of interest not applicable for to sort out the tumor infiltrated immune 

cells, but not for the hundreds of tumor infiltrated immune cells that might provide 

the therapeutic target sequence. As single cell analysis has thrived for last ten years 

for its novel discoveries in life science due to the high-throughput droplet based 

single cell sequencing technologies, spatial cell sorting technologies should also be 

developed for in-depth sequencing of the target cells as well as the spatial landscape 

technologies.  
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Figure 1.8 The era of spatial analysis will lead the active research in tumor research  

 

1.4. Outline of the dissertation 

1.4.1. Previous work from our group 

To address the throughput and cell damage issues of the conventional LCMs, 

spatially resolved laser activated cell sorter (SLACS) have been developed from our 

lab [172]. SLACS utilizes the indium tin oxide slide glass for tissue to be located, 

then the IR activates the evaporation of the target regions. Compared to other LCM 

devices that use UV laser or EVA polymer to dissect out the specific regions, SLACS 

uses the laser-activated evaporation, so it takes about target per second time to isolate 

the desired region. The size of the isolation differs from 1 µm diameter to 1mm 
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which can vary by the user’s need. Conventional staining methods such as H&E, 

immunostaining, FISH, etc. can be applied to target the regions of interest and also 

the other spatial landscape technologies can be applied to guide the cells or interest. 

Retrieved cells can go through the post-processing such as NGS-based assays or 

mass spectrometry assays. SLACS has conducted various researches in cancer 

research such as epitranscriptomic analysis in spatially located cancer stem cell-like 

microniches [173]. Novel adenosine to inosine A-to-I edited GPX4 gene has been 

discovered as the triple negative breast cancer (TNBC) clinical outcome prediction 

marker. Also, full length sequencing led to the profiling of the B cell receptor and T 

cell receptor sequences for specifying the therapeutically actionable immune 

sequences.   

 

 

Figure 1.9 SLACS: Connecting spatial and molecular information 

The first demonstration of the SLACS device was reported in Spatial DNA 
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sequencing in breast cancer tissue sections. By analyzing different microniches using 

multiple displacement amplifications (MDA), the subclonality and the evolutionary 

relationship between different subclones were revealed [172]. Also, by using the 

serial sectioned tissues, 3D genomic map showing the different subclones could be 

analyzed with whole genome sequencing, whole exome sequencing and targeted 

sequencing. SLACS was able to construct the 3D genomic landscape of the breast 

cancer, providing intra-tumoral subclones with their genomic aberrations such as 

copy number alterations, single nucleotide variants and structural variations for 

tracking the tumor evolution. The discovery could give the insight towards 

personalized diagnostic tools for circulating tumor DNA (ctDNA) panels. Also, 

SLACS was applied in isolating the circulating tumor cell (CTC) in CTC capturing 

biochips, where the CTC was captured in the EpCAM coated pillar structures [174].  

SLACS was applied to the post processing of analyzing the spatial 

transcriptomics and epitranscriptomics [173]. Unlike other spatial landscape 

technologies, SLACS was able to analyze the full length sequencing of the 

transcripts. Two different cancer stem cell markers ALDH1 and CD44 was used to 

label the different cell populations. The differently labelled microniches had a unique 

adenosine to inosine (A-to-I) editome sequences. They further revealed that A-to-I 

edited GPX4 had a high correlation to the prognosis of the triple negative breast 

cancer patients with neoadjuvant chemotherapy. Also, full-length immune cell 

receptor sequences could be profiled, proving the potential to be applied to the 

interactive molecular analysis. For instance, tumor infiltrating immune cells in the 
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tumor microenvironment can have the specific antibody sequence that can be 

developed for the diagnostics or therapeutics targets. Aside from the DNA or RNA 

sequencing, mass spectrometry or epigenomic assays also can be applied after the 

isolation, further expanding its applicability towards the spatial omics assay.  

1.4.2. Main concept: Automated cell sorting system for multi omics 

In this dissertation, I propose the novel technological solution for the spatial 

ROI-based omics profiling field. The main concept of the proposed technology is to 

automatically targeting the regions of interest and sorting ROIs for omics 

applications. Proposed method will address the current limitation of the SLACS 

device that targets the regions of interest manually. I suggest the automated What 

You See Is What You Get (WYSIWYG) cell sorting platform that enables the 

detection of the phenotypically marked cells to be isolated and connection to the 

further post-processing chemistries for the future spatial omics applications. Like the 

conventional FACS system which can automatically isolate the specific targets 

tagged with the fluorescent labels, I suggest the automatic spatially-resolved laser-

activated cell sorting platform for the ease-of-use to the general life scientists.  

1.4.3. Outline of the dissertation 

In this dissertation, the automated cell sorting using the SLACS device is 

described. In Chapter 2, the assay quality of the retrieved cells using SLACS is 

described. In Chapter 3, development of the automated targeting and isolation of the 
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cells and applications are described. Finally, in Chapter 4, the summary of the 

dissertation and future direction using the device are described.  

 

. 

  



２６ 

 

 

 

 

Chapter 2.  

 

Development of the spatially 

resolved laser-activated cell sorting 

platform 

 

 

In this chapter, I will describe the development of the SLACS device and its 

performance. SLACS device is capable of isolating the regions of interest of the pre-

marked regions from the image samples. SLACS has its advantage in that it can be 

applied to various post-processing chemistries including whole genome sequencing 

(WGS), full-length RNA sequencing, targeted sequencing and so on. By isolating 

the regions of interest, SLACS has its capability of providing the in-depth molecular 

information of the target regions.   
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2.1. Development of the SLACS system 

2.1.1. Advantage of the SLACS system compared to other cell sorting 

technologies 

Significant advances in imaging technologies and molecular cellular biology 

have brought biological discoveries that boosted the understanding of biological 

phenomenon. Ranging from hematoxylin and eosin (H&E) staining to 

immunofluorescent staining (IF), different staining modalities have laid foundations 

for modern medicine, and next generation sequencing (NGS) caused a quantum leap 

in biological discoveries in a decade [175]. While the imaging technologies provide 

information of the biological circuitry by providing spatial and structural information 

of a biological system, molecular cellular biology technologies provide the state of 

the biological cells in a more microscopic manner. However, to fully understand how 

the cells are functioning within spatial context, there needs to be a tool to connect 

the imaging technologies to molecular cellular biology [176]. Such integrated 

technologies that can sort out cells with preserved spatial information will connect 

the data from spatial assays to that from the molecular assays.  

Conventional cell sorting technologies, however, are mostly based on 

microfluidic cell sorting. Fluorescence activated cell sorter (FACS) is perhaps the 

most widely used cell sorter [177]. FACS utilizes laser source to sort cells with the 

same fluorescence spectrum. These technologies require the cells to be dissociated 

into solution phase, losing the spatial information during the process. Intelligent 



２８ 

 

image-activated cell sorting and Raman image activated cell sorting measured the 

cell image with machine learning and Raman image of the cells, respectively [170], 

[171]. These techniques are able to preserve the cellular phenotype information 

because the cells are sorted according to their images, but these cell sorting 

techniques still require dissociation of the cells and therefore the spatial context is 

lost before the cells are sorted. Spatially targeting cell isolating devices such as laser 

capture microdissection (LCM) or similar methods are able to dissect out the regions 

of interest. Some platforms offer high resolution cell microdissection down to single 

cell level [134], [178]. However, the throughput for these platforms is three target 

retrievals per run (which takes approximately one hour), hindering their usage in cell 

sorting.  

SLACS preserves the spatial information and demonstrate its usage in bridging 

spatial assay to various molecular assays, which isolate cells on an indium tin oxide 

(ITO) coated slide glass into commercialized PCR tubes based on their image. The 

properties of cell sorting such as accuracy are demonstrated and the possibilities of 

post-processing such as DNA sequencing, RNA sequencing, or other molecular 

biology techniques are validated, proving the potential of SLACS for novel 

biological discovery tool by sorting mammalian cells to bacteria. Especially, studies 

have reported a method of sequencing the genomes of small number of cells or single 

cell through this methodology [173], [179]. 
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2.1.2. Workflow and design of the SLACS system  

 

Figure 2.1 The work flow of the SLACS platform 

SLACS works with a sample that is prepared on an ITO coated slide glass. Here, 

ITO layer serves as a discharging layer that readily vaporizes when exposed to the 

near-infrared (NIR) laser with a wavelength of 1064 nm in the cell sorting step, 

allowing cells on the exposed region to be sorted into the commercialized PCR cap 

on the retrieval stage of SLACS device. After biospecimen is prepared on an ITO 

coated slide glass, various staining methods with desired modality can be applied to 

the biospecimen without affecting cell sorting process, and in this report we used 
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Giemsa banding, Wright-Giemsa staining, H&E staining, immunohistochemistry 

(IHC) staining, and gram staining as representative staining methods.  

Then, the targets are selected and isolated based on the real-time image of 

samples acquired as a CCD camera of SLACS instrument or the whole-slide image 

took by a whole-slide scanner or a general fluorescence microscope, preserving the 

spatial and the staining information of isolated cells. If a reference picture is 

generated, the target marking software can be used for supervised target selection. If 

the automated marking program is developed, both supervised and unsupervised cell 

sorting are available according to the demand for target selection from images. 

In optical modules, real-time images of samples are acquired like microscopy 

with a CCD camera, and fluorescence light source and filter cube array with three 

filters is also embedded within the device in order to increase the range of stained 

samples. A reflective bright field light source is installed so that the target area can 

be lighted and seen on the CCD camera. In addition, the NIR laser from an Nd:YAG 

nanosecond pulsed laser source (λ = 1064 nm, pulse = 6 nanosecond) is used for 

ablating the target through the fixed light path. We chose 1064 nm pulsed laser 

because the laser with higher wavelengths than ultraviolet lasers is widely used for 

manipulating intact cells such as in optical tweezers, cell sorting methods, and other 

applications. 
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Figure 2.2 The optical and mechanical module of the SLACS device (Reprinted 

from [173]) 

Its spot size is controlled by the slit size adjusted by the x-axis and y-axis of the 

spot size modulator and the magnification of the objective lens. We used objective 

lens with long working distances that not only serves to focus the laser spots, but 

also provides enough working space to align the biospecimen to the retrieval plate. 

Next, mechanical modules comprise two motorized stages with sub-micrometer 
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scale precision: the sample stage and the retrieval stage. The top motorized stage to 

hold the sample-mounted ITO glass is controlled by z-axis to focus the real-time 

image, and by x-axis and y-axis to aim the target because the path of laser is fixed. 

On another motorized stage, called the retrieval stage, commercialized PCR tubes 

are arranged and placed to retrieve the isolated cells, By integrating the cell sorting 

method using ITO and NIR laser into the conventional microscopy, spatial 

information and molecular information of cells can be connected. 

SLACS can be used for automated and manual cell sorting, as the in-house user 

interface with operating software and selecting target software designed for this 

SLACS device enables automatic and manual control of two motorized stages with 

sub-micrometer scale precision. Using the operating software and interface written 

with Python, the spot size modulator, the top motorized stage, the retrieval stage, and 

the objective lens are easily controlled manually like controlling the coordinates of 

the retrieval stage with alignment to the light path of the laser. The software panel is 

designed to move the retrieval stage so that the target can be retrieved onto the well 

number of interest in a 96-well. In addition a remotely target selecting software 

measures the coordinates and areas of the targets of interest, enabling cells to be 

automatically sorted based on this coordinates.  

After the targets are selected remotely, the coordinates of the slide are taken to 

the SLACS instrument, of which the software converts the picture coordinates to the 

actual absolute coordinates of the sample. As the target is isolated, the device 

modulates the spot size matched to the target area and the top motorized stage is 
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moved so that the target is precisely below the objective lens. The target area was 

automatically calculated according to the objective lens and the selected area. With 

automatic run, each and every selected target is isolated in each well, and the 

maximum multiplexity per run is 96, which takes approximately one minute. If the 

well is switched to an empty well, the automatic run can be continued to isolate 

additional 96 targets 

It was able to isolate single bacterium, single chromosome, single cell from 

bone marrow smear, cancer cell clusters from tissue sections. Especially, the samples 

prepared with different staining modalities to demonstrate the universality of the 

SLACS. The bacterium isolated was E. coli that was gram stained with S. aureus. 

The rod-shaped bacterium in contrast to the round-shaped S. aureus was sorted based 

on the bright field image.  

Also, to show the high resolution applicability of the laser spot, we 

demonstrated single chromosome sorting from the Giemsa banded chromosomes. To 

our knowledge, this is the first report of isolating single chromosome using laser-

based instruments. Then, the single cells from Wright-Giemsa stained bone marrow 

smear were sorted according to the cellular phenotype that became apparent by the 

staining. This is significant because while the golden standard for distinguishing 

cells from hematopoiesis is distinguishing the cells through staining, current 

advancements rely on predicting cell types through gene expression levels that can 

be contradicting to the traditional cell typing. Different tissue sections in breast 

cancer and bone tissue were demonstrated to demonstrate the capability of cell 
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isolation in soft and hard tissues. The size can vary from 1µm to 1mm range, which 

depends on the user’s demand. 

 

Figure 2.3 The isolation of the single biospecimen using SLACS device 
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(Bacterium, chromosome, cell ) 

 

Figure 2.4 The isolation of the single biospecimen using SLACS device 
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2.2. The quality of the spatial omics assays after cell isolation via 

SLACS 

There exists the tradeoff between the harshness of fixation or staining protocol 

and the quality of the biomolecules, but it was able to analyze different single 

nucleotide level sequencing analysis from the cells. For instance, the whole genome 

sequencing was performed using SLACS by utilizing the multiple displacement 

amplification methods followed by the proteinase K based cell lysis. The whole 

genome were amplified to perform the library preparation for whole genome 

sequencing.  

   

 

Figure 2.5 The CNV data after the irradiation of the IR laser (Reprinted from 

[179]) 

It was confirmed that the copy number variation data of the single HL-60 cell 

isolated using the SLACS showed the high correlation with the bulk sequencing data. 

Formalin fixation is known to generate the DNA fragmentation, so the formalin fixed 

data showed the mismatch with the bulk sequencing, but data of single cell isolated 

with pipette, single shot, 10 shot and 50 shots of the laser pulse during the SLACS 
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had the similar profile with the bulk data.  

 

Figure 2.6 The comparison of the DNA quality to other laser microdissection 

methods (Reprinted from [179]) 

Also, it was confirmed that the quality of whole-genome sequencing data 

showed higher performance compared to other laser microdissection methods such 

as LPC or LMD platforms, which uses EVA polymer-based or UV laser-based 

isolation of the target regions. SLACS isolation of the target single cells showed 

better performance by evaluating the genome alignment ratio, which are portion of 
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the reads aligned to the human genome, and copy number correlation ratio, which 

are chromosomal copy number correlation with known HL-60 cell line profile. Also, 

Lorenz curve which shows the genome coverage analysis confirmed that cell 

isolation using SLACS showed highest genome quality.  

 

 

Figure 2.7 The quality of the full-length RNA sequencing after isolation using the 

SLACS (Reprinted from [173]) 

The performance of preserving the biomolecules were also confirmed in full 

length RNA sequencing data after the SLACS isolation. Fragment per kilobase of 

transcript per million mapped reads (FPKM) values were plotted in the SLACS 

isolated PFA-fixed and Methanol-fixed HEK 293T cell lines. The quality of the 

biomolecules differs according to the fixation method of the samples. When 

compared to the bulk mRNA-seq data, PFA and methanol fixation method showed 

the correlation of 0.83 and 0.74, respectively.  
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Figure 2.8 Transcriptome information that can be extracted from full-length RNA 

sequencing (Reprinted from [173]) 

It was able to profile the alternative splicing features or the heavy chain and 

light chained paired BCR sequence was able to be sequenced unlike other spatial 

transcriptomics profiling that captures the specific target regions of the transcripts or 

profiles only the 3’ or 5’ end of the transcript.  

 

 

 

  



４０ 

 

 

 

 

Chapter 3.  

 

Automated image-based cell sorting 

platform 

 

 

In this chapter, the development of the image based automated cell sorting 

platform is described. Current SLACS device needs the manual selection of the 

targets to be isolated. Therefore, it needs to identify the targets from the image and 

extract the target coordinates from the images. First of all, targets should be analyzed 

via image processing and it should be confirmed that the target position should be 

converted to the desired position at the SLACS device. Therefore, it is important to 

connect the image processing to SLACS system for automated cell sorting. The 

system was first validated the isolation of the desired targets using the encoded 

microparticles which are frequently used to mimic the micro-scale condition of cells. 

Then, it was applied to automatic isolation of the CTCs using the cell lines, and 

further utilized in clinical samples. Also aside from immunstainig methods, various 
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staining methods are applied to specify the target cell information such as in situ 

sequencing.   

 

Figure 3.1 Automated spatially resolved laser activated cell sorting platform.  

3.1. Validation of the automated targeting and transferring using the 

encoded microparticles 

3.1.1. Design of the encoded microparticles for the validation 

Encoded microparticles have the advantage that it can mimic the micro-scale 

condition of the cells, and the encodings can be precisely controlled [180]. Therefore, 

I used the encoded microparticles to validate connecting the automated target 

selection with the SLACS system to identify that the desired microparticles are 

transferred from the target positions. 
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Figure 3.2 Fabrication of the encoded microparticles 

 Each encoded microparticles are first fabricated by the photolithography using 

the photomasks with homogeneous codes [181]. The homogeneous microparticles 

are generated when a mixture of pre-polymer and photoinitator is irradiated by the 

ultra violet laser beam. After the polymerization, uncured pre-polymer solutions are 

washed out and are harvested to the each separated tubes.  
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Figure 3.3 Schematic of the automated transfer of the target microparticles 

To mimic the automated cell sorting condition, ten different encoded 

micoparticles were mixed and dispersed to the indium tin oxide (ITO)-coated glass 

slides, and the microparticles with the target codes were selected by decoding. Then 

the target coordinates were transferred using the SLACS system to the desired well 

coordinates.  
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Figure 3.4 Code design for the microparticles 

The code design for the encoded microparticles are listed in Figure 2.4. Long 

and short codes are designated for the alignment even in the rotated and flipped 

conditions. Each codes are fabricated using the photolithography which are capable 

of mass production.  

3.1.2. Neural net-based pattern recognition for decoding the encoded 

microparticles 

 

Figure 3.5 Neural net-based pattern recognition program 

The decoding schematic is designed using the neural net-based pattern 

recognition program. The neural net-based pattern recognition programs are highly 

dependent to the image training set, so other approaches such as convolutional neural 
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network or graphical neural network is more adequate with the condition of cell or 

tissue. However, in the case of the encoded microparticles, it was easier to gain the 

homogeneous images of the single tags, therefore, was able to apply the neural 

network-based pattern recognition [181]. The modifies images and the labels are 

entered to the decoding program as an input and 70% of the images are used as a 

training sets, 15% for validation set and 15% for test sets. The output of the neural 

net is the probability of the expected labels.  

 

Figure 3.6 Decoding accuracy enhances as the number of hidden layer and training 

sets increases 

The receiver operating characteristics (ROC) curve which is a graph that shows 

the performance of the classifications is described in Figure 2.6. The accuracy of the 

decoding increases as the number of hidden layers increase. Also, the data 

augmentation resulted in the enhanced accuracy.  
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Figure 3.7 Generation of the training sets for the decoding 

The training sets for training the neural net-based pattern recognition program 

was generated by extracting the images of the particles. After dispersing the 

homogeneous particles on the glass slide and extracting the particle images by circle 

detection. Then to increase the training sets virtually, data augmentation was 

proceeded by flipping and rotating each extracted code images. 

The confusion matrix maps the misalignment of the actual and expected result 

of the classification. I trained ten codes of the microparticles and tested the 

performance of the decoding algorithm. The accuracy of the decoding of each ten 

codes were ~99%. The accuracy of the decoding can increase when increasing the 

number and quality of the data sets. Then, I ran the decoding algorithm to identify 

each codes from the dispersed images of the ten different microparticles and 

identified the microparticles by using the neural net based decoding algorithm. 
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Figure 3.8 The confusion matrix of the decoding program 
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Figure 3.9 The extracted ralative coordinates of the target particles and result of the 

probability and isolation of the desired microparticles  

After extracting the target coordinates of the relative coordinates in the image, 

it was possible to calculate the actual coordinates at the machine, using the reference 

markers for calculating the relative positions. As shown in the Figure 2.10, it was 

capable of classifying the encoded microparticles and connect it to the SLACS 

device. It was possible to isolate the desired targets using the laser isolation. Then, I 

tried to validate that retrieval of the images were able to perform at the designated 

well of the 96 well plates. 
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Figure 3.10 Transfer of the food dye loaded microparticles to the designated wells 
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3.2. Automated cell sorting for targeting the rare cells 

3.2.1. The need for automated cell sorting in isolating the circulating 

tumor cells (CTCs) 

Automated spatially resolved cell sorting contains its advantages in dealing 

with the rare cells, which are difficult to be applied to the FACS that needs at least 

105 cells to run the isolation. CTCs are tumor cells that circulates in the blood which 

might be in the metastatic state of the tumor cells. CTCs are known and recognized 

to contain the information of the metastatic cascade and the characteristics of the 

primary tumors. Therefore, increasing researches are insisting that the CTC analysis 

might provide the information of the solid tumors which are difficult to collect from 

the real patient.  

However, CTCs are difficult to detect from the massive blood cells, since CTCs 

exist in very low-abundance in blood. Therefore, a number of approaches have 

developed to purify the CTCs from the blood plasma based on its physical properties 

or biological properties. CTCs has a size range of 12 to 30µm, therefore is generally 

bigger than other cells. Therefore, by using the microfluidic approaches to isolate 

the cells according to its size, it is possible to purify the CTCs, but since white blood 

cells (WBCs) have similar size range with average of 8μm, it is difficult to isolate 

only the CTCs from the blood plasma [182]. Also, the biological methods to isolate 

CTCs only are capable of isolating CTCs by capturing with certain markers such as 

EpCAM [183]. Therefore, numerous approaches are currently being developed to 
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effectively isolate the CTCs from the blood samples [174].  

The frequency of the CTCs differ by patients, but it is known that the frequency 

of the CTCs is often less than one per 1 ml of the peripheral blood. To effectively 

isolate the one CTC from the peripheral blood, there should be a minimized loss of 

the CTCs from the blood sample, which inhibits the samples from the FACS isolation. 

Therefore, if the CTCs could be enriched and analyzed thoroughly via image, it 

would be able to isolate the CTCs and proceed the post-processing for identifying 

the genomic aberration of the primary tumors. 

CTCs can be enriched using the mechanical isolation methods such as 

microfluidic devices to increase the ratio of CTC to WBC from the blood plasma. 

Before applying the schematic to the human patient samples, I used mixed cell lines 

of HL-60 (promyeoloblasts) and MCF-7 (breast cancer) to mimic the human samples. 

Then, by using the anti-CD45 (FITC) and anti-pan cytokeratin (Cy5) to stain the HL-

60 and MCF-7, respectively. 
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Figure 3.11 The image of the CTC samples among the peripheral blood. 

 

Figure 3.12 Isolation of CTCs from enriched CTCs 
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3.2.2. Development of the cell sorting algorithm 

 

Figure 3.13 Image of each channels of mixed cell lines of HL-60 and MCF-7 

Figure 2.14 shows the initial image of the fluorescence channels of DAPI, FITC, 

Cy5 which are DAPI, anti-CD45, anti-pan cytokeratin respectively. Using the cell 

profiler, which is an open source tool for analyzing the image of the cells, I first tried 

to measure the nucleus from the DAPI channels [184].      

 

Figure 3.14 Nucleus detection from the DAPI image 

After the validation of the nucleus detection, I then tried to extract and relate 

each fluorescent channels with the nuclei. To actively classify the HL-60 cell line 
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and MCF-7 cell line from the image, I developed the classification algorithm. First, 

I split the individual channels for each channels to specify the primary circular 

objects in each channel. Then I select the cytoplasm that match the nuclei to 

eliminate the non-specific bindings. The overall flow of the classification of mixed 

cell lines is described in Figure 2.16. 

 

Figure 3.15 Classification algorithm and the resulting image of the classified cells. 

Using the algorithm, it was able to identify the objects from the images, 
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however there were intrinsic problem regarding the fluorescence image. Unlike the 

Cy5 channel which corresponds to the cancer cell line, FITC channel showed not 

only the fluorophore that are attached to the anti-CD45, but also with the cancer cell 

lines. It is known that FITC channel which has the emission wavelength of 530nm 

is known to overlap with the natural fluorescence emitted by cells.  

 

Figure 3.16 Optimization of filtering the autofluorescence from FITC channels 

I then optimized the FITC channel analysis by filtering the natural fluorescence 

from the cancer cell lines which might be classified as the HL-60 cell lines. First, 

each cells were related with the parent cells which are detected by the DAPI channels. 

Then, by filtering the cells which shares the parent cells with the FITC cell lines, it 
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was able to preclude the cells which are initially marked by the Cy5 channel.  

 

Figure 3.17 Adjusted stitching for large image scanning 

Then, to increase the scale of the sorting, I imaged each fields and stitched each 

images to gain the image of the large area with high resolution. Each images were 

taken by 512 x 512 pixel image using the Hamamatsu CCD. Each pixels refer 1.62 

µm in actual scale. The image condition had the non-uniform illumination of the 

light source, so stitched images were adjusted by extracting the maximum 

fluorescent image of the overlapped areas. However, it was difficult to filter out all 

the cancer cells from the FITC image in the large scale, due to the non-uniform 

imaging conditions, so I decided to plot the fluorescence profile of each objects and 

map the profiles to group each types of cells.  
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Figure 3.18 Selected areas of the isolation and corresponding fluorescence profiles 

of the cells 

Red boxed cells are selected targets that are selected due to its fluorescence 

profile. It was difficult to directly extract the profiles from each cells, so by plotting 

the fluorescence profile of the each primary objects, it was able to differentiate each 

cells into two groups. Therefore, rather than depending on the certain fluorescent 

image, it was able to precisely select the target profiles by introducing the profile 

plots which are similar to the gating method of the FACS.   
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Figure 3.19 Isolation of the target cells that are pre-marked by the targeting 

software 

It was possible to target the cancer cells that have higher intensity of the Cy5 

channels. By pooling out the coordinates of the targets regions of the marked regions, 

it was possible to isolate the target cells using the SLACS device. It took about an 

hour to isolate 2500 cells, which was almost a target-per-second. When compared to 
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FACS, it had lower isolation speed, but instead it was possible to keep the spatial 

information within the regions.  

 

Figure 3.20 Real-time image of the isolation of target cells 

The image of the isolation target and the corresponding isolation process is 

shown in Figure 2.21. The target process could even control the size of the laser 

illumination spots, so that is could actually target the desired regions. The 

illumination of the UV laser was nano-second pulse and the most of time spent for 

the isolation was the time for moving the motorization stage.  

3.2.3. The quality of the biomolecules from the isolated cells 

To validate the performance of the cells isolated by the SLACS device, I first 

compared the DNA quality after isolating 1 cell, 10 cell and 100 cells, I ran the direct 

library preparation method for effectively amplifying the genomic molecules from 
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the cells. The data for quality control of the DNA molecules is visualized in Figure 

3.22. Because the DNA molecules are amplified, there was no significant difference 

between the number of cells. It is verified that minimum of 10 ng/µl of the genomic 

molecules are obtained after the direct library preparation methods, which were fair 

enough for the next generation sequencing.  

 

Figure 3.21 Quality control data of the isolated cells 

The application for the full-length RNA sequencing was also tested to validate 

the preservation of the transcriptome features after the isolation of the cells. Using 

the Smart-seq2 [185] which follows poly T mediated reverse transcription of the 

mRNA to synthesize the cDNA, template switching, PCR amplification of the 

DNA/RNA hybrids, TN5 tagmentation of the NGS barcodes and PCR steps to 
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amplify the NGS libraries. It is confirmed that after the Smart-seq2 process, at least 

10 ng/µl of the molecules were obtained in the most of the samples, and was 

confirmed through the gel electrophoresis data that genomic molecules had the 

constant band of the length.    

 

Figure 3.22 Quality control of the RNA after cell isolation using the SLA CS 

 

3.2.4. Application to isolating the circulating tumor cells (CTCs) 

Then I applied the image profiling process to the purified CTC image from the 

patient samples. To fully extract the CTCs from the blood samples, WBCs with the 

similar size were filtered together with the CTCs. Among them, purified solutions 

from the blood plasma were spread over the ITO glass using the Cytospin device, 
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which uses the centrifugal force to deposit the cells on the glass slide. 

 

 

Figure 3.23 Image profile of the CTC sample 

Unlike the cell line experiment, where cancer cells and promyeoloblasts were 

mixed in 1:1 concentrations, actual patient samples had lack of number of the CTCs 

among the samples. So by manual counting of the CTC cells, it took about 3-4 hours 

to profile 10,000 cells deposited on the cells. However, by using the program, it was 

able to profile the intensity of each cells, and further were able to select the targets 

using the gating informations. The CTC like features, where the cells have higher 

intensity of anti-pan cytokeratin profiles, were selected in the image, and the 

corresponding target image and target coordinates are extracted from the desired 

images.  
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Figure 3.24 The image of the marked CTCs in the patient samples and selected 

targets are attached in the right side 
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3.3. Automated cell sorting for targeting the clinical tissue samples 

3.3.1. Need for sorting the tumor regions for specific markers 

It is known that tumor regions are consisted of various tumor subtypes. 

Therefore, increasing number of researches are proceeded in tumor regions to 

effectively analyze the tumor section in the spatial context to effectively inspect the 

tumor heterogeneity, cell-to-cell interactions, tumor microenvironment and to 

discover the novel therapeutic or diagnostic makers for the clinical actions [186]. 

Based on the spatial barcoding approaches or the in situ fluorescent imaging methods, 

the heterogeneity and tumor microenvironments are actively conducted, but 

biomarker discoveries are proceeded only in terms of the relative expression level of 

the transcripts due to the technical huddle.  

To identify the novel tumor biomarkers, it is especially important to effectively 

identify the full length transcriptomes for in-depth characterization of the 

corresponding tumor regions. Spatially barcoded transcripts only targets the small 

fraction of the whole transcripts due to the limitation in NGS cost. On the other hand, 

if it is possible to extract out the regions with target biomarkers and proceed the full-

length sequencing in the corresponding regions, it would be possible to effectively 

identify the transcripts with less sequencing cost.  
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Figure 3.25 Therapeutic target discovery using SLACS (Reprinted from [173]) 

The study conducted using SLACS have shown is possibility of identifying the 

novel therapeutic markers by connecting the immunostaining data with its full-length 

transcriptome information. In the study, two cancer stem cell like markers, CD44 

and ALDH1, was stained on the tissue sample of the patient sample of residual tumor 

who have been treated with neoadjuvant chemotherapy. Cancer stem cells means that 

it still has the stem-cell like behavior which develops the tumor even after the therapy. 

Therefore, the study was conducted to extract the therapeutic markers which are 

correlated with the residual tumor. Separated with 4 different groups, it was possible 

to identify the new target of A-to-I edited GPX4 which showed higher expression 

and A-to-I edited frequencies in the tumor stem cell like regions. When compared to 

the TCGA data, it was confirmed that patient with A-to-I edited GPX4 showed the 

worse clinical outcome. In the suggested study, it was able to extract out the novel 

tumor markers, but had the limitation in that the decision of the interpreting the 
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immunostaining data was conducted without the certain standard, and the isolation 

was proceeded manually.   

3.3.2. Cell sorting of the target markers in clinical samples 

 

Figure 3.26 The result of target sorting using the automatic target selection 

program 

I stained the tumor tissue using immunostaining with the markers of CD44 and 

ALDH1. Image analysis using Cellprofiler allowed us to profile the intensity of each 

fluorescence channel in each cell. By mapping the corresponding profiling data, 

similar graphs such as FACS gating plot can be obtained. Then, from the data, I 

extracted the coordinates of four different groups of targets, CD44 positive, ALDH1 

positive, double positive and double negative. Then, I ran the laser-activated transfer 

of the target cells to the 8-strip of 96 well tubes.  

It is known that the single cell contains 30 pg to 100 pg of transcriptomic 

contents.Unlike cell lines where the whole cells are deposited on the ITO glass, cells 
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in the tissue slides are sectioned during the cryosection process. Therefore, it is 

important to amplify the mRNA before the sequencing, and if the content is 

insufficient for the sequencing, same typed cells can be gathered to be sequenced. I 

first compared the genomic quality of the 5, 20, and 100 cells of the tissue are 

collected in a tube and ran Smart-seq2 to obtain the full-length transcriptome from 

the tissue samples [185].  

 

Figure 3.27 The RNA quality of the isolated cells (5, 20, 100 cells triplicate each) 
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Chapter 4.  

 

Integrated spatial profiling 

technologies 

 

 

In this chapter, I will describe the precise selection of the region-of-interest after 

spatially profiled biological samples. While SLACS is more focused on in-depth 

characterization, there are spatial landscape technologies that has advantage in 

profiling the expressed genes in large area. After profiling of the spatial expression 

of target genes or most-expressed genes, it is possible to apply the in-depth 

characterization analysis or to add other modality such as multi-omics approach.   
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4.1. Integration with the other spatial landscape profiling 

technologies 

4.1.1. In situ sequencing for profiling the spatial landscape  

 

Figure 4.1 Schematic of the in situ sequencing chemistry for mapping the spatially 

expressed transcriptomes [53] 

In situ sequencing is one of the state-of-art technology to profile the spatially 

expressed transcripts using the fluorescently labelled probes to sequence the 

barcodes of the padlock probes. It implements the padlock probes to amplify the 

genetic molecules for the sufficient amplification of the fluorescence signals to be 

detected. The first in situ sequencing method was published in 2013 and are now 

commercialized by 10X genomics as Xenium. In the primary chemistry, it could 

either quantify the target genes or to detect the single-nucleotide variants using gap 

filling strategy. The chemistry is followed by (1) Fixation of the mRNA, (2) reverse 

transcription, (3) padlock hybridization to the cDNA, (4) Rolling circle amplification 

(RCA) of the padlock probes (5) sequencing of the padlock probes by fluorescence 
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probes.  

 

Figure 4.2 Validation of in situ sequencing in control and inflammation induced 

sample 

Initially, I tested whether the in situ sequencing could differentiate the two 

different type of samples in the mouse articular chondrocyte. Inflammation was 

induced by the interleukin-1 beta treatment. The product of the in situ sequencing is 

the group of fluorescence blobs which are similar to the product of the FISH/ As 

seen in the Cy3 channel which contains the inflammatory genes, the number of blobs 

increase in the inflamed conditions. Padlock probes for Gapdh, Mmp3, Il6, Mmp13, 

and Hprt was designed for targeting each genes. Gapdh, Hprt was used as a 

housekeeping gene for normalizing the transcripts and Mmp3, Mmp13, Il6 are genes 

related to inflammatory functions which are known to increase in inflamed condition. 

To enhance the accuracy and specificity of the gene annotations, the image 

quality needed the development by enhancing the signal-to-noise ratio and the 

number of the RCPs. 
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Initially, the rolling circle amplified products (RCPs) showed low signal-to-

noise ratio, resulting in the missing outs of the image analysis. Therefore, to enhance 

the quality of the assay results, I made some optimization to the protocol of the in 

situ sequencing as follows. (1) Reaction time increment: to effectively increase the 

efficiency of the fluorescence probe and padlock hybridization steps, (2) Fixation 

protocol optimization: initial protocol of the fixation method utilized 4% 

Paraformaldehyde (PFA) to fix the transcripts to the cells, but changed the protocol 

to 4% formaldehyde for stronger fixation of the expressed transcripts. (3) Reaction 

chamber optimization: the initial protocol from the SciLife Lab implements the 

chamber that can stick to the desired regions, however the adhesive that chamber 

utilized results in the aggregation of the reaction buffers, therefore changed the 

reaction chamber by designing the wall to confine the raction buffers made up of 

Polydimethylsiloxane (PDMS). By doing so, the number of detected blobs and the 

signal-to-noise ratio showed the enhancement.   

 

Figure 4.3 Enhancement of the in situ sequencing assay quality 
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4.1.2. Gene annotation and analysis of In situ sequencing data  

 

Figure 4.4 Gene annotation program from the result of the in situ sequencing assay 

To effectively annotate the transcripts using the in situ sequencing data, I 

developed the gene annotation program which can determine barcodes from the 

series of image data built on the program developed in Prof. Nilsson’s lab. The 

pipeline of the gene annotation is listed in Fig 3.31. First of all, based on the series 

of the fluorescence channel image, the images are proceeded through (1) nuclei 

identification, (2) enhance features: Fluorescence image contains the noise due to 

the cell background, non-specific binding, and imaging conditions. Blobs are shown 

as the group of high intensity pixels, so it is important to enhance the signal quality 
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by Gaussian smoothing, (3) identification of primary objects: based on the smoothed 

image, all of the RCPs are detected, (4) identification of secondary objects: based on 

the RCP images, the specific blobs are classified to the matching fluorescence 

channels, (5) measure object intensity: the intensity of the each fluorescent channels 

are profiled, (6) evaluate the base sequence: the base sequence of each blobs are 

determined according to the maximum intensity of fluorescence channels, (7) 

iteration of the barcode determination steps: in situ sequencing implements the series 

of fluorescence probe hybridization steps to read the barcode sequence of each blobs, 

therefore is critical to align the each sequence to identify the barcode sequence, (8) 

barcode annotation: based on the determined sequence for each iteration steps, the 

barcode sequence can be annotated as well as the corresponding genes.  

The image of the in situ sequencing result of the each rounds are shown in Fig 

3.32. As each iteration step proceeds, each blobs change the belonging fluorescence 

channels and by tracking them, it is possible to determine its barcoding sequence and 

corresponding gene annotations. The result of the in situ sequencing is can be 

annotated on the image of the in situ assay results.  

4.2. Multi-omics analysis in integrated spatial profiling  

4.2.1. In situ sequencing in two different groups  

According to the analyzed data, it was able to plot the heatmap of the expressed 

transcripts of the two different groups (control vs inflammation induced group) and 

verified that there was a critical difference in A (Anabolic genes), C (Catabolic genes) 
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compared to the house keeping genes. By drawing the principle component analysis 

(PCA) plots, it was able to differentiate that two groups showed the different features 

using the in situ sequencing analysis. Targeting the specific regions of the interest 

using the in situ sequencing are also possible.   

 

Figure 4.5 Analysis of the gene expression difference between control and 

inflammation induced samples 

In situ sequencing has an advantage that it can specify the cells of interest using 

the transcriptome information. For instance, it is capable of mapping the overall 

expressed transcripts directly on the clinical tissues, and by using the in situ 

sequencing information, it is available to isolate the specific regions of interest which 

are important in the pathological context.  
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4.2.2. Multi-omics profiling by integrating in situ sequencing to its 

genomic aberrations  

 

Figure 4.6 Direct library preparation of the isolated cells after in situ sequencing 

It is possible to target the desired cells of which transcriptome expressions are 

profiled using in situ sequencing. Then, it was able to proceed the direct library 

preparation for amplifying the DNA strands for whole genome sequencing. By 

proceeding the DNA sequencing after spatial landscape transcriptome profiling 

technologies, it is possible to connect the genomic aberrations with its transcriptome 

profiles.   
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Figure 4.7 Result of the copy number variation of the in situ sequencing sample 

The quality of the DNA strand in the nucleus might not be sufficient for the 

assay, resulting in the dimer sequences of 150 base pair length. Therefore, I 

proceeded the gel size selection excluding the 150bp length sequences and proceeded 

the direct library preparation DNA sequencing The reason of the resulted dimers 

might be due to the double stranded DNA of the sequencing probes. When reading 

the barcode sequence using the fluorescence probe, it constructs the double strand 

DNA, and that might have been amplified during the genomic molecule 
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amplification process. It still needs the enhancement of the chemistries, but still it 

was able to proceed the copy number variation analysis in the transcriptome mapped 

samples. Furthermore, it would be able to analyze the efficacy of the drug by 

matching the efficacy of drugs to the genomic aberrations.     

4.2.3. Combination with other spatial profiling technologies 

 

Figure 4.8 ROI selection on immunohistochemistry (IHC)-stained sample 

SLACS utilizes the image to guide the ROI selection from the tissue, therefore, 

is possible to apply any types of staining method where the regions can be specified 

by staining. There is no need for selecting the compatible antibody or to amplify the 

signal for analyzing the ROIs. Other staining methods or spatial transcriptomics 

profiling methods such as multiplex FISH methods or Visium can assist guiding the 

target cells from the tissue and further be connected with the high quality of genetic 

assays.  
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Chapter 5.  

 

Conclusion and Discussion 

 

 

In this chapter, the proposed platform is summarized. The need and importance 

of the developed device are suggested and, the potential of the platform and its future 

work is described.  
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5.1.1. Summary of the dissertation   

 

Figure 5.1 Suggested SLACS platform for automated cell sorting which can link the 

genetic molecules with its spatial context 

In this dissertation, I described the importance and need for spatial assays linked 

with the biomolecular assays. As the pathology involves complex mechanism within 

various types of cells, it is important to target the specific region of interest and 

proceed the in-depth characterization to understand the cellular mechanisms and 

discover the novel biomarkers regarding the pathology. Previously developed 

SLACS device is capable of isolating the regions of interests, but involves the 

manual determination and targeting from the molecular-marked images. 

 I validated the automated detection of the targets using the encoded 

microparticles, and linked the target coordinated to the SLACS device which 

illuminates the target coordinates to isolate the corresponding regions. Then, target 

cell type retrieval from mixed cell lines was validated, further expanded to the 
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application of CTC retrieval. Also, the tissue sample which are stained with the 

CD44 and ALDH1 stem cell markers are analyzed and each groups were determines 

using the automated pipeline to retrieve each groups SLACS was applied to other 

spatial transcriptomics landscaping technologies such as in situ sequencing to 

determine the cells in high definition and linked transcriptome features to the 

genomic aberration such as copy number variations.   

By integrating the image processing and automatic detection and isolation of 

targets, it is able to isolate up to 2500 targets in an hour. In this dissertation, I have 

suggested the concept of the automation and validated the isolation and the quality 

of the genomic molecules from the isolated samples. By highly increasing the 

throughput of the platform, it will broaden the applications and will provide the tool 

for the spatial omics assay.  

5.1.2. Limitation of the technology   

In current state of the technology, it is only applicable in the fluorescent-labelled 

image, and are willing to expand the automated targeting to the H&E stained tissue 

samples which are used in the clinical practice Unlike the fluorescence labelling 

methods which has an obvious criteria for defining the targets, H&E images contains 

complex criteria which might even differ within the pathologists. Increasing 

researches are introducing the deep learning to train and extract the pathologically 

relevant regions. Therefore, I am trying to expand the platform to be   
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5.1.3. The impact of the suggesting technology  

As the cost of next-generation sequencing gets lower, discovering the landscape 

of the genome, transcriptome, epigenome and proteome and exploring regions of 

interest has been made possible by thriving spatial technologies. Since the Human 

Genome Project began in 1990, the Cancer Genome Anatomy Project (1997), Cancer 

Genome Atlas (2006), Human Cell Atlas (2016) and many other projects have 

attempted to build a database or atlas landscape of the cell composition of the human 

cancer. The next step is to construct a spatial or pathological atlas that 

comprehensively maps the cellular landscape in the highly heterogeneous tumor 

microenvironment using the genomic features. However, whether it is a large-scale 

spatial omics profiling technologies or a region-of-interest based spatial profiling 

technologies, the applicability of both technologies is not limited to just atlasing the 

cellular compositions.  

 

Figure 5.2 The next generation therapeutic approach using the spatial omics profiling 
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technologies  

I believe that the spatial omics information in pathology will lead the next 

generation diagnostics and therapeutics. Increasing number of researches have 

already begun implementing the spatial omics combined with machine learning to 

discover diagnostic biomarkers and apply it to digital pathology [187]. Furthermore, 

the discovery of transcribed sequences found in cancer can be used in therapeutic 

target discovery using mRNA-based cancer vaccines, neoantigen-targeted chimeric 

antigen receptor T-cell (CAR-T-cell) therapy, gene editing therapies including 

CRISPR/Cas9, RNA interference, and many other treatments. In addition, immune 

cell profiling of the tumor infiltrating cancer cells present in the tumor regions poses 

the great potential in the discovery of anti-tumor antibodies. The potential of spatial 

omics continues to expand and in the near future, these next generation spatial omics 

tools will thrive the therapeutics and diagnostics developments.  
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국문 초록 

 

 

종양은 종양세포만이 원인이 되는 질병이 아닌, 면역세포와 혈관 

구조, 표피 세포 등 다양한 세포들이 공동체를 이뤄 질병을 발전시키는 

복합적인 질병이다. 이를 분석하기 위하여 차세대 시퀀싱 (NGS), 단일 

세포 분석, 유세포 분석 등 다양한 기술이 활용되어 왔다. 특히 RNA 

sequencing 을 포함한 단일 세포 분석은 종양 내에서 성장, 전이, 진화, 

약물의 내성과 관련된 타겟을 발굴하고 이를 조절할 수 있는 인자들을 

개발하는 등 종양 연구의 혁신을 이끌었다. 그러나 이러한 접근 방법은 

종양 미세 환경 내에서 세포가 존재하고 있는 위치 정보가 손실 되기 

때문에 종양의 온전한 그림을 제공하지 못한다. 최근에는 종양 내 

이형적으로 분포하고 있는 유전 물질들을 이해하면 종양의 이형성과 

종양 미세환경의 탐구와 암의 진화 및 발전 메커니즘을 이해하여 

이전에는 발견하지 못한 새로운 제약, 진단 타겟을 발굴 할 수 있을 

것이라는 관점들이 제시되고 있다.  

다중의 형광 프로브를 활용한 방식으로 DNA, RNA, 단백질 등의 

위치를 표적하여 종양의 전체적인 그림을 파악하는 기술들이 최근 
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폭발적으로 개발되고 있고, 현장 바코딩 방식으로 위치 별로 발현하고 

있는 유전 물질을 표적하여 정량화 할 수 있는 방법도 상용화 되어 종양 

에서 새로운 발견을 이끌어내고 있다. 그러나 위의 제시된 기술들 모두 

De novo로 새로운 제약 진단 타겟을 발굴하는 데에는 한계가 존재한다.  

본 논문에서는 공간 오믹스를 가능하게 하는 세포 분리 분석기를 

개발하여 관심영역의 세포를 분리하고 이후 DNA, RNA, 단백질 등을 

분석하는 어세이들과 연결하여 위치정보를 포함하면서도 높은 

정보량으로 세포를 분석하고, 이전까지 발굴하지 못하였던 새로운 진단 

제약 타겟을 탐색할 수 있는 기술에 대하여 설명한다. 레이저를 

조사하면 희생층이 승화되며 조사 영역에 위치한 세포들을 회수할 수 

있고, 현존하는 생화학 어세이를 수행 할 수 있다. 자동으로 이미지 

프로세싱을 통하여 원하는 세포들을 특정할 수 있는 프로그램을 

개발하였고, 이를 세포주와 임상 샘플에 적용하고 이후 생화학 어세이 

적용을 입증하였다. 항원 항체 반응을 이용한 염색 방법 이외에도 높은 

정보량으로 유전체 지도를 그리는 염색법 등 다양한 염색 이미지에 

적용했으며 본 기술을 활용하여 향후 응용할 수 있는 연구를 제안하였다.  
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