

저 시-비 리- 경 지 2.0 한민

는 아래 조건 르는 경 에 한하여 게

l 저 물 복제, 포, 전송, 전시, 공연 송할 수 습니다.

다 과 같 조건 라야 합니다:

l 하는, 저 물 나 포 경 , 저 물에 적 된 허락조건
 명확하게 나타내어야 합니다.

l 저 터 허가를 면 러한 조건들 적 되지 않습니다.

저 에 른 리는 내 에 하여 향 지 않습니다.

것 허락규약(Legal Code) 해하 쉽게 약한 것 니다.

Disclaimer

저 시. 하는 원저 를 시하여야 합니다.

비 리. 하는 저 물 리 목적 할 수 없습니다.

경 지. 하는 저 물 개 , 형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Last-level Cache Partitioning through
Memory Virtual Channels

메모리가상채널을통한라스트레벨캐시파티셔닝

BY

Chung Jongwook

FEBRUARY 2023

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Ph.D. DISSERTATION

Last-level Cache Partitioning through
Memory Virtual Channels

메모리가상채널을통한라스트레벨캐시파티셔닝

BY

Chung Jongwook

FEBRUARY 2023

DEPARTMENT OF ELECTRICAL AND
COMPUTER ENGINEERING

COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

Last-level Cache Partitioning through
Memory Virtual Channels

메모리가상채널을통한라스트레벨캐시파티셔닝

지도교수김장우

이논문을공학박사학위논문으로제출함

2023년 1월

서울대학교대학원

전기 ·정보공학부

정종욱

정종욱의공학박사학위논문을인준함

2023년 1월

위 원 장: 김재준 (인)
부위원장: 김장우 (인)
위 원: 심재웅 (인)
위 원: 이병영 (인)
위 원: 김한준 (인)

 i

Abstract

Last-level Cache Partitioning

through Memory Virtual Channels

Jongwook Chung

Department of Electrical and Computer Engineering

The Graduate School

Seoul National University

Ensuring fairness or providing isolation between multiple workloads

with distinct characteristics that are collocated on a single, shared-

memory system is a challenge. Recent multicore processors provide

last-level cache (LLC) hardware partitioning to provide hardware

support for isolation, with the cache partitioning often specified by

the user. While more LLC capacity often results in higher

performance, in this dissertation we identify that a workload

allocated more LLC capacity result in worse performance on real-

machine experiments, which we refer to as MiW (more is worse).

Through various controlled experiments, we identify that another

workload with less LLC capacity causes more frequent LLC misses.

The workload stresses the main memory system shared by both

workloads and degrades the performance of the former workload

even if LLC partitioning is used (a balloon effect).

To resolve this problem, we propose virtualizing the data path

of main memory controllers and dedicating the memory virtual

 ii

channels (mVCs) to each group of applications, grouped for LLC

partitioning. mVC can further fine-tune the performance of groups

by differentiating buffer sizes among mVCs. It can reduce the total

system cost by executing latency-critical and throughput-oriented

workloads together on shared machines, of which performance

criteria can be achieved only on dedicated machines if mVCs are not

supported. Experiments on a simulated chip multiprocessor show

that our proposals effectively eliminate the MiW phenomenon,

hence providing additional opportunities for workload consolidation

in a datacenter. Our case study demonstrates potential savings of

machine count by 21.8% with mVC, which would otherwise violate a

service level objective (SLO).

Keywords : Cache Partitioning, Main Memory, Memory Virtual

Channel, More is Worse, Fairness, QoS

Student Number : 2014-21730

 iii

Contents

Abstract .. i

Contents .. iii

List of Figures ... v

List of Tables ... vii

1. Introduction ... 1

1.1 Research Contributions ... 5

1.2 Outline ... 6

2. Background .. 7

2.1 Cache Hierarchy and Policies .. 7

2.2 Cache Partitioning ... 10

2.3 Benchmarks ... 15

2.3.1 Working Set Size .. 16

2.3.2 Top-down Analysis ... 17

2.3.3 Profiling Tools .. 19

3. More-is-Worse Phenonmenon 21

3.1 More LLC Leading to Performance Drop 21

3.2 Synthetic Workload Evaluation 27

3.3 Impact on Latency-critical Workloads 31

3.4 Workload Analysis .. 33

3.5 The Root Cause of the MiW Phenomenon 35

 iv

3.6 Limitations of Existing Solutions 41

3.6.1 Memory Bandwidth Throttling 41

3.6.2 Fairness-aware Memory Scheduling 44

4. Virtualizing Memory Channels 49

4.1 Memory Virtual Channel (mVC) 50

4.2 mVC Buffer Allocation Strategies 52

4.3 Evaluation .. 57

4.3.1 Experimental Setup .. 57

4.3.2 Reproducing Hardware Results 59

4.3.3 Mitigating MiW through mVC 60

4.3.4 Evaluation on Four Groups 64

4.3.5 Potentials for Operating Cost Savings with mVC . 66

5. Related Work ... 71

5.1 Component-wise QoS/Fairness for Shared Resources . 71

5.2 Holistic Approaches to QoS/Fairness 73

5.3 MiW on Recent Architectures .. 74

6. Conclusion .. 76

6.1 Discussion .. 78

6.2 Future Work .. 79

Bibliography ... 81

국문초록 .. 89

 v

List of Figures

Figure 2.1 Imapct of cache partitioning 11

Figure 2.2 Three strategies of cache partitioning 11

Figure 3.1 IPC and LLC MPKI for 473.astar and 403.gcc

executed respectively 23

Figure 3.2 IPC and LLC MPKI for 473.astar and 403.gcc

 executed together .. 24

Figure 3.3 Synthetic workload used for evaluation 28

Figure 3.4 IPC and LLC MPKI for synthetic workloads

 executed respectively 29

Figure 3.5 IPC and LLC MPKI for synthetic workloads

 executed together .. 30

Figure 3.6 95th percentile latency of masstree from

 TailBench executed with 403.gcc 32

Figure 3.7 Load-latency values of the tested system .. 36

Figure 3.8 Low priority workload group stressing main

memory system ... 37

Figure 3.9 Main memory bandwidth utilization of two

process groups .. 40

Figure 3.10 Impact of MBA on 403.gcc and 403.gcc 42

Figure 3.11 Programmable rate controller in L2 MSHR .. 43

Figure 3.12 Simulation results for TOKEN and CLOCK .. 46

Figure 3.12 Simulation results for ATLAS 48

 vi

Figure 4.1 Conventional cache-oblivious memory

request buffering ... 55

Figure 4.2 Four buffer allocation strategies for mVC 55

Figure 4.3 Reproducing hardware results in simulator .. 60

Figure 4.4 Simulation results of mVC with different

buffer allocation strategies 62

Figure 4.5 Simulation results of 4 workload groups 65

Figure 4.6 Possible design space of LLC ways and memory

 request buffer size for 403.gcc-403.gcc 67

Figure 4.7 Possible design space of LLC ways and memory

request buffer size for 473.astar-403.gcc ... 70

 vii

List of Tables

Table 3.1 Hardware setup .. 22

Table 3.2 MiW degree of SPEC benchmarks 26

Table 3.1 MiW degree of TailBench benchmarks 33

Table 4.1 Parameters used in the simulated system 58

 1

Chapter 1

Introduction

Modern chip multiprocessors (CMPs) consist of multiple cores

sharing various resources, including shared last level cache (LLC),

on-chip interconnect, and main memory [6], [32], [49]. CMPs are

currently the most popular design choice for servers used in cloud

environments, and such CMP-based servers consistently run

several heterogeneous applications to satisfy the needs of diverse

users. This trend is becoming more prevalent with the emergence

of virtual machines and containers for cloud services.

When applications run simultaneously, contention and

interference of shared resources in a system can cause

performance degradation for some or all the applications [9], [18],

[30], [39], [47], [48], [49]. As a result, there has been a

significant amount of prior work done to provide fairness and

 2

minimize interference from sharing the on-chip LLC capacity and

main memory bandwidth [13], [39], [47], [48], [49]. In particular,

when multiple applications compete for a limited capacity of shared

cache, high-priority applications that need quality-of-service

(QoS) guaranteed, or real-time applications can suffer from

performance degradation due to excessive cache occupancy from

other applications [6], [18], [32], [42]. To ensure the performance

guarantee for QoS or real-time applications, modern CMPs provide

cache partitioning (CP) [3], [8], [15] where different portions of

LLC are allocated to different applications. Cache partitioning can

allocate an isolated cache region to high-priority applications,

which avoids contention and interference by preventing

concurrently running applications from evicting high-priority

application cache lines [15]. Many prior studies [47], [48] have

investigated alternative CP to maximize overall performance.

However, recently, CMPs [15] provide user-specified CP, and the

previously proposed CP algorithms are not necessarily applicable.

In this dissertation, we propose a mechanism to enforce

performance isolation in user-specified LLC partitioning.

When a CMP dedicates more LLC capacity to a process group

through cache partitioning, the intuitive expectation is that

performance improves [15]. However, we demonstrate that the

opposite can occur as a process group can actually perform worse

when it obtains more LLC capacity. We refer to this as more-is-

worse (MiW) phenomenon and define MiW degree as the ratio of

 3

Instructions Per Cycle (IPC) when maximum LLC is allocated to a

process group to the maximum IPC that can be obtained through CP.

Evaluations show that MiW degree can reach up to 39.5% with

synthetic workloads, 14.4% or SPEC CPU2006 [45], and 547.0%

for TailBench [20] benchmarks, respectively, on Intel Broadwell-

based [23] Xeon systems.

In this dissertation, we first provide an analysis of why this

MiW phenomenon occurs. When a particular process (e.g., process

A) receives more LLC capacity, another process in the system (e.g.,

process B) comes to receive a smaller fraction of the LLC capacity

and experiences higher LLC Miss Per Kilo Instructions (MPKI).

This increases main memory bandwidth demand from process B (a

balloon effect①) and results in higher main memory access latency

for all the processes. Even though the memory access patterns for

process A and process B are different (i.e., accessing different

banks or ranks), both processes share the same data path to the

main memory system, including memory request buffers. As a

result, requests from process B can monopolize the shared data

path resource in the memory system. This effectively results in

process B “blocking” process A’s requests and degrades the

performance of process A.

To prevent this blocking in the data path to the main memory,

we propose to virtualize the data path of memory controllers with

① We use the terminology balloon effect since changes in one area (i.e.,

cache partitioning) leads to an adverse effect in another area (i.e., memory

bandwidth).

 4

memory virtual channel (mVC) where a separate memory request

buffer is provided for each group of LLC. The overall memory

request buffer storage is partitioned across the number of groups

supported in the LLC, which is equivalent to the number of mVCs.

DRAM commands from different buffers (or mVCs) are arbitrated

and served independently – thus, each mVC has effectively a private

data path to the memory channel and avoids blocking. The memory

controller requires a mVC arbiter that is responsible for arbitrating

between the mVCs – the mVC that receives a grant from the mVC

arbiter gains access to the memory channel. The grant is released

only after a column-level DRAM (RD/WR) command is issued to

avoid unnecessary DRAM row-buffer conflicts.

We discuss mVCs with four different buffer allocation policies,

which are static, proportional, inversely-proportional (both based

on its share of LLC ways), and dynamic partition. The observations

show that static and proportional partitions are more effective in

eliminating MiW than the other. Furthermore, we explore the design

space by observing the performance of mVC on various ratios of

buffer allocation. As a result, we show that it is possible to select

an appropriate configuration satisfying the target performance for

the group with more LLC capacity, and also maximizing the

performance of the group with less LLC capacity. Our case study

shows that when satisfying 90% of the standalone performance,

with mVCs we can save 21.8% of machines by sharing the machines

among applications in a distributed system.

 5

1.1 Research Contributions

In this dissertation, we make the following contributions:

 This is one of the first work to demonstrate the problem of

MiW (more-is-worse) on a real machine, where allocating

more LLC capacity to a workload leads to worse

performance due to an increased degree of congestion

(blocking) on the main memory shared by all the workloads

(a balloon effect).

 We propose to virtualize the data path of memory controllers

to mitigate this blocking problem and explore the design

space of memory request buffer allocation.

 We evaluate memory virtual channels (mVC) using a cycle-

level simulator, which effectively eliminates MiW and

recovers lost IPC due to the blocking.

 We perform a case study to demonstrate mVC can provide

additional opportunities for workload consolidation to save

the machine count by up to 21.8%, which would otherwise

violate a service level objective (SLO)

 6

1.2 Outline

The organization of this dissertation is as follows.

In Chapter 2, we explain modern CMP system’s cache

hierarchy and cache partitioning. Chapter 3 describes the More-is-

Worse phenomenon. We show MiW with real machines and the

impact on latency-critical workloads. We also explore the root

cause of MiW. In Chapter 4, to overcome MiW, we propose memory

virtual channel (mVC) with several buffer allocation strategies. We

quantify the benefits of mVC when applied to main memory system,

compared with the conventional system. Related works are

presented in Chapter 5. Finally, Chapter 6 presents the conclusion

of this dissertation.

 7

Chapter 2

Background

In this chapter, we describe the memory hierarchy in modern

computers. Cache allocation can be used to assign the shared LLCs

to each CPU core and is discussed in detail in this chapter. Also,

analyzes of the benchmark used in this paper are included in this

chapter.

2.1 Memory Hierarchy and Cache Policies

Modern computer system is a configuration of multiple CPU

cores connected to a memory hierarchy. CPU cores must fetch data

and instructions from the cache memory for performance reasons.

 8

However, cache memory is an expensive resource, so computer

systems leverage memory hierarchies of cheaper and slower

memories but larger capacity, such as DRAM. The memory

hierarchy effectively hides and reduces the memory access time by

storing data and instructions in a cache, considering special and

temporal locality.

Modern CMPs include multiple levels of cache. For example,

Intel’s Xeon processors include three levels of cache which are

level 1 (L1), level 2 (L2), and level 3 (L3, also known as the last

level cache (LLC)) caches. The lowest level cache, L1 cache, The

L1 cache is located closest to the CPU and is the fastest but has the

smallest capacity. As the level goes up to L2 and LLC, the capacity

increases, but the speed decreases. If data exists in the L1 cache

(cache hit), the CPU uses the data immediately, otherwise (cache

miss), the CPU checks the data at higher levels of the cache and

memory hierarchy. If the data is not available in LLC, CPU requests

the data from the main memory. Different cache replacement

policies may be implemented to evict cache lines to make space for

subsequent requests [58].

The biggest difference between L1, L2 caches and LLC is that

L1 and L2 caches are independent for each core, but LLC is shared

between cores. Each physical core contains its own private L1 and

L2 caches, but LLC is shared and can be fully accessed and utilized

by all of the cores in the system. Having all the cores share the LLC

has the advantage that cores that need a lot of cache space can

 9

access more of the cache because space is not wasted on cores

with low LLC utilization, resulting in higher cache utilization for the

entire system.

CMP runs multiple threads in parallel. As a result, the contents

of the shared LLC can be quickly overwritten with new data

requested by the core from memory [59]. This situation is highly

dependent on the number of concurrently running threads and their

respective memory access patterns. Under moderate workloads and

conditions, a large portion of the LLC can be overwritten with new

data read from memory, which evicts significant data of L1 and L2

caches, reducing the performance of those cores [56], [57].

For example, consider a situation where CMP is running several

processes and workloads concurrently that have low priority but

generate a very large amount of memory traffic. Also assume that

the CMP has an Interrupt Service Routine (ISR) programmed to

handle latency sensitive high-priority interrupts. In this situation,

low-priority processes between interrupts will generate a lot of

memory traffic, overwriting the entire LLC with new data read from

memory, thus invalidating the data in the L1 and L2 caches of the

cores. If a high-priority interrupt occurs at this time, the interrupt

will experience very high latency. This is because the code and data

to handle the interrupt are no longer in the cache and need to be

fetched from memory again.

 10

2.2 Cache Partitioning

To overcome the contention and interference on the shared

resources, CMPs provide cache partitioning/allocation techniques

[3], [15], [60]. Cache partitioning (CP) divides shared LLC

resource and dedicates each partitioned LLC to a group (class) of

processes (Figure 2.1).

CP allows the cache to be adequately allocated according to the

working set size or cache sensitivity of a process group, alleviating

contention, and interference between processes [39], [47]. For

example, AMD provides CP in Opteron [3], [8], and Intel introduced

Cache Allocation Technology (CAT) starting from Haswell

architecture [15].

CP techniques can be classified as way, set, or block (line)

based partitioning (Figure 2.2) [1], [7], [32], [33], [41], [42],

[53]. Way-based partitioning [7] divides LLC by cache ways.

Processes can replace the cache line only within the allocated cache

ways.

Way-based partitioning is relatively cheap to implement

because the process can access all the cache sets regardless of the

number of allocated ways. However, it is limited to the maximum

number of ways in granularity, and the associativity of each

partition can be greatly reduced depending on the allocated ways

[42].

 11

Core
1

High Priority
Application Group

Low Priority
Application Group

Core
2

Core
3

Core
4

Shared LLC

Core
1

High Priority
Application Group

Low Priority
Application Group

Core
2

Core
3

Core
4

Shared LLC

Without Cache Partitioning With Cache Partitioning

Figure 2.1: Without cache partitioning, low priority application group

can occupy almost all the shared LLC which can lead to

performance degradation to high priority application groups. Cache

partitioning can dedicate shared LLC to high priority application

groups.

Process A Process B Process C

Way
0 1 (M-1)

Set 0
1
2
3

(N-2)
(N-1)

Way-based

Set 0
1
2
3

(N-2)
(N-1)

Set-based

Way
0 1 (M-1)

Set 0
1
2
3

(N-2)
(N-1)

Block-based

Way
0 1 (M-1)

Figure 2.2: Three strategies of cache partitioning. Cache

partitioning can be classified as way, set, or block (line) based

partitioning.

 12

Way-based partitioning is relatively cheap to implement

because the process can access all the cache sets regardless of the

number of allocated ways. However, it is limited to the maximum

number of ways in granularity, and the associativity of each

partition can be greatly reduced depending on the allocated ways

[42].

Set-based partitioning [1], [33] (or page coloring [53])

partitions LLC by sets instead of ways, and each process gets

several sets from the cache. LLC is virtually divided so that the

address of a requested data is mapped to a set in the virtual cache.

The virtual set index is then mapped to the actual physical cache

set index. This translation makes set-based partitioning more

expensive than way-based partitioning, especially when resizing

the partition.

For finer-grained partitioning, block-based partitioning was

also proposed to partition the cache-by-cache block (line)

granularity [41] and provide more cache partitions. However, the

complexity and overhead for managing and storing the mapping

information identifying the owner of each cache line are high [32].

AMD Opteron [3] implements set-based cache partitioning. To

minimize the amount of LLC data being evicted by a core that does

not allocate the data, the Opteron processor can direct L2 victim

traffic to a specified set of the LLC. However, the unit of

partitioning is a quarter of the total LLC capacity, which is too

coarse-grained.

 13

By contrast, Intel CAT [15] adopts way-based CP for the

shared LLC. With Intel CAT, each class of service (CLOS) consists

of one or more applications. A bitmask (each bit representing a

single cache way) is used to determine the amount of LLC

allocation for each CLOS, and the bitmask can be changed

dynamically at runtime. CLOS can be allocated exclusively (isolated

mode) or allocated to overlap with other CLOS (overlapped mode).

CAT has been supported since Haswell microarchitecture with 4

CLOSs; more recent Broadwell and Skylake-based servers support

up to 16 CLOSs. In Intel CAT, CP can be managed with a program

called pqos. One or more cores can be dedicated within a CLOS.

The default CLOS is CLOS 0, and at first, all of the cores are

dedicated with CLOS 0. To allocate some portion of the shared LLC

to a CLOS, available cache ways are specified through the capacity

bit masks.

There are multiple prior works on CP to limit the impact of

contention and interference on the shared LLC. While most of these

work concern limiting a low-prioritized workload from interfering

with a prioritized application, not many of them study having

prioritized applications competing for the shared LLC.

P. Veitch et al. [56] describes an approach for mitigating the

effects of a noisy neighbor (which is a low priority application but

occupying most of the LLC) has on the LLC in a system by using

CP. CP is used to allocate less LLC capacity to the low priority

applications with the result that more data from other high priority

 14

applications can remain in the shared LLC as it is not evicted by low

priority applications. Also, CP can be used to make performance

more predictable and deterministic, by mitigating noisy neighbor

effects on CMP resources such as LLC. According to the results of

the study, the average latency reduced between 47% and 92% when

comparing the case where LLC was equally allocated to processes

using CP and the case where noisy neighbors occupied more LLC

than other processes because CP was not used.

Intel studied CP to limit the impact of noisy neighbor

applications on the performance of other applications [57]. In this

study, STREAM benchmark was used as a noisy low priority

application, and bzip2 was used as a high priority application. The

STREAM benchmark is suitable for noisy priority applications as it

over-utilizes LLC due to its high memory usage. When running

bzip2 and STREAM at the same time, the execution time of bzip2

greatly increased. This is because the LLC share of bzip2 was very

small compared to STREAM. When the LLC share of STREAM was

limited using CP, the LLC share of bzip2 increased and the

execution time significantly decreased. This can be taken as an

example in which CP limits the LLC occupancy of noisy low priority

applications, thereby reducing LLC contention and improving the

performance of high priority applications.

Herdrich et al. [15] demonstrated the performance

improvement of up to 4.5× from CAT when running SPEC

CPU2006 applications together as CAT significantly alleviated the

 15

performance degradation of an application from interference. With

CP (e.g., CAT), more LLC capacity can be dedicated to a certain

application to prioritize and improve its performance effectively.

However, contrary to this intuitive expectation, we observed that a

group of processes could perform worse when they receive more

LLC capacity.

2.3 Benchmarks

Many research results in the field of computer architecture are

measured and reported through benchmarks. These benchmarks

represent current or future software in specific application areas.

Therefore, benchmark suites are provided by various corporations,

research organizations, communities, or companies. Representative

benchmarks include SPEC [45], Cloud Suite, and Tail Bench [20],

each targeting general purpose computing, cloud computing, and

real time processing. In this dissertation, SPEC and Tail Bench

were used to focus on general purpose computing and real time

applications.

 16

2.3.1 Working Set Size

We first focus on the working set size of SPEC2006. The working

set size of an application is the estimate memory actually used by

an active application [61]. Representative metrics for measuring the

working set size are virtual size (VSZ) and resident set size (RSS).

VSZ is the memory address space reserved by the OS for the

application and is the total memory usage of the application. This

memory address space is used to hold data or instructions, and not

all of them are physically stored in memory.

RSS represents the amount of physical memory actually used

by the application. In general, RSS is equal to or less than VSZ. For

example, if the system's physical memory is insufficient, a portion

of the memory used by the application is paged out to disk. In this

case, RSS decreases but VSZ does not change. Also, the application

does not require as much physical memory as VSZ to run [61],

[62].

Previous studies have shown that RSS and VSZ of CPU2006 are

used up to 1GB [61], [62]. However, these results of experiments

conducted in an old architecture and small memory environment.

 17

2.3.2 Top-down Analysis

A top-down analysis has been done on SPEC CPU2006 benchmarks

[63]. This top-down analysis is a practical method to identify

bottlenecks in out-of-order processors. The study was conducted

on Intel 3rd generation (codenamed Ivy Bridge) and used Intel

VTune [64] and standard Linux perf [65] utility tools. The top-

down analysis breakdown shows the top level, backend level, and

memory level breakdown in single-thread mode and multi-core

mode. We will use the results to analyze our results. Similar top-

down analysis has been done on SPEC CPU2017 [66], [67].

In the top-down analysis we focus on the backend bound

category. Backend bounds reflect slots where uops are not

delivered in the problem pipeline because the backend lacks the

resources needed to accept the uop. An example of a problem in

this category is a data cache miss or hang due to an overloaded

divider.

Backend bound is divided into memory bound and core bound.

This is achieved by granularizing backend outages based on the

occupancy of execution units in every cycle. Naturally, you need to

keep the execution unit busy to maintain maximum IPC. For

example, on a 4 wide machine, if some code has less than 3 uops

running at steady state, you won't achieve an optimal IPC of 4.

These suboptimal cycles are called execution delays.

 18

Memory bound corresponds to the execution delay associated

with the memory subsystem. These hangs usually show up as

execution units starving after a short period of time, such as in the

case of a load that misses all caches.

Core bound outages can manifest as brief execution starvation

periods or suboptimal execution port utilization. While high-latency

divide operations can serialize execution, pressure on execution

ports serving certain types of uops can result in fewer ports being

used in cycles. Core bound problems can often be mitigated by

better code generation.

As mentioned in chapter 2.1, modern CPUs implement multiple

levels of cache hierarchy to hide the latency of external memory.

To determine the real penalty for memory access, the true penalty

for memory access is when the scheduler is not prepared to feed

execution units. For example, L1D caches often have low latencies

comparable to ALU delays. However, in certain scenarios, such as

loads blocked for forwarding data from old storage to overlapping

addresses, you may experience high latency while the load is

eventually satisfied by the L1D cache. In these scenarios, the

executing load lasts for a long time without any L1D cache misses.

Therefore, it is tagged under the L1 Bound.

Store operations are buffered and executed after retirement on

the out-of-order CPU due to the memory ordering requirements of

the x86 architecture. In most cases, the performance impact is

 19

small. However, it cannot be completely ignored. The store bound

metric is defined top-down because the execution port utilization is

low, and the store count is buffered for a portion of the cycle. If

both load and store issues apply, prioritize load nodes based on the

mentioned insights.

Data TLB misses can be classified as memory bound sub nodes.

For example, if a TLB translation is satisfied by L1D cache, it will

be tagged under the L1 Bound.

For memory bandwidth and memory latency bound, the

occupancy of requests waiting for data to return from the memory

controller is measured. Whenever the occupancy exceeds a certain

threshold (for example, 70% of the maximum number of requests

the memory controller can handle concurrently), it marks it as being

potentially limited by the memory bandwidth. The rest is due to

memory latency.

2.3.3 Profiling Tools

The measurement-based study conducted in this dissertation uses

the SPEC utility to report execution times and SPEC CPU composite

performance metrics. A set of modern tools for event-based

sampling and profiling are also used, including the Intel performance

counter monitor, and the Intel VTune Amplifier. These tools

interface and collect information from the on-chip performance

 20

monitoring unit (PMU), which is part of the fabric of modern

processors. Statistics gathered from the PMU registers during

benchmark execution include the number of clock cycles, the

number of instructions executed, as well as numerous

microarchitectural-specific events that capture the behavior of the

processor's front-end and back-end resources. such as branch

predictors, functional units, and memory hierarchies.

 21

Chapter 3

More-is-Worse Phenomenon

We first demonstrate and analyze how the performance of a process

group decreases as we allocate more LLC capacity with cache

partitioning on real machines. To the best of our knowledge, this

un-intuitive phenomenon has not been reported on real machines②.

3.1 More LLC Leading to Performance Drop

We evaluated a system with a single socket Intel Xeon Broadwell

server with 20 cores (40 hardware threads with Hyper-Threading),

50MB of shared LLC, and 76.8GB/s of peak main memory bandwidth.

② We used the isolated mode because the overlapped mode can cause

unnecessary contention between the benchmarks on LLC, making the

analysis more complicated.

 22

Hardware Information Setting Values

CPU Model Intel Xeon E5-2698 v4

CPU Clock 2.2GHz

of cores 20

of memory controllers per CPU 2

Per Core:

L1 I/D $ type/size/associativity Private/32KB/8

L2 $ type/size/associativity Private/256KB/8

L3 $ type/size/associativity Shared/2.5MB/20

of hardware threads 2

Hardware prefetch Off

Per DDR4-2400 memory controller:

of channels 2

of ranks per channel 2

Bandwidth per channel 19.2GB/s

Table 3.1: Hardware setup used in Chapter 3. Intel machine was

used for cache partitioning.

Details of the experimental setup are described in Table 3.1.

The Intel machine has CAT (Cache Allocation Technology) for

cache partitioning (CP). Our initial evaluation uses SPEC CPU2006

benchmarks [45] and executed SPEC rate of N, where N means

running N instances (processes) of a benchmark simultaneously.

We bundled the cores that execute the same benchmark into one

CLOS (class of service).

 23

0

6

12

18

24

30

36

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
P

K
I

IP
C

MPKI_astar IPC_astar

0

6

12

18

24

30

36

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
2

0

M
P

K
I

IP
C

of cache ways allocated

MPKI_gcc IPC_gcc

Figure 3.1: IPC and LLC Miss Per Kilo Instructions according to the

change in the allocated LLC capacity for 473.astar and 403.gcc

when executed alone respectively. IPC is normalized to when each

run alone and occupies the entire LLC capacity (20 ways).

Figure 3.1 shows the IPC and LLC Misses Per Kilo Instructions

(MPKI) variation as the number of allocated LLC ways increases

when executing 473.astar and 403.gcc benchmarks alone with rate

20. Each core runs two instances; thus, we use 10 out of the 20 cores.

 24

0

5

10

15

20

25

30

35

40

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

 1
 :1

9
 2

 :1
8

 3
 :1

7
 4

 :1
6

 5
 :1

5
 6

 :1
4

 7
 :1

3
 8

 :1
2

 9
 :1

1
10

 :1
0

11
 :

 9
12

 :
 8

13
 :

 7
14

 :
 6

15
 :

 5
16

 :
 4

17
 :

 3
18

 :
 2

19
 :

 1
N

o
-C

P

M
P

K
I

N
o

rm
al

iz
e

d
IP

C

of cache ways allocated to (astar : gcc)

MPKI_astar MPKI_gcc IPC_astar IPC_gcc

Figure 3.2: IPC and LLC MPKI according to the change in the

allocated LLC capacity for 473.astar and 403.gcc when executed

together. IPC is normalized to when each run alone and occupies the

entire LLC capacity (20 ways). IPC of 473.astar decreases by up to

8.9% after reaching the peak when it is allocated with 15 LLC ways.

The evaluated Intel processor has 20 LLC ways per cache set,

and thus, we swept the LLC ways from one to 20. The presented

IPC is the mean IPCs from all the cores running the same

application. The results are intuitive–as more LLC is allocated,

MPKI decreases, and performance (IPC) monotonically increases.

Initially, more LLC results in a significant decrease in MPKI and

correspondingly a significant performance improvement but

afterward, the change in MPKI is limited as performance saturates

[39].

 25

We then executed the two benchmarks together with each

running on 10 physical cores and each with a rate of 20. We

dedicated varying numbers of LLC ways to the two application

groups: N to one and (20 − N) to the other. Figure 3.2 shows the

normalized IPC and LLC MPKI when executing 473.astar and

403.gcc together, with the IPC and MPKI values of the two

applications without CP in the rightmost column. Using CP improves

the aggregate performance of the two application groups sharing the

LLC. When we allocate nine LLC ways to 473.astar (11 for

403.gcc), its performance is the same as (2.7% better than) that

without CP, showing CP is effective.

The expected behavior is a trade-off between LLC capacity

and performance. As more LLC capacity is allocated to a workload,

the performance is expected to continue to increase or saturate.

However, our evaluation shows that performance can be degraded

with more LLC capacity. For example, for 473.astar, performance

first increases as LLC capacity increases, but beyond 15 LLC ways,

the performance drops by up to 8.9%. This is seemingly

counterintuitive as the performance of both 403.gcc and 473.astar

are degraded when 473.astar occupies more than 15 LLC ways. We

call this MiW (more-is-worse) phenomenon.

 26

App A App B MiW

omnetpp gcc 14.40%

astar gcc 8.94%

sphinx gcc 8.43%

gcc gcc 6.01%

xz xalancbmk 5.27%

mcf blender 3.22%

Table 3.2: The degrees of MiW (more-is-worse) over pairs of

applications (App A/B) which divide up LLC. The MiW degree is

measured by comparing the aggregated IPC of App A when it

occupies the maximum share of LLC (numerator) with the one when

it performs best over all possible LLC shares (denominator)

through CP.

In addition to 403.gcc and 473.astar, similar behaviors were

also observed in other SPEC CPU2006 and SPEC CPU2017 [46]

benchmarks. The degree of MiW, the ratio of IPC when maximum

LLC is allocated to a process group to the maximum IPC that can be

obtained through CP, for some of the SPEC benchmarks are

summarized in Table 3.2. We observe up to 14.4% performance

degradation when the former benchmark of the pair occupies more

LLC capacity over a certain threshold, respectively. Note that MiW

does not happen always. For example, on the pair of 473.astar-

 27

473.astar, the performance of both groups increase monotonically

as more LLC ways are allocated.

3.2 Synthetic Workload Evaluation

In this section, we evaluate the MiW phenomenon using synthetic

workloads to better control workload’s memory access

characteristics and analyze performance degradation when

allocating more LLC capacity. We use a pointer chasing synthetic

workload, whose performance is sensitive to memory latency

because of true dependency between each memory access. We

controlled the degree of memory bandwidth pressure by varying the

amount of data read per step of pointer chasing.

Without loss of generality, we call a group (class) of

applications that are allocated more LLC capacity and expects

higher performance ‘group-A’, and the other group that receives

the remaining LLC capacity ‘group-B’. To differentiate the

characteristics of workload group-A and group-B, we set group-A

to read only one cache line (64B) per pointer chasing step over

1GB of working set, which is 20× larger than the LLC capacity.

Thus, group-A is less sensitive to changes in LLC capacity but

more sensitive to changes in main memory access latency.

 28

Group-A

Group-B

1GB

1KB
5MB

64B

Figure 3.3: Synthetic workload used for evaluation of MiW. Group-

A and group-B are pointer chasing workloads where group-A

reads 64B of data in 1GB of working set, while group-B reads 1KB

of data in 5MB of working set.

Group-B reads 1KB of data per pointer chasing step over 5MB

of working set, which is only one-tenth of the system’s LLC

capacity, to generate frequent LLC misses when smaller LLC

capacity is allocated. We read 1KB of data per step to generate

more bandwidth pressure to memory compared to group-A (Figure

3.3). We evaluated with the same system described earlier in Table

3.1, except only a single memory channel instead of four channels

is used to stress main memory bandwidth.

Figure 3.4 shows the IPC and LLC MPKI as the number of LLC

ways allocated to group-A and group-B is varied. For group-A

that uses 1GB of memory and much larger than LLC capacity, its

performance is mostly insensitive to the change in the allocated

LLC capacity, and the memory bandwidth usage is maintained at a

constant level of 1.8GB/s.

 29

0

10

20

30

40

50

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

M
P

K
I

IP
C

MPKI_A IPC_A

0

10

20

30

40

50

60

70

80

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

M
P

K
I

IP
C

of cache ways allocated

MPKI_B IPC_B

Figure 3.4: IPC and LLC MPKI of the synthetic workload when

executing group-A and group-B alone respectively, with IPC

normalized to when each workload runs alone with 20 LLC ways

allocated.

By contrast, group-B uses only 5MB of memory and allocating

a large amount of LLC capacity leads to negligible LLC misses.

When the allocated LLC capacity is small LLC misses and memory

access rates increase rapidly. Therefore, the IPC decreases by 68%

and the memory bandwidth usage increases to 5.8GB/s.

 30

0

4

8

12

16

20

0

0.2

0.4

0.6

0.8

1

1.2

 1
 :

19
 2

 :
18

 3
 :

17
 4

 :
16

 5
 :

15
 6

 :
14

 7
 :

13
 8

 :
12

 9
 :

11
10

 :
10

11
 :

 9
12

 :
 8

13
 :

 7
14

 :
 6

15
 :

 5
16

 :
 4

17
 :

 3
18

 :
 2

19
 :

 1
N

o-
C

P

M
e

m
o

ry
 b

an
dw

id
th

 [
G

B
/s

]

N
o

rm
a

liz
e

d
IP

C

of cache ways allocated to (group-A : group-B)

MEM_BW_A MEM_BW_B IPC_A IPC_B

Figure 3.5: IPC and memory bandwidth of the synthetic workload

when executing group-A and group-B together, with IPC

normalized to when each workload runs alone with 20 LLC ways

allocated. The IPC of group-A drops up to 39.5% after reaching the

peak when it occupies 4 LLC ways.

The result when both group-A and group-B are executed is

shown in Figure 3.5. When allocating more LLC capacity to group-

A, we expect performance to increase or reach a steady-state, but

performance decreases when 5 (25% of LLC capacity) or more LLC

ways are allocated to group-A, reproducing MiW observed with

SPEC benchmarks. Since group-A and group-B alone cannot fully

utilize the system memory bandwidth, we executed group-A and

group-B with rate four. The performance degradation (MiW) gets

 31

worse as more instances of the group-A and group-B are

populated. The synthetic evaluations demonstrate that MiW can be

reproduced with a simple, synthetic workload but more interestingly,

MiW can start even if an application group occupies only a smaller

portion of the shared LLC resource.

3.3 Impact on Latency-critical Workloads

In addition to the SPEC benchmarks, we evaluate the impact of MiW

on latency-critical (LC) workloads. It is well-known that LC

applications, especially in datacenters, often require predictable and

small tail latency [5], [10], [29]. However, as shown in Section

III-A, MiW increases MPKI – thus, higher memory access latencies

can significantly impact the tail latency problem [21]. Therefore,

MiW can be even more critical for LC workloads.

To evaluate the impact of MiW on LC workloads, we used

TailBench [20], [21] and executed each TailBench benchmark

together with 403.gcc from SPEC CPU2006. Similar to the previous

evaluations, we vary the number of LLC ways for the two

benchmarks, but for the TailBench benchmarks, performance is

measured in terms of tail latency. We used the single-node

integrated configuration of TailBench, where a client and the

corresponding LC application are integrated into a single process.

 32

0

2

4

6

8

10

0

2

4

6

8

10

1
 :1

9
2

 :1
8

3
 :1

7
4

 :1
6

5
 :1

5
6

 :1
4

7
 :1

3
8

 :1
2

9
 :1

1
1

0:
1

0
1

1:
 9

1
2:

 8
1

3:
 7

1
4:

 6
1

5:
 5

1
6:

 4
1

7:
 3

1
8:

 2
1

9:
 1

N
o-

C
P

M
P

K
I

N
or

m
. 9

5t
h

pc
tl

at
e

n
cy

of cache ways allocated to (masstree : gcc)

MPKI_gcc Norm. 95th pct latency_masstree

Figure 3.6: 95th percentile latency of masstree when executed with

403.gcc, where normalized to the tail latency executed alone

occupying the entire LLC capacity. Similar trends were observed

for other TailBench benchmarks.

Figure 3.6 shows the normalized 95th percentile latency of

masstree, where normalized to the tail latency when runs alone

occupying the entire LLC. The result shows that the tail latency

increases by up to 143%, as it occupies more LLC ways. Table 3.3

summarizes the degree of MiW of other TailBench benchmarks.

Moses and masstree have significantly higher MiW degrees

compared to other benchmarks (as high as 547% with moses), due

to higher LLC MPKI from these workloads, thus, results in longer

queuing time. Due to space constraints, additional results are not

shown, but similar trends were observed in evaluation of Intel

Skylake machines, with tail latency increasing by up to 210%.

 33

App A MiW

moses 547.00%

masstree 142.83%

img-dnn 10.20%

specjbb 9.00%

xapian 8.51%

silo 8.39%

Table 3.3: The degrees of MiW (more-is-worse) over pairs of

applications (App A/B) which divide up LLC. The MiW degree is

measured by comparing the tail (95th percentile) latency of App A

when it occupies the maximum share of LLC (numerator) with the

one when it performs best over all possible LLC shares

(denominator) through CP. For App B, 403.gcc has been used for all

cases.

3.4 Workload Analysis

To analyze the characteristics of the workload, the top-down

analysis described in Section 2.3.2 was used [63]. First, among the

SPEC CPU2006 benchmarks, applications sensitive to cache

capacity were selected through previous studies [61], [62], [63],

[68] and experiments. Since we used the spec rate, multi-core

results were important. For example, 482.sphinx3 of SPEC

 34

CPU2006 had a large L3 bound, and no MEM bound when operated

in single-thread mode, but when operated in multi-core, the L3

bound decreased, and the MEM bound increased significantly [63].

This phenomenon can be seen because of competition among

threads against shared LLC.

We focused on applications where the backend bound during top

level breakdown is much larger than the frontend bound, and the

memory bound is very large compared to the core bound during

backend level breakdown. Among them, attention was paid to

applications that are sensitive to cache capacity and memory

bandwidth through memory level breakdown. Representatively,

there are gcc, mcf, omnetpp, astar, xalancbmk, milc, leslie3d, soplex,

GemsFDTD, lbm, wrf, and sphinx3. These applications have a very

high memory access ratio compared to computation (minimum 1:1.6,

maximum 1:9.8), are sensitive to memory bandwidth, and have a

common feature that the memory bound rises rapidly when there is

competition for LLC. Additional noteworthy applications are gcc and

omnetpp, both of which have higher store bounds than other

applications.

For the cache sensitivity of a single application, 20 cores were

used to measure the average IPC and MPKI per core. The result

showed a change in performance according to the cache capacity

similar to previous studies, and 144 application combinations were

created with these 12 applications and used in the experiment. Only

the results of application combinations in which MiW was most

 35

prominent were shown, and in most of those combinations, MiW of

around 2% occurred.

The applications used in SPEC CPU2017 were also selected

based on the same criteria as the applications in SPEC CPU2006

[66], [67].

3.5 The Root Cause of the MiW Phenomenon

To understand the root cause of MiW, we first pay attention to the

fact that MiW occurs when applications stress the main memory

bandwidth of a system. Figure 3.7 shows the relationship between

the bandwidth load and the observed latency of a main memory

system with the peak bandwidth of 76.8GB/s specified in Table 3.1.

 36

Figure 3.7: Load-latency values of the tested system (Table 3.1)

with 76.8GB/s of max main memory bandwidth. Latency rises

rapidly when system bandwidth gets closer to the peak.

Main memory access latency values increase slowly when the

memory system is lightly loaded, but they increase rapidly as the

load gets closer to the theoretical peak bandwidth, similar to

interconnection networks [9]. When a larger portion of LLC

capacity is allocated to the synthetic workload group-A in Figure

3.4, the other workload group-B receives smaller LLC capacity,

experiences higher LLC MPKI, stresses main memory bandwidth

that is shared between group-A and group-B, and hence increases

memory access latency for both group-A and group-B. In other

words, when group-B stresses the main memory bandwidth due to

fewer LLC ways allocated, group-A also experiences high memory

access latency breaking the performance isolation between the

workload groups, which is the very intention of CP.

 37

Core
1

High Priority
Application Group

Low Priority
Application Group

Core
2

Core
3

Core
4

Shared LLC

Main Memory

Figure 3.8: When a larger portion of LLC capacity is allocated to

high priority workload group, the other low priority workload group

receives smaller LLC capacity. The low priority workload group

experiences higher LLC MPKI, stresses main memory bandwidth

that is shared between both workload groups, and hence increases

memory access latency of the entire system.

Therefore, the group with more LLC capacity (group-A) has

higher memory access time for memory requests that miss LLC;

this overhead can even outweigh the benefits of lower LLC MPKI

due to larger LLC capacity, resulting at performance drop especially

if group-A is highly sensitive to main memory latency (Figure 3.8).

 38

It might appear as if memory requests from different

applications are heading to the same destination (a memory

channel) and hence these requests cannot be isolated, leading to a

surge in access latency values on all the requests; but in reality,

they are likely headed to different destinations. When the requests

from both processes access the same target in main memory (e.g.,

the same DRAM bank), they all should experience high loaded

access latency due to the elevated degree of queuing delay.

However, different processes mostly access different targets (e.g.,

different DRAM banks) as modern CMPs typically have dozens of

DRAM banks per channel; so, the chances that two requests from

different processes access the same bank are meager③.

Then, the reason why a surge in LLC MPKI of one process

(group-B) negatively affects the performance of the other (group-

A) could be due to blocking of the data path that a request handling

an LLC miss experiences, a well-known problem in designing the

flow control of interconnection networks when requests from

different source-destination pairs share the same intermediate data

path (e.g., buffers) [9]. This blocking occurs when the oldest

packet in an intermediate shared buffer cannot be transferred

because the next node on the route for its destination is congested,

the “younger” packets in the shared buffer are blocked, resulting

in a performance drop. A solution for this blocking is to virtualize

③ Techniques to partition main memory such that a bank is dedicated to a

process (e.g., PALLOC [52] and [28]), can be used to ensure banks are not

shared between processes.

 39

the data path, such as virtual channels [9].

Moreover, requests from one process (group-B) can occupy a

significant portion or even all of the shared intermediate data path

(memory request buffer), which is a valuable/scarce resource. This

limits the memory controller’s visibility of the processes (group-

A and -B) with different access behaviors, and lead to a poor

scheduling decision. Virtualizing the data path can help to solve this

problem.

We first show that existing hardware does not have virtualized

data path in memory controllers. We control main memory

bandwidth demands from two groups of processes (group-C and

group-D) such that group-C alone spends half the peak bandwidth

of a system, and group-D alone spends the entire bandwidth. When

we run group-C and group-D together, we observed that group-C

burns 1/3 of main memory bandwidth, whereas group-D uses the

other 2/3. If the memory requests from group-C and group-D are

through virtualized data path, as group-C and group-D both have

the same priority level, they should both utilize 1/2 of main memory

bandwidth.

Figure 3.9 show the main-memory bandwidth utilization as the

number of cores dedicated to group-C changes while group-D runs

on 20 cores. The line graph indicates the theoretical portion group-

C should occupy within the total memory bandwidth, calculated by

the ratio of the number of cores allocated to group-C (numerator)

and the sum of cores allocated to both group (denominator).

 40

Figure 3.9: Main memory bandwidth utilization with two processes

(C and D) evaluated with a 76.8GB/s peak main memory system, as

the number of cores dedicated to C changes, and D alone uses the

whole bandwidth of the system. The line graph indicates the ratio of

the number of cores allocated to process C, over the total number

of cores in use based on the total utilized memory bandwidth.

The result shows that measured bandwidth ratios match close

to the theoretical values rather than group-C and group-D sharing

the bandwidth equally, through which we can verify that the

evaluated hardware does not have virtualized data path in the

memory controllers.

 41

3.6 Limitations of Existing Solutions

Before exploring the idea of virtualizing the data path of memory

controllers, we first assess if the ideas that are already

implemented in hardware (main memory bandwidth throttling [17])

or have been extensively studied before (memory scheduling

considering fairness [27], [36]) can address MiW. Through

experiments with the latest HW and simulation, we observe these

existing solutions cannot eliminate MiW.

3.6.1 Memory Bandwidth Throttling

The latest Skylake-based [11] Xeon systems support a feature

named Memory Bandwidth Allocation (MBA) [17], which limits the

memory bandwidth dedicated to each group (class). We evaluated a

system with a single socket Skylake server with 24 physical cores

(Hyper-Threading enabled), 33MB of shared LLC with 11 ways,

and 21.3GB/s of peak main memory bandwidth. MBA limits memory

bandwidth by the granularity of 10% (we used the linear mode

[17]).

 42

0

2

4

6

8

10

0

0.1

0.2

0.3

0.4

0.5

1
:1

0

2
:

9

3
:

8

4
:

7

5
:

6

6
:

5

7
:

4

8
:

3

9
:

2

10
 :

 1

N
o-

C
P

M
P

K
I

N
or

m
al

iz
ed

 I
P

C

of cache ways allocated to (gcc : gcc)

MPKI_A MPKI_B IPC_A IPC_B

Figure 3.10: The impact of Memory Bandwidth Allocation (MBA) on

403.gcc-403.gcc. Even if MBA was used, MiW phenomenon

occurred when more than 9 LLC ways assigned to group-A,

showing MiW phenomenon could not be completely solved.

Figure 3.10 shows the normalized IPC and stacked-up MPKI

values of a pair of 403.gcc and 403.gcc, similar to the experiments

in Chapter 3.1 except that MBA is enabled here. We allocated 90%

of bandwidth allocation (the higher, the more bandwidth allocated)

to group-A and 10% to group-B. The result shows MiW is still

observed for the machine with MBA. We evaluated different

bandwidth allocation ratios (e.g., 10%/90% and 50%/50% to group-

A/-B), but MiW still persists.

 43

Core0 Core1 Core2

Shared LLC

Core3

Interconnect

L2 L2 L2 L2

Req. Rate
Ctrl

Req. Rate
Ctrl

Req. Rate
Ctrl

Req. Rate
Ctrl

Figure 3.11: MBA controls memory bandwidth indirectly and

approximately. MBA places a programmable rate controller in L2

MSHR, a boundary between private L2 caches and shared LLC

However, if we change the configurations such that main

memory is not bandwidth saturated by either decreasing SPEC rate,

increasing peak main memory bandwidth by populating more

channels (Skylake supports up to 6 channels per socket), or

lowering the bandwidth allocation values of MBA to all the

application groups, MiW mostly disappears. This also indicates that

the blocking in congested memory controllers is a likely source of

MiW.

The memory bandwidth throttling looks like a plausible solution,

but MBA has a limitation in that it controls memory bandwidth

indirectly and approximately [17]. MBA places a programmable rate

controller in L2 MSHR (Miss Status Holding Resister), a boundary

between private L2 caches and shared LLC (Figure 3.11). This

 44

enables per-core rate control (source throttling) without

introducing virtualized data path. However, as L2 misses are then

filtered through LLC (whose miss rates are hard to predict as it is

shared among many cores), this indirect bandwidth control is

inevitably approximate. Therefore, MBA must conservatively limit

memory bandwidth to prevent the blocking (over-throttling), and

hence the performance of all the application groups would be sub-

optimal due to this main memory bandwidth underutilization.

3.6.2 Fairness-aware Memory Scheduling

Among the proposals of providing fairness on top of memory access

scheduling (the control part of a memory controller), we selected

two representative ones and tested if they can address MiW.

First, we chose the token bucket algorithm (TOKEN), which

was originally introduced as an arbitration method for

interconnection networks [27], [38], [54]. For TOKEN, each

request can be processed when it has a matching token in the

respective bucket (each for the corresponding group). A token

generator distributes tokens to different buckets at the rates

proportional to the fractions allocated to different groups.

Second, a request prioritization method, which gives priority

based on a virtual clock (CLOCK) [36], is a memory version of

deadline-based arbitration frequently adopted in interconnection

 45

networks. CLOCK prioritizes 1) ready commands, 2) column-level

commands, and 3) commands with the earliest virtual finish time.

The virtual finish-times of the DRAM commands from each

memory request are calculated based on prior work [36]. To

prevent priority inversion by bank priority chaining, after a DRAM

bank has been restored in the course of row activation (around

32ns in modern DRAM devices), rule 3) is applied first overrule

rule 2) among the requests heading to the same bank. We set both

TOKEN and CLOCK to treat all the application groups equally.

Because these schemes are not implemented in existing

hardware, we used simulation, whose setup is detailed in Chapter

4.3.1. Two benchmark pairs from SPEC CPU2006 [45] are used

(Figure 3.12). Both TOKEN and CLOCK perform on par with or

better than the baseline memory-access scheduling scheme of FR-

FCFS (BASE in Figure 3.12), but MiW persists.

When two application groups are executed, TOKEN keeps each

group from using more than half of the system’s peak memory

bandwidth. Therefore, TOKEN restricts a group’s memory

bandwidth only when it requires more than half of the system’s

peak memory bandwidth, allowing both groups to utilize memory

bandwidth more fairly. CLOCK prioritizes a request with the earliest

deadline (finish-time) and hence tries to divide the system’s

memory bandwidth equally for each group. However, because

neither TOKEN nor CLOCK eliminates the blocking problem when

the main memory system is bandwidth saturated, MiW does not

disappear.

 46

(a) 403.gcc - 473.astar

(b) 403.gcc - 403.gcc

 47

(c) 523.xalancbmk - 523.xalancbmk

Figure 3.12: Simulation results of augmenting the default memory

access scheduling (FR-FCFS [40], BASE) with token-bucket

(TOKEN [27]) and virtual clock (CLOCK [36]) algorithms. The

simulation results show these fairness-aware memory scheduling

algorithms cannot resolve MiW.

These and other recent memory access scheduling proposals

[4], [47], [48] pursue fairness in scheduling by limiting the number

of consecutive requests to a specific DRAM bank, by limiting the

number of reordering a request can experience to serve other

requests with a higher priority, and by rotating the priority among

the requests originating from different sources (e.g., cores).

However, these proposals prioritize requests within a buffer; if a

certain request cannot enter the memory request buffer (as the

buffer are full due to blocking, for example), the scheduler cannot

address the problem, and the system suffers from MiW.

 48

Figure 3.13: Simulation results of ATLAS [22]. The simulation

result shows QoS/fairness-aware memory scheduling algorithm

cannot resolve MiW.

More recent related work includes ATLAS [22]. ATLAS

prevents memory-intensive processes from monopolizing memory

bandwidth by prioritizing requests from the least acquired memory

service thread. Although effective for QoS, ATLAS was originally

designed to maximize aggregate throughput. ATLAS performs equal

or better than the baseline, but MiW was not eliminated.(Figure

3.13)

 49

Chapter 4

Virtualizing Memory Channels

In Chapter 3, we observed MiW, which is a phenomenon leading to

performance degradation when more LLC capacity is allocated. We

have uncovered the root cause of MiW and found that MBA or other

proposals do not solve the MiW completely. To alleviate MiW, we

propose to virtualize the data path of memory controllers.

We explore possible design spaces for mVC and propose four

possible buffer allocation strategies in Chapter 4.2 and evaluate the

impacts of each strategy in Chapter 4.3. Also, through case studies,

we show the possibility to reduce the overall system cost using

mVCs with a proper memory request queue size and LLC capacity

while satisfying the target performance of latency-critical

workloads even when executed with multiple workloads together.

 50

4.1 Memory Virtual Channel (mVC)

To prevent/alleviate the blocking in main memory systems, we

propose to virtualize the data path of memory controllers (MCs) by

providing a separate request buffer per group (class) of LLC. As

opposed to the previous works utilizing per-source (CPU vs. GPU)

[4] or per-thread [36] request buffers, we use per-group (per-

class) separate buffering called memory virtual channel (mVC).

Per-source separate buffering is too coarse-grain as it does

not separate requests from different cores within CPU or GPU, and

per-thread separation is too expensive as the number of hardware

threads in modern shared-memory chip multiprocessors can

exceed a few hundred. We assume that NoC (network-on-chip) is

not a source of blocking④; if so, it should be virtualized as well or

support other blocking prevention feature (e.g., bufferless flow

control [34]).

Similar to Intel MBA, we align the class of MC and that of LLC;

therefore, a group (class) of applications have both dedicated LLC

capacity and MC’s buffer (queue) space. As opposed to the source

throttling of Intel MBA, which cannot prevent blocking in MCs

because it does not precisely know the amount of traffic filtering by

LLC, mVC guarantees blocking prevention. All data path within a

④ To the best of our knowledge, the NoC prior to Intel Skylake-based Xeon

systems implements a ring NoC with prioritized arbitration and thus,

blocking does not occur within the NoC itself.

 51

MC must be virtualized. If a MC has multiple stages of buffers (e.g.,

staged memory scheduling [4]), they all should be virtualized

(separated by groups). Otherwise, this un-virtualized portion of

data path becomes the source of blocking.

The control part of a MC (i.e., memory access schedulers) must

be augmented to provide fairness among the groups/classes (see

Figure 4.2.(a)). For example, FR-FCFS [40] gives a higher priority

to a ready request (which can be serviced with a RD or WR DRAM

command without any timing constraint) over non-ready requests,

on top of the baseline priority rule of first-come-first-serve

(FCFS). With the mVC support, there should be a round-robin

arbitration logic between the classes, which should be the highest

priority tier compared to both FR and FCFS.

A MC with mVCs requires a round-robin arbitration logic,

which we refer to as mVC arbiter, which selects a DRAM command

at a given cycle among the command candidates from different

groups (classes). This round-robin arbiter responds with a single

grant. Any buffer without an available DRAM command is simply

skipped over and ignored by the mVC arbiter. However, as opposed

to NoC arbiters, an arbiter grant is not released after servicing a

single DRAM command but held until a column-level (RD/WR)

command is served. This ensures that if two (or more) request

buffers target the same DRAM banks, it avoids DRAM row-buffer

conflicts by continuously issuing a sequence of ACT and PRE

commands, avoiding deadlocks, and providing fairness.

 52

The multiple per-group request buffers do not necessarily

increase the cost (in terms of storage) as the total amount of

storage for the buffers are held constant; the only difference is the

amount of storage per request buffer which can be smaller

compared to the baseline request buffer. The additional cost for the

mVC arbiter is also relatively small because the number of groups

is usually much smaller than the aggregate number of entries in the

request buffer.

4.2 mVC Buffer Allocation Strategies

One design question for mVC is how to allocate buffer space in the

memory request buffers to the different mVCs. Figure 4.1 and

Figure 4.2 compares the conventional memory request buffering

(Figure 4.1) with the following four different buffer allocation

strategies for mVC (Figure 4.2.(a), (b), (c), (d)):

 Static (mVC-STATIC): A simple strategy is to partition the

request buffer statically in the same size among all the

mVCs. While preventing starvation of either flow, this

scheme may lead to underutilization of request buffers when

the memory request rate from the LLC is highly skewed

between the two groups (Figure 4.2.(a)).

 53

 Proportional (mVC-PROP): A second strategy is to allocate

buffers to each group in proportion to its share of LLC ways.

For example, if group-A and group-B are allocated 15 and

5 LLC ways, they receive 9 and 3 entries in the request

buffer, respectively (Figure 4.2.(b)). The rationale of this

strategy is to partition storage resources along the shared

memory access path by the same ratio. It can alleviate MiW

by preventing the group with fewer resources (say, group-

B) from flooding the entire request buffer and slowing down

the other group.

 Inverse Proportional (mVC-INVPROP): The next strategy

is to allocate buffers to each group inversely proportionally

to its share of LLC ways. In contrast to mVC-PROP, group-

A and group-B receive 3 and 9 entries in the request buffer

when 15 and 5 LLC ways are allocated to them, respectively

(Figure 4.2.(c)). Because groups that receive fewer LLC

ways are likely to incur more LLC misses, this strategy

tends to allocate more buffers to groups incurring LLC

misses more frequently.

 Dynamic (mVC-DAMQ): We also consider a dynamic buffer

allocation strategy based on DAMQ (dynamically allocated

multi-queue) [9]. DAMQ partitions the request buffers

dynamically among mVCs based on the request rate of each

mVC. By partitioning the request buffer into shared and

dedicated regions, a deadlock which would occur when a

 54

memory-intensive workload claims all the buffer entries can

be avoided. The shared region is dynamically allocated

based on demands; the dedicated region is equally

partitioned and dedicated to each mVC. A mVC first uses its

dedicated region to store memory requests. Once its

dedicated region is full, it claims an entry from the shared

region for the next memory request (Figure 4.2.(d)).

 55

Core
1

Group-A Group-B
Core

2
Core

3
Core

4

Memory
controller

DRAM

R
eq

-A

R
eq

-B

R
eq

u
e

st
bu

ff
e

r

R
eq

-B

Shared LLC

R
eq

-B

R
eq

-B

R
eq

-A

P
ic

k
R

e
q

R
eq

-B

R
eq

-A
Request Scheduler

Figure 4.1: Conventional cache-oblivious memory request buffering.

Core
1

Core
2

Core
3

Core
4

Memory
controller

DRAM

Request scheduler

P
ic

k

R
e

q
-A

R
e

q
-B

R
eq

ue
st

bu
ff

er

R
e

q
-B

Shared LLC

R
e

q
-B

R
e

q
-B

R
e

q
-A

R
e

q

P
ic

k
R

e
q

mVC Arbiter

mVC Buffer
Separator

R
e

q
-A

R
e

q
-B

(a) Static (mVC-STATIC)

Figure 4.2: Four buffer allocation strategies for mVC; (a) Static.

 56

Shared LLC

mVC Buffer Separator

R
e

q
u

es
t

b
uf

fe
r

R
eq

-A

R
eq

-B

R
eq

-B

R
eq

-B

R
eq

-A

R
eq

-A

(b) Proportional (mVC-PROP)

Shared LLC

mVC Buffer Separator

R
e

q
u

es
t

b
uf

fe
r

R
eq

-A

R
eq

-B

R
eq

-B

R
eq

-B

R
eq

-A

R
eq

-A

R
eq

-B

R
eq

-B

(c) Inverse Proportional (mVC-INVPROP)

Shared LLC

R
e

q
u

es
t

b
uf

fe
r

R
eq

-A

R
eq

-B

R
eq

-B

R
eq

-B

R
eq

-A

R
eq

-A

Shared regionDedicated-A Dedicated-B

R
eq

-B

R
eq

-B

(d) Dynamic (mVC-DAMQ)

Figure 4.2: Four buffer allocation strategies for mVC; (b)

proportional, (c) inverse proportional, and (d) dynamic.

 57

4.3 Evaluation

To evaluate the impact of mVCs, we model a CMP system having

CP, virtualized memory channels, and MBA. We first reproduced

MiW through simulations and evaluate the effectiveness of

virtualizing memory channels.

4.3.1 Experimental Setup

We simulated a CMP system to evaluate the effectiveness of mVCs,

whose parameters are summarized in Table 4.1. McSimA+ [2]

simulator was modified for the simulation. The baseline memory

controller has a 20-entry request buffer and adopts FR-FCFS [40]

as a memory request scheduling policy and adaptive open policy

(which is also adopted at Intel Xeon processors) as a DRAM page

management policy.

SPEC CPU2006 [45] and SPEC CPU2017 [46] benchmark

suites were used for evaluation. Simpoint [43] was used to extract

the most representative simulation points of each application, each

including 100 million instructions. We sorted and selected cache-

sensitive applications in SPEC CPU2006 and SPEC CPU2017

benchmarks and used them for evaluations.

 58

Parameter Value

of cores 16 cores

of MCs 1 MC

Coherence policy MOESI

Cache line size 64B

Per Core:

Frequency 3.6GHz

Issue/commit width 4/4 slots

Issue policy Out-of-Order

L1 I/D $ type/size/associativity Private/32KB/8

L2 $ type/size/associativity Private/256KB/8

L3 $ type/size/associativity Shared/40MB/20

Per DDR4-2400 memory controller:

of channels 1

Request queue size 20 entries

of ranks per channel 2

Bandwidth per channel 19.2GB/s

Scheduling policy FR-FCFS [40]

DRAM page policy Adaptive Open [16]

Table 4.1: Parameters used in the simulated system.

We compare four buffer allocation strategies for mVC: mVC-

STATIC, mVC-PROP, mVC-INVPROP, and mVC-DAMQ. For

static buffer allocation (mVC-STATIC), 10 entries are allocated to

each mVC with two mVCs, which is equal to a total memory request

 59

buffer size of 20. For proportional buffer allocation (mVC-PROP),

the number of buffer entries allocated to each mVC is based on the

number of LLC ways allocated to each mVC. On the contrary, for

inverse proportional buffer allocation (mVC-INVPROP), the number

of buffer entries allocated to each mVC is (20 - the number of LLC

ways allocated to each mVC). We also evaluated mVC with dynamic

buffer allocation (mVC-DAMQ) based on 80% shared region size in

the request buffer.

4.3.2 Reproducing Hardware Results

Before evaluating the proposed mVCs, we reproduced the hardware

results through simulation (Figure 4.3). Xapian in Figure 4.3.(b) is

an application in TailBench, and the group-A consists of its single-

threaded instance. Both normalized IPC and 95th percentile latency

is normalized based on those when each benchmark runs alone with

20 LLC ways allocated. Similar trends as the hardware results are

observed (Figure 3.1, Figure 3.2, and Table 3.3) and clearly show

MiW. The other case also matches with Table 3.2.

 60

(a) 473.astar for group-A and 403.gcc for group-B

(b) xapian for group-A and 403.gcc for group-B

Figure 4.3: Simulation results on SPEC CPU2006 and TailBench

showing trends similar to hardware experiments, reproducing MiW.

4.3.3 Mitigating MiW through mVC

We evaluate the effectiveness of virtualizing the data path of

memory channels by executing multi-programmed workloads on

 61

the simulator. Figure 4.4 shows the IPCs of three workload pairs

that demonstrate MiW in Chapter 3.1 (Table 3.2 and Table 3.3),

normalized to the IPCs with standalone execution. We compare four

buffer allocation strategies for mVC discussed in Chapter 4.2: static

(mVC-STATIC), proportional (mVC-PROP), inverse proportional

(mVC-INVPROP), and dynamic (mVC-DAMQ). Because there are

16 cores, we executed each benchmark with a rate of 8.

We made the following key observations. First, mVC effectively

addresses the blocking problem except for mVC-INVPROP and

mVC-DAMQ. As group-A gets allocated with more LLC ways in

the baseline without mVC, the requests from group-B flood the

request buffer to cause starvation of group-A. With mVCs,

however, group-A has a guaranteed share of the request buffer

entries and a fair chance for DRAM accesses via round-robin

scheduling, alleviating the problem of blocking and eliminating MiW.

For example, Figure 4.4.(a) shows the results using a 473.astar-

403.gcc pair. With mVC-PROP and mVC-STATIC, 473.astar

achieves 95.2% and 86.4% of the IPC of standalone execution,

respectively, while the baseline achieves only 75.0% without mVC

due to MiW. MiW is also eliminated in Figure 4.4.(b) and (c). By

recovering lost IPC from MiW, this opens additional opportunities

for consolidating workloads requiring an IPC service-level

objective (SLO) [30] with other best-effort workloads.

 62

(a) 473.astar for group-A and 403.gcc for group-B

(b) 403.gcc for group-A and 403.gcc for group-B

 63

(c) 523.xalancbmk for group-A and 523.xalancbmk for group-B

Figure 4.4: Simulation results of mVC with different memory

request buffer allocation policies: mVC-STATIC, mVC-PROP,

mVC-INVPROP, and mVC-DAMQ. The normalized IPC is

normalized based on those when each benchmark runs alone with

20 LLC ways allocated.

Second, mVC-PROP more effectively eliminates MiW than

mVC-STATIC at the cost of penalizing the group with fewer

resources, while mVC-DAMQ and mVC-INVPROP fail to eliminate

MiW. In mVC-PROP, as group-A receives more LLC ways, more

request buffer entries are allocated to it, yielding higher memory

throughput due to a larger memory scheduling window. mVC-

STATIC allocates memory requests fairly, which may increase

 64

system-wide throughput in some cases. Assuming an 80:20

division of the shared and dedicated regions, mVC-DAMQ performs

slightly better than the baseline, but cannot eliminate MiW because

group-B experiences a high LLC MPKI to flood the shared region

of the request buffer, leading to starvation of group-A. If the

dedicated region is expanded to alleviate this problem, mVC-DAMQ

eventually behaves like static buffer allocation (mVC-STATIC) to

lose the benefits of dynamic allocation. mVC-INVPROP allocates

buffer entries in an opposite way of mVC-PROP. Therefore, in

contrast to mVC-PROP, which eliminates MiW, mVC-INVPROP can

deteriorate MiW by allocating fewer buffer entries to the group.

This trend is clearly observed in our simulated cases.

4.3.4 Evaluation on Four Groups

So far, we have only considered the case of two workload groups.

This time, we investigate the case of expanding to four workload

groups instead of two. Since there were only a few cache ways,

more than four workload groups were hard to evaluate. We

evaluated for the cases where the 20 cache ways were assigned as

2:6:6:6, 5:5:5:5, 8:4:4:4, 11:3:3:3, 14:2:2:2, and 17:1:1:1 to group-

A, B, C, and D respectively. We evaluate the effectiveness of mVC,

virtualizing the data path of each group by executing multi-

programmed workloads on the simulator. The simulation results are

shown in Figure 4.5.(a) and (b).

 65

(a) xalancbmk, astar, omnetpp, gcc were used for group-A, B, C,

and D respectively.

(b) astar, omnetpp, gcc, xalancbmk were used for group-A, B, C,

and D respectively.

Figure 4.5: Simulation results in the case of 4 groups instead of 2

groups. Simulated for mVC with different memory request buffer

allocation policies: mVC-STATIC, mVC-PROP, and mVC-

INVPROP. The normalized IPC is normalized based on those when

each benchmark runs alone with 20 LLC ways allocated.

 66

For four group cases, we compare mVC-STATIC, mVC-PROP,

and mVC-INVPROP. Similar observations could be made with two

groups. mVC effectively addresses the blocking problem for four

groups except for mVC-INVPROP, like the case of two groups. It is

also not surprising that mVC-PROP mitigates MiW more effectively

than mVC-STATIC.

4.3.5 Potentials for Operating Cost Savings with mVC

mVC provides another knob to control resource allocation between

two (or more) groups of applications. Figure 4.6 shows the results

of a two-dimensional parameter sweeping for a 403.gcc-403.gcc

pair, which demonstrates the greatest degree of MiW among the

three SPEC CPU benchmark pairs we evaluate. X- and Y-axis

represent the number of LLC ways allocated to group-A and the

number of request buffer entries allocated to group-A, respectively.

The Z-axis represents the corresponding IPC of group-A or B,

which is normalized by its stand-alone IPC.

Figure 4.6.(a) and 4.6.(b) show the IPC normalized to

standalone execution for group-A and group-B, respectively. As

we run two copies of the same application, Figure 4.6.(a) and

4.6.(b) have the same shape but are oriented to the opposite

direction (i.e., (x, y) = (1, 1) in (a) has the same IPC with (x, y) =

(19, 19) in (b)).

 67

1
4

7
10

13
16

19
0.0

0.2

0.4

0.6

0.8

1.0

1
4

7 10
13

16
19

N
o

rm
al

iz
e

d
IP

C

0.0 -0.2 0.2 -0.4 0.4 -0.6 0.6 -0.8 0.8 -1.0

(a) Simulation result of 403.gcc-403.gcc (group-A; 403.gcc)

1
4

7
10

13
16

19
0.0

0.2

0.4

0.6

0.8

1.0

1
4

7 10
13

16
19

N
o

rm
al

iz
e

d
IP

C

0.0 -0.2 0.2 -0.4 0.4 -0.6 0.6 -0.8 0.8 -1.0

(b) Simulation result of 403.gcc-403.gcc (group-B; 403.gcc)

Figure 4.6: Simulation result of 403.gcc-403.gcc, showing the

design space of LLC ways allocated to 403.gcc (group-A) and

 68

memory request queue size allocated to 403.gcc (group- A). The

colored region in (a) displays the design space where satisfying

normalized IPC higher than 0.9, and (b) shows only the

corresponding remaining region of 403.gcc (group-B).

As expected, as the more LLC ways and buffer entries are

allocated, the better performance is achieved. We can also observe

the performance is more sensitive to the number of LLC ways

allocated than the queue size. Note that the configurations that yield

>90% of the standalone IPC for group-A are colored in red in

Figure 4.6.(a) and that we only show the IPCs of the corresponding

configurations for group-B in Figure 4.6.(b).

With a simplifying assumption of (1) cache ways being the only

knob we control for resource allocation and (2) a service level

objective (SLO) of 90% of the standalone IPC for group-A (group-

B has no SLO), we estimate the potential for saving machine count

from workload consolidation. We further assume it takes 1,000

dedicated machines for each of the two application groups in

standalone mode to satisfy the application throughput requirement.

From Figure 4.6, we can select an appropriate configuration of the

number of LLC ways and that of buffer entries to meet the SLO

target for group-A and also to maximize the throughput of group-B.

For example, if we choose the point of 49.1% IPC for group-B,

which is the best IPC achievable while providing a 90% IPC for

 69

group-A, we can run group-A and group-B concurrently on 1,111

machines for group-A and group-B, and dedicate 454 extra

machines to group-B to maintain the same throughput as 2,000

dedicated machines. This consolidation is only possible with mVC

because, without it, group-A cannot satisfy the IPC SLO in a

consolidated machine due to MiW. Thus, mVC can save 21.8% of

machines compared to the baseline with LLC partitioning only,

which would still require 2,000 dedicated machines to satisfy the

throughput and IPC SLO. Applying the same methodology, we can

save the operating cost by 7.9% and 13.3% for the other two pairs

of SPEC benchmarks (473.astar-403.gcc (Figure 4.7) and

523.xalancbmk-523.xalancbmk) without violating SLO.

 70

1
4

7
10

13
16

19
0.0

0.2

0.4

0.6

0.8

1.0

1 3 5 7 9 11 13 15 17 19

N
or

m
a

liz
e

d
IP

C

0.0 -0.2 0.2 -0.4 0.4 -0.6 0.6 -0.8 0.8 -1.0

(a) Simulation result of 473.astar-403.gcc (group-A; 473.astar)

1
4

7
10

13
16

19
0.0

0.2

0.4

0.6

0.8

1.0

1 3 5 7 9 11 13 15 17 19

N
or

m
al

iz
ed

 I
P

C

0.0 -0.2 0.2 -0.4 0.4 -0.6 0.6 -0.8 0.8 -1.0

(b) Simulation result of 473.astar-403.gcc (group-B; 403.gcc)

Figure 4.7: Additional simulation results of the case 473.astar-

403.gcc, displaying the design space where satisfying normalized

IPC higher than 0.9.

 71

Chapter 5

Related Work

5.1 Component-wise QoS/Fairness for Shared

Resources

A myriad of techniques has been proposed to support quality-of-

service (QoS) and fairness for shared on-chip resources, such as

caches [15], [18], [31], [39], [49], [50], [51], on-chip

interconnects (NoCs) [14], [25], [37] and DRAM bandwidth [22],

[35], [36], [48], [52]. For caches, Suh et al. [49] introduce a

dynamic monitoring scheme for the shared cache accessed by

multiple concurrent threads and apply it to cache partitioning to

minimize the total miss count. Qureshi and Patt [39] improve this

 72

by using utility-based cache partitioning (UCP). CQoS [18]

identifies the QoS problem in the shared LLC among concurrent

threads to propose cache partitioning based on priority

classifications.

Locally-fair arbitration in NoC can result in global unfairness,

creating parking lot problem where remote traffic is penalized by

going through more arbitrations. Recent proposals addressing this

problem include Globally Synchronized Frames (GSF) [25],

Preemptive Virtual Clock (PVC) [14], probabilistic arbitration [26],

and LOFT [37], providing fair bandwidth allocation. Song et al. [44]

observe an opposite problem in processor-interconnects of NUMA

servers, where a remote flow may receive more bandwidth than

highly contended local flows, calling inverse parking lot problem.

However, these prior works do not address unfairness from cache

partitioning.

Finally, DRAM banks and channels are other major sources of

inter-thread interference. Multiple access streams from different

threads may be interleaved to reduce the row buffer locality of

DRAM accesses, hence degrading QoS and overall throughput. A

variety of DRAM access schedulers have been proposed to recover

locality and provide QoS [22], [35], [36]. For example, ATLAS

[22] prevents memory-intensive processes from monopolizing the

memory bandwidth by prioritizing requests from the least attained

memory service thread (the expected shortest job). Though

effective for QoS, ATLAS is originally designed to maximize total

 73

throughput. MISE [48] estimates the slowdown of an application

caused by memory interference through occasionally prioritizing the

application over other co-running workloads; it then applies the

model to devise scheduling schemes with better QoS.

However, these component-wise QoS techniques fail to provide

robust performance without considering a complex interplay

between different resources (e.g., LLC ways vs. DRAM bandwidth)

as demonstrated in this paper and other literature [12], [30].

5.2 Holistic Approaches to QoS/Fairness

Unlike the component-wise QoS techniques, some QoS frameworks

propose to manage multiple shared resources holistically. Fairness

via Source Throttling (FST) [12] and GSF memory system (GSFM)

[24] aim to achieve better QoS along the shared memory access

path by memory injection control at each source. ASM [47] extends

MISE [48] by quantifying the effect of interference from co-

running applications at a shared cache by using an auxiliary tag

store. Then it models application slowdowns due to interference at

both the shared cache and main memory and applies the model to

improve performance and fairness of the applications. Iyer et al.

[19] and Heracles [30] provide performance isolation by jointly

partitioning both cache space and memory bandwidth. While

 74

providing better end-to-end QoS than component-wise QoS

approaches, their solutions are incomplete as they do not prevent

blocking caused by shared DRAM request buffers. We show the

existence of this problem and propose mVC to resolve it.

5.3 MiW on Recent Architectures

This study analyzed the MiW phenomenon in Intel Broadwell-based

Xeon system and Skylake-based Xeon system where CAT was

introduced. There is a study that analyzed the effect of CAT on

Cascade Lake [70] and Ice Lake [69] based Xeon systems with

more recent architecture [60].

In this study, a synthetic benchmark was designed and used in

the experiment. The synthetic benchmark consists of a bandwidth

benchmark that repeats a buffer of a given size several times until it

is terminated [71]. Each iteration performs a load or store of every

64 bytes of data corresponding to the size of the cache line.

Because there are no dependencies between successive requests,

they can be done in parallel maximizing the load on main memory.

Benchmarks estimate received bandwidth by measuring execution

time and the number of memory operations completed. Depending

on the size of the data buffer, you can make this benchmark either

LLC sensitive or main memory sensitive.

 75

To make the synthetic benchmark sensitive to main memory,

the size of the buffer is set to 3 times the size of shared LLC, and

through this, the impact of contention on the main memory resource

can be confirmed. In order to make it sensitive to LLC, the buffer

size was larger than the L2 size used in the experimental

environment and smaller than the LLC size.

As a result of the experiment in the paper, it was shown that in

Cascade Lake, when the number of interference cores increases,

the LLC miss increases rapidly, resulting in memory bandwidth

contention. In Ice Lake, LLC miss is constant even when the

number of interference cores increases, but memory bandwidth

contention still occurs. However, the cache miss is not null using

CAT without contention. It is assumed that the reason why this

phenomenon occurs is that Intel's address mapping applies the hash

function over several bits to maintain a balance in the contiguous

physical address space. The paper concludes that RDT management

and monitoring do not always behave as expected.

 76

Chapter 6

Conclusion

In this dissertation, we have demonstrated on real server machines

how applications with more allocated LLC capacity can perform

worse. Cache partitioning is promising for performance protection

of a process by dedicating a portion of LLC, alleviating contention,

and interference from other processes.

Because LLC is a shared resource with limited capacity, when

we allocate more LLC capacity to one application, others receive

relatively small LLC capacity. This results in a higher LLC MPKI

and stresses the congested data path within memory controllers,

which is another shared resource below the shared LLC, causing

blocking, slowing down the entire system (a balloon effect). In

particular, we identified this MiW phenomenon can impact

 77

performance up to 39.5% on synthetic workloads. Also, latency-

critical workloads could deteriorate 95th percentile latency as

worse as 547% due to MiW.

To overcome this MiW, we proposed to virtualize the shared

data path of memory controllers by mVCs. mVCs mostly eliminate

the MiW phenomenon and improve the performance as the allocated

LLC capacity increases, restoring the performance protection

intended by cache partitioning. We also explored the design space

of mVCs, changing the proportion of memory request queue and

LLC capacity allocated to each mVC.

Finally, we can reduce the overall system cost using mVCs with

a proper memory request queue size and LLC capacity while

satisfying the target performance of latency-critical workloads

even when executed with multiple workloads together. Results

show that on SPEC CPU2006 workloads, up to 21.8% system cost

can be saved while obtaining 90% of the performance compared to

stand-alone execution on a dedicated machine. Note that this

consolidation is only possible with mVC.

 78

6.1 Discussion

So far, the impact of MiW and mVC on groups with high priority and

groups with low priority has been analyzed, focusing on the inter-

group. Intra-group, how to group applications is also an interesting

topic.

In the case of an application group (group-A) with a high

priority, many caches have already been allocated through the

cache partition. Applications in the group operate like no-CP within

the allocated cache, and in case of no-CP, MiW does not occur. If a

higher priority application group (group-B) is created, group-B

will be allocated more cache and group-A will be allocated less

cache than before. In this case, group-A is allocated less cache and

performance is reduced, but group-B with higher priority is not

affected because of mVC. In addition, although group-A is allocated

a small amount of cache, it is expected that MiW does not occur

because cache partition is not applied inside group-A. Therefore,

grouping applications with similar priorities will be the most

efficient grouping method.

 79

6.2 Future Work

Design space of mVC arbiter policy

In Chapter 4, we focused on four buffer allocation strategies for

mVC. However, for the mVC arbiter, a simple round-robin manner

arbitration logic was used. Further research of the design space of

mVC arbiter policies can be a consideration since different policies

can impact the performance. The mVC arbiter policy should be

carefully considered. Wrong policy may affect DRAM commands

and cause DRAM row buffer conflicts, which in turn may adversely

affect overall system performance and even cause deadlocks or

may not be fair.

Guideline for mVCs

In this paper, we showed that even with CP, we did not get the

performance we expected for several benchmark applications. To

solve this, we focused on showing that SLO can be satisfied by

introducing mVC and combining appropriate knobs. Future work can

aim to present guidelines that can provide appropriate values of

knobs that can satisfy SLO to each application through real-time

system monitoring. Through this, the user will be able to satisfy the

SLO of the application by setting the knob values according to the

guidelines.

 80

Impact on virtual machines and containers

In this paper, we focused on general purpose benchmarks (SPEC)

and real-time applications (TailBench). However, recently,

deployment and services using VMs and containers for cloud

services are becoming popular. It is also left as future work to

check what impact there is in VMs and container environments with

different application characteristics.

 81

Bibliography

[1] S. Abousamra, A. El-Mahdy, and S. Selim, “Fair and

Adaptive Online Set-based Cache Partitioning,” in Computer

Engineering & Systems (ICCES), International Conference

on, 2011.

[2] J. Ahn, S. Li, S. O, and N. P. Jouppi, “McSimA+: A Manycore

Simulator with Application-level+ Simulation and Detailed

Microarchitecture Modeling,” in ISPASS, 2013.

[3] AMD, “BIOS and Kernel Developer’s Guide (BKDG) for AMD

Family 15h Models 00h-0Fh Processors,” 2006.

[4] R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. H.

Loh, and O. Mutlu, “Staged Memory Scheduling: Achieving

High Performance and Scalability in Heterogeneous

Systems,” in ISCA, 2012.

[5] L. A. Barroso, J. Clidaras, and U. Hölzle, “The Datacenter as

a Computer: An Introduction to the Design of Warehouse-

Scale Machines, 2nd Edition,” 2013.

[6] J. Chang and G. S. Sohi, Cooperative Caching for Chip

Multiprocessors. ISCA, 2006.

 82

[7] D. Chiou, P. Jain, S. Devadas, and L. Rudolph, “Dynamic

Cache Partitioning via Columnization,” in DAC, 2000.

[8] P. Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and

B. Hughes, “Cache Hierarchy and Memory Subsystem of the

AMD Opteron Processor,” IEEE Micro, vol. 30, no. 2, 2010.

[9] W. J. Dally and B. P. Towles, Principles and Practices of

Interconnection Networks. Morgan Kaufmann Publishers Inc.,

2003.

[10] J. Dean and L. A. Barroso, “The Tail at Scale,”

Communications of the ACM, vol. 56, no. 2, 2013.

[11] J. Doweck, W. Kao, A. K. Lu, J. Mandelblat, A. Rahatekar, L.

Rappoport, E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-

Generation Intel Core: New Microarchitecture Code-Named

Skylake,” IEEE Micro, vol. 37, no. 2, 2017.

[12] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt, “Fairness via

Source Throttling: A Configurable and High-performance

Fairness Substrate for Multi-core Memory Systems,” in

ASPLOS, 2010.

[13] D. Eklov, N. Nikoleris, D. Black-Schaffer, and E. Hagersten,

“Bandwidth Bandit: Quantitative Characterization of Memory

Contention,” in CGO, 2013.

[14] B. Grot, S. W. Keckler, and O. Mutlu, “Preemptive Virtual

Clock: A flexible, efficient, and cost-effective QOS scheme

for networks-on-chip,” in MICRO, 2009.

[15] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C. Gianos, R.

Singhal, and R. Iyer, “Cache QoS: From Concept to Reality in

the Intel® Xeon® Processor E5-2600 v3 Product Family,” in

 83

HPCA, 2016.

[16] Intel, Intel Xeon Processor 7500 Series Datasheet, 2010.

[17] Intel, Intel 64 and IA-32 Architectures Software

Developer’s Manuals, 2018.

[18] R. Iyer, “CQoS: A Framework for Enabling QoS in Shared

Caches of CMP Platforms,” in ICS, 2004.

[19] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y.

Solihin, L. Hsu, and S. Reinhardt, “QoS Policies and

Architecture for Cache/Memory in CMP Platforms,” in

SIGMETRICS, 2007.

[20] H. Kasture and D. Sanchez, “TailBench: A Benchmark Suite

and Evaluation Methodology for Latency-critical

Applications,” in IISWC, 2016.

[21] H. Kasture and D. Sanchez, “Ubik: Efficient Cache Sharing

with Strict QoS for Latency-Critical Workloads,” in ASPLOS,

2014.

[22] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter, “ATLAS: A

Scalable and High-performance Scheduling Algorithm for

Multiple Memory Controllers,” in HPCA, 2010.

[23] M. K. Kumashikar, S. G. Bendi, S. Nimmagadda, A. J. Deka,

and A. Agarwal, “14nm Broadwell Xeon processor family:

Design methodologies and optimizations,” in IEEE Asian

Solid-State Circuits Conference (A-SSCC), 2017.

[24] J. W. Lee, “Globally Synchronized Frames for Guaranteed

Quality-of-Service in Shared Memory Systems,” Ph.D.

dissertation, MIT, 2009.

[25] J. W. Lee, M. C. Ng, and K. Asanovic, “Globally-

 84

Synchronized Frames for Guaranteed Quality-of-Service in

On-Chip Networks,” in ISCA, 2008.

[26] M. M. Lee, J. Kim, D. Abts, M. Marty, and J. W. Lee,

“Probabilistic Distance-Based Arbitration: Providing Equality

of Service for Many-Core CMPs,” in MICRO, 2010.

[27] F. Liu, X. Jiang, and Y. Solihin, “Understanding How Off-

Chip Memory Bandwidth Partitioning in Chip Multiprocessors

Affects System Performance,” in HPCA, 2010.

[28] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu, “A

Software Memory Partition Approach for Eliminating

Banklevel Interference in Multicore Systems,” in PACT,

2012.

[29] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C.

Kozyrakis, “Towards Energy Proportionality for Large-

Scale Latency-Critical Workloads,” in ISCA, 2014.

[30] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C.

Kozyrakis, “Heracles: Improving Resource Efficiency at

Scale,” in ISCA, 2015.

[31] R. Manikantan, K. Rajan, and R. Govindarajan, “Probabilistic

Shared Cache Management (PriSM),” in ISCA, 2012.

[32] S. Mittal, “A Survey of Techniques for Cache Partitioning in

Multicore Processors,” ACM Computing Surveys (CSUR),

vol. 50, no. 2, 2017.

[33] A. M. Molnos, M. J. Heijligers, S. D. Cotofana, and J. T. van

Eijndhoven, “Compositional, Efficient Caches for a Chip

Multi-processor,” in DATE, 2006.

[34] T. Moscibroda and O. Mutlu, “A Case for Bufferless Routing

 85

in On-chip Networks,” in ISCA, 2009.

[35] O. Mutlu and T. Moscibroda, “Parallelism-Aware Batch

Scheduling: Enhancing Both Performance and Fairness of

Shared DRAM Systems,” in ISCA, 2008.

[36] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, “Fair

Queuing Memory Systems,” in MICRO, 2006.

[37] J. Ouyang and Y. Xie, “LOFT: A High Performance

Networkon- Chip Providing Quality-of-Service Support,” in

MICRO, 2010.

[38] M. Priyanka V P and M. K. Pramilarani, “An Analytical Model

for Optimum Off-Chip Memory Bandwidth Partitioning in

Multi-core Architectures,” 2016.

[39] M. K. Qureshi and Y. N. Patt, “Utility-Based Cache

Partitioning: A Low-Overhead, High-Performance, Runtime

Mechanism to Partition Shared Caches,” in MICRO, 2006.

[40] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.

Owens, “Memory Access Scheduling,” in ISCA, 2000.

[41] D. Sanchez and C. Kozyrakis, “The ZCache: Decoupling Ways

and Associativity,” in MICRO, 2010.

[42] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and

Efficient Fine-grain Cache Partitioning,” in ISCA, 2011.

[43] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder,

“Automatically Characterizing Large Scale Program

Behavior,” in ASPLOS, 2002.

[44] W. Song, G. Kim, J. Chung, J. Ahn, J. W. Lee, and J. Kim,

“History-based Arbitration for Fairness in Processor-

Interconnect of NUMA Servers,” in ASPLOS, 2017.

 86

[45] Standard Performance Evaluation Corporation, “SPEC

CPU2006,” 2006. [Online]. Available:

https://www.spec.org/cpu2006/

[46] Standard Performance Evaluation Corporation, “SPEC

CPU2017,” 2017. [Online]. Available:

https://www.spec.org/cpu2017/

[47] L. Subramanian, V. Seshadri, A. Ghosh, S. Khan, and O.

Mutlu, “The Application Slowdown Model: Quantifying and

Controlling the Impact of Inter-application Interference at

Shared Caches and Main Memory,” in MICRO, 2015.

[48] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu,

“MISE: Providing Performance Predictability and Improving

Fairness in Shared Main Memory Systems,” in HPCA, 2013.

[49] G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic Partitioning

of Shared Cache Memory,” Journal of Supercomputing, vol.

28, no. 1, 2004.

[50] Y. Xiang, X. Wang, Z. Huang, Z. Wang, Y. Luo, and Z. Wang,

“DCAPS: Dynamic Cache Allocation with Partial Sharing,” in

EuroSys, 2018.

[51] C. Xu, K. Rajamani, A. Ferreira, W. Felter, J. Rubio, and Y. Li,

“dCat: Dynamic Cache Management for Efficient,

Performance-sensitive Infrastructure-as-a-Service,” in

EuroSys, 2018.

[52] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni, “PALLOC:

DRAM bank-aware memory allocator for performance

isolation on multicore platforms,” in RTAS, 2014.

[53] X. Zhang, S. Dwarkadas, and K. Shen, “Towards Practical

 87

Page Coloring-based Multicore Cache Management,” in

EuroSys, 2009.

[54] M. Zhou, Y. Du, B. Childers, D. Mosse, and R. Melhem,

“Symmetry-Agnostic Coordinated Management of the

Memory Hierarchy in Multicore Systems,” ACM TACO,

2016.

[55] J. Chung, Y. Ro, J. Kim, J. Ahn, J. Kim, J. Kim, J. W. Lee, and

J. Ahn, “Enforcing Last-level Cache Partitioning through

Memory Virtual Channels,” in PACT, 2019

[56] Veitch, Paul, Edel Curley, and Tomasz Kantecki,

“Performance Evaluation of Cache Allocation Technology for

NFV Noisy Neighbor Mitigation,” IEEE Conference on

Network Softwarization, 2017.

[57] Intel, “Quiet Noisy Neighbor with Intel Resource Director

Technology,” 2017.

[58] A. Farshin, A. Roozbeh, G. Q. Maguire Jr, and D. Kostic,

“Make the Most Out of Last Level Cache in Intel Processors,”

in EuroSys, 2019.

[59] N. Guan, M. Lv, W. Yi, and G. Yu, “WCET Analysis with MRU

Cache: Challenging LRU for Predictability,” ACM

Transactions on Embedded Computing Systems (TECS),

2014.

[60] P. Sohal, M. Bechtel, R. Mancuso, H. Yun, and O. Krieger, “A

Closer Look at Intel Resource Director Technology (RDT),”

In Proceedings of the 30th International Conference on

Real-Time Networks and Systems, 2022.

[61] J. L. Henning, “SPEC CPU2006 Memory Footprint,” ACM

 88

SIGARCH Computer Architecture News, 2006.

[62] D. Gove, “CPU2006 Working Set Size,” ACM SIGARCH

Computer Architecture News, 2007.

[63] A. Yasin, “A Top-Down Method for Performance Analysis

and Counters Architecture,” in ISPASS, 2014.

[64] Intel, “Intel VTuneTM Amplifier XE 2013.” [Online].

[65] A. Carvalho, “The New Linux ‘perf’ tools,” in linux kongress,

2010.

[66] R. H. Seethur Raviraj, “SPEC CPU2017: Performance,

Energy and Event Characterization on Modern Processors,”

The University of Alabama in Huntsville, 2018.

[67] S. Singh, and M. Awasthi, “Memory Centric Characterization

and Analysis of Spec CPU2017 Suite,” in Proceedings of the

2019 ACM/SPEC International Conference on Performance

Engineering, 2019.

[68] A. Jaleel, “Memory characterization of workloads using

instrumentation-driven simulation,” Web Copy: http://www.

glue. umd. edu/ajaleel/workload, 2010.

[69] I. E. Papazian, “New 3rd Gen Intel Xeon Scalable Processor

(Codename: Ice Lake-SP),” in Hot Chips Symposium, 2020.

[70] M. Arafa, B. Fahim, S. Kottapalli, A. Kumar, L. P. Looi, S.

Mandava, and S. Vora, “Cascade lake: Next generation intel

xeon scalable processor,” in IEEE Micro, 2019.

[71] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha,

“Memguard: Memory Bandwidth Reservation System for

Efficient Performance Isolation in Multi-core Platforms,” in

RTAS, 2013.

 89

국 문 초 록

최근 멀티코어 프로세서 기반 시스템은 학계 및 업계의 주목을 받고

있으며, 널리 사용되고 있다. 멀티코어 프로세서 기반 시스템은 서로

다른 특성을 가진 여러 응용 프로그램들이 동시에 실행되는데, 이 때

응용 프로그램들은 시스템의 여러 자원들을 공유하게 된다. 대표적인

공유 자원의 예로는 라스트 레벨 캐시(LLC) 및 메인 메모리를 들 수

있다. 이러한 단일 공유 메모리 시스템에서 서로 다른 특성을 가진 여러

응용 프로그램들 간에 공유 자원의 공정성을 보장하거나 특정 응용

프로그램이 다른 응용 프로그램으로부터 간섭을 받지 않도록 격리하는

것은 어려운 일이다.

이를 해결하기 위하여 최근 멀티코어 프로세서는 LLC 파티셔닝을

하드웨어적으로 제공하기 시작하였다. 사용자는 하드웨어적으로 제공된

LLC 파티셔닝을 통해 특정 응용 프로그램에 원하는 수준만큼 LLC를

할당하여 다른 응용 프로그램으로부터 간섭을 받지 않도록 격리할 수

있게 되었다. 일반적인 경우 LLC 용량을 많이 할당 받을수록 성능이

향상되는 경우가 많지만, 본 연구에서는 더 많은 LLC 용량을 할당 받은

응용 프로그램이 오히려 성능 저하된다는 사실(MiW, more is worse)을

하드웨어적 실험을 통해 확인하였다. 다양한 통제된 실험을 통해 LLC

파티셔닝을 통해 LLC 용량을 적게 할당 받은 응용 프로그램이 LLC

미스를 더 자주 발생시킨다는 사실을 확일 할 수 있었다. LLC 용량을

적게 할당 받은 응용 프로그램은 응용 프로그램들이 공유하는 메인

메모리 시스템에 스트레스를 가하고, LLC 파티셔닝을 통해 서로 격리를

하였음에도 불구하고 응용 프로그램의 성능을 저하시켰다.

 90

MiW 현상을 해결하기 위해 본 연구에서는 메인 메모리 컨트롤러의

데이터 경로를 가상화하고 LLC 파티셔닝에 의해 그룹화된 각 응용

프로그램 그룹에 전용으로 할당되는 메모리 가상 채널(mVC)을

제안하였다. mVC를 통해 각 응용 프로그램 그룹은 독립적인 데이터

경로를 소유한 것처럼 가상화 된다. 따라서 특정 응용 프로그램 그룹이

데이터 경로를 독점하더라도 다른 응용 프로그램들은 성능 저하를

유발할 수 없게 되어 서로 격리된 환경을 조성한다. 추가적으로 mVC의

버퍼 크기를 조정하여 응용 프로그램 그룹의 성능 미세 조정이

가능하도록 하였다.

mVC를 도입함으로써 전체적인 시스템 비용을 줄일 수 있다. 지연

시간이 중요한 응용 프로그램과 처리량이 중요한 응용 프로그램을 함께

실행할 때 mVC가 없을 경우에는 지연 시간의 성능 기준치를 만족할 수

없었지만, mVC를 통해 성능 기준치를 만족하면서 시스템의 총 비용을

감소시킬 수 있었다. 멀티 칩 프로세서를 시뮬레이션한 실험 결과는

MiW 현상을 효과적으로 제거함을 보여주었다. 또한, 데이터 센터에서

응용 프로그램들의 동시 실행을 위한 추가적인 가능성을 제공하는 것을

보여주었다. 사례 연구를 통해 mVC를 도입하여 시스템 비용을

21.8%까지 절약할 수 있음을 보였으며, mVC를 도입하지 않은

경우에는 서비스 기준(SLO)을 만족하지 않음을 확인하였다.

주요어 : 라스트 레벨 캐시 파티셔닝, 주기억장치, 메모리 가상 채널,

공정성, QoS

학 번 : 2014-21730

	1. Introduction
	1.1 Research Contributions
	1.2 Outline

	2. Background
	2.1 Cache Hierarchy and Policies
	2.2 Cache Partitioning
	2.3 Benchmarks
	2.3.1 Working Set Size
	2.3.2 Top-down Analysis
	2.3.3 Profiling Tools

	3. More-is-Worse Phenonmenon
	3.1 More LLC Leading to Performance Drop
	3.2 Synthetic Workload Evaluation
	3.3 Impact on Latency-critical Workloads
	3.4 Workload Analysis
	3.5 The Root Cause of the MiW Phenomenon
	3.6 Limitations of Existing Solutions
	3.6.1 Memory Bandwidth Throttling
	3.6.2 Fairness-aware Memory Scheduling

	4. Virtualizing Memory Channels
	4.1 Memory Virtual Channel (mVC)
	4.2 mVC Buffer Allocation Strategies
	4.3 Evaluation
	4.3.1 Experimental Setup
	4.3.2 Reproducing Hardware Results
	4.3.3 Mitigating MiW through mVC
	4.3.4 Evaluation on Four Groups
	4.3.5 Potentials for Operating Cost Savings with mVC

	5. Related Work
	5.1 Component-wise QoS/Fairness for Shared Resources
	5.2 Holistic Approaches to QoS/Fairness
	5.3 MiW on Recent Architectures

	6. Conclusion
	6.1 Discussion
	6.2 Future Work

	Bibliography
	국문초록

<startpage>12
1. Introduction 1
 1.1 Research Contributions 5
 1.2 Outline 6
2. Background 7
 2.1 Cache Hierarchy and Policies 7
 2.2 Cache Partitioning 10
 2.3 Benchmarks 15
 2.3.1 Working Set Size 16
 2.3.2 Top-down Analysis 17
 2.3.3 Profiling Tools 19
3. More-is-Worse Phenonmenon 21
 3.1 More LLC Leading to Performance Drop 21
 3.2 Synthetic Workload Evaluation 27
 3.3 Impact on Latency-critical Workloads 31
 3.4 Workload Analysis 33
 3.5 The Root Cause of the MiW Phenomenon 35
 3.6 Limitations of Existing Solutions 41
 3.6.1 Memory Bandwidth Throttling 41
 3.6.2 Fairness-aware Memory Scheduling 44
4. Virtualizing Memory Channels 49
 4.1 Memory Virtual Channel (mVC) 50
 4.2 mVC Buffer Allocation Strategies 52
 4.3 Evaluation 57
 4.3.1 Experimental Setup 57
 4.3.2 Reproducing Hardware Results 59
 4.3.3 Mitigating MiW through mVC 60
 4.3.4 Evaluation on Four Groups 64
 4.3.5 Potentials for Operating Cost Savings with mVC 66
5. Related Work 71
 5.1 Component-wise QoS/Fairness for Shared Resources 71
 5.2 Holistic Approaches to QoS/Fairness 73
 5.3 MiW on Recent Architectures 74
6. Conclusion 76
 6.1 Discussion 78
 6.2 Future Work 79
Bibliography 81
국문초록 89
</body>

