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Abstract

State-space models (SSMs) perform predictions by learning the underlying dynam-

ics of observed sequence. We start with a throughout literature review on Gaussian

Process (GP) models and time series models based on GPs. Then, we elaborate more

on the Gaussian Process State-Space Model (GP-SSM): a Bayesian nonparametric

generalisation of discrete time nonlinear state-space models. We provide a formulation

of the GP-SSM that offers different insight into its properties.

Then, we propose a new SSM approach in both high and low dimensional observa-

tion space, which utilizes Bayesian filtering-smoothing to model system’s dynamics

more accurately than RNN-based SSMs and can be learned in an end-to-end manner.

The designed architecture, which we call the Gated Inference Network (GIN), is able to

integrate the uncertainty estimates and learn the complicated dynamics of the system

that enables us to perform estimation and imputation tasks in both data presence and

absence. The proposed model uses the GRU cells into its structure to complete the data

flow, while avoids expensive computations and potentially unstable matrix inversions.

The GIN is able to deal with any time-series data and gives us a strong robustness to

handle the observational noise.

Finally, in the numerical experiments, we show that the GIN reduces the uncer-

tainty of estimates and outperforms its counterparts , LSTMs, GRUs and variational

approaches. Several SOTA approaches are taken into account for the sake of comparison

in order to show the out-performance of the proposed algorithm.

keywords: Gaussian Process, Time Seriese
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Chapter 1

Introduction

1.1 Time Series Modeling

Time series data are a number of measurements that are taken over time. For instance, a

time series dataset may be constructed by measuring and recording power generated by a

solar panel, or by monitoring the essential signs of a patient under control. The ubiquity

of time series data and their presence in the variety of applications makes its analysis

indispensable for all contexts as disparate as the social sciences, biology, engineering

or econometrics, etc. Time series are prone to indicate high correlations resulted from

the temporal structure in the data. Thus, it is not amazing that various methods with

separated purposes have been developed over time for time series analysis. In this

thesis we mainly focus on a model-based time series approach for the sake of analysis.

Models can be taken into account as mathematical constructions that often provide a

view about how the data is generated and measured. It is worth noting that the models

are useful to make predictions about the future and they can help to better understand

what happened when the data was being generated and recorded. In the field of control

theory, the process of inferring and understanding models of time series using data is

called system identification [1]. However, in the fields of statistics and machine learning

it is often called as estimation, fitting, inference or learning of time series [2]. Creating
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meaningful models given the available data is among the most important practical

problems. Otherwise, in the case of meaningless models, any reasoning and prediction

or design based on the data may be problematic and contains multiple drawbacks. Due

to the restricted available data for our analysis both in quality and quantity, models are

usually not well-defined and suitable. It is therefore necessary to ask a crucial question:

are we restricted to make just one model or could we create a bunch of models that

were all well-fitted given the available data? If we take the uncertainty into account,

we could move from the notion of having a specific model to that of keeping various

collection of models and mixing them to construct decisions of any sort. This is one

of the rudimentary ideas in Bayesian inference. In this thesis, we develop methods of

Bayesian inference applicable for inferring dynamical systems using models, which are

based on Gaussian processes. However we work with very general models that can be

applied in a variety of scenarios, our mindset is that of the system identification field.

In other words, we try to learn models typically found in engineering problems where a

comparatively limited amount of noisy sensors measurements give us an ambiguous

vision about the system’s dynamics.

1.2 Bayesian inference for time series models

1.2.1 Bayesian methods

For learning a model from a time series or a sequence of data, we do not have the

chance of gathering infinite amount of noise free data and unrestricted computational

power. In practice, we are facing with limited noise datasets affected by noise which

causes the uncertainty about what the most suitable model is fit to the present data. In

Bayesian inference, probabilities are behaved as a solution to demonstrate the subjective

uncertainty of the rational agent performing inference [3]. This uncertainty is shown as

a probability distribution over the model, where the data is given
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p(M|D). (1.1)

Here, the model is considered in the functional form perspective or the value of

parameters that the model might have. This is different from the well known and

common approaches of time series analysis, where a single model is considered then

the system parameters are found, usually by optimising a cost function such as the

likelihood maximisation [4]. As the optimisation is completed, the resulting model

is taken into account as the best and most fitted candidate of the system and is used

for any further inference and application. However, in a Bayesian method it is already

known that multiple set of models can be fit with the data [5]. For the parametric

model scenarios, instead of obtaining a single estimation for the “best” value of the

θ parameters, Bayesian inference provides a posterior probability distribution over

the mentioned parameters p(θ|D). This distribution enables us to realize the fact that

multiple sets of values for the parameter might also be acceptable given the observed

data D. Thus, we can interpret the posterior p(θ|D) as our level of acceptance and degree

of belief about the value of the parameter θ. By such choice, predictions or decisions,

that are conducted based on the posterior, are made by computing expectations over the

posterior. In other words, but not in a formal definition, one can think of predictions

as being an average of different values that their weights are defined by the posterior

distribution. Also, predictions can be made with uncertainty and error level that shows

both the stochastic behaviour of system and our own belief about what the correct

model is and what accurate predictions are. For instance, consider a parametric model

of a discrete-time stochastic dynamical system with a continuous state defined by xt.

The state transition density then is defined as

p(xt+1|xt, θ). (1.2)

As mentioned, Bayesian learning constructs a posterior over the parameters θ given

the data p(θ|D). For the sake of state prediction, we can integrate over the posterior in

6



order to average over all acceptable values of the parameter after having seen the data

p(xt+1|xt,D) =

∫
p(xt+1|xt, θ)p(θ|D)dθ (1.3)

In this case, the predictions are generated by considering all acceptable values of θ, not

only one of them or the “best one”.

Bayesian inference consider a prior p(θ) over the parameters. The prior is a proba-

bility distribution shows how we are confident about the object to be inferred before

seeing the data. Although, this requirement for a subjective distribution without see-

ing data is often criticised, but, the prior is an opportunity to formalise many of the

assumptions that in other methods may not be explicit or less obvious. [6] points out

that “you cannot do inference without making assumptions”. These assumptions are

very clearly specified in the Bayesian approach. In the context of learning dynamical

systems, [7] derive maximum likelihood and least squares methods from Bayesian

inference. Although maximum likelihood and Bayesian inference are related in their

use of probability, but they are fundamentally separated. Bayesian methods are also

common in “big data” analysis when the complexity of the system that generated the

data is large compare to the amount of available data. In this scenario, the models of

large capacity are needed to captured the whole details appropriately. Moreover, there

also will be uncertainty about the system that constructs the data.

1.3 Nonparametric Models

In (1.3), we use this fact

p(xt+1|xt, θ,D) = p(xt+1|xt, θ) (1.4)

that works properly for the parametric models: predictions are conditionally inde-

pendent of the observed data D given the parameters. In other words, the data effects

are already considered into the parameter θ and the subsequent prediction does not use
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the original dataset. This assumption is very convenient, but it is has its own drawbacks.

Choosing a model from a specific parametric class limits its flexibility. Alternatively,

the usage of nonparametric models alleviates this issue. In those models, the data is not

distilled to a restricted and finite set of parameters. In fact, nonparametric models can

be shown to have an infinite-dimensional parameter space [8]. This allows the model to

identify more complex details as the size of the dataset D grows.

One could think a model as an information channel from past data to future pre-

dictions [9]. In this perspective, a parametric model constructs a bottleneck in the

information channel and predictions are made relying only on the learnt parameters.

However, nonparametric models are memory-based since they are required to “realize”

the full dataset for the sake of predictions. This can be presented as nonparametric

models having a number of parameters that progressively grows with the size of the

dataset. Bayesian nonparametric models employ two aspects presented so far. They

allow Bayesian inference to be conducted on objects of infinite dimensions.

1.4 Contributions

The main contributions in this thesis are as follow

(i) modeling high-low dimensional sequences: we show the eligibility of the GIN to

infer both cases, where we conduct three experiments of high dimensional non-

linear dynamics observation for single-double pendulum and visual odometry

task and two experiments of low dimensional chaotic observation for Lorenz

attractor and real world NCLT dataset. For each case, we compare the GIN

with the SOTA approaches like variational EM methods, e.g. [10] and [11], and

Gaussian Process-SSMs (GPSSMs), e.g. [12] and [13].

(ii) Ability of learning the dynamics(in the lack of them) and utilizing available

dynamics(in the presence of them) by introducing GRU cells in the Kalman

filtering-smoothing: to attain more accurate inference of observed dynamical
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system, we apply GRU cells that increases the modeling capability of the Kalman

filtering-smoothing. By conduction an ablation study of the GIN being replaced

by a linearized Gaussian state transition without non-linearity, we show the GIN

is able for better learning state space representation with disentangled dynamics

features.

(iii) Direct optimization: We show that the posterior and smoothing inference distri-

bution of the state-space model is tractable while dynamics and parameters are

estimated by neural networks. Despite variational approaches, this allows us to

use recursive Bayesian updates for direct likelihood maximization.

(iv) Noise robustness: verified by the numerical results, inferencing for highly dis-

torted sequences is feasible with the GIN.

(v) Missing data imputation: by using Bayesian properties, the GIN decides whether

to keep the previous information in the memory cell or update them by the

obtained observation. Experimental results show the out-performance of the GIN

over the SOTA studies in the imputation task.
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Chapter 2

Background and Literature Review

In this chapter we are providing a self-contained review of previous work on time series

modelling with Gaussian processes. Afterwards, we provide a review of related works

and include a comparison table, in which we make a comparison between our approach

against the SOTA.

2.1 Introduction

Time series modelling or learning dynamical systems with their parameters, also known

as system identification, tries to create a model based on measured signals. This model

can be integrated into multiple applications, for instance to predict future behaviour of

the system or explain the underlying structure in the data or to reconstruct the original

time series from the distorted noisy version. Modeling dynamical systems is ubiquitous

in nature, engineering and the social sciences. For an example, we may gather data

about how the number of individuals of multiple species in an ecosystem changes with

the passage of time; we could monitor and save data from sensors in an airplane; or

we could monitor the evolution of share price in a stock trading market. In all of the

abovementioned cases, learning from time series can represent both intuition and the

ability to make predictions. We assume that there are potentially two kinds of gathered
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signals. In the system identification context, those signals are named inputs and outputs.

Inputs are the signals that have external influences to the system and outputs are signals

that rely on the current features of the system. We will denote the input vector at time t

by ut and the output vector by wt. In this review we are mainly focus on two common

and well-known families of dynamical system models [1]. First, auto-regressive (AR)

models that directly model the next output of a system from a number of previous inputs

and outputs

wt = f(wt−1,wt−2, . . . ,wt−τ ,ut,ut−1, . . . ,ut−τ ) + δt (2.1)

where δt represents random noise that is independent and identically distributed

(i.i.d) over time.

The other famous and common class of dynamical system models is named state-

space models (SSM). In the SSMs latent (unobserved) variables are introduces that are

called states xt. All the history of the system is summarised in the state at a given time

and the state is enough to make predictions about its future. A SSM is usually defined

by the state transition function f and the measurement function h

xt+1 = f(xt,ut) + qt (2.2)

wt = h(xt,ut) + rt (2.3)

where qt and rt are additive noises known as the process noise and measurement noise,

respectively.

From this moment on, in the interest of notation simplicity, we avoid explicitly

conditioning on observed inputs ut. When available, inputs can always be considered as

arguments to the functions that are learnt. Figure 2.1b represents the graphical model of

an auto-regressive model and figure 2.1a is the graphical model of a state-space model.
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(a) SSM Graphical Model (b) AR Graphical Model

Figure 2.1: Graphical models of SSMs and ARs

2.2 Gaussian Process

Gaussian processes (GPs) are one of stochastic processes that have shown successful

performance to conduct direct inference over the functions spaces [14]. This contradicts

with models of functions, which are constructed based on the parameterised class

of functions and a prior over the parameters. In dynamical systems models context,

Gaussian processes can be used as priors over the functions that indicates the system

dynamics or a map from latent states to measurements. In the following, we include a

brief explanation of Gaussian processes and their application for the statistical regression

practical problems. A Gaussian process is defined as a set of random variables, any

combination of which have a joint Gaussian distribution

p(fi, fj , fj , . . . ) = N

(

m(xi)

m(xj)

m(xk)
...

 ,


k(xi,xi) k(xi,xj) k(xi,xk) . . .

k(xj ,xi) k(xj ,xj) k(xj ,xk) . . .

k(xk,xi) k(xk,xj) k(xk,xk) . . .
...

...
...

. . .


)

(2.4)

We denote fi as the value of a function at a particular input location f(xi). To show

that a function follows a Gaussian process, we write

f(x) ∼ GP(m(x), k(x,x′)) (2.5)

where m(x) and k(x,x′) are the mean and covariance functions respectively.
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2.2.1 Gaussian Process For Regression

The regression problem is the most common and maybe the easiest promblem in

machine learning in which one can utilize Gaussian processes. The task consists of

learning from a dataset with the pairs of data in the form of input-output (xi,wi) for N

data pairs and the outputs are real-valued. After learning, the prediction of the value of

the output wj at any new test input xj is feasible. Regression, in other words, means to

learn the function mapping inputs to outputs: wj = f(xj). We indicate how to perform

Bayesian inference in the space of functions with the help of Gaussian processes. When

we want to perform Bayesian inference on a model which is parametric, we put a prior

on the parameter p(θ) and evaluate a posterior distribution over the parameter given the

data, by combining the prior with the likelihood function p(w|θ)

p(θ|w) =
p(w|θ)p(θ)
p(w)

(2.6)

where w is called the evidence or the marginal likelihood and depends on the prior and

the likelihood

p(w) =

∫
p(w, θ)dθ =

∫
p(w|θ)p(θ)dθ (2.7)

In regression, we are aiming at finding the function, which maps inputs to outputs. A

parametric approach to Bayesian regression includes inferring a family of functions that

are parameterised by a set of parameters. Then, considering a prior on the mentioned

parameters and performing inference. Although, we could find a less limited and very

powerful method for inference on functions by directly specifying a prior over an

infinite-dimensional space of functions. This contradicts with considering a prior over a

set of parameters that implicitly define a distribution over functions.

Gaussian process is a very useful prior over functions. In a Gaussian process, once

we gather a collection of points x = {x1, . . . ,xN} at which we want to evaluate

a function, the prior distribution over the values of the function at those locations,

13



f = {f(x1), . . . , f(xN )} , has a Gaussian distribution

p(f |x) = N (m(x),K(x)) (2.8)

where m(x) and K(x) are the mean vector and covariance matrix. This has resulted

from the fact that the marginal of a Gaussian process has Gaussian distribution. Thus,

when we only deal with the Gaussian process computations including the prior are

based on Gaussian distributions. Bayes’ theorem can be employed in the conventional

way to obtain a posterior over the latent function in the location of interest points x,

where observations w = {w1, . . . ,wN} are available

p(f |w,x) = p(w|f)p(f |x)
p(w|x)

=
p(w|f)N (f |m(x),K(x))

p(w|x)
(2.9)

Because the denominator is a constant for specific given dataset, we note the

proportionality notation here as

p(f |w,x) ∝ p(w|f)N (f |m(x),K(x)) (2.10)

In the cases where the likelihood has the form p(w|f) = N (w|f ,R), the posterior has

an analytical solution as

p(f |w,x) = N
(
f |K(x)

(
K(x)+R

)−1(
w−m(x)

)
,K(x)−K(x)

(
K(x)+R

)−1
K(x)

)
(2.11)

In the case of Gaussian process regression, by considering additive Gaussian noise, the

posterior has the mentioned form. However, for random distribution selection of the

likelihood functions, the posterior will not necessarily be Gaussian. The distribution

p(f |w,x) corresponds to the posterior over the latent function f(x) in the location of

the interest points, x. This may be insightful in itself, but we are also willing to find the

value of f(x) at different location than the input space. In other words, we are willing

to predict the distribution of f∗ = f(x∗) at a new location x∗

p(f∗|x∗,w,x). (2.12)
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By marginalising out f , we have

p(f∗|x∗,w,x) =

∫
p(f∗, f |x∗,w,x)df =

∫
p(f∗|x∗, f ,x)p(f |w,x)df . (2.13)

The first term in the second integral is always a Gaussian because of the Gaussian

process properties that consider prior for linking all possible values of f and f∗ with a

joint normal distribution [14]. The second term, p(f |w,x), is the posterior of f . When

the likelihood is p(w|f) = N (f ,R), both the posterior and predictive distributions are

Gaussian. The marginal likelihood maximisation with respect to the introduced mean

and covariance functions, prepare a practical way to conduct Bayesian model selection

[14].

A potential representation of Gaussian processes in a graphical model includes

plotting a solid bar between the jointly Gaussian distributed variables [14]. The ran-

dom variables that are in touch with the solid bar are included to the same Gaussian

process and have dependency on each other where this dependency is defined with the

covariance matrix. There are unlimited amount of variables in the Gaussian process but

we only plot a limited set of variables. Figure 2.2 illustrates Gaussian process model

for the regression with a dataset including three inputs and three outputs and where

predictions are to be made at a given test point x∗.

Another interpretation of this notation includes considering a function f(.) that has

GP distribution. All variables f are conditionally independent of each other given that

function. This modeling is illustrated in figure 2.3.

It is worth noting that models involving the solid black bar should not be considered

as a conventional undirected graphical model in probabilistic graphical models. The

thick bar notation demonstrates in a simple way that variables share the same GP

distribution. For general covariance functions, drawing figure 2.2 with the conventional

directed graphical models would result in a large number of edges, which is depicted in

figure 2.4.
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Figure 2.2: Graphical model of Gaussian process regression.

2.2.2 Linear Gaussian state space models

In order to model the vectors of time series w = w1:T = [w1, ...,wT ], Gaussian state

space models (GSSMs) are commonly applied due to their filtering-smoothing ability. In

fact, GSSMs model the first-order Markov process on the state space x = [x1, ...,xT ],

which can also include the external control input u = [u1, ...,uT ] by multivariate

normality assumption of the state

pγt(xt|xt−1,ut) = N (xt;Ftxt−1 +Btut,Q), pγt(wt|xt) = N (wt;Htzt,R).

(2.14)

For the cases, which are not controlled via external input, Bt matrix is simply 0 matrix.

By Defining γt as parameters which explain how the state state changes during the

time, it contains the information of Ft,Bt and Ht which are the state transition, control

and emission matrices. In each step, the procedure is distorted via Q and R that are

process noise and observation noise, respectively. It is common to initial the first state

x1 ∼ N (0,Σ0), then the joint probability distribution of the GSSM is

pγ(w,x|u) = pγ(w|x)pγ(x|u) =
T∏
t=1

pγt(wt|xt).p(x1)
T∏
t=2

pγt(xt|xt−1,ut). (2.15)
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Figure 2.3: Graphical model of Gaussian process regression explicitly representing the

latent function.

GSSMs have substantial properties that we can utilize. Filtering and smoothing are

among these properties which allow us to obtain the filtered and smoothed posterior

based on the priors and observations. By applying classic Bayesian properties, we can

have a strong tool to handle the missing data in the image imputation task.

2.2.3 Filtering and Smoothing Parameterization for LGSSMs

The idea of Kalman filter applies two iterative steps, in the former one a prediction is

made by the prior state information, while in the latter one an update is done based

on the obtained observation. By normality assumption of known additive process and

observation noise, the filter can go through the two mentioned steps. In the prediction

step, the filter uses the transition matrix F to estimate the next priors (x−
t+1,Σ

−
t+1)

which are the estimate of the the next states without any observation.

x−
t+1 = Fx+

t , and Σ−
t+1 = FΣ+

t F
T +Q, and Q = σ2transI (2.16)

In the presence of new observation, the Kalman filter idea goes through the second step

and modifies the predicted prior based on the new observation and emission matrix H

that results in the next posterior (x+
t+1,Σ

+
t+1).
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Figure 2.4: Graphical model of Gaussian process regression using only directed edges.

Kt+1 = Σ−
t+1H

T
(
HΣ−

t+1H
T +R

)−1
, and (2.17)

x+
t+1 = x−

t+1+Σ−
t+1H

T
(
HΣ−

t+1H
T+R

)−1
(wt−Hx−

t+1) = x−
t+1+Kt+1(wt−Hx−

t+1),

(2.18)

Σ+
t+1 = Σ−

t+1 −Σ−
t+1H

T
(
HΣ−

t+1H
T +R

)−1
HΣ−

t+1. (2.19)

The whole observation update procedure can be considered as a weighted mean

between the the next prior, that comes from state update, and new observation, where

this weighting is a function of Q and R that has uncertainty nature.

We derive smoothing parameterization, where the key idea is to use Markov property,

which states that xt is independent of future observations wt+1:T as long as xt+1 is

known. However, we are not aware of xt+1, but there is a distribution over it. So by

conditioning on xt+1 and then marginalizing out it is possible to obtain xt conditioned

on w1:T .

p(xt|w1:T ) =

∫
p(xt|xt+1,w1:T )p(xt+1|w1:T )dxt+1

=

∫
p(xt|xt+1,w1:t,����wt+1:T )p(xt+1|w1:T )dxt+1

(2.20)

By using induction and and smoothed distribution for t+ 1:
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p(xt+1|w1:T ) = N (xt+1|T ,Σt+1|T ) (2.21)

we calculate the filtered two-slice distribution as follows:

.p(xt,xt+1|w1:t) = N
( x+

t

x−
t+1

 ,

 Σ+
t Σ+

t F
T
t+1

Ft+1Σ
+
t Σ−

t+1

) (2.22)

by using Gaussian conditioning we have:

p(xt|xt+1,w1:t) = N (x+
t + Jt

(
xt+1 − Ft+1x

+
t

)
,Σ+

t − JtΣ
−
t+1J

T
t ) (2.23)

where Jt = Σ+
t Ft+1[Σ

−
t+1]

−1. We calculate the smoothed distribution for t using

the rules of iterated expectation and covariance:

xt|T = E
[
E[xt|xt+1,w1:T ] |w1:T

]
= E

[
E[xt|xt+1,w1:t] |w1:T

]
= E

[
x+
t + Jt(xt+1 − Ft+1x

+
t ) |w1:T

]
= x+

t + Jt(xt+1|T − Ft+1x
+
t )

(2.24)

Σt|T = cov
[
E[xt|xt+1,w1:T ] |w1:T

]
+ E

[
cov[xt|xt+1,w1:T ] |w1:T

]
= cov

[
E[xt|xt+1,w1:t] |w1:T

]
+ E

[
cov[xt|xt+1,w1:t] |w1:T

]
= cov

[
x+
t + Jt(xt+1 − Ft+1x

+
t ) |w1:T

]
+ E

[
Σ+

t − JtΣ
−
t+1J

T
t |w1:T

]
= Jtcov

[
xt+1 − Ft+1x

+
t |w1:T

]
JT
t +Σ+

t − JtΣ
−
t+1J

T
t

= JtΣt+1|TJ
T
t +Σ+

t − JtΣ
−
t+1J

T
t

= Σ+
t + Jt

(
Σt+1|T −Σ−

t+1

)
JT
t .

(2.25)
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2.3 Related Works

LSTMs and GRUs are RNN structures with the ability of dealing with high-low di-

mensional data, however, in these models they ignore uncertainty estimation. To deal

with complex sensory inputs, some approaches integrate a deep auto encoders into their

architecture. Among these works, Embed to Control (E2C) [15] uses a deep encoder

to obtain the latent observation and a variational inference about the states. However,

these methods are not able to deal with missing data problem and imputation task since

they do not rely on memory cells and are not recurrent. Another bunch of works like

BackpropKF [16] and RKN [17] apply CNNs for dimension-reduction and output both

the uncertainty vector and latent observation, where they move away from variational

inference and borrow Bayesian properties for the inference. However, these methods

cannot handle the cases with the available knowledge of the dynamics and impose

restrictive assumptions over covariance matrices, while the GIN provides a principled

way for using the available partial dynamics information and release any assumption

over covariance. Toward learning state space (system identification) a bunch of works

like [18], [19] and [20] propose algorithms to learn GPSSMs based on maximum likeli-

hood estimation with the iterative EM algorithm, where filtering-smoothing with a set

of fixed parameters γ is conducted (E step), and then updating the set of parameters

γ is performed such that the obtained likelihood is maximized (M step). [20] obtain

sample trajectories from the smoothing distribution, then conditioned on this trajectory

they conduct M step for the model’s parameters. Other group of works consider EM-

based variational-inference like Structured Inference Networks (SIN) [21], where it

utilizes a RNN to update the state. Kalman Variational Autoencoder (KVAE) [11] and

Extended KVAE (EKVAE) [10] use the original KF equations and apply both filtering

and smoothing. However, these EM-based variational inference methods are not able to

estimate the states directly because of optimizing the lower bound of likelihood. Extra

complexity is another issue with these approaches, while they are addressed by the

proposed structure and direct end-to-end optimization in the GIN. We compare the GIN
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with these approaches in the experiment section and provide a detailed discussion of

recent related work in subsection 2.3.1.

2.3.1 Qualitative comparison of the GIN to recent related work

In table 2.1, we make a comparison to show whether algorithms are able to handle

high and low dimensional observations, learn dynamics, use available-partial dynamics,

estimate state appropriately, provide model’s uncertainty estimates handling noisy data,

handle missing data and perform direct optimization. Classic LGSSMs, e.g. EKF and

UKF, work based on the linearization of the transition and emission equations and apply

classic Bayesian updates over the linearized system with respect to the states. In other

words, transition and emission matrices in the classic LGSSMs are not data-deriven nor

trainable. Despite classic LGSSMs, in the GIN we use a data-driven based network to

learn dynamics.
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Table 2.1: Learning the dynamics in LGSSM is shown with ×/✓ because general

LGSSMs, e.g. UKF and EKF, are not able to learn the dynamics. However, in our setting

and parameterization we use a data driven-based network for obtaining transition and

emission matrices to make LGSSMs comparable with the GIN for high dimensional

observation experiments.

Model high-d low-d learn dynamics use dynamics state est uncertainty missing-noise dir opt

LSTM [22] ✓ ✓ ✓ ✓ ✓ × ✓ ✓

GRU [23] ✓ ✓ ✓ ✓ ✓ × ✓ ✓

P2T [24] ✓ ✓ ✓ × ✓ × × ✓

E2C [15] ✓ ✓ ✓ × × ✓ × ×

BB-VI [25] × ✓ ✓ × × ✓ ✓ ×

SIN [21] ✓ ✓ ✓ × × ✓ ✓ ×

DVBF [26] ✓ ✓ ✓ × × ✓ ✓ ×

VSMC [27] ✓ ✓ ✓ × × ✓ ✓ ×

DSA [28] ✓ ✓ ✓ × × ✓ × ×

KVAE [11] × ✓ ✓ × × ✓ ✓ ×

EKVAE [10] × ✓ ✓ × × ✓ ✓ ×

DSSM [13] × ✓ ✓ × ✓ ✓ × ✓

HybridGNN [12] × ✓ × ✓ ✓ × ✓ ✓

KalmanNet [29] × ✓ × ✓ ✓ × ✓ ✓

SSI [30] × ✓ × ✓ ✓ ✓ ✓ ✓

LGSSM × ✓ ×/✓ ✓ ✓ ✓ ✓ ✓

GIN ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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Chapter 3

Gated Inference Network

3.1 Gated Inference Network For System Identification

In the context of System Identification (SI), i.e. when we lack the dynamics, the GIN is

similar to a Hammerstein-Wiener (HW) model [31] [32], in the sense that it estimates

the system parameters directly from the observations, which is in the figure 3.1. e(.) and

d(.) are implemented with non-linear functions, e.g. auto encoders-MLPs. Transition

block in figure 3.1 represents the dynamics of the system that allows for the inference

using the Gaussian state space filtering-smoothing equations. However unlike a HW

model, that assumes the linearity of state space transition, we employ non-linear GRU

cells in the transition block that calculate the Kalman Gain (KG) and smoothing gain

(SG) in an appropriate manner by circumventing the computational complexity, i.e

matrix inversion issues. GRU cells empower the whole system by applying non-linearity

to the linearized Gaussian state space models (LGSSMs). Numerical results indicate

that by the proposed structure, having a good inference for even the complex non-linear

systems with high dimensional observations is feasible. To achieve this, we assume

the state fits into Gaussian state space models (GSSMs), which are commonly used to

model sequences of vectors.
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Figure 3.1: The GIN as a HW model for

system identification. In the case of high-

dimensional observation ot, the nonlinear

functions e(.) and d(.) can be implemented

by an encoder and decoder, respectively.

While for the low-dimensional case, MLPs

are utilized instead. The relation between the

internal variables, wt and xt, is simulated by

the transition block.

In most cases, the dynamics of the

system might not be available or hard to

obtain; while the process noise and ob-

servation noise are unknown (our first

three experiments). Accordingly, we

construct GIN to learn unknown vari-

ables from data in an end to end fashion,

then we utilize the constructed KG and

SG during inference time to obtain the

filtered-smoothed states. The proposed

architecture is depicted in figure 3.2. In

the presence of dynamics (our last two

experiments), auto-encoder and Dynam-

ics Network in figure 3.2 are removed. The architecture for operating high and low

dimensional observations are depicted separately with further details in figures 3.3 and

3.4.
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Figure 3.2: The high level structure of the GIN for high dimensional observation in

the lack of dynamics, while for low dimensional cases auto-encoder is replaced by

MLPs and dynamics are directly used. The latent observation wt and its uncertainty

rt, i.e., observation noise, are obtained from the encoder(MLPs). In each time step, the

last posterior mean x+
t−1 is fed to the Dynamic Network to compute F̂t and Ĥt. In the

Prediction Step the next priors (x−
t ,Σ

−
t ) are obtained by using new dynamics and the

last posteriors. In the filtering step, by using the priors (x−
t ,Σ

−
t ) and the observation

(wt, rt), the next posteriors (x+
t ,Σ

+
t ) are obtained. Applying smoothing operation

over the obtained posteriors (x+
t ,Σ

+
t ) is feasible in the smoothing step. Finally, the

decoder(MLP) is utilized to produce o+t , which can be the high-low dimensional noise

free estimates.

3.2 Parameterization

In this section we show the parameterization of the inference model. Given original noisy

measurements o1:T and latent noisy observations w1:T , we want to find good estimate

of the latent states x1:T . To achieve this, we want to infer the marginal distributions

p(xt|w1:t) for the online inference approach or filtering; and p(xt|w1:T ) for the full

inference approach or smoothing.

By defining γt = (Ft,Ht,Qt,Rt) as the model parameters at time t, where

(Qt,Rt) are process and observation noise and (Ft,Ht) explain the state transi-

tion and observation emission, we introduce an advantageous prediction parameter-

ization as pγt(xt|xt−1,w1:t−1) = N (Ftxt−1,Qt), where xt−1 ∼ N (x+
t−1,Σ

+
t−1).
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Figure 3.3: Proposed architecture for operating high dimensional observations in the

lack of dynamics.

Then, pγt(xt|w1:t−1) = N (Ftx
+
t−1,FtΣ

+
t−1F

T
t +Qt) = N (x−

t ,Σ
−
t ) is obtained by

marginalizing out xt−1 and the Gaussianity of pγt(xt|w1:t−1) results from the Gaus-

sianity of prediction parameterization. By having pγt(xt|w1:t−1) and observing wt,

filtering parameterization is introduced as:

pγt(xt|w1:t) = N
(
x−
t +Kt[wt−Htx

−
t ], Σ−

t −Kt[HtΣ
−
t H

T
t +Rt]K

T
t

)
= N

(
x+
t ,Σ

+
t

)
(3.1)

where Kt is KG. After observing all latent observations w1:T , one can do backward

induction and propagate to the previous states using the chain rule. This procedure,

known as smoothing, can be parameterized as:

pγt(xt|w1:T ) = N
(
x+
t +Jt[xt+1|T−Ft+1x

+
t ], Σ+

t +Jt

[
Σt+1|T−Σ−

t+1

]
JT
t

)
(3.2)

where Jt is SG and we use short handed notation N (xt|T ,Σt|T ) instead of (3.2).

Full derivation of filtering-smoothing parameterization is in appendex 2.2.3. These
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Figure 3.4: Proposed architecture for operating low dimensional observations in the

presence of dynamics.

parameterizations give us some insight to 1-illustrate a tractable way to construct

pγ(x|w) and accordingly obtain the posterior and smoothened states, based on which

o+ is constructed and 2- appropriately modeling γ and KG(SG) with neural networks.

To construct the KG and SG networks, we have to find appropriate inputs containing

related information to attain the KG and SG. In (3.1) and (3.2), KG and SG are given

by (3.3) and (3.4), respectively.

Kt = Σ−
t H

T
t .
[
HtΣ

−
t H

T
t +Rt

]−1 ∝ (Σ−
t ,Rt) (3.3)

Jt = Σ+
t F

T
t+1.

[
Ft+1Σ

+
t F

T
t+1 +Qt+1

]−1
= Σ+

t F
T
t+1Σ

−
t+1 ∝ Σ−

t+1
(3.4)

(3.3) is proportional to the prior covariance at time t, Σ−
t , and the observation noise

matrix, Rt, while (3.4) is proportional to prior covariance matrix at time t+ 1, Σ−
t+1.

Our encoder(MLP) directly maps the observation noise matrix from the observation

space, but the state covariance is a recursive function of previous states. Consequently,
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we consider GRUKG and GRUSG which are networks including GRU that map

[f(Σ−
t ),Rt] and f(Σ−

t+1) to the KG and SG, respectively. GRUKG considers Rt, a

diagonal matrix with rt elements in figure 3.2, as a part of its input to incorporate the

effects of observation noise. In the case of high dimensional state space, due to the

high dimension of Σ−
t and Σ−

t+1 , f is a convolutional layer with pooling to extract the

valuable information of the covariance matrix that reduces its size, while for the low

dimension of Σ−
t and Σ−

t+1, the identity function is used for f . Such structure does not

have extreme negative effects on the performance since in the reality covariance matrix

is sparse and we can code the information into smaller dimension, without loosing the

general information. Inference in the latent state space can now be implemented by

learning the process noise, prediction step, filtering step, smoothing step and learning

dynamics.

3.3 Learning The Process Noise.

In the filtering procedure, the process noise in time t is obtained as

Qt = Σ−
t − FtΣ

+
t−1F

T
t . (3.5)

where Σ−
t , Ft and Σ+

t−1 are prior state covariance, transition matrix and posterior state

covariance at time t. We can elaborate the process noise matrix at time t in more details

Qt = Σ−
t −FtΣ

+
t−1F

T
t = Σ−

t −Ft

[
Σ−

t−1−Kt−1[Ht−1Σ
−
t−1H

T
t−1+Rt−1]

−1KT
t−1

]
FT
t

(3.6)

combining (2.16) into (3.6) results in

Qt = Σ−
t − Ft

[
[Ft−1Σ

+
t−2F

T
t−1 +Qt−1]

−Kt−1[Ht−1[Ft−1Σ
+
t−2F

T
t−1 +Qt−1]H

T
t−1 +Rt−1]

−1KT
t−1

]
FT
t

(3.7)
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which is a function of Ft, Qt−1, Ft−1 and Ht−1. In the GIN, F̂t and Ĥt are learned

by the Dynamics Network with the input of x+
t−1 . From (2.18), x+

t−1 is derived as a

function of both Ft−1 and Ht−1, meaning the learned F̂t carries the information of

both Ht−1 and Ft−1. Therefore, one can rewrite the equation (3.7) as

Qt = g

(
F̂t

(
x+
t−1

)
,Qt−1

)
,where F̂t = Dynamics Network

(
x+
t−1

(
Ht−1,Ft−1

))
.

(3.8)

where g is a nonlinear function mapping x+
t−1 and Qt−1 to Qt. It is possible to go

one step further and simplify x+
t−1 more, as it has Σ−

t−1 term in (2.18), combining it

with (2.16) results in

x+
t−1 = x−

t−1 + [Ft−1Σ
+
t−2F

T
t−1 +Qt−1]

HT
t−1

(
Ht−1[Ft−1Σ

+
t−2F

T
t−1 +Qt−1]H

T
t−1 +Rt−1

)−1
(wt −Ht−1x

−
t−1)

(3.9)

indicating that not only Ft−1 and Ht−1, but also Qt−1 is included in x+
t−1, meaning

that Qt can be written solely as a function of x+
t−1.

Qt = g

(
F̂t

(
x+
t−1

))
,where F̂t = Dynamics Network

(
x+
t−1

(
Ht−1,Ft−1,Qt−1

))
.

(3.10)

We call g as Q Network, where g can be modeled by a MLP (3.10) or a recurrent

network (3.8), based on the mentioned explanations. In figure 3.4, it is shown how the

Q Network is integrated into the whole model structure.

Thus, from (3.10), the relation of the process noise with the transition matrix

indicates that Ft can possess the effects of Qt if we learn it in an appropriate manner.

F̂t(Qt) notation means that the learned transition matrix F̂t comprises the effects of

Qt, while for the simplicity we use F̂t abbreviation. Therefore, it is possible to rewrite

(3.5) as

Σ−
t = F̂tΣ

+
t−1F̂

T
t . (3.11)
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Another way to have a a meaningful inference about the process noise matrix is to

obtain it from (3.8) as a recursive function of x+
t−1 and Qt−1. Intuitively, g function

in (3.8) that we call it Q Network, can be implemented by a memory cell, e.g., a GRU

cell, to keep the past status of Q ,however, it increases the complexity of the model.

Equivalently, one can obtain Qt directly from x+
t−1 as stated in (3.10), where a fully

connected with a positive activation function plays the rule of g that maps x+
t−1 to Qt.

Numerical results corresponding to the mentioned methods for inference in the process

noise can be found in experiment section. Both of these solutions can be utilized when

the dynamics are known, i.e. we cannot learn the effects of Qt jointly with Ft as Ft is

not trainable.

3.4 Prediction Step

Similar to the model based Kalman Filter, by using dynamics of the system and

transition, the next priors are obtained from the current posterior by

x−
t = F̂tx

+
t−1 , Σ−

t = F̂tΣ
+
t−1F̂

T
t

(3.12)

where F̂t is the learned transition matrix comprises the effects of the process noise from

previous section. By which, it is feasible to predict state mean and the state covariance

matrix.

3.5 Filtering Step

To obtain the next posteriors based on the new observation (wt, rt), i.e. the output

of e(.) in figure 3.1, we have to use the obtained KG matrix from GRUKG network

and learned emission matrix Ĥt to complete updating the state mean vector and state

covariance matrix. This procedure is given by
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S−
t = Ĥt.Σ

−
t .Ĥ

T
T +Rt, Kt = Σ−

t Ĥ
T
t MtM

T
t , Mt = GRUKG(f(Σ−

t ),Rt)

(3.13)

x+
t = x−

t +Kt.[wt − Ĥtx
−
t ], Σ+

t = Σ−
t +Kt.S

−
t .K

T
t . (3.14)

In addition to avoiding the matrix inversion that arises in the computation of Kalman

gain and applying non-linearity to handle more complex dynamics, the architecture of

KG network,GRUKG, can reduce the dimension of the input to its corresponding GRU

cell, and thus reduces the total amount of parameters quadratically. Additionally, positive

rt vector and Cholesky factor consideration, MtM
T
t in (3.13), makes this procedure

trivial to guarantee the positive definiteness of the resulted covariance matrices.

3.6 Smoothing Step

After obtaining filtered states (x+
1:T ,Σ

+
1:T ) in filtering step, we employ smoothing

properties of Bayesian to get smoothed version of the states. In this stage, we use J1:T

matrices obtained from GRUSG network, learned transition matrices F̂1:T and filtered

states (x+
1:T ,Σ

+
1:T ). The procedure in each smoothing step is given by:

Jt = Σ+
t F̂

T
t+1NtN

T
t , Nt = GRUSG

(
f(Σ−

t+1)
)

(3.15)

xt|T = x+
t + Jt

[
xt+1|T − F̂t+1x

+
t

]
, Σt|T = Σ+

t + Jt

(
Σt+1|T − F̂t+1Σ

+
t F̂

T
t+1

)
JT
t

(3.16)

where the first smoothing state is set to the last filtering state, i.e. (xT |T ,ΣT |T ) =

(x+
T ,Σ

+
T ).

3.7 Learning Dynamics

We can model the dynamics in each time step t as a function of the latent observations

w1:t−1. In more details, the updates of dynamics depends on the history of the system,
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which are latent observations up to current time. However, conditioning on the noisy

observations can distort the procedure of learning the dynamics. Instead, we use the state

x+
t−1 in GSSM that includes the history of the system with considerable lower noise

distortion to increase system’s noise robustness, where we generate time correlated

noise in our experiments to show this robustness. In other words, original transition

and emission equations, xt = f(xt−1) + qt and wt = h(xt) + rt, are modeled as

xt = F̂t(x
+
t−1)xt−1 + qt and wt = Ĥt(x

+
t−1)xt + rt. We learn K state transition

and emission matrices F̂k and Ĥk, and combine each one with the state dependent

coefficient αk(x+
t−1).

F̂t(x
+
t−1) =

K∑
k=1

αk
t (x

+
t−1)F̂

k
t , Ĥt(x

+
t−1) =

K∑
k=1

αk
t (x

+
t−1)Ĥ

k
t (3.17)

where a separated neural network with softmax output is utilized to learn αk(x+
t−1)

that we call it Dynamics Network. This formulation enables us to follow Bayesian

methodology. Despite classic LGSSMs that are not able to learn the dynamics, e.g.

EKF and UKF, the trainable dynamics in the GIN are function of the states. For the

notation simplicity, we have used (F̂t, Ĥt) instead of (F̂t(x
+
t−1), Ĥt(x

+
t−1)) in the pa-

per. Intuitively, each of k sets of F̂k, Ĥk models different dynamics, that will dominate

when the corresponding element of the dynamics network is high. Additionally, this

formulation help us to introduce a loss term which tries to increase the distance of each

pair of F̂k, Ĥk set. We found this as a potential solution to prevent the model goes

through the mode collapse and prevent converging to poor local minima during training

dynamics.

In order to prevent the model being stuck in the poor local minima, e.g. focusing on

the reconstruction instead of learning the dynamics obtained by filtering-smoothing, we

find it useful to use two training tricks for an end-to-end learning:

1- Generating time correlated noisy sequences as consecutive observations, forces

the model to learn the dynamics instead of focusing on reconstruction.

32



2- For the first few epochs, only learn auto-encoder(MLPs) and globally learned

parameters, e.g. F(k) and H(k), but not Dynamics Network parameters αt(xt−1).

All the parameters are jointly learned, afterwards. This allows the system to learn

good embedding and meaningful latent vectors at first, then learns how to employ

K different dynamics variables.

To prevent the model being stuck into mode collapse, we provided two solutions:

1- By introducing k sets of Fk,Hk, where each set of Fk,Hk models different

dynamics, we introduce a loss term with a small constant factor which tries

to increase the distance of each pair of Fk,Hk set. Intuitively, the presence of

different dynamics can easily modify the states in each update. We found this

method as a potential solution to prevent the model go through the mode collapse.

2- Considering the negative distance of consecutive pairs of states as additional loss

term with a small constant factor (the distance can be considered as euclidean

difference of mean or KL of two consecutive states). Intuitively, this solution is

forcing the states to not have overlap with each other and impose them to change

in each update step.

3.8 Fitting

For the state estimation task, by implementing p(w1:T |o1:T ), p(xt|w1:T ) and p(st|xt)

with encoder, smoothing parameterization and decoder, we maximise the log-likelihood

of output p(st|o1:T ) =
∫
p(st|xt)p(xt|w1:T )p(w1:T |o1:T )dxtdw1:T ,where st is the

estimated state, i.e. equal to o+t in figure 3.2. For the image imputation task, in addition

to the state likelihood, we add the reconstruction pseudo-likelihood for inferring images

by using Bernoulli distributions as p(it|xt), i.e. the decoder in figure 3.2 maps both

state st and image it : o+t = [it, st]. Here we provide further details about the procedure

of obtaining output dtribution
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Output Distribution. In the case of grayscale images, consider each pixel,

yi, is one or zero with the probability of pi or 1 − pi respectively, meaning that

P (Y = y) = py(1− p)1−y. By re-writing the probability equation into the exponential

families form

fθ(y) = h(y).exp
(
θ.y − ψ(θ)

)
→ elog(p

y(1−p)1−y) = e
y log( p

1−p
)+ log(1−p) (3.18)

and by choosing θ = log( p
1−p) and ψ(θ) = log(1− p), we can obtain p = 1

1+e−θ .

It means that by considering θ as the last layer of the decoder and applying a softmax

layer, p is obtained. Equivalently, one can calculate the deviance between real p and

estimation of it, p̂, which is given by

D(p, p̂) =
[
p log(

p

p̂
) + (1− p)log(

1− p

1− p̂
)
]

(3.19)

and minimize the deviance with respect to p̂ as we did in (3.22).

Similarly, consider x, x̂θ and θ as the ground truth state, estimated state and the

model variables respectively, where the residual follows Gaussian distribution x =

x̂θ + ϵ ∼ N (x̂θ, σ̂θ), where σ̂θ is the estimated variance. Then, the negative log

likelihood is given by (3.20) as we obtained it in (3.21).

−log(L) ∝ 1

2
log(σ̂θ) +

(x− x̂θ)
2

2σ̂θ
(3.20)

After training phase, forecasting desired number of time steps is applicable by

plugging the new value xt = F̂txt−1 recursively in the model, and so on. Filtering

procedure, which includes Dynamics Network, prediction step and filtering step, can

be considered as a memory network. Similarly, smoothing procedure that includes

smoothing step is another memory network so that we can calculated the gradients by

using (truncated) BPTT [33] to train the GRU cells inside the architecture in an end to

end manner. To prevent GRU cells from potential instability, we split lengthy sequences

into smaller pieces(≤200) and pass them separately.
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Likelihood for Inferring States. Consider the ground truth sequence is defined

as s1:T. We determine the log likelihood of the states as:

L(s1:T ) =
T∑
t=1

logN
(
st

∣∣∣∣decmean(xt|T), deccovar(Σt|T)

)
(3.21)

where the decmean(.) and deccovar(.) determines those parts of the decoder that are used

to obtain the state mean and state variance, respectively.

Likelihood for inferring images. For the imputation task, consider the ground

truth as the sequence of images and their corresponding states, which are defined as

[s1:T , i1:T ] and the dimension of it is Do. We determine the log likelihood:

L(o+1:T ) = L(s1:T ) + λ
T∑
t=1

Do∑
k=0

i
(k)
t log

(
deck(xt|T)

)
+
(
1− i

(k)
t

)
log(1− deck(xt|T)).

(3.22)

deck(xt) defines the corresponding part of the decoder that maps the k-th pixel of it

image and λ constant determines the importance of the reconstruction. The first term in

RHS is obtained from (3.21) and we abbreviate the second term as L(i1:T ).
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Chapter 4

Evaluation And Experiments

We divide our experiments into two parts, first the tasks in which the observation

space is high dimensional like sequence of images, and second the applications that

the observation is in low dimension by itself so there is no need to include encoder for

dimension reduction. The training algorithms of both cases are added here:
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Algorithm High-Dimensional Observations Training

Input: Ground Truth gt1:T , Observations o1:T , last posteriors (x+
1:T ,Σ

+
1:T ), initial

posterior (x+
0 ,Σ

+
0 )

α1:T = Dynamics Network (x+
0:T−1)

Obtain F̂1:T and Ĥ1:T by (3.17)

(x−
1:T ,Σ

−
1:T ) = Prediction Step ((x+

0:T−1,Σ
+
0:T−1), F̂1:T )

(w1:T , r1:T ) = encoder (o1:T )

K1:T = Σ−
1:T Ĥ1:T M1:TM

T
1:T , M1:T = GRUKG(Conv2D(Σ−

1:T ), r1:T )

J1:T = Σ+
1:T F̂

T
1:TN1:TN

T
1:T , N1:T = GRUSG (Conv2D(Σ−

1:T ))

(x+
1:T ,Σ

+
1:T ) = Filtering Step (x−

1:T ,Σ
−
1:T ,K1:T ,w1:T , Ĥ1:T )

(x1:T |T ,Σ1:T |T ) = Smoothing Step (x+
1:T ,Σ

+
1:T ,J1:T , F̂1:T )

o+1:T = decoder (x1:T |T ,Σ1:T |T )

L1:T = - Likelihood (gt1:T ,o
+
1:T )

Backward Propagation ()
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Algorithm Low-Dimensional Observations Training

Input: Ground Truth gt1:T , Observations y1:T , last posteriors (x+
1:T ,Σ

+
1:T ), initial

posterior (x+
0 ,Σ

+
0 )

if Dynamics are not known then

α1:T = Dynamics Network (x+
0:T−1)

Obtain F̂1:T and Ĥ1:T by (3.17)

(w1:T , r1:T ) = MLP (y1:T )

(x−
1:T ,Σ

−
1:T ) = Prediction Step (x+

0:T−1,Σ
+
0:T−1, F̂1:T )

K1:T = Σ−
1:T Ĥ1:T M1:TM

T
1:T , M1:T = GRUKG(Σ−

1:T , r1:T )

J1:T = Σ+
1:T F̂

T
1:TN1:TN

T
1:T , N1:T = GRUSG (Σ−

1:T )

(x+
1:T ,Σ

+
1:T ) = Filtering Step (x−

1:T ,Σ
−
1:T ,K1:T ,w1:T , Ĥ1:T )

(x1:T |T ,Σ1:T |T ) = Smoothing Step (x+
1:T ,Σ

+
1:T ,J1:T , F̂1:T )

o+1:T = MLP (x1:T |T+,Σ1:T |T )

L1:T = - Likelihood (gt1:T ,o
+
1:T )

Backward Propagation ()

else

Q network = MLP (x+
0:T−1) or GRU (x+

0:T−1,Q1:T )

(F1:T ,H1:T ) = Dynamics

r1:T = trainable layer(y1:T )

q1:T = Q network(x+
0:T−1)

(x−
1:T ,Σ

−
1:T ) = Prediction Step ((x+

0:T−1,Σ
+
0:T−1),Q1:T ,F1:T )

K1:T = Σ−
1:TH1:T M1:TM

T
1:T , M1:T = GRUKG(Σ−

1:T , r1:T )

J1:T = Σ+
1:TF

T
1:TN1:TN

T
1:T , N1:T = GRUSG (Σ−

1:T )

(x+
1:T ,Σ

+
1:T ) = Filtering Step (x−

1:T ,Σ
−
1:T ,K1:T ,y1:T ,H1:T )

(x1:T |T ,Σ1:T |T ) = Smoothing Step (x+
1:T ,Σ

+
1:T ,J1:T ,F1:T )

σ1:T |T = Trainable Layer (Σ1:T |T )

o+1:T = [x1:T |T , σ1:T |T ]

L1:T = - Likelihood (gt1:T ,o
+
1:T )

Backward Propagation ()

end if
38



Table 4.1: Double pendulum state estimation.

(x1, x3) refers to the position of the first joint,

while (x2, x4) is for the second joint.

Model SEPos
x1

SEPos
x3

SEPos
x2

SEPos
x4

Log Likelihood

LSTM (units=50) 0.163 0.171 0.148 0.167 3.901 ± 0.706

LSTM (units=100) 0.154 0.147 0.134 0.152 4.053 ± 0.565

GRU (units=50) 0.189 0.183 0.179 0.177 3.886 ± 0.369

GRU (units=100) 0.164 0.156 0.162 0.145 3.976 ± 0.231

KVAE (n=2m) 0.193 0.188 0.178 0.149 3.679 ± 0.101

KVAE (n=3m) 0.171 0.159 0.151 0.162 3.801 ± 0.116

RKN (n=2m) 0.134 0.129 0.139 0.118 4.176 ± 0.294

LGSSMfilter(n=3m) 0.125 0.119 0.121 0.107 4.192 ± 0.127

LGSSMsmooth(n=3m) 0.109 0.111 0.104 0.101 4.231 ± 0.154

GINfilter(n=2m) 0.115 0.109 0.119 0.109 4.224 ± 0.105

GINfilter(n=3m) 0.093 0.091 0.098 0.089 4.329 ± 0.151

GINsmooth(n=2m) 0.091 0.104 0.101 0.092 4.308 ± 0.123

GINsmooth(n=3m) 0.079 0.083 0.085 0.077 4.477 ± 0.168

Table 4.2: Pendulum state estima-

tion. By consider n = 3m, intu-

itively the last part of the state

is dedicated to the acceleration

information causing a more liek-

lihood.

Model SEPos
x1

SEPos
x2

Log Likelihood

LSTM (units=25) 0.092 0.094 5.891 ± 0.151

LSTM (units=100) 0.089 0.087 5.751 ± 0.215

GRU (units=30) 0.095 0.089 5.986 ± 0.168

GRU (units=100) 0.091 0.089 5.698 ± 0.205

KVAE (n=2m) 0.104 0.095 5.786 ± 0.098

KVAE (n=3m) 0.088 0.093 5.858 ± 0.113

RKN (n=2m) 0.078 0.075 6.161 ± 0.23

LGSSMfilter 0.077 0.073 6.211 ± 0.265

LGSSMsmooth 0.071 0.069 6.242 ± 0.109

GINfilter(n=2m) 0.073 0.07 6.192 ± 0.239

GINfilter(n=3m) 0.067 0.066 6.315 ± 0.220

GINsmooth(n=2m) 0.065 0.067 6.292 ± 0.173

GINsmooth(n=3m) 0.059 0.057 6.445 ± 0.165

4.1 High Dimensional Observation with Lack of Dynamics

For this case, we make a comparison between our method, LSTM and GRU baselines,

RKN [17] and some variational-based approaches, e.g. [10] and [11]. The internal state

is divided into two parts, the first one determines the mean with size of n, and the

second indicates the covariance with size of n2. We include three high dimensional

experiments. The first two experiments are single pendulum and double pendulum,

where the dynamics of the latter one is more complicated and also another difficulty

exists that the second link of the double pendulum may be occluded by the first link

during the simulation. The last experiment is visual odometry task.
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Table 4.3: Image imputation task for the different models. Models contain boolean

masks determining the available and missed images. For uninformed masks, a black

image is considered as the input of the cell whenever the image is missed, which requires

the model to infer the accurate dynamics for the generation. We conduct uninformed

experiment as well.

Model Log Likelihood

E2C -95.539 ± 1.754

SIN -101.268 ± 0.567

KVAE (informed smooth) -14.217 ± 0.236

KVAE (unformed smooth) -39.260 ± 5.399

EKVAE (informed smooth) -12.897 ± 0.524

EKVAE (unformed smooth) -29.246 ± 3.328

RKN (informed) -12.782 ± 0.0160

RKN (uninformed) -12.788 ± 0.0142

LGSSM(informed smooth) -12.695 ± 0.048

GIN (informed smooth) -12.215 ± 0.027

GIN (unformed smooth) -12.246 ± 0.029

Figure 4.1: Pendulum image imputa-

tion. Each figure, beginning from up to

down, indicates the ground truth, unin-

formed observation and the imputation

results of the GIN(smoothed). Missing-

ness is applied randomly for train and

test.

4.1.1 Single Pendulum and Double Pendulum

The inputs of the encoder are the images with size of 24 × 24. The angular velocity

is disturbed by transition noise which follows Normal distribution with σ = 0.1 as its

standard deviation at each step. In the pendulum experiment, we perform the filtering-

smoothing by the GIN where the observation is distorted with high observation noise.

Furthermore, we compare GIN with LGSSM, where the GRU cells are omitted from the

GIN structure and classic filtering-smoothing equations are used, instead. The distortion

with noise changes between noiseless situation to the whole image distorted with noise

such that pure noise is observed. Moreover, the cell may observe fully distorted image

for consecutive time steps, which means that the noise has correlation with time. The
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Table 4.4: Image imputation for double

pendulum.

Model Log Likelihood

KVAE (informed smooth) -15.917 ± 0.294

KVAE (unformed smooth) -38.544 ± 6.419

EKVAE (informed smooth) -13.917 ± 0.414

EKVAE (unformed smooth) -33.548 ± 4.516

RKN (informed) -13.832 ± 0.023

RKN (uninformed) -13.898 ± 0.0191

LGSSM(informed smooth) -13.775 ± 0.013

GIN (informed smooth) -13.284 ± 0.021

GIN (unformed smooth) -13.351 ± 0.019

Figure 4.2: Double pendulum image im-

putation. Each figure, beginning from up

to down, indicates the ground truth, un-

informed observation and the imputation

results of the GIN(smoothed).

log-likelihood and squared error (SE) of positions for single and double pendulum are

given in table 4.2 and 4.1, respectively.

By randomly deleting the half of images from the generated sequences, we conduct

the image imputation task to our model by predicting those missing parts, while the

missingness applied to train and test are not same, but random. The results are in

table 4.3 and 4.4.The GIN outperforms all the other models, although the variational

inference models have more complex structures in KAVE and EKVAE. We include

the results using the MSE as well, to illustrate that our approach is also competitive in

prediction accuracy. The generated samples from trained smooth-filter distributions are

shown here
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Figure 4.3: Inference for the single pendulum x1 position at 100-th time step. Generated

samples from smoothened distribution, f(x1100|w1:150), trained by the GIN, LGSSM

and KVAE, respectively. The dashed red line (x1Pos
100|w1:150) is the ground truth state

with distribution of δ(x1100 − 0.7). We calculate the sample mean and fit a distribution

on the samples for further visualization and comparison purpose.

Figure 4.4: Inference for the single pendulum x2 position at 100-th time step. Generated

samples from smoothened distribution, f(x2100|w1:150), trained by the GIN, LGSSM

and KVAE, respectively.
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(a) GIN (b) LGSSM (c) KVAE

Figure 4.5: Generated samples from the trained smoothened joint distribution of the

single pendulum position, (x1, x2), at 100-th time step for the GIN, LGSSM and KVAE,

respectively. The ground truth is shown with a black point.
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Figure 4.6: Inference for the single pendulum x1 position at 100-th time step. Generated

samples from filter distribution, f(x1100|w1:100), trained by the GIN, LGSSM and

KVAE, respectively. The dashed red line (x1Pos
100|w1:100) is the ground truth state with

distribution of δ(x1100 − 0.7).

Figure 4.7: Inference for the single pendulum x2 position at 100-th time step. Generated

samples from filter distribution, f(x2100|w1:100), trained by the GIN, LGSSM and

KVAE, respectively.
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(a) GIN (b) LGSSM (c) KVAE

Figure 4.8: Generated samples from the trained filter joint distribution of the single

pendulum position, (x1, x2), at 100-th time step for the GIN, LGSSM and KVAE,

respectively. The ground truth is shown with a black point.

Figure 4.9: Inference for the double pendulum x1 position at 100-th time step. Generated

samples from smoothened distribution, f(x1100|w1:150), trained by the GIN, LGSSM

and KVAE, respectively. The dashed red line (x1Pos
100|w1:150) is the ground truth state

with distribution of δ(x1100 − 0.35).
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Figure 4.10: Inference for the double pendulum x2 position at 100-th time step. Gen-

erated samples from smoothened distribution, f(x2100|w1:150), trained by the GIN,

LGSSM and KVAE, respectively. The dashed red line (x2Pos
100|w1:150) is the ground

truth state with distribution of δ(x2100 − 0.35).

(a) GIN (b) LGSSM (c) KVAE

Figure 4.11: Generated samples from the trained smoothened joint distribution of the

double pendulum first joint position, (x1, x2), at 100-th time step for the GIN, LGSSM

and KVAE, respectively. The ground truth is shown with a black point.

46



Figure 4.12: Inference for the double pendulum x3 position at 100-th time step. Gen-

erated samples from smoothened distribution, f(x3100|w1:150), trained by the GIN,

LGSSM and KVAE, respectively. The dashed red line (x3Pos
100|w1:150) is the ground

truth state with distribution of δ(x3100 − 1).

Figure 4.13: Inference for the double pendulum x4 position at 100-th time step. Gen-

erated samples from smoothened distribution, f(x4100|w1:150), trained by the GIN,

LGSSM and KVAE, respectively.
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(a) GIN (b) LGSSM (c) KVAE

Figure 4.14: Generated samples from the trained smoothened joint distribution of the

double pendulum second joint position, (x3, x4), at 100-th time step for the GIN,

LGSSM and KVAE, respectively. The ground truth is shown with a black point.

Figure 4.15: Inference for the double pendulum x1 position at 100-th time step. Gen-

erated samples from filter distribution, f(x1100|w1:100), trained by the GIN, LGSSM

and KVAE, respectively. The dashed red line (x1Pos
100|w1:100) is the ground truth state

with distribution of δ(x1100 − 0.35).
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Figure 4.16: Inference for the double pendulum x2 position at 100-th time step. Gen-

erated samples from filter distribution, f(x2100|w1:100), trained by the GIN, LGSSM

and KVAE, respectively. The dashed red line (x2Pos
100|w1:100) is the ground truth state

with distribution of δ(x2100 − 0.35).

(a) GIN (b) LGSSM (c) KVAE

Figure 4.17: Generated samples from the trained filter joint distribution of the double

pendulum first joint position, (x1, x2), at 100-th time step for the GIN, LGSSM and

KVAE, respectively. The ground truth is shown with a black point.
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Figure 4.18: Inference for the double pendulum x3 position at 100-th time step. Gen-

erated samples from filter distribution, f(x3100|w1:100), trained by the GIN, LGSSM

and KVAE, respectively. The dashed red line (x3Pos
100|w1:100) is the ground truth state

with distribution of δ(x3100 − 1).

Figure 4.19: Inference for the double pendulum x4 position at 100-th time step. Gen-

erated samples from filter distribution, f(x4100|w1:100), trained by the GIN, LGSSM

and KVAE, respectively.
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(a) GIN (b) LGSSM (c) KVAE

Figure 4.20: Generated samples from the trained filter joint distribution of the double

pendulum second joint position, (x3, x4), at 100-th time step for the GIN, LGSSM and

KVAE, respectively. The ground truth is shown with a black point.

The MSE results for the single and double pendulum experiments are in the table

4.5 and 4.7. In addition to (3.11), where F matrix includes the effects of the process

noise, two other mentioned solutions introduced in section 3.2, are included in the MSE

results as well. Using GRU cell and MLP for mapping x+, as their input, to Q, as their

output, where the former one is shown by GRU(Q) and the latter one by MLP(Q) in

the tables.
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Table 4.5: MSE for single pendulum experiment.

Model MSE

LSTM (units = 25, m = 15) 0.092±0.003

LSTM (units = 25, m = 20) 0.092±0.005

LSTM (units = 25, m = 40) 0.090±0.005

LSTM (units = 100, m = 15) 0.089±0.002

LSTM (units = 100, m = 20) 0.089±0.005

LSTM (units = 100, m = 40) 0.090±0.004

GRU (units = 30, m = 15) 0.095±0.006

GRU (units = 30, m = 20) 0.093±0.002

GRU (units = 30, m = 40) 0.094±0.005

GRU (units = 100, m = 15) 0.091±0.002

GRU (units = 100, m = 20) 0.092±0.004

GRU (units = 100, m = 40) 0.091±0.008
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Table 4.6: MSE for single pendulum experiment.

Model F̂(Q) MLP(Q) GRU(Q)

LGSSM filter(m = 15, n = 30, K = 10) 0.089±0.009 0.088±0.005 0.088±0.006

LGSSM filter(m = 15, n = 30, K = 15) 0.088±0.011 0.087±0.007 0.086±0.004

LGSSM filter(m = 15, n = 45, K = 10) 0.085±0.004 0.084±0.007 0.084±0.009

LGSSM filter(m = 15, n = 45, K = 15) 0.084±0.005 0.083±0.004 0.082±0.004

LGSSM filter(m = 20, n = 40, K = 10) 0.084±0.009 0.082±0.014 0.082±0.011

LGSSM filter(m = 20, n = 40, K = 15) 0.083±0.012 0.081±0.005 0.080±0.014

LGSSM filter(m = 20, n = 60, K = 10) 0.079±0.005 0.078±0.012 0.076±0.009

LGSSM filter(m = 20, n = 60, K = 15) 0.077±0.006 0.075±0.011 0.074±0.008

LGSSM smooth(m = 15, n = 30, K = 10) 0.086±0.011 0.083±0.004 0.084±0.007

LGSSM smooth(m = 15, n = 30, K = 15) 0.085±0.012 0.084±0.008 0.083±0.012

LGSSM smooth(m = 15, n = 45, K = 10) 0.081±0.008 0.080±0.009 0.079±0.003

LGSSM smooth(m = 15, n = 45, K = 15) 0.081±0.014 0.078±0.007 0.077±0.011

LGSSM smooth(m = 20, n = 40, K = 10) 0.082±0.005 0.078±0.004 0.076±0.013

LGSSM smooth(m = 20, n = 40, K = 15) 0.080±0.003 0.076±0.006 0.074±0.010

LGSSM smooth(m = 20, n = 60, K = 10) 0.076±0.008 0.073±0.002 0.070±0.009

LGSSM smooth(m = 20, n = 60, K = 15) 0.073±0.013 0.071±0.011 0.068±0.013

GIN filter(m = 15, n = 30, K = 10) 0.078±0.013 0.076±0.005 0.075±0.004

GIN filter(m = 15, n = 30, K = 15) 0.078±0.014 0.075±0.009 0.074±0.012

GIN filter(m = 15, n = 45, K = 10) 0.074±0.010 0.073±0.008 0.072±0.009

GIN filter(m = 15, n = 45, K = 15) 0.073±0.015 0.074±0.011 0.071±0.005

GIN filter(m = 20, n = 40, K = 10) 0.072±0.005 0.072±0.008 0.070±0.002

GIN filter(m = 20, n = 40, K = 15) 0.071±0.007 0.071±0.004 0.071±0.009

GIN filter(m = 20, n = 60, K = 10) 0.067±0.009 0.066±0.005 0.065±0.006

GIN filter(m = 20, n = 60, K = 15) 0.065±0.013 0.064±0.009 0.063±0.010

GIN smooth(m = 15, n = 30, K = 10) 0.071±0.007 0.070±0.003 0.068±0.009

GIN smooth(m = 15, n = 30, K = 15) 0.070±0.008 0.068±0.011 0.068±0.007

GIN smooth(m = 15, n = 45, K = 10) 0.065±0.011 0.065±0.009 0.064±0.012

GIN smooth(m = 15, n = 45, K = 15) 0.064±0.008 0.066±0.007 0.063±0.009

GIN smooth(m = 20, n = 40, K = 10) 0.064±0.005 0.065±0.003 0.062±0.008

GIN smooth(m = 20, n = 40, K = 15) 0.063±0.004 0.064±0.011 0.063±0.007

GIN smooth(m = 20, n = 60, K = 10) 0.059±0.009 0.061±0.012 0.057±0.006

GIN smooth(m = 20, n = 60, K = 15) 0.058±0.005 0.057±0.009 0.056±0.004

54



Table 4.7: MSE for double pendulum experiment.

Model MSE

LSTM (units = 50, m = 15) 0.172±0.012

LSTM (units = 50, m = 20) 0.166±0.009

LSTM (units = 50, m = 40) 0.167±0.011

LSTM (units = 100, m = 15) 0.164±0.006

LSTM (units = 100, m = 20) 0.162±0.009

LSTM (units = 100, m = 40) 0.159±0.010

GRU (units = 50, m = 15) 0.194±0.014

GRU (units = 50, m = 20) 0.189±0.013

GRU (units = 50, m = 40) 0.188±0.015

GRU (units = 100, m = 15) 0.173±0.009

GRU (units = 100, m = 20) 0.169±0.014

GRU (units = 100, m = 40) 0.166±0.018
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Table 4.8: MSE for double pendulum experiment.

Model F̂(Q) MLP(Q) GRU(Q)

LGSSM filter(m = 15, n = 30, K = 10) 0.154±0.013 0.159±0.021 0.153±0.009

LGSSM filter(m = 15, n = 30, K = 15) 0.152±0.008 0.153±0.010 0.152±0.012

LGSSM filter(m = 15, n = 45, K = 10) 0.144±0.011 0.141±0.015 0.139±0.013

LGSSM filter(m = 15, n = 45, K = 15) 0.142±0.007 0.138±0.012 0.137±0.017

LGSSM filter(m = 20, n = 40, K = 10) 0.144±0.012 0.137±0.009 0.138±0.013

LGSSM filter(m = 20, n = 40, K = 15) 0.141±0.007 0.137±0.008 0.136±0.016

LGSSM filter(m = 20, n = 60, K = 10) 0.129±0.009 0.126±0.014 0.122±0.015

LGSSM filter(m = 20, n = 60, K = 15) 0.127±0.012 0.124±0.013 0.119±0.009

LGSSM smooth(m = 15, n = 30, K = 10) 0.147±0.009 0.148±0.014 0.144±0.015

LGSSM smooth(m = 15, n = 30, K = 15) 0.146±0.014 0.146±0.013 0.142±0.017

LGSSM smooth(m = 15, n = 45, K = 10) 0.139±0.017 0.136±0.009 0.133±0.017

LGSSM smooth(m = 15, n = 45, K = 15) 0.137±0.009 0.135±0.017 0.133±0.012

LGSSM smooth(m = 20, n = 40, K = 10) 0.136±0.014 0.131±0.022 0.132±0.011

LGSSM smooth(m = 20, n = 40, K = 15) 0.134±0.011 0.129±0.014 0.129±0.022

LGSSM smooth(m = 20, n = 60, K = 10) 0.123±0.019 0.116±0.016 0.115±0.013

LGSSM smooth(m = 20, n = 60, K = 15) 0.120±0.010 0.112±0.009 0.108±0.014

GIN filter(m = 15, n = 30, K = 10) 0.126±0.014 0.125±0.012 0.125±0.011

GIN filter(m = 15, n = 30, K = 15) 0.124±0.015 0.124±0.019 0.121±0.009

GIN filter(m = 15, n = 45, K = 10) 0.115±0.011 0.114±0.015 0.110±0.017

GIN filter(m = 15, n = 45, K = 15) 0.114±0.019 0.112±0.020 0.110±0.011

GIN filter(m = 20, n = 40, K = 10) 0.113±0.013 0.111±0.009 0.111±0.013

GIN filter(m = 20, n = 40, K = 15) 0.111±0.009 0.109±0.018 0.108±0.009

GIN filter(m = 20, n = 60, K = 10) 0.099±0.018 0.094±0.017 0.095±0.021

GIN filter(m = 20, n = 60, K = 15) 0.097±0.009 0.093±0.009 0.091±0.008

GIN smooth(m = 15, n = 30, K = 10) 0.115±0.011 0.116±0.009 0.113±0.017

GIN smooth(m = 15, n = 30, K = 15) 0.113±0.015 0.113±0.018 0.112±0.014

GIN smooth(m = 15, n = 45, K = 10) 0.105±0.009 0.101±0.014 0.101±0.015

GIN smooth(m = 15, n = 45, K = 15) 0.102±0.013 0.100±0.011 0.098±0.008

GIN smooth(m = 20, n = 40, K = 10) 0.101±0.008 0.098±0.010 0.094±0.015

GIN smooth(m = 20, n = 40, K = 15) 0.098±0.017 0.095±0.014 0.092±0.007

GIN smooth(m = 20, n = 60, K = 10) 0.086±0.013 0.081±0.008 0.079±0.009

GIN smooth(m = 20, n = 60, K = 15) 0.083±0.009 0.079±0.006 0.076±0.013
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4.1.2 Visual Odometry of KITTI Dataset

We also evaluate the GIN with the higher dimensional observations for the visual

odometry task on the KITTI dataset [34]. This dataset consists of 11 separated image

sequences with their corresponding labels. In order to extract the positional features, we

use a feature extractor network proposed by Zhou et al. in [35]. The obtained features

are considered as the observations of the GIN, i.e. (w, r). Additionally, we compare the

results with LSTM, GRU, DeepVO [36] and KVAE. The results are in table 4.9, where

the common evaluation scheme for the KITTI dataset is exploited. The results of the

KVAE degrades substantially as we have to reduce the size of the latent observation to

prevent the complexity of matrix inversion in the smoothing-filtering, which causes an

inevitable information loss.
Table 4.9: Comparison of model performance on KITTI dataset. The GIN is outper-

forming conventional memory cells, while its performance is comparable with DeepVO,

a tailored technique for the visual odometry.

Seq
LSTM GRU DeepVO KVAE LGSSM GIN

trel(%) rrel(
◦) trel(%) rrel(

◦) trel(%) rrel(
◦) trel(%) rrel(

◦) trel(%) rrel(
◦) trel(%) rrel(

◦)

03 8.99 4.55 9.34 3.81 8.49 6.89 12.14 4.38 7.51 3.98 6.98 3.27

04 11.88 3.44 12.36 2.89 7.19 6.97 13.17 4.73 9.12 2.64 9.14 2.28

05 8.96 3.43 10.02 3.43 2.62 3.61 11.47 5.14 6.11 3.21 4.38 2.51

06 9.66 2.8 10.99 3.22 5.42 5.82 10.93 3.98 6.70 3.51 6.14 2.90

07 9.83 5.48 13.70 6.52 3.91 4.60 12.73 4.68 6.59 3.49 7.21 2.98

10 13.58 3.49 13.37 3.25 8.11 8.83 14.79 10.91 9.32 2.90 8.37 2.59

mean 10.53 3.87 11.63 3.85 5.96 6.12 12.53 5.63 7.55 3.28 7.03 2.75

The generated samples from trained smooth-filter distributions are shown here
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Figure 4.21: Inference for the visual odometry x1 position at 100-th time step. Generated

samples from filter distribution, f(x1100|w1:100), trained by the GIN, LGSSM and

KVAE, respectively. The dashed red line (x1Pos
100|w1:100) is the ground truth state with

distribution of δ(x1100 + 50).

Figure 4.22: Inference for the visual odometry x2 position at 100-th time step. Generated

samples from filter distribution, f(x2100|w1:100), trained by the GIN, LGSSM and

KVAE, respectively. The dashed red line (x2Pos
100|w1:100) is the ground truth state with

distribution of δ(x1100 − 10).
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(a) GIN (b) LGSSM (c) KVAE

Figure 4.23: Generated samples from the trained filter joint distribution of the visual

odometry joint position, (x1, x2), at 100-th time step for the GIN, LGSSM and KVAE,

respectively. The ground truth is shown with a black point.

4.2 Low Dimensional Observation with Presence of Dynam-

ics

We conduct two experiments for this case, Lorenz attractor problem and the real world

dynamics NCLT dataset, where we are aware of the dynamics.

4.2.1 Lorenz Atrractor

Figure 4.24: MSE of Lorenz at-

tractor with respect to the train-

ing samples.

The Lorenz system is a system of ordinary differen-

tial equations that describes a non-linear dynamic

system used for atmospheric convection. Due to

nonlinear dynamics of this chaotic system, it can be

a good evaluation for the GIN cell. The details of

the dynamics of Lorenz attractor is explained here.

There are three differential equations that model a

Lorenz system, x the convection rate, y the horizon-

tal temperature variation and z the vertical temper-
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ature variation.

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz (4.1)

where the constant values σ, ρ and β are 10, 28 and −8
3 , respectively. To construct a

trajectory we use Lorenz system equations (4.1) with dt = 10−5, then we sample from

it with the step time of ∆t = 0.01.

Based on the equations of the system (4.1), the state is st = [xt, yt, zt] and we can

write the dynamics of the system as At and obtain the transition matrix Exp[At] = Ft.

To achieve this, we use the Taylor expansion of Exp function with 5 degrees.

ṡt = Atst =


−10 10 0

28− z −1 0

y 0 −8
3



x

y

z

 , and Ft = Exp[At] = I+
J∑

j=1

(At.∆t)
j

j!

(4.2)

where J is the degrees of expansion and I is the identity matrix. For the emission

matrix we use Ht = I and for process and observation noise standard deviation, we

use Qt =
1

100σ
2I and Rt = σ2I, respectively.

We evaluate the performance of the GIN on a trajectory of 5k length. Each point in

the generated trajectories is distorted with an observation noise that follows Gaussian

distribution with standard deviation σ = 0.5. The likelihood with Gaussian distribution

is calculated and maximized in the training phase. The mean square error (MSE) of the

test data for various number of training samples are depicted in figure 4.24. Hybrid is a

graphical GNN based model [12] and DSSM [13] is a version of LGSSM using LSTM

cells.

Due to the non-linearity of the dynamics of this system, LGSSM has to use lin-

earization and then use the linearized dynamics to model the transition. The DSSM

model performs better for lager amount of data (>10K) because it needs to learn the

dynamics. The results of the Hybrid GNN and the GIN are similar, while the results

of the GIN are slightly improved. Although, the core of both models is based on the

GRU cell, this enhancement may come from the structure of the GIN that learns the
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(a) Observation (b) LGSSM(smooth) (c) GIN(filter) (d) GIN(smooth)

Figure 4.25: Inferred 5k length trajectories for Lorenz attractor.

observation and process noises separately. Comparison with LGSSM indicates that

applying non-linearity(GRU cells) to the GIN, benefits it in non-linear dynamics. The

required numbers of training samples to achieve 0.1 and 0.05 MSE for the GIN are

approximately 350 and 3800 samples, respectively. Inferred trajectories are in figure

4.25.

4.2.2 Real World Dynamics: Michigan NCLT dataset

Table 4.10: MSE for NCLT experi-

ment

Model MSE[dB]

GIN(smooth) 18.64±0.13

Hybrid GNN 20.73± 0.21

KalmanNet 22.2±0.17

DSSM 29.54±0.58

Vanilla RNN 40.21±0.52

LGSSM 24.38±0.17

Observation 25.47±0.08

To evaluate the performance of the GIN on a real

world dataset, the Michigan NCLT dataset [37]

is utilized that encompasses a collection of nav-

igation data gathered by a segwey robot moving

inside of the University of Michigan’s North Cam-

pus. The states in each time, xt ∈ R4, comprise

the position and the velocity in each direction and

the observations, yt ∈ R2, include noisy positions.

The ultimate purpose is to localize the real posi-

tion of the segway robot, while only the noisy GPS

observations are available. We apply the GIN to

find the current location of the segway robot.

In this experiment, we randomly select the

session 2012-01-22 captured in a cloudy situation

with the length of 6.1 Km. By sampling with 1Hz and removing the unstable GPS
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observations, 4280 time steps are achieved. For the dynamics of the system, we consider

a uniform motion pattern with a constant velocity. The details of the dynamics of NCLT

movement is explained here. We assume that the segway robot is moved with a constant

velocity, that the equations for such dynamics are given by

∂p1
∂t

= v1,
∂p2
∂t

= v2,
∂v1
∂t

= 0,
∂v2
∂t

= 0, xt = [p1, v1, p2, v2], yt = [p1, p2].

(4.3)

By such assumptions for the motion’s equations the transition, process noise distribution,

emission and measurement noise distribution matrices can be obtained by

F =


1 ∆t 0 0

0 1 0 0

0 0 1 ∆t

0 0 0 1

 , Q = σ2


∆t 0 0 0

0 ∆t 0 0

0 0 ∆t 0

0 0 0 ∆t

 , H =

1 0 0 0

0 0 1 0

 ,

R = λ2

1 0

0 1

 .
(4.4)

where ∆t = 1 since the sampling frequency is 1Hz. Process and measurement

variance parameters, σ and λ, are unknown that the model will learn them. we split

the whole sequence into training, testing and validation folds with the length of 3600

( 18 sequences of length T = 200) , 280 (1 sequence of length T = 280) and 400 (2

sequences of length T = 200), respectively. The training procedure is completed by

maximizing the likelihood with Gaussian distribution assumption. The mean squared

error of each approach for the test set are mentioned in the table 4.10, where the

GIN (73.12± 2.21 MSE) outperforms other approaches.In summary, this experiment

indicates that the GIN can generalize with good performance to a real world dataset.
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Chapter 5

Conclusion

In this thesis, we have presented a number of contributions towards practical Bayesian

learning of nonlinear time series models. Solutions have been offered to attempt to

achieve a number of goals. In this thesis the proposed GIN, an approach for representa-

tion learning in both high and low dimensional SSMs, is introduced. The data flow is

conducted by Bayesian filtering-smoothing, while, due to the usage of GRU based KG

and SG network, the computational issues are tackled resulting in an efficient model

with numerical stable results. In the presence of the dynamics, the GIN directly use

them, otherwise it directly learns them in an end to end manner, which makes the GIN

as a HW model with strong system identification abilities. Insightful representation for

the uncertainty of the predictions is incorporated in this approach, while it outperforms

its counterparts including LSTMs, GRUs and several generative models with variational

inferences. We can summarize the contributions and the goal of this thesis as follow

• Bayesian learning: The presented algorithm in this thesis has aimed at providing

a posteriors over nonlinear dynamical systems. These posteriors provide an

intuitive view about the uncertainty and give us some intuition about what the

actual dynamical systems are given the particular time series. In most of scenarios

and settings, quantifying predictive uncertainty is necessary to provide a belief

about the accuracy of the decisions made with the model.
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• Nonparametric modelling: We presented learning algorithms for models of time

series based on Gaussian processes. The generated samples from smoothened-

filtered distributions and their comparison with the ground truth indicates that the

model has the capability of learning the underlying dynamics. Meaning that the

proposed architecture is able to learn fully nonparametric models of time series

which combine very large model capacity while avoiding the risk of overfitting.

• Fast training: In most of the practical problems, we are facing with sparse version

of covariance matrices in Gaussian process systems. Models based on sparse

Gaussian processes inherit most of the properties of their fully nonparametric

counterparts whilst reducing the computational complexity. This means that

mapping the high dimensional sparse information to low dimensional dense

information is feasible without losing the general information. We achieve over

this goal by introducing the convolutional operator in our structure, which learns

to perform this map.

• Ease of use: The proposed smoothened-filtered distributions for nonlinear dy-

namics, provide robust and fast learning method that makes it well suited to

application by non-experts. Its main advantage is that it avoids the expensive (and

potentially difficult to tune) computational issues like matrix inversions that are

key points in classic Gaussian process approaches.
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