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Abstract 

 
Studies on false data injection attacks (FDIA) against state 

estimation were mainly conducted on the transmission system. 

However, recently, as entities such as distributed energy resources 

(DERs), virtual power plants (VPPs), energy storage systems 

(ESSs), and EV charging stations, that are vulnerable to cyber-

attacks, began to appear in the distribution system, research on FDIA 

in the distribution system is being actively conducted. Among them, 

this paper deals with the FDIA that VPPs attempt in the distribution 

system. As the number of DERs in the distribution system increases, 

the curtailment for DERs owned by VPP increases. This paper 

proposes FDIA model by VPPs to avoid curtailment under the 

realistic conditions. In the model, VPPs can implement an FDIA that 

deceives the distribution system operator (DSO)’s state estimation 

with only information obtained from the DERs they own. To verify 

this, IEEE 33 test feeder was used and the result shows that the 

attack was successful without being caught in the DSO's bad data 

detection (BDD). This paper provides the basic concept of VPP’s 

FDIA and shows that future DSOs need algorithms to defend against 

VPPs FDIA. 

 

 

 

주요어: DSO, VPP, false data injection attack, state estimation, bad 

data detection, curtailment 
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1 Introduction  

 

 

1.1 Research background and motivation 

 

Penetration of Distributed Energy Resources (DERs) have been increasing 

in the power system as cost of the generation by the Renewables has 

fallen due to recent technological advances. Solar installation costs by year 

are shown in Figure 1.1 [1].  

 
Figure 1.1 Global PV install cost, 2010-2020 [1] 

These changes are fundamentally changing the structure of the power 
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system as shown in Figure 1.2. In the past, the power system was a 

centralized structure. Electric power produced by large-scale generators 

connected to the transmission system was delivered to consumers in one 

direction through the transmission and distribution network. On the other 

hand, the future power system including the present connects various 

types of distributed energy resources such as wind power, solar power, 

energy storage systems, and electric vehicles. As a result, a two-way power 

flow is occurring, and large variability is occurring due to the uncertain 

and intermittent characteristics of distributed energy resources [2].  

 

 
Figure 1.2 Comparison of the Conventional power system(up), Future power 

system(down) [2] 

 

As a result, as participations from the DERs increased in the system, there 

have been technical issues related to the variability caused thereby such 

as overvoltage and congestions not only in transmission system but also 
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in distribution system. In an effort to mitigate such problem, locally 

centralized active operation by the distribution system operator (DSO) has 

been gaining greater attentions. The existing DSO’s role was limited to 

grid maintenance, repair and planning, power outage management, billing, 

and the role of connecting distributed energy sources to the grid. However, 

the role of the active DSO is extended to peak load management using 

distributed energy sources and distribution system line congestion 

management, reactive power supply, voltage maintenance, and technical 

validation for power market. 

In the process of active operation of DSO, distribution system state 

estimation (DSSE) is essential because improper or inaccurate state 

estimation can excessively distort the profit of market players such as 

individual DERs or aggregators in the distribution system. Conversely, it is 

theoretically possible for profit-seeking entities with computation power 

such as virtual power plants (VPPs) to attempt to manipulate the 

curtailment of their DERs through a false data injection attack (FDIA) that 

passes through the DSO's bad data detection (BDD) embedded in the 

typical DSSE.  

If VPP attempts and succeeds in FDIA to avoid curtailment, the future 

distribution system will become unstable and in the worst case may lead 

to system collapse. Therefore, it is necessary to simulate the FDIA that can 

occur in the distribution system in advance and study what results can be 

shown. 

 

 



 

 

 

 

4 

 

1.2 Research objective and contents 

 

our research assumes a VPP that constructs an attack vector passing 

DSO’s bad data detection (BDD). In the previous literature, it was 

impractical to assume that the attacker installs additional metering devices 

to construct an attack vector. Thus, in this paper, we showed that the 

method VPP's local false data injection attack passing DSO's BDD can be 

implemented with only measurements from DERs that VPPs own. The 

proposed methodology is simulated based on the IEEE test feeder. The 

adverse effect on the distribution system and the additional profit 

obtained by the VPP is verified. 

 

 

Figure 1.3 False data injection attack by virtual power plant 
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1.3 Research procedure 

 

The remainder of this paper is organized as follows. In Chapter 2, research 

that have been conducted on false data injection attacks are review 

according to research purposes, results, and limitations, and in 

contributions, the differences between this study and previous studies are 

summarized. In chapter 3, theoretical background of this paper which 

describes the basic concept of state estimation, distribution system state 

estimation, bad data detection, false data injection attack is introduced. In 

chapter 4, based on the knowledge described in chapter 3, it is shown 

that how VPP can carry out an FDIA in future distribution system 

circumstances. In chapter 5, the VPP’s FDIA shown in chapter 4 is 

demonstrated in the IEEE 33 distribution system environment. In chapter 

6, the further remarks and the conclusion of this paper are presented. 
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2 Literature review and contribution 

 

 

2.1 Attempting false data injection attack in 

various condition 

 

The concept of false data injection attack that can avoid bad data 

detection based on state estimation of the power system was first 

presented in [3]. In [3], Liu et al introduced the concept of a false data 

injection attack that can inject arbitrary errors into state variables without 

being caught by state estimation-based bad data detection. In addition, 

the probability of attack success according to the number of meters that 

can be compromised was presented. However, this paper has a limitation 

in that an attacker needs to know the parameters of all systems in order 

to create an attack vector, and it is based on DC state estimation that 

cannot be applied in the distribution system. In [4], Rahman and 

Mojsenian-Rad presented a method for creating a successful false data 

injection attack vector in a situation where DSO performs nonlinear AC 

state estimation, which is a more realistic condition. In [5], Deng et al 

showed that a false data injection attack can succeed even in the 
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distribution system under realistic conditions. To construct an attack vector 

that passes through the DSO's AC-based bad data detection (BDD), the 

attacker must know the state variables of all nodes due to the non-linearity 

of the power flow equation. However, Deng et al showed that, in relaxed 

condition, the local false data injection attack is possible only by using the 

local state variables. In [6], Wen and Liu demonstrated that data-driven 

FDIA is possible without knowing system measurement matrix. By 

proposing truncated singular value decomposition (SVD), they showed 

that attack vector can be constructed with computationally efficient way. 

In [7], Chen et al. proposed reinforcement learning-based FDIA to affect 

normal operation of automatic voltage controls (AVC). They showed that 

such attack is possible with only little knowledge of the whole power grid. 

 

2.2 Impact of false data injection attack 

 

In [8], Xie et al. suggested how the FDIA could affect the electricity market. 

It was shown that the attacker can manipulate the nodal price through 

FDIA, and that it can provide sufficient financial profit to the attacker 

through nodal price manipulation by virtual bidding. In [9], Yuan et al. 

showed that a load redistribution attack, a type of FDIA, is possible under 

realistic assumptions. In addition, the Yuan et al showed quantitatively how 

much the operation cost increases through the load redistribution attack. 
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2.3 Cyber-attack related to distributed energy 

resources 

 

In [10], Isozaki et al. studied the impact of cyber-attack when photovoltaic 

(PV) is heavily connected to the distribution system. The authors showed 

that if an attacker manipulates the voltage measurement, it can affect the 

operation of the load ratio control transformers (LRTs) of the DSO and 

easily put the system into an undervoltage or overvoltage situation. In 

addition, using this, it was shown that if the PV has an overvoltage 

protection function, it can easily suffer from output power loss due to 

voltage attack. However, the attack proposed in this paper has a limitation 

in that it can be easily discovered when the DSO performs state estimation. 

In [11], Riggs et al. presented an algorithm to detect FDIA using artificial 

neural network (ANN). By comparing PV production data and global 

horizontal irradiance using ANN, it was shown that detection can be 

succeeded with 95% accuracy. In [12], Zhang et al. analysed the effect of 

FDIA on distributed load sharing of microgrids. 
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2.4 Contribution of this study 

 

This study shows that FDIA is more likely to succeed when VPP owns many 

PVs in the distribution system. As the number of PVs owned by VPP 

increases, VPP can occupy an exclusive position in the distribution system 

due to the superiority of information in the distribution system. As far as 

the author is aware, this paper is the first paper to present a false data 

injection attack that VPP might perform in the distribution system. 

Therefore, by simulating an FDIA in which a VPP with a monopoly position 

can implement in the distribution system for its own benefit, it shows that 

the existing FDIA theory can occur in the future distribution system under 

realistic conditions. Also, it raises the awareness that future DSOs need an 

algorithm that can prevent such FDIA.  
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3 Theoretical background 

 

In this section, the basic background knowledge required to understand 

VPP’s false data injection attack are presented. 

 

3.1 State estimation 

 

State estimation is used to estimate non-measurable state variables from 

measurable values and to reduce errors caused by measurement errors 

[13]. It is very important to continuously monitor current and voltage of 

the system to maintain system stability. However, transducers in power 

system measurements are very susceptible to errors [13]. If the 

measurement values with these errors are small, it will not have a great 

impact on power system operation, but if the number of errors increases, 

cumulated incorrect values are eventually sent to the system operator, 

leading power system operation in the wrong direction. In this case, the 

entire system may be at risk. For these reasons, state estimation has been 

mainly used to secure the stability and observability of the transmission 

system based on sufficient measurement sensors for decades.  

DC-based State estimation is a process of estimating a state variable 𝒙  
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from measurement 𝒛  in which measurement error 𝒆  exists. Their 

mathematical relationship can be expressed as follow: 

 

  𝒛 = 𝑯𝒙 + 𝒆  (3-1) 

 

where 𝒛 = (𝑧1, 𝑧2, 𝑧3, … , 𝑧𝑚)𝑇  is the measurement vector, 𝒙 =

(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑚)𝑇 is the state variable vector, 𝒆 = (𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑚)𝑇 is the 

measurement error vector that follows distributions with zero means [14].  

H is a constant 𝑚 × 𝑛 Jacobian matrix related to the type of measurement 

data, system topology, parameters.  

In this paper, the most widely used state estimation method, weighted 

least squares (WLS), is used. The WLS based state estimation method is 

expressed as an optimization problem as follow: 

 

  min
𝑥

𝐽(𝑥) = (𝒛 − 𝑯𝒙)𝑇𝑾(𝒛 − 𝑯𝒙)  (3-2) 

 

where 𝑊 is the diagonal matrix representing measurement noise variance 

of the 𝑖th measurement sensor. 

Equation (3-2) can be solved as below: 

 

  ∇ 𝐽(𝑥) = −2[𝑯]𝑇𝑾𝒛 + 2[𝑯]𝑇 𝑾𝑯𝒙 =  𝟎  (3-2) 

  𝒙 =  [[𝑯]𝑇𝑾𝑯]−1𝑯𝑇𝑾𝒛  (3-3) 
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3.2 Distribution System State Estimation 

(DSSE) 

 

As mentioned in 3.1, state estimation has been mainly used by 

transmission system operators (TSOs) to stably operate the transmission 

system. However, recently, as DERs which cannot exactly predict the 

amount of power generation are increasing in the distribution system, the 

need for distribution system state estimation (DSSE) is emerging for safe 

and reliable operation in the distribution system. However, from the 

technical perspectives, DSSE is difficult to be introduced due to the 

following reasons. First, since the distribution system covers broader areas 

than the transmission system, the measurement sensors cannot be 

sufficiently installed. Second, compared to the transmission system, the 

distribution system has a very low accuracy when performing DC state 

estimation because of high resistance/impedance ratio [13]. Therefore, it 

is possible to consider that the state estimation calculation is more 

complicated than the transmission system where DC-based state 

estimation can be used. Thus, in distribution system, AC-based state 

estimation should be applied. Due to the technical barriers mentioned, 

only very few utility companies tried to implement DSSE [15]–[17]. 

However, recently, with the spread of advanced metering infrastructure 

(AMI) and smart inverter attached to DERs, measurable data from the 

system that can be obtained from the distribution system are increasing 



 

 

 

 

13 

[18].  

AC-based State estimation is a process of estimating a state variable x 

from measurement 𝒛  in which measurement error 𝒆  exists. Their 

mathematical relationship can be expressed as follow: 

 

  𝒛 = 𝒉(𝒙) + 𝒆  (3-5) 

 

where 𝒛 = (𝑧1, 𝑧2, 𝑧3, … , 𝑧𝑚)𝑇  is the measurement vector, 𝒙 =

(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑚)𝑇 is the state variable vector, 𝒆 = (𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑚)𝑇 is the 

measurement error vector that follows distributions with zero means [14].  

h(x) is a nonlinear vector function relating measurements to states that 

depends on the type of measurement data, system topology, parameters. 

Active power, reactive power, active power flow, reactive power flow and 

voltage related 𝒉(𝒙) are as follows: 

 

  

ℎ𝑖
𝑝(𝑥) = 𝑅𝑒𝑎𝑙 (𝑉𝑖 ∑ 𝑌𝑖𝑗𝑉𝑗

𝑛

𝑗=1

) 

 

(3-6) 

  

ℎ𝑖
𝑞(𝑥) = 𝐼𝑚𝑎𝑔 (𝑉𝑖 ∑ 𝑌𝑖𝑗𝑉𝑗

𝑛

𝑗=1

) 

 

(3-7) 

  ℎ𝑖𝑗
𝑝 (𝑥) = 𝑅𝑒𝑎𝑙(𝑉𝑖𝑌𝑖𝑗𝑉𝑗)  (3-8) 

  ℎ𝑖𝑗
𝑞 (𝑥) = 𝐼𝑚𝑎𝑔(𝑉𝑖𝑌𝑖𝑗𝑉𝑗)  (3-9) 

  ℎ𝑖
𝑣(𝑥) = 𝑉𝑖  (3-10) 
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The WLS based state estimation method is expressed as an optimization 

problem as follow: 

 

  min
𝑥

𝐽(𝑥) =  ∑
[𝑧𝑖 − ℎ𝑖(𝑥)]2

𝜎𝑖
2

𝑚

𝑖=1

  (3-11) 

 

where 𝜎𝑖  is the measurement noise variance of the 𝑖th  measurement 

sensor and m is the number of measurement data. 

Equation (3-11) is computationally more complicated than DC-based state 

estimation because it has a nonlinear feature and must be solved in an 

iterative way. 
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3.3 Bad data detection (BDD) 

 

Bad data detection (BDD) refers to the process of comparing estimated 

state variables and measured data and discriminating as 'bad data' if the 

difference is greater than a certain value [14]. The major reason for its 

consideration as the bad data, is due to the measurement errors, false 

data, compromised data, etc. Without BDD, the bad data affects the state 

estimation results, causing false system monitoring. Typically, the Largest 

normalized residual (LNR) method is used as the BDD algorithm. By using 

the estimated state variable �̂�, normalized residual 𝑟𝑖 can be calculated as 

follow: 

 

  𝑟𝑖 =
[𝑧𝑖 − ℎ𝑖(𝒙)]

𝜎𝑖

  (3-4) 

 

Then, the data whose residual exceeds a certain threshold are considered 

to be the bad data and deleted. 
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3.4 False data injection attack (FDIA) 

 

A false data injection attack refers to compromising the state variable 

without getting caught in BDD by manipulating measurement data [3]. To 

achieve this goal, the attacker must carefully design the attack vector 𝒂, 

which is added to measurements 𝒛. Manipulated measurement data zbad 

and compromised state variable �̂�𝒃𝒂𝒅 can be expressed as follows: 

 

  𝒛𝒃𝒂𝒅 = 𝒛 + 𝒂  (3-5) 

   𝒙𝒃𝒂𝒅 =  𝒙 + 𝒄  (3-6) 

 

where 𝒄  represents the estimation error caused by the attacker. 

Substituting equation (3-13), (3-14) into BDD equation (3-12), the residual 

from 𝒛𝒃𝒂𝒅, can be mathematically derived as equation (3-15) below.  

 

  

𝒓𝒃𝒂𝒅 = [
𝒛𝒃𝒂𝒅 − 𝒉(𝒙𝒃𝒂𝒅)

𝝈
] 

= [
 𝒛 + 𝒂 − 𝒉(𝒙𝒃𝒂𝒅) + 𝒉(𝒙) − 𝒉(𝒙)

𝝈
] 

= [
𝒛 − 𝒉(𝒙) + 𝒂 − 𝒉(𝒙𝒃𝒂𝒅) + 𝒉(𝒙)

𝝈
] 

 (3-7) 
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If the attacker designs the attack vector 𝒂 as 

 

  𝒂 =  𝒉(𝒙𝒃𝒂𝒅) − 𝒉(𝒙)  (3-8) 

 

Then (3-15) becomes as follows. 

 

  

𝒓𝒃𝒂𝒅 = [
𝒛 − 𝒉(𝒙) + 𝒂 − 𝒉(𝒙𝒃𝒂𝒅) + 𝒉(𝒙)

𝝈
]

= [
𝒛 − 𝒉(𝒙) +  𝒉(𝒙𝒃𝒂𝒅) − 𝒉(𝒙) − 𝒉(𝒙𝒃𝒂𝒅) + 𝒉(𝒙)

𝝈
]

= [
𝒛 − 𝒉(𝒙)

𝝈
] 

=  𝒓 

 (3-9) 

 

From (3-17), 𝒓𝒃𝒂𝒅 and 𝒓 become equal  From DSO’s perspective, there is 

no difference between bad data and original data. It means that the 

attacker can manipulate state variables without getting caught by BDD. 

However, for an attacker to create an attack vector 𝒂 that manipulates all 

state variables, the attacker must be aware of all state variables.  
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4 VPP’s local false data injection 

attack 

 

As DERs are small and physically distributed, an entity called a virtual 

power plant (VPP) has emerged to integrate and operate them stably. 

However, the over generation caused by a number of DERs owned by 

VPPs in the distribution system can make the overvoltage problem [19]. 

In this situation, the DSO may issue a curtailment instruction to the DERs 

to resolve the overvoltage. For the VPPs, who make profits by selling the 

electricity produced by DERs, curtailment instruction directed to their DERs 

might cause a negative impact on their profitability. Therefore, to avoid 

such curtailment, it is possible for VPPs to try FDIA. The assumptions for 

the VPP attack scenario are as follows: 

 

4.1 DSO assumptions 

 

1) As the spread of AMI and smart inverters increases, measurable active 

power injection, reactive power injection, and voltage magnitude data are 

increasing. Thus, in this paper, it was assumed that DSO performed state 

estimation using active power injection 𝒑, reactive power injection 𝒒, and 
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voltage magnitude |𝒗|. Thus, equation (3-6), (3-7), (3-10) are used. 

2) For the stability of the distribution system, it is recommended that the 

voltage magnitude be maintained between 0.95pu and 1.05pu [20]. 

Therefore, in the simulation, it was assumed that if the voltage magnitude 

exceeds 1.05pu, the DSO considers it as overvoltage and issues a 

curtailment instruction [21]. 

3) When the DSO instructs the curtailment, the DSO determines the 

amount of curtailment for each DER so that the total amount of 

curtailment is minimized based on voltage sensitivity [22]. This can be 

expressed mathematically as follows: 

 

  
[

∆𝜽 

∆|𝒗 |
] = [

𝑱𝑝𝜃(𝑥) 𝑱𝑝|𝑣|(𝑥)

𝑱𝑞𝜃(𝑥) 𝑱𝑞|𝑣|(𝑥)
]

−1

|

 

[
∆𝒑 

∆𝒒 
] 

              = [
𝑺𝒆𝒏𝒔𝑝𝜃(𝑥) 𝑺𝒆𝒏𝒔𝑝|𝑣|(𝑥)

𝑺𝒆𝒏𝒔𝑞𝜃(𝑥) 𝑺𝒆𝒏𝒔𝑞|𝑣|(𝑥)
] [

∆𝒑 

∆𝒒 
] 

 

(4-1) 

 

Where 𝑱  denotes the Jacobian matrix, and ∆𝛉 = [∆θ2, … , ∆θ𝑚] , ∆|𝒗| =

[∆|𝑣|2, … , ∆|𝑣|𝑚], ∆𝐩 = [∆p2, … , ∆p𝑚], ∆𝐪 = [∆q2, … , ∆q𝑚]. 

 𝑆𝑒𝑛𝑠𝑝θ(𝑥), 𝑆𝑒𝑛𝑠𝑝|𝑣|(𝑥), 𝑆𝑒𝑛𝑠𝑞θ(𝑥), 𝑆𝑒𝑛𝑠𝑞|𝑣|(𝑥) are the sensitivity matrices of 

the voltage angle to the active power, the voltage magnitude to the active 

power, voltage angle to the reactive power, voltage magnitude to the 

reactive power. By using parameters obtained from equation (4-2) and 

state estimation, curtailment ∆𝐩 for each DER can be obtained by solving 

the following optimization problem: 
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min ∑ ∆𝑝𝑖

𝑚

𝑖=2

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

 

(4-2) 

  [𝑆𝑒𝑛𝑠𝑝|𝑣|(𝑥) 𝑆𝑒𝑛𝑠𝑞|𝑣|(𝑥)] [
∆p
∆𝑞

] ≤ 𝑶𝑽  (4-3) 

 
where 𝑶𝑽 is |𝑉|𝑖 − 1.05𝑝𝑢. 

 

4.2 VPP assumptions 

 

1) VPP can attain the active power 𝑷, reactive power 𝑸, and voltage 

magnitude |𝑽| data easily from their smart inverter of DERs. 

2) The voltage angle 𝜽, attacker needs to know to design the attacker 

vector 𝒂 , can be approximated as follows using the radiality of the 

distribution system [5]. 

 

  𝑆𝑖 =  𝑉𝑖𝐼𝑖
∗             ∀𝑗 ∈  𝒩  (4-4) 

  𝑆𝑖𝑗 =  𝑉𝑖𝐼𝑖𝑗
∗             ∀{𝑖, 𝑗} ∈  ℒ  (4-5) 

               
𝐼𝑖𝑗 =  ∑ 𝐼𝑘

𝑛

𝑘=𝑗

           ∀{𝑖, 𝑗} ∈  ℒ 
 

(4-6) 

  𝑉𝑗  ≈  𝑉𝑖 − (𝑃𝑖𝑗𝑟𝑖𝑗 + 𝑄𝑖𝑗𝑥𝑖𝑗)         ∀𝑗 ∈  𝒩  (4-7) 
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  𝑆𝑖𝑗

𝑉𝑖

=  ∑
𝑆𝑘

𝑉𝑘

𝑛

𝑘=𝑗

          ∀{𝑖, 𝑗} ∈  ℒ 
 

(4-8) 

  
𝑆𝑖𝑗 ≈  ∑ 𝑆𝑘

𝑛

𝑘=𝑗

          ∀{𝑖, 𝑗} ∈  ℒ 
 

(4-9) 

  
𝑉𝑗 = 𝑉𝑖 − ∑(𝑃𝑘𝑟𝑖𝑗 + 𝑄𝑘𝑥𝑖𝑗)        ∀𝑗 ∈  𝒩

𝑛

𝑘=𝑗

 
 

(4-10) 

  𝜃𝑖𝑗  ≈  𝑃𝑖𝑗𝑥𝑖𝑗 − 𝑄𝑖𝑗𝑟𝑖𝑗           ∀{𝑖, 𝑗} ∈  ℒ  (4-11) 

  
𝜃𝑖𝑗  ≈  ∑(𝑃𝑘𝑟𝑖𝑗 − 𝑄𝑘𝑥𝑖𝑗)

𝑛

𝑘=𝑗

         ∀{𝑖, 𝑗} ∈  ℒ 
 

(4-12) 

 

Where 𝓝, 𝓛 are bus sets and line sets. 𝑆𝑘, 𝑃𝑘, 𝑄𝑘 are injection complex 

power, active power, and reactive power on bus k. 𝑆𝑖𝑗, 𝑃𝑖𝑗 , 𝑄𝑖𝑗 are complex 

power, active power , and reactive power flow between between 𝑖th node 

and 𝑗th node. 𝜃𝑖𝑗  is voltage angle difference between 𝑖th node and 𝑗th 

node. 𝑟𝑖𝑗 and 𝑥𝑖𝑗 are line resistance and line impedance between 𝑖th node 

and 𝑗th node. From equation (4-4), (4-5), (4-6), we can derive equation (4-

8). Also, equation (4-9) can be achieved because of the characteristic of 

distribution system. Using equation (4-7), (4-9),  𝑉𝑗 can be approximated 

as shown in equation (4-10) [23]. From equation (4-9), (4-11), we can 

derive equation (4-12). 

3) If the voltage magnitude of the node connected to the DER owned by 

the VPP exceeds 1.05pu, VPP attempts a local false data injection attack 

described in section 3.4 to compromise it to under 1.05pu. 

4) Upstream node is usually more robust to voltage false data injection 
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attack [24]. Thus, for VPP performs the false data injection attack on the 

downstream node.  

 

 
Figure 4.1 Vulnerable node of the IEEE 33 bus test system [24] 

 

5) We assume that VPP performs a local FDIA that manipulates the state 

variable (voltage magnitude) of a specific node rather than the entire 

system. In order to avoid curtailment of all DERs that VPP has in the 

distribution system, FDIA requires all the state variables on the entire 

system. In general, system information is not disclosed, so it is practically 

difficult for VPP to attack the entire system. However, if the attacker's goal 

is to compromise only the state variable of a specific node, it is not 

necessary to know all the state variables. For example, if the attacker’s 

goal is to compromise only the voltage magnitude of the 𝑖th node, the 
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attacker can create an attack vector 𝒂 even if the information for the 

attacker is available only for the state variable of the 𝑖th node and the 

state variables of the nodes adjacent to the 𝑖th node [5]. If that node 

adjacent to the 𝑖th node is 𝑗th and 𝑘th node, the data that VPP needs to 

know and manipulate to create an attack vector are shown in Table 4.1. 

 
Table 4.1 Required data for successful FDIA 

Measurements data to manipulate State variable to know for attack vector 

 𝑃𝑗 ,  𝑃𝑖 , 𝑃𝑘, 𝑄𝑗 , 𝑄𝑖 , 𝑄𝑘 , |𝑉𝑖| |𝑉𝑗|, |𝑉𝑖|, |𝑉𝑗|, 𝜃𝑗𝑖 , 𝜃𝑖𝑘 

 

6) It is assumed that there is only one VPP in the distribution system. This 

is because if multi-VPP exists in the distribution system and there are 

neighbouring solar power plants owned by different VPPs, the attack 

vector may overlap. Therefore, the attack model when multi-VPP exists is 

passed to future work. 
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5 Simulation Setting and Results 

 

 

5.1 Simulation Environment 

 

IEEE33 test feeder [25] was used to simulate the local false data injection 

attack of VPPs described in section 3. Detailed test feeder parameters are 

shown in Table 5.1. It was assumed that DERs belonging to the VPP was 

connected to nodes 15, 16, and 17 as shown in Fig 5.1. The active power 

generation of DERs connected to nodes 15, 16, and 17 at the time of the 

attack is 0.1MW, 0.8MW, and 1.3MW, respectively. The remaining load, 

generation system parameters are shown in Table 5.2. 

 
Figure 5.1 IEEE33 test feeder with DERs owned by VPP on nodes 15, 16, 17 
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Table 5.1 Parameters of test system: Line parameters 

Line 
From 

bus 

To 

bus 

R 

(ohm) 

X 

(ohm) 

S 

(MVA) 
Line 

From 

bus 

To 

bus 

R 

(ohm) 

X 

(ohm) 

S 

(MVA) 

0 0 1 0.09 0.05 7.07 16 16 17 0.73 0.57 2.24 

1 1 2 0.49 0.25 5.48 17 1 18 0.16 0.16 2.24 

2 2 3 0.37 0.19 3.87 18 18 19 1.5 1.36 2.24 

3 3 4 0.38 0.19 3.87 19 19 20 0.41 0.48 2.24 

4 4 5 0.82 0.71 3.87 20 20 21 0.71 0.94 2.24 

5 5 6 0.19 0.62 2.24 21 2 22 0.45 0.31 2.24 

6 6 7 0.71 0.24 2.24 22 22 23 0.9 0.71 2.24 

7 7 8 1.03 0.74 2.24 23 23 24 0.9 0.7 2.24 

8 8 9 1.04 0.74 2.24 24 5 25 0.2 0.1 2.24 

9 9 10 0.2 0.07 2.24 25 25 26 0.28 0.14 2.24 

10 10 11 0.37 0.12 2.24 26 26 27 1.06 0.93 2.24 

11 11 12 1.47 1.16 2.24 27 27 28 0.8 0.7 2.24 

12 12 13 0.54 0.71 2.24 28 28 29 0.51 0.26 2.24 

13 13 14 0.59 0.53 2.24 29 29 30 0.97 0.96 2.24 

14 14 15 0.75 0.55 2.24 30 30 31 0.31 0.36 2.24 

15 15 16 1.29 1.72 2.24 31 31 32 0.34 0.53 2.24 
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Table 5.2 Parameters of test system: Load and generation 

Bus 
Pd 

(MW) 

Qd 

(MVAR) 

Pg 

(MW) 
Bus 

Pd 

(MW) 

Qd 

(MVAR) 

Pg 

(MW) 

0 0.000 0.000 - 17 0.060 0.020 -1.300 

1 0.100 0.060 - 18 0.090 0.040 -0.940 

2 0.090 0.040 - 19 0.090 0.040 - 

3 0.120 0.080 - 20 0.090 0.040 -0.405 

4 0.060 0.030 - 21 0.090 0.040 - 

5 0.060 0.020 - 22 0.090 0.050 - 

6 0.200 0.100 - 23 0.420 0.200 - 

7 0.200 0.100 - 24 0.420 0.200 - 

8 0.060 0.020 - 25 0.060 0.025 - 

9 0.060 0.020 - 26 0.060 0.025 - 

10 0.045 0.030 - 27 0.060 0.020 - 

11 0.060 0.035 - 28 0.120 0.070 - 

12 0.060 0.035 - 29 0.200 0.600 - 

13 0.120 0.080 - 30 0.150 0.070 -1.300 

14 0.250 0.010 - 31 0.210 0.100 - 

15 0.300 0.020 -0.100 32 0.060 0.040 -0.675 

16 0.060 0.020 -0.800 Sum 4.115 2.280 -5.520 

 

The result of the power flow calculation is shown in Table 5.3. From Table 

5.3, it is possible to confirm that voltages at the nodes 16 and 17 are 

1.056pu and 1.061pu, due to the over-generation at the node 16 and 17. 
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Table 5.3 Parameters of test system: Power flow results 

Bus 
|𝑉| 

(p.u) 
𝜃 

(°) 

P 

(MW) 

Q 

(MVAR) 
Bus 

|𝑉| 

(p.u) 
𝜃 

(°) 

P 

(MW) 

Q 

(MVAR) 

0 1.000 0.000 1.169 -2.474 17 1.061 6.357 -1.240 0.020 

1 1.000 0.100 0.100 0.060 18 1.001 0.166 -0.850 0.040 

2 0.997 0.522 0.090 0.040 19 1.001 0.296 0.090 0.040 

3 0.998 0.845 0.120 0.080 20 1.001 0.346 -0.315 0.040 

4 1.000 1.170 0.060 0.030 21 1.001 0.326 0.090 0.040 

5 1.001 2.036 0.060 0.020 22 0.994 0.491 0.090 0.050 

6 0.999 2.213 0.200 0.100 23 0.987 0.405 0.420 0.200 

7 1.002 2.407 0.200 0.100 24 0.984 0.363 0.420 0.200 

8 1.007 2.815 0.060 0.020 25 1.001 2.142 0.060 0.025 

9 1.012 3.230 0.060 0.020 26 1.002 2.292 0.060 0.025 

10 1.014 3.281 0.045 0.030 27 1.004 3.019 0.060 0.020 

11 1.016 3.370 0.060 0.035 28 1.006 3.573 0.120 0.070 

12 1.026 4.009 0.060 0.035 29 1.009 3.844 0.200 0.600 

13 1.029 4.373 0.120 0.080 30 1.017 4.435 -1.150 0.070 

14 1.034 4.661 0.250 0.010 31 1.018 4.500 0.210 0.100 

15 1.042 5.005 0.200 0.020 32 1.019 4.617 -0.615 0.040 

16 1.056 6.127 -0.740 0.020      

 

These voltages exceed the DSO’s overvoltage criterion of 1.05pu. Thus, 

if the VPP does not attempt any attacks, the DSO will issue a curtailment 

instruction based on voltage sensitivity to resolve the overvoltage. By 

solving the optimization problem described in DSO assumption 3, the 

calculated curtailment on each DER is as follows: 

 

∆𝑝17 = 0.199 

 

As a result, the DSO will issue the curtailment instruction to the VPP to 
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reduce the output by the DERs connected to the 17 nodes by 0.199MW. 

To avoid this, the VPP implements FDIA. 

 

5.2 Non-intelligent attack 

 

First, let’s assume that the VPP tries to compromise node voltage by 

only changing the node voltage of 16,17 to 1.05pu. non-intelligent attack 

vector is shown in Table 5.4. In the case of such a non-intelligent attack, 

the measurement data obtained by the DSO may be affected because of 

compromised voltage magnitude measurement, but the state estimation 

result of voltage magnitude will not be changed. Thus, there will be a big 

difference between measurement values and state estimation values at the 

nodes 16 and 17 as shown in Table 5.5 and Fig 5.2. In other words, this 

non-intelligent attack cannot pass the BDD by the DSO. 

 
Table 5.4 non-intelligent attack vector values of voltage magnitude, active power 

injection, reactive power injection 

Bus |𝑉|𝑎𝑡𝑡𝑎𝑐𝑘 

(pu) 

15 0.000 

16 -0.006 

17 -0.011 
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Table 5.5 Comparison of Measurement voltage magnitude and state estimated 

voltage magnitude in non-intelligent attack 

Bus 

Measurement 

|𝑉| 

(p.u)  

State estimated  

|𝑉| 

(p.u) 

Bus 

Measurement 

|𝑉| 

(p.u)  

State estimated  

|𝑉| 

(p.u) 

0 1.000 1.000 17 1.050 1.061 

1 1.000 0.999 18 1.001 1.000 

2 0.997 0.997 19 1.001 1.000 

3 0.998 0.998 20 1.001 1.001 

4 1.000 0.999 21 1.001 1.000 

5 1.001 1.000 22 0.994 0.993 

6 0.999 0.999 23 0.987 0.987 

7 1.002 1.002 24 0.984 0.983 

8 1.007 1.006 25 1.001 1.001 

9 1.012 1.012 26 1.002 1.002 

10 1.014 1.013 27 1.004 1.004 

11 1.016 1.016 28 1.006 1.006 

12 1.026 1.025 29 1.009 1.009 

13 1.029 1.029 30 1.017 1.017 

14 1.034 1.034 31 1.018 1.017 

15 1.042 1.041 32 1.019 1.018 

16 1.050 1.055    
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Figure 5.2 Measurement values and state estimation values by non-intelligent attack 

 

5.3 Intelligent attack 

 

Based on the assumption that the VPP designs an attack vector 𝒂 using 

equation (3-16) and tries an intelligent attack, the VPP must know 

|𝑉15|, |𝑉16|, |𝑉17|, 𝜃1516, 𝜃1617 to create the attack vector. Voltage magnitude 

can be obtained by smart inverter and voltage angle can be approximated 

by using equation (4-12). Also, the VPP needs to manipulate 𝑃15,  𝑃16,

𝑃17, 𝑄15, 𝑄16, 𝑄17, |𝑉16|, |𝑉17|measurements. From equations (3-6), (3-7), (3-

10) and (3-16), calculated attack vector values are shown in Table 5.6.  
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Table 5.6 Intelligent Attack vector values of voltage magnitude, active power 

injection, reactive power injection 

Bus |𝑉|𝑎𝑡𝑡𝑎𝑐𝑘 

(pu) 

𝑃𝑎𝑡𝑡𝑎𝑐𝑘 

(MW) 

𝑄𝑎𝑡𝑡𝑎𝑐𝑘 

(MVAR) 

15 0.000 -0.288 -0.378 

16 -0.006 -0.467 -0.196 

17 -0.011 0.766 0.585 

 

If VPP manipulates 𝑃15, 𝑃16, 𝑃17, 𝑄15, 𝑄16, 𝑄17, |𝑉16|, |𝑉17| using attack vector 

from Table 5.6, the results can be seen in Fig 5.3. Both the measurement 

value and the state estimation value of node 16,17 are equal to 1.05pu. 

Therefore, it is possible to conclude that the attack passed the DSO’s 

BDD. As a result, the DSO recognizes that overvoltage has not occurred 

and does not issue a curtailment instruction. Thus, the VPP can make 

additional profit by implementing intelligent FDIA. 

 
Table 5.7 Comparison of Measurement voltage magnitude and state estimated 

voltage magnitude in intelligent attack 

Bus 

Measurement 

|𝑉| 

(p.u)  

State estimated  

|𝑉| 

(p.u) 

Bus 

Measurement 

|𝑉| 

(p.u)  

State estimated  

|𝑉| 

(p.u) 

0 1.000 1.000 17 1.050 1.050 

1 1.000 1.000 18 1.001 1.001 

2 0.997 0.997 19 1.001 1.001 

3 0.998 0.998 20 1.001 1.001 

4 1.000 1.000 21 1.001 1.001 

5 1.001 1.001 22 0.994 0.994 

6 0.999 0.999 23 0.987 0.987 

7 1.002 1.002 24 0.984 0.984 
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8 1.007 1.007 25 1.001 1.001 

9 1.012 1.012 26 1.002 1.002 

10 1.014 1.014 27 1.004 1.004 

11 1.016 1.016 28 1.006 1.006 

12 1.026 1.026 29 1.009 1.009 

13 1.029 1.029 30 1.017 1.017 

14 1.034 1.034 31 1.018 1.018 

15 1.042 1.042 32 1.019 1.019 

16 1.050 1.050    

 

 
Figure 5.3 Measurement values and state estimation values by intelligent attack 
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6 Conclusion 

 

In this paper, we investigated FDIA that VPP can try in the distribution 

system. This study demonstrated that the FDIA that deceives the DSO’s 

state estimation is technically feasible with only the information that the 

VPP can obtain from the DER it owns without the effort to install an 

additional sensor. To demonstrate and simulate this method, technical and 

mathematical background information for the state estimation, bad data 

detection, and false data injection attack was presented that was required 

to understand FDIA conducted by VPP. The method was simulated in the 

IEEE33 distribution system environment, and it was confirmed that the 

non-intelligent attack, which simply manipulated voltage, failed due to 

DSO's bad data detection, but an intelligent attack using an attack vector 

made with the theory presented was not detected by bad data detection. 

This paper assumes FDIA for the case where VPP owns only PV. However, 

if the VPP owns an energy storage system (ESS) that can control the 

amount of power, it is expected that more flexible attacks will be possible. 

Thus, for future work, further simulations on the advanced attacks in an 

environment with the VPP including the ESS, are required. In addition, 

research on algorithms that can defend against these flexible false data 
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injection attacks is also needed. 
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초록 

 
상태추정에 대한 허위정보주입공격 연구는 주로 송전계통을 대상으로 

연구되어 왔다. 하지만 소규모 분산 자원, 가상 발전소, 에너지 저장장치, 

전기차 충전소 등 가상공격에 취약한 자원들이 배전계통에 등장하면서 

배전계통에 대한 허위정보주입공격 관련 연구가 최근 활발히 연구되고 있다. 

그 중, 이 연구는 가상 발전소 사업자가 배전계통 내에서 시도할 수 있는 

허위정보주입공격을 다룬다. 배전계통 내 태양광 발전소와 같은 소규모 

분산자원들이 증가하면서 가상 발전소 사업자가 소유한 태양광 발전소에 

내려지는 출력제어 조치가 함께 증가하고 있다. 이 연구는 현실적인 

조건하에 가상 발전소 사업자가 출력제어 조치를 피하기 위해 시도할 수 있는 

허위정보주입공격 모델을 제시한다. 이 공격모델은 가상 발전소 사업자가 

자신들이 소유한 태양광 발전소에서 얻는 정보만으로 배전계통 운영자의 

상태추정을 속이는 공격이 가능함을 보인다. 이를 증명하기 위해, IEEE 33 

테스트 계통을 사용해 본 모델이 배전계통 운영자의 거짓정보감지를 우회할 

수 있음을 보였다. 본 연구는 미래에 발생할 수 있는 가상 발전소 사업자의 

허위정보주입공격에 대한 기본 개념을 제시하고 미래 배전계통 운영자가 본 

연구에 제시한 허위정보주입공격을 방어할 수 있는 알고리즘이 필요함을 

보인다. 

 

 

 

 

주요어: DSO, VPP, false data injection attack, state estimation, bad 

data detection, curtailment 

 

학   번: 2021-28681 


	1 Introduction
	1.1 Research background and motivation
	1.2 Research objective and contents
	1.3 Research procedure

	2 Literature review and contribution
	2.1 Attempting false data injection attack in various condition
	2.2 Impact of false data injection attack
	2.3 Cyber-attack related to distributed energy resources
	2.4 Contribution of this study

	3 Theoretical background
	3.1 State estimation
	3.2 Distribution System State Estimation (DSSE)
	3.3 Bad data detection (BDD)
	3.4 False data injection attack (FDIA)

	4 VPP's local false data injection attack
	4.1 DSO assumptions
	4.2 VPP assumptions

	5 Simulation Setting and Results
	5.1 Simulation Environment
	5.2 Non-intelligent attack
	5.3 Intelligent attack

	6 Conclusion
	Bibliography
	초록


<startpage>8
1 Introduction 1
 1.1 Research background and motivation 1
 1.2 Research objective and contents 4
 1.3 Research procedure 5
2 Literature review and contribution 6
 2.1 Attempting false data injection attack in various condition 6
 2.2 Impact of false data injection attack 7
 2.3 Cyber-attack related to distributed energy resources 8
 2.4 Contribution of this study 9
3 Theoretical background 10
 3.1 State estimation 10
 3.2 Distribution System State Estimation (DSSE) 12
 3.3 Bad data detection (BDD) 15
 3.4 False data injection attack (FDIA) 16
4 VPP's local false data injection attack 18
 4.1 DSO assumptions 18
 4.2 VPP assumptions 20
5 Simulation Setting and Results 24
 5.1 Simulation Environment 24
 5.2 Non-intelligent attack 28
 5.3 Intelligent attack 30
6 Conclusion 33
Bibliography 35
초록 38
</body>

