

저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer

저작자표시. 귀하는 원저작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Learning-Based Autonomous Vehicle

Navigation Using Road Graph Networks

도로 그래프 네트워크를 이용한 학습 기반의 자율주행

네비게이션

BY

TAEOH HA

FEBRUARY 2023

DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

COLLEGE OF ENGINEERING

SEOUL NATIONAL UNIVERSITY

Learning-Based Autonomous Vehicle Navigation Using Road

Graph Networks

도로 그래프 네트워크를 이용한 학습 기반의 자율주행

네비게이션

지도교수 오 성 회

이 논문을 공학박사 학위논문으로 제출함

2023 년 1 월

서울대학교 대학원

전기·정보 공학부

하 태 오

하태오의 공학박사 학위논문을 인준함

2023 년 1 월

위 원 장 최 진 영

부 위원장 오 성 회

위 원 조 남 익

위 원 양 인 순

위 원 최 성 준

Abstract

This dissertation focuses on the learning-based autonomous navigation prob-

lem. To deploy an autonomous framework to the real world, it is necessary to de-

sign a general-purpose controller that can operate in various road environments.

Previous methodologies have used case-specific methodologies, which means that

a specific road environment is assumed for each case when designing a controller.

A controller designed in this case-specific manner cannot properly operate in

an unseen road environment which has not been addressed before. In addition,

since the types of road environments are diverse, developing a general-purpose

autonomous driving controller requires a lot of development time and cost. There-

fore, a new kind of methodology, which is not limited to a specific road environ-

ment, is required to develop a general-purpose autonomous driving controller.

This dissertation aims to design a controller which operates universally without

assuming a specific road environment. For this purpose, we employ a learning-

based controller and focus on improving general driving performance through

learning in various environments. In particular, to make the controller capture

the features of various road environments, we suggest providing information about

a road environment as input for the controller. Road environment information is

encoded using a graph, and the controller enhances the driving performance by

learning the encoded features of the road graph. This dissertation deals with three

major issues related to utilizing a road graph.

First, this dissertation deals with a graph-based methodology for encoding road

environment information. In general, the movement of a vehicle on the road is

affected by the shape of the road. Therefore, when figuring out the location infor-

mation of the vehicle, the shape of the road on which the vehicle is located must

be considered together. For this purpose, we propose a representation method

which reflects roads in the form of graphs and links the location information of

vehicles to road graphs. We also propose a novel network structure capable of

processing such road graph representations. Experimental results demonstrate

that encoding a state by a road graph helps to generalize the controller’s driving

environment.

Second, this dissertation deals with a methodology that fuses road environment

information with other sensor data. A road graph represents the structure of a

road and the location of nearby vehicles but does not represent other information

required to drive in a real world road environment. For example, information

such as road signs and traffic signals is difficult to express by a road graph.

To address this issue, we propose to combine a road graph with other sensor

data such as images and LiDAR. Information that could not be obtained by

a road graph is supplemented through other sensor data information. We also

propose a novel network architecture which can fuse a road graph with various

sensor data. Through the proposed network architecture, the controller succeeds

in autonomous driving even in complex road environments. Experimental results

demonstrate that the proposed fusion-based method helps to figure out the road

environment state.

Finally, this dissertation deals with a methodology that can detect possible

errors on road graphs and thereby prevent the degradation of autonomous driving

performance. A road graph based controller requires a road graph database to be

prepared in advance. However, roads can be continually changed due to several

reasons, such as road construction. If these changes are not reflected in the road

graph database, the controller receives incorrect road information as input. A

slow update to the road graph can cause controller performance degradation, and

therefore an error detection method is necessary to prevent such degradation. For

this purpose, we propose a methodology which can detect road graph errors. We

first define errors that may occur due to road changes and propose road graph

change detection modules which can detect these errors. Experimental results

show that road graph change detection can be used to improve the performance

of an autonomous driving controller.

Keywords: Autonomous Driving, Road Graph, Reinforcement Learning, Im-

itation Learning, State Representation, Navigation, Image Processing, Object

Detection

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Organization of the dissertation . 3

2 Background 7

2.1 Learning Algorithm for Autonomous Driving 7

2.1.1 Reinforcement Learning . 8

2.1.2 Imitation Learning . 11

2.2 State Representation for Autonomous Driving 15

2.2.1 Feature-Based Representation 15

2.2.2 Bird’s Eye View Image Representation 21

2.2.3 Egocentric View Image Representation 23

2.2.4 Sensor Fusion Based Representation 27

3 Road Graphical Neural Networks for Autonomous Driving 31

3.1 Problem Setting . 33

3.2 Proposed Method . 40

3.2.1 Node-and-Edge-Level Encoding 42

3.2.2 Graph-Level Encoding . 42

3.2.3 Time-Level Encoding . 43

3.2.4 Learning Algorithm . 44

i

3.3 Experiments . 44

3.3.1 Environment and Network Details 44

3.3.2 Experimental Results . 46

3.3.3 Qualitative Results . 50

3.4 Chapter Summary . 53

4 Road Graph and Image Attention Network for Autonomous

Driving 59

4.1 Problem Setting . 62

4.2 Proposed Method . 63

4.2.1 Feature Encoder . 63

4.2.2 Attention Network . 67

4.2.3 Low-Level Controller . 69

4.2.4 Learning Algorithm . 70

4.3 Experiments . 70

4.3.1 Experimental Settings . 71

4.3.2 Dataset . 71

4.3.3 Implementation Details . 72

4.3.4 Baselines . 74

4.3.5 Comparison Results . 76

4.3.6 Attention Score Visualization 77

4.3.7 Road Graph Feature Analysis 77

4.3.8 Ablation Study . 81

4.3.9 Qualitative Results . 83

4.4 Chapter Summary . 84

5 Road Graph Change Detection for Autonomous Driving 89

5.1 Problem Setting . 92

5.2 Proposed Method . 95

ii

5.2.1 Controller Module . 96

5.2.2 Road Change Detection Module 98

5.3 Experiments . 102

5.3.1 Environments . 102

5.3.2 Performance of Road Graph Based Controller Module . . . 103

5.3.3 Performance of Road Change Detection Module 109

5.3.4 Robustness of Controller under Road Change Condition . . 112

5.4 Chapter Summary . 114

6 Conclusion 119

Appendices 121

A Collected map images of roundabout environment 123

B Map image and road graph of CARLA Town05 125

C Details of CARLA evaluation metrics 129

D Detailed results of CARLA experiment in Chapter 4 133

E Detailed results of CARLA experiment in Chapter 5 139

F Examples of FMTC real-world dataset scenarios 143

G Effect of localization error on road change detection accuracy 149

H Analysis of detection accuracy according to the degree of road

changes 153

I Ablation study about performance consistency in CARLA envi-

ronment 157

iii

iv

List of Figures

1.1 An example of road graph representation 2

2.1 An example of distance features . 16

2.2 An example of longitudinal and lateral positions 17

2.3 An example of a Frenet coordinate frame 18

2.4 Two different example scenarios on a straight road environment . . 20

2.5 An example of bird’s eye view images 22

2.6 An example of egocentric view images 26

2.7 An example of LiDAR sensor data in the CARLA simulator 29

2.8 An example of LiDAR sensor data in the real world 30

3.1 Overview of training a Road-GNN based controller and autonomous

driving using Road-GNN in unseen environments 34

3.2 An example of a roundabout environment 36

3.3 The overall process of Road-GNN 41

3.4 Examples of collected map images 45

3.5 Learning curve of RL algorithms 48

3.6 Experiment with various difficulty levels 51

3.7 Roundabout environments used for showing qualitative results . . 54

3.8 Snapshots of a simulation result of Road-GNN 55

3.9 Snapshots of a simulation result of Road-GNN 56

v

3.10 Snapshots of a simulation result for comparison 57

3.11 Snapshots of a simulation result for comparison 58

4.1 Illustration of our main idea . 61

4.2 The structure of the feature encoder module 64

4.3 The structure of the networks . 69

4.4 Visualization of attention scores . 79

4.5 Road graph feature analysis . 80

4.6 Turn right and avoid a pedestrian scenario 85

4.7 Turn left and avoid a pedestrian scenario 86

4.8 Crossing an intersection scenario 87

4.9 Turn right and avoid a pedestrian scenario 88

5.1 An example of a road graph and road changes in the CARLA

simulator . 94

5.2 The structure of the proposed framework 96

5.3 Illustration of the proposed road change detection methods 99

5.4 Vehicle platform and sensor configuration 104

5.5 Snapshot of FMTC environment 105

5.6 Illustrations of four real-world experience scenarios 106

A.1 Examples of collected map images 124

B.1 HD-map and global road graph of Town05 126

B.2 A part of Town05 map example . 127

F.1 FMTC dataset example (Scenario 1: Go straight) 144

F.2 FMTC dataset example (Scenario 2: Turn right) 145

F.3 FMTC dataset example (Scenario 3: Turn left) 146

F.4 FMTC dataset example (Scenario 4: Stop behind another vehicle) 147

vi

G.1 Effect of localization error on road change detection accuracy . . . 151

H.1 Analysis of detection accuracy according to the degree of road

changes . 155

vii

viii

List of Tables

3.1 Network Architecture Parameters 46

3.2 Performance Comparison . 49

3.3 Experiment with aggressive drivers 50

4.1 Performance Comparison . 78

4.2 Ablation Study . 82

5.1 Performance comparison of controller module (CARLA) 108

5.2 Average L2 norm in meters between the expert waypoints and the

waypoints calculated by controller module (FMTC Real-World) . . 108

5.3 Performance comparison of road change detection module by av-

erage precision (CARLA) . 111

5.4 Performance comparison of road change detection module by av-

erage precision (FMTC Real-World) 113

5.5 Performance consistency of RIANet++ under road change condi-

tions (CARLA) . 115

5.6 Performance consistency of RIANet++ under road change condi-

tions (FMTC Real-World) . 116

C.1 Infraction and corresponding coefficient 130

D.1 Performance Comparison in Town05 Short 135

ix

D.2 Performance Comparison in Town05 Long 136

D.3 Ablation Study in Town05 Short 137

D.4 Ablation Study in Town05 Long 138

E.1 Performance consistency of RIANet++ under road change condi-

tions (CARLA Town05 Short) . 140

E.2 Performance consistency of RIANet++ under road change condi-

tions (CARLA Town05 Long) . 141

I.1 Ablation study in Town05 Short 159

I.2 Ablation study in Town05 Long . 160

x

Chapter 1

Introduction

1.1 Motivation

Autonomous vehicle navigation has been studied by a number of researchers for a

long time. In particular, learning-based autonomous vehicle navigation has been

widely studied with the development of deep neural network. Many existing stud-

ies about autonomous driving have been performed using a driving simulator for

safety. One of the most popular examples of simulators is the highway simula-

tor using the NGSIM dataset [34]. The NGSIM dataset was collected by taking

videos from a highway traffic camera, and several works [17, 15, 41] have con-

structed an open-loop driving simulator by making vehicles follow the trajectories

of the NGSIM dataset. Many other studies have suggested using a closed-loop

driving simulator where the movements of vehicles are changed in response to

the ego vehicle’s action. In these studies, road structures such as merging roads

[59, 54], intersections [45], or city streets [24] have been used to test the driving

performance of an autonomous vehicle. In most of their works, however, they

have used the same road structure for both training and testing. This can cause

a generalization issue when the vehicle controller is deployed into a real world

environment. If the driving agent is tested in a new unseen environment, it is

1

Chapter 1. Introduction

(a) (b)

Figure 1.1: An example of road graph representation. (a) Bird’s eye view image

of a urban driving environment. (b) Corresponding road graph.

likely to fail to drive because it lacks the knowledge of the new environment.

When training a generalized framework which can drive in various road envi-

ronments, one of the most important issues for a driving agent is how to capture

the structural information of a road. Road graph representation is one of the

methods to express the structural information of a road. Road graph is a graph

which shows the shape and structure of a road. Figure 1.1 shows an example of

the road graph. In a road graph, each node is a sampled point at which a vehicle

can be located on the road. In addition, each edge is connected when the vehicle

can move between each node. Through this road graph, it is possible to represent

the road’s positional and directional information. A road graph also can have

various features for each node and edge. For example, node or edge features can

contain road direction information, or traffic information.. Through this method,

an autonomous driving agent can effectively obtain useful information.

Unlike the state presentation used in the existing autonomous driving problem,

the road graph presentation has the advantage of effectively transmitting road

information. In the case of the feature vector based presentation, there is a limit

to expressing complex and various forms of roads with only simple vectors. In the

case of image based representation, it requires more memory to fully show the road

2

Chapter 1. Introduction

structure, compared to the road graph. Therefore, the road graph presentation is

a more suitable state representation for the autonomous driving problems.

Several works have represented this structural information in the form of a

graph. Gao et al. [29] vectorized components on a road and expressed the re-

lationship between each vector as a graph. Similarly, Liang et al. [52] proposed

a graph representation which can represent lanes in a road. However, they only

focused on the prediction of vehicle movements, and their works have not been

applied in the field of vehicle control. In addition, their works have a limitation

because their frameworks use the dataset [10] which is collected from relatively

simple road environments such as an intersection.

In this dissertation, we focus on enhancing the generalized performance of

autonomous driving by providing a road graph based state representation. We

also provide a novel driving framework which can leverage both a road graph

and other sensor data. In addition, we focus on several issues which can occur

when a road graph representation is applied to a real world environment. For the

robustness of our framework, we aim to detect errors in a road graph which can

occur by road changes.

1.2 Organization of the dissertation

From Chapter 2 to Chapter 5, we cover several research topics about road graph

presentation and its application. In this section, we explain the organization of

the dissertation.

In Chapter 2, we introduce backgrounds of learning-based automatic vehicle

navigation. We mainly cover learning-based frameworks which is widely used in

autonomous driving. We introduce reinforcement learning and imitation learning

framework. We then explain how each framework has been applied in the au-

tonomous driving field. We also cover various types of state representation which

3

Chapter 1. Introduction

are used as inputs for learning-based driving frameworks. We describe the ad-

vantages and disadvantages of each representation method and explain how each

method is used in autonomous driving.

In Chapter 3, we propose road graph neural network (Road-GNN), which is

an autonomous driving framework using a road graph presentation. Road-GNN

consists of several encoding processes. Road-GNN first encodes node and edge

features of a road graph using a deep neural network. Road-GNN then encodes the

road graph information. The encoded features are recorded in historical memory

and combined together. Finally, Road-GNN takes the final encoded features as an

input and is trained with a reinforcement learning framework. In the experiment,

we demonstrate that the proposed representation method is more effective than

other methods when training a learning-based driving agent.

In Chapter 4, we propose road image attention network (RIANet), which can

solve an issue in a road graph based controller. In a road graph, crucial infor-

mation for driving, such as a traffic light or sign, is ignored. Since Road-GNN

uses only a road graph as an input, it does not consider this crucial information

when driving in the real world. To solve this issue, we propose a fusion-based

driving framework which can leverage information from both road graphs and

other sensor data. In the experiment, we experimentally show that the proposed

framework outperforms the other frameworks by fusing the sensor data.

In Chapter 5, we propose a detection framework which detect a road change

error in a road graph. A road graph can be changed due to road construction,

and this change can reduce the performance of a driving agent. To solve this

issue, we propose several road change detection methods to filter out unreliable

and inaccurate road graphs. We also suggest a robust driving framework named

RIANet++, which combines the proposed road change detection modules with

the road graph based controller module. Through the proposed framework, we

can measure the unreliability of a road graph and consider it when controlling

4

Chapter 1. Introduction

the ego-vehicle.

5

Chapter 1. Introduction

6

Chapter 2

Background

In this chapter, we introduce learning-based frameworks which are widely used

in autonomous driving. There are two major issues related to training an au-

tonomous driving agent. First, deciding how to train an autonomous driving agent

is an important issue because the driving performance of an agent is influenced

by its learning algorithm. Second, deciding which information to give is another

important issue because the control of an agent is influenced by its input. Those

two issues are essential for training an agent and have been addressed in various

studies. The remainder of this chapter covers those two issues and introduces

various methods related to each issue.

2.1 Learning Algorithm for Autonomous Driving

There are several learning-based autonomous driving frameworks. Unlike other

non-learning-based frameworks, such as model predictive control (MPC), learning-

based frameworks enable improving performance without requiring complex phys-

ical vehicle modeling. Reinforcement learning and imitation learning are among

the most frequently and widely used learning-based frameworks. These two frame-

works are generally combined with deep learning for scalability. Unlike other

7

Chapter 2. Background

methods, deep learning based frameworks can handle a high dimensional input,

such as a camera image or LiDAR cloud point data.

2.1.1 Reinforcement Learning

Reinforcement learning (RL) is a framework which trains an agent through a spe-

cific pre-defined reward. In a reinforcement learning framework, the autonomous

driving problem is formulated using a Markov decision process (MDP). For each

timestep t, the agent observes the current state st. The agent then uses the policy

π to determine an action at. The action at is a control signal which can include a

target speed, acceleration, or steering. Each action may be a useful control signal

which drives a vehicle safely or, otherwise, a harmful control signal which causes

an accident. As a result of the action, the agent’s state is changed to the next

state st+1. During the training, the agent receives a pre-determined reward rt

according to the result of the action. The goal of reinforcement learning is to

maximize the expected sum of rewards Eπ[
∑

t γ
trt], where γ is a discount factor.

One of the most popular reinforcement learning algorithms is Deep Q-Network

(DQN) [56]. DQN is also known as a Q-learning based reinforcement learning

framework. In DQN, a neural network named Q-network predicts a state-action

value of each action, which is the expected sum of rewards. The state-action value

Q is defined as follows:

Q(s, a) = E[
∑
t

γtrt|st = s, at = a] (2.1)

Here, the policy of the agent is defined as an argmax policy.

π(st) = arg max
a

Qθ(st, a), (2.2)

where Qθ is a Q-network and θ is a training parameter. At each iteration, Qθ is

updated using the following loss function:

L = E(s,a,r,s′)∼Dexp
[(r + γmax

a′
Qθ(s

′, a′) −Qθ(s, a))2], (2.3)

8

Chapter 2. Background

where Dexp is a set of experiences of the agent.

In contrast to DQN, trust region policy optimization (TRPO) [72] is an actor-

critic based reinforcement learning framework. Unlike Q-learning, an actor-critic

based framework separates the network that calculates a policy from the network

that calculates a value. Each network is named as a policy network π (actor) and

a value network V (critic), respectively. In TRPO, the networks are trained while

solving the following optimization problem.

maximize
θ

E[
πθ(at|st)
πθold(at|st)

Ât]

subject to E[KL[πθold(·|st), πθ(·|st)]] ≤ δ,

(2.4)

where KL is a KL divergence, θold is a training parameter before the update,

and Ât = −V (st) + γT−tV (sT) +
∑T−1

k=t γ
k−trk is an advantage estimator which

indicates how much the expected sum of reward will be improved compared with

the current state. The constraint of Equation 2.6 is called a trust region. The

trust region constraint prevents the policy from being changed too much when

it is updated. In this way, TRPO guarantees a monotonic improvement of the

policy network π. The value network V is updated by a square-error loss LV F .

LV F = (Vθ(st) − V target
t)2, (2.5)

where V target
t is a target value computed from the sampled experience. PPO

computes Ât through the value network V for each iteration.

Proximal policy optimization (PPO) [73] simplifies the optimization process

of TRPO. PPO denotes the probability ratio πθ(at|st)
πθold

(at|st) as R(θ) = πθ(at|st)
πθold

(at|st) .

Instead of KL divergence constraint, PPO uses a clipped surrogate objective as

follows.

maximize
θ

E[min(Rt(θ)Ât, clip(Rt(θ), 1 − ϵ, 1 + ϵ)Ât)], (2.6)

where clip is a clipping operator which clips the surrogate objective Rt(θ)Ât

between the interval [(1 − ϵ)Ât, (1 + ϵ)Ât] with a small margin ϵ.

9

Chapter 2. Background

Reinforcement learning frameworks have been applied to several works in the

field of autonomous driving. In many works, a driving simulator is used to train

a deep learning based reinforcement learning policy. For example, DQN [56] was

applied by Nishitani et al. [59] to train an agent which drives on a merging road.

To enhance the learning efficiency, they also suggested training an embedding

network which predicts the vehicle speed. In their framework, the reward function

is designed to minimize the impact of the merging on traffic flow. The agent

obtains a zero reward while the ego vehicle is on the ramp. After the merging

is completed, the agent obtains the merging completion reward according to the

average speed of all vehicles. To minimize the reward, the agent must merge

smoothly and make no slowdown in the traffic flow. PPO [73] has also been used

by several works to train a driving agent. Saxena et al. [70] used PPO to train

a driving agent who can drive on a dense and crowded road. In their work, they

suggested a reward function and an observation which are carefully designed

for driving in dense traffic. Likewise, Osiński et al. [60] trained a driving agent

using PPO. Compared to the other methods, they used a more realistic driving

simulator which mimics a real world road structure and scenario.

There are two major difficulties when applying a reinforcement learning frame-

work to the autonomous driving problem. First, it is difficult to give full state

information to the agent. The state information of a real world environment can

be obtained from a sensor such as a camera. However, it is impossible to grasp

perfect state information because a sensor may be noisy and not perfect. For

example, distortion of a camera lens, low resolution, or limited field of view can

make it challenging to identify surrounding objects accurately. In addition, an oc-

clusion by an object can block the field of view of a camera. Partially observable

Markov decision process (POMDP) has been proposed to deal with this issue. In

POMDP, the observation ot, which represents the information from the sensor

data, is used instead of the state. The observation ot can include various sensor

10

Chapter 2. Background

data such as RGB camera image, LiDAR sensor data, or speedometer. The type

of sensors can vary depending on the problem. Second, it is difficult to train a

reinforcement learning policy in a real world environment. In reinforcement learn-

ing, an agent continuously interacts with the environment. An agent should avoid

moving obstacles and should not violate the traffic light signal. An agent failing to

follow traffic rules can occur dangerous situations such as collisions and injuries.

However, since a reinforcement learning based agent does not work well at the

beginning of training, it is not possible to train an agent without any accident. In

addition, an agent cannot learn to avoid undesirable actions without an accident

because it requires receiving a negative reward by experiencing such a danger-

ous situation beforehand. Therefore, it is not possible to train an agent in a real

world environment. For safety, many existing works have used a driving simula-

tor for training an agent. Now a day, driving simulators can provide a realistic

road environment. For example, CARLA simulator [25] can simulate jaywalking

pedestrians, traffic lights, or weather changes. However, even if a simulator is sim-

ilar to a real world environment, there is inevitably a difference between a real

world environment and a simulator. This difference makes it difficult to deploy a

reinforcement learning based agent in a real world environment.

2.1.2 Imitation Learning

Imitation learning (IL) is a framework which trains an agent using a pre-collected

expert dataset. The goal of imitation learning is to find an optimal policy from

expert demonstrations. In detail, an agent is given a set of expert demonstrations,

which is defined as follows:

DπE = {(s0, a0), (s1, a1), · · · , (sT , aT)}, (2.7)

where T is a demonstration length. DπE is assumed to be collected by an ex-

pert policy πE . The expert policy πE maximizes the expected sum of rewards

11

Chapter 2. Background

Eπ[
∑

t γ
trt], where rt is a reward and γ is a discount factor. In contrast to rein-

forcement learning, however, the reward rt is hidden and not known to the agent.

Therefore, the agent should find an optimal policy without knowing the reward

function.

One of the most straightforward frameworks for imitation learning is behav-

ior cloning (BC). A behavior cloning framework trains a policy in a supervised

learning manner. In a general BC framework, a policy is defined using a neural

network. The network is trained with the following log-likelihood loss function:

L = −E(s,a)∼DπE
[log πθ(a|s)], (2.8)

where θ is a training parameter.

Another example of imitation learning frameworks is generative advertising

imaging learning (GAIL). Similar to [31], GAIL trains a policy by adversarial

learning between a generator (policy) and a discriminator. The objective of GAIL

is formulated as follows:

min
π

max
D

Eπ [log(D(s, a))] + EπE [log(1 −D(s, a))] − λH(π), (2.9)

where D : S×A 7→ (0, 1) is a discriminator, H(π) = Eπ[− log π(a|s)] is the causal

entropy of the policy π, and λ is a scale parameter. The discriminator D returns

the probability of whether a given demonstration is from the agent policy π or

the expert policy πE . During the optimization process, the discriminator D is

trained to discriminate the input demonstrations while the policy π is trained

to trick the discriminator and generate a demonstration which is similar to the

expert demonstrations.

There are a number of examples where an imitation learning framework is

applied to the autonomous driving problem. A behavior cloning framework is

used to train a driving agent by several works. Dosovitskiy et al. [25] suggested

using an urban scene simulator to train a driving agent. They provide a bench-

12

Chapter 2. Background

mark for urban scene driving and compare the training results of a reinforce-

ment learning and imitation learning based agent. Codevilla et al. [20] improved

the performance of urban driving by investigating the limitations of a behavior

cloning based controller. In particular, they propose to divide the module into

two parts: perception network and low-level controller. The perception network

part calculates the future trajectory of the ego-vehicle through imitation learn-

ing, and the low-level controller part follows the calculated trajectory through

PID control. Chen et al. [11] proposed a two-stage learning process which can

overcome the limitation of behavior cloning. First, they train a privileged agent

which can access privileged information. This privileged information includes a

bird’s eye view map of the scene, which contains the indicators of objects, road

features, and traffic lights. Second, they train a sensorimotor agent, which can

only perceive the scene via sensors. The privileged agent works as a teacher to

the sensorimotor agent and provides online expert trajectories. This two-stage

process helps to boost the performance of a vision-based driving agent. GAIL

[43] is also a widely used framework in autonomous driving. Bhattacharyya et

al. [5] suggested a GAIL based driving policy generation framework which can

simulate a multi-agent driving scenario. Lee et al. [50] also trained a GAIL based

agent which can drive in a simulator. In their framework, the agent is trained not

only using expert demonstrations but also negative demonstrations, which can

teach the agent what should not be performed.

Compared to reinforcement learning, an imitation learning framework has two

advantages. First, imitation learning does not require designing a reward function.

In order to use reinforcement learning, it is necessary to design a reward suitable

for the situation according to each state and action. For example, it can be

designed to give a positive reward if the vehicle drives normally and a negative

reward if the vehicle collides with another vehicle. However, it is difficult to

define in which situations to give rewards and how many rewards to give. If the

13

Chapter 2. Background

reward is not adequately defined, the vehicle will not operate as a regular human

driver. Therefore, the reward design is a complex task and requires much labor.

On the other hand, imitation learning is relatively less complex because it only

needs to collect expert demonstrations without a reward design. Second, imitation

learning is relatively secure for safety issues which can occur during the training

process. As explained in Section 2.1.1, reinforcement learning has a safety issue

while training an agent in a real world environment. A reinforcement learning

agent should experience a collision before learning to avoid it. This approach

consequently leads to an accident in a real world environment. An imitation

learning agent, on the other hand, does not have to experience an accident to learn

to avoid it. Also, data for imitation learning can be collected by an expert policy,

which is less likely to commit accidents. This makes the process of imitation

learning relatively secure compared to reinforcement learning.

Imitation learning also has a disadvantage compared to reinforcement learn-

ing: an agent trained by imitation learning may be vulnerable to environmental

changes because interactions with the environment are not performed when train-

ing the agent. For example, assume that expert data is collected while following

the exact center of a road. If an agent is fully-trained and exactly follows the

given trajectory, it can imitate the expert policy and successfully drive. However,

suppose that the agent slightly deviates from the trajectory. In this case, the

agent will not be able to successfully correct the deviation because those actions

are not collected in the dataset. This data mismatching issue is generally called

a covariance shift. This issue can be easily solved in reinforcement learning by

giving a deviation value as a negative reward. It makes the agent learn how to

recover the deviation when the vehicle is off the center of a road. In imitation

learning, this issue can be solved by collecting sufficient data from scratch or by

continually collecting additional data with the expert policy [69].

14

Chapter 2. Background

2.2 State Representation for Autonomous Driving

There are two major points to consider when defining a state representation.

First, a state representation should be informative. There is essential information

which is needed to solve an autonomous driving problem. For example, knowing

the locations of vehicles or pedestrians are essential for safety. Therefore, this

essential information should be contained in a state representation or at least

inferred through it. Second, a state representation should consist of a compact

data structure. There is a limit to the amount of data that a controller can

process during driving. If the size of the data is too large, the time complexity

of the control will inevitably increase. Since an autonomous driving agent must

work in real-time, the data should be as simple as possible.

There are several types of state representation which have been used by existing

autonomous driving studies. For example, the following state representations have

been used by multiple researchers: feature-based representation, bird’s eye view

image representation, and egocentric representation. In the remainder of this

section, we explain each state presentation and discuss its properties in terms of

informativeness and compactness.

2.2.1 Feature-Based Representation

Feature-based representation method represents a state using a single feature

vector. A feature vector can be defined in different ways depending on its prob-

lem. For example, the distance and relative speed to other vehicles is one of the

frequently used features. Feature-based representation has been used in many ex-

isting autonomous driving studies because it is simple and easy to calculate in a

simulator. Choi et al. [17] assumed a straight highway environment, and they de-

signed a feature vector which contains the frontal distances to the vehicles. More

specifically, the feature vector considers the three closest frontal distances on the

15

Chapter 2. Background

Figure 2.1: An example of distance features. A feature vector consists of the

distances from the ego vehicle (red) to three frontal and three rearward vehicles

(blue).

left (dlf), center dcf , and right lanes drf . In addition to the frontal distances, the

feature vector contains the lane deviation distance (ddev). Their feature represen-

tation is defined as follows:

f = (dlf , dcf , drf , ddev) (2.10)

In [18] and [15], a feature vector also contains the rearward distances to other

vehicles on the left (dlr), center (dcr), and right lanes (drr). Their feature repre-

sentation is extended from Equation 2.10 and defined as follows:

f = (dlf , dcf , drf , dlr, dcr, drr, ddev) (2.11)

Figure 2.1 illustrates each component of a feature vector in Equation 2.11.

Schmerling et al. [71] designed a feature vector using the 2D position of vehicles.

In their framework, they assumed that two vehicles are interacting with each other

on a highway. The positions of the vehicles are represented in the 2D coordinate

system of a highway environment. Their feature vector is defined as follows:

f = (sego, tego, sother, tother), (2.12)

where sego and sother are longitudinal positions of the ego and the other vehicle,

tego and tother are lateral positions of the ego and the other vehicle. Each feature

16

Chapter 2. Background

Figure 2.2: An example of longitudinal and lateral positions. The positions of the

ego-vehicle (red) and the other vehicle (blue) are computed by the 2D coordinate

system of a highway environment.

component is computed by the distance to the origin of the road. Figure 2.2

illustrates an example of a feature vector.

Werling et al. [82] used the position of a vehicle as a feature vector, which

is represented by a Frenet coordinate frame [9]. The Frenet coordinate frame

is a generalization of the Cartesian coordinate frame. Similar to the Cartesian

coordinate, the position of a vehicle in the Frenet coordinate is represented using

a longitudinal distance s and a lateral distance t.

f = (s, t) (2.13)

Unlike the Cartesian coordinate, however, s and t are calculated from a relative

distance to a reference path. In the Frenet coordinate, the s-coordinate is defined

as the run length of the vehicle, and the t-coordinate is defined as the vertical

deviation from the reference path. Figure 2.3 illustrates an example of a Frenet

coordinate frame. It is possible for a reference path to have a curved shape.

Therefore, the Frenet coordinate frame allows a more intuitive representation of

a vehicle’s position on a curved road.

There are several issues when adapting a feature-based representation to the

autonomous driving problem. First, it is difficult to compute an exact value of

a feature in a real world environment. In a simulator environment, features can

be easily calculated. In a real world environment, however, it is necessary to first

17

Chapter 2. Background

Figure 2.3: An example of a Frenet coordinate frame. A blue curved line indicates

a reference path of a road. A s coordinate follows the direction of the reference

path, and a t coordinate follows the orthogonal direction of the s coordinate.

perceive sensory data before calculating a feature vector. For example, suppose

that there is an agent which tries to compute a positional feature of nearby vehi-

cles through a sensor. In this case, the agent first needs to detect nearby vehicles

through sensor data. The agent then needs to find the positions of nearby vehicles

by estimating the distances to them. During this process, there is a possibility that

detection may fail, or there may be a noise in the estimated distances. Existing

studies about autonomous driving [17, 18, 15, 71, 82] have assumed that vehicles’

positions can be estimated without an error. However, there is no guarantee that

there are no errors when using positional features in a real world environment.

This error interferes with the controller’s learning process and degrades its perfor-

mance. Second, it is difficult to quantify a state of a real world environment only

with a simple vector feature. One of the features which are difficult to represent

by a single vector is the vehicle type. Each vehicle on the road moves differently

depending on the vehicle type. Motorcycles, for example, are easy to change lanes,

and in some cases, they even pass through the boundary between two lanes. On

18

Chapter 2. Background

the other hand, large vehicles such as buses are relatively less likely to change

lanes. However, it is difficult to vectorize the vehicle type because there are too

many types of vehicles in the real world. One possible way is to vectorize the ve-

hicle type is a one-hot vector encoding [74, 7]. However, one-hot vector encoding

also has a limitation because it can only represent a fixed number of vehicle types.

Zero-shot learning framework [2], which can classify unseen labels, has been sug-

gested to solve this issue. However, zero-shot learning requires learning semantic

information of the class before classification. Finally, it is difficult to define a

feature vector which can reflect road structural information. The movement of a

vehicle is affected by the shape of a road. Since the movement of the vehicle is

greatly affected by the shape of the road, such road structural information must

be fed to a controller when a vehicle is driven. For example, suppose that there

are two different scenarios: a one-way road environment (Figure 2.4(a)) and a

two-way road environment (Figure 2.4(b)). In Figure 2.4(a), each vehicle is cur-

rently driving safely. Since the two vehicles are not violating traffic rules, it can

be said that the probability of an accident is low. In Figure 2.4(b), on the other

hand, the blue vehicle is violating a traffic rule by crossing the center line. In this

case, it can be easily predicted that the blue vehicle will either cause an accident

with an oncoming vehicle or attempt to cut into the lane where the red vehicle is

currently located. Therefore, the two scenarios are significantly different in terms

of dangerousness. However, because the blue vehicle has the same distance as the

red vehicle, the distance feature must be calculated equally in both scenarios.

This makes it difficult for a controller to distinguish the state difference between

the two scenarios. Therefore, a controller trained only with a feature vector input

may not recognize the dangerousness in Figure 2.4(b). A positional feature which

is specified by a Cartesian [71] or Frenet [82] coordinate can help solve this issue.

By assigning a negative sign when a vehicle is on the other side of the road, a

feature vector can represent the difference between the two scenarios. However,

19

Chapter 2. Background

(a)

(b)

Figure 2.4: Two different example scenarios on a straight road environment. (a)

A one-way road. Two vehicles are safely driving on the road. (b) A two-way road.

The blue vehicle is violating a traffic rule by crossing the center line.

20

Chapter 2. Background

the positional feature also cannot represent a road’s structural information when

a road has a complicated shape, such as an intersection or roundabout. Because

a reference path cannot have a branch, the positional features are only useful for

representing a state on a straight or curved highway environment.

2.2.2 Bird’s Eye View Image Representation

Bird’s eye view (BEV) image representation method represents a state by an

image which is captured from the top-down viewpoint. Figure 2.5(a) and Figure

2.5(c) shows an example of BEV images. A BEV image representation contains

more information compared to a feature-based representation. For example, a

direction and position of a lane, a position of a crosswalk, and a curvature of a

road can be inferred through a BEV image.

It is not necessary to represent a bird’s eye view of the scene as a raw RGB

image. For example, semantic information such as road lane and vehicle location

can be included in a BEV image. Each object on the road can be represented with

pixels by colorizing the area where an object occupies. This semantic image is

also called a rasterized image. Figure 2.5(b) and Figure 2.5(d) shows an example

of rasterized images. A rasterized image is more useful than a raw BEV image

because it is relatively easy to identify an object in a rasterized image. Advances

in image processing technologies such as object detection [64, 38, 39, 7] and

semantic segmentation [68, 12, 13] have helped to extract this rasterized image

from a raw BEV image.

Nishitani et al. [59] trained a reinforcement learning based agent using a BEV

image input. In their work, the input is given as a rasterized image. Similarly,

Henaff et al. [41] used a rasterized BEV image as an input to train an imitation

learning based agent which can drive on a highway simulator.

There are several issues when applying BEV image representation to a real

world autonomous driving problem. First, it is not possible to capture a BEV

21

Chapter 2. Background

(a) (b)

(c) (d)

Figure 2.5: An example of bird’s eye view images. (Left) Bird’s eye view images

in the CARLA simulator [25]. (Right) Corresponding rasterized images which

contain semantic information. The red lines represent lanes on the road. The

blue box represents the ego-vehicle. The green boxes represent the other vehicles.

22

Chapter 2. Background

image in a real world environment. Before taking a BEV image, a camera must

be installed in a position which is much higher than that of a vehicle. When

moving a vehicle in a real world environment, however, it is not possible to place

a camera in the air. Therefore, it is hard to take and use a BEV image in a real

world environment. There is another way to use a BEV image in a real world envi-

ronment. A BEV image can be synthesized from multiple vehicle-mounted camera

images [65]. However, in this case, the synthesized BEV image can be incomplete

due to occlusions or perspective transform errors. Second, a BEV image does not

contain information about traffic, such as traffic signs. The movement of a vehicle

is restricted by the traffic signs on the road. For example, a vehicle is prohibited

from turning left when there is a no left turn sign on the road. Similarly, if there is

a speed limit sign on the road, the vehicle must drive at a speed below the speed

limit. However, it is difficult to represent this traffic information on a BEV image.

One of the solutions to this issue is to add an image channel, which represents a

traffic rule, to the rasterized image. For example, Jain et al. [46] represented the

information about traffic lights by three image channels which indicate the state

of traffic lights. In their work, the pixels of a channel indicates the area which is

controlled by red, yellow, or green traffic light, respectively. Their representation,

however, only contains information about traffic lights, not about the other traffic

signs, such as speed limit signs. The number of the types of traffic signs can be

increased by increasing the number of image channels. However, if the number

of image channels is increased, the BEV representation data size will also be in-

creased. Therefore, it is difficult to represent traffic sign information as a BEV

image without increasing the data size and complexity of the representation.

2.2.3 Egocentric View Image Representation

Egocentric view image representation method represents a state using an image

which is captured from an egocentric camera. An egocentric image is also called

23

Chapter 2. Background

a first-person view image. A camera for an egocentric image is usually attached

directly to a vehicle and shows the vehicle’s surrounding environment. Figure

2.7(a) shows an example of an egocentric view image. There are a number of

types of egocentric view cameras which can be used in autonomous driving. Many

recent works have used only a single forward-facing camera to drive a vehicle.

For example, Dosvitskiy et al. [25] and Codevilla et al. [20] used a forward-

facing camera image to train an autonomous driving agent in an urban driving

simulator. Hawke et al. [36], on the other hand, trained an agent to drive using

multiple camera image inputs. In their work, a state presentation consists of

camera images captured from three different viewpoints: left, center, and right.

To fuse three different images, they designed a deep learning based fusion network.

An egocentric view image representation not only uses a raw RGB image but

also can use a pre-processed image. One of the examples of pre-processing is

semantic segmentation [68, 12, 13]. In a semantic segmentation process, the pixels

of an image are clustered and classified according to the object class they belong

to. Figure 2.7(b) shows an example of semantic segmentation image, which is

processed from Figure 2.7(a). In a semantic segmentation image, each pixel has

one object class. In Figure 2.7(b), each pixel is colored in different colors according

to the object class. For example, roads are purple, vehicles are blue, lane markings

are green, and the pixels without class are colored black. Sobh et al. [75] used a

semantic segmentation image as an input to a driving agent. In their work, they

obtained a semantic segmentation image through U-net [68] architecture.

Object detection [64, 38, 39, 7] is another example of pre-processing methods.

In recent years, object detection has been widely used in the field of autonomous

driving. The goal of an object detection process is to find the sizes and locations of

objects on a 2D image. Figure 2.6(c) shows an example of object detection result,

which is processed from Figure 2.7(a). Each object in Figure 2.6(c) is bounded by

a colored bounding box. There are two types of objects in Figure 2.6(c): vehicle

24

Chapter 2. Background

and traffic light. Here, two vehicles are surrounded by a red box, and a traffic

light is surrounded by a blue box. Behl et al. [3] suggested using object detection

based features when training a driving agent. In their work, they represented

the positions of detected objects in the form of labeled bounding boxes. Object

detection can be applied to various types of objects. For example, in recent years,

pedestrian detection [35], and lane detection [53] have been studied by several

works. It is not only possible to find the position of an object in 2D. 3D objection

detection finds the position of an object in 3D coordinates. Li et al. [51] suggested

a 3D object detection framework which can find the 3D position of an object

with a single-view image. Wang et al. [81] also suggested a 3D object detection

framework but used a multi-view image when finding the position of an object.

Depth estimation [28, 30, 4] is also one of the methods used for pre-processing.

A depth image refers to an image which contains distance information. The goal

of the depth estimation process is to find a depth image from a given RGB image.

Figure 2.6(d) shows an example of depth estimation result, which is processed

from Figure 2.7(a). In Figure 2.6(d), the positions of vehicles and traffic lights

can be inferred from the depth image. Combined with an RGB image, a depth

image is generally called an RGB-D image. Not only from depth estimation, an

RGB-D image also can be obtained directly from an RGB-D camera. Xiao et al.

[83] used RGB-D images to train an autonomous driving agent. In their work,

the simulator gives an accurate depth image to an agent. However, they added

noise to the depth image to make the simulation more realistic.

There are several issues when training an autonomous driving agent using

egocentric view image representation. First, an agent can see only a local part of

a road environment through an egocentric view image. Unlike a BEV image, an

egocentric view image cannot show the overall appearance of a road. Therefore,

it is difficult for an agent to recognize the structure or shape of a road through

an egocentric view image. When a driving agent determines a global path and

25

Chapter 2. Background

(a) (b)

(c) (d)

Figure 2.6: An example of egocentric view images. (a) An egocentric RGB image

captured in the CARLA simulator. (b) A semantic segmentation result processed

from the RGB image. (c) An object detection result processed from the RGB

image. (d) A depth estimation result processed from the RGB image.

26

Chapter 2. Background

navigates in a real world environment, the entire structures and locations or

roads are needed to be known. However, since an egocentric view image can

only show a local part of a road, an agent cannot navigate a road only with

an egocentric view image. Therefore, a high-level command [19, 20] or a pre-

determined global path [23, 87] are required before an agent starts to drive.

Second, the performance of the agent may be sensitive to the sensor location

because the viewpoint of an egocentric view image varies depending on the sensor

location. For example, suppose that an agent is trained with data collected with a

single viewpoint. In this case, if data collected with a different viewpoint is given

as new input, the performance of the agent can be decreased. The performance

decrease by viewpoint change makes it difficult to reposition the sensor or apply

a pre-trained network to another vehicle of a different size. This kind of issue is

usually addressed by domain generalization [80].

2.2.4 Sensor Fusion Based Representation

Sensor fusion refers to a method of combining multiple sensors to reduce uncer-

tainty and increase the performance of an agent. In recent years, many types of

sensors have been used for autonomous driving. One of the most widely used

sensors in the field of autonomous driving is LiDAR. LiDAR is a sensor that

can detect surface information of surrounding objects through a laser. Surface

information obtained through a LiDAR sensor is generally given through a data

structure named a point cloud, which records the locations of a set of points in a

3D coordinate. Figure 2.7 shows an example of LiDAR sensor data in the CARLA

simulator. In Figure 2.7, a LiDAR point cloud is projected on a 2D BEV image.

An agent in a simulator can obtain precise LiDAR sensor data. However, in a

real world environment, the quality of LiDAR sensor data varies depending on

the spec of a LiDAR sensor. For example, an object which is too far away cannot

be captured because a LiDAR sensor has a limitation in the detectable range.

27

Chapter 2. Background

Also, noise from a low-quality LiDAR sensor can prevent the recognition of an

object. Figure 2.8 shows a LiDAR sensor data captured from a vehicle in the real

world.

Several works have proposed a new framework which can fuse a camera image

with LiDAR sensor data. Xu et al. [84] suggested a 3D object detection framework

which uses an image and LiDAR sensor data. Because existing networks used for

image data [37, 66] cannot be directly applied to a point cloud data structure,

they used a pointnet architecture [63] to encode LiDAR sensor data before fusing

it. Similarly, Vora et al. [79] suggested a 3D semantic segmentation framework

which uses a sensor fusion method. Their architecture first obtains a semantic

segmentation image from input and then uses a projection method to fuse this

image with LiDAR data. Image and LiDAR sensor fusion method has also been

applied to train an imitation learning based driving agent. Prakash et al. [62]

proposed a fusion based framework for autonomous driving. In their work, LiDAR

point cloud data is projected into a BEV image. They fused this LiDAR BEV

image with a forward-facing camera image through the attention mechanism [78].

There are other sensors used for fusion, such as GPS, IMU, and speedometer

sensor sensors. These sensors are generally used to estimate the location of a

vehicle. The estimated location can be used to compute a high-level command

and fuse it with an image input [20, 11].

28

Chapter 2. Background

(a) (b)

Figure 2.7: An example of LiDAR sensor data in the CARLA simulator. (a) A

egocentric image from a camera. (b) LiDAR sensor data captured in the same

scene. The LiDAR point cloud is projected into BEV.

29

Chapter 2. Background

Figure 2.8: An example of LiDAR sensor data in the real world. (Left) Camera

iamges. (Right) LiDAR sensor data captured in the same scene. The LiDAR point

clouds are projected into BEV.

30

Chapter 3

Road Graphical Neural

Networks for Autonomous

Driving

Along with increasing interests in autonomous driving, the investigation of re-

inforcement learning (RL) using the driving simulator has been actively carried

out by a number of researchers. However, most of the previous works cannot be

generalized to other driving environments. One of the most widely used examples

is the highway environment [17, 15], but their works are only limited to a sin-

gle one-way road. There are more complex environments, such as merging roads

[59, 54], intersections [45], or city streets [24]. The previous studies, however, use

only a simple and fixed road environment for training and testing.

One of the main reasons for the generalization difficulty is that it is difficult

to capture the generalized feature of the road environment. For example, [17]

and [15] use the relative speed and position of vehicles as inputs features, but

they cannot capture information about how vehicles move on a complex road.

Another example is the semantic top-view image, which includes road lines [41].

31

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

However, as shown in the recent studies [29, 52], it is not efficient to use images

for representing the topology of roads.

In this chapter, we propose a generalized autonomous driving framework to use

graphical representation of roads. The proposed graphical representation includes

the information about the structure of roads, and the positional relationship

between vehicles and the road. Unlike other works using the graph representation

[29, 52], there are four distinctive features of the proposed framework.

• It is the first work which uses graph-based features to control vehicles to

the best of our knowledge.

• We do not focus on a simple environment such as highways or merging roads

but on various roundabout intersections, where the topology of the road is

more complicated and multiple vehicles can enter from multiple directions

simultaneously.

• The relationship between vehicles and the road is also considered when

calculating graph features

• We use long short-term memory (LSTM) [44] along with graph neural net-

works (GNN) [47] to capture the historical features of vehicles on the road

graph.

The proposed method uses a two-level controller: First, a low-level PID con-

troller follows a trajectory determined by a graph-based path planner. The path

planner perceives the road graph and finds a path based on the Dijkstra algo-

rithm. Second, a high-level controller determines the target speed of the vehicle

to follow the traffic flow. The high-level controller uses the encoded feature of the

road graph, which is extracted by a road graphical neural network (Road-GNN).

A Road-GNN compresses the graph features of the road into a latent feature used

for the high-level controller. We use the RL framework to train the network, and

32

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

it successfully controls the vehicle in various and complex unseen road environ-

ments. Figure 3.1 shows an overview of how Road-GNN works in training and

test phases.

We trained the network from a set of road environments and tested it on a dif-

ferent set to show the generalizability of Road-GNN. We have collected satellite

images of roundabouts for training and testing and applied them to our driving

simulator to simulate a realistic road environments and structures. Note that the

satellite images are only used to construct road models and get state representa-

tions, and we use a 3D simulator and a 3D dynamic model for the experiments.

The image data are collected from Google search and NAVER Maps [57], an

online mapping service. We have created road environments by pre-processing

and reconstructing the collected images. The simulator is implemented within

ROS Gazebo [76], and the 3D vehicle model we use is the ROS Prius model [27],

which has throttle, brake, and steering control similar to a real vehicle. In the

experiment, we show that our agent successfully drives in an unseen environment

by learning road graph features. The proposed method outperforms the other

methods, which use different features and networks.

3.1 Problem Setting

We consider a driving environment where multiple vehicles are moving on a road

and interacting with each other. In the environment, vehicles other than the ego-

vehicle, which is controlled by the agent, are controlled by a pre-defined controller.

Also, each simulated vehicle follows a pre-defined path. The goal of the agent

is to successfully follow the given path and make the ego-vehicle reaching the

goal position safely. To follow the traffic flow, the agent must regulate the speed

properly and know when and where to stop. This is only possible if the agent is

sufficiently trained to recognize the surrounding circumstance.

33

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

Figure 3.1: Overview of training a Road-GNN based controller and autonomous

driving using Road-GNN in unseen environments.

34

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

We formulate the problem by a Markov decision process (MDP). For every

time step t, the policy of the agent π observes the current state s and executes an

action a from the discrete action set. Then, the agent obtains a reward r and the

next state s′ from the environment as a result of the action a. We then optimize

the policy π to maximize the expected sum of the rewards with a discount factor

γ.

Eπ[
∑
t

γtr(t)] (3.1)

In the remainder of this section, we describe state, action, and reward setup.

After that, we also explain how other vehicles move in the environment.

State. In our environment, the state s is represented by using a graph repre-

sentation. An example of the graph representation is shown in Figure 3.7. The

topology of the road can be expressed by both the point-level graph Gp and the

segment-level graph Gseg. First, the point-level graph Gp contains each point pi

as a node, and each pi represents a 2D point on the map M . The edge from the

point pi to the point pj is represented by ei→j . The edges of Gp are connected

along the direction in which vehicles are allowed to move. Second, the segment-

level graph Gseg contains each segment segk as a node, and each segment segk

represents a set of the points. Depending on the position, each point pi belongs

to one of the segment segk in Gseg. Similar to Gp, the graph Gseg is connected

in the direction of the traffic flow.

Each edge ei→j and node pi of the graph Gp has its own features that reflect the

vehicle and road conditions. For example, the edge feature of ei→j is calculated

from the relative position between pi and pj .

Feature(ei→j) := Pos(pj) − Pos(pi) (3.2)

Here, Pos(pi) represents the 2D position vector of pi on the map M. If the edge

ei→j does not exist in the graph Gp, the edge feature is considered to be a zero

vector. The node feature of pi is calculated depending on the vehicle conditions

35

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

(a) (b)

(c) (d)

Figure 3.2: An example of a roundabout environment. (a) A part of the original

roundabout image data. (b) The 3D simulator used in the experiments. The

vehicle model we use is the ROS Prius model [27] whose dynamics is similar to a

real vehicle. The roads in the simulator are reconstructed based on the satellite

image data. (c) The point-level graph Gp, which is organized from the data. The

red dots are the nodes in Gp and the white arrows are the edges connecting the

nodes. (d) The segment-level graph Gseg. Each segment is colored with different

colors and tagged with the numbers. The white arrows are the connection between

the segments in Gseg.

36

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

such as position and velocity. Here, we assume that there are a total of N vehicles

including the ego-vehicle, and each vehicle is numbered as v0, · · · , vN−1. For a

vehicle vk, the node pi has the features of vk if the node pi is the nearest point to

the vehicle vk on the graph Gp. The feature includes the position and velocity of

vk, and an occupancy indicator, which is 1 if pi is the nearest point to the vehicle

vk and 0 otherwise.

Feature(pi) := [F (v0), F (v1), · · · , F (vN−1)], (3.3)

where

F (vk) =


f(vk), if pi = arg minpj∈Gp

d(vk, pj)

0, otherwise

(3.4)

f(vk) =
[
PosRk

(vk)T ,VelRk
(vk)T , 1

]T
(3.5)

Here, d(vk, pj) is the L2 distance between the vehicle vk and the point pj . PosRk
(vk)

and VelRk
(vk) are the position and velocity vector of the vehicle vk, respectively,

which are relatively calculated from the nearest edge to the vehicle vk. When

enearestk is the nearest edge to the vehicle vk, pnearestk is the starting node of

enearestk , and θk is the angle of the direction of enearestk , then

PosRk
(vk) := R−1

k [Pos(vk) − Pos(pnearestk)] (3.6)

VelRk
(vk) := R−1

k Vel(vk), (3.7)

where

Rk =

cos θk − sin θk

sin θk cos θk

 (3.8)

The matrix Rk is the rotation matrix of θk.

The agent observes the state s, where the observation is a subset of graph Gp,

which includes the K nearest nodes to the ego-vehicle. The subset graph is given

37

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

to the agent in the form of the adjacency matrix A, the node feature matrix AN ,

and the edge feature matrix AE . The node and edge feature matrix contain each

node and edge features as elements. Since there are K nodes in the subset graph

and N vehicles on the environment, A, AE , AN matrix have the size of (K×K),

(K ×N × 5), and (K ×K × 2), respectively.

Action. For every time step, the agent controls the vehicle using a two-level

controller. The low-level controller adjusts both the throttle and steering through

PID control while the high-level controller determines the target speed of the

vehicle. The action is defined as the target speed given to the vehicle. Similarly

to other recent works which use an MDP formulation in driving [59, 58], we

discretize the actions as the set of target speeds 0m/s, 3m/s, 6m/s, 9m/s, 12m/s.

The low-level controller is designed to follow a pre-determined path. For each

episode, the start and goal segments are chosen randomly and the path is set

to connect segments. The path is calculated from the entire graph representa-

tion and the Dijkstra algorithm. The detailed path finding process is as fol-

lows: First, the shortest path in the segment-level graph Gseg is calculated using

the Dijkstra algorithm. Here, the weights for each edge is considered equal to

ones. From the segment-level path, the point-level path is constructed from the

points belonging to each segment. For example, when the segment-level path is

{seg0, seg1, · · · , segn}, then the point-level path is defined as follows.

path = seg0 ∪ · · · ∪ segn (3.9)

Note that the segment segk is an ordered set of the points p. When segi ={
pi0, · · · , pili−1

}
, segj =

{
pj0, · · · , p

j
lj−1

}
, and the two segments are connected in

the direction of segi → segj , then the two sets are combined as follows:

path =
{
· · · , pi0, · · · , pili−1, p

j
0, · · · , p

j
lj−1, · · ·

}
(3.10)

Here, li is the number of points in the segment segi. There can be cases where two

segments segi and segj have edges in both directions segi → segj and segj →

38

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

segi. The physical meaning of it is that each segment represents one of the two

lanes of a multi-lane road, and a vehicle can change the lanes between them. In

these cases, the two segments are combined at a random point when calculating

the path. For example, if a point pirand is randomly selected from segi and the

nearest point to pirand in segj is pjnear, then the two segments are combined as

follows:

path =
{
· · · , pi0, · · · , pirand, pjnear, · · · , p

j
lj−1, · · ·

}
(3.11)

The low-level PID controller follows the point-level path by controlling both the

throttle and steering of the vehicle. First, the steering is controlled to minimize

the deviation of the vehicle from the path. The deviation is calculated by the

nearest edge e, which connects the two points in the point-level path. Here, we

define xpos as the length of the line perpendicular from the vehicle to the nearest

edge e. xdirect is the difference of the angle between the direction of the vehicle

vk and the nearest edge e. The steering PID controller minimizes the sum of

two values: xpos + xdirect. Second, the throttle is controlled to set the speed of

the ego-vehicle to a given target speed. Using PID control, the throttle inputs

minimize the difference between the ego-vehicle speed and the target speed. Since

the throttle cannot take a negative input, the brake input is taken instead when

the speed is higher than the target speed.

For safety, there is also a collision-avoidance system in the controller. First,

the future position of each vehicle is estimated using a unicycle vehicle model.

The vehicle steps on the brake when a collision is expected. After the vehicle has

stopped completely, the system re-estimates the future positions assuming that

the vehicle can move at a low speed. If a collision is not expected, then the vehicle

moves again based on the agent and PID controller.

Reward. The goal of the agent is to make the vehicle moves from the start area to

the goal area. We set a positive reward of +1 when the agent successfully reaches

the goal area. The start and goal areas are pre-determined and randomly changed

39

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

before an episode starts. To prevent the ego-vehicle from being stationary in one

place, we also give a small negative reward of −0.01 for each time step before the

agent reaches the goal area or exceeds the time limit.

Other Vehicle Movements. There are several other vehicles that move in

the simulator. The simulator we use is a closed-loop system, which means that

the movements of other vehicles changes according to the movement of the ego-

vehicle. We use the same path planner and PID controller used in the ego-vehicle

to simulate the other vehicle movements. Each vehicle is set up to follow different

paths, which vary from episode to episode. Each controller for the simulated

vehicle and the ego-vehicle differs in two ways: First, the simulated vehicles only

move at the fixed target speed 9m/s while the ego-vehicle changes the target speed

according to input actions. Note that although the target speed is constant, the

speeds of the vehicles are not maintained due to the collision-avoidance system.

Second, the simulated vehicle is re-spawned in a new random starting position

when it reaches the goal area. This re-spawning repeatedly occurs until the ego-

vehicle finally reaches its goal area.

3.2 Proposed Method

We now explain our road graphical neural network (Road-GNN), which is used to

train the agent. Road-GNN processes a graph observation of the state and calcu-

lates the encoding used for the policy and value networks of the agent. Through

this networks, we train the RL agent and control the ego-vehicle. Road-GNN

takes three steps to encode the road graph: (1) node-and-edge-level encoding, (2)

graph-level encoding, and (3) time-level encoding. The overall process of Road-

GNN is illustrated in Figure 3.3.

40

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

F
ig

u
re

3
.3

:
T

h
e

ov
er

al
l

p
ro

ce
ss

of
R

o
ad

-G
N

N
.

(a
)

N
o
d

e-
an

d
-E

d
ge

-L
ev

el
en

co
d

in
g.

(b
)

G
ra

p
h

-L
ev

el
en

co
d

in
g.

(c
)

T
im

e-

L
ev

el
en

co
d

in
g
.

41

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

3.2.1 Node-and-Edge-Level Encoding

Since each node and edge feature have different units, we first regularize them

using the node and edge encoder networks, ψnode and ψedge. If the graph observa-

tion at time t is Gt, and the number of the nodes in Gt is K, then the networks

encoding for each node and edge are as follows:

encpi = ψnode(Feature(pi)), for 0 ≤ i < K (3.12)

encei→j = ψedge(Feature(ei→j)), for 0 ≤ i, j < K (3.13)

In the case of node features, encoding is processed individually for each vehicle

features.

encpi = ψnode(Feature(pi)) (3.14)

= [ψv(F (v0)), ψv(F (v1)), · · · , ψv(F (vN−1))] (3.15)

For the vehicle feature encoding network ψv, we use a simple fully-connected net-

work. Here, the network ψv is not shared among all the vehicles vk. To distinguish

the features of the ego-vehicle from the other vehicles, we use ψego for the ego

vehicle vego, and ψother for all the other vehicles. The network ψother is shared

among each vehicle vk except for vego. By encoding the elements in the feature

matrix AN and AE , we can get the encoded feature matrix ÃN and ÃE , which

have the size of (K ×N × Z) and (K ×K × Z) respectively, where Z is the size

of the encoded vector.

3.2.2 Graph-Level Encoding

After node-and-edge-level encoding, we use a GCN [47] based model for graph-

level encoding. First, ÃN and ÃE are incorporated into a single matrix. The

edge encoding matrix ÃE is summed up along starting node index, and then

42

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

concatenated with the node encoding matrix ÃN .

sum(ÃE) =

[∑
i

encei→0 , · · · ,
∑
i

encei→K

]
(3.16)

X0 = concat(ÃN , sum(ÃE)), (3.17)

where concat is a concatenation operator. Starting from X0, a GCN network

ψgraph iteratively calculates the next layer output Xk+1 from Xk. The layers are

stacked H times, and the final output of GCN is XH .

Xk+1 = σ(D̃−1/2ÃD̃−1/2XkWk +Bk), (3.18)

where

Ã = A+ I (3.19)

D̃i,j =


∑

j Ãi,j , if i = j

0, otherwise

(3.20)

Here, A is the adjacency matrix, σ is a non-linear function, W is a weight, and

B is a bias. Only for the first layer GCN0, the results of each vehicle channel in

X0 is added into one as like a 3D convolution layer.

X1 = σ(

N∑
j=0

D̃−1/2ÃD̃−1/2Xj
0W

j
0 +Bj

0) (3.21)

3.2.3 Time-Level Encoding

Each graph observation Gt at time t is encoded by the graph encoding network.

In Road-GNN, the network uses the historical memory of Gt with a time length

of T . To deal with a historical data, we use a long short-term memory (LSTM)

[44] model. First, a readout layer ψread converts the graph-level encoding of each

Gt−T+1, · · · , Gt into a series of vectors. Each vector is entered into a LSTM

encoding network in the order of time. The final output of the LSTM network

becomes the final feature which is used for the policy and value network of the

RL agent.

43

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

3.2.4 Learning Algorithm

We train the agent using proximal policy optimization (PPO) [73], which is a

widely used reinforcement algorithm for many recent studies [70, 41]. In our PPO

implementation, the agent has the actor and critic networks, and each network

shares the common input features, as shown in Figure 3.3.

3.3 Experiments

In the experiment, we examined the generalizability of the proposed method. We

have tested the proposed method in various realistic scenarios. The tests were

performed on the roundabout environment we implemented.

3.3.1 Environment and Network Details

To implement the roundabout environment, we collected 30 satellite images of

roundabouts. As illustrated in Figure 3.4, the collected images have various road

structures. Each image is paired with a graph representation constructed from

the map structure. We generated the graph representation of a map in the fol-

lowing steps: First, we manually drew the possible trajectories and posed the

start and goal area on the map. The nodes of the graph are regularly sampled

from the trajectories and grouped into the segments. The grouping process is also

performed manually, and we divided the segments at the intersection points. The

edges between the nodes and the segments are connected depending on the map

structure and the road direction. When the graph is entered into Road-GNN,

some additional edges are added to make GNN features flow through the edges.

The edge is added if one of the following conditions is satisfied.

• The two nodes are close (< 2m).

• It is possible to change the lane between the two nodes.

44

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

R
aw

im
a
ge

P
oi

n
t-

le
ve

l
gr

ap
h

S
eg

m
en

t-
le

ve
l

gr
ap

h
S

im
u

la
ti

on

F
ig

u
re

3.
4:

E
x
a
m

p
le

s
o
f

co
ll

ec
te

d
m

ap
im

ag
es

.
T

h
e

fi
rs

t
co

lu
m

n
sh

ow
s

ra
w

im
ag

es
of

ro
u

n
d

ab
ou

ts
.

T
h

e
se

co
n

d
co

lu
m

n

sh
ow

s
p

o
in

t-
le

ve
l

g
ra

p
h

s
ex

tr
a
ct

ed
fr

om
ra

w
im

ag
es

.
R

ed
d

ot
s

re
p

re
se

n
t

n
o
d

es
,

an
d

w
h

it
e

ar
ro

w
s

re
p

re
se

n
t

ed
ge

s.

T
h

e
th

ir
d

co
lu

m
n

sh
ow

s
se

g
m

en
t-

le
v
el

gr
ap

h
s.

N
u

m
b

er
s

in
y
el

lo
w

re
p

re
se

n
t

th
e

in
d

ex
of

ea
ch

se
gm

en
t

an
d

re
d

ar
ro

w
s

re
p

re
se

n
t

th
e

co
n

n
ec

ti
o
n

b
et

w
ee

n
se

g
m

en
ts

.
T

h
e

la
st

co
lu

m
n

sh
ow

s
h

ow
ea

ch
ro

u
n

d
ab

ou
t

ap
p

ea
rs

in
a

si
m

u
la

to
r.

45

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

Table 3.1: Network Architecture Parameters

Network Value

ψnode, ψedge FC 5 × 8, FC 2 × 8

GCN K, N , Z, H 64, 8, 8, 3

History Length T 10

ψread FC 512 × 64

Actor FC 64 × 8 - FC 8 × 8 - FC 8 × 5

Critic FC 64 × 8 - FC 8 × 8 - FC 8 × 1

Non-Linear function Leaky-ReLU [55]

• The two nodes are occupied with vehicles.

The number of nodes, K, is selected considering the trade-off between the

computational cost and the road representability. Empirically, we found that

large K requires more computational time, while small K does not fully capture

road information. In the environment, the number of vehicles is kept to eight,

including the ego-vehicle. The PID controller of each vehicle is executed at 30Hz,

while the action and its target speed are updated at 6Hz. For RL training, we used

the implementation of [48] but converted it into a discrete version (PPO2) [73].

We implemented the encoder and readout networks, i.e., ψnode, ψedge, and ψread,

using fully-connected networks. The LSTM encoding network has two stacked

hidden states with the size of 64 × 64. The details of the network architecture is

described in Table 3.1.

3.3.2 Experimental Results

In each experiment, we choose six different maps for training and three different

maps for testing. The agent cannot see maps used for testing during training.

We have trained the agent with three different random seeds and tested it with

100 episodes for each random seed. Each set of train and test maps is changed

46

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

depending on the random seed. We use five baseline methods for comparison.

Method A and B are not learning-based methods. Method A is a random con-

troller that selects the target speed randomly. Method B is the controller that

has the knowledge of the target speed of nearby and controls the ego-vehicle

with the same target speed as other vehicles. To show the representative power

of Road-GNN, we fix an RL algorithm and compare Road-GNN against other

widely used representations and network models. Both MLP and LSTM methods

use the history of all the vehicle features such as the velocity and positions, but

no traffic information is used. CNN method rasterizes images of the map as de-

scribed in [41]. The rasterized image channels include the road lines of the maps

and the history of the locations of the ego and other vehicles. The network model

in the CNN method perceives an area of 32m× 24m around the ego-vehicle with

resolution of 320 × 240. Figure 3.5 shows learning curves of different algorithms

we tested.

In the performance comparison experiment, we have first measured the mean

speed and cumulative reward of the ego-vehicle to test if the agent can select

a proper speed. As given in Table 3.2, the proposed method shows the highest

performance in terms of both the speed and cumulative reward. Meanwhile, the

other RL-based method, such as MLP, LSTM, and CNN methods, cannot reach

the performance of Road-GNN and failed to drive properly. They were even much

slower than not only Road-GNN but also Method B which uses the same controller

as other simulated vehicles. The proposed method is the only method that has

outperformed Method B in terms of both the speed and the cumulative reward.

Therefore, it can be said that the graph representation and Road-GNN is useful

for training an RL agent and for driving complicated road environments.

We also checked the number of parameters and flops of each network to test the

efficiency of Road-GNN. While the proposed method uses about the same number

of parameters as MLP and LSTM, it shows better performance than all compared

47

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

Figure 3.5: Learning curve of RL algorithms. The shaded regions represent the

standard deviations of the results.

48

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

Table 3.2: Performance Comparison

Method
Mean Speeds

[m/s]
Rewards #Param Flops

Method A 3.035 0.407 - -

Method B 5.525 0.727 - -

MLP 5.009 0.582 0.104M 0.208M

LSTM 4.602 0.557 0.070M 1.396M

CNN [41] 4.747 0.641 11.528M 163.380M

Road-GNN 5.838 0.743 0.101M 3.631M

Road-GNN

w/o LSTM
5.518 0.710 0.080M 2.369M

methods. However, it should be taken into account that MLP and LSTM methods

do not consider road structural information. Compared with CNN [41], which also

can consider road structures, Road-GNN shows a better performance than CNN

even though it uses fewer parameters and flops.

As an ablation study, we also trained Road-GNN without an encoder LSTM

[44] model which is described in Section 3.2.3. We instead encoded time-series

features by simple fully-connected layers. In the ablation study, Road-GNN was

more effective when it uses an LSTM model. The result shows that LSTM is

helpful for Road-GNN to encode time-series features although it requires more

parameters.

To show that the proposed method can be generally deployed in various driving

environments, we conducted an experiment on eight different maps that have

different driving difficulty levels. We tested each method 20 times per map. As

a metric of the difficulty, we measured the traffic density of each map, which

is defined by the number of vehicles divided by the area of the road. Figure

3.6 shows the results of the difficulty test. The speed of the vehicles tended to

49

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

Table 3.3: Experiment with aggressive drivers

Method
Collision

Rates [%]

Mean Speeds

[m/s]
Rewards

Method A 48.3 2.749 0.031

Method B 19.3 5.175 0.488

MLP 18.0 4.838 0.395

LSTM 33.0 4.212 0.225

CNN [41] 22.3 4.547 0.436

Road-GNN 13.3 5.716 0.602

decrease as the traffic density increases. As shown in Figure 3.6, the proposed

method shows the highest performance evenly regardless of the driving difficulty

of the environment.

We conducted an additional experiment to test the stability of the proposed

method. We assume a more hazardous scenario where some drivers ignore the

safety rules. We changed the controllers of some simulated vehicles to move

more aggressively on the simulator. The target speed of two simulated vehicles

is changed to 12m/s, which is faster than the other vehicles. We also made them

ignore the collision-avoidance system. The result is shown in Table 3.3. The pro-

posed method shows the lowest collision rate and the highest performance, even

though it has been trained in a safe environment. In conclusion, Road-GNN is

stable and can drive more safely in hazardous environments.

3.3.3 Qualitative Results

We displayed simulation results to show how the proposed method drives a vehicle

in the simulator. Figure 3.8 and Figure 3.9 show snapshots of simulations in a

roundabout environment. The roundabout map used for each simulation is shown

in Figure 3.7(a) and Figure 3.7(b). The snapshots are arranged in the order

50

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

Figure 3.6: Experiment with various difficulty levels. Each dot represents a test

result in one map. Each method is tested 20 times per map.

51

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

of time with regular time intervals. In the simulations, the white ego-vehicle is

controlled by a fully-trained Road-GNN. In Figure 3.8, the white ego-vehicle

enters to a roundabout, moves along a curved path, and successfully exits from

the roundabout. Because there is no interruption by other vehicles, the white-ego

vehicle drives at a relatively constant speed between 5.849m/s and 7.523m/s. In

Figure 3.9, the white ego-vehicle merges into a roundabout while there are already

two simulated vehicles turning around the roundabout. During the merge, the

white ego-vehicle slows down until the red vehicle passes completely. The white

ego-vehicle recovers its speed while moving between the red and blue vehicle.

The results show that the proposed method successfully trains an RL agent and

makes it to drive in a complex road environment.

We also displayed simulation results which compares the proposed method

with CNN [41]. Figure 3.10 and Figure 3.11 compares Road-GNN and CNN by

showing snapshots of simulations. The roundabout map used for each simulation

is shown in Figure 3.7(c) and Figure 3.7(d). For the comparison, we used the

same low-level controller but changed the types of networks and their inputs. In

Figure 3.10, Road-GNN selects a proper speed while merging the lanes. Road-

GNN increases the vehicle speed up to 6.300m/s after the merge. On the other

hand, CNN model requires relatively more time to merge and follow the lanes. In

specifically, CNN shows slower speeds than Road-GNN in all time steps. In Figure

3.11, the simulation shows a similar result. Road-GNN follows the vehicle in front

of it while maintaining its speed between 6.152m/s and 6.869m/s. On the other

hand, CNN model does not accelerate even though there is no vehicle in front of

it. The results show that Road-GNN can optimize the speed appropriately while

CNN model can not.

52

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

3.4 Chapter Summary

In this chapter, we have proposed a new autonomous driving framework, which

can be generalized to various road environments, using the GNN based structure

named Road-GNN and an RL based controller. The proposed network, Road-

GNN, is designed to perceive a graph representation of a road, which includes

the road connection and vehicle information. In the experiments, the proposed

method has outperformed the other methods which do not use the graph rep-

resentation. The results have shown that the proposed method can generalize

different road structures and the knowledge learned from roads in the training

set can be easily transferred to unseen road structures.

53

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

(a) (b)

(c) (d)

Figure 3.7: Roundabout environments used for showing qualitative results. (a)

The roundabout map for the simulation in Figure 3.8. (b) The roundabout map

for the simulation in Figure 3.9. (c) The roundabout map for the simulation in

Figure 3.10. (d) The roundabout map for the simulation in Figure 3.11.

54

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

T
im

e
t

=
2.

0
s

t
=

4.
0s

t
=

6.
0s

t
=

8.
0s

t
=

10
.0

s
t

=
1
2.

0s

S
p

ee
d

6
.2

9
6
m

/s
6.

62
7m

/s
7.

17
6m

/s
7.

52
3m

/s
7.

2
21

m
/s

6.
2
33

m
/s

R
oa

d
-G

N
N

(O
u

rs
)

T
im

e
t

=
14
.0

s
t

=
16
.0

s
t

=
18
.0

s
t

=
20
.0

s
t

=
22
.0

s
t

=
24
.0

s

S
p

ee
d

6
.4

50
m

/s
6.

80
5m

/s
7.

23
3m

/s
6.

88
3m

/s
5.

84
9m

/s
6.

17
7m

/s

R
oa

d
-G

N
N

(O
u

rs
)

F
ig

u
re

3
.8

:
S

n
ap

sh
ot

s
of

a
si

m
u

la
ti

on
re

su
lt

of
R

oa
d

-G
N

N
.

55

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

T
im

e
t

=
2.0s

t
=

4.0s
t

=
6.0s

t
=

8.0s
t

=
10.0s

t
=

12.0s

S
p

eed
6
.298

m
/s

6.780m
/s

4.557m
/s

1.410m
/s

3.611m
/s

5.474m
/s

R
oad

-G
N

N
(O

u
rs)

T
im

e
t

=
1
4.0s

t
=

16.0s
t

=
18.0s

t
=

20.0s
t

=
22.0s

t
=

24.0s

S
p

eed
6
.3

0
0m

/s
6.738m

/s
6.194m

/s
5.456m

/s
5.899m

/s
6.246m

/s

R
o
a
d

-G
N

N
(O

u
rs)

F
igu

re
3.9:

S
n

ap
sh

ots
of

a
sim

u
lation

resu
lt

of
R

oad
-G

N
N

.

56

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

T
im

e
t

=
6.

0
s

t
=

12
.0

s
t

=
18
.0

s
t

=
24
.0

s
t

=
30
.0

s
t

=
3
6.

0s

S
p

ee
d

3
.5

8
3
m

/s
2.

60
5m

/s
3.

27
7m

/s
4.

96
2m

/s
6.

0
00

m
/s

6.
3
00

m
/s

R
oa

d
-G

N
N

(O
u

rs
)

S
p

ee
d

1
.1

43
m

/s
2.

13
7m

/s
1.

88
2m

/s
3.

34
9m

/s
4.

63
7m

/s
5.

89
2m

/s

C
N

N
[4

1]

F
ig

u
re

3
.1

0:
S

n
ap

sh
ot

s
of

a
si

m
u

la
ti

on
re

su
lt

fo
r

co
m

p
ar

is
on

.

57

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

T
im

e
t

=
4.0s

t
=

8.0s
t

=
12.0s

t
=

16.0s
t

=
20.0s

t
=

24.0s

S
p

eed
1
.649

m
/s

4.277m
/s

6.869m
/s

6.152m
/s

6.180m
/s

6.420m
/s

R
oad

-G
N

N
(O

u
rs)

S
p

eed
1
.6

1
8m

/s
1.749m

/s
1.934m

/s
4.268m

/s
4.908m

/s
5.827m

/s

C
N

N
[4

1
]

F
igu

re
3.11:

S
n

ap
sh

ots
of

a
sim

u
lation

resu
lt

for
com

p
arison

.

58

Chapter 4

Road Graph and Image

Attention Network for

Autonomous Driving

In recent years, vision-based object recognition algorithms have shown a dramatic

improvement in the field of autonomous driving. For example, pedestrian detec-

tion [35], lane detection [53], 3D object detection [89], and semantic segmentation

[86] have been developed and shown remarkable performance. However, applying

such vision-based methods to vehicle control is a challenging task. In most cases,

it is required to elaborately design a handcraft rule-based controller to use the

vision-based features.

There have been studies which applied vision-based features in a learning-based

controller. Previous methods have used image-based features [25, 20, 11], seman-

tic segmentation based features [75], or detection based features [3] to train an

imitation learning based autonomous driving controller. However, these works

have shown insufficient performance compared to commercialized handcraft con-

trollers.

59

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

One of the most critical problems when applying the vision-based approaches

to vehicle control is that the controller does not know which part of the image is

more important. Each object in the image has different importance according to

the scene context. For example, when a driver sees traffic lights at an intersection,

not all traffic lights are equally important. The driver should focus more on the

traffic lights at the front than the traffic lights at the crossroad. Likewise, drivers

usually pay more attention to pedestrians jaywalking on the road than pedestrians

walking on the sidewalk.

To compensate for such a problem, several works investigated the importance

of image features along with the LiDAR sensor data. Zhao et al. [88] proposed

a LiDAR and image fusion based 3D semantic segmentation method which can

be used to identify the scene context of objects. In addition, Prakash et al. [62]

used the attention mechanism [78] to capture the importance of the image fea-

ture according to the LiDAR sensor data. However, LiDAR-based attention is not

enough to fully understand the scene context for two reasons. (1) It is difficult

to directly extract meaningful information such as the road direction and con-

nection because the LiDAR data is a high-dimensional representation. (2) The

LiDAR data lack prior knowledge about the traffic (e.g., right-hand or left-hand

traffic), which is important for determining whether an object is moving in a safe

direction. As studied in previous works [29, 52], the vehicle movement is highly

influenced by the direction of the road. Therefore, a new type of state represen-

tation, which can reflect the road structural context of the scene, is required to

overcome the limitation of LiDAR-based attention.

In this chapter, we propose an autonomous driving framework named road

graph and image attention network (RIANet), which considers the importance of

object features according to the road structure. Figure 4.1 shows a brief expla-

nation of our idea. To reflect the graph information of the road, we represent the

road structure in the form of a graph which is called road graph. Unlike other

60

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

Figure 4.1: Illustration of our main idea. (Left) RGB camera image of the scene.

(Right) The corresponding road graph seen from the bird’s eye view (BEV). We

propose to use the attention mechanism to consider the importance of image

features according to the road graph features.

attention-based controllers, the proposed method leverages the road graphical

features along with visual features extracted from image and LiDAR sensors.

The attention mechanism allows the network to compute the scene context and

prioritize the importance of objects according to the road structure.

We use imitation learning to train the network. The evaluation and data col-

lection are conducted on a 3D urban scene driving simulator named CARLA [25].

The agent in the CARLA simulator is required to deal with dangerous situations

such as lane changing, unexpected obstacle avoidance, crossing intersection, and

unprotected turn. The experiment shows that the proposed method outperforms

the baseline methods in terms of all the suggested metrics. Our contributions are

summarized as follows:

• We propose a novel autonomous driving framework which considers the

importance of objects according to the road structure.

• We demonstrate that the road graph features can effectively reflect the road

61

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

structural context of the scene

• We experimentally show that the driving performance can be improved by

fusing the road graph and the other sensor data features

4.1 Problem Setting

We first clarify our problem settings before explaining the proposed framework.

We consider an urban scene driving environment. The goal of the agent is to nav-

igate a given route while following traffic rules. The route is composed of multiple

goal locations in the road environment. At each time step t, the agent is given a

high-dimensional observation ot which consists of the following components.

Road Graph. The agent is given the topology information of the drivable road

in the form of a graph. A road graph Gglobal = (V,E) consists of nodes V and

edges E. A node ni ∈ V represents a point on the road and is distributed along

the centerline of the road segment. An edge ei→j ∈ E connects the node ni and

the node nj . The direction of ei→j represents the direction of the road segment.

We use the method in Chapter 3 to extract a road graph Gglobal from a road. We

sample nodes on the road at intervals of 3m. We connect edges between nodes

depending on the direction and connection of the roads. In addition, we connect

two nodes if it is possible for a driver to change the lane along the edge. A node

ni contains a node feature fni and an edge ei→j contains an edge feature fei→j ,

respectively. In simulation and training, the agent only observes a subgraph Gt,

which consists of the nearest nodes to the ego-vehicle. The detailed explanations

about a road graph and subgraphs are described in Section 4.3.2.

Camera Image. The agent is given a front ego-view camera image which has

a resolution of 400 × 300 with a 100° FOV. To remove radial distortion [62], we

crop the image to 256 × 256 before entering the image into the feature encoder.

Additional Sensor Data. The agent is given LiDAR, GPS, IMU, and speedome-

62

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

ter sensor data. The LiDAR point cloud is pre-converted into a 2D BEV grid

image by the method in [62, 67]. A 2D BEV grid image contains 256 × 256 pixels

and covers a 32m × 32m area in front of the ego-vehicle. A 2D BEV grid image

has two channels: The first channel represents the points above the ground plane

while the second channel represents the points below the ground plane. There are

GPS, IMU, and speedometer sensor data as well. These sensor give the position

and speed data of the ego-vehicle to the agent. The position and direction of

the ego-vehicle are localized from the GPS and IMU sensor inputs. We use the

extended Kalman filter for localization.

4.2 Proposed Method

In this section, we explain the road graph and image attention network (RIANet),

which leverages the attention score [78] between a road graph and image features.

The proposed framework is divided into three modules: (1) a feature encoder, (2)

an attention network, and (3) a low-level controller. The feature encoder module

encodes a road graph, a camera image, and additional sensor data into features.

The attention network module takes these feature embeddings as inputs, applies

the attention mechanism to fuse features, and extracts the context feature of

the scene. The low-level controller module calculates the target speed from the

context feature and controls the ego-vehicle using a PID controller.

4.2.1 Feature Encoder

The feature encoder module takes an observation ot = {Gt, It, St} as an input

and encodes the road graph Gt, the camera image It, and the additional sensor

data St into feature embeddings. The encoder for each component is a neural

network and we use a different network architecture for each encoder. The entire

network structure of the feature encoder module is shown in Figure 4.2.

63

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

F
igu

re
4.2:

T
h

e
stru

ctu
re

of
th

e
featu

re
en

co
d

er
m

o
d

u
le.

(a)
R

oad
grap

h
en

co
d

er.
(b

)
C

am
era

im
age

en
co

d
er.

(c)

A
d

d
ition

al
featu

re
en

co
d

er.
(d

)
T

h
e

en
co

d
in

g
p

ro
cess

of
an

ob
ject

featu
re.

64

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

Road Graph Encoder. The road graph encoder extracts a feature embedding

of the road graph Gt using graph convolutional network (GCN) [47]. Similar to

the graph encoding method in Section 3.2.1, we first regularize each node feature

fni and edge feature fei→j using fully-connected networks ψnode and ψedge. We

then sum up the edge feature along the starting node index and concatenate it

with the node feature. If the number of nodes in Gt is N , the encoding process

is formulated as follows:

f̃ni = ψnode(fni), for 1 ≤ i ≤ N (4.1)

f̃ei→j = ψedge(fei→j), for 1 ≤ i, j ≤ N (4.2)

f̃i = concat(f̃ni ,
∑
k

f̃ek→i
), for 1 ≤ i ≤ N (4.3)

Here, concat is a concatenation operator. We get the embedded feature matrix

X0 ∈ RN×Z by applying the encoding process to each element in Gt. The i-th

row of the X0 is the feature f̃i ∈ RZ , where Z is the feature size. We update the

feature matrix X0 using a H-layers GCN network [47]. The update process of the

k-th layer of GCN is formulated as follows:

Xk = σ(ÃXk−1Wk +Bk), (4.4)

where Ã ∈ RN×N is a normalized adjacency matrix of Gt with self-loops, σ is a

leaky-ReLU [55], and Wk and Bk are the weight and bias of the k-th GCN layer.

We iteratively update X0 and obtains the final graph feature embedding XH .

Camera Image Encoder. We expect the camera image encoder to capture some

important visual information such as traffic lights, pedestrians, and obstacles. To

capture and encode the object features, we use a ResNet [37] based feature map

and a Faster R-CNN [66]. The encoding process of an object feature is shown in

Figure 4.2(d). We first extract the feature map of the image It using the ResNet

based network. The ResNet based feature map ϕob(It) = Ĩt has the channel size of

C and the same height and width as the input image It. We then detect objects in

65

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

the image It using Faster R-CNN and obtain a bounding box set {bi}di=1, where

bi is a bounding box and d is the number of the detected bounding boxes. d is

not a fixed value and can be changed according to the image It. Bounding box

bi has the corresponding classification feature ci and positional feature pi. The

classification feature ci is a classification result of the i-th object and encoded in

a one-hot vector. The positional feature pi = (h,w, x, y) represents the positional

information of a bonding box bi, where h, w, x, and y represent the height,

the width, the x and y position of the center of the bounding box bi in the 2D

pixel space. For each bounding box bi, we crop the feature map Ĩt according to

the size and location of the bounding box bi. We get the spatial mean of the

cropped feature map and incorporate it with ci and pi using MLP networks. For

a cropped feature map with the size of C × h× w, the spatial mean has the size

of C. The feature embedding for the i-th object is denoted as obi. The object

feature encoding process is formulated as follows:

Ĩt = ϕob(It) (4.5)

fimg = ψimg(mean(crop(Ĩt; bi))) (4.6)

flin = ψlin(concat(ci, pi)) (4.7)

obi = ψob(concat(fimg, flin)), (4.8)

where ψimg, ψlin, and ψob are MLP networks, crop is a crop operator, and mean

is a spatial mean operator.

In addition to each object feature embedding obi, the camera image encoder

also encodes the global image feature embedding obglobal to capture the global

feature of the image It. The image It is encoded into obglobal by the ResNet-based

network ϕglobal as follows:

obglobal = ϕglobal(It), (4.9)

where obi and obglobal are one-dimensional vectors and have the same feature size

66

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

of Z.

Additional Feature Encoder. The additional feature encoder take the addi-

tional sensor data St as inputs. The St contains LiDAR data flidar and speed

data fspeed. We encode each flidar and fspeed into feature embedding. First, Li-

DAR data is encoded by a ResNet model ϕlidar. As explained in Section 4.1, the

LiDAR data flidar is a pre-processed 2D BEV grid image. The LiDAR data flidar

is encoded into a feature oblidar by ϕlidar. The speed data fspeed is also encoded

into a feature obspeed by the MLP network ψspeed. The encoding process of the

additional feature encoder is formulated as follows:

oblidar = ϕlidar(flidar) (4.10)

obspeed = ψspeed(fspeed) (4.11)

4.2.2 Attention Network

The attention network module outputs the scene context by incorporating all

the encoded features from the feature encoder. To leverage the attention between

each feature, we use the transformer model [78] and compute the attention scores

between the features. The network architecture of the attention network module

is shown in Figure 4.3(a). We first integrate all the feature embeddings in Section

4.2.1 into the feature fusion F as follows:

Fob = [ob1, · · · , obd, obglobal, oblidar, obspeed] (4.12)

F = concat(XH , Fob) (4.13)

The feature Fob contains the object feature embeddings ob1, · · · , obd ∈ RZ , the

global image feature embedding obglobal ∈ RZ , the LiDAR feature embedding

oblidar ∈ RZ , and the speed embedding obspeed ∈ RZ . Each feature has the same

size of Z and these features are stacked into the feature Fob. The feature Fob ∈

R(d+3)×Z and the road graph feature XH ∈ RN×Z are concatenated into the

feature fusion F ∈ R(N+d+3)×Z .

67

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

We use the attention mechanism [78] to obtain the attention scores between

each feature in F . The attention function Attn(·, ·) is formulated as follows:

Attn(M1,M2) = concat(head1, · · · , headn)WO, (4.14)

where headi = softmax(
QiKi

T

√
Z

)Vi (4.15)

Qi,Ki, Vi = M1W
Q
i ,M2W

K
i ,M2W

V
i (4.16)

Here, M1 and M2 are arbitrary inputs to the attention function, softmax is the

softmax function, n is the number of heads, WQ
i ,W

K
i ,W

V
i ∈ RZ×Z , and WO ∈

R(nZ)×Z are weight matrices. The transformer consists of an attention function, a

MLP network ψtran, and a layer normalization LN. The transformer is formulated

as follows:

Transformer(M1,M2) = LN(ψtran(sub) + sub), (4.17)

where sub = LN(Attn(M1,M2) +M1) (4.18)

The transformers are stacked L times and compose a total of L transformer layers.

Except for the last layer, the process of each layer is formulated as follows:

Fk = Transformerk(Fk−1, Fk−1), for 1 ≤ k < L (4.19)

Starting from F0 = F , the fusion transformer module iteratively computes Fk.

The last transformer layer computes the scene context feature c from FL−1 ∈

R(N+d+3)×Z and F̄L−1 ∈ R1×Z as follows:

c = TransformerL(F̄L−1, FL−1), (4.20)

where F̄L−1 is the feature mean of FL−1. The size of the scene context feature

c ∈ R1×Z is invariant to the number of nodes N and the number of object features

d.

68

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

(a)

(b)

Figure 4.3: The structure of the networks. (a) The attention network module. (b)

Waypoint prediction network.

4.2.3 Low-Level Controller

The low-level controller takes the scene context c as an input and computes the

steering control value and the target speed for the ego-vehicle.

Steering. We compute the steering value which makes the ego-vehicle follow

the pre-defined path ζ. The path ζ is calculated through the following process.

Similar to [62], we assume that the goal is to navigate a given route γ = {gi}li=1,

where gi is a goal location and l is the number of the goal locations. We first find

a node nneargi ∈ Gglobal which is the nearest node to gi. We then use the Dijkstra

algorithm and calculate the shortest path in Gglobal, which visits all the nodes

{nneargi }li=1. The path ζ is constructed after applying a line smoothing method

to the Dijkstra shortest path. The steer PID controller computes the deviation

between the current ego-vehicle position and the path ζ and finds the steering

value which makes the ego-vehicle follow the path ζ.

Target Speed. We also compute the target speed of the ego-vehicle from the

future waypoints which is predicted from a waypoint prediction network [11,

62]. The network architecture of the waypoint prediction network is shown in

Figure 4.3(b). As demonstrated in [11, 62], we also empirically found that it is

69

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

better to use the waypoint prediction network than to compute the target speed

directly. The waypoint prediction network takes the scene context c as an input

and predicts the waypoints in the ego-vehicle coordinate frame. The scene context

c is first passed to the MLP network. The output of the MLP network is entered

to the GRU [16] as a hidden state. Starting from the initial input of w0 = (0, 0),

the GRU iteratively outputs the differential waypoints δwt. During the iteration,

the GRU incorporates the current goal location gi in its inputs. The waypoints

wt are constructed as wt =
∑t

τ=1 δwτ for the future time steps t = 1, · · · , T and

we use T = 4. After the waypoints are predicted, we compute the target speed

vtarget = ∥w1 − w0∥2/δt, where δt is the time interval between the waypoints. We

use a PID controller which has the same configuration as [11, 62] and provides

the throttle and brake values to the ego-vehicle, which make the ego-vehicle have

the target speed vtarget.

4.2.4 Learning Algorithm

We train our network using imitation learning [11, 62]. The output of the waypoint

prediction network is the waypoints {wt}Tt=1. We use L1 loss between the predicted

waypoints wt and the expert waypoints wgt. Given the expert waypoints {wgt
t }Tt=1,

the loss function is formulated as follows:

loss =

T∑
t=1

∥wt − wgt
t ∥1 (4.21)

As mentioned in [62], the waypoints wt and wgt are different from the goal lo-

cations gi of the given route γ or the nodes in the pre-defined path ζ which the

ego-vehicle follows.

4.3 Experiments

In experiment, we use a widely-used driving simulator named CARLA [25]. We

train the proposed network with an expert dataset and compare the evaluation

70

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

results with the baseline methods. All data collection and experiments are con-

ducted in the CARLA environment.

4.3.1 Experimental Settings

We use the CARLA 0.9.10 version for the experiments. There are eight types of

maps in CARLA, and in each environment, the agent needs to complete the given

route while handling challenging situations such as lane changing, unexpected

obstacle avoidance, crossing intersection, and unprotected turn. We follow the

evaluation settings in [62] and use Town05 for evaluation. We use two different

types of scenarios: Town05 Short and Town05 Long. The scenarios in Town05

Short setting have 10 routes of 100-500m in length and the scenarios in Town05

Long setting have 10 routes of 1000-2000m in length.

4.3.2 Dataset

The training data is collected by a handcraft expert policy which uses privi-

leged information about the environment. The dataset is provided by [62] and

we especially use the ClearNoon dataset. In our setting, we do not use the data

from Town10 for training because CARLA 0.9.10 does not provide the HD-map of

Town10, which is required for constructing a road graph. We instead use Town01,

Town02, Town03, Town04, Town06, and Town07.

The road graph data is not contained in the dataset of [62]. Therefore, we

generate the road graph feature Gt according to the vehicle position and rota-

tion in the dataset. We first construct the global graph Gglobal using HD-map

data of each town. HD-map data in CARLA uses the OpenDRIVE format [1]

and provides border information for each lane of roads. We obtain the center

trajectory of each lane through borderline information and sample nodes from

the center trajectory at intervals of 3m, including the endpoint of each center

trajectory. HD-map also provides linkage information of lanes. We connect edges

71

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

so that nodes in the same lane can be sequentially linked. In addition, edges are

connected between end nodes of linked lanes. Inspired by the method in Chapter

3, we define node and edge features as follows:

fni = (xni , yni ,1ts, 1tr,1oc,1oc · v) (4.22)

fei→j = (xei→j , yei→j), (4.23)

where (xni , yni) is the 2D position of the node ni, (xei→j , yei→j) is the 2D di-

rection of the edge ei→j , v is the speed of the ego-vehicle, and 1ts, 1tr, 1oc are

the indicators. 1ts is the traffic signal indicator which is 1 if the node is on an

intersection and 0 otherwise. 1tr is the path indicator which is 1 if the node is

included in the pre-defined path ζ. 1oc is the occupancy indicator which is 1 if the

node is the nearest node to the current ego-vehicle position. The node position

(xni , yni) and edge direction (xei→j , yei→j) are computed in the ego-vehicle coor-

dinate frame, where x-axis is parallel to the ego-vehicle direction. The position

of the ego-vehicle can be inversely calculated from the position of each node and

the occupancy indicator.

After constructing Gglobal, we extract the graph presentation Gt. We first select

the K nearest nodes to the ego-vehicle position. We then select only the nodes

in front of the ego-vehicle with a small margin µ. We use K = 96 and µ = 10m

in our setting. The position and direction of the ego-vehicle are estimated by the

extended Kalman filter and used to compute the ego-vehicle coordinate frame.

The road graph is computed in real-time when evaluating the agent.

4.3.3 Implementation Details

In the road graph encoder, the MLP networks ψnode and ψedge are constructed

by a fully-connected layer with the size of 6× 32 and 2× 32, respectively. We use

H = 3 for the number of GCN [47] layers. The weight of each GCN layer has the

size of 64 × 64 except for the last layer and the weight of the last GCN layer has

72

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

the size of 64 × 128.

We use a pre-trained ResNet-34 model [37] for the network ϕglobal to encode the

global image feature obglobal. The network ϕglobal is pre-trained on ImageNet [21]

data and the last layer of ϕglobal is changed to a 512 × 128 size fully-connected

layer. We use a ResNet-18 model for the network ϕlidar to encode the LiDAR

feature oblidar. In contrast to ϕglobal, ϕlidar is not pre-trained. The last layer of

ϕlidar is also changed to a 512× 128 size fully-connected layer. We use 1× 64 and

64 × 128 size fully-connected layers for the network ψspeed to encode the speed

data feature embedding obspeed. All the feature embeddings obglobal, oblidar, and

obspeed have the same feature size of Z = 128.

We use a Faster R-CNN model [66] which is reimplemented and pre-trained on

the CARLA dataset [26] . We use two separate networks for object detection: a

traffic light detector and an obstacle detector. The traffic light detector detects

the traffic light signal which can be labeled as Red, Yellow, Green, or Off. The

obstacle detector detects the obstacles which can be labeled as Pedestrian, Car,

Bicycle, or Motorcycle. The classification result of each detector is encoded as

a one-hot vector. The bounding boxes of the detected objects of two detectors

are combined into the bounding box set {bi}di=1. The feature map Ĩt is computed

from the ResNet-34 model ϕob [37] and we use the feature map from the first

convolution groups named conv1. The ResNet-34 model ϕob shares the parameters

with the global image feature encoding network ϕglobal. Before applying the crop

operation, the feature map from ϕob is upsampled to the size of the original

image It with the bi-linear interpolation. The MLP networks ψimg and ψlin are

constructed by a fully-connected layer with the size of 64 × 128 and 8 × 128,

respectively. The MLP network ψob is constructed by two fully-connected layers

which have the size of 256 × 128 and 128 × 128. We use two separate networks

for ψimg, ψlin, and ψob depending on whether the detected object belongs to a

traffic light or an obstacle. The speed data encoding network ψspeed is also an

73

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

MLP network and constructed by two fully-connected layers which have the size

of 1 × 64 and 64 × 128. All the MLP network uses the leaky-ReLU [55] for the

non-linear function.

We stack L = 5 transformer layers in the attention network module. Each

transformer in a layer has four heads. All the linear projection weights of each

transformer have the size of 128×128. The MLP network ψtran is constructed by

two fully-connected layers which have the size of 128×512 and 512×128. We use

the same network architecture as [11, 62] for the waypoint prediction network.

4.3.4 Baselines

We compare the proposed method with several baselines.

• CILRS [20]. CILRS is a conditional imitation learning method which uses

a single front camera image and a speedometer sensor data. The network

architecture of CILRS contains a conditional module which takes a naviga-

tional command as the condition.

• RBC [26]. RBC is a rule-based control which identifies the location of the

object through a Faster R-CNN [66] and controls the ego-vehicle based on

the hard-coded rules. We used a similar method with [26] but reimplemented

some rules to apply it to our setting. RBC detects traffic lights and obstacles

as the same as the proposed method. However, unlike the proposed method,

RBC estimates the 3D position of a detected object through LiDAR data.

In our implementation, RBC uses the following method to find the 3D

position of the detected object. First, the center points of the bounding

box of objects are projected into the normalized image coordinate using

the camera calibration matrix. Likewise, the 3D coordinates of the point

clouds obtained from LiDAR data are projected into the normalized image

coordinate. After that, the point cloud closest to the center point of the

74

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

object is selected on the normalized image coordinate. The 3D coordinate

of the selected point cloud is used as the 3D coordinate of the detected

object. Based on the estimated 3D coordinate, RBC finds the lane in which

the obstacle is currently located. If the obstacle is on the current lane and

the distance between the ego-vehicle and the obstacle is less than λ, RBC

stops the ego-vehicle. We have fine-tuned the parameter λ and use the

best value for evaluation. The distance is computed according to the Frenet

coordinate frame of the lane. RBC also stops the vehicle if the traffic light

closest to the center of the image It is detected as red or yellow. However,

if the ego-vehicle has already entered an intersection, the vehicle does not

stop according to the traffic light.

• AIM [62]. AIM uses only the camera image as an input. The image input

is encoded through ResNet [37] based networks. The encoded features are

entered into the waypoint prediction network. We test two type of low-

level controller to check the effect of changing low-level controller. Vanilla

AIM follows the waypoints predicted by the waypoint prediction network.

AIM+R follows the pre-defined path as the same as the proposed method.

In AIM+R, the waypoint prediction network only decides the target speed

of the ego-vehicle.

• Transfuser [62]. Transfuser uses a camera image and a LiDAR feature

as inputs. The image and LiDAR input are encoded through ResNet [37]

based networks and fused together through the attention mechanism. The

fused feature is then entered into the waypoint prediction network. Similar

to AIM, we test Transfuser which is the vanilla version and Transfuser-R

which uses a path-following low-level controller.

75

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

4.3.5 Comparison Results

We use three metrics in the evaluation: route completion, driving score, and in-

fractions per km. Route completion (RC) is the percentage of the completed route

length relative to the total route length. Driving score (DS) is the product be-

tween the route completion and the penalty weight. The penalty weight starts

from 1.0 and decreases when the agent commits an infraction. The types of infrac-

tions include the following events: collisions, running a red light, and running a

stop sign. There are also additional infractions which are not counted when com-

puting the penalty weight: off-road driving, route deviation, agent blocked, route

timeout. Instead of reducing the penalty weight, they affect the computation of

the route completion or terminate the simulation. Infractions per km (IpKm) is

the total number of infractions divided by the total distance in kilometers trav-

eled. To consider cases when a vehicle is stopped and the agent is blocked, we

count all types of infractions when computing IpKm. Higher is better in DS and

RC, and lower is better in IpKm. The detailed explanation of each metric can be

found from the CARLA official website [8].

We compare the proposed method with the other baselines. Each method is

trained and evaluated with five different random seeds. Table 4.1 shows the mean

and standard deviation of the result. We observe that the proposed method shows

the highest performances in all three metrics. Especially, the proposed method

shows higher performance than Transfuser which does not use the road graph

for the attention mechanism. The result demonstrates that the use of the road

graph feature can improve the performance of the autonomous driving controller.

To show the effect of changing the low-level controller, we tested AIM-R and

Transfuser-R which use the same low-level controller as RIANet. However, the

proposed method shows better performance than AIM-R and Transfuser-R even

they use the same low-level controller. In addition, the proposed method shows

better performance than RBC which uses the same object detector model. The

76

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

result shows that the proposed method leverages the detected object features

more effectively compared to RBC.

4.3.6 Attention Score Visualization

We visualized the attention score of the detected objects and the nodes of the

road graph. The attention score is measured from the first layer of the attention

network by taking the mean of the attention weights along the query features.

Figure 4.4 shows two examples on Town05. On the camera images, we marked the

object with the highest attention score among the objects in red and the other

objects in blue. The results show that the attention network tends to pay more

attention to important objects (e.g., a jaywalking pedestrian and a vehicle that

crosses the intersection) than other objects. We also visualized the relationship

between the image and node features. We estimated the 3D position of the object

with the highest attention score using the estimation method of RBC [26] and

plotted the position on the 2D coordinates. We also plotted the road graph on the

same figure. Interestingly, the object with the highest attention score (red boxes)

and the node with the highest attention score (red x marks) are distributed close

to each other on the 2D coordinates. From the result, we can infer that the

network considers the relationship between the road graph and the object when

calculating the attention scores.

4.3.7 Road Graph Feature Analysis

We investigated how the structure of the road graph affects the attention in

the image. Figure 4.5 shows an example scenario. We first fed a camera image

(Figure 4.5(a)) and the corresponding road graph input (Figure 4.5(b)) to the

network. In this case, the network assigned the highest attention score of 0.01256

to the jaywalking pedestrian (red box). We then fed a left-curved road graph

(Figure 4.5(c)) to the network, which is randomly sampled from the evaluation

77

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

Table 4.1: Performance Comparison

Method
Town05 Short

DS ↑ RC ↑ IpKm ↓

CILRS [20] 21.693 ± 1.751 25.762 ± 0.807 98.141 ± 14.164

RBC [26] 49.947 ± 4.966 84.016 ± 3.246 33.527 ± 4.783

AIM [62] 69.917 ± 15.104 73.106 ± 19.000 10.315 ± 2.489

AIM+R [62] 79.969 ± 18.601 82.286 ± 19.714 8.592 ± 7.382

Transfuser [62] 64.495 ± 7.840 70.915 ± 7.200 12.059 ± 2.835

Transfuser+R [62] 67.031 ± 8.800 73.254 ± 9.837 10.881 ± 2.481

RIANet (Ours) 87.469 ± 2.363 93.881 ± 3.827 6.319 ± 1.419

(a) Town05 Short

Method
Town05 Long

DS ↑ RC ↑ IpKm ↓

CILRS [20] 7.889 ± 1.047 10.751 ± 0.358 17.020 ± 1.182

RBC [26] 14.692 ± 4.019 82.866 ± 7.282 6.669 ± 0.490

AIM [62] 39.558 ± 5.056 83.018 ± 11.477 3.424 ± 0.248

AIM+R [62] 39.873 ± 5.005 80.251 ± 17.594 2.753 ± 0.325

Transfuser [62] 36.438 ± 8.412 96.650 ± 5.420 3.473 ± 0.452

Transfuser+R [62] 37.283 ± 7.049 92.815 ± 4.607 3.209 ± 0.613

RIANet (Ours) 44.719 ± 2.513 96.934 ± 2.927 2.624 ± 0.163

(b) Town05 Long

78

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

Figure 4.4: Visualization of attention scores. (Left) Detected objects on camera

images. The object with the highest attention score is marked as red and the

other objects are marked as blue. (Right) Road graph of scenes in 2D BEV.

Green arrows indicate the position and direction of the ego-vehicle. Red boxes

represent the estimated 2D position of the object with the highest attention scores

and red x marks represent the 2D position of the node with the highest attention

scores.

79

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

Figure 4.5: Road graph feature analysis. (a) A jaywalking pedestrian (red box)

and cars (blue and white boxes) are detected on a camera image. (b) A correct

road graph. (c) A random road graph. Green arrows indicate the position and

direction of the ego-vehicle. Red boxes in (b) and (c) represent the estimated 2D

position of the pedestrian. Also, blue boxes in (b) and (c) represent the estimated

2D position of the car marked in blue. The car marked in white box is not plotted

in (b) and (c).

80

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

dataset. Interestingly, the network assigned the highest attention score of 0.00932

to the car (blue box) and the second-highest attention score of 0.00925 to the

pedestrian (red box). It appears that the network pays less attention to the object

if the object is estimated to be far from the ego-vehicle lane on the road graph.

The result shows that the network can capture the structural feature of the road

graph.

4.3.8 Ablation Study

As an ablation study, we tested how each input feature affects the performance

of the agent. In the As an ablation study, we tested how each input feature

affects the performance of the agent. In the default configuration, we used all the

road graph, detected bounding boxes, global image, LiDAR, and speed features.

However, in each case of no-graph, no-detection, no-global-image, and no-LiDAR

setting, we ignored the corresponding feature embedding XH , {obi}di=1, obglobal,

and oblidar, respectively. The feature fusion F is computed without the ignored

feature. The network is trained once with each configuration and evaluated with

three different random seeds. As shown in Table 4.2, The default configuration

shows the highest DS and IpKm in both Town05 Short and Town05 Long settings.

The default configuration shows a lower performance (1.671% and 3.066%) in

RC but shows a higher performance in DS (3.885% and 12.757%) and IpKm

(14.312% and 13.543%) compared to no-road-graph. From this comparison, it

can be inferred that the agent drives more cautiously when using the road graph.

In addition, the average performance of no-road-graph, no-detection, and no-

LiDAR were higher than that of Transfuser in Table 4.1, because Transfuser does

not use both road-graph and detection features. As a result, the ablation study

shows that all the proposed feature inputs are essential for driving successfully.

81

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

Table 4.2: Ablation Study

Configure
Town05 Short

DS ↑ RC ↑ IpKm ↓

no-road-graph 84.198 ± 1.971 95.477 ± 3.575 7.374 ± 2.358

no-detection 81.729 ± 6.503 90.729 ± 6.503 8.453 ± 1.972

no-global-image 60.681 ± 2.513 93.532 ± 6.832 23.750 ± 1.343

no-LiDAR 82.754 ± 2.694 93.166 ± 3.669 9.657 ± 1.121

Default 87.469 ± 2.363 93.881 ± 3.827 6.319 ± 1.419

(a) Town05 Short

DS ↑ RC ↑ IpKm ↓

no-road-graph 39.660 ± 3.092 100.000 ± 0.000 3.035 ± 0.203

no-detection 39.091 ± 2.055 98.592 ± 1.991 2.997 ± 0.245

no-global-image 25.778 ± 5.552 86.312 ± 4.694 4.563 ± 0.370

no-LiDAR 39.139 ± 4.177 97.069 ± 4.146 2.976 ± 0.265

Default 44.719 ± 2.513 96.934 ± 2.927 2.624 ± 0.163

(b) Town05 Long

82

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

4.3.9 Qualitative Results

We displayed simulation results of the proposed method in Figure 4.6 and Figure

4.7. In the simulations, the ego-vehicle was controlled by RIANet on CARLA

Town05 Short. The network model of RIANet is fully-trained before running a

simulation. We have captured the ego-vehicle in a third-person view (up) and

a bird-eye view (down). The snapshots are arranged in the order of time with

regular time intervals. In Figure 4.6, the ego-vehicle has stopped at the red light

signal (t = 3.0s). Note that turning right on red is prohibited in the CARLA

environment. After the signal turns green, the ego-vehicle has waited until the

frontal vehicle started to move (t = 6.0s). After the frontal vehicle started to

move, the ego-vehicle also started and has followed the frontal vehicle (t = 9.0s).

The right turn of the ego-vehicle was completed while the signal was green (t =

13.5s). As a result, the ego-vehicle successfully made a right turn without violating

traffic rules. Another example of a simulation result is shown in Figure 4.7. In

Figure 4.7, the ego-vehicle first has changed the lane (t = 3.0s). The ego-vehicle

then has turned left at the green light (t = 7.5s). The ego-vehicle did not violate

the traffic signal because the ego-vehicle passed the intersection before the signal

turned red. After passing the intersection, the ego-vehicle faced a jaywalking

pedestrian (t = 12.0s). To avoid a collision with the pedestrian, the ego-vehicle

has slowed down (t = 13.5s) and changed the lane (t = 15.0s). As a result, the

ego-vehicle succeeded to drive without any accidents or signal violations.

We compared the proposed method with RBC [26] and Transfuser [62] by

displaying simulation results. Figure 4.8 and Figure 4.9 shows snapshots of the

scenarios used for the comparison. In Figure 4.8, the ego-vehicle tries to cross

an intersection. RBC and RIANet successfully have driven the ego-vehicle and

crossed the intersection. Although the traffic lights became yellow before crossing

the intersection completely, the ego-vehicle did not violate the signal by making

the first start at the green light. On the other hand, Transfuser failed to cross

83

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

the intersection without violating traffic sign. In the case of Transfuser, the ego-

vehicle stopped once in front of the intersection (t = 8.0s). When the traffic

signal turned red, the ego-vehicle suddenly started to move and violated the

traffic signal (t = 12.0s). In Figure 4.9, the ego-vehicle tries to turn right while

avoiding a collision with a jaywalking pedestrian. In this scenario, RBC failed

to recognize the signal properly and did not move in front of the intersection.

In the case of Transfuser, the ego-vehicle turned right on the intersection (t =

7.5s). However, the ego-vehicle turned right on the red, which is prohibited in

the CARLA environment. On the other hand, RIANet successfully drived the

ego-vehicle and finished turning before the traffic sign completely became red

(t = 7.5s). In both cases of Transfuser and RIANet, the ego-vehicle faced a

jaywalking pedestrian after passing the intersection. The ego-vehicle successfully

avoided the pedestrian in each scenario. As a result, only RIANet succeeded to

complete the path without any infraction.

4.4 Chapter Summary

In this chapter, we have presented a new driving framework that leverages the

attention score between the road graph and image feature. We haved proposed

RIANet to capture relationship between sensed observations against the road

structure via a road graph. The proposed network computes the scene context by

incorporating a road graph, image, and additional features through the attention

mechanism. In the experiments, we have shown that the proposed method out-

performs the baseline methods in terms of all the metrics. Compared to the other

methods, the proposed method can effectively leverage the attention between the

road graph and image features. The results show that the use of the attention

score improves the performance in urban autonomous driving.

84

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

T
im

e
t

=
1.

5
s

t
=

3.
0s

t
=

4.
5s

t
=

6.
0s

t
=

7.
5
s

t
=

9.
0s

T
ra

ffi
c

li
gh

t
R

ed
R

ed
G

re
en

G
re

en
G

re
en

G
re

en

R
IA

N
et

T
im

e
t

=
1
0.

5
s

t
=

12
.0

s
t

=
13
.5

s
t

=
15
.0

s
t

=
16
.5

s
t

=
18
.0

s

T
ra

ffi
c

li
gh

t
G

re
en

G
re

en
-

-
-

-

R
IA

N
et

F
ig

u
re

4
.6

:
T

u
rn

ri
gh

t
an

d
av

oi
d

a
p

ed
es

tr
ia

n
sc

en
ar

io
.

85

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

T
im

e
t

=
1.5s

t
=

3.0s
t

=
4.5s

t
=

6.0s
t

=
7.5s

t
=

9.0s

T
raffi

c
ligh

t
G

reen
G

reen
G

reen
G

reen
G

reen
Y

ellow

R
IA

N
et

T
im

e
t

=
1
0.5

s
t

=
12.0s

t
=

13.5s
t

=
15.0s

t
=

16.5s
t

=
18.0s

T
raffi

c
ligh

t
Y

ellow
-

-
-

-
-

R
IA

N
et

F
igu

re
4.7:

T
u

rn
left

an
d

avoid
a

p
ed

estrian
scen

ario.

86

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

T
im

e
t

=
2.

0
s

t
=

4.
0s

t
=

6.
0s

t
=

8.
0s

t
=

1
0.

0s
t

=
12
.0

s

T
ra

ffi
c

li
gh

t
G

re
en

G
re

en
G

re
en

Y
el

lo
w

Y
el

lo
w

R
ed

R
B

C
[2

6]

T
ra

n
sf

u
se

r
[6

2
]

R
IA

N
et

(O
u

rs
)

F
ig

u
re

4.
8:

C
ro

ss
in

g
an

in
te

rs
ec

ti
on

sc
en

ar
io

.

87

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

T
im

e
t

=
2.5

s
t

=
5.0s

t
=

7.5s
t

=
10.0s

t
=

12.5s
t

=
15.0s

T
raffi

c
ligh

t
G

reen
Y

ellow
R

ed
R

ed
R

ed
R

ed

R
B

C
[2

6]

T
ra

n
sfu

ser
[6

2]

R
IA

N
et

(O
u

rs)

F
igu

re
4.9:

T
u

rn
righ

t
an

d
av

oid
a

p
ed

estrian
scen

ario.

88

Chapter 5

Road Graph Change Detection

for Autonomous Driving

In the previous works, it is demonstrated that using a road graph representa-

tion has advantages over a feature-based representation [17, 18, 15, 71, 82], BEV

image representation [59, 41], or egocentric image based representation [19, 20].

In particular, using a road graph representation has two major advantages when

training a driving agent. First, a road graph can help an agent grasp the road

information. For example, a road graph can give information about road connec-

tions. Second, a road graph is efficient for representing a state of an environment.

A road graph has a smaller data size than an image-based input. It reduces the

time complexity required for data processing.

In Chapter 3 and Chapter 4, we have presented a driving framework using a

road graph representation. As a result, the road graph based controllers showed

improved performances than previous learning-based controllers. However, apply-

ing a road graph representation to the real world environment is still challenging

because of road change issues. The structure of roads in the real world can be

changed for several reasons such as road construction or temporary traffic control.

89

Chapter 5. Road Graph Change Detection for Autonomous Driving

For example, the location of the road can be changed after road construction, or

some of the road lanes can be blocked during a temporary traffic control. Because

road graphs for RIANet were loaded from a pre-constructed road database and

not constructed on the fly, our framework was vulnerable to these road change

issues. This made our prior frameworks perceive inaccurate and unreliable road

structural information, which resulted in performance degradation in the real

world environment.

Road change detection has been studied in the field of autonomous driving.

However, compared with the proposed method, there are the following differ-

ences in previous works. Pannen et al. [61] suggested a particle filter based lo-

calization system and road change detection algorithm. In their work, however,

they assumed that the accurate positions of landmarks, such as lane markings or

traffic signs, are provided to the ego-vehicle controller. Ding et al. [22] proposed

a LiDAR based localization system and appended a local road change detection

module to enhance their localization accuracy. However, their method cannot rec-

ognize visual road changes such as road marking or lane width changes because

their detection module only relies on a LiDAR sensor. Heo et al. [42] suggested

using deep metric learning to detect mislabeled road markings in an HD map.

Likewise, Lambert et al. [49] suggested several fusion-based network architectures

which can detect newly added road markings in an HD map. Unlike prior work,

the proposed framework focuses on detecting structural road changes such as lane

addition or lane width changes.

In this chapter, we focus on the unreliability problem of input road graphs,

which is caused by road changes. For this purpose, we introduce an improved

version of our framework named RIANet++. Unlike [33], which uses only a con-

troller module, RIANet++ uses a road change detection module as well. The road

change detection module detects a road change by checking the similarity score

between image sensor data and pre-constructed query road graph data. By detect-

90

Chapter 5. Road Graph Change Detection for Autonomous Driving

ing a road change, we are able to increase the worst-case performance of the agent

by filtering out unreliable road graph input. For the road change detection mod-

ule, we suggest two types of detection methods. The semantic matching method

converts the query road graph into a semantic image and measures the similar-

ity score in the semantic image domain. Likewise, the graph matching method

converts the image sensor data into a road graph and measures the similarity

score in the road graph domain. In the experiment, we show the effects of the

proposed detection methods on the robustness of the controller. The experiment

is performed in two driving environments: the CARLA urban driving simulator

[25] and the Future Mobility Technology Center (FMTC) real-world environment.

In both cases, the proposed method successfully detects road changes and shows

improved driving performance compared to other baselines, including our prior

work [33].

Our contributions are summarized as follows:

• We propose a driving framework which can consider the importance of

objects and the scene context by leveraging road graph data.

• To solve the unreliability issue of road graph data, we propose to combine

the controller with the road change detection module, which can find the

road graph error from an egocentric image and query road graph.

• The proposed detection methods successfully detect road changes and help

the overall framework outperform the other baselines in both detection and

driving performance.

• We also experimentally demonstrate that the proposed driving framework

can overcome the performance degradation issue, which occurs by unex-

pected road changes, through the road change detection module.

91

Chapter 5. Road Graph Change Detection for Autonomous Driving

5.1 Problem Setting

In this section, we first define the problem where the proposed framework is

applied. In our problem setting, the goal is to train an urban autonomous driving

agent to visit a sequence of goal locations while keeping traffic rules, such as

collision avoidance and stopping at a red light. We denote the goal location set

as {gi}li=1, where gi is a goal location and l is the number of the goal locations.

The agent needs to reach each goal location in the given order. The driving

vehicle is installed with several sensors such as cameras, LiDAR, GPS, IMU, and

a speedometer sensor. The agent observes its state from these sensor data at

every time step t. Also, the agent is given the position and direction of the ego-

vehicle from the localization system. The localization system uses GPS and IMU

sensor data and estimates the vehicle odometry using the extended Kalman filter.

The detailed specification of each sensor and environment setting is explained in

Section 5.3.

In addition to egocentric sensor data, the driving agent is also given road graph

data. A road graph is a graph which represents the topological information of a

local map. In this paper, we use a graph representation method, which is defined

in [32, 33]. The agent observes a road graph Gt for every time step t. A road

graph Gt is a subgraph of a global graph Gglobal = (V,E). The nodes and edges

of this global graph Gglobal represent the topological information of the global

map data. A node ni ∈ V represents a drivable point on the map. These points

are sampled along the centerline of road segments with an interval of 3m. An edge

ei→j represents the connection between the node ni and nj . This connection is

only valid if the ego-vehicle is allowed to drive from ni to nj . The position of node

ni and the direction of an edge ei→j are stored in the database. During training or

test, the agent only observes a subgraph Gt, which contains K = 96 nearest nodes

from the agent’s position. These nearest nodes in Gt are only selected among the

92

Chapter 5. Road Graph Change Detection for Autonomous Driving

nodes in front of the ego-vehicle with a small backward margin µ = 10m. A

node feature fni and an edge feature fei→j in Gt are calculated depending on the

ego-vehicle state and the topological structure of Gt. In details, fni and fei→j are

defined as follows:

fni = (xni , yni ,1ts, 1tr,1oc,1oc · v) (5.1)

fei→j = (xei→j , yei→j), (5.2)

where (xni , yni) is the node position, (xei→j , yei→j) is the edge direction, v is the

ego-vehicle speed, and 1ts, 1tr, 1oc are the scalar-valued binary indicators. 1ts

is the traffic signal indicator meaning that the node is at an intersection. 1tr is

the path indicator meaning that the node is a part of the pre-defined vehicle

path. 1oc is the occupancy indicator meaning that the node is the closest node

to the ego-vehicle position. We use the ego-vehicle-centered coordinate frame to

compute the node position (xni , yni) and edge direction (xei→j , yei→j). The x-axis

of the coordinate frame is parallel to the orientation of the ego-vehicle.

The structure of roads in the real world can be changed due to road construction

or temporary traffic control. Therefore, in our problem setting, we assume that

some part of a global road graph Gglobal can contain a structural error due to those

road changes. Because Gt is stored and loaded from a pre-constructed database

of Gglobal, the structure of Gt could be different from the structure of the actual

road. In this paper, we assume that the road graph Gt can be changed to G′
t by

road changes. The actual road graph of the environment is G′
t, but an agent can

only access to the pre-constructed road graph Gt. Figure 5.1 explains how each

type of a road change can be applied to a road graph. In our problem setting, we

define six different types of road changes as follows:

• Lane Deviation (LD). A road can deviate in a perpendicular direction

to the road.

93

Chapter 5. Road Graph Change Detection for Autonomous Driving

(a
)

(b
)

(c)

(d
)

(e)
(f)

(g
)

(h
)

(i)

F
ig

u
re

5
.1

:
A

n
ex

a
m

p
le

of
a

ro
ad

grap
h

an
d

road
ch

an
ges

in
th

e
C

A
R

L
A

sim
u

lator.
D

u
rin

g
test,

an
agen

t
is

m
et

w
ith

th
e

actu
al

roa
d

grap
h
G

′t
(left)

b
u

t
can

on
ly

access
to

th
e

p
re-con

stru
cted

road
grap

h
G

t
(righ

t).
(a)

A
scen

e
of

a
road

d
u

rin
g

test.
(b

)
C

o
rresp

o
n

d
in

g
B

E
V

im
age.

T
h

e
p

osition
of

th
e

ego-veh
icle

is
m

arked
as

a
green

arrow
.
(c)

C
orresp

on
d

in
g

actu
al

ro
ad

g
ra

p
h
G

′t .
T

h
e

n
o
d

es
w

h
ich

are
targets

of
ch

an
ges

are
m

arked
in

red
,

an
d

th
e

oth
er

n
o
d

es
are

m
arked

in
b

lack
.

(d
)

L
a
n

e
d

ev
ia

tio
n

.
(e)

L
an

e
w

id
th

ch
an

ge.
(f)

L
an

e
rem

oval.
(g)

L
an

e
ad

d
ition

.
(h

)
N

o
d

e
M

issin
g.

(i)
C

om
b

in
ation

.

94

Chapter 5. Road Graph Change Detection for Autonomous Driving

• Lane Width Change (LWC). A lane width of a road is increased or

decreased.

• Lane Removal (LR). Compared with the road graph Gt, a road segment

in the actual road graph G′
t has fewer lanes. It means that the number of

lanes is decreased after the road change.

• Lane Addition (LA). Compared with the road graph Gt, a road segment

in the actual road graph G′
t has additional lanes. It means that the number

of lanes is increased after the road change.

• Node Missing (NM). A static object, such as traffic barriers, can hide a

part of the road. In this case, nodes of the road graph Gt are missing.

• Combination (Comb). Some of the other road change types can be si-

multaneously applied to the road graph Gt.

During the evaluation, the agent is met with the actual road graph G′
t but can

access only the pre-constructed road graph Gt. The detailed explanation of each

road change type is described in Section 5.3.1.

5.2 Proposed Method

In this section, we explain the proposed driving framework (RIANet++). Unlike

our prior framework in Chapter 4, the proposed framework assumes the unre-

liability of a road graph and focuses on handling it. To this end, we suggest

a detection module which can detect errors on the road graph caused by road

changes. The overall flow of the proposed framework is explained in Figure 5.2.

The road change detection module (Figure 5.2(a)) determines whether a road

change has occurred in the scene through the input camera image and the query

road graph. If a road change is not detected, the query road graph is considered

95

Chapter 5. Road Graph Change Detection for Autonomous Driving

Figure 5.2: The structure of the proposed framework. (a) Road change detection

module. (b) Controller module for normal cases. (c) Controller module for road

change cases.

reliable. In this case, we use the same road graph based controller module as

RIANet (Figure 5.2(b)). However, if a road change is detected, the query road

graph is considered incorrect, and we use another controller module which ignores

this road graph data (Figure 5.2(c)). The details of the controller module and

road change detection module are explained in Section 5.2.1 and Section 5.2.2,

respectively.

5.2.1 Controller Module

As mentioned in Section 5.2, we use a road-graph controller module (Figure

5.2(b)) when a road change is not detected. However, if a road change is detected,

we use a no-road-graph controller module which is trained without road graph

data (Figure 5.2(c)).

Road-Graph Controller Module for Normal Cases. When a road change

is not detected, we use the same road graph based controller which is suggested

in Section 4.2 (road-graph controller module). The road-graph controller module

takes both road graph and ego-centric sensor data as inputs. As explained in Sec-

96

Chapter 5. Road Graph Change Detection for Autonomous Driving

tion 4.2, we use an attention network [78] for our controller module. We compute

the attention score between a road graph and image features and leverage it to

reflect the scene context. The controller module consists of three sub-modules

named a feature encoder, an attention network, and a low-level controller. First,

in the feature encoder module, each road graph and ego-enteric sensor data is en-

coded into each feature embedding. Second, in the attention network module, all

the feature embeddings are fused by the attention mechanism. Finally, the low-

level controller module computes the target speed of the ego-vehicle and controls

it with a PID controller.

No-Road-Graph Controller Module for Road Change Cases. When a

road change is detected, we control the vehicle using a different network trained

without road graph data (no-road-graph controller module). The differences be-

tween the road-graph and no-road-graph controller modules are as follows: First,

the no-road-graph controller module does not take a road graph as an input to

the network. Both road-graph and no-road-graph controller modules have similar

network structures. However, the no-road-graph controller module uses the fea-

ture fusion vector F = Fob instead of (4.13). Second, for the steering control, the

no-road-graph controller module does not use the pre-defined path ζ when deter-

mining the steering control value. As explained in Section 4.2.3, the road-graph

controller module uses path ζ to determine the steering control value. However,

since the path ζ is calculated from the road graph Gglobal, there is a concern

that a road change in Gglobal also occurs an inaccuracy in the path ζ. Therefore,

instead of following the path ζ, the no-road-graph controller module controls the

steering of the vehicle to follow the predicted waypoints {wt}Tt=1. These waypoints

are predicted by the waypoint prediction network [11, 62] (Section 4.2.3) of the

no-road-graph controller module.

97

Chapter 5. Road Graph Change Detection for Autonomous Driving

5.2.2 Road Change Detection Module

In this section, we describe a road change detection module which is mentioned in

Section 5.2. The road change detection module uses a camera image to determine

whether the query road graph stored in the database matches with the road graph

of the current environment. In this paper, we suggest two types of matching

methods for our road change detection module: graph matching and semantic

matching. Figure 5.3 illustrates the difference between two detection methods.

Each method has its own advantages depending on the environment.

Graph Matching Method. In the graph matching method, the detection mod-

ule first reconstructs a road graph of the current environment from a camera

image. The detection module then compares the reconstructed road graph with

the query road graph. To reconstruct the road graph, we use a method similar

to Sat2Graph [40]. First, we convert a given camera image into a 2D BEV im-

age which covers 32m × 32m area in front of the ego-vehicle with a resolution of

256× 256. This 2D BEV image is entered into the deep layer aggregation (DLA)

[85] network and processed into a grid image of 19 channels. The first output

channel of DLA indicates the node existence probability for each pixel location

(px, py). In addition, the (3i+ 1)-th channel indicates the probability that there

exists the i-th edge in the corresponding node at (px, py), and the (3i+ 2)-th and

(3i + 3)-th channels indicate the direction of the i-th edge. The DLA network

is trained from the dataset in a supervised learning manner. The road graph is

reconstructed from the output image of DLA. We set a threshold to determine

whether a node or edge exists in each pixel location. We use 0.1 as a threshold

for the node existence. If the probability of node existence does not exceed 0.1, it

is also determined that the edge does not exist in the node. If the probability of

node existence exceeds 0.1, we use the following distance function to determine

98

Chapter 5. Road Graph Change Detection for Autonomous Driving

(a
)

(b
)

F
ig

u
re

5
.3

:
Il

lu
st

ra
ti

o
n

of
th

e
p

ro
p

os
ed

ro
ad

ch
an

ge
d

et
ec

ti
on

m
et

h
o
d

s.
(a

)
G

ra
p

h
m

at
ch

in
g

m
et

h
o
d

.
(b

)
S

em
an

ti
c

m
a
tc

h
in

g
m

et
h

o
d

.

99

Chapter 5. Road Graph Change Detection for Autonomous Driving

whether the i-th edge of the node u is connected to the surrounding nodes v.

disti(u, v) =
∥∥pu + ∆piu − pv

∥∥
2

+ α · cosdist(∆p
i
u, (pu − pv)),

(5.3)

where pu and pv are the pixel locations of the nodes u and v, ∆piu is the predicted

direction of the i-th edge of the node u, cosdist is the cosine distance between two

vectors, and α is the weight of the cosine distance. In the distance function,

the first term indicates how much the predicted position of the outgoing node

(pu + ∆piu) matches with the node position (pv) and the second term indicates

how much the predicted edge direction (∆piu) matches with the edge direction

(pv − pu). In the implementation, we set α to 100. We connect the node u and v

if the i-th edge existence probability of the node u is larger than a threshold 0.1

and the distance function disti(u, v) is smaller than a threshold 3.0.

To determine whether the reconstructed road graph matches the query road

graph, we check the similarity score between two road graphs. We use TOPO [6]

and APLS [77] as similarity scores because they are among the most widely used

metrics for checking graph similarity. To measure TOPO, we first find maximum

one-to-one matching between the nodes of two graphs G1 and G2. In this case,

the distance between the matched nodes should not exceed 4m in the world

coordinate frame. TOPO is measured through the following equation:

TOPO(G1, G2) =
2 ·M(G1, G2)

V (G1) + V (G2)
, (5.4)

where M(G1, G2) is the number of the matched nodes between G1 and G2, and

V (G1) and V (G2) are the number of the nodes in G1 and G2, respectively.

To measure APLS, we sample two nodes u and v in the graph G1 and find the

shortest path between u and v. We then find the nodes u′, v′ ∈ G2 which are the

nearest nodes to u and v, respectively. APLS is measured through the following

100

Chapter 5. Road Graph Change Detection for Autonomous Driving

equation:

APLS(u, v) = 1 − min

(
1,

|L(u, v) − L(u′, v′)|
L(u, v)

)
, (5.5)

where L(u, v) is the shortest path length between the node u and v. If the path

between u′ and v′ does not exist, L(u′, v′) is considered as an infinite value. To

calculate APLS between two graphs, we sample all the valid node pairs in G1

and use the mean value of APLS as the similarity score.

TOPO and APLS range between zero and one. Also, their values become higher

when the two graphs are more similar. Therefore, we can use both metrics to

compute the similarity score between two graphs. The graph matching based de-

tection module determines road changes when the similarity score between the

reconstructed road graph and the query road graph becomes below a detection

threshold. In the experiment, both metrics are evaluated under different condi-

tions.

Semantic Matching Method. In the semantic matching method, the detec-

tion module first predicts the camera-based semantic segmentation image using

a DeepLabv3+ [14] network. To ignore occlusions by obstacles and only consider

the road structure, we define four classification types: empty, driving area, yellow

line, and white line. During training and test, the DeepLabv3+ network ignores

occlusion and predicts the structural information of the road. In addition, the net-

work ignores the difference between a dotted line and a straight line and predicts

only the position of lines. The detection module also synthesizes the semantic

segmentation image from the query road graph. The synthesized semantic image

is compared with the semantic image predicted by DeepLabv3+. As a result, the

detection module discerns the road change through the similarity score between

two semantic images.

The process of synthesizing a semantic image from a query road graph is as

follows: First, we find the positions of the left and right boundaries for each lane

101

Chapter 5. Road Graph Change Detection for Autonomous Driving

in the graph. The width of the road is calculated from the width between the

side lane. For a one-way-one-lane road, we use a fixed lane width value of 3.5m

to find the boundaries. For a road with multiple lanes, we can find the center line

of the road from the leftmost boundary among the lanes. We draw a yellow line

along this road center line on the 2D plane. We also draw a white line for the rest

of the lane boundary positions. In the road environment setting we use, yellow

lines always take place in the center of the road, and there is no yellow line on

the edge of the road. Finally, the synthesized semantic image is transformed into

a given camera viewpoint.

To check the similarity score between the predicted semantic image and the

synthesized semantic image, we measure the mean average precision (mAP) and

mean intersection over union (mIoU), which are widely used metrics for evalu-

ating the performance of semantic segmentation. The semantic matching based

detection module determines road changes when the similarity score between

two images becomes below a detection threshold. We also compare the detection

performance of both mAP and mIoU in the experiments.

5.3 Experiments

In the experiments, we first show that the road graph based controller is effective

for urban autonomous driving. However, we also show that a road change in

the environment can harm the performance of the controller module. We then

demonstrate that this harmful effect can be reduced by the proposed road change

detection module in RIANet++.

5.3.1 Environments

We use two environments for our experiment: the CARLA simulator and FMTC

real-world driving environment. The CARLA simulator [25] is one of the most

102

Chapter 5. Road Graph Change Detection for Autonomous Driving

widely used urban simulators. CARLA contains various map environments from

Town01 to Town07 and includes complex scenarios such as pedestrian avoidance

and crossing intersections. To train the controller and road change detection mod-

ules, we use a dataset collected by [62]. We use Town05 for the evaluation to check

the performance of the controllers and detection modules. The Town05 environ-

ment is divided into Town05 Long and Town05 Short scenarios depending on the

length of the route distance. The road graph Gglobal is constructed from the HD-

map data [1] by following the method in [33]. Future Mobility Technology Center

(FMTC) is a real-world test driving facility for self-driving vehicles in Siheung,

Korea. FMTC includes urban driving scene components such as intersections,

crosswalks, and traffic lights. Figure 5.5 shows a snapshot of FMTC and the cor-

responding road graph we constructed. We collected expert data using our test

vehicle in FMTC. Figure 5.4 shows the vehicle platform and sensor configuration

we used for the experiment. The FMTC dataset includes four driving scenarios

which are illustrated in Figure 5.6. For the reality of the scenarios, each data is

collected by changing the driving lanes and allowing one or two other vehicles to

drive near the ego-vehicle. The collected dataset contains a total of 14,406 frames

with 0.5s time intervals. We take a satellite image of FMTC and manually draw

the centerline of the roads to extract a road graph from it. The positional infor-

mation in the driving dataset is also manually adjusted to reduce the localization

error. For all experiments, the networks of the controller and road change detec-

tion modules are trained once using the entire training dataset and evaluated for

each evaluation scenario.

5.3.2 Performance of Road Graph Based Controller Module

We first conduct the experiments in environments without road change conditions

to measure the performance of the road graph based controller module itself.

CARLA Environment. In the CARLA environment, we compare the proposed

103

Chapter 5. Road Graph Change Detection for Autonomous Driving

(a)

(b)

Figure 5.4: Vehicle platform and sensor configuration. (a) Hyundai Ioniq platform

used for collecting the road graph and expert dataset. The vehicle is equipped

with a ZED camera, two Velodyne LiDARs, and a GPS+IMU based localization

system. (b) The illustration of the installed sensor configuration.

104

Chapter 5. Road Graph Change Detection for Autonomous Driving

F
ig

u
re

5.
5:

S
n

ap
sh

o
t

of
F

M
T

C
en

v
ir

on
m

en
t.

(a
)

T
h

e
en

ti
re

m
ap

im
ag

e
of

F
M

T
C

.
(b

)
A

p
a
rt

of
th

e
F

M
T

C
en

v
ir

o
n

m
en

t.

(c
)

C
o
rr

es
p

on
d

in
g

ro
a
d

g
ra

p
h

.

105

Chapter 5. Road Graph Change Detection for Autonomous Driving

(a) (b) (c) (d)

Figure 5.6: Illustrations of four real-world experience scenarios. Various types

of roads are used for each scenario. (a) Go straight on a straight road or an

intersection. (b) Turn right on an intersection. (c) Turn left on an intersection.

(d) Stop behind another vehicle.

controller module with the other baselines which do not use a road graph as an in-

put to the network. CILRS [20] is an imitation learning based method which uses

only a camera image, a speedometer sensor data, and a navigational command as

inputs to the network. AIM [62] is also an imitation learning based method, but

it uses LiDAR 2D BEV grid image as an additional input. Likewise, Transfuser

[62] takes the same input as AIM, but it uses the attention mechanism [78] to

fuse image and LiDAR inputs to consider the relationship between them. While

vanilla AIM and Transfuser directly follow the predicted waypoints, AIM+R and

Transfuser+R are designed to follow the pre-defined path ζ as done in the pro-

posed method. The predicted waypoints of AIM+R and Transfuser+R are only

used for calculating the target speed. RBC [26] is a rule-based controller which

uses a Faster R-CNN [66] to identify the locations of objects on the scene. The

details of the rules for RBC are described in Section 4.3.4.

We use three metrics for the comparison in the CARLA environment: Route

completion (RC) is the percentage of the completed route. Driving score (DS) is

the product of the route completion and the penalty weight. The penalty weights

range from 1.0 to 0.0 and decrease when the agent fails to follow the traffic rules.

106

Chapter 5. Road Graph Change Detection for Autonomous Driving

Infractions per km (IpKm) is the number of committed infractions divided by the

total traveling distance in kilometers. Examples of infractions include collisions,

running on red, and off-road driving. Higher is better in DS and RC, and lower is

better in IpKm. The details of each metric are described on the CARLA official

website [8].

Table 5.1 shows the performance comparison results between each baseline con-

troller module. Each method is tested with five different random seeds. In the

experiment, the proposed controller module shows the highest performance in all

cases. In particular, the proposed controller module shows higher performance

than Transfuser and AIM. Also, even though AIM+R and Transfuser+R follow

the same path ζ as the proposed controller module, they still show lower perfor-

mance. The results show that the proposed controller module outperforms the

other baseline methods by using the road graph data as an input to the network.

FMTC Real-World Driving Environment. We also compare the perfor-

mance of the controller modules in the FMTC real-world driving environment.

The results are shown in Table 5.2. Due to the limitations of our vehicle platform

and safety issues, we do not use the same comparison method as the CARLA ex-

periment. We instead compare the L2 norm between the waypoints predicted by

the waypoint prediction network [11, 62] and the expert waypoints in the evalua-

tion dataset. This L2 norm is noted in meters and shows how well each controller

network module is trained to imitate the expert’s action. Because only AIM and

Transfuser use the waypoint prediction network, we compare the proposed con-

troller module with these two baseline networks. In the result, we observe that

the proposed controller module shows the lowest L2 norm. It means that the

waypoints predicted by the proposed controller module are most similar to the

expert’s waypoints. Therefore, it can be said that the road graph network is most

effective for training urban driving controllers.

107

Chapter 5. Road Graph Change Detection for Autonomous Driving

Table 5.1: Performance comparison of controller module (CARLA)

Method
Town05 Short

DS ↑ RC ↑ IpKm ↓

CILRS [20] 21.693 ± 1.751 25.762 ± 0.807 98.141 ± 14.164

RBC [26] 49.947 ± 4.966 84.016 ± 3.246 33.527 ± 4.783

AIM [62] 69.917 ± 15.104 73.106 ± 19.000 10.315 ± 2.489

AIM+R [62] 79.969 ± 18.601 82.286 ± 19.714 8.592 ± 7.382

Transfuser [62] 64.495 ± 7.840 70.915 ± 7.200 12.059 ± 2.835

Transfuser+R [62] 67.031 ± 8.800 73.254 ± 9.837 10.881 ± 2.481

RIANet++ (Ours) 87.469 ± 2.363 93.881 ± 3.827 6.319 ± 1.419

(a) Town05 Short

Method
Town05 Long

DS ↑ RC ↑ IpKm ↓

CILRS [20] 7.889 ± 1.047 10.751 ± 0.358 17.020 ± 1.182

RBC [26] 14.692 ± 4.019 82.866 ± 7.282 6.669 ± 0.490

AIM [62] 39.558 ± 5.056 83.018 ± 11.477 3.424 ± 0.248

AIM+R [62] 39.873 ± 5.005 80.251 ± 17.594 2.753 ± 0.325

Transfuser [62] 36.438 ± 8.412 96.650 ± 5.420 3.473 ± 0.452

Transfuser+R [62] 37.283 ± 7.049 92.815 ± 4.607 3.209 ± 0.613

RIANet++ (Ours) 44.719 ± 2.513 96.934 ± 2.927 2.624 ± 0.163

(b) Town05 Long

Table 5.2: Average L2 norm in meters between the expert waypoints and the

waypoints calculated by controller module (FMTC Real-World)

Method Scenario 1 Scenario 2 Scenario 3 Scenario 4

AIM 1.026 0.674 0.640 0.362

Transfuser 0.745 0.499 0.272 0.375

RIANet++ (Ours) 0.349 0.285 0.231 0.156

108

Chapter 5. Road Graph Change Detection for Autonomous Driving

5.3.3 Performance of Road Change Detection Module

We now test the performance of the road change detection module through the

experiments. We measure the similarity score between the camera image and the

query road graph in each experiment. For positive samples, we use query road

graphs in which road change processes described in Section 5.1 are applied. On

the other hand, for negative samples, we use query road graphs in which the road

change processes are not applied. It means that the road graph in a negative

sample shows the accurate road graph of the scene. To validate the performance

of the road change detection module, we set a determining threshold for the

similarity score. We then obtain a precision-recall curve of the detection module

by changing this threshold. In each experiment, we show the average precision

computed from each precision-recall curve.

To compose training and evaluation data for road change detection, we apply

the road changes, which are described in Section 5.1, to the collected road graph

data. In the case of lane deviation change, each node in a road moves in a direction

perpendicular to the road’s tangent line. A road can deviate in both left or right

directions. The degree of a road deviation is randomly sampled from a uniform

distribution between 1.5m and 3.0m. In the case of lane width change, the degree

of a lane width change is randomly sampled from a uniform distribution between

1.0m and 1.5m. This lane width change is equally applied to all lanes on one

road segment. When a road has two or more lanes, the distance between the lane

center lines also is changed when the lane width is changed. In the case of lane

removal and lane addition, the number of lanes decreased or increased by one. In

the case of node missing, we assume that a road graph Gt can have a missing node

up to one compared with the actual road graph G′
t. In the case of combination,

lane deviation and lane width change are applied to a road graph simultaneously.

In addition, one additional lane change type is randomly selected among lane

removal, lane addition, and node missing and then applied to the road graph.

109

Chapter 5. Road Graph Change Detection for Autonomous Driving

We validate two types of the proposed detection methods described in Section

5.2.2: graph matching and semantic matching. For the graph matching method,

we test TOPO [6] and APLS [77] as the similarity scores. For the semantic match-

ing method, we test mAP and mIoU as the similarity scores. We also test two

baseline methods for comparison. ResNet discriminator [49] uses a ResNet-34 [37]

model and takes the camera image and the query semantic image as inputs. The

query semantic image is synthesized from the query road graph and stacked with

the camera image at a channel level. The ResNet-34 network is trained to predict

the probability of road change occurrence in the scene. By applying a threshold

on this probability, we calculate the average precision of the ResNet discrimina-

tor. Deep metric learning [42] also uses the camera image and the query semantic

image as inputs. However, in deep metric learning, two different networks encode

both camera image and query semantic image into the same feature space, and

the similarity score is calculated from the cosine similarity between the encoded

features. The encoder networks are trained with a triplet loss to make the seman-

tic image without road changes have higher cosine similarity than the semantic

image with road changes. We also calculate the average precision of the deep

metric learning method using the similarity score.

CARLA Environment. In Table 5.3, the mIoU-based semantic matching method

outperforms the other methods in terms of average precision. In Town05 Short,

the semantic matching method shows the highest performance for all road changes.

In Town05 Long, the mIoU-based semantic matching method also shows the high-

est performance except for lane deviation and node missing cases. However, even

in those two cases, the mIoU-based semantic matching method shows no signif-

icant difference in performance from the method with the highest performance.

As a result, in the CARLA environment, we find that the proposed mIoU-based

semantic matching method shows the highest performance at road change detec-

tion.

110

Chapter 5. Road Graph Change Detection for Autonomous Driving
T

a
b

le
5.

3:
P

er
fo

rm
an

ce
co

m
p

ar
is

on
of

ro
ad

ch
an

ge
d

et
ec

ti
on

m
o
d

u
le

b
y

av
er

ag
e

p
re

ci
si

on
(C

A
R

L
A

)

C
o
n
fi
g
u
re

T
o
w
n
0
5
S
h
o
rt

L
D

L
W

C
L

R
L

A
N

M
C

o
m

b
A

ve
ra

ge

R
es

N
et

D
is

cr
im

in
at

o
r

[4
9]

0.
45

3
0.

43
6

0.
39

9
0.

49
2

0.
41

1
0.

43
3

0
.4

3
7

D
ee

p
M

et
ri

c
L

ea
rn

in
g

[4
2]

0.
85

2
0.

81
2

0.
56

3
0.

74
7

0.
57

8
0.

77
3

0
.6

7
5

G
ra

p
h

M
a
tc

h
in

g
(T

O
P

O
)

0.
58

8
0.

59
3

0.
57

3
0.

58
6

0.
57

0
0.

59
4

0
.5

8
4

G
ra

p
h

M
at

ch
in

g
(A

P
L

S
)

0.
62

6
0.

60
1

0.
56

6
0.

64
6

0.
61

5
0.

60
9

0
.6

1
1

S
em

a
n
ti

c
M

at
ch

in
g

(m
A

P
)

0.
95

1
0.

88
7

0.
58

0
0.

90
1

0.
54

3
0.

88
7

0
.7

9
2

S
em

an
ti

c
M

at
ch

in
g

(m
Io

U
)

0
.9
5
3

0
.9
1
1

0
.7
3
4

0
.9
1
3

0
.6
0
5

0
.9
1
0

0
.8
3
8

(a
)

T
ow

n
05

S
h

or
t

C
o
n
fi
g
u
re

T
o
w
n
0
5
L
o
n
g

L
D

L
W

C
L

R
L

A
N

M
C

o
m

b
A

ve
ra

ge

R
es

N
et

D
is

cr
im

in
at

o
r

[4
9]

0.
46

8
0.

47
8

0.
43

6
0.

48
7

0.
45

6
0.

47
1

0
.4

6
6

D
ee

p
M

et
ri

c
L

ea
rn

in
g

[4
2]

0.
87

5
0.

82
4

0.
63

8
0.

69
5

0
.6
7
7

0.
82

9
0
.7

5
6

G
ra

p
h

M
a
tc

h
in

g
(T

O
P

O
)

0.
62

6
0.

61
3

0.
61

0
0.

60
8

0.
58

9
0.

60
7

0
.6

0
9

G
ra

p
h

M
at

ch
in

g
(A

P
L

S
)

0.
61

0
0.

60
5

0.
56

6
0.

62
7

0.
59

7
0.

60
5

0
.6

0
2

S
em

a
n
ti

c
M

at
ch

in
g

(m
A

P
)

0
.9
5
9

0.
87

0
0.

60
4

0.
82

4
0.

57
0

0.
89

6
0
.7

8
7

S
em

an
ti

c
M

at
ch

in
g

(m
Io

U
)

0.
95

3
0
.8
9
5

0
.7
6
0

0
.8
3
9

0.
64

8
0
.9
1
7

0
.8
3
5

(b
)

T
ow

n
05

L
on

g

111

Chapter 5. Road Graph Change Detection for Autonomous Driving

FMTC Real-World Driving Environment. In Table 5.4, the mIoU-based

semantic matching method also shows the highest performance in lane deviation

and lane width change cases. However, on average, the method with the highest

performance is the TOPO-based graph matching method. Even though it does not

shows the highest average precision, the mIoU-based semantic matching method

still shows a higher performance compared with ResNet discriminator [49] and

deep metric learning [42] in average cases. We analyze the causes of degradation

in the semantic matching method in the FMTC environment. Compared with

the CARLA dataset, it is observed that the FMTC dataset contains more local-

ization errors. Even though we manually adjust the errors in the training data,

the errors are not adjusted for the evaluation data. The localization errors can

cause viewpoint discrepancy when synthesizing a semantic image from a query

road graph. Therefore, localization errors can result in the synthesis of the wrong

semantic images, which consequently interferes with accurate calculations of the

similarity score and the performance of the detection module.

5.3.4 Robustness of Controller under Road Change Condition

In this experiment, we verify that the road change detection module can actually

increase the robustness of the controller under the road change condition. The

proposed method (RIANet++) uses both the detection module and controller

module as described in Section 5.2 while RIANet uses only the controller module

and does not detect road changes.

CARLA Environment. In the CARLA environment, we randomly select three

road segments among the roads on the entire route and apply road changes. In

addition, the types of applied road changes are also randomly selected for each

scenario. For the road change detection module in RIANet++, we use the seman-

tic matching method in the CARLA environment. We use mIoU as the similarity

score, and the detection threshold is set to 0.46. The results of the experiment

112

Chapter 5. Road Graph Change Detection for Autonomous Driving

T
ab

le
5
.4

:
P

er
fo

rm
a
n

ce
co

m
p

ar
is

o
n

of
ro

ad
ch

an
ge

d
et

ec
ti

on
m

o
d

u
le

b
y

av
er

ag
e

p
re

ci
si

o
n

(F
M

T
C

R
ea

l-
W

o
rl

d
)

C
o
n
fi
g
u
re

F
M

T
C

R
e
a
l-
W

o
rl
d

L
D

L
W

C
L

R
L

A
N

M
C

o
m

b
A

ve
ra

ge

R
es

N
et

D
is

cr
im

in
at

o
r

[4
9]

0.
35

5
0.

36
7

0.
40

8
0.

34
8

0.
36

8
0.

34
3

0
.3

6
5

D
ee

p
M

et
ri

c
L

ea
rn

in
g

[4
2]

0.
41

4
0.

43
4

0.
45

7
0.

43
3

0.
40

3
0.

42
0

0
.4

2
7

G
ra

p
h

M
a
tc

h
in

g
(T

O
P

O
)

0.
66

9
0.

70
1

0
.6
4
8

0
.7
2
6

0
.6
9
9

0
.7
5
3

0
.6
9
9

G
ra

p
h

M
at

ch
in

g
(A

P
L

S
)

0.
68

3
0.

60
9

0.
64

0
0.

66
5

0.
62

2
0.

68
3

0
.6

5
0

S
em

a
n
ti

c
M

at
ch

in
g

(m
A

P
)

0.
81

1
0.

70
6

0.
54

9
0.

60
4

0.
55

7
0.

69
8

0
.6

5
4

S
em

an
ti

c
M

at
ch

in
g

(m
Io

U
)

0
.8
5
3

0
.7
7
0

0.
61

4
0.

41
5

0.
69

6
0.

58
6

0
.6

5
6

113

Chapter 5. Road Graph Change Detection for Autonomous Driving

are shown in Table 5.5. We observe that RIANet shows a performance degrada-

tion under the road change conditions, and it demonstrates that the performance

of the road graph based controller can be vulnerable to road changes. On the

other hand, RIANet++ shows robustness against road changes, and it shows

the performance which is similar to the case when there is no road change. The

result demonstrates that the road change detection module in RIANet++ can

relieve the controller module’s performance degradation which is caused by road

changes.

FMTC Real-World Driving Environment. We also conduct a similar exper-

iment in FMTC. We test RIANet and RIANet++ in both road change condition

cases and without road change condition cases. In the road change condition case,

road changes are applied to one randomly selected road on the route, and the type

of road change is also randomly selected. For the road change detection module in

RIANet++, we use the graph matching method in the FMTC environment. We

use TOPO [6] as the similarity score, and the detection threshold is set to 0.49.

Similar to Section 5.3.2, we compare the L2 norm accuracy of the predicted way-

points between RIANet and RIANet++. We show the average experiment results

for each scenario in Table 5.6. In the results, RIANet and RIANet++ generally

show lower performance when road changes are applied. However, the errors of

RIANet are increased by 5.779% on average in the road change condition, while

the errors of RIANet++ are only increased by 2.411% increase on average. The

results show that the proposed RIANet++ is more robust to road changes and

shows more consistent performances than RIANet.

5.4 Chapter Summary

In this chapter, we have proposed a road graph based autonomous driving frame-

work which is robust to road changes. For urban driving, the proposed framework

114

Chapter 5. Road Graph Change Detection for Autonomous Driving
T

a
b

le
5.

5:
P

er
fo

rm
an

ce
co

n
si

st
en

cy
of

R
IA

N
et

+
+

u
n

d
er

ro
ad

ch
an

ge
co

n
d

it
io

n
s

(C
A

R
L

A
)

C
o
n
fi
g
u
re

R
o
a
d

C
h
a
n
g
e
s

T
o
w
n
0
5
S
h
o
rt

D
S
↑

R
C

↑
Ip

K
m

↓

R
IA

N
et

n
o

87
.4

69
±

2.
36

3
93

.8
81

±
3.

82
7

6.
3
19

±
1.

4
19

ye
s

74
.0

12
±

3.
90

2
90

.3
72

±
4.

95
6

16
.0

0
9
±

2.
7
22

P
er

fo
rm

an
ce

D
ro

p
-1

3.
45

7
-3

.5
09

-9
.6

90

R
IA

N
et

+
+

n
o

86
.9

30
±

3.
96

0
97

.0
32

±
2.

65
7

6.
7
37

±
1.

6
16

ye
s

83
.2

24
±

3.
54

7
94

.9
64

±
3.

96
1

8.
9
21

±
2.

2
87

P
er

fo
rm

an
ce

D
ro

p
-3
.7
0
6

-2
.0
6
8

-2
.1
8
4

(a
)

T
ow

n
05

S
h

or
t

C
o
n
fi
g
u
re

R
o
a
d

C
h
a
n
g
e
s

T
o
w
n
0
5
L
o
n
g

D
S
↑

R
C

↑
Ip

K
m

↓

R
IA

N
et

n
o

44
.7

19
±

2.
51

3
96

.9
34

±
2.

92
7

2.
6
24

±
0.

1
63

ye
s

27
.7

24
±

7.
51

4
79

.6
53

±
6.

31
4

4.
1
35

±
1.

0
83

P
er

fo
rm

an
ce

D
ro

p
-1

6.
99

5
-1

7.
28

1
-1

.5
11

R
IA

N
et

+
+

n
o

41
.7

14
±

3.
98

8
10

0.
00

0
±

0.
00

0
3.

02
4
±

0.
2
27

ye
s

39
.7

26
±

7.
33

6
96

.1
52

±
4.

72
8

3.
3
12

±
0.

6
88

P
er

fo
rm

an
ce

D
ro

p
-1
.9
8
8

-3
.8
4
8

-0
.2
8
8

(b
)

T
ow

n
05

L
on

g

115

Chapter 5. Road Graph Change Detection for Autonomous Driving

T
ab

le
5
.6

:
P

erform
a
n

ce
con

sisten
cy

of
R

IA
N

et+
+

u
n

d
er

road
ch

an
ge

con
d

ition
s

(F
M

T
C

R
eal-W

orld
)

S
c
e
n
a
rio

1
S
c
e
n
a
rio

2
S
c
e
n
a
rio

3
S
c
e
n
a
rio

4
A

verage
L
2

N
orm

In
crease

D
u

e
T

o
R

oad
C

h
an

ges
(%

)
R
o
a
d

C
h
a
n
g
e
s

n
o

y
es

n
o

y
es

n
o

y
es

n
o

y
es

R
IA

N
et

0
.3

49
0.364

0.285
0.300

0.231
0.247

0.156
0.169

5
.7
7
9

R
IA

N
et+

+
0
.3

93
0.392

0.209
0.226

0.210
0.211

0.142
0.148

2
.4
1
1

116

Chapter 5. Road Graph Change Detection for Autonomous Driving

captures the scene context by fusing road graph image data through the attention

mechanism. In addition, we introduce road change detection methods to solve the

unreliability issue of road graphs. By measuring the similarity between the road

graph and image data, the proposed framework can consider the reliability of the

road graph when deciding the control output. We successfully applied it to driving

environments such as the CARLA simulator and the FMTC real-world driving

environment. In the experiments, we have shown that the detection module in

the proposed framework can successfully detect road changes in road graphs. As

a result, the proposed framework outperformed other baselines and showed stable

control performance even in conditions where the road graphs are inaccurate.

117

Chapter 5. Road Graph Change Detection for Autonomous Driving

118

Chapter 6

Conclusion

In this dissertation, we have investigated several methods for utilizing road infor-

mation in autonomous driving. We have proposed a representation method which

provides road information in the form of a graph. We have also proposed effective

network architectures which can handle the proposed representation. In addition,

we have dealt with several issues which can arise when using a road graph in the

real world.

In Chapter 3, we have proposed an autonomous driving framework, named road

graphical neural network (Road-GNN), which can leverage road information for

driving. The road information is represented by a graph which includes the road

connection and vehicle features. In the experiment, we evaluated the baseline

methods in various roundabout environments. We experimentally demonstrated

that the proposed method outperforms the other non-road-graph-based methods.

The results have shown that representing the road environment state with a road

graph can be effective for autonomous driving.

In Chapter 4, we have improved Road-GNN and proposed a sensor fusion

based driving framework named road and image attention network (RIANet).

In RIANet, we have represented the road environment state by combining road

119

Chapter 6. Conclusion

information, camera image, and other sensor data. The proposed network fuses

the input data by attention mechanism [78]. Through the attention mechanism,

the proposed network is designed to consider the importance of objects according

to the road structure. In the experiment, we have demonstrated that the fusion-

based method can enhance driving performance. In addition, we have shown that

the proposed network can successfully attend to important features when driving

in a complex road environment.

In Chapter 5, we have proposed a method that can detect an error in a road

graph and thereby prevent performance degradation caused by the error. The

proposed method can detect a changed part of a road graph and ignore the road

graph when a road change is detected. We also have combined the proposed

detection method with RIANet. By combining the road change detection mod-

ule and the controller module, we have suggested a robust driving framework

named RIANet++. In the experiment, we have shown that the proposed driving

framework can improve the worst-case performance of the controller by selecting

between a road-graph-based and non-road-graph-based network.

120

Appendices

121

Appendix A

Collected map images of

roundabout environment

Figure A.1 shows examples of roundabout images we collected.

123

Appendix A. Collected map images of roundabout environment

F
igu

re
A

.1:
E

x
am

p
les

of
collected

m
ap

im
ages.

124

Appendix B

Map image and road graph of

CARLA Town05

As explained in Section 4.3.2, a global road graph Gglobal is constructed from

HD-map data of a CARLA town. Figure B.1 shows an example of HD-map data

and the corresponding Gglobal, which are from the CARLA Town05 [25].

A more detailed example of a road graph construction is shown in Figure

B.2. Figure B.2(a) visualizes a part of HD-map in the CARLA Town05. The

corresponding road graph is shown in Figure B.2(b). In the CARLA simulator,

the captured HD-map and road graph represent a four-way intersection. Figure

B.2(c) shows a BEV image of this intersection in the CARLA simulator.

125

Appendix B. Map image and road graph of CARLA Town05

(a)

(b)

Figure B.1: HD-map and global road graph of Town05. (a) HD-map. (b) Global

road graph.

126

Appendix B. Map image and road graph of CARLA Town05

(a)

(b) (c)

Figure B.2: A part of Town05 map example (a) A part of HD-map. (b) Corre-

sponding road graph. (c) Corresponding BEV image of the road in the CARLA

simulator.

127

Appendix B. Map image and road graph of CARLA Town05

128

Appendix C

Details of CARLA evaluation

metrics

As described in Section 4.3.5, we use three metrics for evaluation in the CARLA

simulator: route completion (RC), driving score (DS), infractions per km (IpKm).

Here, we describe the details of the metrics. We follows the descriptions on the

CARLA official website [8].

Route completion (RC) is the percentage of the completed route length relative

to the total route length. The route completion of the i-th route is denoted as

Ri.

Driving score (DS) is the product between the route completion and the penalty

weight. The driving score of i-th route is formulated as follows:

DS = RiPi, (C.1)

where Pi is the penalty weight of the i-th route. The penalty weight Pi starts

from 1.0 and multiplied by a coefficient when the agent commits an infraction.

The penalty weight Pi is formulated as follows:

Pi =
∏
j

pj
#infractionsj , (C.2)

129

Appendix C. Details of CARLA evaluation metrics

Table C.1: Infraction and corresponding coefficient

Infraction Coefficient

Collisions with pedestrians 0.5

Collisions with other vehicles 0.60

Collisions with static elements 0.65

Running a red light 0.70

Running a stop sign 0.80

(a) Infraction with a coefficient

Infraction Coefficient

Off-road driving -

Route deviation -

Agent blocked -

Route timeout -

(b) Infraction without a coefficient

where j is the type of an infraction, pj is the corresponding coefficient of an infrac-

tion, and #infractionsj is the number of an infraction committed. The types of

infractions and corresponding coefficients are shown in Table C.1. Here, a infrac-

tion without a coefficient is not counted when computing Pi. Instead of reducing

the penalty weight, a infraction without a coefficient affects the computation of

the route completion (off-road driving) or terminates the simulation (route devi-

ation, agent blocked, and route timeout). If an agent causes an off-road driving

infraction, the distance traveled with off-road driving is not considered when com-

puting a route completion Ri. In addition, if an agent causes a route deviation,

agent blocked, or route timeout infraction, the simulation is terminated.

Infractions per km (IpKm) is the total number of infractions divided by the

total distance traveled. All the infractions shown in Table C.1 are considered

130

Appendix C. Details of CARLA evaluation metrics

when computing the infractions per km regardless of whether a infraction has a

coefficient or not.

131

Appendix C. Details of CARLA evaluation metrics

132

Appendix D

Detailed results of CARLA

experiment in Chapter 4

We report details of the experiment results which are provided in Section 4.3.5 and

Section 4.3.8. As described in Section C, there are eight types of infractions in the

CARLA simulator: collisions with pedestrians (Ped), collisions with other vehicles

(Veh), collisions with static elements (Static), running a red light (Red), running

a stop sign (Stop), off-road driving (Off), route deviation (Dev), agent blocked

(Blocked), route timeout (TO). We report infractions per km for each type of

infraction (Ped pKm, Veh pKm, Static pKm, Red pKm, Stop pKm, Off pKm,

Dev pKm, Blocked pKm, TO pkm). The number of each infraction is divided

by the total distance in kilometers traveled. We also report the total distance

traveled (Distance), but Distance here is reported in meters. In Table D.1 and

D.2, we provide the mean and standard deviation of the results of the performance

comparison on Town05 Short and Town05 Long. Each method is trained and

evaluated with five different random seeds in the performance comparison. In

Table D.3 and D.4, we provide the mean and standard deviation of the results of

the ablation study on Town05 Short and Town05 Long. Each method is trained

133

Appendix D. Detailed results of CARLA experiment in Chapter 4

and evaluated with three different random seeds in the ablation study.

134

Appendix D. Detailed results of CARLA experiment in Chapter 4

T
ab

le
D

.1
:

P
er

fo
rm

an
ce

C
om

p
ar

is
on

in
T

ow
n

05
S

h
or

t

M
e
th

o
d

P
ed

p
K

m
↓

V
eh

p
K

m
↓

S
ta

ti
c

p
K

m
↓

R
ed

p
K

m
↓

S
to

p
p

K
m

↓

C
IR

L
S

[2
0
]

0.
00

0
±

0
.0

00
4.

43
8
±

4.
07

1
20

.9
80

±
4.

66
0

7.
77

6
±

2.
9
64

0.
0
00

±
0.

0
00

R
B

C
[2

6]
0.

00
0
±

0
.0

00
8.

25
7
±

6.
97

2
0.

00
0
±

0.
00

0
18

.5
26

±
3
.1

3
3

0.
0
00

±
0.

0
00

A
IM

[6
2]

0.
00

0
±

0
.0

00
0.

00
0
±

0.
00

0
0.

30
9
±

0.
61

8
1.

46
5
±

1.
8
30

0.
0
00

±
0.

0
00

A
IM

+
R

[6
2]

0.
00

0
±

0
.0

00
0.

30
9
±

0.
61

8
0.

92
7
±

0.
75

7
0.

61
0
±

0.
7
47

0.
0
00

±
0.

0
00

T
ra

n
sf

u
se

r
[6

2
]

0.
00

0
±

0
.0

00
0.

00
0
±

0.
00

0
0.

00
0
±

0.
00

0
4.

40
9
±

2.
4
66

0.
0
00

±
0.

0
00

T
ra

n
sf

u
se

r+
R

[6
2
]

0.
00

0
±

0
.0

00
0.

00
0
±

0.
00

0
0.

00
0
±

0.
00

0
4.

14
6
±

2.
5
75

0.
0
00

±
0.

0
00

R
IA

N
et

(O
u

rs
)

0.
00

0
±

0
.0

00
0.

28
3
±

0.
56

6
0.

00
0
±

0.
00

0
2.

99
9
±

0.
9
18

0.
0
00

±
0.

0
00

M
e
th

o
d

O
ff

p
K

m
↓

D
ev

p
K

m
↓

B
lo

ck
ed

p
K

m
↓

T
O

p
K

m
↓

D
is

ta
n

ce
(m

)
↑

C
IR

L
S

[2
0
]

1
5
.4

93
±

4.
55

7
27

.4
75

±
0.

86
8

2.
15

6
±

2.
64

0
19

.8
24

±
3
.0

4
6

18
.2

1
7
±

0.
5
70

R
B

C
[2

6]
0.

00
0
±

0
.0

00
0.

00
0
±

0.
00

0
0.

00
0
±

0.
00

0
6.

74
3
±

0.
2
54

5
9.

4
08

±
2.

2
95

A
IM

[6
2]

0.
76

5
±

0
.9

65
0.

00
0
±

0.
00

0
3.

84
1
±

3.
25

5
3.

82
3
±

3.
3
96

5
1.

6
94

±
13

.4
3
6

A
IM

+
R

[6
2]

0.
00

0
±

0
.0

00
0.

00
0
±

0.
00

0
3.

25
5
±

5.
01

3
3.

49
0
±

3.
8
85

5
8.

1
85

±
13

.9
4
1

T
ra

n
sf

u
se

r
[6

2
]

0.
00

0
±

0
.0

00
0.

00
0
±

0.
00

0
4.

63
8
±

2.
52

9
3.

01
3
±

2.
2
46

5
0.

1
44

±
5.

0
91

T
ra

n
sf

u
se

r+
R

[6
2
]

0.
00

0
±

0
.0

00
0.

00
0
±

0.
00

0
5.

04
6
±

3.
09

2
1.

68
9
±

2.
0
90

5
1.

7
98

±
6.

9
56

R
IA

N
et

(O
u

rs
)

0.
00

0
±

0
.0

00
0.

00
0
±

0.
00

0
0.

31
3
±

0.
62

6
2.

72
4
±

1.
8
10

6
6.

3
84

±
2.

7
06

135

Appendix D. Detailed results of CARLA experiment in Chapter 4

T
ab

le
D

.2:
P

erform
an

ce
C

om
p

arison
in

T
ow

n
05

L
on

g

M
e
th

o
d

P
ed

p
K

m
↓

V
eh

p
K

m
↓

S
tatic

p
K

m
↓

R
ed

p
K

m
↓

S
top

p
K

m
↓

C
IR

L
S

[20]
0.00

0
±

0.000
2.356

±
1.258

0.895
±

0.030
2.846

±
1.000

0.000
±

0.000

R
B

C
[2

6]
0.00

0
±

0.000
1.547

±
0.290

0.019
±

0.039
3.550

±
0.312

1.278
±

0.146

A
IM

[6
2]

0.00
0
±

0.000
0.426

±
0.241

0.036
±

0.072
1.194

±
0.381

1.102
±

0.243

A
IM

+
R

[6
2]

0.00
0
±

0.000
0.301

±
0.158

0.000
±

0.000
0.945

±
0.427

1.020
±

0.361

T
ran

sfu
ser

[62
]

0.00
0
±

0.000
0.455

±
0.262

0.016
±

0.032
1.446

±
0.210

1.226
±

0.202

T
ra

n
sfu

ser+
R

[62
]

0.00
0
±

0.000
0.482

±
0.287

0.000
±

0.000
1.594

±
0.345

0.989
±

0.183

R
IA

N
et

(O
u

rs)
0.00

0
±

0.000
0.308

±
0.202

0.000
±

0.000
1.087

±
0.196

1.178
±

0.133

M
e
th

o
d

O
ff

p
K

m
↓

D
ev

p
K

m
↓

B
lo

cked
p

K
m

↓
T

O
p

K
m

↓
D

istan
ce

(m
)
↑

C
IR

L
S

[20]
1.97

1
±

0.693
6.260

±
0.549

2.506
±

0.371
0.184

±
0.369

111.853
±

3.872

R
B

C
[2

6]
0.00

0
±

0.000
0.000

±
0.000

0.255
±

0.126
0.019

±
0.038

991.296
±

102.054

A
IM

[6
2]

0.28
1
±

0.071
0.017

±
0.034

0.342
±

0.288
0.024

±
0.049

1005.030
±

156.295

A
IM

+
R

[6
2]

0.00
0
±

0.000
0.000

±
0.000

0.456
±

0.418
0.032

±
0.063

961.508
±

237.002

T
ran

sfu
ser

[62
]

0.23
6
±

0.141
0.000

±
0.000

0.094
±

0.107
0.000

±
0.000

1149.862
±

92.545

T
ra

n
sfu

ser+
R

[62
]

0.00
0
±

0.000
0.000

±
0.000

0.145
±

0.077
0.000

±
0.000

1127.488
±

77.393

R
IA

N
et

(O
u

rs)
0.00

0
±

0.000
0.000

±
0.000

0.035
±

0.040
0.000

±
0.000

1188.881
±

44.585

136

Appendix D. Detailed results of CARLA experiment in Chapter 4

T
ab

le
D

.3
:

A
b

la
ti

on
S

tu
d

y
in

T
ow

n
05

S
h

or
t

C
o
n
fi
g
u
re

P
ed

p
K

m
↓

V
eh

p
K

m
↓

S
ta

ti
c

p
K

m
↓

R
ed

p
K

m
↓

S
to

p
p

K
m

↓

n
o
-r

o
a
d

-g
ra

p
h

0
.0

0
0
±

0.
00

0
0.

00
0
±

0.
00

0
0.

00
0
±

0.
00

0
6.

36
2
±

2.
42

7
0
.0

0
0
±

0.
0
00

n
o-

d
et

ec
ti

on
0
.0

0
0
±

0.
00

0
0.

00
0
±

0.
00

0
0.

00
0
±

0.
00

0
4.

70
0
±

0.
32

4
0
.0

0
0
±

0.
0
00

n
o-

gl
ob

al
-i

m
a
ge

0
.0

0
0
±

0.
00

0
1.

04
9
±

0.
74

7
0.

00
0
±

0.
00

0
20

.5
31

±
2.

49
3

0
.0

0
0
±

0
.0

0
0

n
o
-L

iD
A

R
0
.0

0
0
±

0.
00

0
0.

00
0
±

0.
00

0
0.

00
0
±

0.
00

0
5.

54
6
±

0.
51

7
0
.0

0
0
±

0.
0
00

D
ef

a
u

lt
0
.0

0
0
±

0.
00

0
0.

28
3
±

0.
56

6
0.

00
0
±

0.
00

0
2.

99
9
±

0.
91

8
0
.0

0
0
±

0.
0
00

C
o
n
fi
g
u
re

O
ff

p
K

m
↓

D
ev

p
K

m
↓

B
lo

ck
ed

p
K

m
↓

T
O

p
K

m
↓

D
is

ta
n

ce
(m

)
↑

n
o
-r

o
a
d

-g
ra

p
h

0
.0

0
0
±

0.
00

0
0.

00
0
±

0.
00

0
0.

51
7
±

0.
73

1
0.

49
5
±

0.
70

1
67

.5
1
3
±

2
.5

2
8

n
o-

d
et

ec
ti

on
0
.0

0
0
±

0.
00

0
0.

00
0
±

0.
00

0
2.

18
7
±

1.
54

8
1.

56
7
±

0.
10

8
64

.1
5
4
±

4
.5

9
9

n
o-

gl
ob

al
-i

m
a
ge

0
.0

0
0
±

0.
00

0
0.

00
0
±

0.
00

0
1.

12
1
±

1.
58

6
1.

04
9
±

0.
74

7
66

.1
3
7
±

4
.8

3
1

n
o
-L

iD
A

R
0
.0

0
0
±

0.
00

0
0.

00
0
±

0.
00

0
0.

00
0
±

0.
00

0
4.

11
1
±

1.
63

5
65

.8
7
9
±

2
.5

9
5

D
ef

a
u

lt
0
.0

0
0
±

0.
00

0
0.

00
0
±

0.
00

0
0.

31
3
±

0.
62

6
2.

72
4
±

1.
81

0
66

.3
8
4
±

2
.7

0
6

137

Appendix D. Detailed results of CARLA experiment in Chapter 4

T
ab

le
D

.4:
A

b
lation

S
tu

d
y

in
T

ow
n

05
L

on
g

C
o
n
fi
g
u
re

P
ed

p
K

m
↓

V
eh

p
K

m
↓

S
tatic

p
K

m
↓

R
ed

p
K

m
↓

S
top

p
K

m
↓

n
o-road

-g
ra

p
h

0.000
±

0.000
0.515

±
0.167

0.000
±

0.000
1.382

±
0.230

1.138
±

0.176

n
o
-d

etectio
n

0.000
±

0.000
0.490

±
0.112

0.000
±

0.000
1.226

±
0.058

1.253
±

0.129

n
o
-g

lo
b

a
l-im

ag
e

0.000
±

0.000
0.434

±
0.177

0.000
±

0.000
2.854

±
0.379

1.030
±

0.279

n
o
-L

iD
A

R
0.000

±
0.000

0.268
±

0.163
0.000

±
0.000

1.481
±

0.235
1.196

±
0.075

D
efa

u
lt

0.000
±

0.000
0.308

±
0.202

0.000
±

0.000
1.087

±
0.196

1.178
±

0.133

C
o
n
fi
g
u
re

O
ff

p
K

m
↓

D
ev

p
K

m
↓

B
lo

cked
p

K
m

↓
T

O
p

K
m

↓
D

istan
ce

(m
)
↑

n
o-road

-g
ra

p
h

0.000
±

0.000
0.000

±
0.000

0.000
±

0.000
0.000

±
0.000

1230.079
±

0.000

n
o
-d

etectio
n

0.000
±

0.000
0.000

±
0.000

0.028
±

0.039
0.000

±
0.000

1222.604
±

10.571

n
o
-g

lo
b

a
l-im

ag
e

0.000
±

0.000
0.000

±
0.000

0.213
±

0.036
0.032

±
0.046

1092.108
±

43.847

n
o
-L

iD
A

R
0.000

±
0.000

0.000
±

0.000
0.032

±
0.045

0.000
±

0.000
1168.486

±
87.105

D
efa

u
lt

0.000
±

0.000
0.000

±
0.000

0.035
±

0.040
0.000

±
0.000

1188.881
±

44.585

138

Appendix E

Detailed results of CARLA

experiment in Chapter 5

We report details of the experiment results which are provided in Section 5.3.4.

We use the same metrics which are explained in Appendix D: Ped pKm, Veh

pKm, Static pKm, Red pKm, Stop pKm, Off pKm, Dev pKm, Blocked pKm,

TO pkm, and Distance. In Table E.1 and E.2, we provide the mean and standard

deviation of the results of the performance comparison on Town05 Short and

Town05 Long. Each method is trained and evaluated with five different random

seeds in the performance comparison.

139

Appendix E. Detailed results of CARLA experiment in Chapter 5

T
a
b

le
E

.1
:

P
erform

a
n

ce
con

sisten
cy

of
R

IA
N

et+
+

u
n

d
er

road
ch

an
ge

con
d

ition
s

(C
A

R
L

A
T

ow
n

05
S

h
ort)

C
o
n
fi
g
u
re

R
o
a
d

C
h
a
n
g
e
s

P
ed

p
K

m
↓

V
eh

p
K

m
↓

S
tatic

p
K

m
↓

R
ed

p
K

m
↓

S
top

p
K

m
↓

R
IA

N
et

n
o

0.000
±

0.000
0.283

±
0.566

0.000
±

0.000
2.999

±
0.918

0.000
±

0.000

yes
0.000

±
0.000

3.058
±

1.505
0.316

±
0.631

6.311
±

2.201
0.000

±
0.000

R
IA

N
et+

+
n

o
0.000

±
0.000

0.301
±

0.602
0.000

±
0.000

5.260
±

1.492
0.000

±
0.000

yes
0.000

±
0.000

0.583
±

0.714
0.318

±
0.635

5.302
±

2.096
0.000

±
0.000

C
o
n
fi
g
u
re

R
o
a
d

C
h
a
n
g
e
s

O
ff

p
K

m
↓

D
ev

p
K

m
↓

B
lo

cked
p

K
m

↓
T

O
p

K
m

↓
D

istan
ce

(m
)
↑

R
IA

N
et

n
o

0.000
±

0.000
0.000

±
0.000

0.313
±

0.626
2.724

±
1.810

66.384
±

2.706

yes
1.536

±
1.396

0.342
±

0.684
0.000

±
0.000

4.447
±

1.411
63.903

±
3.504

R
IA

N
et+

+
n

o
0.000

±
0.000

0.000
±

0.000
0.300

±
0.600

0.875
±

0.715
68.612

±
1.879

yes
0.601

±
0.738

0.000
±

0.000
0.000

±
0.000

2.118
±

0.827
67.150

±
2.801

140

Appendix E. Detailed results of CARLA experiment in Chapter 5

T
a
b

le
E

.2
:

P
er

fo
rm

a
n

ce
co

n
si

st
en

cy
of

R
IA

N
et

+
+

u
n

d
er

ro
ad

ch
an

ge
co

n
d

it
io

n
s

(C
A

R
L

A
T

ow
n

0
5

L
o
n

g
)

C
o
n
fi
g
u
re

R
o
a
d

C
h
a
n
g
e
s

P
ed

p
K

m
↓

V
eh

p
K

m
↓

S
ta

ti
c

p
K

m
↓

R
ed

p
K

m
↓

S
to

p
p

K
m

↓

R
IA

N
et

n
o

0
.0

0
0
±

0.
00

0
0.

30
8
±

0.
20

2
0.

00
0
±

0.
00

0
1.

08
7
±

0.
1
96

1.
1
78

±
0
.1

3
3

ye
s

0
.0

0
0
±

0.
00

0
0.

96
0
±

0.
52

0
0.

08
5
±

0.
08

3
1.

34
7
±

0.
2
37

1.
2
68

±
0
.2

8
4

R
IA

N
et

+
+

n
o

0
.0

0
0
±

0.
00

0
0.

29
3
±

0.
06

5
0.

00
0
±

0.
00

0
1.

30
1
±

0.
1
78

1.
1
38

±
0
.2

3
0

ye
s

0
.0

0
0
±

0.
00

0
0.

51
2
±

0.
23

5
0.

03
4
±

0.
04

1
1.

27
9
±

0.
2
98

1.
1
29

±
0
.1

2
6

C
o
n
fi
g
u
re

R
o
a
d

C
h
a
n
g
e
s

O
ff

p
K

m
↓

D
ev

p
K

m
↓

B
lo

ck
ed

p
K

m
↓

T
O

p
K

m
↓

D
is

ta
n

ce
(m

)
↑

R
IA

N
et

n
o

0
.0

0
0
±

0.
00

0
0.

00
0
±

0.
00

0
0.

03
5
±

0.
04

0
0.

00
0
±

0.
0
00

1
18

8.
8
81

±
44

.5
8
5

ye
s

0
.1

2
9
±

0.
17

7
0.

04
7
±

0.
05

8
0.

25
7
±

0.
08

5
0.

04
2
±

0.
0
51

9
46

.3
0
2
±

9
0.

0
00

R
IA

N
et

+
+

n
o

0
.2

9
3
±

0.
08

3
0.

00
0
±

0.
00

0
0.

00
0
±

0.
00

0
0.

00
0
±

0.
0
00

1
23

0.
0
79

±
0
.0

0
0

ye
s

0
.3

0
5
±

0.
07

8
0.

00
0
±

0.
00

0
0.

05
3
±

0.
07

1
0.

00
0
±

0.
0
00

1
19

2.
0
82

±
47

.7
8
6

141

Appendix E. Detailed results of CARLA experiment in Chapter 5

142

Appendix F

Examples of FMTC real-world

dataset scenarios

We display examples of each FMTC real-world dataset scenario described in

Section 5.3.1 and Figure 5.6. Figure F.1 shows examples of the FMTC dataset

in scenario 1 (Go straight). Figure F.2 shows examples of the FMTC dataset

in scenario 2 (Turn right). Figure F.3 shows examples of the FMTC dataset

in scenario 3 (Turn left). Figure F.4 shows examples of the FMTC dataset in

scenario 4 (Stop behind another vehicle).

143

Appendix F. Examples of FMTC real-world dataset scenarios

T
im

e
t

=
1.5s

t
=

3.0s
t

=
4.5s

t
=

6.0s
t

=
7.5s

S
cen

ario
1-1

T
im

e
t

=
9.0s

t
=

10.5s
t

=
12.0s

t
=

13.5s
t

=
15.0s

S
cen

a
rio

1
-1

T
im

e
t

=
1.5s

t
=

3.0s
t

=
4.5s

t
=

6.0s
t

=
7.5s

S
cen

a
rio

1
-2

T
im

e
t

=
9.0s

t
=

10.5s
t

=
12.0s

t
=

13.5s
t

=
15.0s

S
cen

a
rio

1
-2

F
igu

re
F

.1:
F

M
T

C
d

ataset
ex

am
p

le
(S

cen
ario

1:
G

o
straigh

t).

144

Appendix F. Examples of FMTC real-world dataset scenarios

T
im

e
t

=
1.

5
s

t
=

3.
0s

t
=

4.
5s

t
=

6.
0s

t
=

7.
5s

S
ce

n
a
ri

o
2-

1

T
im

e
t

=
9.

0
s

t
=

10
.5

s
t

=
12
.0

s
t

=
13
.5

s
t

=
15
.0

s

S
ce

n
ar

io
2-

1

T
im

e
t

=
1.

5
s

t
=

3.
0s

t
=

4.
5s

t
=

6.
0s

t
=

7.
5s

S
ce

n
ar

io
2-

2

T
im

e
t

=
9.

0
s

t
=

10
.5

s
t

=
12
.0

s
t

=
13
.5

s
t

=
15
.0

s

S
ce

n
ar

io
2-

2

F
ig

u
re

F
.2

:
F

M
T

C
d

at
as

et
ex

am
p

le
(S

ce
n

ar
io

2:
T

u
rn

ri
gh

t)
.

145

Appendix F. Examples of FMTC real-world dataset scenarios

T
im

e
t

=
1.5s

t
=

3.0s
t

=
4.5s

t
=

6.0s
t

=
7.5s

S
cen

ario
3-1

T
im

e
t

=
9.0s

t
=

10.5s
t

=
12.0s

t
=

13.5s
t

=
15.0s

S
cen

a
rio

3
-1

T
im

e
t

=
1.5s

t
=

3.0s
t

=
4.5s

t
=

6.0s
t

=
7.5s

S
cen

a
rio

3
-2

T
im

e
t

=
9.0s

t
=

10.5s
t

=
12.0s

t
=

13.5s
t

=
15.0s

S
cen

a
rio

3
-2

F
igu

re
F

.3:
F

M
T

C
d

ataset
ex

am
p

le
(S

cen
ario

3:
T

u
rn

left).

146

Appendix F. Examples of FMTC real-world dataset scenarios

T
im

e
t

=
1.

5
s

t
=

3.
0s

t
=

4.
5s

t
=

6.
0s

t
=

7.
5s

S
ce

n
a
ri

o
4-

1

T
im

e
t

=
9.

0
s

t
=

10
.5

s
t

=
12
.0

s
t

=
13
.5

s
t

=
15
.0

s

S
ce

n
ar

io
4-

1

T
im

e
t

=
1.

5
s

t
=

3.
0s

t
=

4.
5s

t
=

6.
0s

t
=

7.
5s

S
ce

n
ar

io
4-

2

T
im

e
t

=
9.

0
s

t
=

10
.5

s
t

=
12
.0

s
t

=
13
.5

s
t

=
15
.0

s

S
ce

n
ar

io
4-

2

F
ig

u
re

F
.4

:
F

M
T

C
d

at
as

et
ex

am
p

le
(S

ce
n

ar
io

4:
S

to
p

b
eh

in
d

an
ot

h
er

ve
h

ic
le

).

147

Appendix F. Examples of FMTC real-world dataset scenarios

148

Appendix G

Effect of localization error on

road change detection accuracy

We investigate the effect of localization error on road change detection accuracy.

Figure G.1 shows the detection module’s average precision according to the lo-

calization error in the CARLA environment. The average precision is calculated

as the mean of the average precision for all types of road changes. The exper-

iments are conducted in Town05 Short (Figure G.1(a) and Figure G.1(c)) and

Town05 Long (Figure G.1(b) and Figure G.1(d)) environments. To show the effect

of localization error, we add zero-mean Gaussian noise to the estimated vehicle

positions, which are used to synthesize the query road graph in Section 5.2.2.

Gaussian noise is added to each position value (Figure G.1(a) and Figure G.1(b))

and the yaw value (Figure G.1(c) and Figure G.1(d)), respectively. We change

the standard deviation of the noise to observe how the average precision of the

detection module is degraded according to the noise level.

In each experiment, RD stands for ResNet discriminator [49], and DML stands

for deep metric learning [42]. GM-TOPO and GM-APLS stand for the graph

matching methods, which use TOPO [6] and APLS [77] as similarity scores. Also,

149

Appendix G. Effect of localization error on road change detection
accuracy

SM-mAP and SM-mIoU stand for the semantic matching methods, which use

mAP and mIoU as similarity scores. In the experiments, the semantic matching

method shows the highest performance when there are zero noises. However,

as the noise level increases, the semantic matching method shows a significant

decrease in performance. On the other hand, the graph matching method is not

significantly affected by the noise level. The results show that the graph matching

method is more robust to localization errors than the semantic matching method.

150

Appendix G. Effect of localization error on road change detection
accuracy

(a) (b)

(c) (d)

Figure G.1: Effect of localization error on road change detection accuracy. (a)

Effect of position error in Town05 Short. (b) Effect of position error in Town05

Long. (c) Effect of yaw error in Town05 Short. (d) Effect of yaw error in Town05

Long.

151

Appendix G. Effect of localization error on road change detection
accuracy

152

Appendix H

Analysis of detection accuracy

according to the degree of road

changes

We conduct a quantitative analysis of the detection accuracy according to the

degree of road changes. Figure H.1 shows the detection module’s average preci-

sion according to the degree of road changes in the CARLA environment. The

experiments are conducted in Town05 Short (Figure H.1(a) and Figure H.1(c))

and Town05 Long (Figure H.1(b) and Figure H.1(d)) environments. Figure H.1(a)

and Figure H.1(c) show how the detection accuracy is changed according to the

degree of lane deviation. Likewise, Figure H.1(b) and Figure H.1(d) show how

the detection accuracy is changed according to the degree of lane width change.

In each experiment, RD stands for ResNet discriminator [49], and DML stands

for deep metric learning [42]. GM-TOPO and GM-APLS stand for the graph

matching methods, which use TOPO [6] and APLS [77] as similarity scores.

Also, SM-mAP and SM-mIoU stand for the semantic matching methods, which

use mAP and mIoU as similarity scores. For both graph matching and semantic

153

Appendix H. Analysis of detection accuracy according to the degree
of road changes

matching methods, the average precision increases as the degree of lane deviation

increases. As the lane deviation increases, the difference between the accurate

and changed road graphs increases as well. For this reason, the accuracy of the

detection module that distinguishes the two differences between them seems to

increase. In lane width change cases, the accuracy of the graph matching method

increases as the degree of lane width change increases. However, the accuracy of

the semantic matching method does not show increases when the degree of the

width change becomes large. From this result, we can conclude that an increase

in the degree of road change generally increases the discriminating performance

of the detection module, but does not always increase depending on the type of

road change.

154

Appendix H. Analysis of detection accuracy according to the degree
of road changes

(a) (b)

(c) (d)

Figure H.1: Analysis of detection accuracy according to the degree of road

changes. (a) Effect of lane deviation in Town05 Short. (b) Effect of lane devi-

ation in Town05 Long. (c) Effect of lane width change in Town05 Short. (d)

Effect of lane width change in Town05 Long.

155

Appendix H. Analysis of detection accuracy according to the degree
of road changes

156

Appendix I

Ablation study about

performance consistency in

CARLA environment

For ablation studies, we compare the performance of Road-GNN (Chapter 3),

RIANet (Chapter 4), and RIANet++ (Chapter 5) in the CARLA simulator.

Similar to the experience in Section 5.3.4, we conduct each method both with

and without road change conditions. In Road-GNN, the controller follows the

pre-defined path as like RIANet and RIANet++. However, Road-GNN only takes

the road graph and vehicle speed as inputs to the controller and does not use

image and LiDAR sensor data. Instead of using a vanilla Road-GNN structure,

we use a network model which takes only a single time-step data. The structure

is similar to the network model explained in Section 4.3.8, which ignores other

sensor data and takes the road graph and vehicle speed as inputs. For RIANet

and RIANet++, we use the same results described in Section 5.3.4.

In Table I.1 and Table I.2, we show the experiment results conducted in Town05

Short and Town05 Long, respectively. In Town05 Short (Table I.1), RIANet++

157

Appendix I. Ablation study about performance consistency in
CARLA environment

shows the lowest performance degradation for all the metrics. In Town05 Long

(Table I.2), Road-GNN shows the lowest performance degradation for RC and

IpKm. However, compared to the other methods, Road-GNN also shows the low-

est performance for all the metrics. From this point of view, it can be said that

RIANet++ is the most effective controller for the CARLA environment under

road change conditions.

158

Appendix I. Ablation study about performance consistency in
CARLA environment

Table I.1: Ablation study in Town05 Short

Configure DS ↑ RC ↑ IpKm ↓

Road-GNN 33.627 ± 2.960 54.033 ± 5.046 44.416 ± 7.577

RIANet 87.469 ± 2.363 93.881 ± 3.827 6.319 ± 1.419

RIANet++ 86.930 ± 3.960 97.032 ± 2.657 6.737 ± 1.616

(a) No road change condition

Configure DS ↑ RC ↑ IpKm ↓

Road-GNN 25.045 ± 8.727 44.435 ± 10.415 64.377 ± 15.261

RIANet 74.012 ± 3.902 90.372 ± 4.956 16.009 ± 2.722

RIANet++ 83.224 ± 3.547 94.964 ± 3.961 8.921 ± 2.287

(b) Road change condition

Configure DS ↑ RC ↑ IpKm ↓

Road-GNN -8.582 -9.598 -19.961

RIANet -13.457 -3.509 -9.69

RIANet++ -3.706 -2.068 -2.184

(c) Performance drop

159

Appendix I. Ablation study about performance consistency in
CARLA environment

Table I.2: Ablation study in Town05 Long

Configure DS ↑ RC ↑ IpKm ↓

Road-GNN 7.965 ± 1.292 19.208 ± 6.554 12.857 ± 4.151

RIANet 44.719 ± 2.513 96.934 ± 2.927 2.624 ± 0.163

RIANet++ 41.714 ± 3.988 100.000 ± 0.000 3.024 ± 0.227

(a) No road change condition

Configure DS ↑ RC ↑ IpKm ↓

Road-GNN 7.139 ± 0.627 18.571 ± 2.509 13.381 ± 1.289

RIANet 27.724 ± 7.514 79.653 ± 6.314 4.135 ± 1.083

RIANet++ 39.726 ± 7.336 96.152 ± 4.728 3.312 ± 0.688

(b) Road change condition

Configure DS ↑ RC ↑ IpKm ↓

Road-GNN -0.826 -0.637 -0.524

RIANet -16.995 -17.281 -1.511

RIANet++ -1.988 -3.848 -0.288

(c) Performance drop

160

Bibliography

[1] Association for Standardization of Automation and Measuring Systems.

Opendrive. URL https://www.asam.net/standards/detail/opendrive/.

[2] Ankan Bansal, Karan Sikka, Gaurav Sharma, Rama Chellappa, and Ajay

Divakaran. Zero-shot object detection. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 384–400, 2018.

[3] Aseem Behl, Kashyap Chitta, Aditya Prakash, Eshed Ohn-Bar, and An-

dreas Geiger. Label efficient visual abstractions for autonomous driving.

In IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 2338–2345, 2020.

[4] Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka. Adabins: Depth

estimation using adaptive bins. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages 4009–4018,

2021.

[5] Raunak P Bhattacharyya, Derek J Phillips, Blake Wulfe, Jeremy Morton,

Alex Kuefler, and Mykel J Kochenderfer. Multi-agent imitation learning for

driving simulation. In 2018 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS), pages 1534–1539. IEEE, 2018.

[6] James Biagioni and Jakob Eriksson. Inferring road maps from global posi-

161

Bibliography

tioning system traces: Survey and comparative evaluation. Transportation

research record, 2291(1):61–71, 2012.

[7] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin

Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar

Beijbom. nuscenes: A multimodal dataset for autonomous driving. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 11621–11631, 2020.

[8] CARLA. Carla autonomous driving leaderboard. URL https://

leaderboard.carla.org/.

[9] Manfredo Perdigao do Carmo. Differential geometry of curves and surfaces.

Dover Publications, Inc., Mineola, New York, revised and updated 2nd edi-

tion edition, 2016.

[10] Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet Singh, Sla-

womir Bak, Andrew Hartnett, De Wang, Peter Carr, Simon Lucey, Deva

Ramanan, et al. Argoverse: 3d tracking and forecasting with rich maps. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 8748–8757, 2019.

[11] Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krähenbühl. Learning

by cheating. In Conference on Robot Learning (CoRL), 2019.

[12] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy,

and Alan L Yuille. Deeplab: Semantic image segmentation with deep convo-

lutional nets, atrous convolution, and fully connected crfs. IEEE transactions

on pattern analysis and machine intelligence, 40(4):834–848, 2017.

[13] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam.

162

Bibliography

Rethinking atrous convolution for semantic image segmentation. arXiv

preprint arXiv:1706.05587, 2017.

[14] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and

Hartwig Adam. Encoder-decoder with atrous separable convolution for se-

mantic image segmentation. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 801–818, 2018.

[15] Kyunghoon Cho, Timothy Ha, Gunmin Lee, and Songhwai Oh. Deep pre-

dictive autonomous driving using multi-agent joint trajectory prediction and

traffic rules. In 2019 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 2076–2081, 2019.

[16] Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bah-

danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning

phrase representations using RNN encoder–decoder for statistical machine

translation. In Proceedings of the Conference on Empirical Methods in Nat-

ural Language Processing (EMNLP), pages 1724–1734, 2014.

[17] Sungjoon Choi, Kyungjae Lee, Sungbin Lim, and Songhwai Oh. Uncertainty-

aware learning from demonstration using mixture density networks with

sampling-free variance modeling. In IEEE International Conference on

Robotics and Automation (ICRA), pages 6915–6922, 2018.

[18] Sungjoon Choi, Kyungjae Lee, and Songhwai Oh. Robust learning from

demonstrations with mixed qualities using leveraged gaussian processes.

IEEE Transactions on Robotics, 35(3):564–576, 2019.

[19] Felipe Codevilla, Matthias Müller, Antonio López, Vladlen Koltun, and

Alexey Dosovitskiy. End-to-end driving via conditional imitation learning.

In IEEE international conference on robotics and automation (ICRA), pages

4693–4700, 2018.

163

Bibliography

[20] Felipe Codevilla, Eder Santana, Antonio M López, and Adrien Gaidon. Ex-

ploring the limitations of behavior cloning for autonomous driving. In Pro-

ceedings of the IEEE/CVF International Conference on Computer Vision

(ICCV), pages 9329–9338, 2019.

[21] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-

genet: A large-scale hierarchical image database. In IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages 248–255, 2009.

[22] Wendong Ding, Shenhua Hou, Hang Gao, Guowei Wan, and Shiyu Song.

Lidar inertial odometry aided robust lidar localization system in changing

city scenes. In IEEE International Conference on Robotics and Automation

(ICRA), pages 4322–4328, 2020.

[23] Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel.

Practical search techniques in path planning for autonomous driving. AAAI

Workshop - Technical Report, 2008.

[24] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and

Vladlen Koltun. CARLA: An open urban driving simulator. In Proceed-

ings of the 1st Annual Conference on Robot Learning (CoRL), pages 1–16,

2017.

[25] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and

Vladlen Koltun. CARLA: An open urban driving simulator. In Proceed-

ings of Conference on Robot Learning (CoRL), pages 1–16, 2017.

[26] ERDOS. Pylot. URL https://github.com/erdos-project/pylot.

[27] Open Source Robotics Foundation. Demo of prius in ros/gazebo. https:

//github.com/osrf/car_demo, 2019.

164

Bibliography

[28] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and

Dacheng Tao. Deep ordinal regression network for monocular depth esti-

mation. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 2002–2011, 2018.

[29] Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov, Congcong

Li, and Cordelia Schmid. Vectornet: Encoding hd maps and agent dynamics

from vectorized representation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages 11525–11533,

2020.

[30] Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J Brostow.

Digging into self-supervised monocular depth estimation. In Proceedings

of the IEEE/CVF International Conference on Computer Vision (ICCV),

pages 3828–3838, 2019.

[31] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-

sarial nets. Advances in neural information processing systems (NeurlIPS,

27, 2014.

[32] Timothy Ha, Gunmin Lee, Dohyeong Kim, and Songhwai Oh. Road graph-

ical neural networks for autonomous roundabout driving. In IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pages

162–167, 2021.

[33] Timothy Ha, Jeongwoo Oh, Hojun Chung, Gunmin Lee, and Songhwai Oh.

Rianet: Road graph and image attention network for urban autonomous

driving. In IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2022.

[34] John Halkias and James Colyar. Ngsim interstate 80 freeway dataset, 2006.

165

Bibliography

[35] Irtiza Hasan, Shengcai Liao, Jinpeng Li, Saad Ullah Akram, and Ling Shao.

Generalizable pedestrian detection: The elephant in the room. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 11328–11337, 2021.

[36] Jeffrey Hawke, Richard Shen, Corina Gurau, Siddharth Sharma, Daniele

Reda, Nikolay Nikolov, Przemys law Mazur, Sean Micklethwaite, Nicolas

Griffiths, Amar Shah, et al. Urban driving with conditional imitation learn-

ing. In IEEE International Conference on Robotics and Automation (ICRA),

pages 251–257, 2020.

[37] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.

[38] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn.

In Proceedings of the IEEE International Conference on Computer Vision

(ICCV), pages 2961–2969, 2017.

[39] Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking imagenet pre-

training. In Proceedings of the IEEE/CVF International Conference on

Computer Vision (ICCV), pages 4918–4927, 2019.

[40] Songtao He, Favyen Bastani, Satvat Jagwani, Mohammad Alizadeh, Hari

Balakrishnan, Sanjay Chawla, Mohamed M Elshrif, Samuel Madden, and

Mohammad Amin Sadeghi. Sat2graph: Road graph extraction through

graph-tensor encoding. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 51–67, 2020.

[41] Mikael Henaff, Alfredo Canziani, and Yann LeCun. Model-predictive pol-

icy learning with uncertainty regularization for driving in dense traffic. In

International Conference on Learning Representations (ICLR), 2019.

166

Bibliography

[42] Minhyeok Heo, Jiwon Kim, and Sujung Kim. Hd map change detection

with cross-domain deep metric learning. In 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pages 10218–10224.

IEEE, 2020.

[43] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning.

Advances in Neural Information Processing Systems (NeurlIPS), 29, 2016.

[44] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[45] David Isele, Reza Rahimi, Akansel Cosgun, Kaushik Subramanian, and

Kikuo Fujimura. Navigating occluded intersections with autonomous ve-

hicles using deep reinforcement learning. In IEEE International Conference

on Robotics and Automation (ICRA), pages 2034–2039, 2018.

[46] Ajay Jain, Sergio Casas, Renjie Liao, Yuwen Xiong, Song Feng, Sean Segal,

and Raquel Urtasun. Discrete residual flow for probabilistic pedestrian be-

havior prediction. In Conference on Robot Learning (CoRL), pages 407–419,

2020.

[47] Thomas N Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. International Conference on Learning Representa-

tions (ICLR), 2017.

[48] Ilya Kostrikov. Pytorch implementations of reinforce-

ment learning algorithms. https://github.com/ikostrikov/

pytorch-a2c-ppo-acktr-gail, 2018.

[49] John Lambert and James Hays. Trust, but verify: Cross-modality fusion for

hd map change detection. In Thirty-fifth Conference on Neural Information

Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

167

Bibliography

[50] Gunmin Lee, Dohyeong Kim, Wooseok Oh, Kyungjae Lee, and Songhwai Oh.

Mixgail: Autonomous driving using demonstrations with mixed qualities.

In IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pages 5425–5430, 2020.

[51] Buyu Li, Wanli Ouyang, Lu Sheng, Xingyu Zeng, and Xiaogang Wang. Gs3d:

An efficient 3d object detection framework for autonomous driving. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2019.

[52] Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, and

Raquel Urtasun. Learning lane graph representations for motion forecasting.

In European Conference on Computer Vision (ECCV), pages 541–556, 2020.

[53] Lizhe Liu, Xiaohao Chen, Siyu Zhu, and Ping Tan. Condlanenet: a top-to-

down lane detection framework based on conditional convolution. In Pro-

ceedings of the IEEE/CVF International Conference on Computer Vision

(ICCV), pages 3773–3782, 2021.

[54] Yiwei Lyu, Chiyu Dong, and John M Dolan. Fg-gmm-based interactive be-

havior estimation for autonomous driving vehicles in ramp merging control.

In IEEE International Conference on Robotics and Automation (ICRA),

pages 1250–1255, 2020.

[55] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities

improve neural network acoustic models. In Proceedings of International

Conference on Machine Learning (ICML) Workshops, 2013.

[56] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel

Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fid-

jeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis

Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg,

168

Bibliography

and Demis Hassabis. Human-level control through deep reinforcement learn-

ing. Nature, 518(7540):529–533, 2015.

[57] NAVER. Naver maps, 2020. URL https://map.naver.com/.

[58] Kentaro Nishi and Masamichi Shimosaka. Fine-grained driving behavior

prediction via context-aware multi-task inverse reinforcement learning. In

IEEE International Conference on Robotics and Automation (ICRA), pages

2281–2287, 2020.

[59] Ippei Nishitani, Hao Yang, Rui Guo, Shalini Keshavamurthy, and Kentaro

Oguchi. Deep merging: Vehicle merging controller based on deep reinforce-

ment learning with embedding network. In IEEE International Conference

on Robotics and Automation (ICRA), pages 216–221, 2020.

[60] B lażej Osiński, Adam Jakubowski, Pawe l Ziecina, Piotr Mi loś, Christopher

Galias, Silviu Homoceanu, and Henryk Michalewski. Simulation-based rein-

forcement learning for real-world autonomous driving. In IEEE International

Conference on Robotics and Automation (ICRA), pages 6411–6418, 2020.

[61] David Pannen, Martin Liebner, and Wolfram Burgard. Hd map change

detection with a boosted particle filter. In IEEE International Conference

on Robotics and Automation (ICRA), pages 2561–2567, 2019.

[62] Aditya Prakash, Kashyap Chitta, and Andreas Geiger. Multi-modal fu-

sion transformer for end-to-end autonomous driving. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 7077–7087, 2021.

[63] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation. In Proceedings

169

Bibliography

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 652–660, 2017.

[64] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only

look once: Unified, real-time object detection. In Proceedings of the IEEE

conference on cComputer Vision and Pattern Recognition (CVPR), pages

779–788, 2016.

[65] Lennart Reiher, Bastian Lampe, and Lutz Eckstein. A sim2real deep learn-

ing approach for the transformation of images from multiple vehicle-mounted

cameras to a semantically segmented image in bird’s eye view. In IEEE In-

ternational Conference on Intelligent Transportation Systems (ITSC), pages

1–7, 2020.

[66] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:

Towards real-time object detection with region proposal networks. Advances

in Neural Information Processing Systems (NeurlIPS), 28:91–99, 2015.

[67] Nicholas Rhinehart, Rowan McAllister, Kris Kitani, and Sergey Levine. Pre-

cog: Prediction conditioned on goals in visual multi-agent settings. In Pro-

ceedings of the IEEE/CVF International Conference on Computer Vision

(ICCV), pages 2821–2830, 2019.

[68] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional

networks for biomedical image segmentation. In International Conference

on Medical image computing and computer-assisted intervention, pages 234–

241. Springer, 2015.

[69] Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imi-

tation learning and structured prediction to no-regret online learning. In

Proceedings of the International Conference on Artificial Intelligence and

Statistics, pages 627–635, 2011.

170

Bibliography

[70] Dhruv Mauria Saxena, Sangjae Bae, Alireza Nakhaei, Kikuo Fujimura, and

Maxim Likhachev. Driving in dense traffic with model-free reinforcement

learning. In IEEE International Conference on Robotics and Automation

(ICRA), pages 5385–5392, 2020.

[71] Edward Schmerling, Karen Leung, Wolf Vollprecht, and Marco Pavone. Mul-

timodal probabilistic model-based planning for human-robot interaction. In

IEEE International Conference on Robotics and Automation (ICRA), pages

3399–3406, 2018.

[72] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp

Moritz. Trust region policy optimization. In International Conference on

Machine Learning (ICML), pages 1889–1897, 2015.

[73] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and

Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347, 2017.

[74] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang

Wang, and Hongsheng Li. Pv-rcnn: Point-voxel feature set abstraction for 3d

object detection. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 10529–10538, 2020.

[75] Ibrahim Sobh, Loay Amin, Sherif Abdelkarim, Khaled Elmadawy, Mahmoud

Saeed, Omar Abdeltawab, Mostafa Gamal, and Ahmad El Sallab. End-to-

end multi-modal sensors fusion system for urban automated driving. In

Advances in Neural Information Processing Systems (NeurIPS) Workshops,

2018.

[76] Stanford Artificial Intelligence Laboratory et al. Robotic operating system.

URL https://www.ros.org.

171

Bibliography

[77] Adam Van Etten, Dave Lindenbaum, and Todd M Bacastow. Spacenet: A re-

mote sensing dataset and challenge series. arXiv preprint arXiv:1807.01232,

2018.

[78] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you

need. Advances in Neural Information Processing Systems (NeurlIPS), 30,

2017.

[79] Sourabh Vora, Alex H Lang, Bassam Helou, and Oscar Beijbom. Point-

painting: Sequential fusion for 3d object detection. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), pages 4604–4612, 2020.

[80] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu,

Yiqiang Chen, Wenjun Zeng, and Philip Yu. Generalizing to unseen domains:

A survey on domain generalization. IEEE Transactions on Knowledge and

Data Engineering, 2022.

[81] Yue Wang, Vitor Campagnolo Guizilini, Tianyuan Zhang, Yilun Wang, Hang

Zhao, and Justin Solomon. Detr3d: 3d object detection from multi-view

images via 3d-to-2d queries. In Proceedings of the Conference on Robot

Learning (CoRL), volume 164, pages 180–191, 2022.

[82] Moritz Werling, Julius Ziegler, Sören Kammel, and Sebastian Thrun. Opti-

mal trajectory generation for dynamic street scenarios in a frenet frame. In

IEEE International Conference on Robotics and Automation (ICRA), pages

987–993, 2010.

[83] Yi Xiao, Felipe Codevilla, Akhil Gurram, Onay Urfalioglu, and Antonio M

López. Multimodal end-to-end autonomous driving. IEEE Transactions on

Intelligent Transportation Systems, 2020.

172

Bibliography

[84] Danfei Xu, Dragomir Anguelov, and Ashesh Jain. Pointfusion: Deep sensor

fusion for 3d bounding box estimation. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), pages

244–253, 2018.

[85] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep layer

aggregation. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 2403–2412, 2018.

[86] Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-contextual represen-

tations for semantic segmentation. In European Conference on Computer

Vision (ECCV), pages 173–190, 2020.

[87] Yu Zhang, Huiyan Chen, Steven L Waslander, Jianwei Gong, Guangming

Xiong, Tian Yang, and Kai Liu. Hybrid trajectory planning for autonomous

driving in highly constrained environments. IEEE Access, 6:32800–32819,

2018.

[88] Lin Zhao, Hui Zhou, Xinge Zhu, Xiao Song, Hongsheng Li, and Wenbing Tao.

Lif-seg: Lidar and camera image fusion for 3d lidar semantic segmentation.

arXiv preprint arXiv:2108.07511, 2021.

[89] Wu Zheng, Weiliang Tang, Li Jiang, and Chi-Wing Fu. Se-ssd: Self-

ensembling single-stage object detector from point cloud. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

pages 14494–14503, 2021.

173

Bibliography

174

초 록

본 학위 논문은 학습 기반의 자율주행 네비게이션 문제에 대해 다룬다. 자율주행

기술을현실에적용하기위해서는여러도로환경에서동작할수있는범용적인컨트

롤러를설계하는것이필요하다.기존의방법론은사례중심적인방식을사용하였다.

이는 각 사례별로 특정 도로 환경을 가정하고 컨트롤러를 설계하는 것을 의미한다.

이러한 사례 중심적인 방식으로 만들어진 컨트롤러는 이전에 다루어지지 않은 도

로 환경에 대해서는 동작하지 않을 수 있다. 또한 도로 환경은 그 종류가 다양하기

때문에, 기존의 방법론으로 범용적인 자율주행 컨트롤러를 개발하는 것은 많은 개

발시간과 비용을 요구하게 된다. 따라서 범용적인 자율주행 기술 개발을 위해서는

도로 환경에 구애되지 않는 새로운 종류의 방법론이 요구된다.

본 학위 논문에서는 특정 도로 환경을 가정하지 않고, 범용적으로 동작하는 컨

트롤러를 설계하는 것을 목표로 한다. 이를 위해서 본 학위 논문은 학습 기반의

컨트롤러를이용하고자하며,다양한환경에서의학습을통해범용적인주행성능을

높이고자 한다. 특히 다양한 도로 환경에 대한 특성을 파악할 수 있도록 학습시키기

위해서, 본 학위 논문은 도로 환경에 대한 정보를 컨트롤러에 입력으로 줄 것을 제안

한다. 도로 환경 정보를 그래프 형태를 이용하여 인코딩 되며, 컨트롤러는 인코딩된

도로 그래프 정보를 학습하여 도로주행 성능을 높이게 된다. 본 학위 논문에서는

도로 그래프 활용와 관련하여 크게 세 가지 주제를 다룬다.

첫째로, 본 학위 논문은 도로 환경 정보를 그래프 기반으로 인코딩 하는 방법론에

대해 다룬다. 일반적으로 도로 위 자동차의 움직임은 도로 모양에 영향을 받는다.

따라서 자동차의 위치 정보에 대해 파악할 때는 자동차가 위치한 도로의 형태를 함

께 고려해주어야 한다. 이를 위해 본 학위 논문은 도로를 그래프 형태로 나타내고,

자동차의 위치 정보를 도로 그래프와 연관지어 나타내는 방법을 제안한다. 본 학위

논문은 또한 이러한 도로 그래프를 처리할 수 있는 새로운 네트워크 구조를 제안한

다. 실험 결과들은 도로 그래프를 이용하여 상태를 인코딩하는 방식이 컨트롤러의

도로 주행 환경 일반화에 도움이 된다는 사실을 증명한다.

둘째로, 본 학위 논문은 도로 환경 정보와 기타 센서 데이터를 융합하는 방법론에

175

대해다룬다.도로그래프는도로의형태와주변차량의위치를나타낼수있지만,실

제 도시 환경에서 도로를 주행할 때 필요한 다른 정보들을 나타내지는 못한다. 예를

들어 도로 표지판이나 교통 신호와 같은 정보들은 도로 그래프로 표현하기 어렵다.

이를해결하기위해,본학위논문에서는도로그래프뿐만이아니라이미지, LiDAR

와 같은 기타 센서 데이터를 조합하여 함께 입력으로 사용할 것을 제안한다. 도로

그래프만으로는 얻을 수 없던 정보들은 다른 센서 데이터 정보를 통해 보완될 수

있다. 본 학위 논문에서는 또한 도로 그래프와 다양한 센서 데이터를 융합할 수 있는

새로운 네트워크 구조에 대해 제안한다. 제안된 네트워크 구조를 통해, 컨트롤러는

복잡한 도로 환경에서도 자율주행을 성공한다. 실험 결과들은 제안된 융합 기반의

방식이 도로 환경 상태를 파악하는데 도움을 준다는 사실을 증명한다.

마지막으로,본학위논문은도로그래프에발생할수있는오류를탐지하여,이로

인한 자율주행 성능 저하를 방지할 수 있는 방법론에 대해 다룬다. 도로 그래프 기

반의 컨트롤러는 도로 그래프 데이터베이스를 사전에 미리 준비할 것을 요구한다.

하지만 도로는 도로 공사 등의 이유로 계속해서 형태가 변형될 수가 있다. 이러한

변화가 도로 그래프 데이터베이스에 반영되지 않는다면, 컨트롤러는 잘못된 도로

정보를 입력으로 받게 된다. 그렇기에 도로 그래프의 느린 업데이트는 컨트롤러의

성능 저하를 유발할 수 있고, 오류 탐지 기술은 이러한 성능 저하를 방지하기 위해

필요하다. 본 학위 논문에서는 이를 위해 도로 그래프 오류를 탐지할 수 있는 방법론

에 대해 제안한다. 먼저, 도로의 변화로 인해 발생할 수 있는 오류에 대해 정의하고,

이러한 오류를 탐지할 수 있는 도로 그래프 변화 탐지 모듈을 제안한다. 실험 결과

들은 도로 그래프 변화 탐지 기술이 실제 자율주행 컨트롤러의 성능 향상에 이용될

수 있음을 보인다.

주요어: 자율 주행, 도로 그래프, 강화 학습, 모방 학습, 상태 표현, 네비게이션, 이미

지 처리, 객체 인식

학 번: 2017-20972

176

감사의 글

6년간의대학원생활을마무리하며대학원에서의저의삶은어떠했는지되돌아보

게되었습니다.돌이켜보면훌륭하신교수님과친절한선배님들,그리고착한동기들

과 좋은 후배들 덕분에 나름대로 나쁘지 않고 좋은 대학원 생활을 보낼 수 있었다는

생각이 듭니다. 하지만 한편으로는 반대로 제가 과연 친절한 선배였는지, 착한 동

기였는지, 그리고 좋은 후배였는지에 대해서는 의문이 들 때가 많습니다. 하지만

그렇기에 그만큼, 이런 부족한 저를 아껴주고 따뜻하게 대해준 연구실 내의 사람들,

그리고 제 주변에서 저를 지지해준 사람들이 있었기에 제가 대학원을 무사히 마칠

수 있었다는 생각이 듭니다. 연구실 안밖에서의, 그리고 주변에서의 격려와 도움이

없었다라면, 지금의 저의 모습은 결코 없었을 것입니다. 그러한 분들 덕분에 무사히

졸업 논문까지 작성할 수 있었고, 대학원 생활을 마무리 할 수 있었던 것 같습니다.

구체적으로는 먼저 저의 지도교수님이신 오성회 교수님께 감사드리고 싶습니다.

지금 돌아보면, 처음 연구실에 들어왔을 때만 하더라도 제가 부족했던 점이 많았다

는 생각이 듭니다. 하지만 이런 부족한 제자를 항상 감내해주시고, 좋은 방향으로

이끌어주신 교수님 덕분에 한 사람의 연구자로 성장할 수 있었던 것 같습니다. 교

수님 연구실에 들어올 수 있었고, 6년간 교수님의 지도를 받을 수 있었다는 사실이,

저에게있어서는무척이나다행스러운일이아니었나싶습니다.그렇기에이자리를

빌어 교수님께 다시 한 번 감사의 말씀을 드리고 싶습니다. 두번째로 저의 논문의 위

원장을맡아주신최진영교수님께도감사드리고싶습니다.신입생시절,세미나에서

교수님의 열정적인 모습을 뵐때마다, 저런 연구자가 되고 싶다는 생각을 많이 하게

되었던것같습니다.그러한분께논문심사를받을수있어서영광이었고,다시한번

논문 심사를 맡아주심에 감사드립니다. 예심과 초심에서 논문 심사위원를 맡아주신

조남익 교수님께도 감사드리고 싶습니다. 예심 때 코로나로 편찮으셨을텐데, 그런

와중에도 논문 심사를 맡아주셔서 감사드립니다. 교수님의 친절하시면서도 통찰력

있으신코멘트는논문작성에많은도움이되었습니다.또한양인순교수님께도감사

드리고 싶습니다. 제가 신입생 시절, 교수님께서 처음 부임하셔서 제가 수업을 듣게

되었는데, 그 때 많은 것들을 배우게 된 기억이 떠오릅니다. 이번 논문 심사에서도

177

큰 도움을 주신 교수님께 다시금 감사드리고 싶습니다.

이외에도 연구실의 많은 선배님들께도 감사드리고 싶습니다. 제가 연구실 생활을

무사히 마무리 할 수 있었던 것은, 연구실 선배분들의 도움이 없었으면 결코 불가

능한 일이었을 것입니다. 가장 먼저, 졸업 논문 심사에 심사위원까지 맡아주시며,

많은 도움을 주셨던 성준 형께 감사드리고 싶습니다. 항상 연구에 열정적이신 모습

에 존경스러운 점이 많다고 생각했고, 후배인 입장에서 연구자로서의 자세에 대해

많이 배울 수 있었습니다. 또한, 언제나 성실하시고 졸업후에도 연구실에 좋은 영

향력을 끼치시던 은우 형. 연구실을 항상 유쾌한 분위기로 이끌어주시던 인환 형.

항상 따뜻하게 연구실 분들을 대해주시던 윤선 누나. 즐겁게 일하시면서도 항상 뛰

어난 모습을 보여주시던 동훈 형. 언제나 재밌으시면서도 위트가 있으시고 후배와

잘 놀아주시던 건호 형. 밝은 성격으로 연구실을 언제나 즐거움이 넘치게 만들고,

그러면서도 후배들에게 따스한 조언을 아끼지 않던 혜민 누나. 제가 연구가 막힐

때마다직접적으로도움을주시고,저에게연구자로서의방향성에대해가르쳐주신

경훈 형. 항상 유머러스하시고 착하시면서도, 언제나 후배들에게 연구 내외적으로

큰 도움을 아낌없이 나눠주시던 경재 형. 연구실의 중심이자 큰 형으로써, 항상 재미

있고 좋은 분위기로 연구실을 이끌어 나가시던 승규 형. 제가 모르는게 있을때마다

무엇이든 친절하게 가르쳐주시고, 졸업 논문 준비와 발표에도 큰 도움과 조언을 아

끼지 않아주셨던 찬호 형 등. 연구실에서 뵈었던 많은 선배님들께 감사 말씀 드리고

싶습니다. 선배님들의 따뜻한 조언과 격려가 저에게 있어서는 큰 힘이 되었습니다.

그리고 저의 동기들과 그리고 후배들에도 감사드리고 싶습니다. 6년간 항상 같이

함께 일하면서 많은 일들이 있었지만, 동기와 후배들 덕분에 즐거운 대학원 생활

을 할 수 있었던 것 같습니다. 항상 밝고 연구실 분위기를 잘 이끌어 나가면서도,

한편으로 같이 졸업 논문 준비를 하면서 도움을 많이 주었던 누리. 쾌할하면서도

누구에게든 친하게 대해주고, 동기로써 대학원 생활동안 많은 도움을 주었던 휘연.

착하고 활동적이고, 나보다 어리긴 하지만 오히려 항상 배울 점들이 많았던 윤호.

재미있으면서도 선후배 상관없이 항상 서스럼없는 모습으로 분위기를 유쾌하게 만

들어주던재구.언제나밝은모습이면서도열정적으로노력하며연구를계속해오던

오빈. 장난기가 많긴 하지만 재미있고, 한편으로 과제 관련해서도 항상 수고를 많이

178

해와줬던 민의. 자율주행 관련된 연구를 같이 하면서 도움을 많이 주고받고, 논문

관련해서도수고를많이해주었던건민.밝으면서도항상연구실에재미있는에피소

드를만들어주었던민재.방장일로항상바쁘게수고해주었고,연구실에서궂은일을

도맡아 해주었던 호건. 연구를 열정적으로 하면서도, 자율주행 관련 과제로 수고를

많이 해주었던 도형. 자기 하는 일에 열심이고, 항상 재미있게 일하는 모습 보여주던

정호. 논문이나 BMRR 과제로 항생 우직하게 수고해주던 우석. 착하면서도 재미

있는 연구실 분위기를 만들어주었던 홍중. 자율주행 차량 관련해서 열심히 세팅도

도와주고 고마운 점이 많았던 정우. 남과 잘 어울리고 밝은 연구실 분위기를 만들어

가던 재연. 연구실에서 항상 서스럼없이 친절하게 대해주시던 호웅 형. 언제나 밝고

항상 자신있는 모습을 보여주던 민영. 연구 관련해서 도움도 많이 주었고, 반대로

의지해주는 점도 많아서 고마웠던 재석 등. 연구실에서 만났던 많은 후배분들께도

감사드리고 싶습니다. 연구실에서 좋은 추억과 기억을 가지고 가게 되는 것 같아,

다시 한 번 감사드립니다.

마지막으로 항상 대학원 생활을 물심양면으로 지원해주시던 부모님과 가족들에

게도 감사드리고 싶습니다. 덕분에 많은 힘이 되었고, 헌신적인 지지와 도움 덕분에

대학원 생활을 무사히 마칠 수 있었던 것 같습니다. 그 밖에 감사드리고 싶은 분들

이 많지만 다 말로 표현하기에는 어려움이 있는것 같습니다. 제 주변에 항상 좋은

분들이 계셨고, 그분들 덕분에 제가 여기까지 올 수 있었던 것 같습니다.

이제 저는 10년간 재학했던 학교를 떠나게 됩니다. 4년간의 학사과정, 그리고 6

년간의 대학원과정을 통해, 제 자신의 능력과 한계를 모두 경험할 수 있었던 것 같습

니다. 아쉬운 부분도 많았고 후회되는 일도 많았지만, 돌이켜보면 그래도 제가 어느

정도 성장했음을 느끼게 되는 것 같아 다행이라는 생각이 듭니다. 박사라는 것은, 그

사람이 뛰어난 전문가라는 것을 드러내는 자격이라기 보다는, 그 분야에서 새로운

문제를 해결할 수 있고 연구자로서 한 사람 몫을 해낼 수 있다는 것을 인증하는 자

격이다라는 말을 들은 적이 있습니다. 제가 박사과정 기간동안 여러 연구를 하기는

했지만, 제 연구보다 뛰어난 업적을 세우신 분들도 많고, 저보다 능력이 뛰어난 분들

도 많이 있을 것입니다. 그런 분들과 비교해서 부족하기는 하지만, 적어도 한 사람의

박사로서, 그리고 그에 걸맞은 한 사람 몫을 해내는 연구자로서, 앞으로의 제 삶을

179

살아갈 수 있도록 노력하겠습니다. 감사합니다.

180

	1 Introduction
	1.1 Motivation
	1.2 Organization of the dissertation

	2 Background
	2.1 Learning Algorithm for Autonomous Driving
	2.1.1 Reinforcement Learning
	2.1.2 Imitation Learning

	2.2 State Representation for Autonomous Driving
	2.2.1 Feature-Based Representation
	2.2.2 Bird’s Eye View Image Representation
	2.2.3 Egocentric View Image Representation
	2.2.4 Sensor Fusion Based Representation

	3 Road Graphical Neural Networks for Autonomous Driving
	3.1 Problem Setting
	3.2 Proposed Method
	3.2.1 Node-and-Edge-Level Encoding
	3.2.2 Graph-Level Encoding
	3.2.3 Time-Level Encoding
	3.2.4 Learning Algorithm

	3.3 Experiments
	3.3.1 Environment and Network Details
	3.3.2 Experimental Results
	3.3.3 Qualitative Results

	3.4 Chapter Summary

	4 Road Graph and Image Attention Network for Autonomous Driving
	4.1 Problem Setting
	4.2 Proposed Method
	4.2.1 Feature Encoder
	4.2.2 Attention Network
	4.2.3 Low-Level Controller
	4.2.4 Learning Algorithm

	4.3 Experiments
	4.3.1 Experimental Settings
	4.3.2 Dataset
	4.3.3 Implementation Details
	4.3.4 Baselines
	4.3.5 Comparison Results
	4.3.6 Attention Score Visualization
	4.3.7 Road Graph Feature Analysis
	4.3.8 Ablation Study
	4.3.9 Qualitative Results

	4.4 Chapter Summary

	5 Road Graph Change Detection for Autonomous Driving
	5.1 Problem Setting
	5.2 Proposed Method
	5.2.1 Controller Module
	5.2.2 Road Change Detection Module

	5.3 Experiments
	5.3.1 Environments
	5.3.2 Performance of Road Graph Based Controller Module
	5.3.3 Performance of Road Change Detection Module
	5.3.4 Robustness of Controller under Road Change Condition

	5.4 Chapter Summary

	6 Conclusion
	Appendices
	A Collected map images of roundabout environment
	B Map image and road graph of CARLA Town05
	C Details of CARLA evaluation metrics
	D Detailed results of CARLA experiment in Chapter 4
	E Detailed results of CARLA experiment in Chapter 5
	F Examples of FMTC real-world dataset scenarios
	G Effect of localization error on road change detection accuracy
	H Analysis of detection accuracy according to the degree of road changes
	I Ablation study about performance consistency in CARLA environment

<startpage>20
1 Introduction 1
 1.1 Motivation 1
 1.2 Organization of the dissertation 3
2 Background 7
 2.1 Learning Algorithm for Autonomous Driving 7
 2.1.1 Reinforcement Learning 8
 2.1.2 Imitation Learning 11
 2.2 State Representation for Autonomous Driving 15
 2.2.1 Feature-Based Representation 15
 2.2.2 Bird’s Eye View Image Representation 21
 2.2.3 Egocentric View Image Representation 23
 2.2.4 Sensor Fusion Based Representation 27
3 Road Graphical Neural Networks for Autonomous Driving 31
 3.1 Problem Setting 33
 3.2 Proposed Method 40
 3.2.1 Node-and-Edge-Level Encoding 42
 3.2.2 Graph-Level Encoding 42
 3.2.3 Time-Level Encoding 43
 3.2.4 Learning Algorithm 44
 3.3 Experiments 44
 3.3.1 Environment and Network Details 44
 3.3.2 Experimental Results 46
 3.3.3 Qualitative Results 50
 3.4 Chapter Summary 53
4 Road Graph and Image Attention Network for Autonomous Driving 59
 4.1 Problem Setting 62
 4.2 Proposed Method 63
 4.2.1 Feature Encoder 63
 4.2.2 Attention Network 67
 4.2.3 Low-Level Controller 69
 4.2.4 Learning Algorithm 70
 4.3 Experiments 70
 4.3.1 Experimental Settings 71
 4.3.2 Dataset 71
 4.3.3 Implementation Details 72
 4.3.4 Baselines 74
 4.3.5 Comparison Results 76
 4.3.6 Attention Score Visualization 77
 4.3.7 Road Graph Feature Analysis 77
 4.3.8 Ablation Study 81
 4.3.9 Qualitative Results 83
 4.4 Chapter Summary 84
5 Road Graph Change Detection for Autonomous Driving 89
 5.1 Problem Setting 92
 5.2 Proposed Method 95
 5.2.1 Controller Module 96
 5.2.2 Road Change Detection Module 98
 5.3 Experiments 102
 5.3.1 Environments 102
 5.3.2 Performance of Road Graph Based Controller Module 103
 5.3.3 Performance of Road Change Detection Module 109
 5.3.4 Robustness of Controller under Road Change Condition 112
 5.4 Chapter Summary 114
6 Conclusion 119
Appendices 121
A Collected map images of roundabout environment 123
B Map image and road graph of CARLA Town05 125
C Details of CARLA evaluation metrics 129
D Detailed results of CARLA experiment in Chapter 4 133
E Detailed results of CARLA experiment in Chapter 5 139
F Examples of FMTC real-world dataset scenarios 143
G Effect of localization error on road change detection accuracy 149
H Analysis of detection accuracy according to the degree of road changes 153
I Ablation study about performance consistency in CARLA environment 157
</body>

