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Abstract

With the advent of smartphones, mobile devices are equipped with various sen-

sors. Computational capabilities and a variety of sensors enable many new things on

mobile devices. In recent years, many researchers have tried to expand the boundary of

smartphone applications with previously unavailable media types. For example, acous-

tic communication using the microphone and speaker of a smart device has been one

of the hottest wireless technologies in recent years. Mobile text spotting, interaction

with text through a camera sensor, is also one of the active research topics in academia

and industry. For the operation of these new attempts in mobile devices, efficiency and

practicality are essential issues.

In this dissertation, we propose two systems that enable an efficient operation of

various smartphone sensor-based applications: (i) No Entry: Anti-Noise Energy Detec-

tor for Chirp-Based Acoustic Communication and (ii) Cameleon: Intelligent Camera

Sensor System for Text-spotting Oriented Operation in Mobile Devices.

First, No Entry is a novel energy detector (ED) for chirp-based acoustic commu-

nication systems. No Entry avoids not only high-energy noises but also a different

modulation-based acoustic signal by utilizing the frequency sweeping characteristic of

chirp signals. We implement prototype Android applications to evaluate detection ac-

curacy and power consumption. Compared with the state-of-the-art schemes, No Entry

reduces energy consumption by 30% while achieving a greater detection performance.

Second, we propose a camera sensor control system for deep learning applications

in mobile devices. While deep learning model benchmark dataset results promise out-

standing performance, in reality, the quality of sensor data has a significant impact on

the performance. We design an intelligent text-spotting oriented camera sensor con-

trol system. Unlike the default camera operation that produces images good for the

human eye, the proposed camera sensor control system controls the camera sensor
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optimized for the text spotting task. We implement and validate our design through

extensive experiments. Compared to the traditional camera pipeline, Cameleon dra-

matically recovers performance degradation and maximizes the text-spotting model’s

performance.

In summary, we propose systems that enable the efficient operation of smartphone

sensor-based applications. We implement two systems on commercial smartphones.

We also verify the performance through extensive real-world experiments. Through

this research, we take a step to expand the boundary of smartphones’ potential.

keywords: smartphone, smatphone sensor, mobile application, mobile deeplearning

student number: 2015-20885
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Chapter 1

Introduction

1.1 Motivation

Recently, with the rapid growth of mobile devices, there have been many attempts to

utilize sensors in mobile devices. Various sensors and more powerful computational

capabilities of mobile devices have enabled different types of interactions with various

types of media in smartphones. In recent years, many researchers have tried to expand

the boundary of smartphone interaction with previously unavailable media types.

We introduce two types of smartphone applications operating with different mobile

device sensors based on microphone and speaker sensor and camera sensor, respec-

tively. We briefly introduce each system and point out existing problems depreciating

their practicality. In this dissertation, we present how to solve the existing limitations

of each system and suggest performance improvements.

Acoustic communication: Acoustic communication using microphones and speak-

ers of smart devices is one of the most spotlighted wireless technologies in recent

years. Acoustic communication in mobile device utilizes near-ultrasound frequency

band that belongs to audible frequency band but people hardly hear. In particular,

chirp-based acoustic communication is widely adopted for smart device applications

because of its robustness to frequency selectivity. Acoustic communication is widely

1



used in localization, communication, etc. Since these types of applications run in the

background, the power consumption is an essential issue. In general, wireless commu-

nication save energy using energy detectors (EDs), which determine the existence of a

signal based on energy level. Acoustic coomunication can also reduce power consump-

tion by working only when a valid signal exists. However, there exists lots of noises in

near-ultrasound frequency band, and thus it is hard for conventional ED to distinguish

them from noise. In order to solve this problem, we design a novel ED for chirp-based

acoustic communication system to distinguish various noise and interference existing

in near-ultrasound frequency.

Mobile text-spotting: Mobile text-spotting using camera sensor of mobile device is

one of the active research subjects in both academics and industries close to real-life

usage. While text-spotting has been developed dramatically with the rising of deep

learning, none of the previous work consider the process of making input in mobile

devices. People have focused on improving the performance of text-spotting model

on a benchmark dataset. We attack the weak spot of deep learning models, it severly

underperforms when the input is different to the trained dataset. Since mobile device

camera is not optimized for text-spotting, an existing mobile device camera fails to

producing good images for text-spotting in some environments. In order to solve this

problem, we design a novel text-spotting oriented intelligent camera control system.

1.2 Main Contributions

1.2.1 No Entry: Anti-Noise Energy Detector for Chirp-Based Acoustic

Communication

We propose a novel ED for chirp-based acoustic communication systems that over-

comes existing limitations. We scrutinize the chirp signal, and find a distinct charac-

teristics of chirps. We design an ED that find chirp-signal by checking the special key

features of chirp. Since the merit of ED is computational simplicity, we design the

2



detection algorithm not to deteriorate the simplicity. The main contributions of this

chapter are as follows.

• We propose No Entry, a novel ED that can avoid not only high-energy noise but

also high-energy interference by utilizing the frequency sweeping characteristic

of chirp signals.

• Detection accuracy of No Entry shows that true positive (TP) rate is more than

90% when false positive (FP) rate is 1% even with severe interference.

• The power consumption of No Entry is measured using a prototype Android

application and Monsoon power monitor. No Entry reduces energy consumption

by about 30% compared with the state-of-the-art scheme.

1.2.2 Cameleon: Intelligent Camera Sensor System for Text-spotting Ori-

ented Operation in Mobile Devices

We aim to propose a system to control cameras for text-spotting-oriented operations,

which reduce the performance degradation from conventional camera operation. The

main contributions of this chapter are as follows.

• We verify the operation of the mobile device camera is not optimized to work

well with a text-spotting network. We show that the text-spotting network suffers

from a performance drop in accordance with changes in the environment of the

input images.

• We propose Cameleon, a novel intelligent camera sensor control system that

controls the camera exposure to fit the image for the text-spotting network in

various environments.

• We validate our design through extensive experiments over the various places

and objects. We verify that Cameleon generates better images for text-spotting

application than that of conventional camera systems.

3



1.3 Organization of the Dissertation

The rest of the dissertation is organized as follows.

Chapter 2 presents No Entry, a novel ED for chirp-based acoustic communication.

No Entry overcomes the existing limitation of conventional ED coming from the am-

bient noise in everyday life. We present the overview and the detailed process of No

Entry and suggest extensive evaluation in real-world experiments.

In Chapter 3, we present a text-spotting-oriented intelligent camera control system

called Cameleon. The main philosophy in desining Cameleon is to control mobile

device camera in a way to fit text-spotting. We explain Cameleon in detail and suggest

evaluations through comprehensive real world experiments.

Finally, Chapter 4 concludes the dissertation with the summary of contributions

and discussion of the future work.
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Chapter 2

No Entry: Anti-Noise Energy Detector for Chirp-Based

Acoustic Communication

2.1 Introduction

Smart mobile devices are no longer special things to modern people. As smart devices

become common, they play several roles. For example, they play the role of credit

cards, coupon books, and even gaming consoles. Accordingly, various types of wire-

less communication system have been proposed to deal with several applications. An

acoustic communication system using smart mobile devices is one of the most spot-

lighted wireless technologies.

Most acoustic communication systems using smart devices operate in the near-

ultrasound frequency range, i.e., 18–20 kHz. The lower frequency range is avoided to

prevent any unwanted audibility by humans, and the higher frequency range is lim-

ited by the sampling rate of 44.1 kHz, which is mostly common in off-the-shelf smart

devices. A lot of research utilizing the advantages of the sound has been proposed. Rel-

atively slower speed of sound has been flourishing the indoor localization and motion

tracking research [4,5]. In addition, the feature that near-ultrasound acoustic signal can

be easily embedded in the music or video contents without user’s perception attracts
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the attention of the short-range data transmission services [6–9].

Acoustic communication exploits various digital modulation schemes, such as

frequency-shift keying (FSK), orthogonal frequency-division multiplexing, chirp mod-

ulation, etc. In this chapter, we focus on chirp signal-based acoustic communication

systems. Chirp signals have a clear advantage in that they are robust to frequency se-

lectivity [7]. Thus, chirp signals are suitable for some background applications such as

second screen service [8] and motion tracking [4], which requires robust signal trans-

mission as the top priority.

Unlike foreground applications, which a user works on in person, background ap-

plications work continuously behind the scene often without being perceived by the

user. Thus, background applications pose a risk of excessive power consumption with-

out a user perception. To be specific, in most existing acoustic-based background ap-

plications, a receiver does not have any preliminary knowledge about a transmitter,

and hence, the receiver has to periodically wake up and try to receive a signal. How-

ever, applications consume considerable energy in the receiving process. Applications

can reduce energy consumption by detecting a signal preferentially and working only

when a valid signal exists.

Energy detector (ED) is a type of such signal detection system. A conventional

energy detection method measures in-band energy, i.e., the energy conveyed in the

frequency range used by the communication system, during a detection time [10].

However, if we use the conventional ED in acoustic communication, there are two

problems. The first problem is caused by some types of noise, called ambient noise,

which influences acoustic communication. Fig. 2.1 shows the power spectral density

(PSD) plot of two different types of noise, i.e., a conversation sound and a cough

sound. It is shown that the power level of the conversation sound decreases sharply

from the frequency of about 10 kHz. On the contrary, the cough sound keeps relatively

high power level up to the frequency of 20 kHz. Due to the high power level, an ED

can mistake the cough sound as a valid signal. Likewise, ambient noise refers to such

6
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Figure 2.1: PSD plots of a conversation sound and a cough sound.

noise whose frequency components have a high power over the entire audio frequency,

so that an ED can mistake ambient noise as a signal. Second, if there exists an inter-

ference, i.e., a signal from different acoustic communication systems sharing in-band

frequency range, ED can also mistake the interference as the signal of its own system.

In this chapter, we propose No Entry, a novel ED for chirp-based acoustic commu-

nication systems that goes beyond existing limitations. The main idea behind No Entry

is not merely to sense the in-band energy level, but to verify that the signal has the

frequency sweeping characteristic of chirp signals. Since the merit of ED is compu-

tational simplicity, we design the detection algorithm not to deteriorate the simplicity.

The main contributions of this chapter are as follows.

1. We propose No Entry, a novel ED that can avoid not only high-energy noise but

also high-energy interference by utilizing the frequency sweeping characteristic

of chirp signals.

2. Detection accuracy of No Entry shows that true positive (TP) rate is more than

90% when false positive (FP) rate is 1% even with severe interference.

3. The power consumption of No Entry is measured using a prototype Android

7



application and Monsoon power monitor. No Entry reduces energy consumption

by about 30% compared with the state-of-the-art scheme.

The rest of this chapter is organized as follows. In Section 2.2 and Section 2.3, we

describe related work and background, respectively. Section 2.4 presents the overall

system of the proposed ED. We discuss several parameters related to implementation

and analyze the computation complexity of the proposed method in Section 2.5. In

Section 2.6, we evaluate the performance and conclude the chapter in Section 2.7.

2.2 Related Work

There have been many studies to deal with the signal detection in acoustic communica-

tion. The authors of [7,11] use peak PSD ratio of in-band, e.g., 19.5–22 kHz frequency

range, to out-of-band, e.g., 16–18 kHz frequency range. The authors assume both in-

band and out-of-band have similar noise levels when the signal from their acoustic

communication system is absent. In this case, peak PSD ratio becomes low because

the peak PSD of the in-band and that of the out-of-band are comparable. If the sig-

nal exists in the in-band, on the other hand, the peak PSD of the in-band is much

greater than that of the out-of-band, so that the peak PSD ratio becomes high. How-

ever, this method has limitations. If there exists ambient noise that has higher energy

in the in-band than in the out-of-band, peak PSD ratio becomes high thus causing a

false positive error. Peak PSD ratio also has a trouble distinguishing different acoustic

signals from different communication systems which use the frequency range nearby

the in-band.

The authors of [8] consider the influence of ambient noise and propose J-CS al-

gorithm utilizing the shape of a chirp signal correlation. J-CS is able to distinguish

the non-chirp signals because it uses chirp signal’s correlation results. However, even

though J-CS is able to differentiate interference signals from the chirp signals, it has a

limitation in terms of power consumption. To be specific, J-CS hardly reduces power

8
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Figure 2.2: Example of occupied/vacant frequency.

consumption because it determines the existence of the signal at the end of its receiving

process.

The authors of [12] propose an energy-efficient acoustic communication system.

They utilize an acoustic beacon signal to determine the presence of an acoustic sig-

nal before operating the entire process. A receiver wakes up periodically and verifies

whether a beacon signal exists or not during short detection time. If the receiver de-

tects the beacon signal, it tries to receive the signal. If the receiver does not detect the

beacon signal, on the other hand, it goes to sleep. However, the authors do not specify

the behavior of the beacon detection process in the chapter, as their main contribution

is an accurate spatially-aware interaction.

2.3 Background

2.3.1 Chirp Signal

A chirp signal is a signal whose frequency sweeps over time, i.e., the frequency in-

creases or decreases with time. We exploit this frequency sweeping characteristic of

chirp signals. Assume that we observe a chirp signal during a time duration shorter

9



than symbol duration (Tsym), i.e., the detection time, notated by tED, is smaller than

Tsym. Then, the signal sweeps not the entire in-band frequency range but a part of the

in-band frequency range. We can divide the in-band frequency range into two groups.

We define occupied frequency range (Wo) as the frequency range the signal sweeps

during tED, and vacant frequency range (Wv) as the rest in-band frequency range ex-

cluding Wo. Fig. 2.2 shows an example of a chirp signal (a linearly-increasing straight

line) of duration Tsym sweeping from fstart to fend, along with tED, Wo, and Wv as

well as their relationships. Even though the ratio between Wo and Wv would change

depending on tED and chirp’s sweeping rate, each of Wo and Wv is continuous or cir-

cularly continuous within the in-band frequency range. Circularly continuous means

the end of the in-band frequency (fend) is followed by the beginning of the in-band

frequency (fstart), as shown in Fig. 2.2b. We utilize two attributes of a chirp to distin-

guish it from ambient noise, i.e., 1) in-band frequency range consists of Wo and Wv,

and 2) each of Wo and Wv is (circularly) continuous. We will present the details in the

next section.

2.3.2 Noise Analysis

One of the biggest weaknesses of acoustic communication is its vulnerability to am-

bient noise. Compared to radio frequency wireless technologies, acoustic communi-

cation uses relatively low frequency range around kilohertz where noise can be easily

generated by human activities. The authors of [8] describe the influence of ambient

noise on acoustic communication. However, they do not survey how often ambient

noise is generated. If ambient noise rarely appears in everyday life, handling ambient

noise in the ED might rather be an unnecessary overhead.

We investigate how often ambient noise is generated in two different environments.

We collect data in two offices representing quiet places and two cafes representing

loud places. We record one hour per measurement and check how often ambient noise

exceeds a certain energy threshold. To set the energy threshold, we select the appli-
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cation in [8], which is a chirp-based background second screen service application,

as our target application. In the target application, the signal’s frequency range, i.e.,

in-band frequency range, is 18.5–19.5 kHz. As shown in the Fig. 2.3, a frame consists

of 368 ms-long up-chirp preamble, 40 ms-long post-preamble guard interval (GI), and

11 symbols with symbol duration (Tsym) of 96 ms each, making the overall packet

duration 1463 ms [8]. We first generate and collect the chirp signals 10,000 samples in

a quiet conference room environment using TV as transmitter. To specify the volume

of the signal, we measure the sound pressure level and set the sound pressure level of

the signal to 32 dBSPL, which is very low volume sound similar to the sound level in

a quiet bedroom at night [13]. We then set the threshold as the average energy of the

collected data. We measure the ratio of the number of samples exceeding the threshold

to the whole samples for a detection time of 50, 100, and 200 ms. The measurement

result is shown in Table 2.1.

The result in the offices, which are relatively quiet, is less than 5% because ambient

noise is rarely generated in a quiet environment. Due to a fricative sound containing

high in-band energy such as a door closing sound, however, ambient noise is some-

times generated as shown in the result in Office 1. On the other hand, the result in the

cafes, which are relatively loud, shows that lots of samples pass the energy threshold.

In cafes, noise is generated by the coffee machine sound as well as dragging chair or

desk sound. These types of noise are common and frequently generated during a busy

11



Table 2.1: Measurement Results

Detection Time
Place

Cafe1 Cafe2 Office1 Office2

50 ms 46.1% 59.8% 2.8% 0.9%

100 ms 34.0% 45.3% 3.4% 0.7%

200 ms 28.9% 35.0% 4.0% 0.7%

hour, which generates lots of high-energy ambient noise in the cafe. These results show

that ambient noise is prevalent in our daily life.

2.3.3 Energy Detector

Energy detectors determine the existence or absence of the signal based on a certain

criterion. Generally, EDs use the energy in the in-band frequency range as a crite-

rion. The performance of the EDs depends on how precisely they make decisions. Two

terms, namely, TP rate and FP rate, are used to express the ED’s detection accuracy.

The TP rate is calculated as the ratio between the number of detection events catego-

rized as signal and the total number of actual signal detection events. The FP rate is

calculated as the ratio between the number of detection events wrongly categorized as

signal and the total number of actual noise events. In other words, an ideal ED should

achieve 0% FP rate and 100% TP rate. The design of the ED depends on the purpose

of the system. If it is important for the system to prevent the effect of noise, the opti-

mization problem is to maximize the TP rate for a given FP rate. On the other hand, if

the system considers correct detection of the signal as a top priority, the optimization

problem is to minimize the FP rate for a given TP rate.

Generally, EDs save the power consumption by ignoring the noise with energy be-

low a configured threshold. However, if the noise has higher energy than the threshold,

EDs classify the noise as a valid signal which corresponds to FP. FP errors caused

by high-energy noise induce additional operations to decode valid signals, thus caus-
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ing unnecessary power consumption. To eliminate such unnecessary operations, if we

design an ED that can detect not only low-energy noise but also high-energy ambi-

ent noise in a short time, we can take a step towards more energy-efficient acoustic

communication.

2.3.4 FSK Modulation

Along with chirp, an FSK modulation is also widely used in acoustic communica-

tion due to its simplicity. There are many applications providing services using FSK

modulation-based acoustic communication system [14, 15]. As these FSK acoustic

communication services are used in common places such as cafes or department stores,

we can assume that people could often encounter the FSK signals in everyday life. As

mentioned in Section 2.1, due to limited near-ultra sound frequency range, FSK signals

are likely to use nearby frequency range to the in-band frequency range. Since FSK

signals can cause more fatal interference than noise, FSK signals should be regarded

as a major interference in the ED of chirp-based acoustic communication.

2.4 No Entry: Proposed Energy Detector

In this section, we present the proposed ED, called No Entry. We briefly summarize

the entire process of No Entry and then explain each process in detail.

2.4.1 System Overview

When designing an ED, we try to exclude interference that could make a false alarm

on the ED. No Entry operates in three processes: 1) low-energy noise filter, 2) ambient

noise filter, and 3) FSK signal filter.

In the first process, we observe whether high energy components exist within the

in-band. If high energy component is detected in the in-band, the ED assumes the

existence of a signal and moves to the next process. However, the presence of high

13
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Figure 2.4: Normalized PSD plot result of the signal and ambient noise.

energy components in the in-band does not always guarantee the existence of a signal.

Ambient noise also has a high energy in the in-band, thus it passes the first process.

Fig. 2.4 shows the normalized PSD of a chirp signal and ambient noise. In case of
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Figure 2.5: Proposed energy detection process flow chart.

a chirp signal, only the frequency components in specific frequency range have high

power and the remaining frequency components have low power, which represents Wo

and Wv, respectively. On the other hand, the PSD of ambient noise shows disordered

patterns. We distinguish between chirp signal and ambient noise by taking advantage

of these characteristics.

Even though we deal with the false alarm from the noise, we still have to verify

that the received data is a chirp signal. FSK signals are similar to chirp signals from

the perspective of time and frequency relationship in that the frequency of FSK signals

does not occupy the entire in-band frequency range over a certain time. Therefore, it

is difficult to distinguish chirp signals from FSK signals only by checking whether

the power is concentrated in a specific frequency range within the in-band. We try to

discriminate FSK signals from chirp signals based on whether the frequency is fixed

or changed for a certain time, which is the greatest difference between FSK and chirp

signals. Throughout these processes, No Entry is able to detect a valid chirp signal.

The entire process is shown in Fig. 2.5 and detailed explanation of each process will

be described in the next subsections.
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2.4.2 Low-Energy Noise Filter

The first process of No Entry is low-energy noise filter which checks whether there

exists a high-energy component in the in-band frequency range based on the energy

level. The performance of low-energy noise filter is closely related with the detection

time (tED). Applying short tED may result in lack of time samples, thus leading to the

degradation in detection accuracy. On the other hand, to utilize the attributes of a chirp,

which are mentioned in Section 2.3.A and will be detailed in the next subsection, tED

should be short enough to divide the in-band into Wo and Wv. Thus, there are two

requirements concerning tED in opposition to each other. We have to use a long tED

to secure the detection accuracy, while the short tED is desired to observe Wo and

Wv. Depending on tsym, the required tED to meet the second requirement may be too

short to securing the detection accuracy. We tackle this challenge by gathering NRx

segments with tED and making them into a large chunk, which is a similar approach

to short-time Fourier transform (STFT) without window overlapping. In this way, we

can get a short tED, which can observe Wv and Wo for each segment, and at the same

time, we can get enough time samples to observe in-band energy by combining several

segments.

We empirically set tED to 20 ms and set NRx to five, which makes a total detec-

tion time 100 ms. We denote each segment of the received data in the time domain

as yi[t], and its fast Fourier transform (FFT) as Yi[f ], respectively. Each Yi[f ] has

Nfreq frequency components within in-band frequency range, where Nfreq is deter-

mined by FFT size. For example, if we set bandwidth to 1 kHz, FFT size to 1,024, and

sampling rate to 44.1 kHz, the frequency resolution becomes 44, 100/1024 ≈ 43 Hz,

and hence, Nfreq becomes 23 (i.e., Nfreq=b1000 Hz/43 Hzc=23). Let fk denote the

k-th frequency component when the nearest frequency component close to fstart is

regarded as f1. The frequency components belonging to the in-band frequency range

can be expressed as fi such that f1 ≤ fi ≤ fNfreq
, thus the in-band energy of the each
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segment, denoted as Ei, is calculated as

Ei =

Nfreq∑
k=1

|Yi[fk]|2, i ∈ {1, · · ·, NRx}. (2.1)

We compare the sum of the NRx segments’ in-band energy (Etot =
∑NRx

i=1 Ei) with

a certain threshold (Ethres). If Etot is greater than Ethres, we go to the next process,

assuming that there is a high-energy component in the in-band.

2.4.3 Ambient Noise Filter

To verify that the received data passing the low-energy noise filter is not ambient noise,

No Entry examines the PSD of the received data. Since there are too many types of am-

bient noise, it is impossible to find consistent characteristics. Thus, it would be more

reasonable to use the attribute of a chirp signal rather than that of ambient noise as

a criterion. We focus on Wo and Wv as a special characteristic of the chirp. The fre-

quency component has a different power depending on whether it belongs to either Wo

or Wv. If the frequency components overlap with Wo, then the power of each compo-

nent is high, otherwise, the power is low. Therefore, the chirp’s frequency components

are divided into two sets based on the power and location, while those of noise are

not clearly divided like chirp signals. We try to find Wo and Wv by gathering the high

power frequency components and the low power frequency components, respectively.

As mentioned in the Section 2.3, Wv is either continuous or circularly continuous

depending on the detection timing. In addition, Wo could also be either continuous or

circularly continuous depending on the symbol combination. Since the ED performs

detection process without synchronization, some segments can contain parts of two

consecutive symbols. The frequency that the signal sweeps during detection varies de-

pending on the symbol combinations at the boundary of two symbols. Fig. 2.6 shows

two different symbol combination examples of the binary chirp. In case of Fig. 2.6a,

an up-chirp is followed by a down-chirp. In this case, Wo and Wv are made up of con-

tinuous frequency ranges during detection time. In case of Fig. 2.6b, on the other hand,
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Figure 2.6: Different chirp signal combination example.

an up-chirp is followed by another up-chirp. In this case, the first signal’s frequency

ends at fend and the next signal’s frequency starts at fstart, which makes Wo circularly

continuous. Despite the same detection timing, the different chirp combination makes

Wo and Wv different. In other words, we have to consider that both Wo and Wv could

be circularly continuous.

We define a metric, named maximum peripheral-to-opposite point peripheral ratio

(MOR), to reflect chirp’s Wo and Wv. To obtain the MOR, we create two sets of

frequency components, Smax and Sop, for tracking Wo and Wv, respectively. Smax

and Sop are created according to the following procedure.

1. Find fimax having the maximum power among Nfreq frequency components

and add fimax to Smax.

2. Set the frequency component (fiop) that is bNfreq/2c away from fimax to the

opposite one, i.e., bNfreq/2c = |imax − iop|, and add fiop to Sop.

3. Compare the power of two frequency components adjacent to Smax and add

the higher power frequency component to Smax. Repeat this process until the

number of frequency components in Smax reaches Nmax.
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4. Compare the power of two frequency components adjacent to Sop and add the

lower power frequency component to Sop. Repeat this process until the number

of frequency components in Sop reaches Nop.

We expect that Smax contains a part of Wo and Sop contains a part of Wv. MOR can

be defined as follows:

MORi =
Nop

∑
k∈Smax

|Yi[fk]|2

Nmax
∑

k∈Sop
|Yi[fk]|2

, i ∈ {1, · · ·, NRx}. (2.2)

We set the size of the maximum set (Nmax) and that of the opposite set (Nop) differ-

ently to reflect different ranges of Wo and Wv. In order to obtain an appropriate MOR

through the above procedure, the first selected frequency components, fimax and fiop ,

must belong to Wo and Wv, respectively. We set a condition that restricts tED to be less

than a half of tsym. Accordingly, the maximum Wo is not over BW/2 (≈ bNfreq/2c)

during detection time, which means the range of the absolute value of Wo from point

fimax is always less than BW/2. Therefore, we can ensure the selected fiop is always

contained in Wv unless fimax is selected out of Wo. Moreover, by specifying the lo-

cation of the opposite frequency components, noise must have similar PSD to that of

chirp not only the ratio between high power range and low power range but also the

locations of each high power range and low power range. Thus, specifying the oppo-

site frequency component has an effect of strengthening the effect of the ambient noise

filter.

We can get NRx MORs from the received data and decide whether the received

data is a valid signal or noise based on them. However, as shown in the Fig. 2.3, packet

has a post-preamble GI. If a segment contains a GI unfortunately, it is difficult to obtain

appropriate MOR that correctly reflects the chirp characteristic. In addition, a GI can

also affect one or more segments. To minimize the effect of a GI, we select Ncomb

segments out of the NRx segments based on the in-band energy. Mostly, the in-band

energy of the segment including a GI is smaller than that of the segment including a

valid signal. We select the top Ncomb segments with high in-band energy to exclude

19



the segments including a GI. Therefore, we decide the validity of the received data by

comparing Ncomb MORs with a threshold (MORthres). Unless all Ncomb MORs are

not larger than MORthres, we consider the received data ambient noise.

2.4.4 FSK Signal Filter

FSK signals change the frequency in a particular time interval. If we look at the power

of an FSK signal in the frequency domain, the power is concentrated at the around of

the instantaneous frequency. The relationship between concentrated high power fre-

quency range and the other low power frequency range is similar to the relationship

between Wo and Wv of chirp signals. For this reason, neither low-energy noise filter

nor ambient noise filter properly discriminates FSK signals.

The biggest difference between chirp signals and FSK signals is whether the fre-

quency is fixed or constantly changed for a certain period of time. Therefore, we try

to distinguish between chirp signals and FSK signals by observing whether the fre-

quency constantly changes or not. Because the frequency pattern of chirp signals is so

varied depending on the symbol combination, it is difficult to find a method of simply

confirming that the received segment is a chirp signal. Instead, we used a method that

regards the received segments as an FSK signal if they have a fixed frequency during

the detection time. We track the frequency of each segment by observing the maximum

power frequency component (fimax).

We denote the number of pairs of consecutive segments which have the same max-

imum power frequency component as ZRx. However, if we simply track the index

of the maximum power frequency component, i.e., imax, there is a problem. Due to

the limit of the frequency resolution, the maximum power frequency component can

not exactly reflect the instantaneous frequency. Accordingly, despite the same instan-

taneous frequency, the maximum power frequency component is sometimes changed

to the nearby frequency component, which fades our approach to distinguishing the

signal through imax.
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To compensate this problem, we additionally utilize the second highest power fre-

quency component denoted by fi2nd
. If imax’s of two consecutive segments are not

the same, we check the index of the second highest power frequency component, i.e.,

i2nd, of each segment. If imax of the former segment equals to i2nd of the latter seg-

ment and also i2nd of the former segment equals to imax of the latter segment, this

mismatch is considered a transient error and the maximum power frequency compo-

nents of two segments are considered equal. Finally, we compare ZRx with a certain

threshold (Zthres). When the received data passes all the processes, then No Entry

finally determines that there exists a chirp signal.

2.5 Look Inside No Entry

This section covers the issues related with implementing No Entry. The important pa-

rameters used in No Entry are analyzed, and then the computational complexity is also

discussed.

2.5.1 Parameter Analysis and Discussion

The performance of No Entry depends on various parameters. In this subsection, we

will discuss the influence of each parameter. Since the optimization problem of each

parameter is a matter of realization, we present a guideline on how to choose the pa-

rameters.

Detection time

Detection time (tED) is the most important parameter in that it gets involved in the

entire process of No Entry directly and indirectly. tED determines not only the detec-

tion performance but also the operation time. The number of time samples determines

FFT size, which is closely related to the frequency resolution and the computational

complexity of No Entry. The frequency resolution is associated with how accurately
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we can track Wo and Wv. However, the process of getting MOR is not to find the

exact positions of Wo and Wv, but to find some frequency components belonging to

the groups. Thus, we do not need an excessively fine-grained frequency resolution.

We empirically find that No Entry works well with FFT size greater than or equal to

1,024. The detection time will be further discussed below in conjunction with other

parameters.

Set size

Another key parameter is the set size. Two set sizes (Nmax, Nop) play a key role in

getting MOR. Getting MOR is the process of tracking Wo and Wv. If we choose in-

appropriate set sizes, MOR does not reflect the Wo and Wv correctly. In fact, setting

the set size is closely related with setting the ratio of Wo and Wv during the detection

time, which is closely related with setting tED. If we shorten tED, the ratio of Wv

within the in-band increases and that of Wo decreases. In this case, we should increase

Nop and reduce Nmax. If we lengthen tED, on the same principle, we should increase

Nmax and reduce Nop.

If we take a closer look at the process of getting MOR in (2.2), MOR of the noise

is lowered due to a low value belonging to Smax or a high value belonging to Sop.

Since we divide a large value by a small value, increasing the denominator is much

influential than decreasing the numerator. This means setting Nop to a large value

is more effective than setting Nmax to a small value, which is equivalent to setting

a higher ratio of Wv within the in-band. Eventually, getting a effective MOR value

comes down to setting tED to a small value. From this point of view, we can confirm

that the necessary condition for detection time is not a strict condition.

2.5.2 Parameter Selection

Detection accuracy varies depending on various parameter values. In the target appli-

cation, the length of the GI after the preamble is 40 ms. Thus, when we collect five

22



20 ms-long segments, the number of segments that can contain part of a GI does not

exceed three. In other words, at least two 20 ms-long segments do not contain a GI

at all. Therefore, we choose Ncomb = 2 to be sure that the selected segments are not

affected by a GI, thus minimizing the impact of a GI.

Since Wo and Wv are different for each received data, Nmax and Nop should be set

so as to be generally included in Wo and Wv. Since there are infinite kinds of ambient

noise, it is impossible to get the optimized parameters for all kinds of ambient noise.

However, if we set the parameters that work well over many different kinds of ambient

noise, we can expect that No Entry copes with the unexpected noise. First of all, we

collect noise data set by generating various types of ambient noise that we can meet

frequently in our daily life. The types of ambient noise included in the noise data set

are clapping, rattling, sneezing, etc. Then we find a set of the parameters that works

best on the noise data set.

Fig. 2.7 shows an example result of Galaxy S7. The graph shows the FP rate by

changing Nmax and Nop. We set MORthres to 99% of the ambient noise data pass-

ing the low-energy noise filter. The optimal parameters yielding the lowest FP rate are

Nmax = 2 and Nop = 8, which yield 13% FP rate. The performance does not dras-

tically change when the parameters are selected around the optimal set. However, the

FP rate considerably increases if the parameters are selected far from the optimal set.

Based on the result, it can be expected that the performance will not be severely

degraded unless the parameters are selected significantly far from the optimal set.

2.5.3 Computational Complexity Analysis

In this subsection, we analyze the computational complexity of No Entry. One of the

reasons for using ED is its low computational complexity [10]. Since the computa-

tional complexity is closely related to the amount of the signal processing, it is impor-

tant to operate with as few calculations as possible. Generally, acoustic communication

system uses 16-bit pulse-code modulation (PCM) data, and hence the complexity of
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Figure 2.7: The FP rate according to each parameter change.

multiplication dominates the complexity of addition. Thus, we only consider the num-

ber of multiplications in the analysis.

We compare the complexity of No Entry with the in-band ED using the same detec-

tion time. In-band ED refers to the conventional ED to reject low-energy noise using a

single segment unlike the low-energy filter of No Entry which uses multiple segments.

In general, the FFT size is chosen to be a power of two. However, since No Entry uses

NRx segments with tED so that setting the detection time to NRxtED can not guar-

antee that FFT size of the in-band ED is equal to NRx times of FFT size in No Entry.

Therefore, for a reasonable comparison, we assume that FFT size of the in-band ED is

equal to NRx times that of No Entry. In other words, if we denote FFT size of No Entry

as NFFT, FFT size of the in-band ED becomes NRxNFFT. FFT takes part in the largest

amount of the computational complexity and the complexity of FFT depends on FFT

size. If we denote FFT size as NFFT, FFT computation performs 1
2NFFTlog2NFFT

complex multiplications. Secondly, we calculate the complexity of getting the in-band

energy. Except for FFT, multiplication and division are performed only in the pro-

cess of obtaining MOR throughout the process. However, the number of operation

is at most NRx, which is negligible. Therefore, we can compare the computational
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complexity taking into account only the complexity involved in FFT computation. As

mentioned above, the number of multiplication operations required for FFT compu-

tation is NFFT(log2NFFT)/2, so that the complexity of the in-band ED is larger by

NRxNFFT log2NRx/2. Therefore, we conclude that the computational complexity of

No Entry is much smaller than that of in-band ED, meaning that No Entry can also

maintain the advantage of low computational complexity.

2.6 Performance Evaluation

We evaluate the performance of No Entry in terms of detection accuracy and power

consumption. We use Samsung Galaxy S5, S7, and LG G5, G6 as experiment devices.

2.6.1 Detection Accuracy

We compare the detection accuracy of No Entry with three different schemes. We set

the in-band ED (Baseline) as a baseline scheme and set J-CS [8] and peak PSD ratio

(PPR) [11] as comparison schemes.

Noise filtering

We evaluate the detection accuracy in two different environments with the same signal

and noise data sets used in Section 2.3. First, we evaluate the detection accuracy with

the noise data set of the offices representing quiet places to verify the ability to han-

dle low-energy noise. Second, we evaluate the detection accuracy with the noise data

set of the cafes representing loud places to verify the ability to handle ambient noise.

The parameters we use in the experiments are described in Table 2.2. No Entry has

several thresholds besides Ethres. Thus, we fix Ethres to 100% TP rate and observe

the accuracy by changing MORthres. We present the evaluation results using receiver

operating characteristic (ROC) curve by changing the threshold defined in each com-

parison scheme. Fig. 2.8a shows the ROC curves using the noise data set of the offices.

25



Table 2.2: Experiment Parameter Setting

Parameter Galaxy S5 Galaxy S7 LG G5 LG G6

tED 20 ms

NRx 5

NFFT 1024

Nmax 2 2 1 4

Nop 7 8 8 9

Ncomb 2 2 2 2

As observed in Section 2.3, office environments have little ambient noise. Thus, all of

the schemes work properly. Fig. 2.8b shows the ROC curves using the noise data set

of the cafes. As expected, the baseline ED shows degraded accuracy due to ambient

noise. No Entry and the other comparison schemes, i.e., J-CS and peak PSD ratio,

recover the accuracy degradation through their own detection method. As mentioned

in Section 2.2, the peak PSD ratio method induces false alarms if ambient noise has

a higher energy level in the in-band than that in the out-of-band, which appears in the

results of the cafe data. In addition, J-CS, in the case of Galaxy S5, cannot completely

distinguish ambient noise and yields degraded performance. On the other hand, No

Entry restores the accuracy almost completely as it is designed to withstand ambient

noise.

FSK signal filtering

We next evaluate the detection accuracy of No Entry and comparison schemes with

an FSK signal. We collect the FSK signal data that is actually being used for order

services in cafes [15]. Fig. 2.9 shows the spectrogram of the collected FSK signal. The

FSK signal uses a frequency range close to the in-band of the target application, thus

possibly causing the false alarms on the ED.

First of all, we verify that No Entry and comparison schemes have difficulty fil-
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Figure 2.8: ROC curves in two different noise environments.

27



2 4 6 8 10
Time (secs)

0

5

10

15

20

F
re

qu
en

cy
 (

kH
z)

-140

-120

-100

-80

-60

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/H
z)

Figure 2.9: Spectrogram of the collected FSK signal.

tering the FSK signal. Fig. 2.10a shows the ROC curves of three comparison schemes

and No Entry without FSK signal filter. It is shown that the baseline ED, the peak PSD

ratio, and No Entry, which are energy based methods, hardly distinguish the FSK sig-

nal. On the other hand, since J-CS detects the chirp signal based on the correlation, it

is possible to distinguish the FSK signal to some extent. However, its detection accu-

racy with the FSK signal is degraded compared with the result with ambient noise, i.e.,

Fig. 2.8

Fig. 2.10b shows the ROC curves of No Entry with the FSK signal filter. Zthres

can range from zero to NRx − 1, so we examine the detection accuracy by changing

Zthres from zero to four. Even a valid chirp signal does not always have zero ZRx,

because chirp signal can have a consecutive frequency at the boundary of two sym-

bols. Therefore, When Zthres is set to zero or one, the 100% TP rate is not satisfied.

On the other hand, if Zthres is set three or four, the effect of preventing interference

is reduced. When we set Zthres as two, No Entry shows the best performance, which

outperforms J-CS.
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Figure 2.10: ROC curves with FSK signal data sets.

2.6.2 Power Consumption

EDs can save energy by stopping the application after quickly detecting the absence

of target signal. We measure power consumption to evaluate how much No Entry can
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Figure 2.11: Power consumption measurement example.
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Figure 2.12: Energy consumption measurement result.

save energy. The power consumption of the experiment device is measured using Mon-

soon power monitor [16]. We use Galaxy S5 for the measurement because the other

experiment devices are equipped with built-in batteries, which make the measurement

difficult. We implement three types of Android applications, which adopt 1) Baseline

ED 2) J-CS, and 3) No Entry, respectively. The application periodically wakes up and

tries to receive the signal. Depending on the detection result, the application performs

the decoding process if it determines that there exists a signal. If the application de-

termines that there is no signal, it immediately goes to sleep and waits for the next

wake-up period.

There are various components consuming power in smart devices. For example,
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display and wireless technologies such as Wi-Fi and Bluetooth consume a consider-

able amount of power. To the extent possible, thus, we shut down the other processes

to measure the power consumption of our target application. Furthermore, the authors

of [17] find that applications consume substantial power when applications wake up

from the idle state. Therefore, we set the wake-up period 10 s and perform the detec-

tion process twice at each wake-up to reduce the overhead of the wake-up process.

Fig. 2.11 shows an example of measured power consumption. The results with and

without No Entry are similar when the signal exists. On the other hand, if the signal is

absent, No Entry detects the absence of the signal and quickly stops working. In this

way, No Entry can reduce power consumption of the application. The result using the

baseline ED shows similar patterns to this.

We also measure the energy consumption of three types of applications for five

minutes in two different places. We perform experiments in three different cases in

each place: 1) without any signal, 2) with chirp signal, and 3) with FSK signal. At

each place, we place the mobile phone on the table and transmit each signal using a

laptop speaker. Fig. 2.12 shows measurement results. For the application with J-CS,

it shows consistent energy consumption regardless of the cases because it performs

signal detection at the end of the system. The baseline ED reduces energy consump-

tion by filtering low-energy noise. The reduced amount of energy consumption in the

cafe without signal is less than that in the office, which shows the limited performance

of the baseline ED in the presence of ambient noise. In addition, if the FSK signal

exists, the baseline ED hardly saves energy. No Entry, on the other hand, shows out-

standing performance in all cases. No Entry works properly in the presence of ambient

noise as well as the FSK signal. Compared with J-CS, No Entry reduces the energy

consumption by about 30%. Considering the energy consumption caused by wake-up

process, the performance of No Entry with the target application itself would be more

significant than it appears now.
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2.7 Summary

In this chapter, we present No Entry, a novel ED for chirp-based acoustic communi-

cation. No Entry avoids both high-energy ambient noise and high-energy interference

by utilizing the sweeping characteristic of chirp signals. In particular, we show that

ambient noise is prevalent in the everyday life and show that the vulnerability of the

conventional ED to ambient noise. We then propose No Entry consisting of three fil-

ters, i.e., low-energy noise filter, ambient noise filter, and FSK signal filter. Our eval-

uation shows No Entry outperforms the comparison schemes from the perspectives of

detection accuracy and power consumption. Our future work includes designing an

ED, which automatically changes detection period by estimating the severeness of the

interference based on the detection result.
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Chapter 3

Cameleon: Intelligent Camera Sensor System for Text-

spotting Oriented Operation in Mobile Devices

3.1 Introduction

With the recent development of deep learning, many research fields are rapidly de-

veloping. Beyond research interests, companies have also adopted deep learning tech-

nologies in real life. With the spread and development of mobile devices, there are

many efforts to utilize deep learning on mobile devices. In these mobile deep learning

systems, the mobile device’s sensor data is fed directly to subsequent deep learning

models as input. While deep learning model benchmark dataset results promise out-

standing performance, in reality, the quality of sensor data has a significant impact

on the performance. However, research on sensor control has yet to receive much at-

tention. In order to realize a practical deep learning service on mobile devices, it is

necessary to pay attention not only to the development of deep learning technology

but also to generating input sensor data on mobile devices.

Deep learning models train how to operate through various datasets. Models work

well in environments similar to the dataset but suffer from hardness in disparate envi-

ronments. This phenomenon occurs due to the unrefined information in the real world
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Figure 3.1: Traditional camera pipeline for mobile deep learning application.

compared to the training dataset. Many studies have tried to solve this problem through

domain adaptation and data augmentation [18]. These types of research solve the prob-

lem temporarily, but they are not fundamental solutions because they require an addi-

tional process for the different environments they encounter. Therefore, it will be a

fundamental approach if we create input sensor data by manipulating the behavior of

sensors to collect information through information sampling regardless of the environ-

ment.

Mobile devices are equipped with various sensors, such as cameras, microphones,

and IMU sensors. Since the camera is the most frequently used sensor in everyday

life, vision applications attract considerable attention. We also handle the generating

deep learning task-compatible sensor data issue based on the camera sensor. Among

many camera-based applications, we focus on mobile text spotting. Mobile text spot-

ting, such as Googlelens and Apple’s Livetext, provides services based on the text

in the image. Formally, users have to type text themselves to search for or translate

text. Mobile text-spotting can change the user’s effort to an information-pushing by

automatically detecting and recognizing text on the image.

Despite its potential, text-spotting is restrictively available on mobile devices due

to the above-mentioned problems. As shown in Figure 3.1, the traditional camera

pipeline follows a unified path agnostic of the subsequent mobile applications. Once

the input is generated, the ability to process disparate environments specifically for

each application is greatly limited. We start off this critical study with a camera control
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system focusing on a text-spotting application. To tackle these challenges, we propose

a system called Cameleon, intelligent text-spotting oriented camera sensor control

system. Through our efforts to build a bridge between the text-spotting network and

mobile device camera sensor, we find designing Cameleon contains these challenges.

1. Adaptive and Automatic: Text spotting networks may behave differently with

respect to environmental changes coming from color and brightness changes,

even though the target remains the same. The proposed system should work

adaptively in these different environments to generate adequate inputs. In ad-

dition, the overall process of Cameleon should be automatic. Users should feel

natural just like casually taking a picture while operating in the background. This

opts for a real-time and efficient operation so that users cannot notice additional

operations working behind the scene.

2. Labeling: Since selecting camera settings for adaptive environments automat-

ically is a very challenging task, we utilize deep learning to find the adequate

setting. In general, deep learning models are trained to produce good results for

their own target task. However, in the case of the proposed network, the quality

of the output can only be evaluated by the subsequent network’s result. In other

words, it is difficult to directly generate the labels of the output (i.e., camera

setting control) according to the input (i.e., preview image) of the network.

The camera can generate a picture with a short exposure time in bright places. On

the other hand, When the light is low, the exposure time should be longer to collect

enough light to capture. The high exposure by setting either exposure time longer or

ISO high accompanies much noise. In order to reduce the noise, we adopt the method

of combining burst shots with a short exposure time as proposed in [19]. However,

since the proposed system is not optimized for text-spotting, we have to design a net-

work to control camera exposure.

Determining exposure directly requires broad search spaces, and it is impossible
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to make datasets containing all the environments. Therefore, instead of determining

camera exposure directly, we build a concept of a time budget. The time budget is

the total time to generate input data in camera sensors. We categorize the time budgets

based on the various experiments. The network determines the appropriate time budget

and the number of burst shots within a given time budget. In this way, we can design a

practical system operating in various environments.

To handle the second challenge, we use the reinforcement learning method. Sim-

ilar to the approach [20], we consider Cameleon as an agent, i.e., the output of the

Cameleon becomes a policy. The network takes a viewfinder image generated by an

auto-exposure as an input. Then the network extracts semantic and scenic information

from the preview image through the semantic and illumination networks. We formu-

late the reward function based on the text spotting results on the image generated by

the selected policy (i.e., camera configuration) and the time taken to capture images.

We implement and validate our design through extensive experiments. Compared

to the traditional camera pipeline, Cameleon dramatically recovers performance degra-

dation and maximizes the text-spotting model’s performance.

The rest of this chapter is organized as follows. We review the related work in

Section 3.2. We explain the mobile devices’ cameras in Section 3.3, and present the

problem of default camera operations as well as our solutions in Section 3.4 and 3.5.

We analyze the relationships between camera operations and text-spotting results in

Section 3.6. Section 3.7 presents the overall system of the Cameleon and explains how

to train the network in Section 3.8. In Section 3.9, we evaluate the performance through

extensive experiments. Finally, we conclude the chapter in Section 3.10.

3.2 Related Work

3.2.1 Domain Adaptation

Cameleon is related to solving the domain shift problem. This problem is the main
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source of the deep learning model performance gap between the benchmark and real-

world environments. To mitigate this problem, many works propose domain adapta-

tion through model fine-tuning and data augmentation [18, 21]. While this approach

solves some of the problems, various and time-varying nature of real-world environ-

ment mixed with the heavy computation costs of updating the model [22] blocks the

fundamental address of the domain shift problem. While some works propose online

adaptation, it is still limited to basic applications and the performance is still weak.

Cameleon takes a different approach. Instead of dealing with the model itself, it gen-

erates the most adequate input for the model by sampling the input information.

3.2.2 Camera Sensor Control for Input Generation

Camera-based vision application is the most prominent sensor-application pair. Exist-

ing works focus on modifying the camera pipeline to generate inputs for image clas-

sification, semantic segmentation, and object detection [23–25]. While these works

focus on optimizing the human perceived quality [26], energy consumption [27], little

has been studied about the input generation focused directly on optimizing the model

performance.

3.2.3 Text-spotting

To instantiate the proposal, we choose a challenging yet very important vision task,

text spotting. Text spotting task is extracting texts from the scene. This can enable

machines to ‘read’ from the scene. Various models are proposed to enhance the text

spotting performance [2, 3]. While benchmark performance seems promising, we find

that even the state-of-the-art models fail to perform as domain shift occurs. To our

knowledge, Cameleon is the first work tackling the input generation for text spotting

application.
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3.3 Background

3.3.1 Mobile Camera System

Camera controls focus, exposure, and white balance when taking a picture. We focus

on the exposure among three components. Camera controls exposures based on ISO,

exposure time, and aperture. Since mobile device does not have multiple aperture,

we can control ISO and exposure time. ISO refers to camera’s sensitivity to light.

While the higher ISO produces more brighter image by making the camera sensor

sensitive, it inevitably accompanies more noise. Exposure time is the length of time the

camera collects light. Longer exposure time brings more light and produces a brighter

image, but the image suffers from the noise from hand tremors unless the camera is

fixed strictly. Android system provides auto-exposure mode that determines ISO and

exposure time based on the statistics depending on the environment.

3.3.2 Camera Capture in Darkness

As the mobile device is usually closely connected to a user, it works in various places

and circumstances. Since taking pictures with a mobile device is closely related to

brightness, the capture condition varies depending on the time, place, and surround-

ings. The smartphone camera system controls exposure based on ISO and exposure

time as brightness changes. As brightness changes from light to dark, it increases ex-

posure time first. When the exposure time approaches a certain level, the mobile device

stops increasing exposure time and increases ISO instead. Since mobile devices have

to operate at various levels of motion, the auto-exposure system tolerates noise and

raises the ISO to avoid the risk of noise caused by motion when a high exposure time

is selected.
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3.4 Motivation: Brightness Effect on Text-Spotting

In this section, we present a preliminary study showing the impact of environmental

changes on text-spotting models. We select one medicine bottle that contains lots of

words and collect several different bright images in the room by controlling the light

using a desk lamp. We also collect one additional image in the office under the bright

LED lamp for the control group. We use Google Pixel 4 and capture images based on

the auto-exposure mode.

Figure 3.2: Impact of environmental (brightness) changes on text-spotting [2] results.

As we can see in Figures 3.2 and 3.3, the text spotting model finds text well in

a bright. As the brightness goes lower (left to the right), the text-spotting network

suffers from performance degradation, i.e., the number of spotted texts decreases, and

this gets worse as it gets darker. TESTR [3] also suffers from the same problem, which

indicates that this is not the corner case of the specific model, but the general and

essential problem in the text-spotting network. As we can see in the figure, as the

room goes darker, the text-spotting performance drops severely. However, if we think

of this experiment in a different way, this experiment gives us intuition. Considering

that the text-spotting network works well in a light place, it is not only a problem

with the text-spotting model but also with generating images. To put it another way,

it comes from the underexposure of images. If we can make an image close to that in

the light, we can prevent performance degradation. Therefore, we design a system that

properly controls camera exposure depending on the environment instead of relying

on the auto-exposure operation.
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Figure 3.3: State-of-the-art text-spotting networks’ performance degradation depend-

ing on the environmental changes. [2, 3]

Identifying text in the dark is not a rare occurrence. Most people have experience

identifying medicine bottles in a cupboard or looking at the menu at an atmospheric

restaurant. If we need text-spotting applications, in that case, it should work in that

brightness. Therefore, using mobile device cameras in low light conditions would be

common for text-spotting. Table 1 [1] describes situations in daily life in accordance

with the brightness (lux). According to [1], smartphone cameras usually start having

trouble taking pictures at less than 30 lux, which may be the boundary where the

images become noisy. Since the traditional auto-exposure systems accompany lots of

noises in dark, it is hard to get text recognizable images.
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lux Description

30,000 sidewalk lit by direct sunlight

10,000 sidewalk on a clear day, but in shadow

1,000 sidewalk on an overcast day

300 typical office lighting

150 desk lighting at home

50 average restaurant

20 restaurant with atmospheric lighting

10 minimum for finding socks that match in drawer

3 sidewalk lit by street lamps

1 limit of reading a newspaper

0.6 sidewalk lit by the full moon

0.3 can’t find keys on the floor

0.1 wouldn’t walk through the house without a flash

Table 3.1: Description in daily life according to illuminance value [1].

3.5 Challenges and Approaches

In this section, we describe the challenges we face while designing a text-spotting

oriented camera control system and our approaches.

3.5.1 Complicated Surrounding Information

To build a system that controls the camera adaptively, the system should be able to

figure out the surrounding information correctly. Mobile devices are equipped with a

light sensor, for identifying the surrounding brightness. A light sensor measures the

surrounding brightness and controls display brightness. However, it is hard to adopt

light sensors in camera control for two reasons. First, the target object is usually located

backward on the mobile device, on the opposite side of the light sensor. In other words,
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the light sensor cannot measure the environment perfectly. The other reason is that

the light sensor in the dark does not have enough granularity to divide environmental

differences. We change the brightness by controlling the desk lamp and measure the

light using the light sensor with three different devices. As we can see in Figure 3.4,

the measurement of each device is different despite the same locations. While Pixel 3

and 5 show consistent values, Pixel 4 shows the most reasonable result. However, the

measured values are so low that it is hard to discriminate the environment correctly.
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Figure 3.4: Light sensor measurement on different brightness of different devices.

Approach: To analyze the environmental information correctly, we have to observe

the surrounding information of the target object. Since the camera scene contains both

the target object and environmental information, we use the preview images with a

CNN network.

3.5.2 Movement of Mobile Device

If the camera is fixed, it is easy to get a bright image by simply increasing the exposure

time long enough even in the dark. However, capturing images with a mobile device

being fixed strictly is not usual because most people have hand tremors. Even though

we cannot notice the hand’s movement sensitively, it significantly affects the capturing

process in the dark. If we set the exposure time too long, images get noisy because of
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hand movements.

We study the effect of hand movements by collecting images in the dark with

two different settings. First, we fasten the smartphone in a holder and increase the

exposure time step by step. Secondly, we repeat the same experiment while holding a

smartphone in hand instead of a holder. Then, we compare the text-spotting results of

each image. As we can see in the figure, when we take a picture with the holder, the

number of spotted texts keeps increasing as the exposure time increases. On the other

hand, the number of spotted texts for images from hand-held smartphones increases as

exposure increases, peaks in the middle, and decreases after the exposure time exceeds

200 ms. In other words, in the dark simply increasing the exposure time is not an

adequate solution due to the user’s hand movement.
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Figure 3.5: Performance variation based on the exposure time. Hand tremor affects

performance over a certain exposure time.

Approach: Since simply increasing the brightness is not an adequate solution for the

text spotting model, we adopt the burst photography used in [19] instead of single

image capture. Burst photography captures burst shots, i.e., multiple images, with low
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exposure time and merges them. Merging several images can reduce the Gaussian

noise in the image, then the image becomes lighter and less noisy. However, since

burst photography is not designed to spot text, the exposure setting is not optimized

for text spotting. Therefore, we analyze exposure along with the burst photography

method.

3.5.3 Extensive Search Space

For Cameleon, the network output becomes a camera configuration. The camera con-

trols exposure through ISO and exposure time. Both ISO and exposure time have a

wide search space. For example, users can manually set ISO and exposure time over

the million scales in Android Camera 2 API. Along with camera exposure, we have to

control another parameter in burst photography, i.e., the number of burst shots. Putting

them together forms three-axis search spaces, making it impossible to select camera

configuration directly. We cannot depend on the auto-exposure system because auto-

exposure is not designed to work well with burst photography. Therefore, we have

to design a new camera control network that determines ISO, exposure time, and the

number of burst shots.

Approach: We employ the concept of time budget. The time budget is the time elapsed

during capturing images, i.e., while taking burst shots. By limiting the time budget, we

can narrow down the search space into an acceptable range. In addition, since a system

taking too long is not desirable, we can expect the system to be more practical.

3.5.4 Assessment of Capture Settings

Deep learning models are generally trained to produce good results for their target

task. Labels are the answers for the task and loss functions are set as the differences

between network outputs and labels. Thus, the network is trained to operate to min-

imize the loss function. However, in the case of Cameleon, the quality of the output

can’t be evaluated directly, but can only be evaluated with respect to the results of
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the subsequent application, here, text-spotting. In other words, it is difficult to directly

generate the labels of the task (camera sensor control) according to the input (preview

image) of the network. Moreover, it is difficult to train networks through model-based

learning because backpropagation is not performed in intermediate modules such as

the burst photography module.

Approach: We design an image quality estimator similar to [28]. Quality estimator

estimates how much an image fits the text-spotting network. Given the scene, the qual-

ity estimator gives high scores to the images with better text-spotting results. We can

make labels by estimating the quality of images of various camera control settings.

3.6 Experiment Settings

In this section, we investigate the relationship between camera configurations and text-

spotting networks. We control three components (i.e., exposure time, ISO, and the

number of burst shots) and analyze the effect of each component to determine the

system operations.

3.6.1 Experiment Setting and Metric

We conduct further experiments following Section 3.4. To clarify the effect of camera

configurations, we select an object that text-spotting model [3] can spot texts perfectly,

i.e., detecting and recognizing all of the texts in the scene perfectly. We use TESTR,

provided by the authors, trained using the Total Text [29] dataset. To verify the text-

spotting results with both detection and recognition, we use precision, recall, and word

level Levenshtein distance [30]. The definitions of precision and recall are as follows

Precision =
TP

FP + TP
,Recall =

TP

TP + FN
, (3.1)

where it becomes 1 when the detection matches ground truth. Levenshtein distance (edit

distance) is the difference between two words. In other words, the number of times re-
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Metric
Time budget

100 ms 250 ms 500 ms 1000 ms

Precision 100 95.0 95.0 100

Recall 42.1 94.7 100 100

Edit distance -50 -7 -5 0

Table 3.2: Text-spotting results based on the time budget.

quired to insert, delete, and replace while one word matches another. It is zero when

the two words are exactly the same.

3.6.2 Time Budget

We first observe the impact of time budget. The time budget is determined by how

much time we need to capture images to work well with the text-spotting model. We

fix ISO as 1000 and the number of captures as five. As the time budget increases,

exposure time also increases.

As we can see in Table 3.2, text-spotting performance dramatically varies based

on the time budget. First of all, as we can see in the result of precision, even though

it fails to find a text in the image, it does not find text wrongly, i.e., false positive.

The precision dropped in 250 and 500 ms does not come from false positives but from

detecting two words as one word. However, when it comes to recall, the text-spotting

model fails to find texts if the time budget is low, but it finds more texts as the time

budget increases. With extensive experiments, we find that the time budget demands

up to 1 s. We also verify that the time budget above 1 s does not make a big difference.

Because burst photography uses several shots, it also requires a minimum exposure

time for each shot. If we increase the time budget too much, the exposure time of each

shot also increases, so it suffers from hand movement. Therefore, we set the upper

bound of the time budget as 1 s, and we select the final candidates of the time budget

as 10, 50, 100, 250, 500, and 1000 ms.
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3.6.3 ISO

Secondly, we observe the effect of ISO on text-spotting results. For ISO, the camera

system uses values lower than default (100) outdoors on a sunny day (over 1,000 lux

in Table 1). In this case, we do not have to use our system because the image is light

enough to work with a text-spotting network. Therefore, we specify the target of our

system where we have to use it. First, if we set the ISO to 100, it makes the image

too dark. On the other hand, if we set the ISO to over 1000, the image starts to have

noise. Therefore, we set the boundary of ISO from 200 to 1000. We observe that the

ISO does not make big differences in short intervals, we set the intervals to 400.

3.6.4 Burst Shot

Finally, we analyze the number of burst shots given the time budget and ISO. The

number of burst shots affects text-spotting results. However, the effect of the number

of burst shots is trivial for the short time budget. Given long time budgets, we cannot

set a low number of burst shots because it makes the exposure time of each shot long,

which raises problems in each image. Based on the previous experiment in Section 4,

an image longer than 250 ms suffers from problems due to hand movement. Therefore,

we consider 3, and 5 captures in a low time budget under 250 ms and consider 5 and

10 for the time budget exceeding 250 ms.

3.7 System Design

3.7.1 System Overview

The goal of Cameleon is to analyze a given scene in a mobile device camera situation

and perform capturing with an optimal camera configuration to achieve appropriate

sensing data (image) for text spotting. In order to achieve this purpose, the policy

network and burst imaging module were used in this study. We design the system as a
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Figure 3.6: System overview of Cameleon.

classification network. The network selects one of the camera configuration options as

a classification output based on the scene’s information. After the camera captures the

scene based on the selected camera configuration, raw sensor data goes into the burst

imaging module.

3.7.2 Classification Network

The network takes a viewfinder image, a conventional auto-exposure-based preview

image, as input and generates outputs capturing parameters. We design the network as

a classification network and adopt the mobileNetV2 [31] as a backbone network. The

network analyzes semantic features and chooses an appropriate options as an output.
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3.7.3 Burst Imaging Module

The burst imaging method is used for signal processing of raw input captured based on

the camera setting as the output of the Policy Network. The method used in this study

is a module of [19], and a simple corresponding model was used to achieve the optimal

capturing process by focusing on the camera sensor control, the purpose of this study.

The image derived through the module is used for classification network. As a follow-

up study, it is inferred that higher performance and efficiency can be aimed by jointly

connecting the differentiable ISP module and the capturing module and learning it.

3.7.4 Quality Estimator

The quality estimator estimates the quality of the images for text-spotting. We adopt

inceptionV3 [32] as a backbone network and add classification header behind the net-

work. To train the quality estimator, we first train the network using COCO-text dataset

and total-text dataset [29, 33]. We make labels based on the text-spotting results. We

use F-score (F1) on each scene for text detection results and use the Levenshtein (edit)

distance [30] for recognition results.

Score = w1 × F1 +w2 ×Dedit,

, where w1 and w2 are the weights of each score. To train the quality estimator for our

task, we collect 4,000 images with various camera configurations under the various

environments (objects, places, light, etc.). We make text labels using total-text label

tools. After making scores based on the text spotting network, we conduct fine-tuning

using our datasets. As we can see in the Table 3.3, quality estimator shows high ac-

curacies, Pearson, and Spearman correlations. Now, we can make labels based on the

quality estimator instead of making hand-crafted labels.
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Accuracy Pearson Spearman

Top-1 71.6% 0.947 0.948

Top-2 91.6% 0.938 0.938

Top-3 96.7% 0.914 0.910

Table 3.3: Quality estimator performance.

3.8 Training Network

3.8.1 Data Collection

We collect various image captures using different capture configurations for each scene

using our custom Android application. We control the time budget to six different

levels. Within each time budget, we control the number of image bursts to control the

exposure time for each scene. By controlling the exposure time, we focus on finding

the sweet spot between the trade-off between brightness and hand tremor. Then for

each image capture, we control the ISO and the sensor’s sensitivity to three different

levels.

3.8.2 Label Distribution Learning

We can generate labels by collecting images with various exposure settings and scores

them. If we make the label in a hard-labeling (i.e., one-hot encoded form), which

selects only one capture setting as a label, it can be a problem. We adopt the label

distribution learning method [34] to alleviate the above-mentioned problem. The label

distribution learning observes the relationship between labels and composes labels as

a distribution form. As shown in Figure 3.7, we can make labels into distribution using

a soft-max function. We use the KL divergence as a loss function.
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Figure 3.7: Distribution form label example.

3.9 Performance Evaluation

In this section, we evaluate the performance of Cameleon. We implement Cameleon as

an Android application. We train the system in the edge server equipped with GeForce

RTX 2080 GPU. Since it is hard to get the original burst photography code, we use

the publicly published code in Python instead [35]. We implement Cameleon using

Android Camera 2 API, which provides burst shots functions and exposure settings

for each shot. We collect images by varying the brightness through stand lighting in a

room. We make the test dataset by collecting another object not used for the training

dataset by varying the brightness in a different place.

3.9.1 Top-5 Accuracy

We evaluate the performance using two different metrics. First, we evaluate the top-

5 accuracy to verify the validity of the proposed unsupervised training method and

classification model. While the classification model trained with PGNet label shows
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the top-5 accuracy of 80%, in the case of TESTR, it shows a slightly smaller accuracy

of 65%.

As we can see in the results, the accuracy is not much high. We generate labels

based on text spotting results, which means the results have high similarities in certain

environments. If the results of each exposure value are similar overall, most probability

values show similar results, and in this case, it is often difficult to select the correct

result. If we select an exposure with a value slightly lower than the highest result, the

accuracy becomes lower, but it is not a big problem for overall operation. Therefore,

we need to evaluate the performance by observing the end-to-end improvements.

3.9.2 End-to-end Evaluation
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Figure 3.8: Improvement results of Cameleon.

Next, we evaluate the end-to-end improvements, i.e., how many texts the text-

spotting network finds through Cameleon compared to default camera operation. There
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Model
Brightness (Lux)

1000 800 450 360 115

PGNet 27% 68 % 108 % 225% 1050%

TESTR 1% 10% 53% 153% 1260%

Table 3.4: Improvement gain for each model.

are three bars in the graph. The lowest bar means the baseline (i.e., default camera)

performance, and the largest bar means the ideal improvement gains. The bar in the

middle means the selected exposure settings using our classification models. As we

can see in Figure 3.8, the performance of Cameleon shows dramatic improvements in

both models. The degree of improvement differs for each model, but both models find

more texts than that in the baseline.

As we can see in the graph, the two models show different improvement gains.

Not only does TESTR perform better than PGNet in default, but it also shows much

higher improvement gains in Cameleon. TESTR and PGNet show a similar number

of detection results in the dark, but the gap in the number of detection between the

two models becomes even more comprehensive in the light. It means that TESTR is

more robust than that of PGNet to environmental changes. We can find similar pat-

terns in improvement gain results. TESTR shows more significant improvement gains

even in the darkest places. A slight improvement in input image induces a much more

significant improvement in text-spotting results. We also can verify that the degree of

improvement is not directly correlated with classification accuracy.

3.10 Summary

We present Cameleon, a text-spotting-oriented intelligent camera control system. We

point out the conventional camera module has limitations to use in mobile text-spotting,

because it does not operate in a way to fit text-spotting. We also attack the this problem
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brings about underperformance in text-spotting network. We solve this problem by de-

signing camera control system to fit text-spotting network. We design overall system

and propose a training method. We verify that the problem of conventional camera op-

eraions and show that Cameleon outperforms default camera. Our future work includes

online network training methods and optimized operations in mobile devices.
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Chapter 4

Concluding Remarks

4.1 Research Contributions

In this dissertation, we have addressed the systems that improve the efficiency and

performance of new types of various sensors-based applications in smartphones.

In Chapter 2, we present No Entry, a new ED for chirp-based acoustic commu-

nication. No Entry utilizes the sweeping properties of the chirp signal to avoid both

high-energy ambient noise and high-energy interference. In particular, it shows that

ambient noise is prevalent in everyday life and that the existing ED is vulnerable to

ambient noise. Then we propose No Entry consisting of three filters: a low-energy

noise filter, an ambient noise filter, and a FSK signal filter. We implement prototype

Android application and measure the power consumption using Monsoon power mon-

itor. Detection accuracy of No Entry shows that true positive rate is more than 90%

when false positive rate is 1% even with severe interference. No Entry also reduces

energy consumption by about 30% compared with the state-of-the-art scheme.

In Chapter 3, we present Cameleon, a text-spotting-oriented intelligent camera

control system. We point out the conventional camera operation is not optimized for

mobile text-spotting, because it does not operate in a way to fit text-spotting. We solve

this problem by designing an text-spotting-oriented camera control system. We verify
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that the problem of conventional camera operaions through extensive experiments and

show that Cameleon outperforms default camera.

4.2 Future Research Directions

As further improvement on the results of this dissertation, there are two research items

regarding camera control system.

First, we plan to devise online training method to update model continuously. Since

camera does not capture all of the camera settings, it is challenging to train the network.

Second, we plan to optimize the network for mobile operations. Since mobile de-

vice lacks in computational capabilities and batteries, we will make the network effi-

cient.
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초 록

스마트폰의보급과더불어다양한종류의센서를장착한모바일기기가늘어나

고있습니다.하드웨어의발전과다양한종류의센서는모바일기기에서새로운많

은것을가능하게하였습니다.최근몇년동안많은연구자들은다양한센서기반의

어플리케이션을 제안하고 있습니다. 예를 들어, 스마트 기기의 마이크와 스피커를

이용한대기중음파통신은최근많은관심을받고있습니다.또한,카메라센서기

반의 글자 감지 기술 (Mobile Text-Spotting) 역시 학계와 산업계에서 활발한 연구

주제중하나입니다.하지만,이러한새로운기술을실생활에서사용하기위해서는

효율성과실용성두가지측면에서접근이필요합니다.본논문에서는모바일센서

기반의 스마트폰 어플리케이션의 효율적인 동작을 위한 두 가지 시스템을 제안합

니다.

첫째로, No Entry는 처프 기반 음향 통신 시스템을 위한 새로운 에너지 검출기

입니다. No Entry는 처프 (Chirp) 신호의 주파수가 변하는 특성을 활용하여 높은

에너지의실생활노이즈뿐만아니라다른변조기법의음향신호또한감지합니다.

검출정확도와전력소비를평가하기위해 Android프로토타입어플리케이션을구

현하였고,최근제안된다른방법들과비교하여,제안하는에너지검출기는에너지

소비를 30%줄이면서도더높은검출성능을보여주었습니다.

두번째로,모바일기기에서의딥러닝어플리케이션을위한카메라센서컨트롤

시스템을제안합니다.딥러닝모델은많은발전을이루어왔지만,데이터셋을기반

으로 동작하는만큼 데이터셋과 상이한 환경에서 동작할 경우 성능이 저하되는 문

제가있습니다.이를해결하기위해글자감지모델의최적화된동작을위한지능형
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카메라센서제어시스템을설계합니다.사람눈에좋은이미지를생성하는일반적

인 카메라 작동과 달리 지능형 카메라 센서 제어 시스템은 환경에 따라 글자 감지

모델에최적화된형태로카메라센서를컨트롤합니다.전체적인네트워크의설계와

더불어 학습 방법, 데이터 수집 방법을 제안하였습니다. 또한, 광범위한 실험을 통

해문제가있음을확인하였고,제안하는시스템이다양한환경에서잘동작하는것을

확인하였습니다.

본 논문에서는 스마트폰 센서를 활용한 어플리케이션의 효율적인 동작을 위한

시스템을제안하였습니다.상용스마트폰에서두가지시스템을구현하였고광범위

한실험을통해성능을검증하였습니다.

주요어:스마트폰,모바일센서,모바일어플리케이션,모바일딥러닝

학번: 2015-20885
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