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Abstract

Advances in deep neural network approaches have produced tremendous progress

in object recognition tasks, but it has come at the cost of annotating a huge amount

of training images with explicit localization cues. To use object recognition tasks in

real-life applications requires a large variety of object classes and a great deal of labeled

data for each class. However, labeling pixel-level annotations of each object class is

laborious, and hampers the expansion of object classes. The need for such expensive

annotations is sidestepped by weakly supervised learning, in which a DNN is trained

on images with some form of abbreviated annotation that is cheaper than explicit

localization cues. In the dissertation, we study the methods of using various form of

weak supervision, i.e., image-level class labels, out-of-distribution data, and bounding

box labels.

We first study image-level class labels for weakly supervised semantic segmenta-

tion. Most of the weakly supervised methods on image-level class labels depend on

attribution maps from a trained classifier, but their focus tends to be restricted to a

small discriminative region of the target object. We theoretically discuss the root cause

of this problem, and propose three novel techniques to address this issue. However,

built on class labels only, the produced localization maps are known to suffer from

the confusion between foreground and background cues, i.e., spurious correlation. We

address the spurious correlation problem by utilizing out-of-distribution data. Finally,

methods based on class labels cannot separate different instance objects of the same

class, which is essential for instance segmentation. Therefore, we utilize bounding box

labels for weakly supervised instance segmentation as boxes provide information about

individual objects and their locations.

Experimental results show that annotation cost for learning semantic segmentation

and instance segmentation can be significantly reduced: On the challenging Pascal VOC
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dataset, we have achieved 89% of the performance of the fully supervised equivalent

by using only class labels, which reduces the label cost by 91%. In addition, we have

achieved 96% of the performance of the fully supervised equivalent by using bounding

box labels, which reduces the label cost by 83%. We expect that the methods introduced

in this dissertation will be helpful for applying deep learning based object recognition

tasks in a variety of domains and scenarios.

keywords: Deep Learning, Computer Vision, Machine Learning, Weakly Supervised

Learning, Semi-Supervised Learning, Semantic Segmentation, Instance Segmentation,

Object Detection

student number: 2017-29653
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Chapter 1

Introduction

Starting with the success of the ImageNet classification [3], the development of deep

learning has produced tremendous progress and received a lot of attention. As carefully

curated datasets are publicly released and computation is accelerated by the advance-

ment of hardware such as general purpose graphics processing unit (GPGPU), deep

learning has gained unprecedented popularity, and the performance of deep neural

network surpasses that of humans. Accordingly, deep learning has been applied in nu-

merous fields: low-level vision tasks such as deblurring [4, 5] and super-resolution [6, 7],

generative models [8, 9, 10], and object recognition [11, 12]. In this dissertation, we

focus on object recognition tasks.

Object recognition is one of the most important and interesting tasks in the computer

vision society. Object recognition is a study for identifying objects in images or videos,

which includes image classification [13, 14], object detection [15, 16, 17], semantic

segmentation [18, 19], and instance segmentation [20]. Deep learning has significantly

improved the performance of object recognition tasks. However, behind the success

of deep learning lies a massive amount of data. In order to train a deep neural net-

work, a large-scale dataset containing manually annotated labels is essential. However,

manual labeling is notoriously laborious, which hampers the object recognition tasks

to be utilized in real-world applications. This problem is particularly severe in object
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localization tasks such as object detection and segmentation.

To learn to localize the target object in an image, exact localization cues of the

target object are necessary. For example, learning object detection requires bounding

box labels that fit the extent of the target object, and learning semantic segmentation

requires pixel-level segmentation masks of the target object. However, obtaining such

localization labels is very expensive: pixel-level annotation of images containing an

average of 2.8 objects takes about four minutes [21] per image, and a single large

(2048×1024) image depicting a complicated scene requires more than 90 minutes

for pixel-level annotation [22]. To use semantic image segmentation in real-world

applications requires a large variety of object classes and a great deal of labeled data for

each class, but the cost of labels limits the expansion of object classes and the number

of data for each object class.

The need for pixel-level annotation can be addressed by weakly supervised learn-

ing, in which a segmentation network is trained on images with less comprehen-

sive annotations that are cheaper to obtain than pixel-level labels. Weakly supervised

methods can use scribbles [23], points [21], bounding boxes [24, 25, 26], and class la-

bels [27, 28, 29, 30, 31] as annotations. These forms of weak supervision can effectively

reduce the annotation cost. However, learning object localization from weak supervision

is not trivial because those weak labels provide limited information about object loca-

tions. Therefore, the main goal of weakly supervised learning is to compute accurate

pixel-level localization from the limited information and obtain the performance as

close as possible to that of the fully supervised method.

In this dissertation, we first study to utilize image-level class labels as weak super-

vision in Chapter 3. Labeling an image with class labels takes about 20 seconds [21],

making class labels the cheapest option. In addition, many public datasets are already

annotated with class labels [3, 32], and automated web searches can also provide images

with class labels [33, 34, 35] although the accuracy of such labels may be low.

The most popular option to localize the object using class labels is attribution maps
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obtained from a trained classifier [36, 37]. Such a map identifies the image regions on

which the classifier has concentrated to predict the class of the given image. However,

these important, or discriminative, regions are relatively small, and most attribution

maps do not represent the whole region occupied by a target object, which makes those

attribution maps unsuitable for training a semantic segmentation network. Therefore,

the main goal of weakly supervised semantic segmentation using class labels is to

obtain properly expanded localization maps to cover more complete regions of the

target object.

In Chapter 3, we introduce two pieces of research for weakly supervised seman-

tic segmentation using class labels. First, we propose a method for extending the

discriminative regions to the extent of the target object in the following research:

• Jungbeom Lee, Eunji Kim, and Sungroh Yoon. ”Anti-Adversarially Manipulated

Attributions for Weakly and Semi-Supervised Semantic Segmentation.” Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

2021.

The proposed method is based on adversarial attack [38, 39], but with a benign purpose.

Adversarial attack finds a small perturbation of an image that pushes it across the

decision boundary to change the classification result. By contrast, our method operates

in an anti-adversarial manner, which is the reversal of adversarial attack. It aims to find a

perturbation that pushes the manipulated image away from the decision boundary. This

manipulation is realized by adversarial climbing, in which an image is perturbed along

pixel gradients which increase the classification score of the target class. The result is

that non-discriminative regions, which are nevertheless relevant to that class, gradually

become involved in the classification, so that the CAM of the manipulated image

identifies more regions of the object. This technique can be applied to not only weakly

supervised semantic segmentation, but also weakly supervised object localization and

semi-supervised semantic segmentation.

We then analyze the root cause why the classifier produces localization maps
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identifying only small regions of a target object in the following research:

• Jungbeom Lee, Jooyoung Choi, Jisoo Mok, and Sungroh Yoon. ”Reducing Infor-

mation Bottleneck for Weakly Supervised Semantic Segmentation.” Advances in

Neural Information Processing Systems 34 (2021): 27408-27421.

We interpret the phenomenon using the information bottleneck principle [40, 41, 42, 43].

The information bottleneck theory analyzes the information flow through sequential

deep neural network layers: information regarding the input is compressed as much as

possible as it passes through the layers of a deep neural network, while preserving as

much of the task-relevant information as possible. This is advantageous for obtaining

optimal representations for classification [44, 45] but is disadvantageous when applying

the attribution maps from the resulting classifier to weakly supervised semantic segmen-

tation. The information bottleneck prevents the non-discriminative information of the

target object from being considered in the classification logit, and thus, the attribution

maps focus on only the small discriminative regions of the target object. We argue that

the information bottleneck becomes prominent in the final layer of the deep neural

network due to the use of the double-sided saturating activation function therein (e.g.,

sigmoid, softmax). We propose a method to reduce this information bottleneck in the

final layer of the deep neural network by retraining the deep neural network without the

last activation function.

We also have studied the stochastic inference technique to obtain improved lo-

calization maps in the following research, but we will briefly discuss this study for

conciseness.

• Jungbeom Lee, Eunji Kim, Jangho Lee, Sungmin Lee, and Sungroh Yoon. ”Fick-

lenet: Weakly and Semi-Supervised Semantic Image Segmentation using Stochas-

tic Inference.” Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition. 2019.

We have achieved 89% of the performance of the fully supervised equivalent
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by using only class labels, which reduces the label cost by 91%. However, there

is a spurious correlation problem that cannot be solved with class labels alone. In

Chapter 4, we address the spurious correlation problem by using cheap external data in

the following research:

• Jungbeom Lee, Seong Joon Oh, Sangdoo Yun, Junsuk Choe, and Sungroh Yoon.

”Weakly Supervised Semantic Segmentation using Out-of-Distribution Data.”

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 2022.

Built on class labels only, the produced localization maps are known to suffer from

the confusion between foreground and background cues, i.e., spurious correlation. For

example, given a database of training images where trains are typically together with the

railroad, a classifier erroneously assigns high localization scores on regions containing

railroad [46, 47, 48, 49, 50, 51] for the class ‘train’. The same goes for frequently co-

occurring foreground-background pairs like between woodpecker and tree, snowmobile

and snow, and duck and water. This is a fundamental problem that cannot be solved

solely with the class labels; additional information is needed to learn to fully distinguish

the foreground and background cues [46, 47, 50]. Researchers have thus sought various

sources of additional guidance to separate the foreground and background cues, such

as image saliency [50, 52], superpixels [53, 54], and optical flows [34, 33]. However,

they tend to provide inaccurate guidance of the object locations. We propose another

source of data that provides a distinction between the foreground and background

cues. We propose to use the out-of-distribution (OoD) data that do not contain any of

the foreground classes of interest. In addition, we propose W-OoD, a metric-learning

based method of training a classifier by utilizing the OoDs to separate foreground anc

background cues: increase the distance between the in-distribution and OoD samples in

the feature space. This forces the background cues shared by the in-distribution and

OoD samples to be excluded from the feature-space representation. By introducing very

little effort to collect OoD samples, we have achieved 91% of the performance of the
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fully supervised equivalent.

In Chapter 5, we propose a weakly supervised learning method using bounding box

labels in the following research:

• Jungbeom Lee, Jihun Yi, Chaehun Shin, and Sungroh Yoon. ”BBAM: Bounding

Box Attribution Map for Weakly Supervised Semantic and Instance Segmenta-

tion.” Proceedings of the IEEE/CVF conference on computer vision and pattern

recognition. 2021.

The class labels are effective in learning semantic segmentation, but performance

improvement has been converged due to the inherent limitations of class labels: the

absence of information about locations in the image. Moreover, class labels provide

no help in separating different objects of the same class, which is the goal of instance

segmentation. Bounding boxes provide information about individual objects and their

locations. In addition, bounding box annotation takes about 38.1 seconds per image [55],

which is still attractive. Most previous works use bounding box annotations as a search

space in which a class-agnostic object mask can be found by an off-the-shelf object

mask generator, such as GrabCut [56] or MCG [57]. Those mask generators operate

on the low-level information of images, such as the color or brightness of pixels, and

this limits the quality of the resulting mask. We propose a Bounding Box Attribution

Map (BBAM), which is the pixel-level method of localizing a target object inside its

bounding box using a trained object detector. We make use of attribution maps obtained

from the trained object detector, which highlight the image regions that the detector

focuses on in conducting object detection. More specifically, we seek the smallest areas

of the image from which the object detector produces almost the same result as it does

from the whole image. We can utilize higher-level information from the behavior of a

trained object detector by drawing on the rich semantics learned by the object detector,

resulting in better performance than previous methods depending on the low-level

information only.

The remaining chapters of the dissertation are organized as follows. Chapter 2 pro-
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vides background and preliminaries for object recognition and label-efficient learning.

In Chapters 3–5, we provide a detailed explanation, experimental results, and thorough

discussions of the proposed methods. Finally, in Chapter 6, we conclude the dissertation

and discuss the future directions of the research.
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Chapter 2

Background

In this chapter, we will discuss a broad summary of object recognition and a variety of

types of popular weak supervision. In addition, we provide explanations of the generic

preliminary algorithms for a better understanding of the dissertation.

2.1 Object Recognition

Object recognition is one of the most important and interesting tasks in computer

vision. The goal of object recognition is to identify objects in images or videos. The

recognition of an object can be performed with various forms of output: the existence

of each object class (classification), localization with bounding boxes (object detection),

localization with pixel-level masks (semantic segmentation, instance segmentation),

and so on. Object recognition has a broad practicality to real-world applications, such

as autonomous driving [22], automated medical diagnosis [58, 59], and human-robot

interaction [60, 61]. Image classification is the representative task for object recognition,

which is a study of interest not only in computer vision but also in general deep

learning and machine learning society. In this dissertation, we focus on the object

localization tasks rather than image classification, so that we briefly review the overview

of representative tasks in the object localization fields in the following chapters.
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Object Detection Object detection aims at localizing instances of objects from

the given object classes in the form of bounding boxes. One of the most popular

pioneering deep learning approaches to object detection is Region-based Convolutional

Neural Network (R-CNN) [16] based model. R-CNN first computes class-agnostic

region proposals, which can be obtained by proposal generators such as selective

search algorithm [62], and conduct classification and localization on the computed

region proposals. R-CNN then extracts a feature vector for each proposal by warping

and passing the proposals to several convolutional layers. The class of each proposal

is predicted by passing the feature vector to the trained Support Vector Machines

(SVMs), which provides class-specific scores for each proposal. The bounding box

coordinates are predicted by the trained bounding box regression layers in parallel with

the classification. However, the inference of R-CNN is super slow due to the complicated

multi-stage processes. To address this, Fast R-CNN [63] and Faster-RCNN [15] are

proposed.

The object proposals provide meaningful information for the location of the target

object, but they are class-agnostic, and their box coordinates tend to be noisy, so that the

proposal box is not accurately fit to the target object. On the obtained object proposals,

R-CNN based models commonly pass the proposals to two heads: classification head

and bounding box regression head. The classification head computes the class prediction

p∗ of the given proposal, which is trained with the cross-entropy loss. The bounding

box regression head computes the displacement of each bounding box coordinate to fit

the object, because the coordinates of proposals tend to be noisy. The regression head

regresses the offsets t = (tx, ty, tw, th) for each coordinate of the box, and the final

localization bounding box is obtained by shifting each coordinate of proposal box using

the computed offset t.

R-CNN based models require two or more stages, including the object proposal

computation step and processing two heads mentioned above, so the inference speed

is not satisfactory. Therefore, one-stage methods for object detection are proposed.
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YOLO [64] directly predicts bounding boxes from image pixels by reformulating the

object detection task to the regression task. Lin et al. [65] propose focal loss to reduce

the imbalance between foreground and background classes during the training of the

single-stage object detectors. Focal loss is based on the classical cross-entropy loss, but

it reduces the weights of the loss computed from well-predicted examples.

Recently, many methods based on Transformer [66] architectures have been pro-

posed. DETR [17] is the pioneering work of Transformer for the object detection

task. With this successful introduction of Transformer into object detection, numerous

following works have emerged [67, 68, 69].

Semantic Segmentation Semantic segmentation aims at partitioning image regions

into segments of each object class. Semantic segmentation can be formulated as a

pixel-level classification problem with semantic object class labels. Even before the

development of deep learning, classical approaches were actively studied, such as region

growing [70], k-means clustering [71], and graph cuts [72]. Deep learning models have

recently produced a new generation of semantic segmentation methods with remark-

ably improved performance, leading to a paradigm change in the industry. Semantic

segmentation based on deep learning is popularly studied with various viewpoints: the

construction of data, the choice of loss functions and network architectures, learning

strategies, and so on.

One of the earliest deep learning efforts for semantic segmentation was proposed

by Long et al. [73] utilizing a fully convolutional network (FCN). A FCN can take

any size image and turn it into a segmentation map of the same size because it only

has convolutional layers. In order to handle non-fixed sized input and output, all

fully-connected layers are replaced by fully-convolutional layers. As a result, a spatial

pixel-level classification segmentation map can be obtained.

With the success of FCN, convolutional encoder-decoder based architectures are

popularly studied. An early research on semantic segmentation based on deconvolution

layers (also known as transposed convolution layers) was published by Noh et al. [11].
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The encoder-decoder based architecture is divided into two components: a convolu-

tional encoder that encodes the semantic information for a given input image, and a

deconvolutional network that outputs a map of pixel-wise class probabilities by using

the encoded information by the encoder.

Another popular group of deep learning methods for semantic segmentation is

pyramid-based network. The Feature Pyramid Network (FPN) introduced by Lin et

al. [74] is one of the most popular models of this family. It was first proposed for the

object detection task, but was later used for semantic segmentation as well. Deep con-

volutional neural networks inherently produce multi-scale features, therefore pyramidal

hierarchy of deep features can be built with little additional expense. The FPN can

consider rich information by merging shallow and deep features in a convolutional

neural network.

DeepLab series [18, 19] are one of the most popular approaches in semantic seg-

mentation. The success of DeepLab lies in the use of dilated convolution in the astrous

spatial pyramid pooling (ASPP) module, and conditional random fields (CRFs) [75].

The multi-resolution information can be considered by using different rates of dilated

convolution (i.e., 1, 3, 6, 9) on deep features, resulting in an improved representation

of context and semantics in an image. The produced segmentation maps by DeepLab

models provide coarse segmentation of the target object, due to the low-resolution of

deep features. This can be addressed by probabilistic graphical model, i.e., CRFs [75].

Recently, attention-based approaches [76, 77] are popularly studied.

Instance Segmentation The goal of instance segmentation is to not only assign

an object class to each pixel, but also separate individual objects. The representative

trend on instance segmentation is to conduct object detection first, and to produce

the segmentation in the predicted box. Mask R-CNN introduced by He et al. [20] is

one of the most popular models of this family. Based on Faster R-CNN [15], Mask

R-CNN brings an additional branch to predict the pixel-level mask in the box. Due

to its efficiency and performance, many following works are proposed. Mask Scoring
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Figure 2.1: Examples of various form of weak supervision popularly used for weakly

supervised semantic segmentation and instance segmentation. This figure is borrowed

from Hong et al. [34]

R-CNN [78] improves the confidence estimate of the output of Mask R-CNN. It adds an

additional head which predict the mask quality in terms of intersection-over-union (IoU).

This approach enhances the performance of the instance segmentation task by giving

higher priority to predictions which have stronger predictions, which is important for

the COCO AP evaluation process [79]. To avoid the multi-stage processing of R-CNN

based models, one-stage instance segmentation models such as YOLACT [80] and

SOLO [81] also have been proposed.

Another research line for instance segmentation is clustering-based approach [82,

83, 84]. These approaches first conduct categorical labelling for each pixel in a given

image similar to semantic segmentation, and group pixels corresponding to a single

object instance using clustering algorithms. Although these methods can benefit from

well-studied semantic segmentation techniques, they show relatively low performance

compared to detection-based methods.
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Table 2.1: Comparison of average annotation cost for an image (sec/img) for various

form of weak supervision and fully supervised pixel-level masks. The average annota-

tion times were borrowed from the work of Bearman et al. [21] and the work of Bellver

et al. [55].

Class Point Bounding Box Scribble Full

Cost (sec/img) 20.0 22.2 38.1 34.9 239.7

2.2 Weak Supervision

As we investigate in Chapter 2.1, deep learning has produced tremendous progress on

the object recognition tasks. However, the success of deep learning on object recognition

tasks has come at the cost of annotating thousands (or much more) of training images

with explicit localization cues. In particular, for semantic segmentation, pixel-level

annotation of images containing an average of 2.8 objects takes about 4 minutes per

image [21]; and a single large (2048×1024) image depicting a complicated scene

requires more than 90 minutes for pixel-level annotation [22].

The need for such expensive annotations can be sidestepped by weakly supervised

learning, where a deep neural network is trained on images with some form of ab-

breviated annotation that is cheaper to obtain than explicit localization cues. Weakly

supervised semantic segmentation methods can use scribbles [23], points [21], bound-

ing boxes [24, 25, 26], or class labels [27, 28, 29, 30, 85] as annotations. A scribble is

an arbitrary form of a line inside the target object, which is obtained through a single

user stroke. The scribbles sparsely depict the location and extent of the target object. A

point indicates a single point inside the target object, which can be considered as an

extreme case of a scribble label. A bounding box provides a rectangular area that covers

the target object tightly. These three forms of weak supervision provide the information

about the location of the target object, but an image-level class label provides only the

existence of an object corresponding to each semantic category in an image.
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Figure 2.1 presents examples of various weak annotations (image-level class label,

point, bounding box, and scribble) that are popularly used for weakly supervised

semantic and instance segmentation. Table 2.1 compares the annotation cost for various

forms of weak supervision and fully supervised pixel-level masks. We can see that

weakly annotated labels are much cheaper to obtain than fully supervised labels. For

example, class labels are about 12 times more efficient to obtain compared to fully

supervised labels. Even the most expensive form of weak supervision (i.e., bounding

box) is over six times more efficient to obtain compared to fully supervised labels.

Therefore, by developing methods that can train a deep neural network for semantic

segmentation and instance segmentation with weakly supervised labels that can be

easily obtained, the required data construction cost can be significantly reduced, and it

can be used in more applications.

Of the various form of weak supervision, image-level class labels are the cheap-

est and most popular option, largely because the images in many public datasets are

already annotated with class labels [3, 32], and automated web searches can also pro-

vide images with class labels [33, 34, 35]. Therefore, many researchers have studied

weakly supervised learning methods using image-level class labels. Most weakly su-

pervised semantic segmentation methods depend on attribution maps obtained from

a trained classifier, such as a Class Activation Map (CAM) [36] or a gradient-based

class activation map (Grad-CAM) [37]. An attribution map identifies the important,

or discriminative, regions of an image on which the classifier has concentrated. But

these regions tend to be relatively small, and most attribution maps do not identify the

whole region occupied by the target object. Therefore, many researchers have tried

to extend attributed regions to cover more of the target object, by manipulating either

the image [86, 87, 88] or the feature map [27, 89, 90, 1]. CAM-based methods have

an issue of coarse representation of the target object, because CAMs are computed

based on the intermediate features of deep neural network that are down-sampled from

the input image resolution. Therefore, CAMs do not represent the exact boundary
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of the target object. To address this, refinement techniques of CAMs have also been

proposed [29, 2, 91].

However, methods using only class labels are known to suffer from the confusion

between foreground and background cues, i.e., spurious correlation problem. This is

a fundamental problem that cannot be solved solely with the class labels; additional

information is needed to learn to fully distinguish the foreground and background cues

[46, 47, 50]. Researchers have thus studied various sources of additional guidance to

separate the foreground and background cues, each with different pros and cons and

different labeling-cost footprints. Image saliency [92, 93] is one of the most widely used

ones [27, 50, 52, 94, 95, 96], for it naturally provides the prominent foreground object

in the image in a class-agnostic fashion. However, saliency is not very effective for non-

salient foreground objects (e.g., low-contrast objects or small objects), and is limitedly

applicable only to natural images. Low-level visual features like superpixels [53, 54],

edges [97], object proposals [26, 25, 95], and optical flows [34, 33] have also been

considered. Although these types of additional information are cost-effective, they tend

to generate inaccurate object boundaries because such low-level information does not

consider semantics associated with the object class. Moreover, class labels provide no

help in separating different objects of the same class, which is the goal of instance

segmentation.

Therefore, the bounding box label is more suitable for learning instance segmen-

tation than image-level class labels, because bounding boxes provide information

about individual objects and their locations. Bounding box annotation takes about 38.1

seconds per image [55], which is still attractive than constructing pixel-level masks.

Many researchers have tackled semantic segmentation [98, 24, 25, 99] and instance

segmentation [24, 100, 101, 102, 103] using bounding box annotations as a search

space in which a class-agnostic object mask can be found by an off-the-shelf object

mask generator. These are mostly based on GrabCut [56] or multiscale combinatorial

grouping (MCG) [57]. Those mask generators operate on the low-level information
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of images, such as the color or brightness of pixels, and this limits the quality of the

resulting mask. Thus, applying these mask generators to bounding box annotations

requires additional steps such as estimating what proportion of the pixels in a bounding

box belong to the corresponding object [25, 99], iterative refinement of an estimated

mask [98], and auxiliary attention modules [99].

2.3 Preliminary Algirothms

This section provides general preliminary algorithms for the understanding of the

following chapters. The specific preliminary algorithms for each chapter are included

in the corresponding chapter.

2.3.1 Attribution Methods for Image Classifier

As mentioned in the earlier chapter, most weakly supervised semantic segmentation

methods depend on attribution maps obtained from a trained classifier, such as a Class

Activation Map (CAM) [36] or a Grad-CAM [37]. A class activation map (CAM) [36]

identifies regions of an image focused by a classifier. The CAM is based on a convolu-

tional neural network with global average pooling (GAP) before its final classification

layer. This is realized by considering the class-specific contribution of each channel

of the last feature map to the classification score. Given a classifier parameterized by

θ = {θf , w} where f(·; θf ) is the feature extractor prior to GAP, and w is the weight

of the final classification layer, a CAM of the class c is obtained from an image x as

follows:

CAM(x; θ) =
w⊺

cf(x; θf )

maxw⊺
cf(x; θf )

, (2.1)

where max(·) is the maximum value over the spatial locations for normalization.

The CAM is simple, easy to implement, and has powerful localization ability.

However, the CAM can be applicable only for a specific model: a convolutional neural
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network with global average pooling (GAP), followed by only a single fully-connected

classification layer. As such, the CAM operates only on the classification task, and even

in the classification task, it operates on very limited architecture.

Selvaraju et al. [37] develop the gradient-based class activation map (Grad-CAM),

which can be considered as a generalization of CAM [36]. Grad-CAM discovers the

class specific contribution of each hidden unit to the classification score from gradient

flows. Since gradient flow is very general in most deep neural networks, Grad-CAM can

be applied to any differentiable architectures and any differentiable tasks. Grad-CAM

is computed as follows: we first compute the gradients of the target class score with

respect to any intermediate feature, and then sum the feature maps along the channel

axis, weighted by these gradients. We can express Grad-CAM for each target class c as

follows:

Grad-CAMc = ReLU(
∑
k

f(x; θf )k ×
∂Sc

∂f(x; θf )k
), (2.2)

where f(x; θf )k ∈ Rw×h is the kth channel of the feature map f(x, θf ), and Sc is the

classification score of class c.

As these gradient-based attribution methods gain popularity, advanced methods

have been proposed such as Grad-CAM++ [104], Score-CAM [105], and Relevance-

CAM [106]. Because of their localization ability and simplicity, the CAM-based at-

tribution methods are widely used for weakly supervised semantic segmentation [27,

33, 107, 49, 108] and weakly supervised object localization [1, 109, 89]. However,

CAMs are known to have two major drawbacks that can be shown in Figure 2.2. First,

CAMs identify only small, discriminative regions of the target object because all the

regions of the target object do not necessarily contribute to the classification. Second,

CAMs are obtained from the intermediate features of the deep neural network, which

are down-sampled from the original image resolution. Therefore, CAMs represent the

target object coarsely and do not depict the boundary of the target object accurately.

These problems make it difficult for CAMs to be used as segmentation itself. There-
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Figure 2.2: Examples of the class activation maps (CAMs) for ‘person’ class (left),

‘cat’ class (middle), and ‘cow’ class (right).

fore, many studies have been conducted to refine the CAMs toward more complete

segmentation, which will be discussed in the next chapter.

2.3.2 Refinement Techniques of Localization Maps

In this chapter, we take a closer look at three representative refinement techniques

to obtain accurate segmentation from coarse localization maps: Deep Seeded Region

Growing (DSRG) [91], AffinityNet [29], and Inter-Pixel Relation Network (IRNet) [2].

These methods commonly obtain an initial seed from the CAM and learn the relationship

between pixels from the initial seed. Using this learned relationship between pixels,

they propagate the score of the confident regions of the initial seed, which have initially

high CAM scores, to the neighboring ambiguous region, which have initially low CAM

scores.

DSRG [91] first obtains the initial foreground cues from the discriminative object

regions by applying a hard (high) threshold to the CAM. They also obtain background

cues by utilizing the saliency detection method [110]. By combining foreground and

background cues, they obtain initial seed cues. The initial seeds are sparse pseudo
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ground truth segmentation maps because they have ambiguous regions where neither

the foreground scores nor the background scores are confident. The goal of DSRG is to

gradually assign pseudo segmentation labels to those ambiguous regions during training

the segmentation network. To train the segmentation network, the balanced seeding loss

lseed is used as follows:

lseed = − 1∑
c∈C

|Sc|
∑
c∈C

∑
u∈Sc

logHu,c −
1∑

c∈C
|Sc|

∑
c∈C

∑
u∈Sc

logHu,c, (2.3)

where C is the set of foreground classes that are present in the given image, which can

be obtained from image-level class labels, and C is the background class. Sc is the set

of locations that are considered as class c in the pseudo ground truth, and Hu,c is the

predicted probability of class c at the location of u on the segmentation map H .

In the conventional approach, the pseudo ground truth S is fixed during the training

of the segmentation network, but DSRG updates S in an online manner, based on the

predicted segmentation map H . Starting from the initially confident regions, DSRG

visits 8-connectivity neighborhoods of these confident pixels iteratively. If an ambiguous

pixel u is connected to the confident regions with 8-connectivity neighborhoods, and

the pixel u has a sufficiently high predicted segmentation score, then the pixel u is now

included into the pseudo ground truth S. By iteratively repeating this process during

each iteration of segmentation training, the pseudo ground truth S gradually covers

more regions of the target object, resulting in a better pseudo segmentation label.

Together with this seeding technique, constrain-to-boundary loss is used to modeling

precised object boundary by considering spatial and color information of the input

image. This can be realized by conditional random fields (CRFs) [75]. During the

training, we apply CRFs to the produced segmentation map H , resulting in Q(H). The

constrain loss lconstrain optimizes the KL-divergence between the segmentation map

H and the results of the CRFs, as follows:

lconstrain =
∑
c∈C

∑
u∈Sc

Qu,c(H) log
Qu,c(H)

Hu,c
, (2.4)
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where Qu,c is the location u of the CRF map Q for the class c.

AffinityNet [29] also starts with the initial sparse pseudo ground truth S. The aim of

Affinitynet is to learn class-agnostic semantic affinities between the pair of neighboring

pixels on the training image. The semantic affinity is computed on the feature-level. For

location indices i and j on the feature map F , the semantic affinity Wij between the

location i and the location j is defined as follows:

Wij = exp {−||fi − fj ||1}. (2.5)

AffinityNet learns Wij from the approximated binary affinity labels W ∗
ij . For two pixels

at the location i and j, the affinity label between i and j, W ∗
ij , is assigned to 1 if they

have the same pseudo segmentation labels, and assigned to 0 if they have different

labels. The set of location pairs used for training is defined as P . It contains a set of

coordinate pairs within the Euclidean distance threshold γ. Then, the P is divided into

the set of positive pairs P+ and the set of negative pairs P− as follows:

P+ = {(i, j)|(i, j) ∈ P,W ∗
ij = 1}, P− = {(i, j)|(i, j) ∈ P,W ∗

ij = 0},

where P = {(i, j)|d(xi, xj) < γ, i ̸= j}.

Here, xi is the pixel coordinate of the location i.

Finally, AffinityNet is trained to make Wij to produce 1 for (i, j) ∈ P+ and 0 for

(i, j) ∈ P−, with the loss as follows:

L = L+ + L−,where

L+ = − 1

|P+|
∑

(i,j)∈P+

logWij , L− = − 1

|P−|
∑

(i,j)∈P−

log(1−Wij)

AffinityNet refines CAMs of training images using the learned affinity Wij by a ran-

dom walk. The affinity Wij provides the transition probability matrix used for the

random walk. The confident scores of the initial CAMs are iteratively propagated to the

semantically similar regions, resulting in the improved segmentation labels.

IRNet [2] has a similar concept to AffinityNet [29], but it has a different scheme to

learn the semantic affinity. Because of its powerful performance and well-implemented
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code, IRNet [29] have been used as the off-the-shelf refinement technique in many

recent methods, such as CONTA [48], AMN [111]. Compared to AffinityNet considers

all pairs of pixels to learn the affinity, IRNet employs the multiple instance learning

technique to consider the relationship between pixels. The semantic affinity used in

IRNet is expressed as the existence of the boundary of class. More specifically, IRNet

computes boundary maps B ∈ [0, 1]w×h, which represents the boundaries between two

different classes. Based on the produced B, the semantic affinity Wij is computed as

follows:

Wij = 1− max
k∈Πij

B(xk), (2.6)

where xk is the pixel located at k, Πij is the set of pixels presenting on the line

connecting two pixels xi and xj . The semantic affinity is learned through the loss

presented in Eq. 2.3.2, with the positive and negative pairs denoted in Eq. 2.3.2. Similar

to AffinityNet [29], the learned semantic affinity is used for random walk to refine the

CAMs.

21



Chapter 3

Learning with Image-Level Class Labels

3.1 Introduction

Understanding the semantics of an image and recognizing objects in it are vital processes

in computer vision systems. Although deep neural networks (DNNs) have facilitated

tremendous progress in both tasks [18, 76, 19, 15, 64, 65], it has come at the cost of

annotating thousands of training images with explicit localization cues. The need for

such expensive annotations is sidestepped by weakly supervised learning, in which a

DNN is trained on images with some form of abbreviated annotation that is cheaper

than explicit localization cues. Weakly supervised semantic segmentation methods

can use scribbles [23], points [21], bounding boxes [24, 25, 26], or class labels [27,

28, 29, 30, 85] as annotations. The last of these are the cheapest and most popular

option, largely because the images in many public datasets are already annotated with

class labels [3, 32], and automated web searches can also provide images with class

labels [33, 34, 35].

Most weakly supervised semantic segmentation and object localization methods

depend on attribution maps obtained from a trained classifier, such as a Class Activation

Map (CAM) [36] or a Grad-CAM [37]. An attribution map identifies the important,

or discriminative, regions of an image on which the classifier has concentrated. But
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these regions tend to be relatively small, and most attribution maps do not identify the

whole region occupied by the target object. Therefore, many researchers have tried to

extend attributed regions to cover more of the target object, by manipulating either the

image [86, 87, 88] or the feature map [27, 89, 90, 1].

In this chapter, we discuss three studies on weakly supervised semantic segmenta-

tion using image-level class labels. In Chapter 3.3, we introduce AdvCAM [112, 113],

a new manipulation method for extending the attributed regions of a target object. In

Chapter 3.4, we theoretically discuss the reason why the CAMs identify only small re-

gions of the target object in the view of information bottleneck, and introduce RIB [49]

to address the problem. Lastly, we will introduce FickleNet [27], a stochastic inference

technique, but we will discuss this in Chapter 3.2 briefly for the conciseness.

3.2 Related Work

In this chapter, we first introduce our method FickleNet, the stochastic inference

approach for weakly supervised semantic segmentation using class labels. We then

discuss other recent approaches related to the methods proposed in this dissertation.

3.2.1 FickleNet: Stochastic Inference Approach

To address the problem of CAMs identifying only discriminative regions of the target

object, we propose FickleNet, which is a stochastic inference technique generating

a variety of localization maps from a single image using random combinations of

hidden units in a convolutional neural network, as shown in Figure 3.1(a). Starting

with a feature map created by a generic classification network such as VGG-16 [114],

FickleNet chooses hidden units at random for each sliding window position, which

corresponds to each stride in the convolution operation, as shown in Figure 3.1(b). This

process is simply realized by the dropout method [115]. Selecting all the available

hidden units in a sliding window position (the deterministic approach) tends to produce
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Figure 3.1: (a) FickleNet allows a single network to generate multiple localization maps

from a single image. (b) Conceptual description of hidden unit selection. Compared to

selecting all hidden units (deterministic, left), randomly selected hidden units (stochastic,

center and right) can provide more flexible combinations.

a smoothing effect that confuses foreground and background, which can result in both

areas being activated or deactivated together. However, random selection of hidden

units (the stochastic approach) produces regions of different shapes which can delineate

objects more sharply. Since the patterns of hidden units randomly selected by FickleNet

include the shapes of the kernel of the dilated convolution with different dilation rates,

FickleNet can be regarded as a generalization of dilated convolution, but FickleNet can

potentially match objects of different scales and shapes using only a single network

because it is not limited to a square array of hidden units, whereas dilated convolution

requires networks with different dilation rates just to scale its kernel.

The selection of random hidden units at each sliding window position is not an

operation that is optimized at the CUDA level in common deep-learning frameworks

24



(a)

(b)

C
on

v
(s

tri
de

 : 
1)

C
on

v 
(s

tri
de

 : 
)

Figure 3.2: (a) Naive implementation of FickleNet, which requires a dropout and

convolution function call at each sliding window position (the red and green boxes). (b)

Implementation using map expansion: convolution is now performed once with a stride

of s. The input feature map is expanded so that successive sliding kernels (the red and

green boxes) do not overlap.

such as PyTorch [116]. Thus, a naive implementation of FickleNet, in which random

hidden units are selected at each sliding window position and then convolved, would

require a large number of iterative operations. However, we can use the optimized

convolution functions provided by deep-learning frameworks, if we expand the feature

maps before making the random selection of hidden units. The maps need to be

expanded sufficiently to prevent successive sliding window positions from overlapping.

We can then apply dropout in the spatial axis of the expanded feature maps, and perform

a convolution operation with a stride equal to the kernel size. This saves a significant

amount of time without much increase in GPU memory usage, because the number of

parameters to be back-propagated remains constant. The illustration of this expansion

technique is shown in Figure 3.2.

While many existing networks use stochastic regularization in their training process

(e.g. Dropout [115]), stochastic effects are usually excluded from the inference process.

However, our inference process contains random processes and thus produces a variety
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of localization maps. The pixels that were allocated to a specific class with high scores

in each localization map are discovered, and those pixels are aggregated into a single

localization map. The localization map obtained from FickleNet is utilized as pseudo-

labels for the training of a segmentation network.

3.2.2 Other Recent Approaches

Image-level Processing: Image-level hiding and erasure have been proposed [88, 86,

87] as ways of preventing a classifier from focusing exclusively on the discriminative

parts of objects. Hide-and-Seek [88] hides random regions of a training image, forcing

the classification network to seek other parts of the object. However, the process of

hiding random regions does not consider the semantics and sizes of objects. Adversarial

Erasing [86] starts with a single small region in the object, and then drives the classifi-

cation network to discover a sequence of new and complement any object regions by

erasing the regions that have already been found. Although it can progressively expand

regions belonging to an object, it requires multiple classification networks to perform

the repetitive classification and erasure steps. The Guided Attention Inference Network

(GAIN) [87] has a CAM which is trained to erase regions in a way that deliberately

confuses the classifier. This CAM has to be large enough to cover an entire object.

However, the classifier mainly reacts to high activation, and so it can become confused

if an object’s only discriminative parts are erased.

Feature-level Processing Feature-level processing can be used to expand the

regions activated by a CAM. Adversarial complementary learning [89] and two-phase

learning [117] use a classifier to identify the discriminative parts of an object and erase

them based on features. A second classifier then is trained to find the complementary

parts of the object from those erased features. This is an efficient technique which

operates at a relatively high level. However, it has a similar drawback to image-level

erasure, in that a second classifier and training step are essential for those methods,

which may cause a suboptimal performance. In addition, features whose discriminative
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parts are erased can confuse the second classifier, which may not be correctly trained.

Pyramid Grad-CAM [59] considers multi-layer features for multi-scale context. Wei et

al. [108] and Lee et al. [59] consider the target object in several contexts by combining

multiple attribution maps from differently dilated convolutions or from different layers

of a DNN.

Improved Learning Technique: The improved training technique for the deep

neural network also have been actively studied. Wang et al. [107] use equivariance

regularization during the training of their classifier so that the attribution maps obtained

from differently transformed images are equivariant to those transformations. Chang et

al. [30] improve feature learning by using latent semantic classes that are sub-categories

of annotated parent classes, which can be pseudo-labeled by clustering image features.

Fan et al. [118] and Sun et al. [94] capture information shared between several images

by considering cross-image semantic similarities and differences. Zhang et al. [48]

analyze the co-occurrence context problem in multi-label classification and propose

context adjustment (CONTA) to remove the confounding bias, resulting in a CAM seed

free of spurious correlations.

Region Growing: Region growing can be used to expand the localization map

produced by a CAM, which initially identifies just the small discriminative part of

an object. AffinityNet [29] learns pixel-level semantic affinities, which identify pixels

belonging to the same object, under the supervision of an initial CAM, and then expands

the initial CAM by a random walk with the transition matrix computed from semantic

affinities. However, the learning of semantic affinities requires an additional network,

and the outcome depends heavily on the quality of the CAM. Seed, Expand, and

Constrain (SEC) [119] uses a new type of loss function to expand the localization map

and constrain it to object boundaries using a conditional random field (CRF) [75]. Deep

seeded region growing (DSRG) [91] refines initial localization maps during the training

of its segmentation network, so that DSRG does not require additional networks to grow

regions. IRN [2] extend the object region to semantically similar areas by a random
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walk. BEM [120] synthesizes a pseudo boundary from a CAM and then uses a similar

propagation with IRN [2].

3.3 Anti-Adversarially Manipulated Attribution

3.3.1 Adversarial Attack

An adversarial attack attempts to fool a DNN by presenting it with images that have been

manipulated with intent to deceive. Adversarial attack can be applied to classifiers [38,

121], semantic segmentation networks [122], or object detectors [123]. Not only the

predictions of a DNN, but also the attribution maps can be altered by adversarial image

manipulation [124] or model parameter manipulation [125]. These types of attacks try

to make the DNN produce a spurious attribution map that identifies a wrong location in

the image, or a map that might have been obtained from a completely different image,

without significantly changing the output of the DNN.

An adversarial attack on a classifier aims to find a small pixel-level perturbation that

can change its decision. In other words, given an input x to the classifier, the adversarial

attack aims to find the perturbation n that satisfies NN(x) ̸= NN(x+ n), where NN(·) is

the classification output from the DNN. A representative method [38] of constructing

n for an attack starts by constructing the vector normal to the decision boundary of

NN(x), which can be realized by finding the gradients of NN(x) with respect to x. A

manipulated image x′ can then be obtained as follows:

x′ = x− ξ∇xNN(x), (3.1)

where ξ determines the extent of the change to the image. This process can be un-

derstood as performing gradient descent on the image. PGD [39], which is a popular

method of adversarial attack, performs the manipulation of Eq. 3.1 iteratively.
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3.3.2 Proposed Method

Adversarial Climbing: AdvCAM is an attribution map obtained through adversarial

climbing, which is an anti-adversarial technique that manipulates the image so as

to increase the classification score of that image, with the result that the classifier

identifies more regions of objects. This is the reverse of an adversarial attack based on

Eq. 3.1, which manipulates the image to reduce the classification score. Inspired by

PGD [39], iterative adversarial climbing of the initial image x0 can be performed using

the following relation:

xt = xt−1 + ξ∇xt−1yt−1
c , (3.2)

where t (1 ≤ t ≤ T ) is the adversarial step index, xt is the manipulated image at the

t−th step, and yt−1
c is the classification logit of xt−1 for class c.

This process makes the previously non-discriminative yet relevant features become

more involved in the classification. Thus, the CAMs obtained from successive images

manipulated by the iteration can be expected to identify an increasing amount of the

region of the target object. We produce a localization map A which encapsulates the

results of the iteration by aggregating the CAMs obtained from the manipulated images

at each iteration t, as follows:

A =

∑T
t=0 CAM(x

t)

max
∑T

t=0 CAM(x
t)
. (3.3)

How can Adversarial Climbing Improve CAMs? The connection between a

classification logit yc and a CAM, i.e. yc = GAP(CAM) [89], infers that adversarial

climbing increases yc, and thus the CAM. In this process, features involved in clas-

sification are enhanced. To provide a better understanding how adversarial climbing

generates a denser CAM, we consider two questions: 1⃝ Can non-discriminative fea-

tures be enhanced? 2⃝ Are those enhanced features class-relevant from a human point

of view?

1⃝ Can non-discriminative features be enhanced?: One might think that chang-

ing a pixel with a large gradient primarily enhances discriminative features. This pixel
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Figure 3.3: Distributions of the pixel amplification ratio sit for i ∈ RD and i ∈ RND for

100 images, (a) without regularization and (b) with regularization.

change affects many features due to the receptive field. However, not all the affected

features are necessarily discriminative. We support this analysis empirically. We define

the discriminative region RD={i|CAM(x0)i≥0.5} and the non-discriminative region

RND={i|0.1<CAM(x0)i<0.5}, where i is the location index. The pixel amplification

ratio sit is CAM(xt)i/CAM(x0)i at location i and step t. Figure 3.3(a) shows that adver-

sarial climbing makes both si∈RD
t and si∈RND

t grow, but enhances non-discriminative

features more than discriminative ones, resulting in a denser CAM.

2⃝ Are those enhanced features class-relevant from a human point of view?

We now consider whether the highlighted non-discriminative features are class-relevant

from a human point of view. Moosavi et al. [126] argued that a loss landscape that

is sharply curved with respect to input makes a NN vulnerable to adversarial attack.

Researchers have subsequently shown that a flattened loss landscape, obtained by

reducing the curvature of the loss surface [126] or encouraging the loss to behave

linearly [127], can improve the robustness of a NN. Systems which are robust in this

sense have been shown to produce features that align better with human perception and

operate in a easier way to understand [128, 129, 130].

By the same token, we can expect that images manipulated by adversarial climbing

will produce features that align with human perception well because the curvature of

loss surface affected by adversarial climbing is small. To support this, we visualize the
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(a) (b)

Figure 3.4: Loss landscapes by manipulating images with weighted sums of the normal

vector n⃗ and a random vector r⃗ for (a) adversarial climbing and (b) adversarial attack.

The yellow star corresponds to the original image.

loss landscape of our trained classifier, following Moosavi et al. [126]: we obtain a

manipulation vector n⃗ and a random vector r⃗ from the classification loss ℓ computed

from an image. We determine the surfaces of classification loss values computed from

images, manipulated by a vector which is interpolated between n⃗ and r⃗ using a range of

interpolation ratios. The loss landscape obtained by adversarial climbing (Figure 3.4(a))

is much more flatten than that obtained by adversarial attacking (Figure 3.4(b)). There-

fore, we can legitimately expect it to increase the attribution of features relevant to the

class from a human point of view, resulting in a better CAM.

Regularization: Even if the loss surface obtained by adversarial climbing is reason-

ably flat, too much repetitive adversarial manipulation may cause regions corresponding

to objects in the wrong class to be activated, or increase the attribution scores of the

regions that already have high scores. We address this by (i) suppressing the logit values

associated with other classes and (ii) restricting high attributions on discriminative

regions of the target object.

Suppressing Other Classes: In an image, objects of different classes can mutually

increase logit values. For example, since a chair and a dining table mainly occur together

in an image, a NN may infer an increased logit value for the chair from the region of

the table. We thus add regularization that reduces logit values for all classes except c.
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Restricting High Attributions: As mentioned earlier, adversarial climbing in-

creases the attribution scores for both discriminative and non-discriminative regions in

the feature map. However, the growth of attribution scores for discriminative regions

is problematic for two reasons: 1) it prevents new regions from being additionally

attributed to the classification score, and 2) if the maximum value of the attribution

score increases during adversarial climbing, the normalized scores of the remaining

area may decrease. Please see the blue boxes in Figure 3.5(b).

Therefore we limit the attribution scores in regions that already have high scores

during adversarial climbing, so the attribution scores of those regions remain similar to

that of x0. We realize this scheme by introducing a restricting mask M that contains the

regions whose attribution scores of CAM(xt−1) are higher than the threshold τ . More

specifically, M can be represented as follows:

M = 1(CAM(xt−1) > τ), (3.4)

where 1(·) is an indicator function. An example mask M is shown in Figure 3.5(a).

We add the regularization term so that the values of the CAM corresponding to the

regions of M are forced to equal to that of CAM(x0). With this regularization, si∈RD
t re-

mains fairly constant but si∈RND
t still grows during adversarial climbing (Figure 3.3(b)).

Figure 3.3 shows that, adversarial climbing enhances non-discriminative features more

than discriminative features (¡ 2×), and regularization makes this difference even larger

(¿ 2.5×). Thus, new regions of the target object are found more effectively, resulting in

a denser CAM (Figure 3.5(b)).

To apply regularization, we modify Eq. 3.2 as follows:

xt = xt−1 + ξ∇xt−1L, where (3.5)

L = yt−1
c −

∑
k∈C\c

yt−1
k − λ

∥∥M⊙ |CAM(xt−1)− CAM(x0)|
∥∥
1
. (3.6)

C is the set of all classes, λ is a hyper-parameter that controls the influence of masking

regularization, and ⊙ is element-wise multiplication.
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Figure 3.5: (a) An example image with its CAM and restricting mask M. (b) The initial

CAM, and CAMs after 5, 10 and 20 steps of adversarial climbing, with and without

regularization.

Training Segmentation Networks Since CAM is obtained from down-sampled

intermediate features produced by the classifier, it localizes the target object coarsely

and cannot represent its exact boundary. Many methods of generating an initial seed for

weakly supervised semantic segmentation construct a pseudo ground-truth by modifying

their initial seeds using existing seed refinement methods [91, 29, 2]. For example,

SEAM [107] and Chang et al. [30] use PSA [29]; and MBMNet [131] and CONTA [48]

use IRN [2]. We also apply the seed refinement method to the coarse map A. For weakly

supervised learning, we use the resulting profiles as pseudo ground-truth for training

DeepLab-v2, pre-trained on the ImageNet dataset [3]. For semi-supervised learning,

we employ CCT [132], which uses IRN [2] to generate pseudo-ground truth masks; we

replace these with our masks, constructed as just described.

3.3.3 Experiments

Dataset: We conducted experiments on the PASCAL VOC 2012 [32] dataset. The

images in this dataset come with masks for fully supervised semantic segmentation,

but we only used them for evaluation. In a weakly supervised setting, we trained our

network on 10,582 training images provided by Hariharan et al. [133], which have

image-level annotations. In a semi-supervised setting, we used 1,464 training images

33



with pixel-level annotations and 9,118 training images with class labels, following

previous works [27, 132, 108, 134]. We evaluated our results by calculating mean

intersection-over-union (mIoU) values for 1,449 validation images and 1,456 test

images. Since the labels for test images are not publicly available, the results for those

images were obtained from the official PASCAL VOC evaluation server.

Reproducibility: We performed iterative adversarial climbing with T = 27 and

ξ = 0.008. We set λ to 7 and τ to 0.5. To generate the initial seed, we followed the

procedure of Ahn et al. [2], including the use of ResNet-50 [135]. For final segmentation,

we used DeepLab-v2-ResNet101 [18] as the backbone network. We followed the default

settings of [18] for training, which included cropping the images to 321×321 pixels. In

a semi-supervised setting we used the same settings as Ouali et al. [132].

Quality of the Mask: Table 4.2 compares the initial seed and pseudo ground truth

masks obtained from our method and from other recently published techniques. Both

seeds and masks were generated from training images of the PASCAL VOC dataset.

For initial seeds, we report the best results by thresholding with a range of threshold

values to discriminate the foreground and background in the produced localization

map A, as following SEAM [107]. Our initial seeds are 6.8% better than the original

CAMs [36], which provide a baseline, and this also outperforms the other methods.

Note that Chang et al. [30] and SEAM [107] use Wide ResNet-38 [136], which provides

better representation than ResNet-50 [135]. SEAM [107] also uses an auxiliary self-

attention module that performs pixel-level refinement of the initial CAM by considering

the relationship between pixels. We apply CRF, a widely used post-processing method,

to the initial seeds of Chang et al. [30], SEAM [107], IRN [2], and our method. With

the exception of SEAM, CRF improves the seed by more than 5% on average, but

it improves the seed of SEAM only by 1.4%. We believe this is because the seed of

SEAM is already refined by the self-attention module. Our seed after applying CRF is

5.3% better than that of SEAM.

We also compared pseudo ground truth masks, extracted after seed refinement, with
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Table 3.1: Comparison of the quality of the initial seed and pseudo ground-truth with

state-of-the-art methods in terms of mIoU on PASCAL VOC 2012 train images.

Method Seed + CRF Mask

Seed Refine with PSA [29]:

PSA CVPR ’18 [29] 48.0 - 61.0

Chang et al. CVPR ’20 [30] 50.9 55.3 63.4

SEAM CVPR ’20 [107] 55.4 56.8 63.6

AdvCAM (Ours) 55.6 62.1 68.0

Seed Refine with IRN [2]:

IRN CVPR ’19 [2] 48.8 54.3 66.3

MBMNet ACMMM ’20 [131] 50.2 - 66.8

CONTA NeurIPS ’20 [48] 48.8 - 67.9

AdvCAM (Ours) 55.6 62.1 69.9

existing methods. Most seed generator methods refine their generated localization maps

with IRN [2] or PSA [29]. For a fair comparison, we produced pseudo ground truth

masks using both these seed refinement techniques. Table 4.2 shows that our method

outperforms the others by a large margin, whichever seed refinement technique is used.

Weakly Supervised Semantic Segmentation: Table 5.3 compares our method

with other recently introduced weakly supervised semantic segmentation methods

with various levels of supervision: fully supervised pixel-level masks (P), bounding

boxes (B) or image class labels (I), with and without salient object masks (S). All

the results in Table 5.3 were obtained using a ResNet-based backbone [135]. With

image-level annotation alone, our method achieves mIoU values of 68.1 and 68.0 for

the PASCAL VOC 2012 validation and test images respectively. This is significantly

better than the other methods under the same level of supervision. In particular, the

mIoU value for validation images is 4.6% higher than that for IRN [2], which is our

baseline. CONTA [48], the best-performing method among our competitors, achieves
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an mIoU value of 66.1; but their method depends upon SEAM [107], which is known to

outperform IRN [2]. If CONTA is implemented with IRN, the resulting mIoU value is

65.3, which is 2.8% worse than our method. Figure 4.4 presents examples of semantic

masks produced by FickleNet [27], IRN [2], and our method.

Our method also outperforms other methods using auxiliary salient object mask

supervision [92, 93] that provides exact boundary information of salient objects in an

image, or extra web images or videos [94, 33]. The performance of our method is also

comparable with that of methods [25, 24] that use bounding box supervision.

Semi-Supervised Semantic Segmentation: Table 3.3 compares the mIoU scores of

our method on the PASCAL VOC validation and test images with those of other recent

semi-supervised segmentation methods, which use 1.5K images with fully supervised

masks and 9.1K images with weak annotations. All the methods in Table 3.3 were

implemented on the ResNet-based backbone [135], except that daggered (†) methods

which used the VGG-based backbone [114]. We achieve mIoU values of 77.8 and 76.9

for the PASCAL VOC 2012 validation and test images respectively, which is better than

the other methods under the same level of supervision. Specifically, the performance of

our method on the validation images was 4.6% better than that of CCT [132], which

is our baseline. Our method even outperforms Song et al. [25] which uses bounding

box labels for 9.1K images, instead of class labels. Figure 4.4 presents examples of

semantic masks produced by CCT [132] and our method.

3.3.4 Discussion

Iterative Adversarial Climbing: We analyzed the effectiveness of the iterative adver-

sarial climbing and regularization technique by evaluating the initial seed in terms of

mIoU. Figure 3.7(a) shows the mIoU of the initial seed for each adversarial iteration. Ini-

tially, the mIoU rises steeply, with or without regularization; but without regularization

the curves peaks around iteration 8.

To analyze this, we evaluate the truthfulness of the newly localized region at each
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Table 3.2: Comparison of weakly supervised semantic segmentation performance on

PASCAL VOC 2012 validation and test images.

Method Sup. val test

Supervision: Image-level tags

Li et al. ICCV ’19 [137] I, S 62.1 63.0

FickleNet CVPR ’19 [27] I, S 64.9 65.3

Lee et al. ICCV ’19 [33] I, S, W 66.5 67.4

CIAN AAAI ’20 [118] I, S 64.3 65.3

Zhang et al. ECCV ’20 [138] I, S 66.6 66.7

Sun et al. ECCV ’20 [94] I, S, W 67.7 67.5

IRN CVPR ’19 [2] I 63.5 64.8

SSDD ICCV ’19 [28] I 64.9 65.5

SEAM CVPR ’20 [107] I 64.5 65.7

Chen et al. ECCV ’20 [120] I 65.7 66.6

Chang et al. CVPR ’20 [30] I 66.1 65.9

CONTA NeurIPS ’20 [48] I 66.1 66.7

AdvCAM (Ours) I 68.1 68.0

P−pixel-level mask, I−image class, B−box, S−saliency, W−web

adversarial climbing iteration in terms of the proportion of noise, which we define to be

the proportion of pixels that are classified as foreground but are actually background.

Without regularization, the proportion of noise rises steeply after some iterations as

shown in Figure 3.7(b), which means that new regions tend to be in the regions of

background. Regularization allows new regions of the target object to be found in as

many as 30 adversarial steps, keeping the proportion of noise much lower than that

of initial CAM. Figure 3.8 shows examples of attribution maps at each adversarial

iteration with and without regularization.

Regularization Coefficient λ: It controls the influence of the masking technique

that limits the attribution scores of the regions that already have high scores during
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Table 3.3: Comparison of semi-supervised semantic segmentation methods on the

PASCAL VOC 2012 val and test images.

Method Training set val test

WSSL† [139] 1.5K P + 9.1K I 64.6 66.2

MDC† [108] 1.5K P + 9.1K I 65.7 67.6

Souly et al.† [140] 1.5K P + 9.1K I 65.8 -

FickleNet† [27] 1.5K P + 9.1K I 65.8 -

Song et al. [25] 1.5K P + 9.1K B 71.6 -

Luo et al. [134] 1.5K P + 9.1K I 76.6 -

CCT [132] (baseline) 1.5K P + 9.1K I 73.2 -

AdvCAM (Ours) 1.5K P + 9.1K I 77.8 76.9

P−pixel-level mask, I−image class label, B−box, †− VGG

backbone

Table 3.4: Effects of AdvCAM on different methods of generating the initial seed: mIoU

of the initial seed (Seed) and of the pseudo ground truth mask (Mask), for the PASCAL

VOC 2012 training images.

Method Seed Mask

Chang et al. [30] 50.9 63.4

+ AdvCAM 53.7 +2.8 67.5 +4.1

SEAM [107] 55.4 63.6

+ AdvCAM 58.6 +3.2 67.2 +3.6

IRN [29] 48.8 66.3

+ AdvCAM 55.6 +6.8 69.9 +3.6
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Image Ground Truth
FickleNet IRN Ours CCT Ours

Weakly Supervised Semi-Supervised

Figure 3.6: Examples of predicted semantic masks for PASCAL VOC val images in

weakly and semi-supervised manner.
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Figure 3.7: Effect of adversarial climbing and regularization on (a) the seed quality

and (b) the proportion of noise. (c) Effect of the regularization coefficient λ. (d) Effect

of the masking threshold τ . (d) Effect of the step size ξ.

adversarial climbing, in Eq. 3.6. Figure 3.7(c) shows the mIoU of the initial seed for

different values of λ. When λ = 0, there is no regularization. Masking technique

improves performance by more than 5% (50.43 for λ = 0 vs. 55.55 for λ = 7). The

flattening of the curve after λ = 5 suggests that it is not difficult to select a good value

of λ.

Masking Threshold τ : It controls the size of the restricting mask M in Eq. 3.4,

determining how many pixels’ attribution values will remain similar to that of the

original CAM during adversarial climbing. Figure 3.7(d) shows the mIoU of the initial

seed for different values of τ . This parameter is even less sensitive than λ: varying τ

between 0.3 and 0.7 produces less than 1% change in mIoU.
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Adv Traj. Bird
Adv Traj. Cat

Bird
Cat

Figure 3.9: Feature manifold of images with “bird” (blue) and “cat” (green), and a

trajectory of adversarial climbing for an image of each class. The dimensionality of the

feature was reduced by t-SNE [141].

Step Size ξ: It determines the extent of the manipulation to the image in Eq. 3.5.

Figure 3.7(e) shows the mIoU of the initial seed for different values of ξ. In our system,

changes in step size ξ are not particularly significant.

Generality of Our Method: In addition to IRN [2], we experimented with two

state-of-the-art methods of generating an initial seed for weakly supervised semantic

segmentation, namely Chang et al. [30] and SEAM [107]. We used the authors’ pre-

trained classifier where possible, but we re-trained the classifier of IRN [2] since the

authors do not provide pre-trained one. We also followed their experimental settings

including the backbone networks and mask refinement methods, i.e., we used PSA [29]

to refine the initial seed from “Chang et al. + AdvCAM” or “SEAM + AdvCAM”.

Table 3.4 gives mIoU values for the initial seed and the pseudo ground truth mask

obtained by combining each method with adversarial climbing. The use of AdvCAM

improves the quality of the initial seed by an average of over 4%. Our approach does

not require those initial seed generators to be modified or retrained.

Manifold Visualization: For visualizing a trajectory of adversarial climbing at
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a feature-level, we used t-SNE dimensional reduction [141]. We collect images that

contain a single class of a cat or a bird and that are predicted by the classifier correctly.

We then construct a set F containing the features of those images, before the final

classification layer. We also choose a representative image of a cat, and another of a

bird, and construct a set F ′ containing the features of those two images and their 20

manipulated images by adversarial climbing. Figure 3.9 presents t-SNE visualization of

features in F ∪ F ′. We can see that adversarial climbing actually pushes the features

away from the decision boundary boundary that separates the blue and green areas. In

addition, despite 20 adversarial climbing steps, the manipulated features did not deviate

significantly from the feature manifold of each class.

3.3.5 Analysis of Results by Class

The objects in the images in the MS COCO 2014 dataset are of various classes with

various object sizes. We will now discuss the degree of improvement in the initial seed

for each object class. Fig. 3.10 shows the improvement in mIoU produced by adversarial

climbing over the initial seed for each class. The classes are listed in ascending order

according to the average size of the target objects in each class (smallest → largest).

Adversarial climbing improves mIoU values for the majority of classes, regardless of

their average object size. When considering specific classes, we observed a large drop

in the seed quality for the ‘dining table’ class, which is anomalous. We believe that this

is due to the ambiguity of the ground truth label of the ‘dining table’. In the MS COCO

2014 dataset, the ‘dining table’ label includes all the items on the table. The suppression

of other classes by the regularization prevents objects such as bowls and bottles on the

table from being identified as part of a ‘dining table’, resulting in a localization map

that does not entirely match the ground truth.

To take a closer look at how adversarial climbing affects the performance of each

class with various object sizes, we report precision, recall, and F1-score values averaged

across all classes, the classes corresponding to the 10 smallest objects, and the classes
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corresponding to the 10 largest objects in Table 3.5. Our method improves precision,

recall, and F1-score of the initial seed, averaged across all classes. Recall was slightly

reduced (-12%) for the classes corresponding to the 10 smallest objects, but precision

increased significantly (67%), resulting in a largely improved F1-score. This indicates

that, for small objects, adversarial climbing effectively suppresses unwanted high

attribution scores in the background.

We believe that there are two causes of these improved results on small objects: 1)

During adversarial climbing, the logits associated with classes other than the target are

reduced, as described in Section 4.3, and thus patterns which are irrelevant to the target

class are effectively suppressed; and 2) since adversarial climbing increases the scores

of regions relevant to the target class, the scores of background regions are suppressed

due to normalization.

Adversarial climbing improves both precision and recall for large objects, but recall

increases by a much larger margin. This indicates that adversarial climbing effectively

raises the attribution scores of regions of target objects that had not previously been

identified.

We will now look at how the hyper-parameters interact with the object size. Table 3.5

shows the precision, recall, and F1-score values obtained using different values of T

and τ . Across all classes, neither T nor τ had a significant influence, which accords

with the results presented in Section 3.3.4. Looking at the 10 classes containing the

largest target objects, we see a similar picture. However, the 10 classes containing the

smallest objects seem to be a little more sensitive to the values of the hyper-parameters,

but not sufficiently to be a cause for concern.
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3.4 Reducing Information Bottleneck

3.4.1 Information Bottleneck

Given two random variables X and Y , the mutual information I(X;Y ) quantifies the

mutual dependence between the two variables. Data processing inequality (DPI) [142]

infers that any three variables X , Y , and Z that form a Markov Chain X → Y → Z

satisfy I(X;Y ) ≥ I(X;Z). Each layer in a DNN processes the input only from the

previous layer, which means that the DNN layers form a Markov chain. Therefore, the

information flow through these layers can be represented using DPI. More specifically,

when an L−layered DNN generates an output Ŷ from a given input X through interme-

diate features Tl (1 ≤ l ≤ L), it forms a Markov Chain X → T1 → · · · → TL → Ŷ ,

and the corresponding DPI chain can be expressed as follows:

I(X;T1) ≥ I(X;T2) ≥ · · · ≥ I(X;TL−1) ≥ I(X;TL) ≥ I(X; Ŷ ). (3.7)

This implies that the information regarding the input X is compressed as it passes

through the layers of the DNN.

Training a classification network can be interpreted as extracting maximally com-

pressed features of the input that preserve as much information as possible for classi-

fication; such features are commonly referred to as minimum sufficient features (i.e.,

discriminative information). The minimum sufficient features (optimal representations

T ∗) can be obtained by the information bottleneck trade-off between the mutual infor-

mation of X and T (compression), and that of T and Y (classification) [40, 44]. In other

words, T ∗ = argminT I(X;T )− βI(T ;Y ), where β ≥ 0 is a Lagrange multiplier.

Shwartz-Ziv et al. [41] observe a compression phase in the process of finding the

optimal representation T ∗: when observing I(X,Tl) for a fixed l, I(X,Tl) steadily

increases during the first few epochs, but decreases in the later epochs. Saxe et al. [42] ar-

gue that the compression phase is mainly observed in DNNs equipped with double-sided

saturating non-linearities (e.g., tanh and sigmoid), and is not observed in those equipped

with single-sided saturating non-linearities (e.g., ReLU). This implies that DNNs with
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single-sided saturating non-linearities experience less information bottleneck than those

with double-sided saturating non-linearities. This can also be understood in terms

of gradient saturation in the double-sided saturating non-linearities: the gradient of

those non-linearities with respect to an input above a certain value saturates close to

zero [143]. Therefore, features above a certain value will have near-zero gradients

during the back-propagation process and be restricted from additionally contributing to

the classification.

3.4.2 Motivation

As mentioned earlier, the DNN layers with double-sided saturating non-linearities

have a larger information bottleneck than those with single-sided saturating non-

linearities. The intermediate layers of popular DNN architectures (e.g., ResNet [135]

and DenseNet [144]) are coupled with the ReLU activation function, which is a single-

sided saturating non-linearity. However, the final layer of these networks is activated

by a double-sided saturating non-linearity such as sigmoid or softmax, and the class

probability p is computed with the final feature map TL and the final classification layer

w, i.e., p = sigmoid(w⊺GAP(TL)). Therefore, the final layer parameterized by w has

a significant bottleneck, and the amount of information transmitted from the last feature

TL to the actual classification prediction will be limited.

These arguments are analogous to the observations in existing methods. The infor-

mation plane provided by Saxe et al. [42] shows that the compression of information is

more noticeable in the final layer than in the other layers.

Bae et al. [109] observe that although the final feature map of the classifier contains

rich information on the target object, the final classification layer filters out most of

it; thus, the CAM cannot identify the entire area of the target object. This observation

empirically supports the occurrence of the information bottleneck in the final layer of a

DNN.

To take a closer look at this phenomenon, we design a toy experiment. We collect
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Figure 3.11: (a) Examples of toy images. (b) Examples of gradient maps Gk. (c) Plot of

HGR values of RD, RND, and RBG for each layer, averaged over 100 images.

images containing the digits ‘2’ or ‘8’ from the MNIST dataset [145]. For only a small

subset (10%) of these images, we add a circle ([black, fill=black]3pt) and a square (■)

to the images containing the digits ‘2’ and ‘8’, respectively, at a random location (see

Figure 3.11(a)). When classifying images into the digits ‘2’ or ‘8’, pixels corresponding

to the digit are discriminative regions (RD), those corresponding to the added circle or

square are non-discriminative but class-relevant regions (RND), and those corresponding

to the background are class-irrelevant regions (RBG).

We train a neural network with five convolutional layers followed by a final fully

connected layer. We obtain the gradient map Gl of each feature Tl with respect to an

input image x: Gl = ∇x
∑

u,v Tl(u, v), where u and v are the spatial and channel

indices of the feature Tl, and for the final classification layer (l = 6), G6 = ∇xy
c.

Because this gradient map indicates the extent to which each pixel of the image affects

each feature, it can be used to examine how much information is passed from the input

image to the feature maps of successive convolution layers.

We present examples of Gl in Figure 3.11(b). As an input image passes through the

convolution layers, the overall amount of gradient with respect to the input decreases,

indicating the occurrence of the information bottleneck. Specifically, the gradient of

RBG decreases early on (G1 → G2), which implies that the task-irrelevant information

is rapidly compressed. From G1 to G5, the gradient in RD or RND gradually decreases.

However, the decrease in the amount of gradient is prominent in the final layer (G5 →

G6), and in particular, the gradients in RND (red boxes) almost disappear. This supports
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our argument that there is significant information bottleneck in the final layer of a DNN,

while also highlighting that the non-discriminative information in RND is particularly

compressed.

We analyze this quantitatively. We define the high gradient ratio (HGR) of region

R as the ratio of pixels that have a gradient above 0.3 to the total pixels in region R.

HGR quantifies the amount of transmitted information from region R of an input image

to each feature. The trend in the HGR values of each region for each layer is shown

in Figure 3.11(c). The observed trend is analogous to the above empirical observation,

once again supporting that significant information bottleneck for RND occurs in the

final layer (the red box).

We argue that the information bottleneck causes the localization map obtained

from a trained classifier to focus on small regions of the target object. According to

Eq. 2.1, the CAM only includes information that is processed by the final classification

weight wc. However, because only a subset of the information in the feature is passed

through the final layer wc due to the information bottleneck, leaving out most of the

non-discriminative information, CAM cannot identify the non-discriminative regions of

the target object. It is undesirable to use such CAMs to train a semantic segmentation

network, for which the entire region of the target object should be identified. Therefore,

we aim to bridge the gap between classification and localization by reducing the

information bottleneck.

3.4.3 Proposed Method

In Section 3.4.2, we observed that the information contained in an input image is

compressed particularly in the final layer of the DNN, due to the use of the double-sided

saturating activation function therein. Therefore, we propose a method to reduce the

information bottleneck of the final layer by simply removing the sigmoid or softmax

activation function used in the final layer of the DNN. We focus on a multi-class

multi-label classifier, which is the default setting for weakly supervised semantic
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segmentation. Suppose we are given an input image x and the corresponding one-hot

class label t = [t1, · · · , tC ], where tc ∈ {0, 1} (1 ≤ c ≤ C) is an indicator of a class c,

and C is the set of all classes. While existing methods use the sigmoid binary cross-

entropy (BCE) loss (LBCE) to train a multi-label classifier, our method replaces it with

another loss function LRIB that does not rely on the final sigmoid activation function:

LBCE = −
C∑

c=1

tc log sigmoid(y
c) + (1− tc) log(1− sigmoid(yc)),

LRIB = −
C∑

c=1

tcmin(m, yc),

where m is a margin, and yc is the classification logit of image x.

However, training a classifier with LRIB from scratch causes instability in the

training because the gradient cannot saturate (please see the Appendix). Therefore,

we first train an initial classifier with LBCE whose trained weights are denoted by θ0,

and for a given image x, we adapt the weights toward a bottleneck-free model of x.

Specifically, we fine-tune the initial model using LRIB computed from x and obtain a

model parameterized by θk (0 < k ≤ K), where θk = θk−1−λ∇θk−1
LRIB, and K and

λ are respectively the total number of iterations and the learning rate for fine-tuning. We

name this fine-tuning process RIB. Employing RIB reduces the information bottleneck

for x, and we can obtain CAMs that identify more regions of the target object, including

non-discriminative regions. We repeat the RIB process for all the training images to

obtain the CAMs.

However, the model that is adapted to a given image x can be easily over-fitted to x.

Therefore, to further stabilize the RIB process, we construct a batch of size B for RIB

by sampling random B − 1 samples other than x at each RIB iteration. Note that for

each iteration, B − 1 samples are randomly selected, while x is fixed.

Effectiveness of RIB: We demonstrate the effectiveness of RIB by applying it

to the same classifier as that used for the toy experiments described in Section 3.4.2.

Figure 3.12 presents (a) examples of G6 and (b) the HGR values for RD, RND, and RBG
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Figure 3.12: Analysis of G6 for RD, RND, and RBG at each RIB iteration.

of G6, which showed the most significant information bottleneck, at each RIB iteration.

The HGR values are averaged over 100 images. The HGR values of RBG remain fairly

constant during the RIB process, while the HGR values of RD and RND increase

significantly. This indicates that the RIB process can indeed reduce the information

bottleneck, thereby ensuring that more information corresponding to both RD and RND

is processed by the final classification layer.

Limiting the transmission of information from discriminative regions: Zhang

et al. [89] showed the relationship between a classification logit y and a CAM, i.e.,

y = GAP(CAM). This implies that increasing yc with RIB also increases the pixel values

in the CAM. For a CAM to identify a wider area of the target object, it is important to

increase the pixel scores of the non-discriminative regions, rather than the discriminative

regions. Therefore, we introduce a new pooling method to the RIB process, so that

the features that were previously delivering a small amount of information to the

classification logit contribute more to the classification.

We propose a global non-discriminative region pooling (GNDRP). Contrary to

GAP which aggregates all the values of the spatial location in the feature map Tl, our

GNDRP selectively aggregates the values of spatial locations whose CAM scores are

below a threshold τ , as follows:

GAP(Tl) =
1

| U |
∑
u∈U

Tl(u), GNDRP(Tl) =
1

| Uτ |
∑
u∈Uτ

Tl(u),

Uτ = {u ∈ U |CAM(u) ≤ τ},
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where U is a set of all spatial location indices in Tl.

Other methods of weakly supervised semantic segmentation also considered new

pooling methods other than GAP to obtain better localization maps [146, 119, 147].

The pooling methods introduced in previous works make the classifier focus more on

discriminative parts. In contrast, GNDRP excludes highly activated regions, encouraging

non-discriminative regions to be further activated.

Obtaining a final localization map: We obtain the final localization map M

by aggregating all the CAMs obtained from the classifier at each RIB iteration k:

M =
∑

0≤k≤K CAM(x; θk).

Weakly Supervised Semantic Segmentation: Because a CAM [36] is obtained from

down-sampled intermediate features produced by a classifier, it should be up-sampled to

the size of the original image. Therefore, it tends to localize the target object coarsely and

cannot represent its exact boundary. Many weakly supervised semantic segmentation

methods [30, 148, 107, 48, 131, 27] produce pseudo ground truths by modifying their

initial seeds using established seed refinement methods [91, 29, 2, 119, 120]. Similarly,

we obtain pseudo ground truths by applying IRN [2], a state-of-the-art seed refinement

method, to the coarse map M.

In addition, because an image-level class label is void of any prior regarding the

shape of the target object, salient object mask supervision is popularly used in existing

methods [52, 27, 90, 149]. Salient object mask supervision can also be applied to our

method to refine the pseudo ground truths: when a foreground pixel in a pseudo label is

identified as background on this map, or a background pixel is identified as foreground,

we ignore such pixels in the training of the segmentation network.

3.4.4 Experiments

Dataset and evaluation metric: We evaluated our method quantitatively and qualita-

tively by conducting experiments on the PASCAL VOC 2012 [32] and the MS COCO

2014 [79] datasets. Following the common practice in weakly supervised semantic seg-
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mentation [29, 2, 27, 48], we used the PASCAL VOC 2012 dataset, which is augmented

by Hariharan et al. [133], containing 10,582 training images with objects from 20

classes. The MS COCO 2014 dataset contains approximately 82K training images con-

taining objects of 80 classes. We evaluated our method on 1,449 validation images and

1,456 test images from the PASCAL VOC 2012 dataset and on 40,504 validation images

from the MS COCO 2014 dataset, by calculating the mean intersection-over-union

(mIoU) values.

Reproducibility. We implemented CAM [36] by following the procedure from

Ahn et al. [2], which is implemented with the PyTorch framework [116]. We used

the ResNet-50 [135] backbone for the classification. We fine-tuned our classifier for

K = 10 iterations with a learning rate of 8 × 10−6 and a batch size of B = 20. We

set the margin m to 600. For the GNDRP, we set τ to 0.4. For the final semantic

segmentation, we used the PyTorch implementation of DeepLab-v2-ResNet101 offered

by [150]. We used an initial model pre-trained on the ImageNet dataset [3]. For the MS

COCO 2014 dataset, the training images are cropped with the crop size of 481×481

rather than 321×321 used for the PASCAL VOC 2012 dataset, considering the size of

the images in this dataset.

Quality of the initial seed and pseudo ground truth on the PASCAL VOC 2012

dataset: In Table 4.2, we report the mIoU values of the initial seed and pseudo ground

truth masks generated from our method and from other recent techniques. Following

SEAM [107], we evaluate a range of thresholds to distinguish between the foreground

and the background in the map M and then determine the best initial seeds. Our initial

seeds exhibit 7.7%p improvement from the original CAMs, a baseline for comparison,

and simultaneously outperform those from the other methods. Note that our initial seeds

are better than those of SEAM, which further refines the initial CAM on a pixel-level by

considering the relationship between pixels through an auxiliary self-attention module.

We applied a post-processing method based on conditional random field (CRF) [75]

for pixel-level refinement of the initial seeds obtained from the method proposed
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by Chang et al. [30], SEAM [107], IRN [2], and our method. On average, applying

CRF improved all the seeds by more than 5%p, with the exception of SEAM. CRF

improved SEAM by only 1.4%p, and it is reasonable to believe that this unusually small

improvement occurred because the self-attention module had already refined the seed

from CAM. When the seed produced by our method is refined with CRF, it is 6.1%p

better than that from SEAM and consequently outperforms all the recent competitive

methods by a large margin.

Additionally, we compare the pseudo ground truth masks obtained after seed

refinement with those obtained using other methods. Most of the compared methods

use PSA [29] or IRN [2] to refine their initial seeds. For a fair comparison, we generate

pseudo ground truth masks using both seed refinement techniques. Table 4.2 shows

that the masks from our method yield an mIoU of 68.6 with PSA [29] and 70.6 with

IRN [2], thereby outperforming other methods by a large margin.

Quality of the initial seed and pseudo ground truth on the MS COCO 2014

dataset: Table 4.2 presents the mIoU values of the initial seed and pseudo ground truth

masks obtained by our method and by other recent methods for the MS COCO 2014

dataset. We obtained the results of IRN [2] using the official code to set the baseline

performance. Our method improved the initial seed and pseudo ground truth masks of

our baseline IRN [2], by mIoU margins of 3.0%p and 2.7%p, respectively.

Figure 3.13 illustrates localization maps gradually refined by the RIB process for

the PASCAL VOC 2012 and the MS COCO 2014 datasets. More samples are shown in

the Appendix.

Weakly supervised semantic segmentation performance on the PASCAL VOC

2012 dataset: Table 5.3 presents the mIoU values of the segmentation maps on

PASCAL VOC 2012 validation and test images, predicted by our method and other

recently introduced weakly supervised semantic segmentation methods, which use

bounding box labels or image-level class labels. All the results in Table 5.3 were

obtained using a ResNet-based backbone [135]. Our method achieves mIoU values of
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68.3 and 68.6 for the validation and test images, respectively, on the PASCAL VOC 2012

semantic segmentation benchmark, outperforming all the methods that use image-level

class labels as weak supervision. In particular, our method outperforms CONTA [48],

the best-performing method among our competitors, achieving an mIoU value of 66.1.

However, CONTA depends on SEAM [107], which is known to outperform IRN [2].

When CONTA was implemented with IRN for a fairer comparison with our method, its

mIoU value decreased to 65.3, which our method surpasses by 3.0%p.

Table 3.7 compares our method with other recent methods using additional salient

object supervision. We utilized salient object supervision used by Li et al. [149] and

Yao et al. [52]. Our method achieves mIoU values of 70.2 and 70.0 for the validation

and test images, respectively, outperforming all the recently introduced methods under

the same level of supervision.

Figure 3.14(a) shows examples of predicted segmentation maps by our method

with and without saliency supervision. The boundary information provided by saliency

supervision allows our method to produce a more precise boundary (yellow boxes).

However, the non-salient objects in an image are often ignored when using saliency

supervision, while RIB successfully identifies them (e.g., a ‘sofa’ in the first column

and ‘person’ in red boxes in Figure 3.14(a)). This empirical finding inspires a potential

future work that can simultaneously identify a precise boundary and non-salient objects.

Performance of weakly supervised semantic segmentation on the MS COCO

2014 dataset: Table 3.8 compares our method with other recent methods on MS

COCO 2014 validation images. Our method achieves an improvement of 2.4%p in

terms of the mIoU score compared with our baseline IRN [2], and outperforms the

other recent competitive methods [1, 48, 153] by a large margin. In the comparison

with CONTA [48], the result of IRN reported in CONTA [48] differs from the one we

obtained. Therefore, we compare relative improvements: CONTA achieves a 0.8%p

improvement compared with IRN (32.6 → 33.4), whereas our method achieves 2.4%p

(41.4 → 43.8). Figure 3.14(b) presents examples of predicted segmentation maps by
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Image Ground Truth RIB RIB w/. Sal Image Ground Truth RIB(a) (b)

Figure 3.14: Examples of predicted segmentation masks from IRN [2] and our method

for (a) PASCAL VOC 2012 validation images and (b) MS COCO 2014 validation

images.

RIB iteration (K)
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Figure 3.15: Analysis of RIB with GAP or GNDRP in terms of mIoU of the initial

seed.

our method for the MS COCO 2014 validation images.

Influence of the total number of RIB iterations K: We analyze the influence

of the iteration number K on the effectiveness the RIB process. Figure 3.15 shows

the mIoU score of the initial seed obtained by our baseline CAM, and that of each

iteration of the RIB process with GAP or GNDRP. As the RIB process progresses, the

localization map is significantly improved, regardless of the pooling method. However,

the increase in the performance of RIB with GAP is limited, and even slightly decreases

in later iterations (K > 5). This is because GAP allows features that have already

delivered sufficient information to the classification to become even more involved in
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Method val test

Supervision: Bounding box labels

Song et al. CVPR ’19 [25] 70.2 -

BBAM CVPR ’21 [26] 73.7 73.7

Supervision: Image class labels

IRN CVPR ’19 [2] 63.5 64.8

SEAM CVPR ’20 [107] 64.5 65.7

BES ECCV ’20 [120] 65.7 66.6

Chang et al. CVPR ’20 [30] 66.1 65.9

RRM AAAI ’20 [151] 66.3 66.5

CONTA NeurIPS ’20 [48] 66.1 66.7

RIB (Ours) 68.3 68.6

Table 3.6: Comparison of semantic seg-

mentation performance on PASCAL

VOC 2012 validation and test images.

Method Sup. val test

SeeNet NeurIPS ’18 [90] S 63.1 62.8

FickleNet CVPR ’19 [27] S 64.9 65.3

CIAN AAAI ’20 [118] S 64.3 65.3

Zhang et al. ECCV ’20 [138] S 66.6 66.7

Fan et al. ECCV ’20 [152] S 67.2 66.7

Sun et al. ECCV ’20 [94] S 66.2 66.9

LIID TPAMI ’20 [95] SI 66.5 67.5

Li et al. AAAI ’21 [149] S 68.2 68.5

Yao et al. CVPR ’21 [52] S 68.3 68.5

RIB (Ours) S 70.2 70.0

Table 3.7: Comparison of semantic segmen-

tation performance on PASCAL VOC 2012

validation and test images using explicit lo-

calization cues. S: salient object, SI : salient

instance.

the classification. Because our proposed GNDRP limits the increase in the contribution

of these discriminative regions to the classification, RIB with GNDRP can effectively

allow non-discriminative information to be more involved in the classification, resulting

in a better localization map in later iterations. We observe that changing the value of K

to be larger than 10 (even 20) produces less than 0.8%p drop in mIoU, suggesting that

it is not difficult to select a good value of K.

Fine-tuning with LRIB: To verify the effectiveness of LRIB, we fine-tune a model

using the BCE loss with various double-sided saturating activation functions. Table 3.9

(a) shows the mIoU scores of the initial seeds, obtained from a model fine-tuned by

the BCE loss with sigmoid, tanh, and softsign activations, and our LRIB. We adjusted

the output of tanh and softsign to have a value between zero and one through the
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Method Backbone mIoU

ADL TPAMI ’20 [1] VGG16 30.8

CONTA NeurIPS ’20 [48] ResNet50 33.4

Yao et al. Access ’20 [153] VGG16 33.6

IRN CVPR ’19 [2] ResNet101 41.4

RIB (Ours) ResNet101 43.8

Table 3.8: Comparison of semantic segmentation on MS COCO validation images.

Fine-tuning Seed

Init. 48.8

BCE w/. Tanh 49.7

BCE w/. Sigmoid 50.5

BCE w/. Softsign 50.9

LRIB 56.5

(a)

m λ Seed

300 8 × 10−6 54.0

600 5 × 10−6 54.9

600 8 × 10−6 56.5

600 1 × 10−5 56.0

1000 8 × 10−6 55.9

(b)

Method Seed

CAM 48.8

RIB-GAP 54.8

RIB-GNDRP (τ=0.3) 55.8

RIB-GNDRP (τ=0.4) 56.5

RIB-GNDRP (τ=0.5) 56.0

(c)

Table 3.9: Comparison of mIoU scores of the initial seed (a) with different activation

functions for the final layer, (b) with different values of m and λ, and (c) with different

values of τ .
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affine transform. Fine-tuning using the BCE loss with double-sided saturating activa-

tions improves the initial seed to some extent, which demonstrates the effectiveness of

per-sample adaptation; however, their performance improvement is limited due to the

remaining information bottleneck. Note that the softsign activation function provides

better localization maps than tanh and sigmoid. We believe this is because the gradi-

ents from softsign reach zero at a higher value compared with the others (please see

the Appendix), and consequently, softsign has less information bottleneck. Our LRIB

effectively addresses the information bottleneck and achieves the best performance.

Analysis of the sensitivity to hyper-parameters: We analyze the sensitivity of

the mIoU of the initial seed to the hyper-parameters involved in the RIB process.

Table 3.9 (b) presents the mIoU values of the initial seed obtained using different

combinations of values for the margin m and the learning rate λ. Overall, a slightly

lower performance is observed when the strength of the RIB process is weakened by

small values of m and λ. For sufficiently large m and λ, the performance of the RIB

process is competitive. Table 3.9 (c) analyzes the influence of the threshold τ involved

in the GNDRP. Increasing τ from 0.3 to 0.5 results in less than 1%p change in the

mIoU, and thus, we conclude that the RIB process is robust against the changes in τ .

3.5 Summary

In this chapter, we have introduced three weakly supervised semantic segmentation

methods using image-level class labels. To expand the regions of CAMs to the extent

of the target object, we have first briefly discussed FickleNet, the stochastic inference

technique. We have shown how adversarial manipulation can be used to expand the

small discriminative regions of a target object. We manipulate images with a pixel-

level perturbation, which is obtained from the gradient computed from the output of

classifier with respect to the input image, which increase the classification score of the

perturbed image. The attribution map of the manipulated image covers more of the
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target object. Finally, we analyzed why the localization map obtained from a classifier

identifies only a small region of the target object through the information bottleneck

principle. Our analysis highlighted that the amount of information delivered from an

input image to the output classification is largely determined by the final layer of the

DNN. We then developed a method to reduce the information bottleneck through two

simple modifications to the existing training scheme: the removal of the final non-linear

activation function in the DNN and the introduction of a new pooling method. We

have shown that these techniques are helpful for obtaining improved localization maps,

which identify accurate regions of the target object.
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Chapter 4

Learning with Auxiliary Data

4.1 Introduction

Pixel-wise labeling is labor-intensive [22]. Lots of research have been dedicated to

supervising a semantic segmentation model with weaker forms of supervision than

pixel-wise labelings, such as scribbles [23], points [21, 154], boxes [24, 25, 26], and

class labels [107, 112, 49, 59]. We tackle the final category in this paper: weakly

supervised semantic segmentation (WSSS) with class labels.

WSSS methods utilizing class labels often follow a two-stage process. First, they

generate pixel-level pseudo-target from a classifier using CAM variants [36, 37]. Then,

they train the main segmentation network using the pseudo-target generated in the first

stage. Built on image-level labels only, the pseudo-target is known to suffer from the

confusion between foreground and background cues. For example, given a database

of duck images where ducks are typically waterborne, a classifier erroneously assigns

higher scores on patches containing water than those containing ducks’ feet [46, 47,

48, 49, 50, 51]. The same goes for foreground-background pairs like woodpecker-tree,

snowmobile-snow, and train-rail. This is a fundamental problem that cannot be solved

solely with the class labels; additional information is needed to learn to fully distinguish

the foreground and background cues [46, 47, 50].
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Figure 4.1: (a) Classifiers often confuse background cues to be a foreground concept

due to spurious correlations (“rail” for “train”). (b) Our W-OoD employs hard OoD

images as negative samples (“rail” is not “train”) to resolve the confusion.

Researchers have thus sought various sources of additional guidance to separate

the foreground and background cues, each with different pros and cons and different

labeling-cost footprints. Image saliency [92, 93] is one of the most widely used ones

[27, 50, 52, 94, 95, 96], for it naturally provides the prominent foreground object in

the image in a class-agnostic fashion. However, saliency is not very effective for non-

salient foreground objects (low-contrast objects or small objects). Low-level visual

features like superpixels [53, 54], edges [97], object proposals [26, 25, 95], and optical

flows [34, 33] have also been considered. Though cost-effective, they tend to generate

inaccurate object boundaries because such low-level information does not consider

semantics associated with the class.

In this paper, we propose another source of guidance that provides a distinction

between the foreground and background cues. We propose to use the out-of-distribution

(OoD) data that do not contain any of the foreground classes of interest. Examples

include the rail-only images for the foreground class “train”, since classifiers often
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confuse the rail for the train. By subduing the recognition of “train” on such rail cues in

hard OoDs, models successfully distinguish such confusing cues.

Obtaining such OoDs does not incur a significant amount of additional annotation

efforts compared to collecting only the image-level labels. The OoD images are natural

by-products of the typical dataset collection procedure. Vision datasets with image-

level category labels (Pascal [32], COCO [79], LVIS [155], and OpenImages [156]) all

start with a pool of candidate images, from which images corresponding to one of the

foreground classes are selected and included in the final dataset. The remaining pool, or

the candidate OoD set, can be utilized as the source of OoD images.

The candidate OoD set cannot be directly used for guiding the WSSS method

for two reasons. First, general OoD images do not provide informative signals to

distinguish difficult background cues from the foreground (rail from train). Second,

it may still contain foreground objects. We address the first problem by selecting

hard OoDs whereby classifiers falsely assign high prediction scores to one of the

foreground classes. The second problem is addressed by a human-in-the-loop process

where images containing foreground objects are manually pruned. While this requires

additional human efforts, we emphasize that the extra cost is negligible. As we will

show later (Sec. 4.4.3), we only need a tiny amount of hard OoD samples to improve the

localization maps: even 1 hard OoD image per class boosts the localization performance

by 2.0%p. Furthermore, the cost for collecting OoD samples is at the same order of

magnitude as collecting the category labels for the foreground samples, as opposed

to collecting segmentation maps. One can also re-direct the budget for collecting a

few labeled foreground data to collecting a similar number of hard OoD samples to

dramatically improve the WSSS performance.

Given the additional guidance provided by OoD samples, we propose W-OoD, a

method of training a classifier by utilizing the hard-OoDs. Note that our data collection

procedure provides hard OoD samples which have different patterns and semantics

in various contexts. One could ignore this diversity and treat every hard OoD as
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a combined background class; this approach has proved to be sub-optimal by our

experiments. Instead, W-OoD considers every hard OoD sample with a metric-learning

objective: increase the distance between the in-distribution and OoD samples in the

feature space. This forces the background cues shared by the in-distribution and OoD

samples (rail for train category) to be excluded from the feature-space representation.

W-OoD results in high-quality localization maps and lead to the new state-of-the-art

performance on the Pascal VOC 2012 benchmark for WSSS.

We contribute (1) a new paradigm of utilizing the OoD samples to address the

spurious correlations in weakly supervised semantic segmentation (WSSS); (2) a dataset

of hard OoDs for 20 Pascal categories that will be published upon acceptance; and (3)

a WSSS method, W-OoD, that exploits the hard OoDs and achieves the best-known

performance on the Pascal VOC 2012 benchmark for WSSS.

4.2 Related Work

Weakly supervised learning: Most weakly supervised learning methods with image-

level class labels are based on a class activation map (CAM) [36]. However, it is widely

known that a CAM is limited to identifying small discriminative parts of a target ob-

ject [27, 2, 49]. Several techniques have been proposed for obtaining the entire region

of the target object. PSA [29] and IRN [2] consider pixel relationships to extend the

object region to semantically similar areas using a random walk. SEAM [107] regular-

izes the classifier so that the localization maps obtained from differently transformed

images are equivariant to those transformations. AdvCAM [112] and RIB [49] propose

post-processing techniques of a trained classifier to obtain whole regions of the target

object, by manipulating images or network weights. Although the identified regions

are successfully extended by these methods, some spuriously correlated background

regions tend to be erroneously identified together. CDA [157] adopts the cut-paste

method to decouple the correlation between objects and their contextual background.
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However, it is difficult to accurately decouple the correlation using only class labels,

which limits the performance improvement.

Learning with external data: Several studies have considered utilizing additional

external information to address the issue of the spurious correlation problem. Automated

web searches can provide images [35, 158] or videos [34, 33] with class labels, although

these labels may be inaccurate. Some methods [137, 94] utilize single-label images to

obtain more information about in-distribution data. However, these additional sources

still depend solely on classes of interest. Thus, they lack information about the separa-

tion between the foreground and background. Consequently, various types of additional

supervision have been adopted. Some researchers [159, 160] employed image captions.

However, these are expensive to obtain. Moreover, modeling vision-language relation-

ships, which is required in those methods, is a non-trivial task. Kolesnikov et al. [51]

proposed an active learning approach, wherein a person determines whether a specific

pattern is in the foreground or not. This is a model-specific approach, so human inter-

vention is required whenever a new model is trained. Saliency supervision [161, 162]

is another popular additional information source [49, 33, 94, 163, 52, 50, 96]. How-

ever, it is not very effective for non-salient objects that are indistinguishable from the

background or small objects [49, 163, 50].

4.3 Methods

We propose a method for collecting and utilizing OoD data for the WSSS with category

labels. We describe the data collection procedure for hard OoD in Sec. 4.3.1. In Sec.

4.3.2, we introduce the method named W-OoD that trains a classifier with the collected

hard-OoDs to generate the localization maps. Finally in Sec. 4.3.3, we show how to

train a semantic segmentation network with the localization maps.
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4.3.1 Collecting the Hard Out-of-Distribution Data

We describe the overall procedure for collecting an OoD dataset. The starting point is a

candidate OoD set that consists mostly of images without the foreground categories of

interest. The aim is to refine this set into a set of hard OoDs that will be used for the

downstream WSSS methods. The overall procedure is described in Fig. 4.2.

Where to get the candidate OoDs: The WSSS task with category labels as the

weak supervision first requires the category labels on a set of training images. Building

a category-labeled image dataset is typically a four-step process [32, 156, 79, 155]: (1)

define the list C of foreground classes of interest, (2) acquire unlabelled images from

various sources (world wide web), (3) determine for each image whether it contains

one of the foreground classes, and (4) tag each image with the foreground category

labels. Steps (3) and (4) are combined in some cases. A by-product of this procedure is

the set of candidate images obtained from step (2) but not selected in step (3). We refer

to this set as the candidate OoD set. For example, for Pascal VOC 2007 [32], step (2)

has yielded 44,269 candidate images for annotation. Everingham et al. [32] report that

9,963 of them were finally selected as foreground data, while the rest were discarded.

We make use of this discarded set that is likely to consist of background images.

Hard OoD samples via ranking and pruning: Unfortunately, the candidate OoD

data are imperfect. OoD data are often too diverse to contain meaningful information.

For example, presenting an image of fish in an aquarium as a negative sample of the

foreground class “train” will not introduce any meaningful supervision for the classifier

(See fish in Fig. 4.2). It is the hard OoD samples that give much information; they

are OoD samples confused by a classifier to be containing the foreground object. The

rail images without train in Fig. 4.2 are examples of such. They provide informative

negative supervision for the classifier to suppress the class score on spurious background

cues. We thus rank the candidate OoD data according to the prediction scores p(c)

for the class c of interest. We use the classifier trained on the images with foreground

objects and the corresponding labels. We prune OoD samples with p(c) < 0.5. This
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Figure 4.2: Collecting hard OoD data. Starting from the candidate OoD images at the

top, we sequentially prune out easy OoDs and then false negatives for each foreground

class c ∈ C. The procedure results in the hard OoD dataset.

returns candidates for the hard OoD data.

Manual pruning of positive samples: It is unrealistic to assume that the candidate

OoD set will be free of foreground objects. There will be many missing annotations and

corner cases. When they are ranked according to the foreground prediction scores, high-

ranking images are likely to contain those missing positives. We thus need to manually

filter out those positive samples. This manual refinement stage is the cost bottleneck in

our pipeline. The cost depends directly on the positive rate r, the proportion of positive

images among the pruned set obtained by thresholding the prediction score p(c) ≥ 0.5.

Letting n be the required number of hard OoD images, the human worker needs to

check on average n
1−r images. If there are some positive images with r = 0.2, then the
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annotator needs to check 1.25n images to eventually obtain n hard OoDs. We denote

the resulting dataset as Dood, the hard OoD set.

Surrogate source of OoD data: Theoretically speaking, it would be best to obtain

the hard OoD set by replicating the dataset construction procedure for Pascal [32] to

analyze and benchmark our method on Pascal. However, this is practically infeasible

because one cannot crawl images with similar characteristics as the 500,000 initial

images that Pascal authors have crawled from Flickr in 2007 [32]. It is also not docu-

mented which category annotation tool has been used to filter out the background set.

Another way to set up the experiment is to build a new dataset from scratch. However,

this will not allow us to use the existing WSSS benchmarks like Pascal. In this paper,

we source the candidate OoD data from another vision dataset: OpenImages [156]. To

simulate the OoD data, we filter out 20 Pascal classes from the OpenImages dataset

using the provided category labels. Note that OpenImages category labels are noisy:

19,794 categories are labeled first through image classifiers and then are refined by

crowdsourced workers [156]. This is in stark contrast to Pascal: only 20 categories are

labeled by a highly controlled pool of workers at a controlled offline event (called “an-

notation party”) [32]. We thus expect the candidate OoD set sourced from OpenImages

to contain more noise (foreground classes) than the set one would get from the original

Pascal data collection process.

4.3.2 Learning with the Hard Out-of-Distribution Data

Classifiers trained only on the in-distribution dataset Din often incorrectly identify

spuriously correlated background regions as class-relevant patterns. We address this by

using the hard out-of-distribution data Dood obtained in the previous section. One naive

approach to utilize the hard OoD images is either to assign the uniform distribution

over the labels for such images (no-information prior) [164, 165, 166] or to assign the

“background” label to such images. However, since hard OoD images contain various

semantics that convey meaningful information to each class, labeling these images with
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one background class ignores the diversity of OoD samples, resulting in a sub-optimal

performance as shown in Sec. 4.4.3 and Table 4.5.

To benefit from the diversity of hard-OoD images, we propose a metric-learning

methodology that considers OoD images of individuals or small groups. To compute

a metric-learning objective, we use the penultimate feature z of the in-distribution

classifier Fin for an input x; we write zin (resp. zood) as the feature of xin ∈ Din (resp.

xood ∈ Dood). We train a classifier F to ensure that zin is significantly different from

zood, thereby preventing information overlap between the features. To realize this, a

clustering-based metric learning objective is proposed.

Let Zin and Zood be the sets of zin and zood, respectively. We first construct a set

of clusters P in (resp. Pood) based on Zin (resp. Zood). Each cluster in P in contains

features of xin corresponding to each class c ∈ C, resulting in |C| clusters in P in.

One straightforward way of constructing Pood is to cluster images according to their

incorrectly predicted classes. This, however, is sub-optimal in practice because such

clusters are highly heterogeneous. For example, images of lakes and images of trees

are semantically different, yet a cluster based on the “bird” class will contain both.

Therefore, we construct Pood by using a K-means clustering algorithm on Zood.

We now have a set of clusters P in = {P in
c }

|C|
c=1 and Pood = {Pood

k }Kk=1. The center

of each cluster is computed using pk = 1
|Pk|

∑
x∈Pk

z(x). We define the distance

between the input image x and each cluster Pk as the distance between x’s feature z(x)

and the center pk, as follows:

d(x,Pk) = ∥z(x)− pk∥2 (1 ≤ k ≤ K). (4.1)

We design a loss Ld to ensure that the distance between xin and in-distribution clusters

P in is small, but the distance between xin and OoD clusters Pood is large, as shown

below:

Ld =
∑

c:yc=1

d(xin,P in
c )−

∑
k∈K

d(xin,Pood
k ), (4.2)
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where y ∈ {0, 1}|C| is the multi-hot binary vector of foreground classes in image xin

and K is the set of clusters in Pood that are among the top-τ% closest from xin. This

restriction of K ensures meaningful supervisory signals for the model.

We also use the usual classification loss Lcls. For in-distribution samples xin, we use

the binary cross entropy (BCE) losses against the label vector y. For out-of-distribution

samples xood, we use the same loss with the zero-vector label y = (0, · · · , 0). The

classification loss for our classifier F is then

Lcls =
1

|C|

|C|∑
c=1

[LBCE(Fc(xin), yc) + LBCE(Fc(xood), 0)] , (4.3)

where Fc is the prediction for class c. The final loss L to train a classifier F is

L = Lcls + λLd, (4.4)

where λ > 0 is a scalar balancing the two losses.

Because our method adds an additional regularization Ld to the existing classi-

fier training, it can be seamlessly integrated into other methods, such as IRN [2],

SEAM [107] and AdvCAM [112].

4.3.3 Training Segmentation Networks

The classifier F trained by Eq. 4.4 generates a localization map using the CAM [36]

technique. Since the naive CAM generates low-resolution score maps and provides

only rough localization of objects, recent WSSS methods [27, 107, 49, 157, 112, 48]

have proposed a framework for expanding the CAM score map to full resolution. They

consider the CAM localization map as an initial seed and generate pseudo-ground-truth

masks by refining their initial seeds with established seed refinement methods [91, 29, 2,

119]. In this work, we apply the IRN framework [2] on our localization maps to obtain

the pseudo-ground-truth masks. They are subsequently used for training segmentation

networks.
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Table 4.1: W-OoD improves initial seeds. We evaluate the qualities of various initial

seeds and the effects of applygin W-OoD on them. Evaluated on Pascal VOC 2012 train

set. All numbers are based on our re-implementation using the official codes.

Method mIoU Prec. Recall F1-score

IRN CVPR ’19 [29] 49.5 61.9 72.7 66.9

+ W-OoD 53.3 66.5 73.2 69.7

SEAM CVPR ’20 [107] 54.8 67.2 76.5 71.5

+ W-OoD 55.9 68.5 76.7 72.4

AdvCAM CVPR ’21 [112] 55.5 66.8 77.6 71.8

+ W-OoD 59.1 71.5 77.9 74.6

Table 4.2: Quality of pseudo-GT masks. Comparison of quality of the initial seed and

pseudo ground-truth on the Pascal VOC 2012 train set. All the methods based based on

IRN [2] with ResNet-50.

Method Seed + CRF Mask

IRN CVPR ’19 [2] 49.5 54.3 66.3

MBMNet ACMMM ’20 [131] 50.2 - 66.8

CONTA NeurIPS ’20 [48] 48.8 - 67.9

CDA ICCV ’21 [157] 50.8 - 67.7

AdvCAM CVPR ’21 [112] 55.6 62.1 69.9

CSE ICCV ’21 [167] 56.0 62.8 -

IRN + W-OoD (Ours) 53.3 58.4 71.1

AdvCAM + W-OoD (Ours) 59.1 65.5 72.1
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4.4 Experiments

4.4.1 Experimental Setup

In-Distribution Dataset: We conduct experiments on the Pascal VOC 2012 [32] dataset.

For the training images, we only use the image-level category labels, following the

protocol for WSSS. We use the pixel-wise ground-truth masks on val (1,449 images) and

test (1,456 images) sets only for evaluation. We use the official Pascal VOC evaluation

server for the test-set evaluation.

Out-of-Distribution Dataset: As described in Sec. 4.3.1, we use the OpenIm-

ages [156] dataset to construct the candidate OoD set. As the result of prediction-score

pruning and manual filtering, we obtain the hard OoD set Dood with 5,190 images.

Reproducibility: We follow experimental settings of IRN [2] for training a classifier

and obtaining the initial seed, including the use of ResNet-50 [135]. For the setting

defined in Sec. 4.3.2, we use λ = 0.007, τ = 20, and K = 50. For training a

segmentation network, we use DeepLab-v2 [18] with two choices of backbones, ResNet-

101 [135] and Wide ResNet-38 [136], following the practice in recent papers. All the

backbones are pre-trained on ImageNet [3], following existing work [29, 107, 48, 167,

168].

4.4.2 Experimental Results

Quality of localization maps: As mentioned in Sec. 4.3.2, our method can be applied

to other WSSS methods, since it only requires the addition of a loss term Ld during the

classifier training. We apply our method to three state-of-the-art WSSS methods that

utilize the initial seeds: IRN [2], SEAM [107], and AdvCAM [112]. Table 4.1 presents

the qualities of the initial seeds for the considered baselines as well as respective

performances when combined with our W-OoD technique. We observe that our method

improves all the metrics by a large margin for all three methods. In particular, W-

OoD training significantly improves precision values (+4.7%p for AdvCAM [112]),
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Image CAM +W-OoDGround Truth Image AdvCAM +W-OoDGround Truth

Figure 4.3: Examples of localization maps. The localization maps are obtained from

CAM (left) and AdvCAM [112] (right). In each case, we show the results using our

W-OoD method on top.

indicating that the resulting localization maps bleed into the background regions less

frequently. This is what we expected to see as a result of including the hard OoD samples

into training. Fig. 4.3 shows qualitative examples of the localization maps. They show

that our method generates more precise maps around the actual foreground objects.

Spuriously correlated background regions like rails for “train” and trees for “bird”

are effectively suppressed by our method. Additionally, we observe that our method

improves recall by expanding the retrieved region of the target object, as shown in the

last column in Fig. 4.3. The increased precision gives room for further improvements in

recall.

Quality of pseudo-ground-truth masks: Table 4.2 compares qualities of interme-

diate masks leading to the pseudo-ground-truth masks among state-of-the-art methods

as well as ours. Our pseudo ground-truth masks achieve an mIoU value of 72.1, which

outperforms the previous state of the art by a large margin. Note that CDA [157] is

likewise motivated by the need to suppress spurious correlations between foreground

and background cues, but has only used the in-distribution data to tackle the problem. It

improves the initial seed of IRN [2] by 1.3%p mIoU (49.5 → 50.8), while our method
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Figure 4.4: Examples of final segmentation results. Examples of semantic seg-

mentation results on Pascal VOC 2012 val set for IRN [2], AdvCAM [112], and

AdvCAM+Ours.

improves it by 3.8%p mIoU (49.5 → 53.3, in Table 4.1). We believe that in-distribution

data are fundamentally limited in providing sufficient evidence for distinguishing cer-

tain background cues from foreground: if one always sees train on rail, how can one

learn that rail is not part of the train? We believe this missing knowledge is effectively

supplied by the hard OoD images.

Final segmentation results: We present the WSSS benchmark results in Table 5.3.

It achieve the best result among the variants using only image-level tags: 70.7% mIoU on

val and 70.1% mIoU on test. In particular, using the same backbone ResNet-101 [135],

our method produces 2.3%p better mIoU than the baseline AdvCAM [112]. Our method

also outperforms other methods using additional saliency supervision [92, 93] that

explicitly provides pixel-level information of salient objects in an image, except for

EDAM [163]. Fig. 4.4 shows examples of semantic masks produced by IRN [2],

AdvCAM [112], and our AdvCAM + W-OoD. In the examples, our method captures

the extent of the target objects more precisely than the baselines.
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Table 4.3: WSSS performance on Pascal. We show results on Pascal VOC 2012 val

and test sets. WResNet denotes Wide ResNet [136].

Method Backbone val test

Supervision: Image-level tags + Saliency

FickleNet CVPR ’19 [27] ResNet-101 64.9 65.3

Sun et al. ECCV ’20 [94] ResNet-101 66.2 66.9

A2GNN TPAMI ’21 [169] ResNet-101 68.3 68.7

AuxSegNet ICCV ’21 [170] WResNet-38 69.0 68.6

EDAM CVPR ’21 [163] ResNet-101 70.9 70.6

Supervision: Image-level tags

IRN CVPR ’19 [2] ResNet-50 63.5 64.8

SEAM CVPR ’20 [107] WResNet-38 64.5 65.7

CONTA NeurIPS ’20 [48] WResNet-38 66.1 66.7

AdvCAM CVPR ’21 [112] ResNet-101 67.5 67.1

CSE ICCV ’21 [167] WResNet-38 68.3 68.0

PMM ICCV ’21 [168] WResNet-38 68.5 69.0

AdvCAM + W-OoD (Ours) ResNet-101 69.8 69.9

AdvCAM + W-OoD (Ours) WResNet-38 70.7 70.1

4.4.3 Analysis and Discussion

Number of OoD Images We investigate the impact of the number of OoD images for

our W-OoD training method. Fig. 4.5(a) shows the mIoU scores of the initial seed at

different numbers of OoD images (|Dood|) while keeping the number of in-distribution

images constant at |Din| = 10, 582. The experiments were repeated five times to

investigate the sensitivity of the result to different random subsets of Dood. We observe

that already at 1 hard OoD sample per class (|Dood| = 20), the performance boost is

2.0%p (49.8 → 51.8), though with a significant amount of variance. The marginal gain
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K Clustering mIoU

20 Predicted classes 52.1

20

K-Means

52.4

30 53.1

50 53.3

70 52.6

Table 4.4: Constructing Pood. We compare two methods for constructing Pood for

W-OoD training. We report the mIoU of the initial seeds on Pascal VOC 2012 train set.

from additional hard OoD images diminishes with increasing number of samples. The

performance variance also diminishes with an increased number of hard OoD samples.

In the second experiment, we vary the number of hard OoD samples |Dood| while

fixing the total number of image-level labeled samples: |Din| + |Dood| = 10, 582.

This is a version of fixing the budget for in-distribution and out-of-distribution sam-

ples. Fig. 4.5(b) shows that the hard OoD images bring far greater unit gain than

in-distribution images. Thus, given a fixed budget, it is advisable to spend at least some

portion of it on collecting the hard OoD samples.

In Fig. 4.5(c), we observe that, with 100 hard OoD images, we only need 2,000

in-distribution images to match the performance we obtain from the original 10,582

in-distribution images, enhancing the data efficiency by around 500%.

Effectiveness of K-Means clustering: Table 4.4 compares the two methods for

constructing the Pood in Sec. 4.3.2. When the OoD clusters are based on the classes

predicted by the classifier, the resulting mIoU is 52.1%, which is not significantly

different from that obtained using the K-means clustering method for the same K value.

The clustering method based on the predicted class limits K to |C|, whereas K values

can be controlled in K-means clustering. At K = 50, it produces an mIoU value of

53.3% and the performance is stable across a broad range of K values. Examples of
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(a) (b) (c)

Figure 4.5: Amount of hard OoD samples. We vary number of in-distribution training

data Din (originally 10,582) and the hard OoD data (originally 0). (a) We fix |Din| =

10, 582 and vary |Dood|. (b) We fix |Din|+ |Dood| = 10, 582 and vary |Dood|. (c) We use

|Din| = 2, 000 and |Dood| = 100. The box plots show the quantiles over five repeated

experiments.

OoD samples in each cluster are presented in the Appendix.

Effectiveness of Each Loss function: We conduct ablation studies for each loss in

Eq. 4.4. Both Lcls and Ld consist of terms for in-distribution Din and out-of-distribution

Dood data. The effectiveness of each loss term as well as the dataset type is presented

in Table 4.5. (a) is the result of using only Lcls for Din, which is our baseline. The

performance boost for (a)→(b) and (c)→(e) indicates that training the classifier to pre-

dict OoD images as background (Lcls on Dood) is effective, though with only marginal

improvements. The improvement along (b)→(d)→(f) signifies the importance of Ld, in

particular when used on the hard OoD data Dood. We also find that Ld for Din is useful

for stabilizing the performance: in (e)→(f), the standard deviation decreases from 0.82

to 0.33.

Analysis of Results by Class Different object classes exhibit different amounts of

spurious correlation with background. For example, “train” objects are often confused

with the rail background due to their high co-occurrence with rails. Objects like “tv-

monitor”, on the other hand, suffer less from this issue because of the variety of the

co-occuring concepts: a TV can be freely put next to a wall, furniture, window, or any
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Table 4.5: Loss ablations. Effectiveness of each loss on the initial seed in mIoU(%) on

Pascal VOC train set.

Loss Data (a) (b) (c) (d) (e) (f)

Lcls
Din ✓ ✓ ✓ ✓ ✓ ✓

Dood ✓ ✓ ✓ ✓

Ld
Din ✓ ✓ ✓

Dood ✓ ✓ ✓

mIoU 49.5 50.0 52.5 50.2 52.3 53.3

Figure 4.6: Per-class seed qualities. We compare the baseline IRN [2] (denoted as

“CAM” above) and the W-OoD augmented version for each class. Evaluated on Pascal

VOC 2012 train set. Classes are sorted in the descending order of ∆improvement (%p).

other indoor objects. We show the class-wise performances for the baseline IRN [2]

and ours in Fig. 4.6. First of all, we note that our method improves the class-wise

performances rather proportionately: 18 out of 21 classes have seen a performance

improvement. Classes that have benefited most from our method are train, airplane, boat,

bird, and horse. They are ones that are well-known for spurious background correlations:

train-rail, airplane-sky/runway, boat-water, bird-tree/sky, and horse-meadow.

On the other hand, a particularly large drop in mIoU is seen for the “dining table”

class. We conjecture the spurious background correlation has actually been helping out

the localization of the “dining table” objects. Many pixel-wise ground-truth evaluation

mask for “dining table” objects erroneously include the objects put on it, such as
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Train
Train-OoD
Bird
Bird-OoD

Epoch 0
Epoch 0

Epoch 1 Epoch 2 Epoch 3 Epoch 4

Figure 4.7: Visualization of intermediate features. We visualize the intermediate

features for “train” and “bird” classes, as well as the features for respective OoD

samples, at different training stages. We use the T-SNE [141] dimensionality reduction

technique.

plates, cutlery, and foods. By labeling OoD images, which contain those co-occurring

objects not put on a dining table, as “no dining table”, the model may correctly assign

lower “dining table” scores on those objects, ironically harming the final performance

measured on noisy masks. See Appendix for the examples. We believe there will be an

additional performance gain if those wrong ground-truth masks are fixed.

Manifold Visualization To observe the training dynamics of our method, we

visualize the feature manifold at different stages of the W-OoD training. We collect

two sets of images with respective labels “train” and “bird” from Din and two sets

of images which are respectively falsely predicted as “train” and “bird” by Fin from

Dood. Using the classifier at epoch e ∈ {0, · · · 5}1, we compute the features zin and zout

from images drawn from Din and Dood, respectively. We use t-SNE [141] to reduce

the dimensionality of each feature to 2 dimensions. Fig. 4.7 visualizes the features zin

and zout after dimensional reduction using t-SNE. It is observed that, at the beginning

of the epoch, zin and zout of each class are rarely distinguishable, indicating that the

classifier encodes similar information for in-distribution and OoD images. However, as

W-OoD training progresses, the two features gradually become distinct. This analysis

supports the argument that our method allows the classifier to avoid modeling common

information between in-distribution and OoD images, as intended.
1The classifier at e = 0 is the one trained using in-distribution images.
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OoD Collection Method mIoU

No OoDs 49.5

Random OoDs 51.9

Random Hard OoDs 51.1

Random Hard OoDs + Erasure 51.4

Manual Filtering 53.3

Table 4.6: Comparison of alternative OoD collecting methods.

4.5 Analysis of OoD Collection Process

Manual filtering introduced in Section 4.3.1 is essential in the OoD collection process to

filter out the samples that are not actually OoDs, which is caused by the label noise issue

in OpenImages [156] dataset. Manual filtering is efficient because it requires just yes/no

answer whether the given candidate OoD image contains one of the foreground classes

or not, but it still requires additional human labour. Therefore, we test some alternative

approaches to construct the OoD dataset and report their results in Table 4.6. For a

fair comparison, we fix the total number of images in the dataset for all approaches.

First, we try to use random OoDs, which are directly obtained from the candidate OoDs.

It produces 2.4%p mIoU gain over the baseline, but cannot reach the performance of

manual filtering. We then use the random hard OoDs, which are the samples confused

by a classifier to be containing the foreground object. This set contains more label noise

than random OoDs, because these samples are likely to contain missing positives, i.e.,

in-distribution images. Therefore, it produces inferior result compared to the random

OoDs. To remove the foreground information in hard OoDs, we finally try to remove

class-relevant regions in random hard OoDs to guarantee that the collected OoDs do

not contain foreground information. We compute the CAM for hard OoDs and remove

the corresponding regions similar to the erasure methods [86, 90]. Examples of OoDs

for each alternative method are shown in Figure 4.8.
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Figure 4.8: Examples of (a) Random OoDs, (b) Random Hard OoDs, and (c) Random

Erased Hard OoDs.

The erasure approach produces better performance than random hard OoDs, because

has higher precision by removing class-relevant regions, but lower performance than

random OoDs. We present three possible explanations for this phenomenon. First, if

the class-relevant regions are erased in hard OoD, meaningful information that can

distinguish foreground and background is deleted, so it is no longer hard ood. Second,

it is not trivial to determine the threshold of CAM. Third, forcibly erasing regions of

the image makes metric learning trivial because the distribution of the image changes.

4.6 Integrating Proposed Methods

We have proposed three methods based on class labels in Sections 3 and 4: W-OoD [171],

AdvCAM [112], and RIB [49]. We now analyze whether these methods can have a

complementary relationship with each other. Table 4.7 presents the experimental results

obtained by combining these methods. We can see that W-OoD can be successfully
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Method mIoU

Baseline 49.5

+W-OoD (§4) 53.3

+W-OoD (§4) + AdvCAM (§3.3) 59.1

+W-OoD (§4) + RIB (§3.4) 56.8

+W-OoD (§4) + AdvCAM (§3.3) + RIB (§3.4) 60.7

Table 4.7: Performance obtained by successively integrating the proposed method.

integrated with either AdvCAM or RIB, producing significant improvements (AdvCAM

brings 5.8%p gain and RIB brings 3.5%p gain). However, we observe that integrating

all the methods brings just 1.6%p over W-OoD + AdvCAM. Since AdvCAM and RIB

share a similar goal of increasing the value of class logit, the performance gain from

using them together is less than that of adding them individually. However, they can

still work in tandem, resulting in a 1.6% mIoU gain.

4.7 Summary

We have proposed the use of a new source of information, the OoD data, for suppressing

the spurious correlations learned by weakly supervised semantic segmentation (WSSS)

methods. We have showcased the data collection pipeline whereby the suitable hard

OoD images are obtained. By including those images as negative samples in addition to

the original in-distribution foreground samples, we have been able to train a classifier

with more accurate localization maps. Our method achieves a performance superior to

existing WSSS methods based on image-level labels. In addition, we have empirically

shown that the image-level labeling cost itself can be further reduced by using the

hard OoD images, without sacrificing the WSSS performances. We have focused on

using OoD images for training classifiers to produce accurate pseudo ground-truth

masks; interesting future work will include exploiting the OoD images in training a
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segmentation network itself.
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Chapter 5

Learning with Bounding Box Labels

5.1 Introduction

Object segmentation is one of the most important steps in image recognition. Advances

in deep learning have greatly improved the performance of semantic and instance

segmentation [20, 18] through the use of huge amounts of pixel-level annotated training

data. However, annotating with pixel-level masks requires a lot of effort. According to

Bearman et al. [21], constructing a pixel-level mask for an image containing an average

of 2.8 objects takes about 4 minutes. This is why weakly supervised methods have been

proposed, in which segmentation networks are trained using annotations that are less

detailed than pixel-level masks, such as bounding boxes [25, 24, 98], or image-level

tags [27, 2, 29].

The most easily obtainable annotation is the class label. Labeling an image with

class labels takes around 20 seconds [21], but it only indicates that objects of certain

classes are depicted and gives no information about their locations in the image. More-

over, class labels provide no help in separating different objects of the same class, which

is the goal of instance segmentation.

Bounding boxes provide information about individual objects and their locations.

Bounding box annotation takes about 38.1 seconds per image [55], which is much more
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attractive than constructing pixel-level masks. Many researchers have tackled semantic

segmentation [98, 24, 25, 99] and instance segmentation [24, 100, 101, 102, 103] using

bounding box annotations as a search space in which a class-agnostic object mask

can be found by an off-the-shelf object mask generator. These are mostly based on

GrabCut [56] or multiscale combinatorial grouping (MCG) [57]. Those mask generators

operate on the low-level information of images, such as the color or brightness of pixels,

and this limits the quality of the resulting mask. Thus, applying these mask generators to

bounding box annotations requires additional steps such as estimating what proportion

of the pixels in a bounding-box belong to the corresponding object [25, 99], iterative

refinement of an estimated mask [98], and auxiliary attention modules [99].

We propose a pixel-level method of localizing a target object inside its bounding

box using a trained object detector. We make use of attribution maps obtained from the

trained object detector, which highlight the image regions that the detector focuses on

in conducting object detection. Inspired by the perturbation methods used to explain

the output of image classifiers [172, 173, 174], we introduce a bounding box attribution

map (BBAM) which provides an indication of the smallest areas of an image that are

sufficient to make an object detector produce almost the same result as that from the

original image. The BBAM identifies the area occupied by the object in each bounding

box predicted by the trained object detector. Since this localization takes place at the

pixel level, it can be used as a pseudo ground truth for weakly supervised learning of

semantic and instance segmentation.

The main contributions of this chapter can be summarized as follows.

• We propose a bounding box attribution map (BBAM), which can draw on the

rich semantics learned by an object detector to produce pseudo ground-truth for

training semantic and instance segmentation networks.

• Our technique significantly outperforms previous state-of-the-art methods of

weakly supervised semantic and instance segmentation, assessed on the PASCAL

VOC 2012 and MS COCO 2017 benchmarks.
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• We analyze our method from various viewpoints, providing deeper insights into

the properties of the BBAM.

5.2 Related Work

Fully supervised semantic and instance segmentation based on pixel-level annotations

is highly reliable, but the manual annotation process is laborious. This requirement

is overcome by weakly supervised methods based on inexact, but easily obtainable,

annotations such as scribbles [23], bounding boxes [25, 24], or class labels [27, 2, 94]. In

this section, we briefly review some recently introduced weakly supervised approaches

that use class labels or bounding boxes. In addition, we describe some visual saliency

methods related to our method.

Learning with Class Labels A class activation map (CAM) [36] is a widely adopted

technique to obtain a localization map from class labels. However, a CAM only identifies

the most discriminative regions of objects [27, 33], and hence the majority of existing

methods that use class labels [33, 27, 47, 91, 29, 90, 59, 28, 175, 118, 34] are primarily

concerned with expanding the area of the target object activated by a CAM. For instance,

erasure methods [90, 86] iteratively find new regions of the target object by removing

discriminative regions in an image. Other methods [118, 94] consider the information

shared between several images by capturing cross-image semantic similarities and

differences. Seed growing and refinement techniques [29, 2, 91] are typically used

to expand the regions representing the target object imperfectly that are in the initial

CAM, on the basis of relationships between pixels. Other methods construct CAMs that

embody the multi-scale semantic context in an image [27, 59, 108]. Despite these efforts,

the information available from class labels remains limited, so auxiliary information

acquired from web images [35] or videos [34, 33] can be used together.
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Learning with Bounding Boxes Class labels have led to significant achievements

in semantic segmentation, but they are inherently unhelpful in instance segmentation,

which requires the separation of different objects of the same class. In contrast, bounding

boxes do provide information about the location of individual objects in an image, and

they are still much cheaper than constructing pixel-level masks [55]. Most existing

methods utilized a bounding box as a search space to conduct low-level searches for

object masks. They create a pseudo mask within a box using off-the-shelf methods

of mask proposal such as MCG [57] or GrabCut [56]. These processes can be guided

by specifying the proportion of the pixels in a bounding box that are likely to belong

to the object [25, 99]. Iterative mask refinement techniques [98] can also be applied.

However, these methods are largely based on low-level information in the image, and

they ignore the semantics associated with the bounding boxes. A rare exception is the

multiple-instance learning formulation with a bounding box tightness prior [102]: a

crossing line within a box must contain at least one pixel of the target object. The

drawback with this approach is that only a small number of pixels are contributing to

the localization of the object.

Visual Saliency Methods Various methods have been proposed to visually explain

the predictions of deep neural networks (DNNs) [172, 173, 176, 177, 36] in a form

of a saliency map. However, most studies have been concerned with classifiers, and

only a few have looked at DNNs performing other tasks [178, 179]. In particular,

there have been no attempts to explain the predictions of object detectors, except

Wu et al. [180], who embedded interpretability inside the DNN, in this case Faster

R-CNN [15]. However, the explanation produced by their modified DNN is not immedi-

ately understandable because it is given as a form of tree, and thus it is not appropriate

to generate pseudo ground truth for weakly supervised segmentation. Gradient-based

methods, such as SimpleGrad [181], SmoothGrad [182], and Grad-CAM [37], can

provide visual saliency maps of the results from classifiers, but these methods are
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Figure 5.1: The size of the perturbation unit needs to be adjusted to the object size. (a)

RoIAlign [20] produces perturbation units of different sizes. (b) Examples of resulting

BBAMs with small fixed values of s, large fixed values of s, and values of s determined

adaptively. Fixed values of s, whether large or small, tend to generate unwanted artifacts.

not easily extended to object detectors, because of the structural difference between

classifiers and object detectors. Nevertheless, gradient-based methods have a significant

bearing on our approach, and we look at them in more detail in Section 5.5.

5.3 Methods

5.3.1 Revisiting Object Detectors

Modern object detectors can be fallen into two categories: one-stage [183, 65, 64]

and two-stage [15, 63] approaches. We focus on two-stage object detectors such as

Faster R-CNN [15], in which the two stages are region proposal and box refinement.

A region proposal network (RPN) generates candidate object proposals in the form of

bounding boxes; but these proposals are class-agnostic and noisy, and most of them are

redundant, thereby necessitating a subsequent refinement step, in which classification

and bounding box regression are performed on each proposal. Since the proposal boxes

proposed by the RPN are of different sizes, RoI pooling (e.g., RoIAlign [20]) is used

to convert the feature map corresponding to each proposal to a predefined fixed size,

as shown in Figure 5.1(a). The pooled feature map is then passed to the classification

head and also to the bounding box regression head.
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Classification head. It computes the class probability pc of class c for each proposal

and assigns the most likely class c∗ = argmaxc p
c to the proposal.

Bounding box regression head. It adjusts the noisy proposal to fit the object by

computing the offsets tc = (tcx, t
c
y, t

c
w, t

c
h) for each class c ∈ {1, 2, · · · , C}. The final

localization is obtained by shifting each coordinate of the proposal using the offset tc
∗
.

We refer to Ren et al. [15] for the details of the parameterization of each coordinate.

For simplicity, we will abbreviate classification head and bounding box regression

head as cls head and box head, respectively.

5.3.2 Bounding Box Attribution Map

Suppose we are given an image I and the corresponding bounding box annotations.

We also have a set of object proposals O = {ok}Kk=1, either given or obtained by

RPN, where K is the number of proposals. For each proposal ok, the box head fbox

and the cls head f cls produce box offsets tk = fbox(I, ok) and the class probability

pk = f cls(I, ok), respectively. We omit the proposal indices k for brevity.

The bounding box attribution map (BBAM) identifies the important region in the

image that the detector needs to perform object detection. We find the smallest mask

M : Ω → [0, 1] where Ω is a set of pixels, which captures a subset of the image that

produces almost the same prediction as the original image. A small M reduces the

amount of unnecessary information reaching the detector. The mask specifies a subset

of the image in terms of the perturbation function Φ(I,M) = I ◦M+µ ◦ (1−M),

where ◦ denotes pixel-wise multiplication, and µ is the per-channel mean of the training

data with the same size as M. For each proposal o, the best mask M∗ is obtained by

optimizing the following function using gradient descent with respect to M:

M∗ = argmin
M∈[0,1]Ω

λ ∥M∥1 + Lperturb, (5.1)

Lperturb = 1box
∥∥tc − fbox(Φ(I,M), o)

∥∥
1

+ 1cls
∥∥pc − f cls(Φ(I,M), o)

∥∥
1
,

(5.2)
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where 1box and 1cls are logical variables that have a value of 0 or 1, to control which

head is used to produce localizations, and tc = fbox(I, o) and pc = f cls(I, o) are the

predictions for the original image.

Previous studies show that using a mask of the same spatial size as the input image

incurs undesirable artifacts due to the adversarial effect [38]: even a perturbation in a

tiny magnitude can significantly change the prediction of a DNN. This problem can

be addressed by introducing a coarse mask downsampled by a stride s [172, 173, 174,

178], so multiple image pixels are perturbed by a single element of M. We can then

optimize M ∈ R⌈w/s⌉×⌈h/s⌉ for the image I ∈ Rw×h, using the perturbation function

Φ(I,M) = I ◦ M̂+ µ ◦ (1− M̂), where M̂ ∈ Rw×h is upsampled M to a width of

w pixels and a height of h pixels.

Existing methods of explaining the output of classifiers [172, 173, 174] or semantic

segmentation networks [178] use a fixed value of s for all images, i.e., they fix the size

of a perturbation unit1. However, in the case of object detectors, a perturbation unit

of fixed size can result in perturbations of different sizes to the RoI-pooled features,

depending on the size of the proposals, as shown in Figure 5.1(a). Figure 5.1(b) shows

how the size of a perturbation unit, after RoI pooling, can fail to match the sizes of

target objects: the perturbations are too coarse for small objects and too fine for large

objects. Therefore, we use an adaptive stride s(a) where a is the ratio of the area of the

bounding box predicted by the object detector to that of the image, so that we use a

small stride for a small object and a large stride for a large object.

5.3.3 Training the Segmentation Network

Generating Pseudo Ground Truth Since the BBAM is a pixel-level localization

of the target object in a bounding box predicted by the object detector, it can be used

as pseudo ground-truth for weakly supervised semantic and instance segmentation,

using the following procedure: We first train an object detector, then create pseudo
1The perturbation unit is a block of image pixels perturbed by a single element of M.
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ground-truth semantic and instance masks for training images, using the BBAM of

the trained object detector. These pseudo ground-truth masks can then be used to train

semantic and instance segmentation networks. We will now explain this procedure in

more detail.

Creating masks. Multiple proposals on a single object yield multiple predictions

from the object detector. In order to benefit from the diversity of these predictions,

we build the pseudo ground-truth from the BBAMs of multiple proposals. For each

ground-truth box, we generate a set of object proposals O by randomly jittering each

coordinate of the box by up to ±30%. These proposals are sent to the f cls and the fbox.

If the f cls correctly predicts the ground-truth class, and the intersection over union (IoU)

value associated with the predicted box by fbox is greater than 0.8, then the proposal

is added to a set of positive proposals O+ ⊂ O. We then use a modified version of

Lperturb in Eq. 5.1 to amalgamate all the positive proposals into a single localization

map, as follows:

Lperturb = Eo∈O+ [1box
∥∥tc − fbox(Φ(I,M), o)

∥∥
1

+ 1cls
∥∥pc − f cls(Φ(I,M), o)

∥∥
1
].

(5.3)

In this equation both 1box and 1cls are set to 1, since the BBAMs of fbox and f cls provide

complementary localization results (see Section 5.5 for details). A BBAM obtained in

this way may partially cover the target object because not all pixels of the object are

considered by fbox and f cls. Therefore we refine the BBAM using CRFs [75], following

previous work [25, 29, 24]. Finally, we create pseudo instance-level ground-truth masks

by considering the pixels in each BBAM with values greater than a threshold θ to be

foreground. We denote such a mask as T .

The threshold θ controls the size of T . However, the proportion of pixels in each

BBAM which correspond to the foreground will vary, so it may not be appropriate to use

a fixed θ. Therefore we introduce two thresholds θfg and θbg: pixels whose attribution

values are higher than θfg are considered to be part of the foreground, and pixels whose

values are lower than θbg are considered to be part of the background. The remaining
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pixels are ignored in the loss computations during training segmentation networks.

Refine with MCG proposals. MCG [57] is an unsupervised mask proposal genera-

tor, which is commonly used in weakly supervised instance segmentation [184, 185,

103, 95, 24]. We can use mask proposals generated by MCG to refine a mask T . We

first select the mask proposal that has the highest IoU with T . However, that proposal

may partially cover the target object. We therefore consider other proposals that are

completely contained within T . More formally, given a set of MCG proposals {mi}Ki=1,

the refined mask Tr is derived as follows:

Tr =
⋃
i∈S

mi, where

S = {i |mi ⊂ T } ∪ {argmax
i

IoU(mi, T )}.
(5.4)

We now explain the procedure that we use for training the semantic and instance

segmentation network.

Instance segmentation. We use Mask R-CNN [20], pre-trained on ImageNet [3].

We use a seed growing technique [91, 29, 27, 33] for pseudo-labeling the pixels ignored

during training: Starting with the pixels identified by the initial pseudo ground-truth

mask, more of the ignored pixels progressively participate in the loss computation as

training proceeds. We refer to Huang et al. [91] for more details.

Semantic segmentation. We use DeepLab-v2 [18], pre-trained on the ImageNet [3]

dataset. The pseudo labels produced in the previous section can easily be made suitable

for semantic segmentation by converting them from instance-level to class-level. Pixels

assigned to two or more object classes are ignored during the loss computation.

5.4 Experiments

5.4.1 Experimental Setup

Dataset and evaluation metrics. We conducted experiments on the PASCAL VOC [32]

and the MS COCO datasets [79]. The PASCAL VOC dataset contains 20 object classes

93



and one background class. Following the same protocol as other recent work on weakly

supervised semantic and instance segmentation [2, 103, 102, 25], we used an augmented

set of 10,582 training images produced by Hariharan et al. [133]. The MS COCO dataset

has 118K training images containing 80 object classes. We report mIoU values for

semantic segmentation. For instance segmentation, we report average precision (APτ )

at IoU thresholds τ ; averaged AP over IoU thresholds from 0.5 to 0.95; and the average

best overlap (ABO).

Reproducibility. We used the PyTorch [116] implementation [186] of Faster R-

CNN [15] and Mask R-CNN [20]. For semantic segmentation, we used the PyTorch

implementation of DeepLab-v2-ResNet101 [150]. We set s(a) to 16 + 48
√
a and λ to

0.007. We set θfg and θbg to 0.8 and 0.2 respectively. To find M∗ in Eq. 5.1, we used

Adam optimizer [187] with a learning rate of 0.02 for 300 iterations. The experiments

were performed on NVIDIA Tesla V100 GPUs. For MCG mask proposals, we used

the pre-computed proposals for PASCAL VOC and MS COCO images provided by

Pont-Tuset et al. [57].

5.4.2 Weakly Supervised Instance Segmentation

Results on PASCAL VOC. Table 5.1 compares the performance of weakly supervised

instance segmentation by using image-level tags or bounding boxes. Our method

significantly outperforms those methods. Specifically, the AP50 and AP70 values of

our method are both 6.0% higher than those of the previous best performing method

which also uses bounding box annotation [103]. We include results from two fully

supervised methods: MNC [188] and Mask R-CNN [20]. The performance of Mask R-

CNN [20], which is fully supervised, can be viewed as an upper bound on the achievable

performance of our method. We achieve 92.2% and 95.7% of the performance of fully

supervised Mask R-CNN, in terms of AP50 and ABO respectively. Figure 5.2 presents

examples of instance masks produced by our method.

Results on MS COCO 2017. This is a challenging dataset containing more objects
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Table 5.1: Weakly supervised instance segmentation performance on PASCAL VOC

2012 val images.

Method AP25 AP50 AP70 AP75 ABO

Full supervision: Instance masks

MNC CVPR ’16 [188] - 63.5 41.5 - -

Mask R-CNN ICCV ’17 [20] 77.3 69.1 49.9 41.9 65.8

Weak supervision: Image-level tags

PRM CVPR ’18 [184] 44.3 26.8 - 9.0 37.6

IRNet CVPR ’19 [2] - 46.7 23.5 - -

LIID TPAMI ’20 [95] - 48.4 - 24.9 50.8

Arun et al. ECCV ’20 [103] 59.1 49.7 29.2 27.1 -

Weak supervision: Bounding boxes

SDI CVPR ’17 [24] - 44.8 - 16.3 49.1

Liao et al. ICASSP ’19 [100] - 51.3 - 22.4 51.9

Sun et al. Access ’20 [101] - 56.9 - 21.4 56.9

Hsu et al. NeurIPS ’19 [102] 75.0 58.9 30.4 21.6 -

Arun et al. ECCV ’20 [103] 73.1 57.7 33.5 31.2 -

BBAM (Ours) 76.8 63.7 39.5 31.8 63.0

in an image on average than PASCAL VOC. The sizes of instances of objects are also

more diverse. Table 5.2 compares the performance of our method with that of other

weakly supervised instance segmentation methods with various levels of supervision on

MS COCO. Our method achieves a 6.7% higher value of AP75 than the previous best

performing method which uses bounding box annotations. Since the labels for test-dev

images are not publicly available, the results for the test-dev images were obtained from

the MS COCO challenge website.
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Table 5.2: Comparison of instance segmentation methods with various types of supervi-

sion on MS COCO.

Method sup. AP AP50 AP75

MS COCO val images

Mask R-CNN ICCV ’17 [20] F 35.4 57.3 37.5

Shen et al. CVPR ’19 [189] I 6.1 11.7 5.5

Laradji et al. arXiv ’19 [190] I,P 7.8 18.2 8.8

Hsu et al. NeurIPS ’19 [102] B 21.1 45.5 17.2

BBAM (Ours) B 26.0 50.0 23.9

MS COCO test-dev images

Mask R-CNN ICCV ’17 [20] F 35.7 58.0 37.8

Fan et al. ECCV ’18 [191] I,SI 13.7 25.5 13.5

LIID TPAMI ’20 [95] I 16.0 27.1 16.5

BBAM (Ours) B 25.7 50.0 23.3

F−Full, I−Image label, P−Point, B−Box, SI−Instance saliency

5.4.3 Weakly Supervised Semantic Segmentation

Table 5.3 compares published mIoU values achieved by recent methods performing

semantic segmentation on validation and test images from the PASCAL VOC 2012

dataset. Since the labels for test images are not publicly available, the results for the

test images were obtained from the official PASCAL VOC evaluation server. Our

method, using the BBAM, yields an mIoU value of 73.7 for both the validation and

the test images in the PASCAL VOC 2012 semantic segmentation benchmark. Our

method outperforms all the methods that use image-level tags or bounding boxes for

supervision. This new state-of-the-art performance was achieved with vanilla DeepLab-

v2 [18] without any modifications to networks or additional training techniques, such

as label refinement during training [98], recursive training [24], or fine-tuning with
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Table 5.3: Weakly supervised semantic segmentation on PASCAL VOC 2012 val and

test images.

Method val test

Full supervision: Semantic masks

DeepLab TPAMI ’17 [18] 76.8 76.2

Weak supervision: Image-level tags

FickleNet CVPR ’19 [27] 64.9 65.3

CIAN AAAI ’20 [118] 64.3 65.3

Chang et al. CVPR ’20 [30] 66.1 65.9

Sun et al. ECCV ’20 [94] 66.2 66.9

Weak Supervision: Bounding boxes

WSSL ICCV ’15 [192] 60.6 62.2

BoxSup ICCV ’15 [98] 62.0 64.6

SDI CVPR ’17 [24] 69.4 -

Song et al. CVPR ’19 [25] 70.2 -

BBAM (Ours) 73.7 73.7

additional losses [25]. Figure 5.3 presents examples of semantic masks produced by

our method.

The concurrent method, Box2Seg [99], achieved an mIoU of 76.4% on the PAS-

CAL VOC validation images, but it is based on UperNet [193], which is a more

powerful segmentation network than DeepLab-v2 [150]. For a fair comparison between

Box2Seg [99] and our BBAM, we attempt to relieve the benefit of UperNet [193] over

DeepLab-v2 [18] by comparing the relative performance of the weakly supervised

model to the fully supervised model. Box2Seg achieves 88.4% of the performance of

its fully supervised equivalent (76.4 vs. 86.4); but the corresponding figure for BBAM

and its fully supervised equivalent is 96.7% (73.7 vs. 76.2).
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Figure 5.2: Examples of predicted instance masks for PASCAL VOC val images of

IRNet [2], Hsu et al. [102], and ours.

Image Ground Truth DSRG Shen et al. BBAM (Ours)Lee et al.FickleNet

Figure 5.3: Examples of predicted semantic masks for PASCAL VOC val images of

DSRG [91], Shen et al. [35], FickleNet [27], Lee et al. [33], and our method.

5.4.4 Ablation Study

MCG proposals. Table 5.4 shows how mask refinement with MCG proposals improves

the instance segmentation performance of our method on the PASCAL VOC and MS

COCO datasets. Mask refinement with MCG proposals is particularly effective on

masks for medium and large objects. The results obtained without MCG proposals offer

the possibility of a fairer comparison with Hsu et al. [102], which do not use MCG

proposals. Our method produces better results than that of Hsu et al. [102] for both

the PASCAL VOC and MS COCO datasets, which are shown in Tables 5.1 and 5.2

respectively. Hereinafter, to observe the contribution of each component of our system,
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Table 5.4: Effectiveness of using MCG proposals for instance segmentation. APS , APM ,

and APL respectively denote the AP values for small, medium, and large objects.

MCG AP AP50 AP75 APS APM APL

PASCAL VOC val images:

✗ 29.6 61.9 25.8 5.6 21.6 40.1

✓ 33.4 63.7 31.8 6.5 26.4 44.1

MS COCO val images:

✗ 23.5 47.9 20.3 10.4 24.9 36.5

✓ 26.0 50.0 23.9 10.8 28.5 40.3

we report results without using MCG proposals.

Box and cls heads. BBAM can provide a separate attribution map for each head of

the object detector by controlling the logical variables 1box and 1cls in Eq. 5.3. Figure 5.4

shows the effect of the BBAM obtained from each head on the performance of weakly

supervised semantic and instance segmentation. Using the BBAM obtained from either

the box head (1box = 1 and 1cls = 0) or the cls head (1box = 0 and 1cls = 1) shows

competent performance, but the best performance is achieved when the two heads are

used together. We attribute this to the complementary property of the two heads, which

is examined in more detail in Section 5.5.

Parameter sensitivity analysis. Table 5.5 shows the effect of the thresholds θfg and

θbg, and the seed growing technique G. When θfg equals to θbg, all pixels are assigned

to either the foreground or the background. We see that ignoring some pixels can

improve the AP values, and the seed growing technique further improves performance.

We then studied the effect of λ, which controls the sparsity of the BBAM, on the

performance of weakly supervised semantic and instance segmentation, with the results

shown in Table 5.6. Our method shows similar performance on semantic and instance

segmentation over a broad range of values of λ.
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Figure 5.4: Effect of each head on instance and semantic segmentation.

5.5 Detailed Analysis of the BBAM

Examples of BBAMs. Figure 5.5 shows BBAMs for validation images from PASCAL

VOC [32] and MS COCO [79]. The BBAMs have high values on the boundary and

discriminative parts of each object, which are informative in conducting object detection.

Complementary operation of the box and cls heads. To determine which regions

of an object are important to each head, we investigated the distribution of high-value

pixels in the BBAM produced by each head. In Figure 5.6(a), C is the set of points on

the contour of the object mask, and x⃗c is its centroid. For each pixel x⃗, we determine

r1 = ∥x⃗− x⃗c∥2 and r2 = minc⃗∈C ∥x⃗− c⃗∥2. Letting the angle between x⃗− x⃗c and the

x-axis be θ, the position of the pixel x⃗ relative to x⃗c is R⃗ = ( r1
r1+r2

cos θ, r1
r1+r2

sin θ).

In Figure 5.6(b), we plot the relative positions of all the pixels with attribution values

above 0.9 obtained from validation images of the PASCAL VOC dataset. Pixels for

which ∥R⃗∥2 ≈ 1 are near the boundary of the object. We observed that high values

attributed by the box head mainly occur near the boundary of the object, and those by

the cls head mainly occur in the interior.

Furthermore, we observed how much the prediction of each head changes when

either of 1box and 1cls is set to 1 during the optimization of Eq. 5.1. The extent of
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θfg θbg G AP AP50 AP75

0.2 0.2 ✗ 24.8 58.3 18.1

0.5 0.5 ✗ 28.3 59.5 24.7

0.8 0.8 ✗ 27.8 59.0 23.3

0.3 0.7 ✗ 28.1 59.5 24.0

0.3 0.7 ✓ 28.4 59.6 24.6

0.2 0.8 ✗ 28.6 60.4 24.0

0.2 0.8 ✓ 29.6 61.9 25.8

Table 5.5: Analysis of thresholds θfg

and θbg, and effect of the growing tech-

nique G.

Ins. Sem.

λ AP AP50 AP75 mIoU

0.001 26.6 58.7 21.1 67.9

0.003 28.1 59.9 22.8 69.7

0.005 28.7 60.2 24.3 70.8

0.007 29.6 61.9 25.8 71.4

0.010 28.7 60.4 24.4 70.7

0.020 28.3 59.6 23.7 70.3

Table 5.6: Effect of λ on instance

(Ins.) and semantic (Sem.) segmen-

tation.

the change in prediction of each head can be inferred from the corresponding loss in

Eq. 5.2. Figure 5.6(c) shows that applying the optimization of Eq. 5.1 to one of the

heads increases the loss of the other head, implying that the discriminative area of

the image necessary for each head is not sufficient for the other head to maintain the

prediction. These two observations suggest that the BBAM of each head provides com-

plementary attributions. Examples of BBAMs obtained from each head are presented in

the Appendix.

Label noise in object detection. We also looked at the robustness of our system

against noisy box coordinate labels in instance segmentation. Hsu et al. [102] considered

the effect of up to ±15% of label noise: we extend this to ±20%. The validity of the

bounding box tightness priors used by Hsu et al. [102] is seriously compromised by

inaccurate box coordinates, with a considerable effect on performance, as shown in

Figure 5.7(a). Our method shows better robustness than that of Hsu et al. [102], whether

the noise consists of expanded or contracted bounding box annotations.

Effectiveness of an adaptive stride s(a). As mentioned earlier, we use an adaptive
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(a)

(b)

Figure 5.5: Examples of the predicted boxes and corresponding BBAMs. (a) BBAMs

for MS COCO validation images. (b) BBAMs for PACSAL VOC validation images.

Each BBAM corresponds to the predicted box of the same color.

stride 16 ≤ s(a) ≤ 64 to cope with feature transformation due to RoI pooling. Fig-

ure 5.7(b) shows the IoU between the BBAM and ground truth mask on PASCAL VOC

validation images, along with the results using fixed strides of 24 and 48. Figure 5.7(b)

shows that a small fixed stride (s=24) is ineffective with large objects, as is a large

fixed stride (s=48) with small objects. By contrast, an adaptive stride s(a) can deal with

objects of various sizes.

Comparison with gradient-based methods. Gradient-based attribution methods,

such as SimpleGrad [181], SmoothGrad [182], and Grad-CAM [37] can also provide

attributions for the output of an object detector. However, since only the subset of

features associated with the imperfect proposal is delivered to the cls and box heads,

the gradients with respect to pixels, which exist outside the proposal yet essential for

prediction, can vanish (but not completely, due to the receptive field). We provide

102



Box head Cls head

(a) (c)(b)

: ( , )Relative 
position

= 1 = 0

= 0 = 1

Figure 5.6: Complementary operation of the box head and the cls head. (a) The

definition of relative position. (b) Relative positions of the highly activated pixels from

each head. (c) Box and class loss curves.
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Figure 5.7: (a) Robustness against noisy box coordinate labels. (b) Localization accu-

racy by different strides. (c) Localization accuracy by different attribution methods.

empirical results supporting this analysis on the PASCAL VOC validation images:

(1) Figure 5.8 shows examples in which SimpleGrad [181] is applied to three similar

predictions from different proposals. Pixels outside the proposal do indeed influence

the predictions, but SimpleGrad’s attributions mainly appear inside the proposal. (2)

We observed that the majority (87%) of pixels with attribution values above 0.9 appear

inside the imperfect proposal; the mean IoU between the set of positive proposals and

the corresponding predictions is low (i.e., 0.56). (3) Figure 5.7(c) shows that attribution

maps from gradient-based attribution methods correlate poorly with ground truth masks.
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Figure 5.8: Examples of SimpleGrad [181] for three similar predictions obtained from

different proposals.

5.6 Summary

We have introduced a bounding box attribution map (BBAM), which provides pixel-

level localization of each target object in its bounding box by finding the smallest

region that preserves the predictions of the object detector. Our formulation is built on

two-stage object detectors, but applying our method to one-stage object detectors is

straightforward as long as they have box and cls heads. Our experiments demonstrate

that the BBAM achieves a new state-of-the-art on the PASCAL VOC and MS COCO

benchmarks in weakly supervised semantic and instance segmentation. We have also

analyzed BBAMs from various viewpoints, and compared our technique with other

attribution methods, to provide a deeper understanding of our approach. We expect

BBAMs to be a staple of future work on weakly supervised semantic and instance

segmentation with bounding boxes, on a par with the CAM for class labels.
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Chapter 6

Conclusion

In this dissertation, we have proposed various types of weak supervision for learning

representative object recognition tasks, i.e., semantic segmentation and instance seg-

mentation. This chapter summarizes our contributions to label-efficient learning for

object recognition and discusses future directions.

6.1 Dissertation Summary

Label-efficient learning of object recognition is one of the key factors for the successful

utilization of deep neural networks into real-life applications. However, learning from

weak supervision is not trivial. In this dissertation, we have addressed learning semantic

and instance segmentation from various types of weak supervision. Figure 6.1 provides

wrap-up summary of the motivations of utilizing different types of weak supervision. In

Chapter 3, we have studied three methods for weakly supervised semantic segmentation

using only image-level class labels. FickleNet chooses features at random during both

training and inference, so that we obtain many different localization maps from a

single image, and then aggregate those maps into a single localization map. AdvCAM

manipulates images with a pixel-level perturbation, which is obtained from the gradient

computed from the output of the classifier with respect to the input image, resulting in
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Figure 6.1: Wrap-up summary of the motivations of utilizing different types of weak

supervision.

the increased classification score of the perturbed image. The attribution map of the

manipulated image covers more of the target object. In RIB, through the information

bottleneck principle, we first analyzed why the localization map obtained from a

classifier identifies only a small region of the target object. Our analysis highlighted that

the amount of information delivered from an input image to the output classification

is largely determined by the final layer of the DNN. We then developed a method to

reduce the information bottleneck through two simple modifications to the existing

training scheme: the removal of the final non-linear activation function in the DNN and

the introduction of a new pooling method.

The above methods significantly improved the performance of weakly supervised

semantic segmentation using image-level class labels, but the spurious correlation

problem cannot be addressed. The spurious correlation problem incurs confusion

between foreground and background cues, resulting in an inaccurate segmentation map.

Therefore, in Chapter 4, we have proposed the use of a new source of information,

the out-of-distribution (OoD) data, for suppressing the spurious correlations. We have
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collected OoD data and proposed the metric learning based technique, W-OoD, to

suppress the correlation between foreground and background.

Image-level class labels have led to significant achievements in semantic segmen-

tation, but they are inherently unhelpful in instance segmentation, which requires the

separation of different objects of the same class. In contrast, bounding boxes do provide

information about the location of individual objects in an image. Therefore, in Chap-

ter 5, we have studied the method of using bounding box labels for learning instance

segmentation. In this work, we utilize higher-level information from the behavior of a

trained object detector: Bounding Box Attribution Map (BBAM) is obtained by seeking

the smallest areas of the image from which the object detector produces almost the

same result as it does from the whole image.

6.2 Limitations and Future Direction

In this dissertation, we have focused only on a single type of weak supervision for each

method. However, the promising way of reducing the total annotation cost is to use

mixed types of supervision. In the real-world scenario, there may be several existing

datasets containing classes of our interest, but those datasets may have different levels

of supervision (e.g., one has only class labels, but the other one contains bounding

boxes). In order to maximize the performance of the trained segmentation model, we

should be able to utilize a mixture of these various types of weak supervision. However,

there are some stumbling blocks to utilizing mixed types of supervision.

To realize the training from the mixed types of weak supervision, we should design

a holistic approach that can consider all the types of supervision in the same manner.

Existing methods have assumed they have only a single form of weak supervision, and

have designed methods specific to the given weak supervision. Therefore, a holistic

method that can extract meaningful information from various types of weak supervision

is required.
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When designing the method of utilizing multiple datasets for training together, the

data distribution shift issue should also be considered. Because each dataset has its own

data distribution, training without considering the data distribution shift may have a

negative effect on performance. The domain adaptation researches [194] or domain

generalization researches [195] will be helpful for addressing the data distribution shift

problem.
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초록

딥러닝의 발전은 이미지 물체 인식 분야를 크게 발전시켰다. 하지만 이러한 발

전은 수많은 학습 이미지와 각 이미지에 사람이 직접 생성한 물체의 위치 정보에

대한 레이블 덕분에 가능한 것이였다. 이미지 물체 인식 분야를 실생활에서 활용

하기 위해서는 다양한 물체의 카테고리를 인식 할 수 있어야 하며, 이를 위해선 각

카테고리당수많은학습데이터가필요하다.하지만각이미지당물체의위치를각

픽셀마다 주석을 다는 것은 많은 비용이 들어간다. 이러한 정보를 얻을 때 필요한

비용은약한지도학습으로줄일수있다.약한지도학습이란,물체의명시적인위치

정보를 포함하는 레이블보다 더 값싸게 얻을 수는 있지만, 약한 위치 정보를 활용

하여 뉴럴네트워크를 학습하는 것이다. 본 학위논문에서는 물체의 카테고리 정보,

학습외분포데이터 (out-of-distribution)데이터,그리고물체의박스레이블을활용

하는약한지도학습방법론들을다룬다.

첫번째로,물체의카테고리정보를이용한약한지도학습을다룬다.대부분의

카테로기정보를활용하는방법들은학습된분류기로부터얻어진기여도맵 (attribu-

tion map)을활용하지만,이들은물체의일부만을찾아내는문제가있다.우리는이

문제에 대한 근본 원인을 이론적인 관점에서 의논하고, 이 문제를 해결할 수 있는

세가지의방법론을제안한다.하지만,물체의카테고리정보만활용하게되면이미

지의전경과배경이악의적인상관관계를가진다고잘알려져있다.우리는이러한

상관관계를학습외분포데이터를활용하여완화한다.마지막으로,물체의카테고

리정보에기반한방법론들은같은카테고리의다른물체를분리하지못하기때문에

인스턴스 분할 (instance segmentation) 에 적용되기는 힘들다. 따라서 물체의 박스

레이블을활용한약한지도학습방법론을제안한다.

133



제안된 방법론을 통해 레이블을 제작하는 시간을 획기적으로 줄일 수 있다는

것을 실험결과를 통해 확인했다. 어려운 데이터셋인 Pascal VOC 에 대해 우리는

91%의 데이터 비용을 감소하면서, 강한 레이블로 학습된 비교군의 89%의 성능을

달성하였다. 또한, 물체의 박스 정보를 활용해서는 83% 의 데이터 비용을 감소하

면서,강한레이블로학습된비교군의 96%의성능을달성하였다.본학위논문에서

제안된 방법론들이 딥러닝 기반의 물체 인식이 다양한 데이터와 다양한 환경에서

활용되는데에있어도움이되기를기대한다.

주요어: 딥러닝, 컴퓨터 비전, 머신 러닝, 약한지도학습, 객체 인식, 세그멘테이션,

의미론적객체분할

학번: 2017-29653
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