
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


Ph.D. Dissertation

Fusion of Image and Point-cloud Data for
Autonomous Driving in Diverse Environments

다양한환경에서의자율주행을위한이미지와포인트
클라우드데이터융합기술

February 2023

Department of Electrical and Computer Engineering
Seoul National University

Yurim Jeon



Ph.D. Dissertation

Fusion of Image and Point-cloud Data for
Autonomous Driving in Diverse Environments

다양한환경에서의자율주행을위한이미지와포인트
클라우드데이터융합기술

February 2023

Department of Electrical and Computer Engineering
Seoul National University

Yurim Jeon



Fusion of Image and Point-cloud Data for
Autonomous Driving in Diverse Environments

다양한환경에서의자율주행을위한이미지와포인트
클라우드데이터융합기술

지도교수서승우

이논문을공학박사학위논문으로제출함

2023년 2월

서울대학교대학원

전기정보공학부

전유림

전유림의공학박사학위논문을인준함

2023년 2월

위 원 장: 조남익

부위원장: 서승우

위 원: 김성우

위 원: 김영민

위 원: 김창수



Abstract

Autonomous driving is one of the main topics of robotics research and is becom-

ing part of our lives as they are used in automobiles, indoor robots, military robots,

and drones. Perception, which is the starting point of driving intelligence, is a process

of generating the knowledge necessary for driving by interpreting data collected from

sensors. The data collected by the sensors varies depending on the robot platform, ter-

rain, and light or weather conditions. For autonomous driving, perception must stably

generate accurate knowledge by receiving data that changes according to these various

conditions. However, many existing studies have focused on benchmark competition

to achieve the best performance under limited conditions. We break away from these

laboratory-only studies and focus on the real world to develop robust algorithms that

can operate in various conditions.

Sensors widely used in autonomous driving include cameras that collect images

and LiDARs that collect point clouds. Images contain high-resolution color informa-

tion and are sensitive to changes in illumination (e.g., sunlight and weather). Point

clouds are robust to changes in illumination and provide distance information of 3D

space but are of low resolution. The image and point cloud have complementary char-

acteristics. Therefore, the fusion of two data can produce enhanced information that

compensates for the shortcomings of each data.

We propose a fusion framework of images and point clouds for autonomous driving

in diverse environments. The first step of the fusion framework is a one-to-one match

of the two data. This is called image-to-point cloud registration and aims to align a 2D

image with a 3D point cloud. The proposed algorithm is designed for robust operation

under various terrain conditions. Therefore, it was demonstrated in automobiles on

paved roads and UGVs on off-road driving.

The second step is to generate enhanced data using the two matched data. This is

i



called depth completion, which generates a depth image with high-resolution depth

information using an image with high-resolution color information and a point cloud

with low-resolution depth information. The proposed algorithm is designed to work

reliably in various light and weather conditions, from sunrise to sunset, fog and rain,

and camera corruption.

The last step is to estimate the traversability from the observed image and point

cloud. This is called traversability estimation, and traversability is predicted by learn-

ing the robot’s driving style. The proposed algorithm is designed to estimate different

traversabilities with respect to the driving style of the robot platform, from large ATVs

to small UGVs.

In this dissertation, we present an image and point cloud fusion framework that can

operate in diverse real-world conditions. We evaluate the proposed algorithm through

experiments on various platforms (automobile, large and small UGV), terrain (paved

road, open fields, mountain), and light and weather conditions (morning, sunset, rain,

fog). The proposed framework serves as a buffer to ensure the stability of further ap-

plications by receiving data that fluctuates depending on diverse conditions and gen-

erating stable and enhanced knowledge. Therefore, we expect this framework to be a

foundation for robust autonomous driving.

Keyword: Autonomous driving, Sensor fusion, Deep learning, Image-to-point cloud

registration, Depth completion, Traversability estimation

Student Number: 2017-25223

ii



Contents

Abstract i

Contents iii

List of Tables vi

List of Figures vii

1 Introduction 1

1.1 Background and Motivations . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions and Outline of the Dissertation . . . . . . . . . . . . . 3

1.2.1 EFGHNet: A Versatile Image-to-Point Cloud Registration Net-

work for Extreme Outdoor Environment . . . . . . . . . . . . 3

1.2.2 ABCD: Attentive Bilateral Convolutional Network for Robust

Depth Completion . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3 Traversability Estimation Based on Footprint Supervision in

an Off-road Environment . . . . . . . . . . . . . . . . . . . . 5

2 EFGHNet: A Versatile Image-to-Point Cloud Registration Network for

Extreme Outdoor Environment 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Image-based Localization . . . . . . . . . . . . . . . . . . . 10

iii



2.2.2 Camera-LiDAR Extrinsic Calibration . . . . . . . . . . . . . 11

2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 E3 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Horizon Network . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.3 Forward-axis Network . . . . . . . . . . . . . . . . . . . . . 14

2.3.4 Gather Network . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Test Set Configurations . . . . . . . . . . . . . . . . . . . . . 18

2.4.3 Image-based Localization . . . . . . . . . . . . . . . . . . . 18

2.4.4 Camera-LiDAR Extrinsic Calibration . . . . . . . . . . . . . 22

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 ABCD: Attentive Bilateral Convolutional Network for Robust Depth Com-

pletion 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Depth Completion . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 3D Deep Learning . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Preliminary: Bilateral Convolutional Layer . . . . . . . . . . 30

3.3.2 Attentive Bilateral Convolutional Layer . . . . . . . . . . . . 31

3.3.3 Feature Projection . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.4 Network Overview . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.5 Implementation Details . . . . . . . . . . . . . . . . . . . . . 37

3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Evaluation on the KITTI Dataset . . . . . . . . . . . . . . . . 38

3.4.3 Evaluation on the VirtualKITTI2 Dataset . . . . . . . . . . . 40

iv



3.4.4 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.1 ABCL-based Point Encoder . . . . . . . . . . . . . . . . . . 42

3.5.2 Weight Map . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Traversability Estimation Based on Footprint Supervision in an Off-road

Environment 45

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Traversability Estimation . . . . . . . . . . . . . . . . . . . . 49

4.2.2 Dynamic Filter Layer . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1 Inter-modality Joint-control Kernel Layer . . . . . . . . . . . 51

4.3.2 Footprint Supervision . . . . . . . . . . . . . . . . . . . . . . 54

4.3.3 Network Architecture . . . . . . . . . . . . . . . . . . . . . . 57

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.2 Experiments on the Rellis-3D Dataset . . . . . . . . . . . . . 59

4.4.3 Experiments on Custom Dataset . . . . . . . . . . . . . . . . 61

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Conclusion 63

Abstract (In Korean) 77

v



List of Tables

2.1 Test set configurations . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Image-based localization performance on Rellis-3D dataset . . . . . . 21

2.3 Image-based localization performance comparison on KITTI odome-

try and nuScenes datasets . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Camera-LiDAR extrinsic calibration performance comparison for KITTI

raw dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Quantitative comparison with the state-of-the-art methods on the KITTI

and VirtualKITTI2 dataset in RMSE (meter) . . . . . . . . . . . . . . 38

3.2 Quantitative comparison between variants of our model on the KITTI

validation set in RMSE (meter) . . . . . . . . . . . . . . . . . . . . . 42

4.1 Quantitative results on Rellis-3D dataset . . . . . . . . . . . . . . . . 60

vi



List of Figures

2.1 Overview of EFGHNet. The proposed method aims to determine a

transformation that matches an image xIin and a point cloud xPin. In

the virtual-alignment phase, each of the two input data is aligned to a

virtual reference coordinate system. In the compare-and-match phase,

two aligned data are compared and matched to complete the registra-

tion. The final output T is the product of the results from each step.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Process of E3 network.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Process of Horizon network.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Process of Forward-axis network. The feature map of the image f I

and the feature map of the range map fR are used to compute the

correlation score pcs. The area with the highest correlation score (green

box) indicates the area of the image that overlaps the range map. . . . 16

vii



2.5 Process of Gather network.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Qualitative results of image-based localization experiments on KITTI

odometry dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Overview of the proposed method. The proposed method uses sparse

depth information measured by LiDAR sensor in the point cloud and

depth image formats. While previous methods utilized only two inputs,

depth image and color image, the proposed method leverages the 3D

feature information extracted directly from 3D point cloud through the

ABCL as the third input. . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Bilateral convolutional layer (BCL) [1]. . . . . . . . . . . . . . . . . 31

3.3 Two attention maps generated in attention step. . . . . . . . . . . . . 32

3.4 Attention step for attentive bilateral convolutional layer (ABCL). . . 34

3.5 ABCD architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.6 Qualitative comparison with state-of-the-art methods on the KITTI

validation set. The first column shows the input color image and the

second column shows the ground truth. The results of our method and

other methods are shown in subsequent columns. . . . . . . . . . . . 39

3.7 Qualitative comparison with the state-of-the-art methods on the

VirtualKITTI2 dataset. The first column shows the input color im-

age and the second column shows the ground truth. The results of our

method and other methods are shown in subsequent columns. . . . . 41

viii



3.8 Depth completion result comparison in terms of the point encoder

aspect when there is no camera image input. M4 is a network with

an ABCL-based point encoder added to the M0. . . . . . . . . . . . 43

3.9 Depth completion results and weight maps of ABCD with and

without a camera image. The first column shows the two input data

of the ABCD. The second column shows the prediction result and the

third column shows the weight map. In the weight map, yellow indi-

cates a high ratio of the image encoder feature and black indicates a

high ratio of the point encoder feature. . . . . . . . . . . . . . . . . . 44

4.1 We use expert driving to access the driving style of the robot in traversabil-

ity estimation. In this paper, we propose a method to estimate the entire

traversable space by learning the implicit traversability represented by

the footprints of robots in expert driving. . . . . . . . . . . . . . . . 48

4.2 Structure of IJKL. The guidance image xguide and convolve image

xconv, the two inputs of IJKL, are the first inputted to the confidence

generating layer, and a confidence score, wconf , is generated. Next,

the weighted guidance image x′guide and convolve image x′conv are in-

putted to the kernel generating layer, and two decomposed kernels K ′

and K ′′ are obtained. The two kernels are used sequentially for the

convolution operation with xconv. . . . . . . . . . . . . . . . . . . . 53

4.3 Overview of the footprint-supervision module. The footprint-supervision

module consists of four components: the random walk module, self-

supervised loss Lss, soft entropy loss Lse, and cross-entropy loss Lce.

The light blue box indicates the inference path. . . . . . . . . . . . . 56

ix



4.4 Overview of the proposed network. The network takes the RGB-D

image xrgbd as input, estimates the surface normal image psn inside

the network, and uses IJKL and the footprint-supervision module to

predict a traversability map, ptrav, as the final result. . . . . . . . . . 57

4.5 Visualization of the generated kernels. The similar colors in the im-

age indicate similar kernels. . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Qualitative results on custom dataset. The predicted traversable space

is highlighted. The results show that different driving styles predict

different traversable spaces in the same scene. . . . . . . . . . . . . . 62

x



Chapter 1

Introduction

1.1 Background and Motivations

Are we ready for autonomous driving [2]? Autonomous driving has shown up around

us before we could notice it, from self-driving cars that introduced the term “autonomous

driving” to the robot vacuum cleaners we use every day and military robots that nav-

igate the battlefield. Hence, it is important to understand autonomous driving. Au-

tonomous driving supports various tasks (driving a car, cleaning the room, exploring

the battlefield) by observing the surrounding environment, interpreting the observed

data, and then planning actions and controlling robots without human intervention.

There are five core modules for autonomous driving: sensing, perception, localization,

planning, and control. A sensing module uses sensors to collect data on the surround-

ing environment. The most widely used sensors are cameras that collect images, Li-

DARs that collect point clouds, inertial measurement units (IMUs) that detect linear

and rotational accelerations, and global positioning systems (GPS) that measure an

robot’s position. Perception and localization modules generate essential knowledge

for autonomous driving by interpreting data collected from sensors. The perception

module detects signs and objects and segments the data into meaningful clusters. The

localization module builds a map from the data and uses it to estimate the robot’s cur-

1



rent location. The planning module uses interpreted information to plan actions for a

target task. Finally, a control module controls the robot to perform the planned action.

Most existing studies on autonomous driving have been conducted in limited con-

ditions (e.g., data collected on a clear and bright day, machine platform driving on

paved roads without a tremor). However, we may encounter noisy data, malfunction-

ing sensors, and dynamic natural conditions in the real world. Therefore, algorithms

that are guaranteed to work under limited conditions cannot be used for autonomous

driving in the real world. For an algorithm to be ready for autonomous driving, it must

be able to operate robustly in various real-world conditions. Therefore, our goal is to

develop algorithms that can work on a car driving on paved roads, on a UGV driving

off-road, in morning and night conditions, from dusk to dawn, and on foggy and rainy

days.

Our research starts with the data obtained from sensors, especially images and

point clouds. The image obtained from the camera sensor consists of high-resolution

RGB color information. However, it is vulnerable to changes in illuminance; hence,

different data may be collected depending on sunlight or weather changes in the same

scene. The point cloud obtained from the LiDAR sensor is a set of 3D points. It is less

affected by changes in illuminance and provides distance information of 3D space.

However, this data has inherently low resolution. The image and point cloud have dis-

tinct characteristics. The fusion of the two data is a powerful solution because it can

generate accurate and robust integrated information that compensates for the short-

comings of each data.

The first step of fusion is the one-to-one matching of the two data. This is called

image-to-point cloud registration, and its goal is to estimate a transformation matrix

that aligns the image and point cloud in the same coordinate system. Next, improved

data can be generated using the two matched data, which is called depth completion.

The goal of depth completion is to generate a depth image with high-resolution depth

information using an image with high-resolution color information and a point cloud

2



with low-resolution depth information. Finally, the space that the robot can traverse

can be estimated by integrating the image and point cloud, which is called traversabil-

ity estimation. In the integration process, semantic information is extracted from the

image and surface slope information is extracted from the point cloud, and traversabil-

ity is estimated based on this information.

In this dissertation, we propose a fusion framework of image and point cloud

for autonomous driving in diverse environments. The proposed framework consists

of three algorithms. The first is an image-to-point cloud registration algorithm that is

feasible under different terrain conditions. The algorithm can be run on automobiles

on paved roads and UGVs on off-roads and has been validated in two registration

applications: image-based localization and camera-LiDAR extrinsic calibration. The

second is a depth completion algorithm that can operate reliably in different light and

weather conditions. This algorithm can operate stably from morning to night, in fog

and rain, and with camera corruptions. The last is a traversability estimation algorithm

that can learn the driving style of the robot platform. This algorithm can estimate the

appropriate traversability based on the physical characteristics of the robot platform

and desired driving style (e.g., dirt priority driving, pothole avoidance).

1.2 Contributions and Outline of the Dissertation

1.2.1 EFGHNet: A Versatile Image-to-Point Cloud Registration Network

for Extreme Outdoor Environment

We present an accurate and robust image-to-point cloud registration method that is

viable in urban and off-road environments. Existing image-to-point cloud registration

methods have focused on vehicle platforms along paved roads. Therefore, image-to-

point cloud registration on UGV platforms for off-road driving remains an open ques-

tion. Our objective is to find a versatile solution for image-to-point cloud registration.

We present a method that stably estimates a precise transformation between an image

3



and a point cloud using a two-phase method that aligns the two input data in the virtual

reference coordinate system (virtual-alignment) and then compares and matches the

data to complete the registration (compare-and-match). Our main contribution is the

introduction of divide-and-conquer strategies to image-to-point cloud registration. The

virtual-alignment phase effectively reduces relative pose differences without cross-

modality comparison. The compare-and-match phase divides the process of matching

the image and point cloud into the rotation and translation steps. By breaking down

the registration problem, it is possible to develop algorithms that can robustly oper-

ate in various environments. We performed extensive experiments on four datasets

(Rellis-3D, KITTI odometry, nuScenes, and KITTI raw). Experiments cover a variety

of situations in which image-to-point cloud registration is applied, from image-based

localization in off-road environments to camera-LiDAR extrinsic calibration in urban

environments. The experiments demonstrate that the proposed method outperforms the

existing methods in accuracy and robustness.

1.2.2 ABCD: Attentive Bilateral Convolutional Network for Robust Depth

Completion

We propose a point-cloud-centric depth completion method called attentive bilateral

convolutional network for depth completion (ABCD). The proposed method uses Li-

DAR data and camera data to improve the resolution of the sparse depth information.

Color images, which have been seen as fundamental to depth completion tasks, are

inevitably sensitive to light and weather conditions. We designed an attentive bilateral

convolutional layer (ABCL) to build a robust depth completion network under diverse

environmental conditions. An ABCL efficiently learns geometric characteristics by di-

rectly leveraging a 3D point cloud and enhances the representation capability of sparse

depth information by highlighting the core while suppressing clutter. The ABCD, with

an ABCL as a building block, stably fills the void in sparse depth images even under

unfamiliar conditions with minimum dependency on unstable camera sensors. There-

4



fore, the proposed method is expected to be a solution to depth completion problems

caused by changes in the environment in which images are captured. Through com-

parative experiments with other methods using the KITTI [3] and VirtualKITTI2 [4]

datasets, we demonstrated the outstanding performance of the proposed method in di-

verse driving environments.

1.2.3 Traversability Estimation Based on Footprint Supervision in an

Off-road Environment

Traversability estimation is the task of estimating an area that the robot can travel.

This task plays an important role in preventing the robot from crashing or overturn-

ing, particularly in off-road environments in the presence of scattered obstacles. Ex-

isting studies consider traversability to be explicit and approach a task by estimating

a predefined traversable space. However, this approach cannot be a viable solution to

the problem of finding robot-centric traversability in off-road environments. Off-road

traversability cannot be explicitly defined and is implicitly determined by three factors:

surface slope, semantic information, and robot platform. In this study, the footprints of

the robot in expert driving are used, in which a human manually controls the robot. For

this, we design a footprint-supervision module to predict the entire traversable space

based on the footprints of the robot. Simultaneously, a new dynamic filter layer called

the inter-modality joint-control kernel layer (IJKL) is proposed that self-manages the

effects of the two inputs of the layer, RGB and the surface normal image, to extract

features optimized for traversability estimation. The performance of the method is

demonstrated through experiments on multiple datasets and the proposed method is

confirmed to be a feasible traversability estimation method optimized for off-road en-

vironments.

5



Chapter 2

EFGHNet: A Versatile Image-to-Point Cloud Registra-

tion Network for Extreme Outdoor Environment

2.1 Introduction

Image-to-point cloud registration aims to find a transformation that aligns a 2D image

and a 3D point cloud. To integrate 2D and 3D data, it is essential to understand the

transformation between the two. Because of its importance, image-to-point cloud reg-

istration has been applied in various fields such as computer vision, robotics, and au-

tonomous driving. One representative application is image-based localization, which

estimates the pose of an image sensor under the world coordinate system of a point

cloud. The other is camera-LiDAR extrinsic calibration, which estimates the relative

pose between an image sensor and point cloud sensor mounted on the same platform.

The main difference between the two tasks is that, in the case of image-based local-

ization, we assume that the point cloud is pre-collected, the image sensor is mounted

on the moving platform, and the goal is to estimate the location of an image sensor.

However, in the case of camera-LiDAR extrinsic calibration, the aim is to match the

image and point cloud by estimating the relative pose between the two sensors.

A classic approach to image-to-point cloud registration is to use matching algo-

6



rithms in the feature space of two data [5], [6]. These features can be descriptors

(SIFT [7], DAISY [8]) or key points from both data. Perspective-n-point (PnP), it-

erative closest point (ICP), and RANSAC are commonly used matching algorithms.

However, reliable estimation is difficult because the performance of the matching al-

gorithm is strongly affected by the initial seed, which is the initial pose of the image

and the point cloud. A recently emerged learning-based approach involves regress-

ing transformations using convolutional neural networks (CNNs). Most studies use

point clouds converted into depth images to take advantage of CNNs optimized for

grid-format information processing [9], [10]. Therefore, CNNs can efficiently process

cross-modality inputs and learn the associations between depth and RGB information.

However, if the difference between the initial pose of the image and the point cloud is

large, the depth image is not properly generated, making an accurate estimation dif-

ficult. To solve this problem, DeepI2P [11] interpreted the registration problem as a

classification problem for classifying the point cloud projected on the camera frustum.

However, this method is still not a reliable solution for large differences in the initial

pose of the image and the point cloud.

The situations of a large difference in initial pose values often occur in off-road

environments. Existing image-to-point cloud registration methods have focused on ve-

hicle platforms along paved roads, and it is possible to assume a small oscillation in

the platform. However, the methods under this assumption did not perform well in

the case of an unmanned ground vehicle (UGV) platform driving off-roads, where the

platform experiences large tremors. In such an off-road UGV environment, the image

or point cloud collected from the onboard sensor undergoes large rotations or move-

ments. Existing registration methods cannot adequately cope with such large noises

and cause registration failures. This limitation led to the goal of finding a versatile so-

lution for image-to-point cloud registration. We aim to develop an algorithm that can

operate in various situations that robots may experience in an outdoor environment,

from image-based localization of UGVs driving off-road to on-the-fly camera-LiDAR

7



extrinsic calibration of autonomous vehicles.

In this study, we propose an image-to-point cloud registration method called EFGH-

Net (Fig. 2.1). We build a two-phase method that aligns the two input data in the virtual

reference coordinate system (virtual-alignment) and then compares and matches the

data to complete the registration (compare-and-match). The virtual-alignment phase

exploits the unique features of data. The horizon is used to align the image to the vir-

tual reference coordinate system, that is, the image is aligned by matching an estimated

horizon to a standard basis vector e2 = [0, 1, 0] (TH ). Similarly, a ground normal vec-

tor is used to align the point cloud. The point cloud is firstly aligned by matching an

estimated ground normal vector to a standard basis vector e3 = [0, 0, 1] (TE). The

compare-and-match phase compares the two data in the virtual reference coordinate

system. It is assumed that the forward axis of the image is e1 = [1, 0, 0]. The area of

overlap of the point cloud with respect to the image is estimated, and the point cloud is

rotated to match its forward axis to e1 (TF ). Next, the registration process is completed

by estimating the displacement of the image and the point cloud and using it to match

the origin of both coordinate systems (TG).

We experimentally demonstrate the performance of the proposed method. First,

we demonstrate that our method can work reliably even in large turbulences through

image-based localization experiments using Rellis-3D [12], which is an off-road dataset

collected on the UGV platform. Second, we compare the image-based localization

performance with existing methods using the KITTI odometry [2] and nuScenes [13]

datasets. Finally, we compare the camera-LiDAR extrinsic calibration performance

with existing methods using the KITTI raw [14] dataset. The experiments demonstrate

that the proposed method outperforms the existing methods in both localization and

calibration tasks in terms of both accuracy and robustness.

The key contributions of our paper are:

• We propose a novel image-to-point cloud registration network named EFGH-

Net, which provides a versatile solution to the image-to-point cloud registration

8



Figure 2.1: Overview of EFGHNet. The proposed method aims to determine a trans-

formation that matches an image xIin and a point cloud xPin. In the virtual-alignment

phase, each of the two input data is aligned to a virtual reference coordinate system.

In the compare-and-match phase, two aligned data are compared and matched to com-

plete the registration. The final output T is the product of the results from each step.

9



problem.

• Our method has a two-phase structure using a divide-and-conquer strategy, so it

can reliably estimate transformations even with large differences in initial pose,

and at the same time have high accuracy.

• We verify the performance of the proposed method in various situations through

extensive experiments using four datasets in different platforms and environ-

ments.

2.2 Related Work

2.2.1 Image-based Localization

Image-based localization estimates an image sensor’s pose under a world coordinate

system of a point cloud. One of the early image-based localization approaches uti-

lizes feature descriptors. There are methods of extracting feature descriptors from a

given image and point cloud and finding the correlation between the two data in the

feature space [5], [6]. Another method extracts descriptors from images and matches

descriptor-point pairs at high speed using kd-tree and lookup tables [15]. Another

image-based localization approach generates a pseudo image from a point cloud. There

are methods to generate synthetic images from a 3D prior map and compare them

with images observed by the onboard camera [16], [17], [18]. Conversely, there is

an approach to reconstructing a pseudo point cloud from image features. A localiza-

tion method uses visual odometry to generate 3D points from an image and matches

generated 3D points with a 3D prior map [19]. Another localization method using

vision-laser matching that generates a sparse keypoint map using vision and IMU data

and matches it with a dense LiDAR map [20]. Finally, a learning-based approach has

been proposed. CMRNet [9] is an early study on the introduction of CNNs to image-

based localization and has proposed a network that learns how to match images to 3D

10



maps. This method uses an initial pose matrix to generate a depth image from a point

cloud and processes the depth and RGB images as a network to estimate a 6-DOF

matrix. 2D3D-Matchnet [21] extracts descriptors from image patches and local point

clouds through neural networks and estimates the camera’s pose using a PnP algo-

rithm, based on the correspondence between the descriptors. DeepI2P [11] solves the

image-to-point cloud registration problem as a classification problem. DeepI2P classi-

fies points existing in the image frustum through the neural network and estimates the

optimal camera pose by solving the optimization problem for the classified points and

image.

2.2.2 Camera-LiDAR Extrinsic Calibration

The camera-LiDAR extrinsic calibration estimates the relative pose between an im-

age sensor and a point cloud sensor mounted on the same platform. In the target-

based approach, both sensors measure a calibration target simultaneously, and the

algorithm estimates a calibration matrix based on the measured target. Boards with

checkerboards [22], [23], and circular [24] [25] markers are often used in this ap-

proach. Ordinary boxes are used as targets [26] to reduce the effort required to set up

a calibration system. The other approach is a targetless approach that eliminates the

need for a target during the calibration process. Instead, this approach uses additional

information such as external sensors or time-series data. Methods using inertial mea-

surement units (IMUs) [27], navigational sensors [28], and omnidirectional cameras

[29] have been proposed. The targetless approach has come a long way with the ad-

vent of deep learning. RegNet [10] is the first attempt to regress rigid transformation

parameters using a convolutional neural network (CNN). CalibNet [30] uses geomet-

ric supervision to minimize the photometric and point cloud distance errors in the

training of the CNN. RGGNet [31] is an online tolerance-aware extrinsic calibration

method that introduces Riemannian geometry and the concept of tolerance to solve a

specific calibration problem. Another method uses road markers for extrinsic calibra-

11



tion between nonoverlapping cameras and LiDAR [32]. SOIC [33] is a semantic-based

automatic camera–LiDAR extrinsic calibration method. In this method, the calibration

process is initialized using newly introduced semantic centroids (SCs) obtained from

semantic segmentation results. CRLF [34] entails the extraction of straight-line fea-

tures from image–point cloud pairs, estimation of the calibration matrix by solving

the perspective-3-lines (P3L) problem, and devising a cost function to refine the esti-

mated calibration results. A method has been proposed for the automatic calibration

of multiple LiDARs and cameras [35]. In this method, multiple LiDAR sensors are

first calibrated through bundle adjustment, and adaptive voxelization is then used to

accelerate the process of extrinsic calibration between multiple LiDARs and cameras.

2.3 Methods

We define an image-to-point cloud registration problem as follows. The inputs are an

image xIin ∈ RH×W×3 and a point cloud xPin ∈ RN×3, and the output is the transfor-

mation matrix T . The overall registration process is divided into four steps, handled

in subnetworks E3, Forward-axis, Gather, and Horizon. Each subnetwork estimates a

transformation matrix, that is, TE , TF , TG, and TH . The final result of the registration

is the product of the matrices T = TG ·TF ·TE , indicating the transformation from the

point cloud sensor to the image sensor.

In the following sections, p refers to the prediction, y refers to the ground truth,

superscript I denotes the image, and P denotes the point cloud. The reference frame

consists of e1, e2, and e3.

2.3.1 E3 Network

The first step involves aligning the input point cloud to the virtual reference coordinate

system (Fig. 2.2). The E3 network estimates the ground normal vector pgn from the

point cloud xPin. The output of the network TE is a transformation matrix that rotates

12



Figure 2.2: Process of E3 network.

pgn to fit the standard basis vector e3 = [0, 0, 1].

We implement the E3 network using the DownBCL block, which processes the

point cloud and extracts features. A bilateral convolutional layer (BCL) is used to

process 3D information contained in a point cloud [36], [1], [37]. DownBCL, pro-

posed in [37], expands the receptive field of BCL. Therefore, by stacking this layer,

the DownBCL block can learn point cloud information distributed over a large area.

The extracted features of DownBCL are fed into the rotation head.

We design a rotation head to estimate the rotation vector pr using the spherical

regression framework proposed in [38], which is a general solution to the regression

of the n-sphere problem. The rotation head makes two predictions: the absolute value

prabs ∈ R1×rdim and sign value prsgn ∈ R1×2rdim of pr. The sign prediction is 2rdim-

dim, because the + and - signs of pr are encoded as a one-hot vector. In E3 network,

the rotation head estimates the ground normal vector pgn ∈ R1×3, where rdim = 3.

The loss function Lr of the rotation head consists of two parts: the absolute and

sign parts.

Lr = − yrabs · prabs
||yrabs ||2 · ||prabs ||2

+ CE(yrsgn , prsgn) (2.1)

where the loss for the absolute part is the cosine proximity loss and that for the sign

13



Figure 2.3: Process of Horizon network.

part is the cross-entropy loss (denoted as CE).

2.3.2 Horizon Network

In the second step, the input image is aligned with the virtual reference coordinate

system (Fig. 2.3). The horizon network estimates the horizontal vector phv from image

xIin. A horizontal vector is defined as a vector that is parallel to the horizon in the

image. When the right-end pixel of the horizon is [ur, vr] and the left-end is [ul, vl],

the horizon is defined as yhv = [ul − ur, vl − vr, 0]. The output of the network TH

rotates phv to fit e2 = [0, 1, 0].

The Horizon network consists of a VGG [39] network used to extract features

from xIin and the rotation head to estimate the horizontal vector phv ∈ R1×3, where

rdim = 3 with the third element fixed at 0.

2.3.3 Forward-axis Network

In the third step, the Forward-axis network matches the forward axis of the point cloud

with that of the image. It is assumed that the vector entering the image plane is the

forward axis of the image coordinate e1 = [1, 0, 0], and that the estimation target is the

forward axis of the point cloud pfwd. Output matrix TF rotates pfwd to fit e1 to match

the two forward axes.

14



The two inputs of the Forward-axis network are an image aligned to the horizon

xIH = xIin · TH , and a range map xR ∈ RH×λW×4 converted from the point cloud

xPE = TE · xPin, as shown in

r =
√
x2 + y2 + z2

h =
V FP

U − sin−1(z/r)

V FP
U − V FP

L

·H

w =
π − tan−1(y/x)

2π
· λW

xR(h,w) = [x, y, z, r]

(2.2)

where V FP
U is the upper bound of the vertical field-of-view (FoV) of the point cloud,

V FP
L is the lower bound, and H and W are the height and width of image xIin, respec-

tively. In addition, λ is the ratio of the horizontal FoV of the point cloud to that of the

image, as shown in

λ = (HFP
U −HFP

L )/(HF I
U −HF I

L) (2.3)

where HFP
U and HFP

L is the upper bound and lower bound of the horizontal FoV of

the point cloud, and HF I
U and HF I

L is the upper and lower bound of the image. We

assume that λ ≥ 1 because the horizontal FoV of the point cloud (= 2π) is wider than

the image.

We design a method for predicting the correlation score map between two inputs

(Fig. 2.4), inspired by the cross-view localization method [40]. The image xIH and

range map xR are processed using independent CNNs. We use the VGG [39] network

and add a simple convolution layer before and after the network to reshape the features.

Each CNN generates a feature map from an image f I ∈ RH′×W ′×C and a range map

fR ∈ RH′×λW ′×C . The network computes the correlation score map pcs ∈ RλW ′

between the feature maps along the image width, as shown in

pcs(i) =
C∑
c=1

H′∑
h=1

W ′∑
w=1

fR(h, (i+ w)%λW ′, c) · f I(h,w, c) (2.4)

where % is the modulo operation.

15



Figure 2.4: Process of Forward-axis network. The feature map of the image f I and

the feature map of the range map fR are used to compute the correlation score pcs.

The area with the highest correlation score (green box) indicates the area of the image

that overlaps the range map.

The forward axis of the point cloud can be calculated using the w-index of the

highest correlation score as

prad = π − 2π ·w (pcs)

λW ′ (2.5)

pfwd = [cos(−prad), sin(−prad), 0] (2.6)

The ground truth ycs ∈ RλW ′
is set to one for the pixel corresponding to the

ground truth yrad value and n pixels around it, and all other pixels are set to zero.

Binary cross-entropy loss and hard-negative mining are used for the training.

2.3.4 Gather Network

The fourth and final step is to gather the previous results and estimate the displacement

of the image and point cloud (Fig. 2.5). The two inputs of the Gather network are an

image xIH and depth image xD ∈ RH×W×4 converted from the point cloud xPEF =

16



Figure 2.5: Process of Gather network.

TF · TE · xP in:

[u, v, w]T = Kinit · [x, y, z, 1]T

xD(u/w, v/w) = [x, y, z, w] (2.7)

where Kinit denotes the initial calibration matrix. The estimated translation vector pt

is used to generate an output transformation matrix TG, which moves the origin of

the point cloud coordinates (0, 0, 0) to pt to match the origin of the image coordinate

system.

The image xIH is passed through an encoder-decoder network (CNN1) to predict

the pseudo-depth image pdi ∈ RH×W×1 and depth mask pdm ∈ RH×W×1. A pseudo-

depth image is an image with depth value for each pixel in the image xIH . The ground

truth is a projection of the ground truth point cloud onto the image plane. A depth

mask is a binary image for each pixel in the image xIH that has a value of 1 if the

point cloud is projected, and 0 otherwise. The feature map of the decoder and depth

image xD are input into ResNet [41] (CNN2), and the translation vector pt ∈ R1×3 is

estimated. The loss function for the pseudo-depth image pdi is the mean squared error,

for the depth mask pdm is the cross-entropy error, and for pt is the L1-loss.

17



2.4 Experiments

2.4.1 Implementation Details

The weights of the network are initialized to a normal distribution with a mean of 0.0

and a standard deviation of 10−3. The Adam optimizer is used for network optimiza-

tion with an initial learning rate of 10−4. The learning rate is multiplied by 0.7 for

every 50000 iterations.

2.4.2 Test Set Configurations

The test set configurations are listed in Tab. 2.1. The image-based localization test sets

are denoted as Test1. A pair of image and point cloud is captured at different times,

within 10m. We tested single image and single point cloud pairs (Test1-A,B,E,F) and

single image and accumulative point cloud pairs (Test1-C,D,G,H). The accumulative

point cloud is generated by accumulating data from five frames before and after the

selected point cloud. The camera-LiDAR extrinsic calibration test sets are denoted as

Test2. A pair of image and point cloud is captured at the same time step.

We also add noise to the image and point clouds to simulate the tremors of the

platform (image-based localization, Test1) and a miscalibrated state (camera-LiDAR

extrinsic calibration, Test2). The noise range is ±α◦ for the image rotation. The input

image is generated by rotating the image and cropping it using the original image size.

The noise range for the point cloud is ±β◦ for rotation and ±γm for translation. The

input point cloud is generated by rotating the point cloud in the roll, pitch, and yaw

directions and translating it.

2.4.3 Image-based Localization

Experiment Setup

Dataset We perform extensive experiments on three large-scale outdoor datasets: the

Rellis-3D [12], KITTI odometry [2], and nuScenes [13] datasets. The Rellis-3D dataset

18



Table 2.1: Test set configurations

Name Image Point Cloud α β γ

Test1-A single single 15◦ 15◦ 2m

Test1-B single single 30◦ 30◦ 2m

Test1-C single accumulative 15◦ 15◦ 2m

Test1-D single accumulative 30◦ 30◦ 2m

Test1-E single single 0◦ 0◦ 0m

Test1-F single single 10◦ 10◦ 0m

Test1-G single accumulative 0◦ 0◦ 0m

Test1-H single accumulative 10◦ 10◦ 0m

Test2-A single single 10◦ 10◦ 0.5m

Test2-B single single 15◦ 15◦ 2m

Test2-C single single 20◦ 20◦ 1m

Test2-D single single 30◦ 30◦ 2m

is an off-road dataset collected using the Clearpath Robotics Warthog UGV platform.

It provides 1920×1200-sized RGB images from a Basler acA1920-50gc camera, point

clouds from a 64-channel Ouster OS1 LiDAR, calibration, and GPS information. We

followed the official data split for training, validation, and testing, which consists of

7800 training samples, 2413 validation samples, and 3343 test samples. The KITTI

odometry dataset provides 11 sequences (00 to 10) of images, point clouds, calibration

data, and ground truth vehicle poses. The image data are 1392 × 512-sized RGB im-

ages collected using Point Grey Flea 2, and the point cloud data were collected using

Velodyne HDL-64E. Sequences 00 to 06 are used for training (15237 samples), 07 to

08 for validation (5172 samples), and 09 to 10 for testing. The nuScenes [13] dataset

provides a total of 1000 scenes (850 for trainval split, 150 for test split) of images with

a pixel resolution of 1600 × 900 and point clouds collected by a 32-channel LiDAR.

In the trainval set, the first 700 scenes are used for training (13979 samples), and 150

19



scenes are used for validation (3003 samples) with 20 frame stride.

Evaluation Metrics We used the average relative rotation error (RRE) and average

relative translational error (RTE) to evaluate the accuracy.

Result

Experiment on Rellis-3D dataset As a proof of concept, we perform experiments

on a fixed input with different models, including E3, Forward-axis, Gather, and Hori-

zon networks. In Tab. 2.2, we list the performance using different models, where EH

represents the combination of the E3 network and the Horizon network, EFH repre-

sents the EH plus the Forward-axis network, and EFGH represents the final model,

including the Gather network. According to the results, the average RRE and RTE

gradually decreased with the addition of each subnetwork. The results show that EFH

achieves much lower RRE than EH, and EFGH has a certain amount of improvement in

RTE through translational alignment than EFH. These results prove the validity of our

primary idea that, through the divide-and-conquer strategy to solve the image-based

localization problem, even a large range of errors can be reliably controlled.

Comparison to baseline methods To demonstrate the effectiveness of our method,

we compare the performance of EFGHNet with two baseline methods. BANet+ICP is a

classical ICP matching algorithm using input point clouds and pseudo-points generated

by the depth estimation network BANet [42] from input images. DeepI2P [11] is a

state-of-the-art learning-based image-to-point cloud registration method. We trained

the network using published code on the KITTI odometry and nuScenes datasets.

The results are presented in Tab. 2.3. Our method is robust for diverse conditions,

including different ranges of noise and types of point clouds (single or accumulative).

In the Test1-E set on KITTI odometry, the difference in RRE between BANet+ICP and

the proposed method is 0.3◦. However, in the Test1-F set, this difference increases to

5.85◦. This trend is also observed in comparison with DeepI2P and nuScenes dataset.

20



Table 2.2: Image-based localization performance on Rellis-3D dataset

Rellis-3D

Testset Test1-A Test1-B Test1-C Test1-D

Models RRE (◦) RTE (m) RRE (◦) RTE (m) RRE (◦) RTE (m) RRE (◦) RTE (m)

Initial State 20.02± 20.33 4.67± 2.82 32.89± 19.42 4.65± 2.78 20.02± 20.33 4.67± 2.82 32.89± 19.42 4.65± 2.78

EH 15.49± 22.20 4.67± 2.82 21.21± 21.31 4.65± 2.78 16.48± 22.58 4.67± 2.82 20.89± 21.44 4.65± 2.78

EFH 14.92± 21.40 4.67± 2.82 16.98± 23.48 4.65± 2.78 14.85± 21.42 4.67± 2.82 17.07± 23.25 4.65± 2.78

EFGH 14.92± 21.40 4.47± 2.92 16.98± 23.48 4.46± 2.87 14.85± 21.42 4.43± 2.92 17.07± 23.25 4.42± 2.86

Table 2.3: Image-based localization performance comparison on KITTI odometry and

nuScenes datasets

KITTI Odometry

Testset Test1-E Test1-F Test1-G Test1-H

Methods RRE (◦) RTE (m) RRE (◦) RTE (m) RRE (◦) RTE (m) RRE (◦) RTE (m)

BANet [42] + ICP 5.17± 6.75 5.05± 3.24 10.14± 7.31 5.02± 3.21 5.03± 6.74 4.97± 3.16 10.02± 7.32 4.96± 3.12

DeepI2P [11] 8.49± 8.02 6.19± 3.14 13.28± 8.41 6.20± 3.16 8.33± 8.08 6.19± 3.16 13.25± 8.31 6.31± 3.17

EFGHNet 4.87± 8.02 4.79± 2.93 4.29± 9.31 4.87± 2.90 4.89± 8.76 4.79± 2.93 4.28± 8.55 4.87± 2.90

nuScenes

Testset Test1-E Test1-F Test1-G Test1-H

Methods RRE (◦) RTE (m) RRE (◦) RTE (m) RRE (◦) RTE (m) RRE (◦) RTE (m)

DeepI2P [11] 9.21± 7.82 6.51± 3.15 13.45± 6.97 6.52± 3.17 6.94± 7.04 6.26± 3.09 12.49± 6.34 6.37± 3.12

EFGHNet 5.77± 5.40 4.46± 3.05 4.73± 5.41 4.49± 3.05 5.26± 5.38 4.47± 3.05 4.09± 5.37 4.50± 3.05

That is, neither the classical method (BANet+ICP) nor the learning-based method

(DeepI2P) could estimate a reasonable transformation. In contrast, our method showed

similar errors for all four test sets. These results quantitatively demonstrate that our

method can effectively control noise and reliably operate image-to-point cloud regis-

tration compared with other methods. The performance of the proposed method can

also be qualitatively verified from Fig. 2.6. EFGHNet is the only method that correctly

aligns the image and point clouds.

21



Figure 2.6: Qualitative results of image-based localization experiments on KITTI

odometry dataset.

2.4.4 Camera-LiDAR Extrinsic Calibration

Experiment Setup

Dataset The KITTI raw [14] dataset provides image, point cloud, and calibration

data. The image data are 1392×512-sized RGB images collected using Point Grey Flea

2, and the point cloud data were collected using Velodyne HDL-64E. The data split for

training and testing follows that of a previous study [10], where data collected on

09/26/2011, excluding sequences 05 and 70, are used for training (15,306 image-point

cloud pair samples), and sequences 05 and 70 are used for validation (574 samples).

For testing, sequence 28 from 09/30/2011 (5177 samples) is used, which is a dataset

collected on a different day.

Evaluation Metrics We used the quaternion distance (QD) to evaluate the rotation

accuracy and the mean absolute error (MAE) to evaluate the translation accuracy, as

shown in

QD = 2atan(
√
q2i + q2j + q2k/qr)) and q = qyq

−1
p (2.8)

MAE = mean(||ty − tp||) (2.9)

where the subscript p represents the prediction and y represents the ground truth.

22



Table 2.4: Camera-LiDAR extrinsic calibration performance comparison for KITTI

raw dataset

KITTI Raw

Testset Test2-A Test2-B Test2-C Test2-D

Methods QD(◦) MAE(m) QD(◦) MAE(m) QD(◦) MAE(m) QD(◦) MAE(m)

CalibNet [30] 5.10± 2.86 0.25± 0.09 9.52± 4.40 1.00± 0.34 12.79± 5.85 0.50± 0.18 23.12± 8.91 1.00± 0.34

RGGNet [31] 1.79± 1.04 0.12± 0.06 7.79± 6.08 0.90± 0.35 5.64± 5.34 0.41± 0.17 17.73± 12.27 0.96± 0.34

LCCNet [43] 11.62± 6.50 0.61± 0.29 13.31± 7.51 0.79± 0.40 14.58± 7.79 0.59± 0.27 21.29± 14.09 0.85± 0.40

EFGHNet 1.54± 1.79 0.17± 0.07 1.89± 2.66 0.48± 0.22 1.65± 2.36 0.27± 0.12 2.12± 3.57 0.48± 0.22

Result

To validate our method, we compared its performance with those of the latest methods,

CalibNet [30], RGGNet [31], and LCCNet [43]. The quantitative results are summa-

rized in Tab. 2.4. The QD difference between our method and RGGNet, which has

the lowest error among the baseline methods, is 0.25◦ in Test2-A, but this difference

increases to 15.61◦ in the Test2-D set. Based on the results, we can verify that our

method is capable of stable operation under various experimental conditions. These

results also prove that our method has comparable or superior performance to existing

methods in camera-LiDAR extrinsic calibration, which requires high accuracy.

2.5 Conclusions

We present an accurate and robust image-to-point cloud registration method that is

viable in urban and off-road environments. Our main contribution is the introduction

of divide-and-conquer strategies to image-to-point cloud registration. We build a two-

phase method that aligns the two input data in the virtual reference coordinate system

(virtual-alignment) and then compares and matches the data to complete the regis-

tration (compare-and-match). We performed extensive experiments on four datasets

(Rellis-3D [12], KITTI odometry [2], nuScenes [13], and KITTI raw [14]). The exper-

iments demonstrate that the proposed method outperforms existing methods in terms

23



of accuracy and robustness.

Our experiments focused on existing datasets with simulated noise. Future work

should explore the performance of the proposed method in real off-road robots. An-

other important area of future research is to optimize the proposed network to be able

to run at high speed on mobile robots. EFGHNet can become the cornerstone of these

researches.

24



Chapter 3

ABCD: Attentive Bilateral Convolutional Network for

Robust Depth Completion

3.1 Introduction

LiDAR is a laser-based sensor that measures the distance to a target using a laser

beam. LiDAR has been adopted in a wide range of research areas such as robotics,

autonomous driving, and drones. The data obtained from a LiDAR sensor are essen-

tially sparse and, therefore, are often referred to as sparse depth information. The low

resolution of the data degrades the performance of tasks such as 3D object detection,

semantic segmentation, and object tracking. This limitation of LiDAR has led to con-

siderable research into what has been called the depth completion task. A depth com-

pletion task typically uses LiDAR and camera data together to improve the resolution

of sparse depth information to produce dense depth information.

Color camera images have been key elements in depth completion research over

the years. This is because color images can provide precise boundary information of

objects, whereas LiDAR data lack such knowledge. Therefore, most depth completion

networks generate dense depth information based on features extracted from color

images. However, because cameras are vulnerable and subject to lighting and weather

25



conditions, a strong dependency on the camera can render depth completion algorithms

unstable. To be useful in real-world applications, depth completion algorithms must

provide robust and accurate depth information.

To construct efficient depth completion networks, many existing depth completion

approaches adopt convolutional neural networks (CNNs), which have been widely

used for image processing [44],[45],[46],[47],[48]. However, standard CNNs do not

consider the spatial adjacency of LiDAR data during feature extraction. Therefore,

to improve the performance of depth completion networks, it is necessary to develop

CNNs optimized for LiDAR data.

A 3D CNN for depth completion must process a wide range of point sets simul-

taneously while preserving detailed point information. To achieve this goal, we adopt

the bilateral convolutional layer (BCL), which has been previously proposed for im-

age filtering [36], 3D segmentation [1], and scene flow estimation [37] of LiDAR point

cloud data. The BCL can process the entire 3D point cloud of a scene, without using

pre-processing steps such as sub-sampling. It is due to this property of the BCL that

enables the network to preserve the characteristics of each point and provide a suitable

architecture for depth completion. However, the BCL handles the points uniformly,

and thus, it lacks the ability to differentiate points for objects at diverse distances for

depth completion.

To overcome this problem and retrieve accurate depth information, we designed

an attentive bilateral convolutional layer (ABCL) in this study. We introduced an at-

tention mechanism [49] that refines the learned 3D information, highlights specific

channels and areas that contain key information for the task, and suppresses clutter

using a self-generated attention map. With the ABCL as a building block, we propose

an end-to-end depth completion network called the attentive bilateral convolutional

network for depth completion (ABCD), which shows robust performance even under

harsh environmental conditions. The proposed depth completion network overcomes

the limitations of camera-dependent depth completion methods, which are vulnera-

26



ble to environmental changes, and, hence, it can be applied to a variety of real-world

conditions. We use the ABCL to build a point encoder that extracts 3D spatial fea-

tures from a point cloud. The 3D information encoded via the point encoder is passed

to the image plane through a feature projection process, which enables our network

to use multimodal inputs to efficiently integrate information from different domains.

We succeeded in building a remarkably robust network by adding a point encoder to

the image-centric encoder-decoder structure, which has been a commonly employed

structure in existing depth-completion networks. An overview of the proposed method

is shown in Fig. 3.1.

We evaluated our approach using two datasets: KITTI [3] and VirtualKITTI2 [4].

The KITTI depth completion dataset contains 93k training samples under bright and

clear daytime conditions. VirtualKITTI2 is a synthetic dataset that contains data gen-

erated under various lighting and weather conditions. The average performance of the

proposed method on these two datasets was comparable to that of the state-of-the-

art methods. Furthermore, under harsh weather and lighting conditions (shaded, cor-

rupted, morning, fog, overcast, rain, and sunset), the proposed method outperformed

the others by significant margins.

The contributions of this study are as follows:

• We designed and implemented a novel 3D convolutional layer called ABCL,

which operates directly on point cloud data and exploits a wide range of 3D

spaces.

• We developed a robust depth completion network named ABCD that, using an

effective 3D processing method, functions well under unpredictable real-world

driving conditions.

• Through comparative experiments with other methods using the KITTI and Vir-

tualKITTI2 datasets, we demonstrated the outstanding performance of the pro-

posed method in diverse driving environmental conditions.

27



Figure 3.1: Overview of the proposed method. The proposed method uses sparse

depth information measured by LiDAR sensor in the point cloud and depth image for-

mats. While previous methods utilized only two inputs, depth image and color image,

the proposed method leverages the 3D feature information extracted directly from 3D

point cloud through the ABCL as the third input.

28



3.2 Related Work

3.2.1 Depth Completion

The emergence of deep learning methods has led to considerable progress in depth

completion research. One study applied standard CNNs, which have been widely used

for image processing, to the depth completion task [44]. Furthermore, surface nor-

mal information is generated and combined with color images to predict the dense

depth image [48], [50]. Studies have also attempted to improve performance by intro-

ducing new concepts to depth completion: affinity [51], uncertainty [52], and confi-

dence [53]. A depth completion study proposed an approach for learning the adaptive

convolution kernel size and number of propagation iterations [54]. A recent study [55]

improved this method [54] and applied it to a depth refinement module. The two-

stage depth completion framework, which improved the limitations of the existing one-

stage framework, achieved high performance on both indoor and outdoor datasets [56].

Guide image filtering, which is used to predict the weights of guided kernels and ex-

tract features for completing sparse depth images, has been used in depth completion

studies [47]. Furthermore, a study that introduced repetitive designs to image-guided

filtering was proposed [57].

3.2.2 3D Deep Learning

Three-dimensional (3D) point cloud data are used in a wide range of fields, including

robotics, autonomous vehicles, and 3D mapping; therefore, the utilization of these data

for deep learning has also been widely studied. Certain approaches divide 3D space

into regular grids, where the points are mapped to a uniform voxel grid, and these

grid-format data are used as inputs to CNNs [58], [59], [60]. However, processing 3D

data in the voxel format incurs problems such as the loss of original information and

an inefficient use of memory owing to the sparsity of the data. A novel method, named

PointNet [61], was proposed to directly handle the point cloud data using a multi-layer

29



perceptron (MLP), rather than converting it to a grid format. Additionally, the use of

a hierarchical summary of the features from the point cloud was proposed in a subse-

quent study [62]. Tangent convolution [63] processes 3D data using a set of tangent im-

ages, which is the result of projecting the local surface geometry on the tangent planes

around all points. PointCNN [64] introduced convolution to learn a χ-transformation

from points. Certain approaches [65], [66], [67] use a continuous convolution kernel

at neighboring points to learn 3D features. Therefore, a depth completion method [45]

using continuous convolution [66] was proposed. Compared to our approach, contin-

uous convolution [66] is unable to expand the receptive field, which is desired for 3D

deep learning for depth completion.

3.3 Methods

3.3.1 Preliminary: Bilateral Convolutional Layer

A BCL uses a high-dimensional Gaussian kernel with learnable weights. The input of

the BCL consists of a position vector pin ∈ RN×3 and a value vector vin ∈ RN×d

for N points with a feature length of d. The entire BCL operation is performed on

a permutohedral lattice and consists of three steps: splat, convolve, and slice [36],[1]

(Fig. 3.2).

The splat step involves rearranging the input into the lattice. The convolve step

involves a convolution operation using a learnable Gaussian kernel on the permutohe-

dral lattice. In the slice step, the result of the convolution is projected back from the

permutohedral lattice to the original point.

The downsampling and upsampling operators of the BCL, named DownBCL and

UpBCL, are described in [37]. DownBCL consists of two steps: splat and convolve, in

which a fine lattice is downsampled to a coarser lattice, producing fewer outputs than

input points. UpBCL consists of a convolve and slice step that produces more output

than input points by upsampling the features from a coarse lattice to a finer lattice.

30



Figure 3.2: Bilateral convolutional layer (BCL) [1].

3.3.2 Attentive Bilateral Convolutional Layer

The ABCL consists of four steps: splat, convolve, attention (which is a newly proposed

step), and slice. The attention step is an implementation of the attention mechanism

CBAM [49] onto a permutohedral lattice, thus refining the results of the convolution.

We applied this idea to UpBCL and DownBCL to design an UpABCL consisting of a

convolve-attention-slice and a DownABCL consisting of a splat-convolve-attention.

The input of the attention step is a value vector, v ∈ RN×d, which is the result of

the convolve step. N is the number of occupied lattice points and d is the size of the

channel. The channel attention map Mc ∈ R1×d squeezes the spatial dimension of the

value vector in one dimension, and the spatial attention map Ms ∈ RN×1 summarizes

the channel dimension of the value vector in one dimension (Fig. 3.3). The output of

the attention step v
′′

is the result of the refinement of the value vector v using these

two attention maps.

A channel attention map was used to determine what to focus on. This helps the

network focus on important channels among the d channels of the value vector. The

process of generating the channel attention map involves two pooling layers (aver-

age and max), an MLP, and a sigmoid activation function. It has been reported that

squeezing the input feature map using a pooling layer is an efficient way to create an

attention map. In earlier studies, the average pooling layer effectively aggregated the

31



(a) Channel attention map

(b) Spatial attention map

Figure 3.3: Two attention maps generated in attention step.

32



spatial information of the feature map [68], [69]. CBAM [49] has empirically demon-

strated that max pooling has important interpretive capabilities for distinctive features

to generate fine channel attention, and thus has shown that using average pooling and

max pooling together can generate more effective attention maps. Based on this idea,

we used a combination of average and max pooling to create an attention map for the

channel. The two pooling layers spatially summarize the input value vector to create a

channel attention map. The value vector is refined by adding new weights to the chan-

nel through the element-wise multiplication of the channel attention map and the value

vector. For the value vector, pooling layers aggregate N lattice points and generate a

1×d-sized vector. Using the MLP, a 1×d-sized vector is reduced by the reduction ratio,

r, and restored. Eq. 3.1 represents the process of generating a channel attention map.

vi represents the value vector of the i-th lattice point, w0 ∈ R
d
r
×d and w1 ∈ Rd× d

r are

the parameter matrices of the MLP, and σ represents the sigmoid function.

Mc = σ(w1(w0(
1

N

∑
i

vi +MAXivi)
T ))T (3.1)

A spatial attention map was used to determine where to focus. It assists the net-

work in concentrating on meaningful points among N lattice points. The process for

generating the spatial attention map involves average and max pooling layers, a 1× 1

convolutional layer, and a sigmoid activation function. It has been reported in one

study [70] that applying a pooling layer on the channel dimension helps to highlight

important spatial regions. Therefore, we created a spatial attention map by squeezing

the channel information of the input value vector using two pooling layers. The d chan-

nels of the value vector are aggregated to 1 through two pooling layers, and the results

are two N×1-sized vectors. The outputs from the two pooling layers are concatenated

and passed through a 1× 1 convolutional layer and sigmoid function. The process for

generating a spatial attention map is formulated in Eq. 3.2, where v
′
ij indicates the j-th

element in the value vector of the i-th lattice point.

33



Figure 3.4: Attention step for attentive bilateral convolutional layer (ABCL).

Ms =
∑
i

σ(
1

d

∑
j

v
′
ij +MAXjv

′
ij) (3.2)

The two attention maps weight the input value vector v using element-wise mul-

tiplication. First, the element-wise multiplication of Mc and v is performed, and then

the result v
′

is element-wise multiplied by Ms. The entire process of the attention step

is shown in Fig. 3.4.

3.3.3 Feature Projection

Feature projection is the process used to transfer the point features into the image

domain. The point feature x3d = (p3d, v3d) has a position vector p3d ∈ RN×3 and a

value vector v3d ∈ RN×d. Using a LiDAR-camera calibration matrix, Tcalib, the 3D

coordinates of the position vector p3d are converted into 2D camera coordinates. Then,

they are multiplied by the scale factor s to obtain the new position vector p2d in scale

s. The entire process is expressed in Eq. 3.3. This process enables the conversion of

3D point features into multi-scale feature maps in the 2D image domain.

p2d = (p3d · Tcalib) · s, p2d ∈ RN×2 (3.3)

The value vector is assigned to the location corresponding to p2d on the image

plane. When two different points in 3D space are on the same pixel in the image, we

34



assigned the value vector of the point closer to the camera, taking into account the

distance between the point and the camera.

3.3.4 Network Overview

The proposed method uses an encoder-decoder structure, with an encoder consisting

of an image encoder and a point encoder. The image encoder creates image features,

and a point encoder consisting of an ABCL generates point features. After the feature

projection process, the decoder takes the resulting features from both encoders and

predicts the dense depth image. For training the network, we used the L2 loss between

the predicted depth image and ground truth. The proposed network is shown in Fig. 3.5,

where conv1×1 denotes a convolutional layer with a 1×1 kernel and 1 stride followed

by a leaky ReLU (α = 0.1), and conv3×3 denotes a convolutional layer with a 3 × 3

kernel and 1 stride, batch normalization, and a leaky ReLU (α = 0.2). The transpose

block consists of a transposed convolutional layer with a 3 × 3 kernel and 2 strides,

batch normalization, a leaky ReLU (α = 0.2), and conv3×3.

Image Encoder

The image encoder, which learns features using color and depth images, is based on

the network described in [44]. And has ResNet [41] as its basic structure. It handles

two inputs through additional convolutional layers. After passing through the first con-

volutional layer, the features from the two input images are concatenated and used as

the input to ResNet. The four residual blocks that make up ResNet downsize the input

twice.

Point Encoder

The point encoder takes input xin ∈ RN×3 and finds a point feature xout ∈ RN×d.

Input xin is a point cloud that contains N 3D points represented by xyz coordinates.

This information passes through five DownABCLs on a gradually decreasing scale,

35



Figure 3.5: ABCD architecture.

and then five UpABCLs on an increasing scale corresponding to the DownABCLs.

Each UpABCL takes the previous layer result and DownABCL result of the same

scale. By connecting the high-resolution features of a DownABCL to an UpABCL via

a skip link, we prevent the early features from disappearing in deep networks. The

result of the last UpABCL is sliced into the input point cloud, and a d-dimensional

feature vector is created for the input of each of the N points.

Decoder

The decoder uses multiscale image features from the image encoder and point features

from the point encoder. The four transpose blocks that make up the decoder consist of

a transposed convolutional layer and a convolutional layer. The transposed convolu-

tional layer upsamples the image features twice. The point features are then projected

onto each transpose block with the same scale as the image features through a feature

36



projection process. The image features and point features pass through a 1 × 1 conv

layer and a softmax layer to create a weight map. Next, the weighted feature maps are

input as a transpose block. The output of the last transpose block is processed through

a convolutional layer, resulting in the prediction of a dense depth image.

3.3.5 Implementation Details

The proposed network was implemented using PyTorch [71]. The weights of the net-

work were initialized to a normal distribution with a mean of 0.0 and standard devia-

tion of 10−3. The Adam optimizer was used for network optimization, with an initial

learning rate of 10−4. The learning rate was multiplied by 0.7 every two epochs. We

used one NVIDIA GeForce GTX 1080 Ti for training. Our model converges after

2400k iterations, which took approximately 3 weeks.

3.4 Experiments

3.4.1 Experimental Setup

The KITTI depth completion dataset [3] was divided into a training set, validation set,

and test set. The training set included 92, 750 samples, and the validation set contains

1, 000 samples with color, sparse depth images, and dense depth images. The dense

depth images were used as the ground truth and had a depth value of up to approxi-

mately 80 m. The test set included 1, 000 samples of sparse depth and color images,

excluding the ground truth.

The VirtualKITTI2 [4] dataset is a photo-realistic synthetic dataset, which is a

reconstruction of the KITTI video dataset [2] in a virtual environment. This dataset

consists of a set of color and dense depth images with a maximum depth of 655.35

m. Because no sparse depth images were provided, we used the raw LiDAR data from

the KITTI video dataset to generate a sparse depth image using only the depth values

of the pixels where the LiDAR data points are projected onto the image plane. There

37



Table 3.1: Quantitative comparison with the state-of-the-art methods on the KITTI and

VirtualKITTI2 dataset in RMSE (meter)

Method KITTI VirtualKITTI2

Name
Params Runtime

Test Shaded
Corrupted Corrupted

Clone Fog Morning Overcast Rain Sunset
(M) (sec) 100/300 300/500

GuideNet [47] 62.62 0.120 0.736 0.771 0.932 1.077 147.31 124.17 135.83 132.51 131.40 146.82

ACMNet [72] 1.350 0.483 0.744 1.193 1.287 1.421 24.22 24.13 23.89 25.54 26.58 24.44

DeepLiDAR [48] 144.0 0.462 0.758 2.418 1.227 1.961 17.75 19.18 17.99 17.94 17.77 17.70

Van Gansbeke [52] 2.545 0.207 0.772 0.812 1.015 1.193 18.51 22.18 18.60 19.12 19.10 18.35

Sparse-to-Dense [44] 26.11 0.117 0.814 0.883 1.334 1.933 18.69 19.12 18.68 18.44 18.58 18.68

ABCD 32.93 0.248 0.764 0.755 0.865 1.052 16.27 17.17 16.55 16.37 16.29 15.94

are six conditions for the color images: clone, fog, morning, overcast, rain and sunset,

each of which contains 4, 244 samples. The clone is a synthetic reconstruction of the

real world, and the others are variants that differ in lighting and weather conditions for

the same scene.

We used the root mean squared error (RMSE) between the prediction and ground

truth as a measure to evaluate the accuracy of depth completion. The measurement

of runtime is executed on one NVIDIA GeForce GTX 1080 Ti with the Intel Core

i7-7700K CPU @ 4.20GHz.

3.4.2 Evaluation on the KITTI Dataset

We compared the proposed method with other state-of-the-art depth completion meth-

ods using the KITTI depth completion dataset, as shown in Table 3.1. First, we sub-

mitted our depth completion result for the test set to the KITTI evaluation server to

compare its performance with other methods on the KITTI leaderboard. Next, to com-

pare the robustness of the proposed method, we conducted two different experiments

by intentionally damaging the input camera image of the KITTI validation set. In the

first experiment, we reduced the RGB value to half to assume a situation in which the

camera image was shaded. In the second experiment, we blocked a part of the input

camera image using a randomly generated black box. The height and width of the

38



Figure 3.6: Qualitative comparison with state-of-the-art methods on the KITTI

validation set. The first column shows the input color image and the second column

shows the ground truth. The results of our method and other methods are shown in

subsequent columns.

black box were determined by uniform sampling in the specified range (represented

by minimum/maximum values in the table), and the position of the box was also ran-

domly determined. The experiments used predefined corrupted images for each set of

ranges such that all methods could compare their performances under the same input.

The prediction results for each condition are presented in Fig. 3.6.

Compared with GuideNet [47], which showed the best performance on the KITTI

test set, the RMSE of our method was only 3% higher. However, under various en-

vironmental and lighting conditions, the ABCD showed a lower RMSE (from 2% to

68%) compared with other state-of-the-art methods.

39



3.4.3 Evaluation on the VirtualKITTI2 Dataset

Applications for autonomous vehicles should be robust under a variety of conditions

that are likely to be encountered by vehicles. We measured the robustness of the pro-

posed depth completion method under various light and weather conditions using the

VirtualKITTI2 dataset. In the training phase, our method and other state-of-the-art

methods used only the training set of the KITTI depth completion dataset. Therefore,

the model described here is the same as that used in Sec. 3.4.2, without any additional

fine-tuning. To ensure a fair comparison, the other methods used in the experiment

only applied the trained model published by the author. In the inference phase, we

used the VirtualKITTI2 dataset.

The quantitative results for this dataset are listed in Table 3.1. Our ABCD method

outperformed the other methods under all conditions. GuideNet [47], ACMNet [72],

and DeepLiDAR [48], which achieved lower errors (from 0.7% to 3%) than the pro-

posed method on the KITTI test set, had higher errors (from 8% to 89%) on the Vir-

tualKITTI2 dataset. This indicates that the proposed method does not overfit and has

good generalization performance, even though it is trained with limited conditioned

data. The qualitative results are presented in Fig. 3.7.

3.4.4 Ablation Study

In this section, we quantitatively evaluate the contributions of each network compo-

nent. The quantitative results of the KITTI validation set are presented in Tab. 3.2.

M0 is a Sparse-to-Dense [44] network, which denotes the framework using only RGB

and sparse depth images as inputs. Notably, the BCL-based point encoder improved

the performance in RMSE by approximately 10.5% (M0 and M1), which demon-

strates that the direct use of point information in depth completion studies is crucial.

In addition, the channel attention module provided a 1.2% (M1 and M2) improve-

ment through channel-side emphasis and suppression. Furthermore, the spatial atten-

tion module further improved the performance by approximately 2.0% (M2 and M4).

40



Figure 3.7: Qualitative comparison with the state-of-the-art methods on the Vir-

tualKITTI2 dataset. The first column shows the input color image and the second

column shows the ground truth. The results of our method and other methods are

shown in subsequent columns.

41



Table 3.2: Quantitative comparison between variants of our model on the KITTI vali-

dation set in RMSE (meter)

Name
Params RGB&

BCL
Attention Attention

RMSE
(M) Depth (Channel) (Spatial)

M0 [44] 26.107 ✓ 0.8582

M1 32.8925 ✓ ✓ 0.7677

M2 32.9322 ✓ ✓ ✓ 0.7583

M3 32.8927 ✓ ✓ ✓ 0.7543

M4 32.9324 ✓ ✓ ✓ ✓ 0.7434

Notably, both the channel and spatial attention modules only increased the number of

parameters by only 0.1%.

3.5 Discussion

In research on depth completion, the performance of an algorithm is evaluated based

on its accuracy on the KITTI dataset. However, in real-world driving conditions, ro-

bustness against changes in the external environment is equally important. We con-

ducted experiments to evaluate the robustness of various methods, where the proposed

ABCD outperformed the other algorithms. We analyzed the factors of ABCD’s high

performance in terms of two aspects.

3.5.1 ABCL-based Point Encoder

The first factor is the ABCL-based point encoder. We analyzed the effect of the point

encoder on the robustness through an experiment. In Fig. 3.8, we compare the pre-

diction results of the two networks without using camera images. Unlike the result

of M0 [44], the proposed M4 can accurately predict the contours of cyclists. This

42



Figure 3.8: Depth completion result comparison in terms of the point encoder

aspect when there is no camera image input. M4 is a network with an ABCL-based

point encoder added to the M0.

indicates that the ABCL-based point encoder is the main factor in making stable pre-

dictions even when images are corrupted.

3.5.2 Weight Map

The second factor is the weight map, which determines the proportion of features used

in the decoder. A comparison of the two weight maps, shown in Fig. 3.9, shows that

the weight map puts more weight on the point feature when no camera data are used.

This adaptation minimizes the accuracy degradation of depth completion. However,

when image information can improve the prediction of the depth map, the weight map

increases the ratio of the image features. In particular, the ratio of image features is

high at the boundary of the object, where there are few measured points.

3.6 Conclusions

In this study, we proposed a depth completion network, namely ABCD, that is robust

to changes in weather and light conditions that are typically encountered in real-world

43



Figure 3.9: Depth completion results and weight maps of ABCD with and without

a camera image. The first column shows the two input data of the ABCD. The second

column shows the prediction result and the third column shows the weight map. In

the weight map, yellow indicates a high ratio of the image encoder feature and black

indicates a high ratio of the point encoder feature.

driving situations. Furthermore, we introduced ABCL, which can efficiently process

point clouds distributed over a large area and refine important features using an atten-

tion mechanism. The experimental results show that the proposed method outperforms

other state-of-the-art methods qualitatively and quantitatively under harsh environmen-

tal conditions.

44



Chapter 4

Traversability Estimation Based on Footprint Supervi-

sion in an Off-road Environment

4.1 Introduction

Traversability estimation is a task that estimates the area a robot can drive based on data

collected through the onboard sensor of the robot. This task plays a key role in helping

the robot in maneuvering obstacles and drive safely. In particular, in an off-road envi-

ronment with scattered obstacles and no paved road, estimating the traversable space

is essential to prevent the robot from crashing or overturning.

Existing studies consider traversability to be explicit and approach the task by es-

timating a predefined traversable space. An earlier study introduced the use of super-

pixels, extracted appearance features from superpixels, and classified the traversabil-

ity of superpixels based on the extracted features [73]. Inspired by the promising re-

sults of convolutional neural networks (CNNs) in computer vision, recent studies adopt

CNNs for traversability estimation. GONet [74] proposed a deep learning network that

can classify traversable and nontraversable images. GONet synthesizes traversable im-

ages using a generative adversarial network (GAN) and classifies the traversability of

observed images by comparing the synthesized and observed images. Another study

45



leveraged CNNs to estimate various traversable routes from observed images [75]. In

this study, the observed image was divided into k bins, and the traversability score was

estimated for each bin using the encoder-decoder structured network.

However, this approach cannot be a viable solution to the problem of finding

robot-centric traversability in off-road conditions. The biggest challenge in estimat-

ing off-road traversability is that traversability cannot be explicitly defined. Off-road

traversability is implicitly determined by three factors: surface slope, semantic in-

formation, and robot platform. For example, if the slope of the surface exceeds the

maximum climb slope of the robot, the area becomes nontraversable. However, if the

semantics of an area can be penetrated, such as a bush, that area is traversable. Fi-

nally, even in the same area, traversability differs depending on the robot platform.

All-terrain vehicles (ATVs) can travel over bushes and puddles, whereas small un-

manned ground vehicles (UGVs) cannot.

We propose the idea of expert driving, in which a human manually controls the

robot. Because the data collected through expert driving represents the driving style

of the robot, this information can be used to access the robot’s implicit traversability.

Specifically, we aim to use the footprints of the robot, which is the route the robot

traversed during expert driving. The footprint is a subset of the total traversable space;

therefore, with footprint-based supervised learning, we can learn characteristics shared

in traversable spaces. Simultaneously, an RGB image and a surface normal image are

used to consider semantic and slope information. To effectively integrate the infor-

mation obtained from the two images, a dynamic filter layer is used. In contrast to a

standard convolutional layer, which uses the same kernel for convolution throughout

the entire image, the dynamic filter layer generates spatially variant kernels based on

the input image and uses them for convolution operations.

In this study, a novel neural network is designed to address the problem of off-road

traversability estimation. The proposed network comprises two main elements. First, a

footprint-supervision module that predicts the entire traversable space using the foot-

46



prints of the robot is proposed. Inspired by scribble-supervised semantic segmenta-

tion [76], this module predicts the entire traversable space by propagating footprints

to neighboring spaces with similar characteristics. Second, the network is developed

using a newly proposed dynamic filter layer, named as inter-modality joint-control ker-

nel layer (IJKL), which self-manages the effects of two inputs of the layer, RGB, and

surface normal on kernel generation. Thus, the network can effectively integrate the

semantic information contained in the RGB image and the surface slope contained in

the surface normal image. Using the above two elements, the proposed network effec-

tively considers all three factors that determine traversability: surface slope, semantic

information, and robot platform. An overview of the proposed method is shown in

Fig. 4.1.

The performance of the method is demonstrated through experiments using RELLIS-

3D [12], a public off-road dataset and a custom dataset for mountainous regions. Our

method successfully estimated the traversable space, reflecting the driving style of the

robot in an off-road environment. The results demonstrate that the proposed method is

a feasible traversability estimation solution optimized for off-road environments.

The key contributions of this study are as follows.

• A new concept for traversability estimation is proposed that considers the driv-

ing style of a robot through expert driving.

• A footprint-supervision module is developed that can estimate the entire traversable

space based on the footprints of the robot.

• A new dynamic filter layer is designed that effectively integrates information

from different modalities by self-managing the effects between the two inputs,

RGB and surface normal image.

• The performance of our method is demonstrated through experiments using

datasets from various environments.

47



Figure 4.1: We use expert driving to access the driving style of the robot in traversabil-

ity estimation. In this paper, we propose a method to estimate the entire traversable

space by learning the implicit traversability represented by the footprints of robots in

expert driving.

48



4.2 Related Work

4.2.1 Traversability Estimation

Previous studies on traversability estimation defined traversable spaces as obstacle-

free spaces. Earlier works dealt with the physical properties of terrain, such as rough-

ness, slope, discontinuity, and hardness and generated a rule-based fuzzy traversability

index to classify terrain traversability [77],[78]. Another study on unknown, unstruc-

tured outdoor environments included foliage, leaves, and dense vegetation [73]. This

study decomposed images into superpixels obtained through oversegmentation, ex-

tracted appearance features from superpixels, and classified the traversability of super-

pixels based on the extracted features.

The introduction of 3D data observed from laser sensors helped to estimate the

traversability of an outdoor, unstructured environment. A study on rough terrain [79]

used 2D vision and 3D laser sensors, independently built probability maps from the

data collected from each sensor, and fused the two maps using Bayes’ rule to complete

the final traversability map. Another study measured an unstructured environment us-

ing 3D range data [80]. In this study, data were collected from human-operated robots,

and the collected robot footprints were used as positive labels. The traversability esti-

mation problem was then formulated as PU learning, which used only positive labels

and unlabeled data for learning.

Inspired by the promising results of convolutional neural networks (CNNs) in com-

puter vision, recent studies have adopted CNNs for traversability estimation. GONet [74]

proposed a deep learning network that can classify traversable and nontraversable im-

ages. The generative adversarial network (GAN) constituting GONet synthesizes a

traversable image and when the synthesized image matches the observed image, the

observed image is classified as traversable; otherwise, it is classified as nontraversable.

VUNet [81] improved GONet by introducing a combination of static and dynamic

transformation modeling. The proposed network synthesized future images depending

49



on camera poses and dynamic objects. Similar to GONet, traversability at the current

time is classified by comparing the synthesized future image with the currently ob-

served image. Another study estimated various traversable routes from observed im-

ages [75]. In this study, the image was divided into k bins, and the traversability score

was estimated for each bin using an encoder-decoder structure. The proposed network

supports domain adaptation; therefore, the generalization between different domains

is possible. In addition, an early stopping tactic was used to ensure the safety of the

robot.

4.2.2 Dynamic Filter Layer

The dynamic filter layer generates spatially variant kernels based on the input image

and uses them for convolution operations. The dynamic filter layer can improve net-

work representation by overcoming the limitations of the standard convolutional layer,

which uses the same kernel for convolution throughout the entire image. A previous

study generated vertical and horizontal convolutional kernels from the inputs [82].

These kernels contain information regarding the translation probabilities required to

estimate the next image from the input image sequence. Another study proposed an

early model for a recent dynamic filter layer [83]. The proposed dynamic filter module

is composed of a filter-generating network that generates a kernel from an input and a

dynamic filtering layer that applies the generated kernel to the input. A previous study

proposed a dynamic filter layer optimized for graphs [65]. In the proposed layer, the

generated kernels are conditioned for an input graph and applied to the graph using a

convolution-like operation to solve the point cloud classification problem.

Subsequently, various methods have been proposed to improve the early dynamic

filter layer. LS-DFN [84] considers the features of adjacent regions in the kernel gen-

eration process for an extended receptive field. In addition, in the fusion of features, an

attention mechanism is used to assign weights to the feature maps. Several studies have

used decomposed filters to solve the large computation problem, which is a limitation

50



of the early dynamic filter layers. A decoupled dynamic filter (DDF) [85] successfully

reduced the amount of computation by decoupling the dynamic filter into spatial and

channel filters. C2DFNet [86] uses the DDF to independently process RGB and depth

data and proposes scene-aware dynamic filters for inter modality feature interaction.

A previous study applied a dynamic filter layer to depth completion [47]. Multimodal

features are fused by predicting kernel weights from guidance RGB images and using

them for the convolution operation on depth images.

4.3 Methods

4.3.1 Inter-modality Joint-control Kernel Layer

Preliminary: dynamic filter layer

A standard convolutional layer applies the same convolution kernel to each pixel in the

image. In contrast, a dynamic filter layer generates different input-conditioned kernels

for each pixel in the image. These spatially variant and content-dependent kernels can

improve the representation of networks. The convolution operation of a dynamic filter

layer can be formulated as

F ′(i, j) = Kij ⊗ F (i, j), (4.1)

where F ∈ Rc×h×w is the input feature map, and F ′ ∈ Rc′×h′×w′
is the output fea-

ture map. Kij ∈ Rc′×c×k×k is a generated kernel of size k for pixel (i, j), and ⊗

denotes the convolution operation. The dynamic filter layer guarantees improved per-

formance compared to a standard convolutional layer but results in increased memory

consumption. For example, a standard convolutional layer requires only one kernel

with c′ × c× k × k parameters, whereas a dynamic filter layer requires kernels for ev-

ery pixel in the input feature map. Therefore, a c′ × c× k × k × h× w parameters are

required. To solve this problem, a method for decomposing the kernel was proposed.

The decomposed dynamic filter layer proposed in [47] is formulated as follows:

51



F ′(i, j) = K ′
ij ⊗ F (i, j)

F ′′(i, j) = K ′′
ij ⊗ F ′(i, j),

(4.2)

where F ∈ Rc×h×w is the input feature map, and F ′ ∈ Rc×h′×w′
is the intermediate

feature map obtained by applying the spatially variant kernel K ′
ij ∈ R1×1×k×k. F ′′ ∈

Rc′×h′×w′
is the final feature map obtained by applying the content-dependent kernel

K ′′
ij ∈ Rc′×c×1×1.

Thus, c′ × c× k × k parameters per kernel can be reduced to c′ × c+ k × k, and

the decomposed dynamic filter layer effectively reduces the computational capacity.

Inter-modality joint-control kernel layer

The dynamic filter layer can improve the performance of the standard convolutional

layer; however, there remains a limitation. The limitation occurs when the dynamic

filter layer is used for guided image filtering. In guided image filtering, the guidance

image, which is the image used to generate the kernel, differs from the convolve image,

to which the generated kernel is applied. Because the generated kernel only considers

the guidance image, it may fail to extract the optimal features from the convolve image.

This can hinder the integration of both images.

A new dynamic filter layer, named as inter-modality joint-control kernel layer

(IJKL), is designed, which controls the effect of the guidance image and convolve

image on the generation of the kernel. The generated kernel can extract task-optimized

features by considering both the guidance image and convolve image. This allows

IJKL to effectively integrate information from different modalities. The structure of

the IJKL is shown in Fig. 4.2.

Two inputs of IJKL, the guidance image, xguide ∈ Rc×h×w, and convolve image,

xconv ∈ Rc×h×w, are given as input to the confidence generating layer. The confidence

generating layer consists of a standard convolutional layer and softmax layer. As an

output, a confidence score, wconf ∈ R2×h×w, is generated. The two inputs, xguide and

52



Figure 4.2: Structure of IJKL. The guidance image xguide and convolve image xconv,

the two inputs of IJKL, are the first inputted to the confidence generating layer, and a

confidence score, wconf , is generated. Next, the weighted guidance image x′guide and

convolve image x′conv are inputted to the kernel generating layer, and two decomposed

kernels K ′ and K ′′ are obtained. The two kernels are used sequentially for the convo-

lution operation with xconv.

xconv, are element-wise multiplied by wconf to produce the weighted inputs, x′guide

and x′conv.

The weighted guidance, x′guide and convolve, x′conv, images are inputted to the ker-

nel generating layer to generate the kernel. The kernel generating layer generates two

types of kernels per pixel. The first is a spatially variant kernel, K ′
ij ∈ R1×1×k×k, and

the second is a content-dependent kernel, K ′′
ij ∈ Rc′×c×1×1. The two kernels gener-

ated here are sequentially used for the convolution operation with xconv, according to

Eq. 4.2.

53



4.3.2 Footprint Supervision

The footprints of the robot from expert driving provide access to implicit traversability.

Therefore, a footprint-supervision module is designed that uses the footprints of the

robot to predict the entire traversable space by propagating footprints to neighboring

spaces with similar characteristics.

In the study of semantic segmentation, scribble supervision is explored as an al-

ternative approach to solve the labor-intensive annotation problem of existing full

supervision. Scribble supervision does not use annotations for every pixel; rather, it

uses partial annotations known as scribbles. This has applicability in our work, as we

need to estimate the entire traversable space using footprints, which are partial an-

notations. Therefore, a footprint-supervision module based on a scribble-supervised

semantic segmentation study [76] is developed. The proposed footprint-supervision

module consists of the following elements.

Random walk

Random walk is a widely used method in graph theory [87]. In a graph G having

n nodes, an affinity matrix A ∈ Rn×n is defined, where Aij represents the affinity

between nodes i and j. Using A, the spread of information from a specific node in

G can be simulated. If the information distribution of n nodes at time t is defined

as vt ∈ Rn×1, then the information distribution at the next time step t + 1 can be

expressed as vt+1 = Avt. The diffusion of information over time can be modeled by

repeating matrix multiplication.

The equation for applying the random walk operation to the neural network is as

follows:

F ′ = αAF + F, (4.3)

where F denotes the input feature map for the random walk, and F ′ denotes the out-

put. Affinity matrix A indicates the probability of a random walk, defined as A =

54



softmax(F TF ). Finally, α represents a learnable parameter that controls the degree

of random walk.

Self-supervised loss

Self-supervised loss is widely used in unsupervised learning to produce consistent

network outputs. It is defined as the difference between the transformation of the neural

representation generated from input x and the neural representation generated from the

transformation of x, expressed as follows:

Lss = dist(Tr(F (x)), F (Tr(x))), (4.4)

where F (x) is the feature map from input x, and Tr is the transformation function.

dist is the distance metric between the two neural representations. In this study, Tr is

used as the horizontal flip and translation, and dist is used as the mean squared error.

Soft entropy loss

In information theory, a large entropy indicates a large uncertainty and vice versa.

Therefore, a prediction with low entropy, which is the desired output of the network,

implies a prediction with low uncertainty. This can be achieved by including an entropy

term in the loss function.

However, in image segmentation, entropy tends to increase near the boundary

where semantic classes are divided. To eliminate the negative effect of entropy in-

crease near the boundary, a method of excluding the boundary entropy from the loss

calculation is proposed. This method is called the soft entropy loss [76] expressed as

follows:

Lse = − 1

|I ′|
∑

(h,w)∈I′

∑
c

p(h,w, c) · log(p(h,w, c)), (4.5)

55



Figure 4.3: Overview of the footprint-supervision module. The footprint-

supervision module consists of four components: the random walk module, self-

supervised loss Lss, soft entropy loss Lse, and cross-entropy loss Lce. The light blue

box indicates the inference path.

where p denotes the prediction of the network, and p(h,w, c) denotes the value for

class c, at location (h,w). I ′ is a set of pixels that excludes the boundary. Here, the

excluded boundary is the boundary of the superpixel generated by SLIC [88].

Footprint-supervision module

The proposed footprint-supervision module is illustrated in Fig. 4.3. First, F is the

input of the random walk module, and F ′ is generated as an output. Inside the random-

walk module, α of Eq. 4.3 is used to control the degree of diffusion. F ′ is fed into the

standard convolutional layer and softmax layer to predict traversability map, ptrav.

Three loss functions are used in the footprint-supervision module. The first is

self-supervised loss, Lss, which is determined as the distance between the transform

Tr(F ′(x)) of the neural representation F ′(x) and the neural representation F ′(Tr(x))

of the transformed input Tr(x). The second is soft entropy loss Lse, which is the loss

between the superpixel boundary map ysuperpixel and ptrav. The third is cross-entropy

56



Figure 4.4: Overview of the proposed network. The network takes the RGB-D image

xrgbd as input, estimates the surface normal image psn inside the network, and uses

IJKL and the footprint-supervision module to predict a traversability map, ptrav, as

the final result.

loss Lce, which is the cross-entropy between the footprints of the robot yfootprint and

ptrav. Negative labels in yfootprint contain both positive and negative samples. There-

fore, we set a weight of 1 for losses on positive labels, and 0.1 for losses on negative

labels.

4.3.3 Network Architecture

The overall network architecture is illustrated in Fig. 4.4. An RGB-D image is used as

input, xrgbd, where D can be a point cloud projected onto the image plane or depth im-

age collected from an RGB-D sensor. The input passes through a series of ResNet [41]

blocks (ResBlock1-*) and deconvolution layers (Deconv1-*) to estimate the surface-

normal image, psn. A surface normal image has a three-dimensional surface normal

value for each pixel of the image. Here, a skip connection is applied to the input of

each deconvolution layer, except for the first layer. The output of the ResNet block is

concatenated to the output of the previous deconvolution layer and fed into the next

deconvolution layer.

57



Next, the surface normal image, psn, is fed into a series of ResNet blocks (ResBlock2-

*) and IJKL. Here, IJKL receives two inputs. The first is the output of the previous

ResNet block as a guidance image that contains surface normal information, and the

second is the output of the deconvolution layer as a convolve image that contains

RGB-D information. Through IJKL, the network simultaneously considers the slope

contained in the surface normal and semantic information contained in the RGB-D.

The feature map passed through the deconvolution layer (Deconv2-*) is input to the

footprint-supervision module, and a traversability map, ptrav, is generated as the final

output.

There are a total of 4 losses used in the network. The self-supervised loss Lss, soft

entropy loss Lse, and cross-entropy loss Lce are the loss functions used in the footprint-

supervision module, and the mean squared error is used as a loss for the surface normal

image, Lsn.

4.4 Experiments

4.4.1 Dataset

The Rellis-3D [12] dataset is an off-road dataset obtained using the Clearpath Robotics

Warthog UGV platform. It provides 1920 × 1200-sized RGB images from a Basler

acA1920-50gc camera, point clouds from Ouster OS1, and GPS data. The official data

split was followed for classifying training and validation data, into 7800 and 2413

samples, respectively. In experiments using the Rellis-3D dataset, a depth image was

generated by projecting a point cloud onto the image plane using the provided calibra-

tion matrix.

In addition, we created a custom dataset. The custom dataset is an off-road dataset

collected from mountainous terrain using the Leo Rover UGV platform. It provides

640×480-sized RGB-D images from Intel Real Sense Depth Camera D435i and IMU

data. We created three sets to represent different driving styles. The first set represents

58



driving with priority on dirt roads (driving style A) with 263 samples; the second set

represents driving with priority on bushes (driving style B) with 76 samples, and the

last set consists of driving data on all terrain (driving style C) with 186 samples. We

also created a test set that included various elements that the robot could encounter in

the mountains, such as dirt roads, stone roads, fallen leaves, bushes, and trees.

The footprints of the robot were generated using the pose information of the robot

from GPS or IMU data. First, the route the robot traversed was generated as a point

cloud line in 3D space. Next, the point cloud was projected onto the image plane. The

projected point cloud was converted to a binary image, one for the pixel on which

the point cloud is projected and zero otherwise. This binary image was used as the

footprints of the robot.

4.4.2 Experiments on the Rellis-3D Dataset

A total number of 353 samples were randomly selected from the Rellis-3D test set and

manually labeled for quantitative evaluation. Mean intersection-of-union (mIoU) was

used as a metric for evaluation. The quantitative results are reported in Tab. 4.1. Here,

“Layer” represents the type of basic building blocks of the network: “Base” is a basic

dynamic filter layer, and “IJKL” is a proposed dynamic filter layer. Under the same

loss function conditions, IJKL always performed better than the Base. In addition, the

results show that Lce has the largest effect on network performance, followed by Lss,

Lsn, and Lse.

The spatially variant kernels, K ′, are depicted in Fig. 4.5 to demonstrate the depen-

dence of generated kernels on the image. The visualization method used in [83] was

implemented to visualize the kernels. Here, the network produces kernels with differ-

ent values for traversable and nontraversable bushes based on semantic information

and surface slope.

59



Table 4.1: Quantitative results on Rellis-3D dataset

Name Layer Lss Lse Lce Lsn mIoU

Base-A Base ✓ ✓ ✓ 0.655

Base-B Base ✓ ✓ ✓ 0.586

Base-C Base ✓ ✓ ✓ 0.030

Base-D Base ✓ ✓ ✓ 0.614

Base-E Base ✓ ✓ ✓ ✓ 0.671

IJKL-A IJKL ✓ ✓ ✓ 0.680

IJKL-B IJKL ✓ ✓ ✓ 0.705

IJKL-C IJKL ✓ ✓ ✓ 0.031

IJKL-D IJKL ✓ ✓ ✓ 0.692

IJKL-E IJKL ✓ ✓ ✓ ✓ 0.725

Figure 4.5: Visualization of the generated kernels. The similar colors in the image

indicate similar kernels.

60



4.4.3 Experiments on Custom Dataset

Three custom datasets were used to generate three models that reflect different driving

styles. The results are presented in Fig. 4.6. The results show that different driving

styles predict different traversable spaces for the same scene. Style A predicts dirt

roads as traversable spaces, style B predicts bushes as traversable spaces, and style C

predicts both dirt and bushes as traversable spaces. This distinct tendency shows that

our method estimates traversability by reflecting the driving style implied in expert

driving.

4.5 Conclusions

In this study, three factors are considered that determine implicit traversability in an

off-road environment: the robot platform, semantic information, and surface slope.

Based on this idea, the proposed method estimates the traversability by considering

the footprints of the robot obtained from expert driving, the RGB image representing

the semantic information, and the surface normal image representing the surface slope.

The proposed method is confirmed to be a feasible traversability estimation method

optimized for off-road environments through experiments.

61



Figure 4.6: Qualitative results on custom dataset. The predicted traversable space is

highlighted. The results show that different driving styles predict different traversable

spaces in the same scene.

62



Chapter 5

Conclusion

In this dissertation, we propose a framework that combines image and point cloud for

autonomous driving in diverse environments. Existing studies optimized under limited

conditions showed state-of-the-art performances but often failed to reproduce these

performances in the real world. Motivated by this, we aimed to develop a framework

that combines image and point cloud that is robust under diverse conditions encoun-

tered in the real world.

In Chapter 2, we proposed an image-to-point cloud registration algorithm that es-

timates a one-to-one match between an image and a point cloud. The algorithm can

operate in various terrains, from automobiles on paved roads and UGVs on off-road

conditions.

In Chapter 3, we proposed a depth completion algorithm that can generate high-

resolution depth information that compensates for the shortcomings of the image and

point cloud. This algorithm can operate reliably in a variety of light and weather con-

ditions, from morning to night, in fog and rain, and under camera corruptions.

In Chapter 4, we proposed a traversability estimation algorithm that estimates

robot-centered traversability from observed images and point clouds. This algorithm

can learn the driving style of the robot platform, from large ATVs to small UGVs, and

estimate traversability based on the learned style.

63



This thesis was completed after exploring and examining the conditions that could

be experienced in the real world, which were not considered in previous studies. We

believe that this research will serve as a foundation to expand the capabilities of au-

tonomous driving. Based on this, we hope that autonomous driving will contribute to

the realization of a better world.

64



Bibliography

[1] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M.-H. Yang, and J. Kautz,

“Splatnet: Sparse lattice networks for point cloud processing,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp.

2530–2539.

[2] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous driving? the

kitti vision benchmark suite,” in Conference on Computer Vision and Pattern

Recognition (CVPR), 2012.

[3] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and A. Geiger, “Sparsity

invariant cnns,” in International Conference on 3D Vision (3DV), 2017.

[4] Y. Cabon, N. Murray, and M. Humenberger, “Virtual kitti 2,” 2020.

[5] T. Sattler, B. Leibe, and L. Kobbelt, “Efficient & effective prioritized matching

for large-scale image-based localization,” IEEE transactions on pattern analysis

and machine intelligence, vol. 39, no. 9, pp. 1744–1756, 2016.

[6] Y. Li, N. Snavely, D. Huttenlocher, and P. Fua, “Worldwide pose estimation using

3d point clouds,” in European conference on computer vision. Springer, 2012,

pp. 15–29.

[7] D. G. Lowe, “Object recognition from local scale-invariant features,” in Proceed-

ings of the seventh IEEE international conference on computer vision, vol. 2.

Ieee, 1999, pp. 1150–1157.

65



[8] E. Tola, V. Lepetit, and P. Fua, “Daisy: An efficient dense descriptor applied to

wide-baseline stereo,” IEEE transactions on pattern analysis and machine intel-

ligence, vol. 32, no. 5, pp. 815–830, 2009.

[9] D. Cattaneo, M. Vaghi, A. L. Ballardini, S. Fontana, D. G. Sorrenti, and W. Bur-

gard, “Cmrnet: Camera to lidar-map registration,” in 2019 IEEE Intelligent

Transportation Systems Conference (ITSC). IEEE, 2019, pp. 1283–1289.

[10] N. Schneider, F. Piewak, C. Stiller, and U. Franke, “Regnet: Multimodal sensor

registration using deep neural networks,” in 2017 IEEE intelligent vehicles sym-

posium (IV). IEEE, 2017, pp. 1803–1810.

[11] J. Li and G. H. Lee, “Deepi2p: Image-to-point cloud registration via deep classi-

fication,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2021, pp. 15 960–15 969.

[12] P. Jiang, P. Osteen, M. Wigness, and S. Saripalli, “Rellis-3d dataset: Data, bench-

marks and analysis,” 2020.

[13] H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan,

Y. Pan, G. Baldan, and O. Beijbom, “nuscenes: A multimodal dataset for au-

tonomous driving,” in CVPR, 2020.

[14] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti

dataset,” International Journal of Robotics Research (IJRR), 2013.

[15] H. Lim, S. N. Sinha, M. F. Cohen, and M. Uyttendaele, “Real-time image-based

6-dof localization in large-scale environments,” in 2012 IEEE conference on

computer vision and pattern recognition. IEEE, 2012, pp. 1043–1050.

[16] R. W. Wolcott and R. M. Eustice, “Visual localization within lidar maps for auto-

mated urban driving,” in 2014 IEEE/RSJ International Conference on Intelligent

Robots and Systems. IEEE, 2014, pp. 176–183.

66



[17] P. Neubert, S. Schubert, and P. Protzel, “Sampling-based methods for visual nav-

igation in 3d maps by synthesizing depth images,” in 2017 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp.

2492–2498.

[18] G. Pascoe, W. Maddern, and P. Newman, “Direct visual localisation and calibra-

tion for road vehicles in changing city environments,” in Proceedings of the IEEE

International Conference on Computer Vision Workshops, 2015, pp. 9–16.

[19] T. Caselitz, B. Steder, M. Ruhnke, and W. Burgard, “Monocular camera localiza-

tion in 3d lidar maps,” in 2016 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS). IEEE, 2016, pp. 1926–1931.

[20] A. Gawel, T. Cieslewski, R. Dubé, M. Bosse, R. Siegwart, and J. Nieto,

“Structure-based vision-laser matching,” in 2016 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 182–188.

[21] M. Feng, S. Hu, M. H. Ang, and G. H. Lee, “2d3d-matchnet: Learning to match

keypoints across 2d image and 3d point cloud,” in 2019 International Conference

on Robotics and Automation (ICRA). IEEE, 2019, pp. 4790–4796.

[22] Q. Zhang and R. Pless, “Extrinsic calibration of a camera and laser range finder

(improves camera calibration),” in 2004 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3.

IEEE, 2004, pp. 2301–2306.

[23] A. Geiger, F. Moosmann, Ö. Car, and B. Schuster, “Automatic camera and range

sensor calibration using a single shot,” in 2012 IEEE International Conference

on Robotics and Automation. IEEE, 2012, pp. 3936–3943.

[24] H. Alismail, L. D. Baker, and B. Browning, “Automatic calibration of a range

sensor and camera system,” in 2012 Second International Conference on 3D

67



Imaging, Modeling, Processing, Visualization & Transmission. IEEE, 2012,

pp. 286–292.

[25] C. Guindel, J. Beltrán, D. Martı́n, and F. Garcı́a, “Automatic extrinsic calibration

for lidar-stereo vehicle sensor setups,” in 2017 IEEE 20th international confer-

ence on intelligent transportation systems (ITSC). IEEE, 2017, pp. 1–6.

[26] Z. Pusztai and L. Hajder, “Accurate calibration of lidar-camera systems using

ordinary boxes,” in Proceedings of the IEEE International Conference on Com-

puter Vision Workshops, 2017, pp. 394–402.

[27] S. Bileschi, “Fully automatic calibration of lidar and video streams from a ve-

hicle,” in 2009 IEEE 12th International Conference on Computer Vision Work-

shops, ICCV Workshops. IEEE, 2009, pp. 1457–1464.

[28] Z. Taylor and J. Nieto, “Motion-based calibration of multimodal sensor arrays,”

in 2015 IEEE International Conference on Robotics and Automation (ICRA).

IEEE, 2015, pp. 4843–4850.

[29] G. Pandey, J. McBride, S. Savarese, and R. Eustice, “Automatic targetless ex-

trinsic calibration of a 3d lidar and camera by maximizing mutual information,”

in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 26, no. 1,

2012.

[30] G. Iyer, R. K. Ram, J. K. Murthy, and K. M. Krishna, “Calibnet: Geometrically

supervised extrinsic calibration using 3d spatial transformer networks,” in 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

IEEE, 2018, pp. 1110–1117.

[31] K. Yuan, Z. Guo, and Z. J. Wang, “Rggnet: Tolerance aware lidar-camera online

calibration with geometric deep learning and generative model,” IEEE Robotics

and Automation Letters, vol. 5, no. 4, pp. 6956–6963, 2020.

68



[32] J. Jeong, Y. Cho, and A. Kim, “The road is enough! extrinsic calibration of non-

overlapping stereo camera and lidar using road information,” IEEE Robotics and

Automation Letters, vol. 4, no. 3, pp. 2831–2838, 2019.

[33] W. Wang, S. Nobuhara, R. Nakamura, and K. Sakurada, “Soic: Seman-

tic online initialization and calibration for lidar and camera,” arXiv preprint

arXiv:2003.04260, 2020.

[34] T. Ma, Z. Liu, G. Yan, and Y. Li, “Crlf: Automatic calibration and refine-

ment based on line feature for lidar and camera in road scenes,” arXiv preprint

arXiv:2103.04558, 2021.

[35] X. Liu, C. Yuan, and F. Zhang, “Fast and accurate extrinsic calibration for multi-

ple lidars and cameras,” arXiv preprint arXiv:2109.06550, 2021.

[36] V. Jampani, M. Kiefel, and P. V. Gehler, “Learning sparse high dimensional fil-

ters: Image filtering, dense crfs and bilateral neural networks,” in Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp.

4452–4461.

[37] X. Gu, Y. Wang, C. Wu, Y. J. Lee, and P. Wang, “Hplflownet: Hierarchical per-

mutohedral lattice flownet for scene flow estimation on large-scale point clouds,”

in Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, 2019, pp. 3254–3263.

[38] S. Liao, E. Gavves, and C. G. Snoek, “Spherical regression: Learning viewpoints,

surface normals and 3d rotations on n-spheres,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2019, pp. 9759–9767.

[39] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

69



[40] Y. Shi, X. Yu, D. Campbell, and H. Li, “Where am i looking at? joint location and

orientation estimation by cross-view matching,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2020, pp. 4064–4072.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 770–778.

[42] S. Aich, J. M. U. Vianney, M. A. Islam, and M. K. B. Liu, “Bidirectional atten-

tion network for monocular depth estimation,” in 2021 IEEE International Con-

ference on Robotics and Automation (ICRA). IEEE, 2021, pp. 11 746–11 752.

[43] X. Lv, B. Wang, Z. Dou, D. Ye, and S. Wang, “Lccnet: Lidar and camera self-

calibration using cost volume network,” in Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, 2021, pp. 2894–2901.

[44] F. Ma, G. V. Cavalheiro, and S. Karaman, “Self-supervised sparse-to-dense: Self-

supervised depth completion from lidar and monocular camera,” in 2019 Inter-

national Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.

3288–3295.

[45] Y. Chen, B. Yang, M. Liang, and R. Urtasun, “Learning joint 2d-3d representa-

tions for depth completion,” in Proceedings of the IEEE International Conference

on Computer Vision, 2019, pp. 10 023–10 032.

[46] X. Cheng, P. Wang, and R. Yang, “Depth estimation via affinity learned with con-

volutional spatial propagation network,” in Proceedings of the European Confer-

ence on Computer Vision (ECCV), 2018, pp. 103–119.

[47] J. Tang, F.-P. Tian, W. Feng, J. Li, and P. Tan, “Learning guided convolutional

network for depth completion,” IEEE Transactions on Image Processing, vol. 30,

pp. 1116–1129, 2020.

70



[48] J. Qiu, Z. Cui, Y. Zhang, X. Zhang, S. Liu, B. Zeng, and M. Pollefeys, “Deepli-

dar: Deep surface normal guided depth prediction for outdoor scene from sparse

lidar data and single color image,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2019, pp. 3313–3322.

[49] S. Woo, J. Park, J.-Y. Lee, and I. So Kweon, “Cbam: Convolutional block atten-

tion module,” in Proceedings of the European Conference on Computer Vision

(ECCV), 2018, pp. 3–19.

[50] Y. Xu, X. Zhu, J. Shi, G. Zhang, H. Bao, and H. Li, “Depth completion from

sparse lidar data with depth-normal constraints,” in Proceedings of the IEEE/CVF

International Conference on Computer Vision, 2019, pp. 2811–2820.

[51] J. Park, K. Joo, Z. Hu, C.-K. Liu, and I. S. Kweon, “Non-local spatial propagation

network for depth completion,” arXiv preprint arXiv:2007.10042, 2020.

[52] W. Van Gansbeke, D. Neven, B. De Brabandere, and L. Van Gool, “Sparse and

noisy lidar completion with rgb guidance and uncertainty,” in 2019 16th Inter-

national Conference on Machine Vision Applications (MVA). IEEE, 2019, pp.

1–6.

[53] A. Eldesokey, M. Felsberg, and F. S. Khan, “Confidence propagation through

cnns for guided sparse depth regression,” IEEE transactions on pattern analysis

and machine intelligence, 2019.

[54] X. Cheng, P. Wang, C. Guan, and R. Yang, “Cspn++: Learning context and re-

source aware convolutional spatial propagation networks for depth completion.”

in AAAI, 2020, pp. 10 615–10 622.

[55] M. Hu, S. Wang, B. Li, S. Ning, L. Fan, and X. Gong, “Penet: Towards precise

and efficient image guided depth completion,” arXiv preprint arXiv:2103.00783,

2021.

71



[56] L. Liu, X. Song, X. Lyu, J. Diao, M. Wang, Y. Liu, and L. Zhang, “Fcfr-net:

Feature fusion based coarse-to-fine residual learning for depth completion,” in

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, no. 3,

2021, pp. 2136–2144.

[57] Z. Yan, K. Wang, X. Li, Z. Zhang, B. Xu, J. Li, and J. Yang, “Rignet: Repetitive

image guided network for depth completion,” arXiv preprint arXiv:2107.13802,

2021.

[58] D. Maturana and S. Scherer, “Voxnet: A 3d convolutional neural network for

real-time object recognition,” in 2015 IEEE/RSJ International Conference on In-

telligent Robots and Systems (IROS). IEEE, 2015, pp. 922–928.

[59] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets:

A deep representation for volumetric shapes,” in Proceedings of the IEEE con-

ference on computer vision and pattern recognition, 2015, pp. 1912–1920.

[60] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas, “Volumetric and

multi-view cnns for object classification on 3d data,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016, pp. 5648–5656.

[61] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on point sets

for 3d classification and segmentation,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2017, pp. 652–660.

[62] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical fea-

ture learning on point sets in a metric space,” in Advances in neural information

processing systems, 2017, pp. 5099–5108.

[63] M. Tatarchenko, J. Park, V. Koltun, and Q.-Y. Zhou, “Tangent convolutions for

dense prediction in 3d,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2018, pp. 3887–3896.

72



[64] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen, “Pointcnn: Convolution on x-

transformed points,” Advances in neural information processing systems, vol. 31,

pp. 820–830, 2018.

[65] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters in convo-

lutional neural networks on graphs,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2017, pp. 3693–3702.

[66] S. Wang, S. Suo, W.-C. Ma, A. Pokrovsky, and R. Urtasun, “Deep parametric

continuous convolutional neural networks,” in Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, 2018, pp. 2589–2597.

[67] W. Wu, Z. Qi, and L. Fuxin, “Pointconv: Deep convolutional networks on 3d

point clouds,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2019, pp. 9621–9630.

[68] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep

features for discriminative localization,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2016, pp. 2921–2929.

[69] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2018, pp.

7132–7141.

[70] S. Zagoruyko and N. Komodakis, “Paying more attention to attention: Improving

the performance of convolutional neural networks via attention transfer,” arXiv

preprint arXiv:1612.03928, 2016.

[71] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-

maison, L. Antiga, and A. Lerer, “Automatic differentiation in pytorch,” in NIPS-

W, 2017.

73



[72] S. Zhao, M. Gong, H. Fu, and D. Tao, “Adaptive context-aware multi-modal net-

work for depth completion,” arXiv preprint arXiv:2008.10833, 2020.

[73] D. Kim, S. M. Oh, and J. M. Rehg, “Traversability classification for ugv naviga-

tion: A comparison of patch and superpixel representations,” in 2007 IEEE/RSJ

International Conference on Intelligent Robots and Systems. IEEE, 2007, pp.

3166–3173.

[74] N. Hirose, A. Sadeghian, M. Vázquez, P. Goebel, and S. Savarese, “Gonet: A

semi-supervised deep learning approach for traversability estimation,” in 2018

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

IEEE, 2018, pp. 3044–3051.

[75] S. Palazzo, D. C. Guastella, L. Cantelli, P. Spadaro, F. Rundo, G. Mus-

cato, D. Giordano, and C. Spampinato, “Domain adaptation for outdoor robot

traversability estimation from rgb data with safety-preserving loss,” in 2020

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

IEEE, 2020, pp. 10 014–10 021.

[76] Z. Pan, P. Jiang, Y. Wang, C. Tu, and A. G. Cohn, “Scribble-supervised se-

mantic segmentation by uncertainty reduction on neural representation and self-

supervision on neural eigenspace,” in Proceedings of the IEEE/CVF Interna-

tional Conference on Computer Vision, 2021, pp. 7416–7425.

[77] A. Howard and H. Seraji, “Real-time assessment of terrain traversability for au-

tonomous rover navigation,” in Proceedings. 2000 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems (IROS 2000)(Cat. No. 00CH37113),

vol. 1. IEEE, 2000, pp. 58–63.

[78] A. Howard, H. Seraji, and E. Tunstel, “A rule-based fuzzy traversability index for

mobile robot navigation,” in Proceedings 2001 ICRA. IEEE International Con-

74



ference on Robotics and Automation (Cat. No. 01CH37164), vol. 3. IEEE, 2001,

pp. 3067–3071.

[79] J. Sock, J. Kim, J. Min, and K. Kwak, “Probabilistic traversability map generation

using 3d-lidar and camera,” in 2016 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2016, pp. 5631–5637.

[80] B. Suger, B. Steder, and W. Burgard, “Traversability analysis for mobile robots

in outdoor environments: A semi-supervised learning approach based on 3d-

lidar data,” in 2015 IEEE International Conference on Robotics and Automation

(ICRA). IEEE, 2015, pp. 3941–3946.

[81] N. Hirose, A. Sadeghian, F. Xia, R. Martı́n-Martı́n, and S. Savarese, “Vunet: Dy-

namic scene view synthesis for traversability estimation using an rgb camera,”

IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 2062–2069, 2019.

[82] B. Klein, L. Wolf, and Y. Afek, “A dynamic convolutional layer for short range

weather prediction,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2015, pp. 4840–4848.

[83] X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool, “Dynamic filter net-

works,” Advances in neural information processing systems, vol. 29, 2016.

[84] J. Wu, D. Li, Y. Yang, C. Bajaj, and X. Ji, “Dynamic filtering with large sampling

field for convnets,” in Proceedings of the European Conference on Computer

Vision (ECCV), 2018, pp. 185–200.

[85] J. Zhou, V. Jampani, Z. Pi, Q. Liu, and M.-H. Yang, “Decoupled dynamic filter

networks,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2021, pp. 6647–6656.

75



[86] M. Zhang, S. Yao, B. Hu, Y. Piao, and W. Ji, “C {̂2} dfnet: Criss-cross dynamic

filter network for rgb-d salient object detection,” IEEE Transactions on Multime-

dia, 2022.

[87] L. Lovász, “Random walks on graphs,” Combinatorics, Paul erdos is eighty,

vol. 2, no. 1-46, p. 4, 1993.

[88] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Süsstrunk, “Slic super-

pixels compared to state-of-the-art superpixel methods,” IEEE transactions on

pattern analysis and machine intelligence, vol. 34, no. 11, pp. 2274–2282, 2012.

76



초록

자율주행은로봇연구의주요화두중하나로자동차,실내로봇,군용로봇,드론

등다양한플랫폼에사용되어우리삶의일부가되고있다.그중주행지능의출발

점인 “인식”은 센서에서 수집한 데이터를 해석해 주행에 필요한 지식을 생성하는

과정이다. 센서가 수집하는 데이터는 로봇 플랫폼, 지형, 빛이나 날씨 조건에 따라

달라진다.자율주행을위한인식기술은이와같은다양한조건에따라변동하는데

이터를입력받아안정적으로정확한지식을생성할수있어야한다.그러나기존의

연구는 대부분 제한된 조건에서 최고의 성능을 달성하기 위한 벤치마크 경쟁에 초

점을맞추었다.우리는이러한실험실전용연구에서벗어나실제세계로뛰어들어

다양한조건에서작동할수있는강력한알고리즘을개발하고자한다.

자율주행에널리사용되는센서로는이미지를수집하는카메라와포인트클라

우드를 수집하는 라이다(LiDAR) 가 있다. 이미지는 고해상도의 색상 정보를 포함

하고있으며조도변화(햇빛,날씨등)에민감하다.포인트클라우드는조도변화에

강하고 3차원 공간의 거리 정보를 제공하지만 낮은 해상도를 가진다. 이렇듯, 이

미지와 포인트 클라우드는 보완적인 특성을 가지고 있으므로 우리는 두 데이터의

융합을통해각데이터의단점을보완하는보강된정보를생성할수있다.

우리는 다양한 환경에서의 자율 주행을 위한 이미지와 포인트 클라우드의 융

합프레임워크를제안한다.융합프레임워크의첫번째단계는두데이터의일대일

일치이다. 이를 이미지-투-포인트 클라우드 레지스트레이션 (Image-to-point cloud

registration) 이라고 하며 이 단계의 목표는 2D 이미지를 3D 포인트 클라우드와 정

렬하는 것이다. 제안하는 알고리즘은 다양한 지형 조건에서 강건하게 동작하도록

설계되었으며, 포장 도로를 주행하는 자동차와 오프로드를 주행하는 UGV에서 그

77



성능이검증되었다.

두 번째 단계는 정렬된 이미지와 포인트 클라우드를 바탕으로 하는 보강된 데

이터의 생성이다. 이를 뎁스 컴플리션 (Depth completion) 이라고 하며, 이 단계의

목표는 고해상도의 색상 정보를 가진 이미지와 저해상도의 거리 정보를 가진 포

인트 클라우드를 이용하여 고해상도의 거리 정보를 가진 뎁스 이미지를 생성하는

것이다. 제안하는 알고리즘은 아침부터 밤, 안개와 비, 카메라 손상 등 다양한 빛과

날씨조건에서안정적으로작동하도록설계되었다.

마지막단계는관찰된이미지와포인트클라우드를바탕으로하는주행가능성

의추정이다.이를주행가능성추정 (Traversability estimation)이라고하며,로봇의

주행 스타일을 학습하여 횡단성을 예측한다. 제안하는 알고리즘은 대형 ATV에서

소형 UGV까지다양한로봇플랫폼의주행스타일을반영한주행가능성을추정할

수있도록설계되었다.

본논문에서,우리는다양한실제세계의조건에서동작할수있는이미지와포

인트클라우드의융합프레임워크를제시한다.우리는제안하는알고리즘을다양한

플랫폼조건 (자동차,대형및소형 UGV),다양한지형조건(포장도로,들판,산),다

양한빛과날씨조건(아침,해질녘,비,안개)에서의실험을통해검증했다.제안하는

프레임워크는다양한조건에따라변동하는데이터를입력받고안정적이고보강된

지식을 생성하여 후속 응용 프로그램의 안정성을 보장하는 완충 역할을 수행할 수

있다.따라서우리는이프레임워크가강력한자율주행을위한초석이되리라기대

한다.

주요어:자율주행,센서융합,딥러닝,이미지-투-포인트클라우드레지스트레이션,

뎁스컴플리션,주행가능성추정

학번: 2017-25223

78


	1 Introduction
	1.1 Background and Motivations
	1.2 Contributions and Outline of the Dissertation
	1.2.1 EFGHNet: A Versatile Image-to-Point Cloud Registration Network for Extreme Outdoor Environment
	1.2.2 ABCD: Attentive Bilateral Convolutional Network for Robust Depth Completion
	1.2.3 Traversability Estimation Based on Footprint Supervision in an Off-road Environment


	2 EFGHNet: A Versatile Image-to-Point Cloud Registration Network for Extreme Outdoor Environment
	2.1 Introduction
	2.2 Related Work
	2.2.1 Image-based Localization
	2.2.2 Camera-LiDAR Extrinsic Calibration

	2.3 Methods
	2.3.1 E3 Network
	2.3.2 Horizon Network
	2.3.3 Forward-axis Network
	2.3.4 Gather Network

	2.4 Experiments
	2.4.1 Implementation Details
	2.4.2 Test Set Configurations
	2.4.3 Image-based Localization
	2.4.4 Camera-LiDAR Extrinsic Calibration

	2.5 Conclusions

	3 ABCD: Attentive Bilateral Convolutional Network for Robust Depth Completion
	3.1 Introduction
	3.2 Related Work
	3.2.1 Depth Completion
	3.2.2 3D Deep Learning

	3.3 Methods
	3.3.1 Preliminary: Bilateral Convolutional Layer
	3.3.2 Attentive Bilateral Convolutional Layer
	3.3.3 Feature Projection
	3.3.4 Network Overview
	3.3.5 Implementation Details

	3.4 Experiments
	3.4.1 Experimental Setup
	3.4.2 Evaluation on the KITTI Dataset
	3.4.3 Evaluation on the VirtualKITTI2 Dataset
	3.4.4 Ablation Study

	3.5 Discussion
	3.5.1 ABCL-based Point Encoder
	3.5.2 Weight Map

	3.6 Conclusions

	4 Traversability Estimation Based on Footprint Supervision in an Off-road Environment
	4.1 Introduction
	4.2 Related Work
	4.2.1 Traversability Estimation
	4.2.2 Dynamic Filter Layer

	4.3 Methods
	4.3.1 Inter-modality Joint-control Kernel Layer
	4.3.2 Footprint Supervision
	4.3.3 Network Architecture

	4.4 Experiments
	4.4.1 Dataset
	4.4.2 Experiments on the Rellis-3D Dataset
	4.4.3 Experiments on Custom Dataset

	4.5 Conclusions

	5 Conclusion
	Abstract (In Korean)


<startpage>15
1 Introduction 1
 1.1 Background and Motivations 1
 1.2 Contributions and Outline of the Dissertation 3
  1.2.1 EFGHNet: A Versatile Image-to-Point Cloud Registration Network for Extreme Outdoor Environment 3
  1.2.2 ABCD: Attentive Bilateral Convolutional Network for Robust Depth Completion 4
  1.2.3 Traversability Estimation Based on Footprint Supervision in an Off-road Environment 5
2 EFGHNet: A Versatile Image-to-Point Cloud Registration Network for Extreme Outdoor Environment 6
 2.1 Introduction 6
 2.2 Related Work 10
  2.2.1 Image-based Localization 10
  2.2.2 Camera-LiDAR Extrinsic Calibration 11
 2.3 Methods 12
  2.3.1 E3 Network 12
  2.3.2 Horizon Network 14
  2.3.3 Forward-axis Network 14
  2.3.4 Gather Network 16
 2.4 Experiments 18
  2.4.1 Implementation Details 18
  2.4.2 Test Set Configurations 18
  2.4.3 Image-based Localization 18
  2.4.4 Camera-LiDAR Extrinsic Calibration 22
 2.5 Conclusions 23
3 ABCD: Attentive Bilateral Convolutional Network for Robust Depth Completion 25
 3.1 Introduction 25
 3.2 Related Work 29
  3.2.1 Depth Completion 29
  3.2.2 3D Deep Learning 29
 3.3 Methods 30
  3.3.1 Preliminary: Bilateral Convolutional Layer 30
  3.3.2 Attentive Bilateral Convolutional Layer 31
  3.3.3 Feature Projection 34
  3.3.4 Network Overview 35
  3.3.5 Implementation Details 37
 3.4 Experiments 37
  3.4.1 Experimental Setup 37
  3.4.2 Evaluation on the KITTI Dataset 38
  3.4.3 Evaluation on the VirtualKITTI2 Dataset 40
  3.4.4 Ablation Study 40
 3.5 Discussion 42
  3.5.1 ABCL-based Point Encoder 42
  3.5.2 Weight Map 43
 3.6 Conclusions 43
4 Traversability Estimation Based on Footprint Supervision in an Off-road Environment 45
 4.1 Introduction 45
 4.2 Related Work 49
  4.2.1 Traversability Estimation 49
  4.2.2 Dynamic Filter Layer 50
 4.3 Methods 51
  4.3.1 Inter-modality Joint-control Kernel Layer 51
  4.3.2 Footprint Supervision 54
  4.3.3 Network Architecture 57
 4.4 Experiments 58
  4.4.1 Dataset 58
  4.4.2 Experiments on the Rellis-3D Dataset 59
  4.4.3 Experiments on Custom Dataset 61
 4.5 Conclusions 61
5 Conclusion 63
Abstract (In Korean) 77
</body>

