

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

M.S. THESIS

Dynamic layer skipping for efficient
action recognition

®(�xâŸx›D⌅\Ÿ�ƒ5›µ–�\l

BY

SEON JONG HYEON

FEBRUARY 2023

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

M.S. THESIS

Dynamic layer skipping for efficient
action recognition

®(�xâŸx›D⌅\Ÿ�ƒ5›µ–�\l

BY

SEON JONG HYEON

FEBRUARY 2023

DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Dynamic layer skipping for efficient
action recognition

®(�xâŸx›D⌅\Ÿ�ƒ5›µ–�\l

¿ƒP⇠\Ù�

t|8DıY�¨Y⌅|8<\⌧úh

2023D 2‘

⌧∏�YP�Y–

⌅0ÙË0ıYÄ

 Ö⌅

 Ö⌅XıY�¨Y⌅|8Dx�h

2023D 2‘

⌅ – •:
Ä⌅–•:
⌅ –:

이경무
한보형
이준석

(인)
(인)
(인)

Abstract

One of the challenges for analyzing video contents (e.g., actions) is high computa-

tional cost, especially for the tasks that require processing densely sampled frames in a

long video. We present a novel efficient action recognition algorithm, which allocates

computational resources adaptively to individual frames depending on their relevance

and significance. Specifically, our algorithm adopts LSTM-based policy modules and

sequentially estimates the usefulness of each frame based on their intermediate rep-

resentations. If a certain frame is unlikely to be helpful for recognizing actions, our

model stops forwarding the features to the rest of the layers and starts to consider

the next sampled frame. We further reduce the computational cost of our approach by

introducing a simple yet effective early termination strategy during the inference pro-

cedure. We evaluate the proposed algorithm on three public benchmarks: ActivityNet-

v1.3, Mini-Kinetics, and THUMOS’14. Our experiments show that the proposed ap-

proach achieves outstanding trade-off between accuracy and efficiency in action recog-

nition.

keywords: Video, Action recognition, Efficient processing

student number: 2020-29539

i

Contents

Abstract i

Contents ii

List of Tables iv

List of Figures v

1 Introduction 1

2 Related Works 4

2.1 Efficient action recognition methods 4

2.2 Adaptive computation techniques . 5

3 Proposed Method 7

3.1 Overview . 8

3.2 Stop-or-Forward Network (SoF-Net) 8

3.2.1 Conditional early termination 10

3.3 Training . 10

3.3.1 Action classification loss . 11

3.3.2 Efficiency loss . 11

3.3.3 Policy guidance loss . 11

ii

4 Experiments 13

4.1 Experimental setup . 13

4.2 Implementation details . 14

4.3 Comparison with other methods . 15

4.4 Discussion . 17

4.5 Qualitative Analysis . 19

5 Conclusion 21

Abstract (In Korean) 26

iii

List of Tables

4.1 Performance comparison with the state-of-the-art methods on ActivityNet-

v1.3 and Mini-Kinetics. Note that first five methods run offline while

the others including SoF-Net are online algorithms. Our implementa-

tion of FrameExit (online) does not use its original frame sampling

strategy, but sequentially takes input frames given by uniform sam-

pling. MV2 and R# denote MobileNet-V2 [28] and ResNet with the

number of layers, respectively, and T is the default number of input

frames to run each algorithm . Results of other methods are copied

from [19] while † denotes our reproduction. The best results are in

bold. 15

4.2 Action recognition results on THUMOS’14. 16

4.3 Comparison of runtime and frame usage ratio on the ActivityNet-v1.3

validation set. The numbers in SoF-Netdenote input image sizes. . . . 16

4.4 Ablation study for individual components in our algorithm, tested on

the ActivityNet-v1.3 validation set. 18

4.5 Performance comparisons by varying input sizes on the ActivityNet-

v1.3 validation set. 18

iv

List of Figures

1.1 The overview of our approach with an example video in the Throwing

Darts class of the ActivityNet-v1.3 dataset. Our model achieves effi-

cient action recognition by skipping less important frames in the mid-

dle of the classification network adaptively, e.g, frame 1 and 7 in this

figure. The proposed algorithm reduces computational costs as many

layers as it skips. 2

3.1 A run-time procedure of the proposed algorithm. At several predefined

intermediate layers of the backbone classification model, we employ

LSTM-based policy modules to determine whether it stops or contin-

ues the inference procedure. The policy modules are learned to predict

stop signals for irrelevant or redundant frames while encouraging the

classification network to go through all layers for important frames.

The final prediction for a video is obtained by aggregating the predic-

tion scores over the fully processed frames. 7

4.1 Statistics of frame usages. We show the ratio of the frames that stop

forwarding by their stop-decision locations as a form of ‘res#.’ ‘Early

Term.’ denotes the ratio of the frames skipped by early termination,

and ‘Used’ means the frame ratio for full inference. The numbers in

gray color indicates the percentage of each category. 19

v

4.2 Visualization of the decision-making results by SoF-Net. For each ex-

ample, the top row shows the original input frames and the bottom

row illustrates how the frames are processed in SoF-Net. The skipped

frames specifies the position of stopped layer (res#) while we present

the original frames for the ones used for prediction. The black box

with a word ‘exit’ indicates the frames that are not observed at all due

to early termination, and the blue bar denotes the temporal action lo-

calization ground-truths indicating the relevance of the frame to the

target action. 20

vi

Chapter 1

Introduction

As the amount of videos stored in private and public repositories explodes, there has

been a growing interest in analyzing and understanding video content in recent years.

Action recognition is one of the most primitive tasks in video understanding, and ex-

isting approaches [2, 8, 19, 20, 31, 35] often perform dense prediction over a sequence

of frames or clips, i.e, short time intervals of a few seconds. To be specific, they extract

features from a set of frames (or clips) in a video via a sliding window scheme, pro-

cess individual frames using a deep neural network, and finally identify an action label

by aggregating the prediction scores of all the frames. Such a costly procedure is im-

practical in real-world scenarios, where the algorithms need to run in resource-limited

environments. Reducing computational costs for video analysis is critical in practical

applications.

The key idea of efficient action recognition comes from the intuition that all frames

in a video are not equally important. Consequently, models do not need to observe all

frames and can skip irrelevant or repetitive frames without any penalty. Several action

recognition techniques pursue efficient processing through frame selection (or sam-

pling) [6, 12, 16, 42] or adaptive resource allocation [21]. The frame selection meth-

ods utilize an external network to 1) determine whether the current frame is worth

forwarding to full backbone models for inference [12, 16, 19] or 2) sample the posi-

1

inferred layer skipped layer

fr
am

e
1

STOP

fr
am

e
4

PREDICT

fr
am

e
7

STOP

Figure 1.1: The overview of our approach with an example video in the Throwing Darts

class of the ActivityNet-v1.3 dataset. Our model achieves efficient action recognition

by skipping less important frames in the middle of the classification network adap-

tively, e.g, frame 1 and 7 in this figure. The proposed algorithm reduces computational

costs as many layers as it skips.

tion of the next input frame while skipping redundant ones [6, 42]. On the other hand,

adaptive computation models process frames in multiple resolutions using networks

with different capacities [21] or select cropped patches in frames [37], depending on

their estimated importance. However, many frame selection methods are only avail-

able on recorded videos, due to the use of global memory [42] or preprocessed video

features [6, 16]. These properties hinder the applicability in online processing environ-

ments such as real-time surveillance systems and streaming services.

We propose an adaptive computation algorithm based on dynamic layer skipping

for efficient action recognition, referred to as SoF-Net(Stop-or-Forward Network),

which reduces the computational cost by skipping layers at inference time depend-

ing on their importance. Our approach is available on online processing as illustrated

in Figure 1.1. The decision-making for layer skipping relies on the policy modules im-

2

plemented with a set of LSTMs, which are applied to several intermediate layers in the

backbone network. The policy modules enable the classification network to make the

final predictions based only on a fraction of input frames while skipping irrelevant or

repetitive frames in the middle of forwarding processes. We also introduce a simple but

effective way to further reduce the computational cost by terminating inference com-

pletely before observing all frames based on prediction scores and their confidence.

To the best of our knowledge, this is the first attempt to show how to determine the

frame’s usefulness in the intermediate layer of a network.

The contribution of this paper is summarized as follows:

• We propose an adaptive resource allocation method for efficient action recog-

nition, which reduces the computational cost by skipping less important frames

in the middle of forwarding processes and terminating the inference procedure

even before observing all frames.

• We introduce a simple but effective self-supervised learning method via learn-

ing LSTM-based policy modules that are responsible for the proposed dynamic

layer skipping.

• Our approach achieves an excellent trade-off between accuracy and efficiency

on multiple benchmarks including ActivityNet-v1.3, Mini-Kinetics, and THU-

MOS’14.

3

Chapter 2

Related Works

This section overviews efficient action recognition methods and adaptive computation

techniques for deep neural networks.

2.1 Efficient action recognition methods

Efficient networks Although 3D CNN architectures [2, 31] have widely been used

for video understanding, they suffer from large computational costs incurred by the

complex operations to handle spatio-temporal information jointly. To tackle this chal-

lenge, some approaches rely on the models based on 2D CNNs [35] or their exten-

sions by incorporating temporal shift modules [20] or using temporal difference [45].

Another line of research for designing lightweight action recognition models is to de-

compose spatio-temporal information into multiple subspaces, e.g, spatial and tem-

poral information [4, 11, 17, 18, 23, 25, 32, 33, 43]. Although efficient networks are

successful in action recognition, they are limited to focusing on architecture designs

without considering the characteristics of input videos.

Efficient frame selection Some action recognition techniques achieve efficiency

by adaptively selecting a subset of frames in an input video for prediction [1, 15].

4

These approaches employ either a lightweight network [16] or multiple reinforcement

learning agents [39] to identify the frames for passing into the full backbone models.

AdaFrame [42], for example, chooses the next frame for observation using the global

context obtained from a designated neural network [28]. FrameExit [7] presents an

early termination method via non-sequential processing of frames. The main draw-

back of these methods is that they are designed for offline processing by default. On

the other hand, there exist several methods that perform sequential decision-making

during inference [3, 6, 21, 41, 42, 44]. LiteEval [41] employs coarse and fine LSTMs

to propagate features, where a conditional gating module determines when to allocate

more resources for feature computation. AR-Net [21] utilizes a lightweight policy net-

work that selects proper resolutions of input frames and corresponding classification

networks to reduce computation for unimportant frames. AdaFocus [37] also reduces

costs by applying a lightweight network, which selects cropped patches from each

frame. OCSampler [19] employ reinforcement learning to select a fixed number of

frames from candidates to reduce computation. Unlike previous approaches, our algo-

rithm exploits intermediate representations in a CNN to stop processing unnecessary

frames and reduce computational costs.

2.2 Adaptive computation techniques

Adaptive computation for reducing computational cost and improving performance is

used in many areas such as image recognition [26, 38, 40], natural language process-

ing [29] and semantic correspondence [22]. Most approaches [22, 34, 40] choose active

layers based on the importance of input frames. Some methods adopt a policy net-

work that decides whether to drop or keep each layer block for the applications of im-

age classification by using reinforcement learning [36, 40], or Gumbel-Softmax [34].

ACT [5] adaptively selects a subset of layers in each residual block of ResNet [9] for

processing based on so-called halting scores. A Similar approach has recently been

5

proposed in a transformer-based model, DynamicViT [26], which chooses salient to-

kens by inserting a prediction module into the transformer.

In natural language processing, Skim-RNN [29] makes a decision for sending a

current input word to a small RNN for skimming or big one for proofreading. On

the other hand, [10, 30, 38] share the idea with anytime prediction techniques and

reduce computation costs successfully. They incorporate classifiers into multiple layers

to measure confidence and optionally calculate budgets, and make predictions before

processing all the layers in the networks depending on the outputs of the classifiers.

However, they are limited to being designed for images and have not been applied to

videos yet.

6

Chapter 3

Proposed Method

Preparing Pasta

STOP

STOP

Policy

Policy

Policy

Policy Policy

STOP

Policy

Policy

avg

Policy Policy Policy Policy

Policy Policy

STOP

Policy

Gating Operator

Hidden Vector

ti
m

e

PolicyPolicy
Policy

Policy
Policy

Avg
Pool

LSTMFC

Gating FC

Inner
Classifier

Policy

PolicyPolicy

Figure 3.1: A run-time procedure of the proposed algorithm. At several predefined in-

termediate layers of the backbone classification model, we employ LSTM-based policy

modules to determine whether it stops or continues the inference procedure. The pol-

icy modules are learned to predict stop signals for irrelevant or redundant frames while

encouraging the classification network to go through all layers for important frames.

The final prediction for a video is obtained by aggregating the prediction scores over

the fully processed frames.

7

3.1 Overview

Given a video with T frames, V = {v1, v2, ..., vT }, the objective of efficient action

recognition is to identify an action label y for the video with a low computational

cost in terms of GFLOPS, memory usage, and so on. For efficient action recognition,

we adopt the adaptive resource allocation framework that aims to allocate a differ-

ent amount of computational cost to each frame depending on its importance. For

the adaptive resource allocation, our main assumption is that irrelevant or redundant

frames can often be identified using the representations in lower layers. Based on the

assumption, we propose a dynamic layer-skipping strategy that allows the model to

stop the evaluation of input frames at intermediate layers adaptively. To this end, we

employ policy modules to control the inference flow of a backbone network, where

the backbone network and policy modules are optimized jointly to minimize costs for

unnecessary frames via our layer-wise decision-making technique and maximize pre-

diction accuracy based only on the relevant frames.

3.2 Stop-or-Forward Network (SoF-Net)

The overall framework of the proposed approach is illustrated in Figure 3.1. SoF-

Netconsists of a backbone network with L layers and multiple LSTM-based policy

modules; the backbone network computes a visual feature at each layer and an as-

sociated policy module is in charge of making a decision—stopping inference (i.e,

skipping the input frame) or forwarding the feature to the subsequent layers. Note that

the policy modules are employed in the backbone network after pre-selected N(< L)

layers, which are aligned with the stages of modern CNNs—stacked building blocks

with identical structures, e.g, ResBlock in ResNet [9]. Thus, we use N policy modules

and denote an index of layer with the nth policy module by ln.

Given T frames sampled uniformly from an input video, our model processes the

frames sequentially. At the lthn layer of the tth frame, we first obtain a visual feature xlnt

8

from the backbone network and perform the average pooling (AvgPool) on it. Then,

the LSTM-based policy module generates a probability distribution over two options

using the current pooled visual feature and a hidden state that contains historical infor-

mation of non-skipped frames, and then samples an action using the Gumbel-Softmax

trick [13] that makes the sampling operation differentiable. The decision process by

the nth policy module is summarized as follows:

x̄(n)t = AvgPool(xlnt), (3.1)

h(n)t = LSTM(n)(W (n)
x x̄(n)t , h(n)t̄), (3.2)

q(n)t = W (n)
g h(n)t , (3.3)

g(n)t = Gumbel-Softmax(q(n)t), (3.4)

where x̄(n)t is the average-pooled visual feature for the nth LSTM at the tth frame while

t̄ and h(n)t denote the index of the last non-skipped frame and the hidden state of the

nth LSTM for the frame, respectively. The learnable embedding matrices, Wx and Wg,

correspond to FC and Gating FC layers in Figure 3.1, respectively. The sampled action,

g(n)t 2 {0, 1}, from Gumbel-Softmax(·) represents either stop or forward for the nth

policy; if the sampled action is 0, we skip the frame under consideration and continue

the inference otherwise.

Among all the T frames, we compute the logit zt at the tth frame only if the frame

is not skipped, which is given by

zt = MLP(xLt), (3.5)

where MLP(·) denotes a multi-layer perceptron. The final prediction pT is obtained by

applying the softmax function to the aggregated logit as follows:

pT = Softmax

1P
t st

TX

t=1

stzt

!
, (3.6)

where st ⌘
Q

n g
(n)
t is an indicator variable of frame skipping.

9

3.2.1 Conditional early termination

In addition to the aforementioned dynamic layer skipping technique, we introduce a

strategy to terminate the inference procedure without observing all the T frames in

the input video. This is motivated by the fact that people can recognize visual content

after watching only a few early frames in a video if a sufficient amount of evidence is

collected. Based on the inspiration, we terminate the inference early and report the final

classification result at the point when the prediction for non-skipped frames becomes

higher than a threshold, Formally, the inference is terminated if the following condition

meets:

max
c

pTc > ⇢, (3.7)

where pTc denotes the probability of action label c after processing the T
th frame as

in Eq. (3.6) and ⇢ is a threshold of the prediction probability. Note that T > Tmin,

where Tmin is the minimum number of frames for early termination to avoid too hasty

decision.

The proposed early termination scheme is incorporated on top of the dynamic layer

skipping technique, which leads to a desirable combination of architectural and tem-

poral optimization for efficient action recognition. Also, contrary to [7], our full algo-

rithm processes video frames sequentially and runs online.

3.3 Training

We train our model using three loss terms, which include 1) action classification loss

Lcls, 2) efficiency loss Leff, and 3) policy guidance loss Lpg. The total loss is given by

L = ↵Lcls + (1� ↵)Leff + Lpg, (3.8)

where ↵ balances the trade-off between recognition accuracy and computational cost.

10

3.3.1 Action classification loss

To predict a correct action label y that is represented by an one-hot encoded vector, the

backbone network is learned using a standard cross-entropy loss (LCE) as follows:

Lcls = LCE(p, y) = �
X

c2C
yc log pc, (3.9)

where C indicates the label set.

3.3.2 Efficiency loss

To make our model run efficiently, the policy modules are learned to minimize the

amount of the overall computation (GFLOPS) for an input video with T frames. For

this purpose, we construct a lookup table that stores expected GFLOPS for each policy

module; the expected GFLOPS of the nth policy module is defined by GFLOPS for

inferring the remaining layers after the lthn layer, which is given by

flookup(n) = fGFLOPS(L)� fGFLOPS(ln), (3.10)

where fGFLOPS(l) denotes computational cost in terms of GFLOPS when inferring

until the lth layer and flookup(·) is a lookup table value. The efficiency loss based on

the expected GFLOPS over T frames and N policy modules is as follows:

Leff =
1

T ·N

TX

t=1

NX

n=1

flookup(n)g
(n)
t . (3.11)

3.3.3 Policy guidance loss

To learn better policy modules, we incorporate an additional inner classifier as guid-

ance for each module. The policy guidance loss is defined as

Lpg = �Linner
cls + (1� �)Lself, (3.12)

where Linner
cls and Lself denote inner-cassification loss and self-supervision loss, respec-

tively, and � controls the trade-off between recognition accuracy and computational

cost.

11

Inner classification loss To generate self-supervision for policy modules, we train

additional inner classifiers attached to individual policy modules as illustrated in Fig-

ure 3.1. The inner classifiers are learned by the cross-entropy loss only when the asso-

ciated policy module generates a forward signal, i.e, g(n)t = 1, which is given by

Linner
cls =

1
P

t

P
n g

(n)
t

TX

t=1

NX

n=1

g(n)t LCE(p
(n)
t , y), (3.13)

where p(n)t = W (n)
cls h(n)t is a predictive distribution based on a learnable embedding

matrix W (n)
cls in the nth policy module at the tth frame.

Self-supervision loss We train the policy module using the pseudo-label ĝ(n)t , which

is estimated by the inner classifier. Specifically, if the classification score from the

inner classifier increases progressively over the layers, we continue to observe the

subsequent layers for which the pseudo-label of the corresponding policy module is

defined by

ĝ(n)t =

8
><

>:

1 if p(n+1)
t (y) > p(n)t (y)

0 otherwise
. (3.14)

Then the self-supervision loss to train the policy modules except the last one is given

by

Lself =
1

T · (N � 1)

TX

t=1

N�1X

i=1

LBCE(g
(n)
t , ĝ(n)t), (3.15)

where LBCE denotes a binary cross-entropy loss function with two vectorized input

values.

12

Chapter 4

Experiments

We evaluate the proposed approachon three standard benchmarks and report the re-

sults.

4.1 Experimental setup

Datasets We conduct experiments on three action recognition datasets: ActivityNet-

v1.3 [1], Mini-Kinetics [2], and THUMOS’14 [14]. ActivityNet-v1.3 is composed of

untrimmed long videos, which are divided into 10,024 training and 4,926 validation

examples for 200 action classes. The average duration of the videos is 117 seconds.

Mini-Kinetics contains 200 classes and 131,082 trimmed videos, 121,215 for train-

ing and 9,867 for testing, sampled from the original Kinetics dataset [2]. The average

length of the videos is 10 seconds. We train models using the training set while evalu-

ating algorithms on the validation or test splits on ActivityNet-v1.3 and Mini-Kinetics.

THUMOS’14 contains videos over 24 hours in 101 different sport activities. The val-

idation and the test sets contain 1,010 and 1,574 untrimmed videos, respectively, and

the validation set is used for training.

Evaluation metrics For evaluation, we adopt the mean Average Precision (mAP) for

ActivityNet-v1.3 and THUMOS’14 while using the top-1 accuracy for Mini-Kinetics.

13

On the other hand, to compare efficiency of models, we measure GFLOPS per frame

(GFLOPS/f), GFLOPS per video (GFLOPS/V), and runtime per video (Runtime/V).

4.2 Implementation details

As a backbone network, we adopt ResNet-50 [9] pre-trained on the ImageNet [27]

dataset. We uniformly sample T = 16 frames from each video during both training

and testing and resize to 168 ⇥ 168 resolutions. The policy module is attached to

the end of each residual block (i.e, res1,res2, res3, res4, and res5), thus we use

N = 5 policy modules. The policy modules are defined by a single-layer LSTM with

a 512-dimensional hidden state. We set the initial temperature of Gumbel-Softmax to

5, and gradually anneal it with an exponential decay factor of -0.045 in every epoch

following [13]. We set the coefficients of loss terms as ↵ = 0.9 and � = 0.9 in our

training. For conditional early termination, the thresholds, ⇢ and Tmin, are set to 0.999

and 3, respectively.

We train the backbone and policy modules using the SGD optimizer with an initial

learning rate of 0.001, weight decay of 0.00001, and momentum of 0.9. Note that the

learning rate is reduced to 0.0001 after 30 epochs. Since a random policy at initial

training steps would hinder the learning backbone network, we train our algorithm in

two stages. We first warm up the backbone network for 15 epochs while fixing the

policy modules, and start to train the entire network including the policy modules for

additional 60 epochs. Our model is implemented with PyTorch [24] and all models are

trained in 4 Titan XP GPUs with a mini-batch size of 6 videos per GPU. Note that the

results of TSN [35] are reproduced with the same hyper-parameters as SoF-Net.

To measure the runtimes of TSN [35], AR-Net [21], AdaFocus [37] and SoF-Net,

we test each model in the same environment setup, with 16 uniformly sampled frames

from 4,921 videos in the ActivityNet-V1.3 validation set and batch size of 1, and a sin-

gle GPU (NVIDIA Titan XP) and CPU (Intel® Xeon® CPU E5-2620 v4 @ 2.10GHz).

14

We report the average runtime from five runs.

4.3 Comparison with other methods

Table 4.1: Performance comparison with the state-of-the-art methods on ActivityNet-

v1.3 and Mini-Kinetics. Note that first five methods run offline while the others includ-

ing SoF-Net are online algorithms. Our implementation of FrameExit (online) does not

use its original frame sampling strategy, but sequentially takes input frames given by

uniform sampling. MV2 and R# denote MobileNet-V2 [28] and ResNet with the num-

ber of layers, respectively, and T is the default number of input frames to run each

algorithm . Results of other methods are copied from [19] while † denotes our repro-

duction. The best results are in bold.
Type Method Backbone Resolution T

ActivityNet-v1.3 Mini-Kinetics

mAP GFLOPS/f GFLOPS/V Top1 GFLOPS/f GFLOPS/V

Offline

AdaFrame [42] MV2+R101 224 25 71.5 3.16 79.0 - - -

ListenToLook [6] MV2+R152 224 16 72.3 5.09 81.4 - - -

SCSampler [16] MV2+R50 224 16 72.9 2.62 42.0 70.8 2.62 42.0

FrameExit [7] R50 224 10 76.1 2.61 26.1 72.8 1.97 19.7

FrameExit [7] R50 224 16 76.1† 2.19
† 35.1† - - -

OCSampler [19] MV2+R50 224 10 77.2 2.58 25.8 73.7 2.16 21.6

Online

LiteEval [41] MV2+R101 224 25 72.7 3.80 95.1 61.0 3.96 99.0

AR-Net [21] MV2+R50/R32/R18 224/168/112 16 73.8 2.09 33.5 71.7 2.00 32.0

FrameExit (online) [7] R50 224 10 73.7† 2.76† 27.6† - - -

AdaFocus [37] MV2+R50 128 16 75.0 1.66 26.6 72.2 1.64 26.3

SoF-Net (ours) R50 168 16 75.3 1.71 27.4 72.8 1.75 28.0

We compare the proposed SoF-Netwith the state-of-the-art efficient action recog-

nition techniques in two branches: frame selection methods such as AdaFrame [42],

LiteEval [41], ListenToLook [6] SCSampler [16], FrameExit [7], and OCSampler [19],

and adaptive computation framework such as AR-Net [21] and AdaFocus [37]. Ta-

ble 4.1 and 4.2 summarize the results on ActivityNet-v1.3, Mini-Kinetics, and THU-

MOS’14. In THUMOS’14, we use 224⇥224 images and sample 16 frames from each

video for training a TSN [35] model. We also compare our method with an online ver-

15

Table 4.2: Action recognition results on THUMOS’14.
Method mAP GFLOPS/f GFLOPS/V

TSN [35] 46.6 4.12 65.9

AR-Net [21] 47.4 1.67 26.7

SoF-Net 47.8 1.60 25.6

Table 4.3: Comparison of runtime and frame usage ratio on the ActivityNet-v1.3 vali-

dation set. The numbers in SoF-Netdenote input image sizes.

Method
Runtime/V Total Runtime Frame Usage

(ms) (s) (%)

TSN [35] 110.5 543.6 100.0

AR-Net [21] 120.8 594.6 70.1

AdaFocus [37] 165.1 812.3 100.0

SoF-Net(168) 74.6 367.2 54.3

SoF-Net(192) 82.0 403.4 61.0

SoF-Net(224) 83.9 412.8 59.0

sion of FrameExit [7] by removing its heuristic frame sampling strategy—observing

frames from the center to the sides temporally. Our method outperforms all competing

methods in accuracy with smaller or comparable computational costs and parameters.

To compare the efficiency of algorithms, we additionally present the runtime and

frame usage ratio in Table 4.3 of our approaches and other methods. The results show

that SoF-Netis faster in inference than its counterparts by using fewer frames regard-

less of input resolution; we only use less than 60% of frames to predict action in videos.

Note that AR-Net [21] not only uses 70% of frames but also uses four backbone net-

works and four resolutions for each backbone network to process frames, resulting in

high latency. AdaFocus [37] appears to be efficient in terms of GFLOPS when using

the 128x128 cropped images as its inputs but turns out to have the longest runtime.

These runtime comparisons indicate that our model is more appropriate than other

methods for being applied to practical problems involving online processing require-

ments.

16

We believe that the outstanding performance of SoF-Netis mainly due to its unique

structure. SoF-Nethas a simple procedure based on a single backbone network and em-

ploys the features in multiple semantic levels to distinguish redundant or noisy frames

for the frame selection. This attribute makes the proposed approach more powerful

than other methods that rely on a single pre-defined semantic level for the decision.

4.4 Discussion

For a better understanding of our algorithm, we perform an in-depth analysis on the

ActivityNet-v1.3 dataset.

Analysis of our model We perform ablation studies to investigate the contributions

of individual components in our algorithm. In this experiment, we train the four vari-

ants of our models, where we add individual modules in the sequence of temporal mod-

eling, policy module, policy guidance with self-supervision, and early termination. The

policy module without temporal modeling is implemented by replacing LSTM with an

FC layer. Table 4.4 summarizes the results, where we observe the followings. First,

the result without temporal modeling implies that the historical information of non-

skipped frames is crucial to improve both accuracy and efficiency. Second, the appli-

cation of the policy module provides 21.3% (40.3 GFLOPS/V to 31.7 GFLOPS/V) ef-

ficiency improvement by skipping redundant frames using early layer skipping. Third,

the self-supervision obtained from inner classifiers helps the policy modules identify

noisy frames, leading to accuracy improvement. Finally, the early termination strategy

indeed makes SoF-Netmore efficient.

Frame skipping ratio Figure 4.1 illustrates the statistics of the decisions made by

policy modules. Overall, our policy modules learn to use 54.3% of frames while skip-

ping 32.3% on average, where the first and last policy modules, corresponding to res1

and res5, are two common locations, where skipping decisions are made. Frame skip-

17

Table 4.4: Ablation study for individual components in our algorithm, tested on the

ActivityNet-v1.3 validation set.
Policy Temporal Policy Early mAP

GFLOPS/V
module modeling guidance term. (%)

- - - - 73.7 40.3

X - - - 74.3 32.2

X X - - 75.0 31.6

X - X - 74.7 32.6

X X X - 75.6 31.7

X X X X 75.3 27.4

Table 4.5: Performance comparisons by varying input sizes on the ActivityNet-v1.3

validation set.

Resolution
w/o Early termination w/ Early termination

mAP GFLOPS (f/V) mAP GFLOPS (f/V)

168⇥ 168 75.6 1.98 / 31.7 75.3 1.71 / 27.4

192⇥ 192 76.4 2.73 / 43.7 76.3 2.34 / 37.4

224⇥ 224 77.1 3.48 / 55.7 76.9 3.04 / 48.6

ping at the last ResBlock enhances accuracy by preventing confusing frames from

being involved in inference. Besides frame skipping, early termination of frames im-

proves efficiency greatly by skipping 13.4% of frames.

Input resolutions We train SoF-Neton various sizes of input frames (168, 192, 224)

with and without early termination. As shown in Table 4.5, the accuracy of the model

improves as the size of an input frame increases while the corresponding computation

cost also increases. With a resolution of 224 ⇥ 224, our model achieves higher ac-

curacy than the state-of-the-art offline algorithm. In all resolutions, early termination

consistently reduces computations with negligible accuracy drops.

18

Figure 4.1: Statistics of frame usages. We show the ratio of the frames that stop for-

warding by their stop-decision locations as a form of ‘res#.’ ‘Early Term.’ denotes the

ratio of the frames skipped by early termination, and ‘Used’ means the frame ratio for

full inference. The numbers in gray color indicates the percentage of each category.

4.5 Qualitative Analysis

For a better understanding of how SoF-Networks, we present input frames and their

decision-making results in Figure 4.2. For each example, the bottom row illustrates

whether each frame is used for prediction or skipped; res# means that the model stops

prediction at the #-th policy module and decides to skip the frame, and the exit indi-

cates frame skipping by ‘early termination’ while the frames considered to be impor-

tant by the policy modules are represented as the original frames. The blue bars at the

bottom of each case denote action localization annotations provided in the ActivityNet-

v1.3 dataset. Note that, considering action localization annotation, SoF-Neteffectively

captures important frames and skips repetitive or irrelevant frames.

19

Sa
ili

n
g

R
af

ti
n

g
P

re
p

ar
in

g
p

as
ta

res1 res5 res5

res1

res5 res1

res5 res2 res5

res1 res5

C
ar

vi
n

g
ja

ck
-o

-l
an

te
rn

s

res5

res5 res5 res3

res5 res1

res2

exitexit exit exit

exitexit exit

exitexit exit exitres5

res5 res5

res2

exit

exit

Figure 4.2: Visualization of the decision-making results by SoF-Net. For each exam-

ple, the top row shows the original input frames and the bottom row illustrates how the

frames are processed in SoF-Net. The skipped frames specifies the position of stopped

layer (res#) while we present the original frames for the ones used for prediction. The

black box with a word ‘exit’ indicates the frames that are not observed at all due to

early termination, and the blue bar denotes the temporal action localization ground-

truths indicating the relevance of the frame to the target action.

20

Chapter 5

Conclusion

We presented a novel efficient action recognition algorithm, SoF-Net, which allocates

adaptive computational resources for individual frames based on their importance.

Specifically, the policy module in each layer decides to stop forwarding the current

frame to the following layers and filter out less important frames, reducing compu-

tational costs and improving recognition performance. The module is trained by the

efficiency loss and the policy guidance loss by comparison of classification scores of

inner classifiers in the current and next layers. Moreover, we also employ a simple yet

effective early termination strategy that decides to terminate the inference of a given

video.

In summary, SoF-Net has a simple online (sequential) procedure for efficient pre-

diction without using multiple backbone networks (e.g, AR-Net [21], LiteEval [41],

OCSampler [19]) or adopting offline prediction relying on global memory [42]. SoF-

Net employs representations in the multiple intermediate layers for frame selection,

effectively identifying potential redundancy or noise in various semantic levels. This

property makes the proposed approach more potent than other methods relying on a

single pre-defined semantic level for the decision. To the best of our knowledge, this is

the first attempt to show how to determine the frame’s usefulness in the intermediate

layer of a network.

21

Bibliography

[1] Fabian Caba Heilbron, Victor Escorcia, Bernard Ghanem, and Juan Carlos Niebles. Ac-

tivitynet: A large-scale video benchmark for human activity understanding. In CVPR,

2015.

[2] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and

the kinetics dataset. In CVPR, 2017.

[3] Hehe Fan, Zhongwen Xu, Linchao Zhu, Chenggang Yan, Jianjun Ge, and Yi Yang.

Watching a small portion could be as good as watching all: Towards efficient video clas-

sification. In IJCAI, 2018.

[4] Christoph Feichtenhofer. X3d: Expanding architectures for efficient video recognition.

In CVPR, 2020.

[5] Michael Figurnov, Maxwell D Collins, Yukun Zhu, Li Zhang, Jonathan Huang, Dmitry

Vetrov, and Ruslan Salakhutdinov. Spatially adaptive computation time for residual net-

works. In CVPR, 2017.

[6] Ruohan Gao, Tae-Hyun Oh, Kristen Grauman, and Lorenzo Torresani. Listen to look:

Action recognition by previewing audio. In CVPR, 2020.

[7] Amir Ghodrati, Babak Ehteshami Bejnordi, and Amirhossein Habibian. FrameExit: Con-

ditional Early Exiting for Efficient Video Recognition. In CVPR, 2021.

[8] Kensho Hara, Hirokatsu Kataoka, and Yutaka Satoh. Can spatiotemporal 3d cnns retrace

the history of 2d cnns and imagenet? In CVPR, 2018.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for

Image Recognition. In CVPR, 2016.

22

[10] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q

Weinberger. Multi-scale dense networks for resource efficient image classification. In

ICLR, 2018.

[11] Noureldien Hussein, Efstratios Gavves, and Arnold WM Smeulders. Timeception for

complex action recognition. In CVPR, 2019.

[12] Noureldien Hussein, Mihir Jain, and Babak Ehteshami Bejnordi. TimeGate: Conditional

Gating of Segments in Long-range Activities. arXiv preprint arXiv:2004.01808, 2020.

[13] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-

softmax. In ICLR, 2017.

[14] Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev, M. Shah, and R. Suk-

thankar. THUMOS challenge: Action recognition with a large number of classes.

http://crcv.ucf.edu/THUMOS14/, 2014.

[15] Yu-Gang Jiang, Zuxuan Wu, Jun Wang, Xiangyang Xue, and Shih-Fu Chang. Exploit-

ing feature and class relationships in video categorization with regularized deep neural

networks. TPAMI, 40(2):352–364, 2017.

[16] Bruno Korbar, Du Tran, and Lorenzo Torresani. Scsampler: Sampling salient clips from

video for efficient action recognition. In ICCV, 2019.

[17] Chao Li, Qiaoyong Zhong, Di Xie, and Shiliang Pu. Collaborative spatiotemporal feature

learning for video action recognition. In CVPR, 2019.

[18] Yan Li, Bin Ji, Xintian Shi, Jianguo Zhang, Bin Kang, and Limin Wang. Tea: Temporal

excitation and aggregation for action recognition. In CVPR, 2020.

[19] Jintao Lin, Haodong Duan, Kai Chen, Dahua Lin, and Limin Wang. Ocsampler: Com-

pressing videos to one clip with single-step sampling. In CVPR, 2022.

[20] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift module for efficient video

understanding. In ICCV, 2019.

[21] Yue Meng, Chung-Ching Lin, Rameswar Panda, Prasanna Sattigeri, Leonid Karlinsky,

Aude Oliva, Kate Saenko, and Rogerio Feris. Ar-net: Adaptive frame resolution for

efficient action recognition. In ECCV, 2020.

[22] Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho. Learning to compose hyper-

columns for visual correspondence. In ECCV, 2020.

23

[23] Bowen Pan, Rameswar Panda, Camilo Fosco, Chung-Ching Lin, Alex Andonian, Yue

Meng, Kate Saenko, Aude Oliva, and Rogerio Feris. Va-red 2: Video adaptive redundancy

reduction. ICLR, 2021.

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:

An imperative style, high-performance deep learning library. In NeurIPS, 2019.

[25] Zhaofan Qiu, Ting Yao, and Tao Mei. Learning spatio-temporal representation with

pseudo-3d residual networks. In ICCV, 2017.

[26] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh.

Dynamicvit: Efficient vision transformers with dynamic token sparsification. Neurips,

2021.

[27] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,

Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg,

and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 115(3):211–

252, 2015.

[28] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh

Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018.

[29] Minjoon Seo, Sewon Min, Ali Farhadi, and Hannaneh Hajishirzi. Neural speed reading

via skim-rnn. In ICLR, 2018.

[30] Surat Teerapittayanon, Bradley McDanel, and H.T. Kung. Branchynet: Fast inference via

early existing from deep neural networks. In ICPR, 2016.

[31] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. Learn-

ing spatiotemporal features with 3d convolutional networks. In ICCV, 2015.

[32] Du Tran, Heng Wang, Lorenzo Torresani, and Matt Feiszli. Video classification with

channel-separated convolutional networks. In ICCV, 2019.

[33] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann LeCun, and Manohar Paluri.

A closer look at spatiotemporal convolutions for action recognition. In CVPR, 2018.

[34] Andreas Veit and Serge Belongie. Convolutional networks with adaptive inference

graphs. In ECCV, 2018.

24

[35] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua Lin, Xiaoou Tang, and Luc

Van Gool. Temporal segment networks: Towards good practices for deep action recogni-

tion. In ECCV, 2016.

[36] Xin Wang, Fisher Yu, Zi-Yi Dou, Trevor Darrell, and Joseph E Gonzalez. Skipnet: Learn-

ing dynamic routing in convolutional networks. In ECCV, 2018.

[37] Yulin Wang, Zhaoxi Chen, Haojun Jiang, Shiji Song, Yizeng Han, and Gao Huang. Adap-

tive focus for efficient video recognition. In ICCV, 2021.

[38] Yulin Wang, Kangchen Lv, Rui Huang, Shiji Song, Le Yang, and Gao Huang. Glance

and focus: a dynamic approach to reducing spatial redundancy in image classification.

Neruips, 2020.

[39] Wenhao Wu, Dongliang He, Xiao Tan, Shifeng Chen, and Shilei Wen. Multi-agent rein-

forcement learning based frame sampling for effective untrimmed video recognition. In

ICCV, 2019.

[40] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S Davis, Kristen

Grauman, and Rogerio Feris. Blockdrop: Dynamic inference paths in residual networks.

In CVPR, 2018.

[41] Zuxuan Wu, Caiming Xiong, Yu-Gang Jiang, and Larry S Davis. Liteeval: A coarse-to-

fine framework for resource efficient video recognition. In NeurIPS, 2019.

[42] Zuxuan Wu, Caiming Xiong, Chih-Yao Ma, Richard Socher, and Larry S Davis.

Adaframe: Adaptive frame selection for fast video recognition. In CVPR, 2019.

[43] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and Kevin Murphy. Rethinking

spatiotemporal feature learning for video understanding. In ECCV, 2018.

[44] Serena Yeung, Olga Russakovsky, Greg Mori, and Li Fei-Fei. End-to-end learning of

action detection from frame glimpses in videos. In CVPR, 2016.

[45] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Torralba. Temporal relational

reasoning in videos. In ECCV, 2018.

25

�]

D$ XP (�: x⌅ âŸt Ù4 ¥©)| Ñ�X0 ⌅\ ¸⌧ ⌘ Xòî 4

D$–⌧ p�Xå ÿ�¡\ ⌅�ÑD ò¨t| Xî ∞–⌧ ⌧›Xî í@

ƒ∞ D©Ö»‰. ∞¨î ⌅�Ñ⌅X �(1¸ ⌘î1– 0| ⌧ƒ ⌅�Ñ– �i

Xå ƒ∞ ê–D `˘Xî ®(�x Ÿë x› L‡¨òD ⌧Hi»‰. πà, ¯

|8XL‡¨ò@ LSTM0⇠�E®»DD›X‡%$∏Ãl⌘⌅ƒ5‰–⌧

X îú⇠î π’D 0⇠<\ � ⌅�ÑX ©1D ⌧(�<\ î�i»‰. π�

⌅�Ñt ŸëD x›Xî p ƒ¿t ⇠¿ JD Ω∞ ®x@ ò8¿ �t¥\ 0

•D⌅ÏXîÉD⌘ËX‡‰Lÿ�¡\⌅�ÑDò¨i»‰.î`�(⌘–

⌅ËXt⌧ƒ ®¸�x p0 ÖÃ ⌅µD ƒÖXÏ ⌘¸)›X ƒ∞ D©D T±

�⇣i»‰.⌧H⌧L‡¨òD ActivityNet-v1.3, Mini-Kinetics✏ THUMOS’14X

8 �¿ ı⌧ §X»l–⌧ …�i»‰. ∞¨X ‰ÿ@ ⌧H⌧ ⌘¸)›t âŸ

x›–⌧�U1¸®(1¨tX¥ú‡�DÏ1\‰îÉDÙÏ�»‰.

¸î¥:D$,âŸx›,®(�xò¨

Yà: 2020-29539

26

	1 Introduction
	2 Related Works
	2.1 Efficient action recognition methods
	2.2 Adaptive computation techniques
	3 Proposed Method
	3.1 Overview
	3.2 Stop-or-Forward Network(SoF-Net)
	3.2.1 Conditional early termination
	3.3 Training
	3.3.1 Action classification loss
	3.3.2 Efficiency loss
	3.3.3 Policy guidance loss
	4 Experiments
	4.1 Experimental setup
	4.2 Implementation details
	4 4.3 Comparison with other methods
	4.4 Discussion
	4.5 Qualitative Analysis
	5 Conclusion
	Abstract (In Korean)

<startpage>11
1 Introduction 1
2 Related Works 4
2.1 Efficient action recognition methods 4
2.2 Adaptive computation techniques 5
3 Proposed Method 7
3.1 Overview 8
3.2 Stop-or-Forward Network(SoF-Net) 8
3.2.1 Conditional early termination 10
3.3 Training 10
3.3.1 Action classification loss 11
3.3.2 Efficiency loss 11
3.3.3 Policy guidance loss 11
4 Experiments 13
4.1 Experimental setup 13
4.2 Implementation details 14
4 4.3 Comparison with other methods 15
4.4 Discussion 17
4.5 Qualitative Analysis 19
5 Conclusion 21
Abstract (In Korean) 26
</body>

