

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Master of Science Thesis

Deep recurrent neural network-based
reinforcement learning technique for
controlling quadrotors with unknown

physical quantities

임의의물리량을가지는쿼드로터제어를위한심층
순환신경망기반강화학습기법

February 2023

Graduate School of Engineering
Seoul National University

Electrical and Computer Engineering Major

Jae-Kyung Cho

Master of Science Thesis

Deep recurrent neural network-based
reinforcement learning technique for
controlling quadrotors with unknown

physical quantities

임의의물리량을가지는쿼드로터제어를위한심층
순환신경망기반강화학습기법

February 2023

Graduate School of Engineering
Seoul National University

Electrical and Computer Engineering Major

Jae-Kyung Cho

Deep recurrent neural network-based
reinforcement learning technique for
controlling quadrotors with unknown

physical quantities

임의의물리량을가지는쿼드로터제어를위한심층
순환신경망기반강화학습기법

Supervisor: Seung-Woo Seo, Seong-Woo Kim

This work is submitted as a Master of Science Thesis

December 2022

Graduate School of Engineering
Seoul National University

Electrical and Computer Engineering Major

Jae-Kyung Cho

Confirming the master’s thesis written by
Jae-Kyung Cho

December 2022

Chair Eun Suk Suh (Seal)
Vice Chair Seung-Woo Seo (Seal)
Examiner Seong-Woo Kim (Seal)

Abstract

This thesis proposes a deep recurrent neural network-based controller for the quadro-

tor with reinforcement learning. The robot controller can be defined as an agent pro-

ducing motor control action directly from the raw state of the robot. The controller

needs to be fine-tuned according to the dynamics model of the robot being controlled

because the dynamics model determines the state change when an action is executed.

The dynamics model of all real quadrotors inevitably differs even if they are the same

product because the physical quantities are uncertain. In particular, the dynamics can

change significantly during the flight due to overheating motors or propeller damage.

The objective of our low-level controller is to maintain its performance while changes

in the dynamics model without prior knowledge or fine-tuning of the parameters.

To solve the problem, a reinforcement learning (RL) based controller including a

recurrent neural network (RNN) structure is proposed. RL is used to train the controller

by data-driven from the environment instead of mathematical modeling. Furthermore,

RNNs help extracts information about the dynamics model from the state–action his-

tory sequence. However, learning is not performed by simply including the RNN in the

RL loop since the quadrotor is not stable enough to get good data by random explo-

ration. We proposed a method to increase learning stability by separating a dynamics

extractor module that includes an RNN structure from the RL loop. The dynamic ex-

tractor is trained to predict dynamics information from the state-action sequence in a

supervised-learning manner, and the actor-critic of RL is trained with the ground truth

of the dynamics information provided by the simulator.

The proposed method is the first study to apply RNNs for the low-level controller

of the quadrotor, and outperform the existing model-based controller and feed-forward

network-based controller in the simulation environment. The training process is con-

ducted in the simulation called Gym-pybullet-drone which can randomize all the pos-

i

sible quadrotor dynamics parameters that may affect the controller performance. Al-

though training is conducted in the simulator, all hardware constraints are satisfied to

verify the applicability to real drones. Further research is needed to verify and improve

its performance using actual drones.

keywords: Quadrotor controller, recurrent neural network, reinforcement learning,

robotics, deep learning

student number: 2020-27508

ii

Contents

Abstract i

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 5

1.3 Organizations . 6

2 Related work 7

2.1 Reinforcement learning . 7

2.1.1 Policy gradient reinforcement learning 10

2.2 Memory-based robot controller . 11

2.3 Quadrotor controller . 12

2.3.1 Rule-based quadrotor controller 12

2.3.2 Learning-based quadrotor controller 13

3 Memory-based robot controller 16

3.1 Introduction . 16

iii

3.2 Approach . 18

3.3 Experimantal results . 19

4 Memory-based quadrotor controller 25

4.1 Introduction . 25

4.2 Approach . 25

4.2.1 Problem definition . 25

4.2.2 Simulator setting and dynamics randomization 26

4.2.3 Actor-critic model . 29

4.3 Experimental results . 32

4.3.1 Stabilization experiment . 35

5 Conclusion 42

5.1 Conclusion . 42

Bibliography 44

Abstract in Korean 50

iv

List of Figures

1.1 Training step framework . 3

1.2 Execution step framework . 4

1.3 Trajectory comparison . 5

3.1 Inverted-Pendulum environment . 17

3.2 RNNfull actor-critic structure . 22

3.3 RNNpolicy actor-critic structure . 23

3.4 Learning curve of Inverted-Pendulum 24

4.1 Quadrotor simulator and the real quadrotor model 27

4.2 RNNparam actor-critic structure . 29

4.3 Learning curve of quadrotor controllers 34

4.4 Trajectory of stabilizing experiment 39

v

List of Tables

3.1 Range of dynamics parameter for Inverted-Pendulum 17

3.2 RNNpolicy hyperparameters . 20

4.1 The randomization range of dynamics parameters and initial state in

Gym-pybullet-drones environment 28

4.2 RNNparam hyperparameters . 33

4.3 Stabilizing quadrotor experiment result 36

vi

Chapter 1

Introduction

1.1 Motivation

A closed-loop low-level controller for a robot is built by considering its own dynamics

model. Although a fine-tuned controller for one dynamics model usually operates well

for similar dynamic models, the performance will not be maintained if the dynamics

change significantly. Even if the robots appear homogeneous in the real world, they

inevitably differ in terms of the mass of the links, joint friction, motor torque curves,

and the gain of controllers. In other words, the dynamics model of a real robot will

be different from the one that was originally modeled. In the case of quadrotors, the

state transition model continuously changes during flight, motor performance deteri-

orates due to overheating, and thrust and torque can change due to propeller damage.

Moreover, the movement of ancillary items mounted on the quadrotor, such as gim-

bal cameras and delivery items, can cause changes to the center of mass and moment

of inertia. All these factors could disturb the pre-fine-tuned controller from perform-

ing optimally. Therefore, information about the dynamics must be obtained through

continuous interaction with the environment, and a policy should be enacted that can

derive optimal actions considering different dynamics models.

Deep Reinforcement Learning (DRL) has been used to solve control problems by

1

collecting data from interactions with the environment. In particular, DRL can be more

effective than a model-based controller for tasks that requires complex and sensitive

modeling, such as stabilizing the quadrotors. Model-free RL methods [1, 2, 3], and

model-based RL methods [4] have been proposed for training a controller consisting

of feed-forward neural networks to control quadrotors. Although these controllers,

which were composed of feed-forward neural networks, could operate robustly without

accurate dynamics information, it was challenging to achieve customized performance

for different dynamics models. In other words, feed-forward networks are not aware

of the change in dynamics and it leads to deterioration of the controller performance.

The use of recurrent neural networks (RNNs) has been suggested as a method for

extracting unknown dynamics model information through continuous interaction with

the environment [5]. However, the performance of RNNs has only been verified in

relatively stable robots, such as robotic arms [5, 6]. Accordingly, we were interested in

whether a low-level controller trained by this method could respond to changes in the

dynamics model of the quadrotor.

Pascanu et al. [7] showed the high learning instability of RNNs. We experimen-

tally confirmed whether the RNN structure can respond to dynamics changes in the

simplest robot environment called Inverted-Pendulum before applying to the quadrotor

controller. Instability problems such as high hyper-parameter sensitivity are occurred

when learning a structure including an RNN in the end-to-end manner using an RL

loop. In order to improve stability, we propose a method that does not include RNN

in the critic of the actor-critic structure, which is not actually used for the execution

step. Furthermore, we verify that gated recurrent unit (GRU) improves the learning

performance most effectively among various types of RNN.

In this thesis, we propose an RNN-based low-level controller for quadrotors that

extracts dynamics information from the state–action history sequence to respond to

dynamics model changes. To the best of our knowledge, this is the first attempt at ap-

plying RNN to a low-level quadrotor controller. In particular, the quadrotor is difficult

2

Figure 1.1: Training step framework. The dynamics model of the quadrotor which

is expressed as parameter µ is randomized for every episode of the RL loop. The RL

controller produces an action based on the current state s and ground truth of dynamics

model parameters µ. Rolled out data is stored in the buffer, and the RL controller is

learned using the off-policy RL algorithm. The dynamic extractor including the RNN

structure predicts the dynamics model parameters from the state–action sequence. The

supervised-learning method with the dynamics model ground truth stored in the buffer

as a target is used for training of the dynamics extractor.

to obtain good data through random exploration, and the control frequency is high

which makes the length of the state-action sequence long. Because of these charac-

teristics, it does not work to embed RNNs into actor and critic in an RL loop and to

train end-to-end manner. Therefore, we divided the entire policy module into the dy-

namic extractor module comprising the RNN and the RL controller composed of feed-

forward networks. Fig. 1.1 displays the training step overview of the separate modules.

The RL controller composed with feed-forward networks produces actions based on

the current state and the information about dynamics model. The use of the ground

truth for the dynamics model enables stable training of the RL loop. The dynamics

3

Figure 1.2: Execution step framework. Since dynamics model information cannot be

known in the execution stage, the dynamics extractor predicts the dynamics model µ̂.

Based on the predicted dynamics information, the RL Controller produces the final

action.

extractor module directly predicts dynamics parameters from state–action sequences

using RNN in supervised-learning manner. When learning is completed, the RL con-

troller produces an action based on the dynamics model information predicted through

the dynamics extractor, as shown in Fig. 1.2. With the proposed method, it is possible

to maintain the control performance in response to changes in dynamics.

Fig. 1.3 displays the improved performance of the proposed method in an example

scenario, which aims to recover from a flipped state and reach the red dot regardless of

the orientation of the quadrotor, where the quadrotor is flipped and the performance of

one motor is reduced by 30% due to overheating. The proposed RNN-based controller

exhibits faster recovery from the flipped status and a shorter trajectory compared to the

feed-forward networks-based controller.

4

Figure 1.3: Comparison of controlled trajectories of the proposed method and existing

methods in a dynamics change scenario. The scenario aims to control quadrotors to

their target positions when the performance of one motor is reduced by 30%. Quadro-

tors are initialized as flipped status (blue dots) and aim to move to the goal (red dots).

1.2 Contributions

The main contributions are summarized below.

Firstly, the types of RNNs and the structure that is advantageous for dynamics

information extraction are presented in Chapter 3. In the simple robot simulation en-

vironment, inverted pendulum, learning was carried out with the Off-policy RL algo-

rithm and the actor-critic structure model grafted with RNN. This revealed the structure

that uses Gated Recurrent Unit (GRU), a type of RNNs, only for the actor is the most

efficient for dynamics information extraction.

Secondly, a new RNN-based controller for the quadrotor is presented in Chapter

4. The learning instability problem of RNNs is experimentally shown in the quadrotor

environment. Therefore, the training process is separated to learn the models com-

5

posed of feed-forward networks with RL, and additionally learn the dynamics extrac-

tor module including the RNN structure. With the dynamics extractor, the controller

successfully responded to changes in the dynamics model.

Lastly, a controller model that can be used in the real-world is proposed. The mod-

ified quadrotor simulation is suggested to allow randomization of the dynamics model

and addition of the sensor noise, which enables to make it close to the real world.

Furthermore, the hardware constraints are satisfied including memory size and com-

putational speed while maintaining the performance.

1.3 Organizations

The rest of the thesis is organized as follows. Chapter 1 reviews the basic concept of

reinforcement learning, and the memory-based robot controller under the unknown dy-

namics model. In addition, state-of-the-art studies of two types of quadrotor controller,

rule-based and learning-based, is introduced. Chapter 3 addresses the efficient struc-

ture of robot controllers using RNNs which can operate under the unknown dynamics

model. Chapter 4 presents the quadrotor-specified controller using RNNs response to

changes in the dynamics model and proposed a new learning method to improve the

performance. Chapter 4 utilize the result of the Chapter 3. Lastly, Chapter 5 ends up

the thesis with the conclusion and future works.

6

Chapter 2

Related work

This chapter introduces the background of reinforcement learning and robot control

studies. In addition, existing works about using recurrent neural networks to deal with

unknown information for robot control are described. Finally, the existing rule-based

and learning-based quadrotor controllers are introduced.

2.1 Reinforcement learning

Reinforcement learning (RL) is one of the machine learning techniques. Unlike general

machine learning techniques represented by supervised learning that require data to be

obtained in advance, RL accumulates data through interaction with the environment.

During the interaction, the agent receives feedback from the environment. Various

types of feedback are possible, from binary feedback of success and failure to carefully

designed feedback. The agent learns to create an action to acquire the goal based on the

feedback. Reinforcement learning is very similar to human learning and has generality

to obtain various behaviors that appear in AI and nature [8]. Deep RL (DRL) uses deep

neural networks in the RL structure and achieved superhuman performances in various

fields, such as video games [9, 10], strategy board games [11, 12], and robotics [13].

The standard RL problem can be described as finding a policy to maximize a

7

return under the Markov decision process (MDP) [14]. MDP is defined as 5-tuple

< S,A, pµ, r, γ > where the terms refer to state, action, transition probability, reward

function, and discount factor, respectively. The state of the agent st ∈ S is the robot

state at timestep t, which is commonly a vector of sensor measurement in robotic fields.

The action of the agent at ∈ A is the control signal or high-level decision at timestep t.

The action is derived by the function called policy π(a|s) : S → A and transit the state

from st to st+1. Due to the stochasticity of the environment, the probability of transit

state by action is determined by transition probability model pµ(st+1|st, at). It should

be noted that the transition probability depends on parameter µ, which is the set of

physical quantities that affect the dynamics model. For instance in robotic arm, robot

arm length, mass, and joint friction can be included the physical quantities. In the case

of the quadrotor, mass, body size, and thrust-to-weight ratio of the propeller can be

included. Since the dynamic model of each environment is usually fixed, generality is

not lost even if the transition model is expressed as p(st+1|st, at). The reward function

r : S× A → R returns a scalar value that indicates how valuable the action was taken

in the state. For simplicity, the reward at timestep t is denoted as rt = r(st, at).

The objective of RL is to train the policy to get maximum cumulated future reward

as below.

R(st, at) + γr(st+1, at+1) + γ2r(st+2, at+2) + (2.1)

The discount factor γ indicates the degree of influence of the future reward on the

current state, which is the value in range [0,1]. To summarize, the objective Jµ(π) for

the learning process on the given MDP was to find an optimal policy π∗ that maximizes

the expected return

π∗ = argmaxπJ
µ(π),

Jµ(π) = Es0,a0,s1,a1,...

[∞∑
t=0

γtr(st, at)

]
,

(2.2)

where the action at ∼ π(·|st) and the next state st+1 ∼ pµ(·|st, at).

To solve this objective problem, RL proposes the concept of value function and

8

action–value function. The value function Vπ and the action-value function Qπ ex-

presses how valuable a particular state is, and how valuable a state–action pair is,

respectively. These two value functions are formed as follows:

Vπ(s) = Eπ

[∞∑
k=0

γkr(st+k+1, at+k+1)|st = s

]
, (2.3)

Qπ(s, a) = Eπ

[∞∑
k=0

γkr(st+k+1, at+k+1)|st = s, at = a

]
. (2.4)

These value functions are important because an optimal policy can be achieved

based on the optimal action–value function as equation 2.5.

π∗(s) = argmax
a

Q∗π(s, a). (2.5)

Following equation are called the Bellman equation, which are the recursive form

of two value functions.

Vπ(s) = Eπ [rt+1 + γVπ(st+1)|st = s] , (2.6)

Qπ(s, a) = Eπ [rt+1 + γQπ(st+1, at+1)|st = s, at = a] . (2.7)

The recursive form can be solved through iterative update of the dynamic program-

ming manner. The solution to obtain a policy is as follows:

Vπ′(s) = max
a

∑
s′∈S

p(s′|s, a)
[
r + γVπ′(s′)

]
. (2.8)

π′(s)
.
= argmax

a

∑
s′∈S

p(s′|s, a)
[
r + γVπ(s

′)
]
, (2.9)

The equation 2.8 and the equation 2.9 are denoted a policy evaluation and a policy

improvement, respectively. Iterative update of both equation train the policy closer to

the optimal policy in the equation 2.5.

9

2.1.1 Policy gradient reinforcement learning

Policy gradient (PG) using function approximation is a method for directly finding

an optimal parameter ϕ∗ of the parameterized policy πθ that maximizes the objective

function θ∗ = argmaxθJ
µ(πθ) [15]. This method enables using RL in the environ-

ment with continuous action space. The gradient of the objective function ∇θJ
µ(πθ)

is estimated as follows:

∇θJ
µ(πθ) ∝ Eπ

[∑
a

Qπ(s, a)∇πθ(a|s)

]
. (2.10)

The optimal parameter is achieved by using the gradient ascent method. As shown

in the equation 2.10, the action–value function Qπ is needed to calculate the gradi-

ent of the policy. Although classical PG method [16] used the return value for each

episode instead of unknown action–value function, this method has the disadvantage

of large variance. The actor-critic method [17] improves the high variance problem

and increase learning speed by using a parameterized value function with an objective

function as follows:

minimize
ψ

[
r + Vψ(s

′)− Vψ(s)
]2 (2.11)

All parameterized policy gradient methods can be combined with deep neural

networks, which is the powerful approximator [18]. The on-policy PG method, rep-

resented by A2C [19], TRPO [20] and PPO [21], only obtains data used for learn-

ing with the current policy. Although these methods guaranteed policy improvement

in every training step, they suffered from low sample efficiency, which causes slow

learning speed, and were even not trained in an environment where sparse rewards

are given. The off-policy method was proposed to solve this problem, represented by

SAC [22], DDPG [23], and TD3 [24], which use the replay buffer that accumulates

the data obtained from the previous policy. The SAC algorithm used in this study has

an actor-critic structure in addition to a stochastic policy with maximizing entropy for

exploration.

10

2.2 Memory-based robot controller

MDP assumes that the full state can be achieved. However, it is common to obtain

the state through sensor measurement in the real world, which is not the full state.

This violates the basic assumption of RL that the system should maintain the Markov

property, so the performance of the policy obtained by RL cannot achieve optimal

performance. In other words, RL aims to maximize return under the Partially Observ-

able MDP (POMDP) in real world. In POMDP, two types of information, observation

and belief state, are added to the existing MDP [25]. Observation is incomplete state

information that measures full state. Belief state b aims to estimate the true state by

continuously updating as follows:

b′(s′) = ηO(o|s′, a)
∑
s∈S

p(s′|s, a)b(s), (2.12)

where the agent observes o with probability model O(·|s′, a), and normalize value η.

The recursive form of the equation 2.12 can be untied as follows:

bt(st) = ηO(ot|st, at−1)
∑
st−1∈S

p(st|st−1, at−1) [ηO(ot−1|st−1, at−2) . . .]

= b(ot, at−1, ot−1, . . . , a0, o0),

(2.13)

where b is an arbitrary belief function. In other words, the belief state estimates the

true state by extracting information from past observations and actions, and RL learns

based on the belief state, not observation.

RNN is a representative neural networks structure that extracts information from

history and uses it as an input for the current inference. The RDPG method [5] com-

bining DDPG and RNN showed that RNN can implicitly update belief state in the

simulator environment. In particular, RNN-based RL shows the performance in the

real world which is the POMDP. Peng et al. [6] used the dynamics randomization

technique to find the optimal policy in each dynamics model, rather than finding a

policy that operates robustly in various dynamics models. In the simulation, dynam-

ics models were randomly sampled for each episode in a predefined range, and the

11

agent was trained with RDPG algorithm. The policy was a combination of a feed-

forward branch and an LSTM branch, and the LSTM branch played a role in extract-

ing dynamics model information from the state–action history. In other words, a policy

π(at|s0, a0, s1, a1, . . . , st) that returns an action based on the previous state and action

history was used instead of a policy π(at|st) that returns an action for the given state

immediately before. Accordingly, it was possible to obtain a policy that returns an op-

timal action, even if the dynamics model of the robot in the real world was different

from that of the simulator and there is no relevant information.

2.3 Quadrotor controller

2.3.1 Rule-based quadrotor controller

The aim of a low-level controller is to determine the four motor signals so that the

quadrotor can be controlled from the current position to the desired position. Li et

al. [26] proposed a PID control method through quadrotor modeling and Ren et al.

[27] presented a quadrotor-specified PID control method that performs position and

altitude control in two steps. Mellinger et al. [28] suggested a quadrotor controller

that generates a trajectory first by minimizing the fourth derivative of position and

then controls through PID control. These PID-based closed-loop control methods do

not require separate quadrotor dynamics modeling, but fine-tuning of the gain value is

required.

Model predictive controller(MPC) has been proposed for optimum control for spe-

cific constraints when the dynamics model of the robot is known [29]. MPC generates

an optimal action by using various conditions as a cost function, such as minimizing

position error or minimizing the magnitude of acceleration. Bangura et al. [30], Islam

et al. [31], and Benotsmane et al. [32] proposed a quadrotor-specified MPC controller

by formulating the quadrotor’s linear dynamic model. However, MPC has a problem

when there is noise in physical quantities because the accurate dynamics model must

12

be defined. In addition, as the state dimension of the dynamics increases, the computa-

tional time greatly increases. In order to handle the uncertainty of physical quantities

that were not properly reflected in the Quadrotor model in advance, Bouffard et al. and

Li et al. proposed learning-based MPC(LBMPC). LBMPC improves the performance

of the controller by updating the model to minimize the predicted state and action

error.

Although the authors mathematically modeled a controller, accurate physical pa-

rameters such as the moment-of-inertia, thrust-to-torque coefficient, and laborious

fine-tuning to determine the gain values of the controller were still required.

2.3.2 Learning-based quadrotor controller

Neural networks began to be used to approximate complex non-linear modeling of

quadrotor controllers. Mohajerin et al. [33, 34] trained neural networks that approxi-

mates a quadrotor dynamics model, which maps altitude changes according to motor

speed using RNNs. However, the authors did not propose a quadrotor controller using

the trained model. Maqbool et al. [35] and Tran et al. [36] proposed methods for alti-

tude control of quadrotors using feed-forward neural networks. The neural networks,

which map motor signals from a state of a single timestep of a quadrotor, were trained

for minimizing attitude error. Khosravian et al. [37] proposed a PID controller that

continuously updates PID gain parameters during flight using RNN. In each situa-

tion, the optimal PID gain values that minimize the positional error and attitude error

were found and then trained through a supervised-learning fashion. However, these

controllers focused on that can adaptively operate on a single fixed dynamics model.

Furthermore, the non-linear controllers were approximated by neural networks but still

had to mathematically define the dynamics model well.

Instead of modeling the dynamics model, various methods using RL that learns

based on data obtained through interaction with environment have been proposed.

Hwanbo et al. [1] and Duisterhof et al. [3] suggested methods to train a low-level

13

controller by model-free RL algorithms that can perform waypoint tracking as well

as stabilization from harsh initialization. The authors trained the policy in the quadro-

tor simulator and then transferred it to a real drone without any adaptation process.

Although RL has made it possible to avoid complex mathematical modeling and the

fine-tuning process, these methodologies did not consider the changing dynamics of

a quadrotor. Therefore, the control performance could not be maintained when the

actual dynamics were changed. Lambert et al. [4] used model-based RL to generate

a low-level control policy optimized for an individual quadrotor. Here, prior dynam-

ics knowledge was not required because the dynamics transition model was directly

trained from the demonstration data. However, this method needed actual quadrotor

flying data, which requires either a human demonstration or an alternative low-level

controller. Furthermore, the trained policy only focused on controlling one quadrotor

that was used when acquiring the data, not the quadrotors with different dynamics.

Molchanov et al. [2] proposed a method for obtaining a single policy that can

robustly operate in different quadrotors by applying the dynamics randomization tech-

nique. A PPO algorithm consisting of only the feed-forward layer was trained in a

self-made quadrotor simulator that did not consider air drag effect. During the training

phase, the trajectory of every episode was generated in the environment with randomly

sampled five factors: mass, size, control frequency, thrust-to-weight ratio, and thrust-

to-torque ratio. However, it was unclear whether this controller had any performance

advantage compared to those that use dynamics information. Fei et al. [38] proposed

a novel method to train a robust controller for drones to recover from unpredictable

physical and cyber attacks. The physical attacks contained situations where the ac-

tuator signals and the sensor values were eighter missed or replaced with the wrong

values. The aim was to obtain a more robust policy by applying a random attack in the

training process instead of randomizing the dynamics. However, all of these controllers

focused on the robustness of performance, regardless of changes in dynamics.

Peng et al. [6] demonstrated that using RNNs can help the robot controller respond

14

to unknown dynamics. The dynamics of robot arms were randomized in the simulation

and an actor-critic model consisting of long short-term memory (LSTM) was trained

using the recurrent deterministic policy gradient (RDPG) [5] algorithm. Fris et al.

[39] applied RDPG to train a controller that can land a quadrotor on a slope, even

when the mass and moment-of-inertia of the quadrotor are changed. However, a 2-D

quadrotor simulator that was far from an actual quadrotor was used, and this method

could not respond to changes in dynamics that are critical to the quadrotor, such as

motor performance and propeller status.

In contrast to the previously mentioned research, we first use an RNN network

that can extract dynamics information on a quadrotor. Then we use a 3-D quadrotor

simulator with air drag effects that make it more likely to apply to real quadrotors.

Finally, we improve learning stability through an auxiliary training process for the

RNN module instead of an end-to-end approach to directly include RNN in the policy

module proposed in [6].

15

Chapter 3

Memory-based robot controller

3.1 Introduction

In this section, the optimal structure for extracting dynamics model information using

RNN is determined using a simpler robot environment than the quadrotor. The method

of extracting unknown dynamics model information using RL is to add an RNN to

both the actor and the critic [6]. At first, the structure that uses RNN only for actors

without using RNN for the critic and various types of RNN are considered in Chap-

ter 3.2. Finally, the most suitable type of RNN and the structure of actor-critic are

experimentally shown in Chapter 3.3.

The simulation robot environment named Inverted-Pendulum [40] is used, as shown

in Fig. 3.1. The position of a uniform rod with one end fixed to the motor is controlled

by the torque of the motor. The dynamics model of the Inverted-Pendulum can be

described as follows:
1

12
mL2θ̈ = mg sin θ + aτmax, (3.1)

where a is the control action in the range [-1,1]. The goal of the environment is setting

up the rod upside down as soon as possible without making the rotation speed and

acceleration too large. Therefore, the reward function and the objective function can

16

Figure 3.1: Inverted-Pendulum environment.

Parameter Range Original value

mass of the pole m [kg] [0.33,3] 1

length of the pole L [m] [0.33,3] 1

max torque of the motor τmax [N· m] [0.66,6] 2

Table 3.1: Dynamics parameters and their randomization range for Inverted-Pendulum

environment.

be formulated as follows:

rt = −(θ2 + 0.1θ̇2 + 0.001θ̈2), (3.2)

maximize
π

Es0,a0,s1,...[
∞∑
t=0

γtrt], (3.3)

where s is the state which consists of {θ, θ̇}.

In order to change the dynamics model, three parameters affecting robot control

are randomized: mass of the pole, length of the pole, and maximum torque of the joint

motor. Each parameter is uniformly sampled from the range displayed in Table 3.1.

Since the state includes only the current angle and rotation speed, additional informa-

17

tion must be obtained through the state–action sequence to respond to changes in the

dynamics model.

3.2 Approach

In the conventional dynamic randomization method [6], which we refer to as RNN-

full herein, a RNN for extracting dynamics information was used for both actor and

critic, as shown in Fig. 3.2. Although the reason for using RNNs was to extract in-

formation about dynamics from the state–action history, this can cause a reduction in

learning stability and learning speed [7]. In the actor-critic model, the actor needs to

extract information about the dynamics model through the RNNs because the dynam-

ics model is inaccessible directly in the test phase. However, Critic, which is used only

for approximation of the value function to update the Actor, is used only in the train-

ing phase and not in the test phase. In the training phase, the ground truth value for

the dynamics parameter µ of the simulator can be used to train the critic, because all

information about dynamics is fully accessible. The dynamics information that can be

obtained using RNN cannot be more than the true dynamics model. Therefore, there

is no loss of information even if the RNN structure of the critic is excluded. In Fig.

3.3, we employed the RNNpolicy structure, which uses a feed-forward network and

ground truth dynamics parameters for the critic and only uses RNNs for the actor. The

following experiment in chapter 3.3 shows that the proposed structure improves the

training performance and learning speed.

The performance and learning stability can be different depending on the type of

RNN even with the same actor-critic structure. Different from [6] which uses only

one RNN types, three types of RNNs are considered: vanilla Recurrent Neural Net-

works (RNN) [41], Long Short-Term Memory (LSTM) [42], and Gated Recurrent

Unit (GRU) [43]. Vanilla RNN can be implement with the lightest model size and is

effective when information can be extracted with only short term memory. LSTM is

18

effective when considering long-term memory together, but it has a large model size

and amount of computation. In the case of GRU, the size of the model is reduced com-

pared to LSTM while considering long-term memory. Chapter 3.3 shows which type

of RNN can be used for stable and high-performance learning.

3.3 Experimantal results

To compare the performance according to the RNN type and structure, two metrics

were used: the reward sum and the success rate. Evaluation is performed on 100 ran-

dom dynamics models. The reward sum is the average reward summation of each

dynamics model episode, and the success rate is the average of the success or failure

of the episode. The success condition is judged if the angle between the pendulum rod

and the vertical axis is maintained at less than 5 degrees for 2 seconds within the time

limit. If the episode is judged as succeeds, it is immediately finished even if it does not

reach the time limit of 7.5 s. It is noteworthy that the return increases when the length

of the episode is shortened because the strictly negative reward function is used. In

each evaluation step, 100 random dynamics models were tested to obtain the return

and the success rate of the trained policy.

The training episode length of the Inverted-Pendulum is set to 7.5 s, and the con-

trol frequency is set to 20Hz. Therefore each episode is discretized for a total of 150

timesteps. A total of 20000 episodes are used for training, equivalent to data for 20000

random dynamics models. The SAC algorithm is used to train the controller, and the

hyper-parameter details of the RNNpolicy actor-critic networks are shown in Table

3.2.

A total of seven types of controllers are compared experimentally:

• FF, which only uses feed-forward networks for both the actor and the critic,

same as the original SAC [22].

• RNNfull, which uses vanilla RNN for both the actor and the critic.

19

Table 3.2: RNNpolicy hyperparameters

Hyperparameter
Value

Actor Critic

number of hidden layers 5 (4 linear, 1 RNN) 3

number of hidden units 64 64

Activation function ReLU ReLU

Last Activation function Tanh None

learning rate 3e− 5 3e− 4

• LSTMfull, which uses LSTM for both the actor and the critic [6].

• GRUfull, which uses GRU for both the actor and the critic.

• RNNpolicy, which uses vanilla RNN for the actor and uses feed-forward net-

works for the critic.

• LSTMpolicy, which uses LSTM for the actor and uses feed-forward networks

for the critic.

• GRUpolicy, which uses GRU for the actor and uses feed-forward networks for

the critic.

Figure 3.4 displays the learning curve of average return and success rate for the Inverted-

Pendulum experiment. Firstly, RNNpolicy, LSTMpolicy, and GRUpolicy show higher

average returns and success rates than other methods. In other words, the proposed

method in which the RNN structure is removed from the critic shows more effective

performance than the method of extracting information on dynamics in an end-to-end

manner using RNN in both the actor and the critic. Secondly, the low performance of

FF shows that it is difficult to cope with unknown dynamics changes without using

RNN. Lastly, LSTM or GRU showed better performance than vanilla RNN comparing

the performance according to the type of RNN with the same structures. The vanilla

20

RNN has a gradient vanishing effect for long sequences. In the case of the Inverted-

Pendulum task, the performance of vanilla RNN is inevitably degraded because of a

long sequence consisting of 150 timesteps. Looking at both the average return and the

success rate as a metric, there was no significant difference in performance between

GRU and LSTM. However, similar performance can be achieved with fewer episodes

when using GRU. Moreover, considering that the number of parameters of GRU is

75% of LSTM, using GRU can achieve better performance with a smaller model.

21

(a) Actor

(b) Critic

Figure 3.2: Actor-critic structure of RNNfull. A RNN is included in both the actor and

the critic for extracting dynamics model information from the state–action sequence.

22

(a) Actor

(b) Critic

Figure 3.3: Actor-critic structure of RNNpolicy. A RNN is included only in the actor

for extracting dynamics model information from the state–action sequence. The critic

receive sufficient information about the dynamics model by using the ground truth of

the dynamics model µ from the simulator as an input.

23

(a)

(b)

Figure 3.4: (a) Average return learning curve of the Inverted-Pendulum experiment. (b)

Success rate learning curve of the Inverted-Pendulum experiment. Return and success

rate are measured by averaging the result obtained with 100 random dynamics models

in each evaluation. The success is defined as the angle between the pendulum rod and

the vertical axis is maintained at less than 5 degrees for 2 s.

24

Chapter 4

Memory-based quadrotor controller

4.1 Introduction

In this section, the RNN-based quadrotor controller is presented that can respond to

changes in dynamics. At first, the problem that we solve is defined, and the simulator

setting is described in Chapter 4.2. Also, a novel actor-critic structure specified for

quadrotor controller learning is proposed. Finally, the experiment in Chapter 4.3 shows

the proposed method outperforms existing methods in the stabilizing quadrotor task.

4.2 Approach

4.2.1 Problem definition

We focused on training a low-level controller that produces a raw motor signal from the

current state of the quadrotor as well as the past state and motor signals. The input state

st ∈ R18 consists of relative position from the goal ot ∈ R3, all elements of rotation

matrix Rt ∈ R9, linear velocity vt ∈ R3, and angular velocity ωt ∈ R3. It should be

noted that all positions used for input state used relative positions, regardless of the

global origin. The reason why we used the rotation matrix Rt ∈ SO(3) instead of

using quaternions or Euler angles was that this can represent all altitudes without any

25

discontinuity. The action a = {a1, a2, a3, a4} ∈ R4 is the PWM signal of the four

motors, which should be given as a discrete integer between range [0, 216 − 1]4. We

scaled the action to a real value between [−1, 1] and regarded it as a continuous action

space.

The objective of this study was to train a low-level controller policy that minimizes

the distance from the current position to the goal and the angular velocity in the shortest

time according to the dynamics of the quadrotor, represented as follows:

π∗(a|s, h) = argmax
π

Jµ(π), ∀µ ∈ M,

Jµ(π) = Es0,a0,s1,...
∞∑
t=0

−f(∥ot∥, ∥ωt∥),
(4.1)

where h is the embedding of past state–action sequence, µ is the dynamics parameter

of the environment, M is the dynamics parameter space, and f is the monotonic in-

creasing function. It should be noteworthy that the function f has the same meaning as

the negative of the reward function r, which can be engineered with various function

forms, such as r(st) = −f(∥ot∥, ∥ωt∥).

4.2.2 Simulator setting and dynamics randomization

Gym-pybullet-drones simulator [44] was used to reproduce situations where the state

transition model was changed, which can occur in the quadrotor, and train the RL

controller. This environment has three advantages: 1) the proposed code presented in

Chapter 3 can be used without modification because the input and output structures are

the same as Inverted-Pendulum; 2) the reality gap is minimized because the complex

physical factors of quadrotors, such as air drag, down washing, and ground effects; and

3) The dynamics model of the real model called Crazyflie [45] is implemented.

Six types of dynamics parameters were randomized in this simulator: mass, loca-

tion of the center of mass, moment-of-inertia, thrust-to-force coefficient kf , thrust-to-

momentum coefficient km, and motor delay time constant T . The following parameters

were those that could be changed during the flight or could have a different value, even

26

(a) Gym-pybullet-drone simulation (b) Crazyflie

Figure 4.1: (a) Gym-pybullet-drone simulator environment [44]. (b) Crazyflie, a real

drone model implemented in Gym-pybullet-drone [45].

in the same quadrotor product. We independently randomized the XY coordinates of

the center of mass, XYZ coordinates of the moment of inertia, and the kf and km pa-

rameters for all four motors. Therefore, 15 parameters were randomized and consisted

of values representing µ ∈ R15. All the parameters, except for motor delay T , are al-

ready modeled in the gym-pybullet-drone simulator, so the values could be easily and

randomly modified. In the case of mass and moment-of-inertia, we changed the values

inside the URDF file, and forward kinematics calculation was performed through the

pybullet physical engine. Terms kf and km represent the thrust and rotational force

generated ratio proportional to the motor speed, respectively. The final action-to-force

and action-to-momentum values were modeled as follows:

f i = kif × (pi)2, τ i = kim × (pi)2, (4.2)

where pi is the RPM of each motor and i is the index of each motor i = 1, 2, 3, 4.

According to [2], motor delays can occur in real-world motors because the motor sig-

nal cannot be immediately reflected in the RPM, which is an important factor that can

affect performance in real-world applications. The motor delay time constant T was

27

Table 4.1: The randomization range of dynamics parameters and initial state in Gym-

pybullet-drones environment

Parameter Range (β = 0.3)

Mass (m) [1-β,1+β] × moriginal

Center of mass (xcm,ycm) [-β,β] × body length of the drone

Moment-of-inertia (I ′xx,I ′yy,I ′zz) [1-β,1+β] × Ioriginal

kf = {kif}, i = 1, 2, 3, 4 [1-β,1+β] × koriginalf

km = {kim}, i = 1, 2, 3, 4 [1-β,1+β] × koriginalm

T (∼motor delay time constant) [1-β,1+β] × 0.15

Initial state Range

Linear velocity [m/s] ∼ [−1, 1]3

Angular velocity [rad/s] ∼ [−π, π]3

Rotational matrix ∼ SO(3)

goal position [m] ∼ [−1, 1]3

used as follows:

at+1 =
4dt

T
(at+1 − at) + at, (4.3)

where dt is the control time interval, which was set to 10 ms in our experiment. Table

4.1 shows the randomization range for each parameter.

To train the policy that can acquire information about dynamics parameters and

stabilize the quadrotor in harsh configurations, we randomly sampled initial attitude,

linear velocity, and angular velocity at the simulation reset step. In the case of attitude,

random sampling was performed in the entire SO(3). The initial position was set to a

point far from the ground to avoid a situation where the velocity and angular velocity

were zero due to being hit by the ground. The target positions were randomly sampled

from a cube having the initial position as the center. The range of the initialized state

is demonstrated in Table 4.1. In addition, state random noise was added to reflect the

28

(a) Feed-forward actor with dynamic extractor

(b) Feed-forward critic

Figure 4.2: (a) The policy network of RNNparam consists of the dynamic extractor

and the feed-forward actor. (b) The feed-forward critic of RNNparam uses the ground

truth of dynamic parameters.

real-world environments.

4.2.3 Actor-critic model

Fig. 4.2 displays the proposed actor-critic network structure. In a study that focused

on training a policy to handle the unknown dynamics in the robot arm [6], the RDPG

algorithm was used, which combined LSTM and DDPG. Instead, we used a soft actor-

critic (SAC) [22] algorithm combined with a gated recurrent unit (GRU) [43], which

is a type of RNN. The reason for using a GRU was that it has higher learning stability

than vanilla RNN and has a smaller model size than LSTM, as verified in Chapter 3. It

is worth noting that GRU can be simply replaced with various recurrent neural network

cells including vanilla RNN or LSTM; hence the general name RNN is used herein.

Recurrent networks for extracting dynamics information are used for both actor

29

and critic in the RNNfull structure, which is the conventional dynamic randomization

method [6]. However, the RNN structure inevitably has the problem of learning in-

stability and a decrease in learning speed. In Chapter 3, the effectiveness of not using

the RNN structure in the critic was confirmed because the ground truth about the dy-

namics model information can be obtained when using the simulation. Therefore, the

RNNpolicy structure was proposed that consists of the actor including recurrent neu-

ral networks, and the critic using feed-forward neural networks and ground truth of

dynamics model parameters, as shown in Fig. 4.2(b). Although the RNNpolicy struc-

ture successfully learned the controller that can respond to changes in the dynamics

model in the inverted pendulum task, the problem of learning instability has still been

shown in the drone environment. First of all, it is difficult to obtain good trajectory

data through random search in the early stage of learning because the drone loses sta-

bility and falls when a random action is applied. Secondly, the control frequency of

the quadrotor is at least 100 Hz which is very high compared to the pendulum robot.

The higher control frequency of the quadrotor increases the length of the state-action

sequence and worsens the learning instability of the RNN. To solve instability issues,

the RNNparam structure is proposed that can use the information extracted from the

state–action sequence without using RNN for the actor-critic structure in the RL loop

learning phase.

As shown in Fig. 4.2, the RNNparam structure consists of an actor and a critic

composed of feed-forward networks, and a dynamic extractor using RNN. The feed-

forward actor and the feed-forward critic were trained through a SAC algorithm. The

difference from the existing controller using feed-forward networks which shows ro-

bust performance to dynamics changes [2] is that the actor uses a dynamics parameter.

Since the actor uses the ground truth of the dynamics parameter µ as a given input in

the training phase, the trained actor would produce actions by reflecting changes in

dynamics information. The problem of learning instability with RNNs was also solved

because the actor and critic only consist of feed-forward networks. However, the dy-

30

namics ground truth parameters are inaccessible in the execution phase in the real

world. Therefore, the dynamics extractor module that predicts dynamics parameters

directly from the state–action sequence is required. The dynamic extractor comprises

a combination of a linear layer for embedding, a GRU layer, and a linear layer for pre-

dicting values. Training of the dynamic extractor is conducted in a supervised-learning

manner that predicts the dynamic parameters from the state–action sequence through

RNNs separately from the RL training process. The details of the update process of

the RNNparam structure are described in Algorithm 1.

First, the initial state s0 and dynamic parameters µ are randomized in the range

decided in Table 4.1 for the beginning of every episode (line 5). An episode of length

T is rolled out by interacting with the environment, which has the dynamics model µ

(lines 6–8). It should be noted that the action is created by using the feed-forward actor

with the ground truth dynamics parameters µ. This helps to accumulate high-quality

data in the replay buffer compared to using a less-trained RNN-structured actor. The

created trajectory is stored in the replay buffer B (line 9).

To update the networks, a minibatch consisting of |B| number of full episodes is

sampled from the replay buffer (line 9) and loss values for the actor, the critics, and the

dynamics extractor are initialized as zero (line 11). We then uniformly sample a single

timestep t for each episode in the minibatch (line 13). The reason for the additional ran-

dom sampling of single timestep data instead of using the entire episodes is to maintain

the i.i.d condition for training the actor and the critic networks, which are comprised

of the feed-forward neural networks. It is noteworthy that every episode contains the

ground truth of dynamics parameters µ that were randomized for each episode in the

simulator. The SAC algorithm is applied to update the actor and the critic, consider-

ing the dynamics information µ (lines 14–18 and 25–27). The dynamics extractor Dψ,

which is composed of the RNN network, predicts the dynamics parameter µ̂ from every

sequence of state–action pairs in the episode (lines 20–22). The dynamics parameters

µ̂t′ of every timestep t′ are predicted based on the hidden output of RNN ht′−1 and

31

an input state–action pair (st′ , at′−1). The hidden output of RNN ht′−1 is an output

latent vector for the given previous state–action sequences (s0, a−1, . . . , st′−1, at′−2).

The dynamic extractor is updated to minimize the mean square error between all pre-

dictions {µ̂t′} and the ground truth parameter µ (lines 23 and 28). By using the trained

actor and dynamics extractor module, a low-level controller produces an action as fol-

lows:

at = πθ(st, Dψ(h−1, s0, a−1, . . . , st, a−1)), (4.4)

which predicts the dynamics parameters by dynamics extractors and uses them as a

given input to produce an action.

4.3 Experimental results

In this section, we experimentally demonstrate that the proposed controller achieves

good performance, even for quadrotor dynamics that are changed, compared to exist-

ing methods and other RNN actor-critic structures. We compared the three RNN-based

controllers and three conventional controllers experimentally:

• PID controller, which needed to fine-tune 18 PID gain values in advance [44].

• FF-rand, which only used feed-forward networks with dynamics randomization

[2].

• FF-norand, which only used feed-forward networks without dynamics random-

ization.

• RNNfull, which used RNNs for both the actor and the critic and trained in an

end-to-end manner [6].

• RNNpolicy, which only used RNNs for the actor and trained in an end-to-end

manner.

32

Table 4.2: RNNparam hyperparameters

Hyperparameter
Value

Actor Critic Dynamic extractor

number of hidden layers 5 5 3 (2 linear, 1 GRU)

number of hidden units 64 128 64

Activation function ReLU ReLU ReLU

Last Activation function Tanh None Tanh

learning rate 10−4 10−4 10−4

• RNNparam, which is the proposed method that trains an auxiliary dynamics

extraction module consisting of RNNs.

All learning-based controllers were basically trained using the SAC algorithm. To

satisfy the possibility of use in a real-world quadrotor, the following hardware con-

straints of the real model of the quadrotor used in the gym-pybullet-drone were satis-

fied: operating ≤10 ms at 168 MHz Cortex-M4 MCU, and limiting model size limit of

≤192 KB. The model size limit should only be respected by the actor because the critic

is only used during the training process. A larger critic model was used to sufficiently

reflect the complexity of the environment. This reason that a bigger critic model can

be used is based on the study of Mysore et al. [46], where even a larger critic than the

actor did not affect the final performance. Therefore, we constructed and trained the

model using the hyperparameters, as shown in Table 4.2.

We used 20,000 trajectories with a step length of 800, which is 8 s in the simulator

running at 100 Hz. The same following reward function was used to ensure a fair

comparison:

r(st) = −(∥ot∥2 + 0.5∥ωyawt ∥2), (4.5)

where ∥ot∥ is the Euclidean distance from the current position to the goal position, and

ωyawt is the yaw rate. The quadrotor had to change the direction of thrust by changing

33

Figure 4.3: Learning curve of five different actor-critic structures runs with five differ-

ent seeds. The Oracle is the learning curve of FF-norand because the training was not

interfered with by dynamics randomization.

the roll and pitch to control the XY position. In other words, there was a trade-off

relationship in which the roll and pitch rates had to be increased to reduce the positional

errors. We judged that this trade-off relationship would make learning difficult. Hence,

we designed the reward function to minimize position error more efficiently by only

considering only the yaw rate at angular velocity.

We trained five policies for each method with varying seeds, and the learning curve

of the average return of evaluation is shown in Fig 4.3. It should be noted that FF-

norand is the same as the oracle learning curve because it is the only one learned in the

absence of dynamics randomization. It will be shown in later experiment results that

the performance of FF-norand is worse in the dynamics randomization environment,

even if the average return is high in the training process.

It can be observed that the final return of RNNparam was the closest to the oracle

compared to the other methods. In the case of RNN-included structures, it was evident

that the more RNN was not used in the RL learning process, the better the learning be-

came. First, it was more stable to only use the RNN structure for the actor (RNNpolicy)

34

than to use the RNN structure for both the actor and critic (RNNfull). Moreover, the

RNNpolicy still exhibited a less average return and high variance, compared to the

proposed RNNparam method. We confirmed that the end-to-end learning method us-

ing the RNN structure for both actor and critic was not suitable for unstable quadrotor

environments. This is because it is difficult to obtain data close to stable flying by ran-

dom exploration. In the case of FF-rand, the average return increased quickly during

the early stage of the training. However, the final return of FF-rand was lower than that

of RNNparam.

4.3.1 Stabilization experiment

We conducted the stabilizing experiment using the controller with the highest average

return among them trained by various seeds. However, RNNfull was excluded from

the experiment because it was not even trained, as shown in Fig. 4.3. In the stabilizing

experiment, the aim was to control the quadrotor to a random goal position from the

randomized initial state in 8 s, as in Table 4.1. The average position error to the goal

ep and the average magnitude of the yaw rate ∥ωyaw∥ were measured as a metric to

represent control and stabilizing performance. Each controller was tested in an envi-

ronment with different degrees of dynamic randomization on 100 random seeds. Table

4.3 displays the result of the stabilizing experiment.

It can be deduced from the large positional error that the PID controller could not

recover a quadrotor from harsh initialization, even when the dynamics were not ran-

domized. However, the learning-based controllers exhibited some response, regardless

of the dynamics. The FF-norand controller achieved the best performance when the

dynamics were fixed. However, it did not respond appropriately to changes in dynam-

ics (i.e., β ̸= 0). For the FF-rand controller, the larger the value of β, the larger the

change in performance degradation compared to the RNNparam controller. In other

words, the RNNparam controller achieved superior performance to the FF-rand when

responding to situations in which the dynamics changed significantly. Moreover, the

35

Table 4.3: Experiment for stabilizing from random initial state

dynamics

randomize

range (1±β)

PID FNN-norand FNN-rand RNNpolicy RNNparam

β = 0.0
ep 73.52 0.75 0.91 6.12 0.90

∥ωyaw∥ 0.95 0.01 0.21 10.73 6.71

β = 0.1
ep 84.30 5.83 1.55 10.09 1.04

∥ωyaw∥ 9.02 5.37 0.70 17.45 2.40

β = 0.2
ep 87.88 28.84 5.55 20.89 3.22

∥ωyaw∥ 14.21 21.79 1.25 19.80 2.08

β = 0.3
ep 86.65 58.56 23.54 36.31 11.06

∥ωyaw∥ 21.97 41.52 11.77 18.27 6.89

RNNparam controller exhibited much smaller positional errors and angular velocity

compared to the RNNpolicy controller using RNN in the end-to-end manner.

In order to verify the performance of the proposed controller quantitatively, the

control trajectory is examined in certain scenarios that the quadrotor could face. Fig.

4.4 displays the controlled trajectory of the quadrotor to a target position when the

quadrotor was flipped in 6 scenarios: (a) motor performance degradation, (b) center

of gravity shift, (c) motor delay change, (d) momentum-of-inertia change, (e) mass

change (f) nothing change.

Fig. 4.4(a) shows the motor performance degradation scenario that was imple-

mented by reducing the values of kf and km by 20%, which is equivalent to gen-

erating less thrust and torque. Fig. 4.4(b) displays the scenario when the center of

gravity is shifted by 10% of the total body length from the geometric center. The PID,

FF-norand, and RNNpolicy controllers demonstrated that they could not recover the

quadrotor from the flipped state in these two cases. Although the FF-rand controller

success to stabilize from the flipped status and control the quadrotor to the target po-

36

sition, it took a relatively long time to stabilize and reach the target position compared

to the RNNparam controller. Using the proposed RNNparam method, the quadrotor

quickly recovered to a stable state and the quadrotor was controlled in response to the

degradation of one motor.

Fig. 4.4(c-f) shows the results of the situation respectively: when the motor delay

coefficient decreased by 20%, when the momentum-of-inertia in the x direction de-

creased by 20%, when the mass decreased by 20%, and when nothing changed. As

well as the previous motor degradation and the center of gravity shift scenarios, the

RNNparam controller generates an efficient trajectory that reaches the target position

in a shorter time than the FF-norand controller. Although the RNNpolicy controller

cannot still make the quadrotor reach the target position, it shows possible to recover

from the flipped status. It should be noted in the four scenarios that the FF-norand

controller generates the most efficient control trajectory.

The qualitative evaluation results confirm that the performance increase using

RNN for the learning-based controller is remarkable in terms of motor performance

degradation and center of gravity shift. The change in the performance of a single mo-

tor or the location of the center of gravity deviating from the center means a situation

in which the symmetric assumed by the quadrotor dynamics model is broken. In the

case of mass change, momentum-of-inertia change, and motor delay coefficient change

scenarios, the physical quantities are changed while maintaining the symmetricity of

the dynamics model. Therefore, the FF-norand controller, which has the advantage

of operating robustly, produces a good performance. However, using a controller us-

ing an RNN structure shows better performance when the dynamics model changes

asymmetrically.

37

Algorithm 1 SAC RNNparam algorithm
1: Initialize actor πθ(st, µ), critics Qϕ1

(st, at), Qϕ2
(st, at), dynamic extractor Dψ(st, at−1, ht−1) with pa-

rameters θ, ϕ1, ϕ2, ψ

2: Initialize target networks Q̄ϕ̄1
, Q̄ϕ̄2

with parameters ϕ̄1 ← ϕ1, ϕ̄2 ← ϕ2

3: Initialize empty replay buffer B

4: for episode=1:E do

5: Randomize dynamics parameter µ, initial state s0

6: for t=0:T-1 do

7: st+1 ∼ pµ(·|st, at) where at ← π(st, µ)

8: end for

9: B ← B ∪ {(s0, a0, r(s0, a0), . . . , sT , µ)}

10: Sample a minibatch of |B| episodes

{(si0, ai0, ri0, . . . , siT , µ
i)}i=1,...,|B| ∼ B

11: Initialize losses Lπ = LQ = LD = 0

12: for i=b:|B| do

13: t ∼ Uniform(0, , 1, . . . , T − 1)

14: âit ← πθ(s
i
t, µ

i)

15: âit+1 ← πθ(s
i
t+1, µ

i)

16: qt ← rt +

γ(min
i=1,2

Q̄ϕ̄i
(st+1, ât+1, µ)− α log πθ(ât+1|st+1))

17: Lπ ← Lπ + (Qϕ1
(st, ât, µ)− α log πθ(ât|st))2

18: LQ ← LQ + (qt −Qϕi
(st, at, µ))2

19: Initialize a−1 and h−1

20: for t’=0:T-1 do

21: µ̂t′ , ht′ ← Dψ(ht′−1, s
i
t′ , a

i
t′−1

)

22: end for

23: LD ← LD +
1

T

T−1∑
t′=0

(µ− µ̂t′)2

24: end for

25: ϕi ← ϕi − αϕ∇ϕi

1

|B|
LQ

26: ϕ̄i ← τϕi + (1− τ)ϕ̄i
27: θ ← θ − αθ∇θ

1

|B|
Lπ

28: ψ ← ψ − αψ∇ψ
1

|B|
LD

29: end for

38

(a)

(b)

Figure 4.4: Trajectory of each controller that stabilized the quadrotor from a flipped

state and controlled it to the target position (a red dot) in specific dynamics model

change cases: (a) When the performance of one motor has reduced by 20%, (b) when

the position of the center of gravity displaced by 10% of the total body length.

39

(c)

(d)

(c) when the motor delay coefficient has changed from 0.15 s to 0.12 s, (d) when the

x-direction of the momentum-of-inertia has reduced by 20%.

40

(e)

(f)

(e) when the mass has reduced by 20%, (f) when nothing has changed.

41

Chapter 5

Conclusion

5.1 Conclusion

In this study, a new RNN-based actor-critic structure for learning a low-level controller

of a quadrotor that can operate in response to unknown dynamics changes is proposed.

Although there have been studies in which the RNNs implicitly extract dynamics in-

formation in an end-to-end method, we experimentally demonstrated that this method

is unsuitable for unstable drones. Hence, a new possible structure is suggested. The dy-

namics in the simulator are randomly changed for every episode and the feed-forward

network-based actor-critic model is trained using the SAC algorithm. Furthermore, dy-

namics information is extracted from the state–action sequence using the RNN-based

dynamic extractor which is trained in a supervised learning manner. Using the pro-

posed RNN-based method, the performance improvement especially for asymmetric

changes such as motor performance degradation or center of gravity shift was exper-

imentally verified. Through the proposed controller, it will be possible to control in

response to situations where the dynamics change unexpectedly during flight, such as

when the motors overheat or the propeller is damaged.

This study includes several limitations that require improvement in future research.

Firstly, the size of the model was limited because of the hardware constraints to demon-

42

strate the possibilities of real-world applications. Different methods that perform bet-

ter with limited model size should be explored, such as training with a larger model

and then using distillation. Secondly, there were too many trade-off relationships in

the quadrotor reward engineering process, so it could not be considered optimal engi-

neering. Using goal-conditioned RL using binary goal-achieved rewards, the laborious

reward engineering process could be omitted.

43

Bibliography

[1] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor with

reinforcement learning,” IEEE Robotics and Automation Letters, vol. 2, no. 4,

pp. 2096–2103, 2017.

[2] A. Molchanov, T. Chen, W. Hönig, J. A. Preiss, N. Ayanian, and G. S. Sukhatme,

“Sim-to-(multi)-real: Transfer of low-level robust control policies to multiple

quadrotors,” in 2019 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). IEEE, 2019, pp. 59–66.

[3] B. P. Duisterhof, S. Krishnan, J. J. Cruz, C. R. Banbury, W. Fu, A. Faust, G. C.

de Croon, and V. J. Reddi, “Tiny robot learning (tinyrl) for source seeking on

a nano quadcopter,” in 2021 IEEE International Conference on Robotics and

Automation (ICRA). IEEE, 2021, pp. 7242–7248.

[4] N. O. Lambert, D. S. Drew, J. Yaconelli, S. Levine, R. Calandra, and K. S. Pister,

“Low-level control of a quadrotor with deep model-based reinforcement learn-

ing,” IEEE Robotics and Automation Letters, vol. 4, no. 4, pp. 4224–4230, 2019.

[5] N. Heess, J. J. Hunt, T. P. Lillicrap, and D. Silver, “Memory-based control with

recurrent neural networks,” arXiv preprint arXiv:1512.04455, 2015.

[6] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real transfer

of robotic control with dynamics randomization,” in 2018 IEEE international

conference on robotics and automation (ICRA). IEEE, 2018, pp. 3803–3810.

44

[7] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent

neural networks,” in International conference on machine learning. PMLR,

2013, pp. 1310–1318.

[8] D. Silver, S. Singh, D. Precup, and R. S. Sutton, “Reward is enough,” Artificial

Intelligence, vol. 299, p. 103535, 2021.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint

arXiv:1312.5602, 2013.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-level

control through deep reinforcement learning,” nature, vol. 518, no. 7540, pp.

529–533, 2015.

[11] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot et al., “Mastering

the game of go with deep neural networks and tree search,” nature, vol. 529, no.

7587, pp. 484–489, 2016.

[12] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt,

A. Guez, E. Lockhart, D. Hassabis, T. Graepel et al., “Mastering atari, go, chess

and shogi by planning with a learned model,” Nature, vol. 588, no. 7839, pp.

604–609, 2020.

[13] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A

survey,” The International Journal of Robotics Research, vol. 32, no. 11, pp.

1238–1274, 2013.

[14] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT

press, 2018.

45

[15] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient meth-

ods for reinforcement learning with function approximation,” Advances in neural

information processing systems, vol. 12, 1999.

[16] R. J. Williams, “Simple statistical gradient-following algorithms for connection-

ist reinforcement learning,” Machine learning, vol. 8, no. 3, pp. 229–256, 1992.

[17] V. Konda and J. Tsitsiklis, “Actor-critic algorithms,” Advances in neural infor-

mation processing systems, vol. 12, 1999.

[18] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “De-

terministic policy gradient algorithms,” in International conference on machine

learning. PMLR, 2014, pp. 387–395.

[19] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and

K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in

International conference on machine learning. PMLR, 2016, pp. 1928–1937.

[20] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy

optimization,” in International conference on machine learning. PMLR, 2015,

pp. 1889–1897.

[21] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal pol-

icy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[22] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor,” in Inter-

national conference on machine learning. PMLR, 2018, pp. 1861–1870.

[23] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,

and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv

preprint arXiv:1509.02971, 2015.

46

[24] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error in

actor-critic methods,” in International conference on machine learning. PMLR,

2018, pp. 1587–1596.

[25] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting in

partially observable stochastic domains,” Artificial intelligence, vol. 101, no. 1-2,

pp. 99–134, 1998.

[26] J. Li and Y. Li, “Dynamic analysis and pid control for a quadrotor,” in 2011

IEEE International Conference on Mechatronics and Automation. IEEE, 2011,

pp. 573–578.

[27] J. Ren, D.-X. Liu, K. Li, J. Liu, Y. Feng, and X. Lin, “Cascade pid controller for

quadrotor,” in 2016 IEEE International Conference on Information and Automa-

tion (ICIA). IEEE, 2016, pp. 120–124.

[28] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for

quadrotors,” in 2011 IEEE international conference on robotics and automation.

IEEE, 2011, pp. 2520–2525.

[29] E. F. Camacho and C. B. Alba, Model predictive control. Springer science &

business media, 2013.

[30] M. Bangura and R. Mahony, “Real-time model predictive control for quadrotors,”

IFAC Proceedings Volumes, vol. 47, no. 3, pp. 11 773–11 780, 2014.

[31] M. Islam, M. Okasha, and M. Idres, “Dynamics and control of quadcopter using

linear model predictive control approach,” in IOP Conference Series: Materials

Science and Engineering, vol. 270, no. 1. IOP Publishing, 2017, p. 012007.

[32] R. Benotsmane, A. Reda, and J. Vásárhelyi, “Model predictive control for au-

tonomous quadrotor trajectory tracking,” in 2022 23rd International Carpathian

Control Conference (ICCC). IEEE, 2022, pp. 215–220.

47

[33] N. Mohajerin and S. L. Waslander, “Modular deep recurrent neural network:

Application to quadrotors,” in 2014 IEEE International Conference on Systems,

Man, and Cybernetics (SMC). IEEE, 2014, pp. 1374–1379.

[34] ——, “Modelling a quadrotor vehicle using a modular deep recurrent neural net-

work,” in 2015 IEEE International Conference on Systems, Man, and Cybernet-

ics. IEEE, 2015, pp. 376–381.

[35] U. Maqbool, T. Nomani, and H. Talat, “Neural network controller for attitude

control of quadrotor,” in 2019 Second International Conference on Latest trends

in Electrical Engineering and Computing Technologies (INTELLECT). IEEE,

2019, pp. 1–8.

[36] T.-T. Tran and C. Ha, “Self-tuning proportional double derivative-like neural net-

work controller for a quadrotor,” International Journal of Aeronautical and Space

Sciences, vol. 19, no. 4, pp. 976–985, 2018.

[37] E. Khosravian and H. Maghsoudi, “Design of an intelligent controller for station

keeping, attitude control, and path tracking of a quadrotor using recursive neural

networks,” International Journal of Engineering, vol. 32, no. 5, pp. 747–758,

2019.

[38] F. Fei, Z. Tu, D. Xu, and X. Deng, “Learn-to-recover: Retrofitting uavs with rein-

forcement learning-assisted flight control under cyber-physical attacks,” in 2020

IEEE International Conference on Robotics and Automation (ICRA). IEEE,

2020, pp. 7358–7364.

[39] R. Fris, “The landing of a quadcopter on inclined surfaces using reinforcement

learning,” 2020.

[40] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and

W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

48

[41] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representa-

tions by error propagation,” California Univ San Diego La Jolla Inst for Cognitive

Science, Tech. Rep., 1985.

[42] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-

tion, vol. 9, no. 8, pp. 1735–1780, 1997.

[43] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the proper-

ties of neural machine translation: Encoder-decoder approaches,” arXiv preprint

arXiv:1409.1259, 2014.

[44] J. Panerati, H. Zheng, S. Zhou, J. Xu, A. Prorok, and A. P. Schoellig, “Learning

to fly—a gym environment with pybullet physics for reinforcement learning of

multi-agent quadcopter control,” in 2021 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, 2021, pp. 7512–7519.

[45] W. Giernacki, M. Skwierczyński, W. Witwicki, P. Wroński, and P. Kozierski,

“Crazyflie 2.0 quadrotor as a platform for research and education in robotics and

control engineering,” in 2017 22nd International Conference on Methods and

Models in Automation and Robotics (MMAR). IEEE, 2017, pp. 37–42.

[46] S. Mysore, B. El Mabsout, R. Mancuso, and K. Saenko, “Honey. i shrunk the

actor: A case study on preserving performance with smaller actors in actor-critic

rl,” in 2021 IEEE Conference on Games (CoG). IEEE, 2021, pp. 01–08.

49

초록

본논문에서는쿼드로터의물리량을모르는상태에서도강건하게동작할수있

는 강화 학습을 이용해 학습한 심층 순환 신경망 기반의 쿼드로터 제어기를 제안

한다. 로봇 제어기는 로봇의 상태를 기반으로 모터 제어 신호를 생성하는 역할로

정의할수있는데,이는제어하려는로봇의동역학모델에맞게미세조정해야한다.

동역학 모델은 특정 모터 제어 신호를 가했을 때 로봇의 상태가 변하는 정도를 결

정하는것으로,로봇의물리량들에따라달라진다.모든실제쿼드로터는질량이나

회전 관성 등의 물리량이 불확실하기 때문에 같은 제품이라도 동역학 모델이 다를

수밖에없다.특히쿼드로터는비행중모터과열이나프로펠러손상으로인해역학

모델이바뀔가능성이높다.

이 문제를 해결하기 위해 순환 신경망 구조를 포함하는 깅화학습 기반 제어기

학습기법을제안한다.강화학습은쿼드로터역학모델을수학적으로모델링하는대

신,환경에서얻은데이터를이용해제어기를훈련하는데사용된다.순환신경망은

쿼드로터의연속적인상태들과모터신호들로부터역학모델에대한정보를추출한

다.그러나쿼드로터는초당제어빈도수가높고컴퓨팅장치의성능이제한적이기

때문에, end-to-end 방식으로 순환 신경망 구조를 사용했을 때 학습이 불안정해지

는문제가발생한다.따라서강화학습과정에서심층순환신경망구조를포함하는

역학 모델 추출기 모듈을 따로 분리하는 방식을 제안한다. 역학 모델 추출기는 지

도학습 방식으로 쿼드로터 상태들과 모터 신호들로부터 역학 정보를 예측되도록

훈련되며, 강화학습의 액터-크리틱 구조는 시뮬레이터에서 제공하는 역학 모델의

참값을기반으로훈련된다.

제안된방법은 3차원쿼드로터제어기에심층순환신경망을적용한최초의연

50

구이며, Gym-pubullet-drone이라는 시뮬레이션 환경을 이용해 학습을 진행하였다.

시뮬레이터에서 학습이 진행될 때에도 실제 드론에 대한 적용 가능성을 검증하기

위해 Crazyflie 라는 실제 쿼드로터의 모든 하드웨어 제약조건을 만족하는 심충 네

트워크 모델을 설계하였다. 제안된 제어기는 무작위 역학 모델을 가지는 쿼드로터

안정화실험에서기존의모델기반제어기와심층신경망기반제어기보다나은성

능을 보였고, 특히 모터 성능 저하나 무게중심 이동 등의 비대칭적 변화에 대해 더

효과적인 성능 개선을 검증하였다. 이러한 방식을 통해 비행 중 모터가 과열되거

나 프로펠러가 손상되는 등 동역학 모델이 변화할 수 있는 상황에 대응해 제어가

가능할것이다.

본 연구는 추후 몇 가지 개선 가능성을 시사하고 있다. 첫째로, 실제 쿼드로터

모델에 적용하기 위한 하드웨어 제약조건 때문에 제어기 모델의 사이즈가 제한되

었다.더커다란모델을사용하여학습한후 network distillation이나 quantization을

사용하여, 동일한 성능을 보이면서 모델의 사이즈를 축소하는 방법론들을 적용할

수 있다. 둘째로, 보상 함수 디자인 과정에서 너무 많은 상충관계가 있기 때문에,

본 연구에서 사용한 보상함수가 최적이라는 보장이 없다. 추후 연구에서 바이너리

목표도달보상함수를사용하여,보상함수디자인과정을생략할수있을것이다.

주요어:쿼드로터제어,순환신경망,강화학습,로봇,딥러닝

학번: 2020-27508

51

	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Organizations

	2 Related work
	2.1 Reinforcement learning
	2.1.1 Policy gradient reinforcement learning

	2.2 Memory-based robot controller
	2.3 Quadrotor controller
	2.3.1 Rule-based quadrotor controller
	2.3.2 Learning-based quadrotor controller

	3 Memory-based robot controller
	3.1 Introduction
	3.2 Approach
	3.3 Experimantal results

	4 Memory-based quadrotor controller
	4.1 Introduction
	4.2 Approach
	4.2.1 Problem definition
	4.2.2 Simulator setting and dynamics randomization
	4.2.3 Actor-critic model

	4.3 Experimental results
	4.3.1 Stabilization experiment

	5 Conclusion
	5.1 Conclusion

	Bibliography
	Abstract in Korean

<startpage>11
1 Introduction 1
 1.1 Motivation 1
 1.2 Contributions 5
 1.3 Organizations 6
2 Related work 7
 2.1 Reinforcement learning 7
 2.1.1 Policy gradient reinforcement learning 10
 2.2 Memory-based robot controller 11
 2.3 Quadrotor controller 12
 2.3.1 Rule-based quadrotor controller 12
 2.3.2 Learning-based quadrotor controller 13
3 Memory-based robot controller 16
 3.1 Introduction 16
 3.2 Approach 18
 3.3 Experimantal results 19
4 Memory-based quadrotor controller 25
 4.1 Introduction 25
 4.2 Approach 25
 4.2.1 Problem definition 25
 4.2.2 Simulator setting and dynamics randomization 26
 4.2.3 Actor-critic model 29
 4.3 Experimental results 32
 4.3.1 Stabilization experiment 35
5 Conclusion 42
 5.1 Conclusion 42
Bibliography 44
Abstract in Korean 50
</body>

