creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Ph.D. DISSERTATION

Learning-Based Autonomous Vehicle
Navigation Using Road Graph Networks

T2 JeE YEQIE o] 8T 3% 7Y A&

BY
TAEOH HA

FEBRUARY 2023

DEPARTMENT OF ELECTRICAL AND COMPUTER
ENGINEERING
COLLEGE OF ENGINEERING
SEOUL NATIONAL UNIVERSITY

2 A &8t

SECRIL WATCeAL LIMNVERSTY

Learning-Based Autonomous Vehicle Navigation Using Road
Graph Networks

I EHAE ©

Tz gz v

A

A

HlH|A 0]

1

M

1=

2023

2]
=

1

2023 A

3o

%)

4 %

]

o
o
i

<

p——

N

2 A &8t

SECRIL WATCeAL LIMNVERSTY

Abstract

This dissertation focuses on the learning-based autonomous navigation prob-
lem. To deploy an autonomous framework to the real world, it is necessary to de-
sign a general-purpose controller that can operate in various road environments.
Previous methodologies have used case-specific methodologies, which means that
a specific road environment is assumed for each case when designing a controller.
A controller designed in this case-specific manner cannot properly operate in
an unseen road environment which has not been addressed before. In addition,
since the types of road environments are diverse, developing a general-purpose
autonomous driving controller requires a lot of development time and cost. There-
fore, a new kind of methodology, which is not limited to a specific road environ-
ment, is required to develop a general-purpose autonomous driving controller.

This dissertation aims to design a controller which operates universally without
assuming a specific road environment. For this purpose, we employ a learning-
based controller and focus on improving general driving performance through
learning in various environments. In particular, to make the controller capture
the features of various road environments, we suggest providing information about
a road environment as input for the controller. Road environment information is
encoded using a graph, and the controller enhances the driving performance by
learning the encoded features of the road graph. This dissertation deals with three
major issues related to utilizing a road graph.

First, this dissertation deals with a graph-based methodology for encoding road
environment information. In general, the movement of a vehicle on the road is
affected by the shape of the road. Therefore, when figuring out the location infor-
mation of the vehicle, the shape of the road on which the vehicle is located must
be considered together. For this purpose, we propose a representation method
which reflects roads in the form of graphs and links the location information of

vehicles to road graphs. We also propose a novel network structure capable of

processing such road graph representations. Experimental results demonstrate
that encoding a state by a road graph helps to generalize the controller’s driving

environment.

Second, this dissertation deals with a methodology that fuses road environment
information with other sensor data. A road graph represents the structure of a
road and the location of nearby vehicles but does not represent other information
required to drive in a real world road environment. For example, information
such as road signs and traffic signals is difficult to express by a road graph.
To address this issue, we propose to combine a road graph with other sensor
data such as images and LiDAR. Information that could not be obtained by
a road graph is supplemented through other sensor data information. We also
propose a novel network architecture which can fuse a road graph with various
sensor data. Through the proposed network architecture, the controller succeeds
in autonomous driving even in complex road environments. Experimental results
demonstrate that the proposed fusion-based method helps to figure out the road

environment state.

Finally, this dissertation deals with a methodology that can detect possible
errors on road graphs and thereby prevent the degradation of autonomous driving
performance. A road graph based controller requires a road graph database to be
prepared in advance. However, roads can be continually changed due to several
reasons, such as road construction. If these changes are not reflected in the road
graph database, the controller receives incorrect road information as input. A
slow update to the road graph can cause controller performance degradation, and
therefore an error detection method is necessary to prevent such degradation. For
this purpose, we propose a methodology which can detect road graph errors. We
first define errors that may occur due to road changes and propose road graph
change detection modules which can detect these errors. Experimental results

show that road graph change detection can be used to improve the performance

of an autonomous driving controller.
Keywords: Autonomous Driving, Road Graph, Reinforcement Learning, Im-
itation Learning, State Representation, Navigation, Image Processing, Object

Detection

2 A &8t

SECRIL WATCeAL LIMNVERSTY

Contents

Introduction

1.1 Motivation

1.2 Organization of the dissertation

Background

2.1 Learning Algorithm for Autonomous Driving

2.1.1
2.1.2

Reinforcement Learning

Imitation Learning

2.2 State Representation for Autonomous Driving

221
2.2.2
223
224

Feature-Based Representation
Bird’s Eye View Image Representation
Egocentric View Image Representation

Sensor Fusion Based Representation

Road Graphical Neural Networks for Autonomous Driving

3.1 Problem Setting o
3.2 Proposed Method L.

3.2.1
3.2.2
3.2.3
3.24

Node-and-Edge-Level Encoding
Graph-Level Encoding
Time-Level Encoding

Learning Algorithm

11
15
15
21
23
27

3.3 Experiments. 44

3.3.1 Environment and Network Details 44
3.3.2 Experimental Results 46
3.3.3 Qualitative Results 50
3.4 Chapter Summary 53

Road Graph and Image Attention Network for Autonomous

Driving 59
4.1 Problem Setting Lo 62
4.2 Proposed Method o 63
4.2.1 Feature Encoder 63
4.2.2 Attention Network 67
4.2.3 Low-Level Controller 69
4.2.4 Learning Algorithm 70

4.3 Experiments. 70
4.3.1 Experimental Settings 71
4.3.2 Dataset 71
4.3.3 Implementation Details 72
4.3.4 Baselines o 74
4.3.5 Comparison Results 76
4.3.6 Attention Score Visualization 7
4.3.7 Road Graph Feature Analysis 77
4.3.8 Ablation Study oo 81
4.3.9 Qualitative Results 83

4.4 Chapter Summary 84
Road Graph Change Detection for Autonomous Driving 89
5.1 Problem Setting 92
5.2 Proposed Method 95

ii
2

5.2.1 Controller Module 96
5.2.2 Road Change Detection Module 98
5.3 Experiments. L 102
5.3.1 Environmentso 102
5.3.2 Performance of Road Graph Based Controller Module . . . 103
5.3.3 Performance of Road Change Detection Module. 109
5.3.4 Robustness of Controller under Road Change Condition . . 112
5.4 Chapter Summary L L 114
6 Conclusion 119
Appendices 121
A Collected map images of roundabout environment 123
B Map image and road graph of CARLA TownO05 125
C Details of CARLA evaluation metrics 129
D Detailed results of CARLA experiment in Chapter 4 133
E Detailed results of CARLA experiment in Chapter 5 139
F Examples of FMTC real-world dataset scenarios 143
G Effect of localization error on road change detection accuracy 149
H Analysis of detection accuracy according to the degree of road
changes 153
I Ablation study about performance consistency in CARLA envi-

ronment

iii

157

v

.'t-_#"J-':.-*
.g l; ﬁf‘

oLk AT

SECRIL WATCeAL LIMNVERSTY

List of Figures

1.1

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

An example of road graph representation 2
An example of distance features 16
An example of longitudinal and lateral positions 17
An example of a Frenet coordinate frame 18
Two different example scenarios on a straight road environment . . 20
An example of bird’s eye view images 22
An example of egocentric view images 26
An example of LiDAR sensor data in the CARLA simulator 29
An example of LIDAR sensor data in the real world 30
Overview of training a Road-GNN based controller and autonomous

driving using Road-GNN in unseen environments 34
An example of a roundabout environment 36
The overall process of Road-GNN 41
Examples of collected map images 45
Learning curve of RL algorithms 48
Experiment with various difficulty levels 51
Roundabout environments used for showing qualitative results . . 54
Snapshots of a simulation result of Road-GNN 55
Snapshots of a simulation result of Road-GNN 56
v

3.10 Snapshots of a simulation result for comparison 57

3.11 Snapshots of a simulation result for comparison 58
4.1 Tllustration of our mainidea 61
4.2 The structure of the feature encoder module 64
4.3 The structure of the networks 69
4.4 Visualization of attention scores 79
4.5 Road graph feature analysis L. 80
4.6 Turn right and avoid a pedestrian scenario 85
4.7 Turn left and avoid a pedestrian scenario 86
4.8 Crossing an intersection scenario 87
4.9 Turn right and avoid a pedestrian scenario 88
5.1 An example of a road graph and road changes in the CARLA
simulator L 94
5.2 The structure of the proposed framework 96
5.3 Illustration of the proposed road change detection methods 99
5.4 Vehicle platform and sensor configuration 104
5.5 Snapshot of FMTC environment 105
5.6 Illustrations of four real-world experience scenarios 106
A.1 Examples of collected map images 124
B.1 HD-map and global road graph of Town05 126
B.2 A part of Town05 map example 127
F.1 FMTC dataset example (Scenario 1: Go straight) 144
F.2 FMTC dataset example (Scenario 2: Turn right) 145
F.3 FMTC dataset example (Scenario 3: Turn left) 146
F.4 FMTC dataset example (Scenario 4: Stop behind another vehicle) 147

vi

G.1 Effect of localization error on road change detection accuracy . .

H.1 Analysis of detection accuracy according to the degree of road

changes

vii

. 151

viii

: .--*? ’;ﬂ %E‘H ﬁ‘l.]--l?—

SECRIL WATCeAL LIMNVERSTY

List of Tables

3.1
3.2
3.3

4.1
4.2

5.1
5.2

5.3

5.4

5.5

5.6

C.1

D1

Network Architecture Parameters 46
Performance Comparison 49
Experiment with aggressive drivers 50
Performance Comparison, 78
Ablation Study 82
Performance comparison of controller module (CARLA) 108
Average Lo norm in meters between the expert waypoints and the

waypoints calculated by controller module (FMTC Real-World) . . 108

Performance comparison of road change detection module by av-

erage precision (CARLA) 111

Performance comparison of road change detection module by av-

erage precision (FMTC Real-World) 113

Performance consistency of RIANet++ under road change condi-

tions (CARLA) 115

Performance consistency of RIANet++ under road change condi-

tions (FMTC Real-World) 116

Infraction and corresponding coefficient 130

Performance Comparison in Town05 Short 135
ix

D.2
D.3
D4

E1

E.2

11
1.2

Performance Comparison in Town05 Long 136

Ablation Study in Town05 Short 137
Ablation Study in Town05 Long 138
Performance consistency of RIANet++ under road change condi-

tions (CARLA Town05 Short) 140

Performance consistency of RIANet++ under road change condi-

tions (CARLA Town05 Long) 141

Ablation study in Town05 Short 159

Ablation study in Town05 Long 160
X

&

| &1

Chapter 1

Introduction

1.1 Motivation

Autonomous vehicle navigation has been studied by a number of researchers for a
long time. In particular, learning-based autonomous vehicle navigation has been
widely studied with the development of deep neural network. Many existing stud-
ies about autonomous driving have been performed using a driving simulator for
safety. One of the most popular examples of simulators is the highway simula-
tor using the NGSIM dataset [34]. The NGSIM dataset was collected by taking
videos from a highway traffic camera, and several works [17, 15, 41] have con-
structed an open-loop driving simulator by making vehicles follow the trajectories
of the NGSIM dataset. Many other studies have suggested using a closed-loop
driving simulator where the movements of vehicles are changed in response to
the ego vehicle’s action. In these studies, road structures such as merging roads
[59, 54], intersections [45], or city streets [24] have been used to test the driving
performance of an autonomous vehicle. In most of their works, however, they
have used the same road structure for both training and testing. This can cause
a generalization issue when the vehicle controller is deployed into a real world

environment. If the driving agent is tested in a new unseen environment, it is

Chapter 1. Introduction

(a) (b)

Figure 1.1: An example of road graph representation. (a) Bird’s eye view image

of a urban driving environment. (b) Corresponding road graph.

likely to fail to drive because it lacks the knowledge of the new environment.

When training a generalized framework which can drive in various road envi-
ronments, one of the most important issues for a driving agent is how to capture
the structural information of a road. Road graph representation is one of the
methods to express the structural information of a road. Road graph is a graph
which shows the shape and structure of a road. Figure 1.1 shows an example of
the road graph. In a road graph, each node is a sampled point at which a vehicle
can be located on the road. In addition, each edge is connected when the vehicle
can move between each node. Through this road graph, it is possible to represent
the road’s positional and directional information. A road graph also can have
various features for each node and edge. For example, node or edge features can
contain road direction information, or traffic information.. Through this method,
an autonomous driving agent can effectively obtain useful information.

Unlike the state presentation used in the existing autonomous driving problem,
the road graph presentation has the advantage of effectively transmitting road
information. In the case of the feature vector based presentation, there is a limit
to expressing complex and various forms of roads with only simple vectors. In the

case of image based representation, it requires more memory to fully show the road

Chapter 1. Introduction

structure, compared to the road graph. Therefore, the road graph presentation is
a more suitable state representation for the autonomous driving problems.

Several works have represented this structural information in the form of a
graph. Gao et al. [29] vectorized components on a road and expressed the re-
lationship between each vector as a graph. Similarly, Liang et al. [52] proposed
a graph representation which can represent lanes in a road. However, they only
focused on the prediction of vehicle movements, and their works have not been
applied in the field of vehicle control. In addition, their works have a limitation
because their frameworks use the dataset [10] which is collected from relatively
simple road environments such as an intersection.

In this dissertation, we focus on enhancing the generalized performance of
autonomous driving by providing a road graph based state representation. We
also provide a novel driving framework which can leverage both a road graph
and other sensor data. In addition, we focus on several issues which can occur
when a road graph representation is applied to a real world environment. For the
robustness of our framework, we aim to detect errors in a road graph which can

occur by road changes.

1.2 Organization of the dissertation

From Chapter 2 to Chapter 5, we cover several research topics about road graph
presentation and its application. In this section, we explain the organization of
the dissertation.

In Chapter 2, we introduce backgrounds of learning-based automatic vehicle
navigation. We mainly cover learning-based frameworks which is widely used in
autonomous driving. We introduce reinforcement learning and imitation learning
framework. We then explain how each framework has been applied in the au-

tonomous driving field. We also cover various types of state representation which

Chapter 1. Introduction

are used as inputs for learning-based driving frameworks. We describe the ad-
vantages and disadvantages of each representation method and explain how each

method is used in autonomous driving.

In Chapter 3, we propose road graph neural network (Road-GNN), which is
an autonomous driving framework using a road graph presentation. Road-GNN
consists of several encoding processes. Road-GNN first encodes node and edge
features of a road graph using a deep neural network. Road-GNN then encodes the
road graph information. The encoded features are recorded in historical memory
and combined together. Finally, Road-GNN takes the final encoded features as an
input and is trained with a reinforcement learning framework. In the experiment,
we demonstrate that the proposed representation method is more effective than

other methods when training a learning-based driving agent.

In Chapter 4, we propose road image attention network (RIANet), which can
solve an issue in a road graph based controller. In a road graph, crucial infor-
mation for driving, such as a traffic light or sign, is ignored. Since Road-GNN
uses only a road graph as an input, it does not consider this crucial information
when driving in the real world. To solve this issue, we propose a fusion-based
driving framework which can leverage information from both road graphs and
other sensor data. In the experiment, we experimentally show that the proposed

framework outperforms the other frameworks by fusing the sensor data.

In Chapter 5, we propose a detection framework which detect a road change
error in a road graph. A road graph can be changed due to road construction,
and this change can reduce the performance of a driving agent. To solve this
issue, we propose several road change detection methods to filter out unreliable
and inaccurate road graphs. We also suggest a robust driving framework named
RIANet++, which combines the proposed road change detection modules with
the road graph based controller module. Through the proposed framework, we

can measure the unreliability of a road graph and consider it when controlling

Chapter 1.

Introduction

the ego-vehicle.

Chapter 1.

Introduction

Chapter 2

Background

In this chapter, we introduce learning-based frameworks which are widely used
in autonomous driving. There are two major issues related to training an au-
tonomous driving agent. First, deciding how to train an autonomous driving agent
is an important issue because the driving performance of an agent is influenced
by its learning algorithm. Second, deciding which information to give is another
important issue because the control of an agent is influenced by its input. Those
two issues are essential for training an agent and have been addressed in various
studies. The remainder of this chapter covers those two issues and introduces

various methods related to each issue.

2.1 Learning Algorithm for Autonomous Driving

There are several learning-based autonomous driving frameworks. Unlike other
non-learning-based frameworks, such as model predictive control (MPC), learning-
based frameworks enable improving performance without requiring complex phys-
ical vehicle modeling. Reinforcement learning and imitation learning are among
the most frequently and widely used learning-based frameworks. These two frame-

works are generally combined with deep learning for scalability. Unlike other

Chapter 2. Background

methods, deep learning based frameworks can handle a high dimensional input,

such as a camera image or LiDAR cloud point data.

2.1.1 Reinforcement Learning

Reinforcement learning (RL) is a framework which trains an agent through a spe-
cific pre-defined reward. In a reinforcement learning framework, the autonomous
driving problem is formulated using a Markov decision process (MDP). For each
timestep ¢, the agent observes the current state s;. The agent then uses the policy
7 to determine an action a;. The action a; is a control signal which can include a
target speed, acceleration, or steering. Each action may be a useful control signal
which drives a vehicle safely or, otherwise, a harmful control signal which causes
an accident. As a result of the action, the agent’s state is changed to the next
state s¢+1. During the training, the agent receives a pre-determined reward ry
according to the result of the action. The goal of reinforcement learning is to
maximize the expected sum of rewards E;[>_, v'r¢], where ~ is a discount factor.
One of the most popular reinforcement learning algorithms is Deep Q-Network
(DQN) [56]. DQN is also known as a Q-learning based reinforcement learning
framework. In DQN, a neural network named Q-network predicts a state-action
value of each action, which is the expected sum of rewards. The state-action value

Q is defined as follows:
Q(s,a) = E[Z Yorls; = s, a; = al (2.1)

¢
Here, the policy of the agent is defined as an argmax policy.
m(s¢) = argmax Qo(st, a), (2.2)
a

where @y is a Q-network and 6 is a training parameter. At each iteration, Qg is

updated using the following loss function:
L = E(s.a,r,s')~Deap [(r+ ’yrr;;}x Qo(s',a") — Qyl(s, a))z], (2.3)

8

Chapter 2. Background

where De,), is a set of experiences of the agent.

In contrast to DQN, trust region policy optimization (TRPO) [72] is an actor-
critic based reinforcement learning framework. Unlike Q-learning, an actor-critic
based framework separates the network that calculates a policy from the network
that calculates a value. Each network is named as a policy network 7 (actor) and
a value network V' (critic), respectively. In TRPO, the networks are trained while
solving the following optimization problem.

mo(arlst) 5
— 4
6,10 (t|5t) (2.4)
subject to E[KL[my,,,(:|s¢), mo(:|s¢)]] < 0,

maxiemize E[

where KL is a KL divergence, 6,4 is a training parameter before the update,
and Ay = =V (s;) + TV (s7) + Zg;tl ~v*~tr;, is an advantage estimator which
indicates how much the expected sum of reward will be improved compared with
the current state. The constraint of Equation 2.6 is called a trust region. The
trust region constraint prevents the policy from being changed too much when

it is updated. In this way, TRPO guarantees a monotonic improvement of the

policy network 7. The value network V is updated by a square-error loss LY.
LYF = (Vy(ar) — Vo) 25)
where V9" is a target value computed from the sampled experience. PPO

computes A, through the value network V' for each iteration.
Proximal policy optimization (PPO) [73] simplifies the optimization process
of TRPO. PPO denotes the probability ratio % as R(A) = %.

Instead of KL divergence constraint, PPO uses a clipped surrogate objective as

follows.

maximize E[min(R;(0) A, clip(R:(0),1 — €,1 + €)Ay)], (2.6)

where clip is a clipping operator which clips the surrogate objective R;(6)A;
between the interval [(1 — €) Ay, (1 + €)A;] with a small margin .

Chapter 2. Background

Reinforcement learning frameworks have been applied to several works in the
field of autonomous driving. In many works, a driving simulator is used to train
a deep learning based reinforcement learning policy. For example, DQN [56] was
applied by Nishitani et al. [59] to train an agent which drives on a merging road.
To enhance the learning efficiency, they also suggested training an embedding
network which predicts the vehicle speed. In their framework, the reward function
is designed to minimize the impact of the merging on traffic flow. The agent
obtains a zero reward while the ego vehicle is on the ramp. After the merging
is completed, the agent obtains the merging completion reward according to the
average speed of all vehicles. To minimize the reward, the agent must merge
smoothly and make no slowdown in the traffic flow. PPO [73] has also been used
by several works to train a driving agent. Saxena et al. [70] used PPO to train
a driving agent who can drive on a dense and crowded road. In their work, they
suggested a reward function and an observation which are carefully designed
for driving in dense traffic. Likewise, Osinski et al. [60] trained a driving agent
using PPO. Compared to the other methods, they used a more realistic driving

simulator which mimics a real world road structure and scenario.

There are two major difficulties when applying a reinforcement learning frame-
work to the autonomous driving problem. First, it is difficult to give full state
information to the agent. The state information of a real world environment can
be obtained from a sensor such as a camera. However, it is impossible to grasp
perfect state information because a sensor may be noisy and not perfect. For
example, distortion of a camera lens, low resolution, or limited field of view can
make it challenging to identify surrounding objects accurately. In addition, an oc-
clusion by an object can block the field of view of a camera. Partially observable
Markov decision process (POMDP) has been proposed to deal with this issue. In
POMDP, the observation o;, which represents the information from the sensor

data, is used instead of the state. The observation o; can include various sensor

10

Chapter 2. Background

data such as RGB camera image, LIDAR sensor data, or speedometer. The type
of sensors can vary depending on the problem. Second, it is difficult to train a
reinforcement learning policy in a real world environment. In reinforcement learn-
ing, an agent continuously interacts with the environment. An agent should avoid
moving obstacles and should not violate the traffic light signal. An agent failing to
follow traffic rules can occur dangerous situations such as collisions and injuries.
However, since a reinforcement learning based agent does not work well at the
beginning of training, it is not possible to train an agent without any accident. In
addition, an agent cannot learn to avoid undesirable actions without an accident
because it requires receiving a negative reward by experiencing such a danger-
ous situation beforehand. Therefore, it is not possible to train an agent in a real
world environment. For safety, many existing works have used a driving simula-
tor for training an agent. Now a day, driving simulators can provide a realistic
road environment. For example, CARLA simulator [25] can simulate jaywalking
pedestrians, traffic lights, or weather changes. However, even if a simulator is sim-
ilar to a real world environment, there is inevitably a difference between a real
world environment and a simulator. This difference makes it difficult to deploy a

reinforcement learning based agent in a real world environment.

2.1.2 Imitation Learning

Imitation learning (IL) is a framework which trains an agent using a pre-collected
expert dataset. The goal of imitation learning is to find an optimal policy from
expert demonstrations. In detail, an agent is given a set of expert demonstrations,

which is defined as follows:

DWE = {(507a0>a (81,(11), T a(sTvaT)}v (27>

where 1" is a demonstration length. D, is assumed to be collected by an ex-

pert policy mg. The expert policy mp maximizes the expected sum of rewards

11

Chapter 2. Background

E-[>",7'r:], where r; is a reward and v is a discount factor. In contrast to rein-
forcement learning, however, the reward r; is hidden and not known to the agent.
Therefore, the agent should find an optimal policy without knowing the reward
function.

One of the most straightforward frameworks for imitation learning is behav-
ior cloning (BC). A behavior cloning framework trains a policy in a supervised
learning manner. In a general BC framework, a policy is defined using a neural

network. The network is trained with the following log-likelihood loss function:

L = —E(s0)~p,, [log mo(als)]; (2.8)

where 60 is a training parameter.

Another example of imitation learning frameworks is generative advertising
imaging learning (GAIL). Similar to [31], GAIL trains a policy by adversarial
learning between a generator (policy) and a discriminator. The objective of GAIL

is formulated as follows:
min max Ex [log(D(s,a))] + Ex [log(1 — D(s,a))] — AH(7), (2.9)

where D : S x A — (0,1) is a discriminator, H(mw) = E;[—log m(a|s)] is the causal
entropy of the policy 7, and X is a scale parameter. The discriminator D returns
the probability of whether a given demonstration is from the agent policy 7 or
the expert policy mg. During the optimization process, the discriminator D is
trained to discriminate the input demonstrations while the policy 7 is trained
to trick the discriminator and generate a demonstration which is similar to the
expert demonstrations.

There are a number of examples where an imitation learning framework is
applied to the autonomous driving problem. A behavior cloning framework is
used to train a driving agent by several works. Dosovitskiy et al. [25] suggested

using an urban scene simulator to train a driving agent. They provide a bench-

12

Chapter 2. Background

mark for urban scene driving and compare the training results of a reinforce-
ment learning and imitation learning based agent. Codevilla et al. [20] improved
the performance of urban driving by investigating the limitations of a behavior
cloning based controller. In particular, they propose to divide the module into
two parts: perception network and low-level controller. The perception network
part calculates the future trajectory of the ego-vehicle through imitation learn-
ing, and the low-level controller part follows the calculated trajectory through
PID control. Chen et al. [11] proposed a two-stage learning process which can
overcome the limitation of behavior cloning. First, they train a privileged agent
which can access privileged information. This privileged information includes a
bird’s eye view map of the scene, which contains the indicators of objects, road
features, and traffic lights. Second, they train a sensorimotor agent, which can
only perceive the scene via sensors. The privileged agent works as a teacher to
the sensorimotor agent and provides online expert trajectories. This two-stage
process helps to boost the performance of a vision-based driving agent. GAIL
[43] is also a widely used framework in autonomous driving. Bhattacharyya et
al. [5] suggested a GAIL based driving policy generation framework which can
simulate a multi-agent driving scenario. Lee et al. [50] also trained a GAIL based
agent which can drive in a simulator. In their framework, the agent is trained not
only using expert demonstrations but also negative demonstrations, which can

teach the agent what should not be performed.

Compared to reinforcement learning, an imitation learning framework has two
advantages. First, imitation learning does not require designing a reward function.
In order to use reinforcement learning, it is necessary to design a reward suitable
for the situation according to each state and action. For example, it can be
designed to give a positive reward if the vehicle drives normally and a negative
reward if the vehicle collides with another vehicle. However, it is difficult to

define in which situations to give rewards and how many rewards to give. If the

13

Chapter 2. Background

reward is not adequately defined, the vehicle will not operate as a regular human
driver. Therefore, the reward design is a complex task and requires much labor.
On the other hand, imitation learning is relatively less complex because it only
needs to collect expert demonstrations without a reward design. Second, imitation
learning is relatively secure for safety issues which can occur during the training
process. As explained in Section 2.1.1, reinforcement learning has a safety issue
while training an agent in a real world environment. A reinforcement learning
agent should experience a collision before learning to avoid it. This approach
consequently leads to an accident in a real world environment. An imitation
learning agent, on the other hand, does not have to experience an accident to learn
to avoid it. Also, data for imitation learning can be collected by an expert policy,
which is less likely to commit accidents. This makes the process of imitation

learning relatively secure compared to reinforcement learning.

Imitation learning also has a disadvantage compared to reinforcement learn-
ing: an agent trained by imitation learning may be vulnerable to environmental
changes because interactions with the environment are not performed when train-
ing the agent. For example, assume that expert data is collected while following
the exact center of a road. If an agent is fully-trained and exactly follows the
given trajectory, it can imitate the expert policy and successfully drive. However,
suppose that the agent slightly deviates from the trajectory. In this case, the
agent will not be able to successfully correct the deviation because those actions
are not collected in the dataset. This data mismatching issue is generally called
a covariance shift. This issue can be easily solved in reinforcement learning by
giving a deviation value as a negative reward. It makes the agent learn how to
recover the deviation when the vehicle is off the center of a road. In imitation
learning, this issue can be solved by collecting sufficient data from scratch or by

continually collecting additional data with the expert policy [69].

14

Chapter 2. Background

2.2 State Representation for Autonomous Driving

There are two major points to consider when defining a state representation.
First, a state representation should be informative. There is essential information
which is needed to solve an autonomous driving problem. For example, knowing
the locations of vehicles or pedestrians are essential for safety. Therefore, this
essential information should be contained in a state representation or at least
inferred through it. Second, a state representation should consist of a compact
data structure. There is a limit to the amount of data that a controller can
process during driving. If the size of the data is too large, the time complexity
of the control will inevitably increase. Since an autonomous driving agent must
work in real-time, the data should be as simple as possible.

There are several types of state representation which have been used by existing
autonomous driving studies. For example, the following state representations have
been used by multiple researchers: feature-based representation, bird’s eye view
image representation, and egocentric representation. In the remainder of this
section, we explain each state presentation and discuss its properties in terms of

informativeness and compactness.

2.2.1 Feature-Based Representation

Feature-based representation method represents a state using a single feature
vector. A feature vector can be defined in different ways depending on its prob-
lem. For example, the distance and relative speed to other vehicles is one of the
frequently used features. Feature-based representation has been used in many ex-
isting autonomous driving studies because it is simple and easy to calculate in a
simulator. Choi et al. [17] assumed a straight highway environment, and they de-
signed a feature vector which contains the frontal distances to the vehicles. More

specifically, the feature vector considers the three closest frontal distances on the

15

Chapter 2. Background

Figure 2.1: An example of distance features. A feature vector consists of the

distances from the ego vehicle (red) to three frontal and three rearward vehicles

(blue).

left (d;f), center d.y, and right lanes d, . In addition to the frontal distances, the
feature vector contains the lane deviation distance (dge,). Their feature represen-

tation is defined as follows:

f = (dlfadcfydrfaddev) (2~10)

In [18] and [15], a feature vector also contains the rearward distances to other
vehicles on the left (dj.), center (d.,), and right lanes (d,,). Their feature repre-

sentation is extended from Equation 2.10 and defined as follows:

[=(dig,deg,dry,dip,der, drr, dgey) (2.11)

Figure 2.1 illustrates each component of a feature vector in Equation 2.11.
Schmerling et al. [71] designed a feature vector using the 2D position of vehicles.

In their framework, they assumed that two vehicles are interacting with each other

on a highway. The positions of the vehicles are represented in the 2D coordinate

system of a highway environment. Their feature vector is defined as follows:

f= (Segm tego, Sothers tother)> (2‘12)

where s¢go and sy are longitudinal positions of the ego and the other vehicle,

tego and toper are lateral positions of the ego and the other vehicle. Each feature

16

Chapter 2. Background

Figure 2.2: An example of longitudinal and lateral positions. The positions of the
ego-vehicle (red) and the other vehicle (blue) are computed by the 2D coordinate

system of a highway environment.

component is computed by the distance to the origin of the road. Figure 2.2
illustrates an example of a feature vector.

Werling et al. [82] used the position of a vehicle as a feature vector, which
is represented by a Frenet coordinate frame [9]. The Frenet coordinate frame
is a generalization of the Cartesian coordinate frame. Similar to the Cartesian
coordinate, the position of a vehicle in the Frenet coordinate is represented using

a longitudinal distance s and a lateral distance t.

f=1(s1) (2.13)

Unlike the Cartesian coordinate, however, s and ¢ are calculated from a relative
distance to a reference path. In the Frenet coordinate, the s-coordinate is defined
as the run length of the vehicle, and the ¢-coordinate is defined as the vertical
deviation from the reference path. Figure 2.3 illustrates an example of a Frenet
coordinate frame. It is possible for a reference path to have a curved shape.
Therefore, the Frenet coordinate frame allows a more intuitive representation of
a vehicle’s position on a curved road.

There are several issues when adapting a feature-based representation to the
autonomous driving problem. First, it is difficult to compute an exact value of
a feature in a real world environment. In a simulator environment, features can

be easily calculated. In a real world environment, however, it is necessary to first

17

Chapter 2. Background

Figure 2.3: An example of a Frenet coordinate frame. A blue curved line indicates
a reference path of a road. A s coordinate follows the direction of the reference

path, and a t coordinate follows the orthogonal direction of the s coordinate.

perceive sensory data before calculating a feature vector. For example, suppose
that there is an agent which tries to compute a positional feature of nearby vehi-
cles through a sensor. In this case, the agent first needs to detect nearby vehicles
through sensor data. The agent then needs to find the positions of nearby vehicles
by estimating the distances to them. During this process, there is a possibility that
detection may fail, or there may be a noise in the estimated distances. Existing
studies about autonomous driving [17, 18, 15, 71, 82] have assumed that vehicles’
positions can be estimated without an error. However, there is no guarantee that
there are no errors when using positional features in a real world environment.
This error interferes with the controller’s learning process and degrades its perfor-
mance. Second, it is difficult to quantify a state of a real world environment only
with a simple vector feature. One of the features which are difficult to represent
by a single vector is the vehicle type. Each vehicle on the road moves differently
depending on the vehicle type. Motorcycles, for example, are easy to change lanes,

and in some cases, they even pass through the boundary between two lanes. On

18

Chapter 2. Background

the other hand, large vehicles such as buses are relatively less likely to change
lanes. However, it is difficult to vectorize the vehicle type because there are too
many types of vehicles in the real world. One possible way is to vectorize the ve-
hicle type is a one-hot vector encoding [74, 7]. However, one-hot vector encoding
also has a limitation because it can only represent a fixed number of vehicle types.
Zero-shot learning framework [2], which can classify unseen labels, has been sug-
gested to solve this issue. However, zero-shot learning requires learning semantic
information of the class before classification. Finally, it is difficult to define a
feature vector which can reflect road structural information. The movement of a
vehicle is affected by the shape of a road. Since the movement of the vehicle is
greatly affected by the shape of the road, such road structural information must
be fed to a controller when a vehicle is driven. For example, suppose that there
are two different scenarios: a one-way road environment (Figure 2.4(a)) and a
two-way road environment (Figure 2.4(b)). In Figure 2.4(a), each vehicle is cur-
rently driving safely. Since the two vehicles are not violating traffic rules, it can
be said that the probability of an accident is low. In Figure 2.4(b), on the other
hand, the blue vehicle is violating a traffic rule by crossing the center line. In this
case, it can be easily predicted that the blue vehicle will either cause an accident
with an oncoming vehicle or attempt to cut into the lane where the red vehicle is
currently located. Therefore, the two scenarios are significantly different in terms
of dangerousness. However, because the blue vehicle has the same distance as the
red vehicle, the distance feature must be calculated equally in both scenarios.
This makes it difficult for a controller to distinguish the state difference between
the two scenarios. Therefore, a controller trained only with a feature vector input
may not recognize the dangerousness in Figure 2.4(b). A positional feature which
is specified by a Cartesian [71] or Frenet [82] coordinate can help solve this issue.
By assigning a negative sign when a vehicle is on the other side of the road, a

feature vector can represent the difference between the two scenarios. However,

19

Chapter 2. Background

Distance d

(b)

Figure 2.4: Two different example scenarios on a straight road environment. (a)
A one-way road. Two vehicles are safely driving on the road. (b) A two-way road.

The blue vehicle is violating a traffic rule by crossing the center line.

20

Chapter 2. Background

the positional feature also cannot represent a road’s structural information when
a road has a complicated shape, such as an intersection or roundabout. Because
a reference path cannot have a branch, the positional features are only useful for

representing a state on a straight or curved highway environment.

2.2.2 Bird’s Eye View Image Representation

Bird’s eye view (BEV) image representation method represents a state by an
image which is captured from the top-down viewpoint. Figure 2.5(a) and Figure
2.5(c) shows an example of BEV images. A BEV image representation contains
more information compared to a feature-based representation. For example, a
direction and position of a lane, a position of a crosswalk, and a curvature of a
road can be inferred through a BEV image.

It is not necessary to represent a bird’s eye view of the scene as a raw RGB
image. For example, semantic information such as road lane and vehicle location
can be included in a BEV image. Each object on the road can be represented with
pixels by colorizing the area where an object occupies. This semantic image is
also called a rasterized image. Figure 2.5(b) and Figure 2.5(d) shows an example
of rasterized images. A rasterized image is more useful than a raw BEV image
because it is relatively easy to identify an object in a rasterized image. Advances
in image processing technologies such as object detection [64, 38, 39, 7] and
semantic segmentation [68, 12, 13] have helped to extract this rasterized image
from a raw BEV image.

Nishitani et al. [59] trained a reinforcement learning based agent using a BEV
image input. In their work, the input is given as a rasterized image. Similarly,
Henaff et al. [41] used a rasterized BEV image as an input to train an imitation
learning based agent which can drive on a highway simulator.

There are several issues when applying BEV image representation to a real

world autonomous driving problem. First, it is not possible to capture a BEV

21

Chapter 2. Background

(c) (d)

Figure 2.5: An example of bird’s eye view images. (Left) Bird’s eye view images
in the CARLA simulator [25]. (Right) Corresponding rasterized images which
contain semantic information. The red lines represent lanes on the road. The

blue box represents the ego-vehicle. The green boxes represent the other vehicles.

22

Chapter 2. Background

image in a real world environment. Before taking a BEV image, a camera must
be installed in a position which is much higher than that of a vehicle. When
moving a vehicle in a real world environment, however, it is not possible to place
a camera in the air. Therefore, it is hard to take and use a BEV image in a real
world environment. There is another way to use a BEV image in a real world envi-
ronment. A BEV image can be synthesized from multiple vehicle-mounted camera
images [65]. However, in this case, the synthesized BEV image can be incomplete
due to occlusions or perspective transform errors. Second, a BEV image does not
contain information about traffic, such as traffic signs. The movement of a vehicle
is restricted by the traffic signs on the road. For example, a vehicle is prohibited
from turning left when there is a no left turn sign on the road. Similarly, if there is
a speed limit sign on the road, the vehicle must drive at a speed below the speed
limit. However, it is difficult to represent this traffic information on a BEV image.
One of the solutions to this issue is to add an image channel, which represents a
traffic rule, to the rasterized image. For example, Jain et al. [46] represented the
information about traffic lights by three image channels which indicate the state
of traffic lights. In their work, the pixels of a channel indicates the area which is
controlled by red, yellow, or green traffic light, respectively. Their representation,
however, only contains information about traffic lights, not about the other traffic
signs, such as speed limit signs. The number of the types of traffic signs can be
increased by increasing the number of image channels. However, if the number
of image channels is increased, the BEV representation data size will also be in-
creased. Therefore, it is difficult to represent traffic sign information as a BEV

image without increasing the data size and complexity of the representation.

2.2.3 Egocentric View Image Representation

Egocentric view image representation method represents a state using an image

which is captured from an egocentric camera. An egocentric image is also called

23

Chapter 2. Background

a first-person view image. A camera for an egocentric image is usually attached
directly to a vehicle and shows the vehicle’s surrounding environment. Figure
2.7(a) shows an example of an egocentric view image. There are a number of
types of egocentric view cameras which can be used in autonomous driving. Many
recent works have used only a single forward-facing camera to drive a vehicle.
For example, Dosvitskiy et al. [25] and Codevilla et al. [20] used a forward-
facing camera image to train an autonomous driving agent in an urban driving
simulator. Hawke et al. [36], on the other hand, trained an agent to drive using
multiple camera image inputs. In their work, a state presentation consists of
camera images captured from three different viewpoints: left, center, and right.

To fuse three different images, they designed a deep learning based fusion network.

An egocentric view image representation not only uses a raw RGB image but
also can use a pre-processed image. One of the examples of pre-processing is
semantic segmentation [68, 12, 13]. In a semantic segmentation process, the pixels
of an image are clustered and classified according to the object class they belong
to. Figure 2.7(b) shows an example of semantic segmentation image, which is
processed from Figure 2.7(a). In a semantic segmentation image, each pixel has
one object class. In Figure 2.7(b), each pixel is colored in different colors according
to the object class. For example, roads are purple, vehicles are blue, lane markings
are green, and the pixels without class are colored black. Sobh et al. [75] used a
semantic segmentation image as an input to a driving agent. In their work, they

obtained a semantic segmentation image through U-net [68] architecture.

Object detection [64, 38, 39, 7] is another example of pre-processing methods.
In recent years, object detection has been widely used in the field of autonomous
driving. The goal of an object detection process is to find the sizes and locations of
objects on a 2D image. Figure 2.6(c) shows an example of object detection result,
which is processed from Figure 2.7(a). Each object in Figure 2.6(c) is bounded by

a colored bounding box. There are two types of objects in Figure 2.6(c): vehicle

24

Chapter 2. Background

and traffic light. Here, two vehicles are surrounded by a red box, and a traffic
light is surrounded by a blue box. Behl et al. [3] suggested using object detection
based features when training a driving agent. In their work, they represented
the positions of detected objects in the form of labeled bounding boxes. Object
detection can be applied to various types of objects. For example, in recent years,
pedestrian detection [35], and lane detection [53] have been studied by several
works. It is not only possible to find the position of an object in 2D. 3D objection
detection finds the position of an object in 3D coordinates. Li et al. [51] suggested
a 3D object detection framework which can find the 3D position of an object
with a single-view image. Wang et al. [81] also suggested a 3D object detection

framework but used a multi-view image when finding the position of an object.

Depth estimation [28, 30, 4] is also one of the methods used for pre-processing.
A depth image refers to an image which contains distance information. The goal
of the depth estimation process is to find a depth image from a given RGB image.
Figure 2.6(d) shows an example of depth estimation result, which is processed
from Figure 2.7(a). In Figure 2.6(d), the positions of vehicles and traffic lights
can be inferred from the depth image. Combined with an RGB image, a depth
image is generally called an RGB-D image. Not only from depth estimation, an
RGB-D image also can be obtained directly from an RGB-D camera. Xiao et al.
[83] used RGB-D images to train an autonomous driving agent. In their work,
the simulator gives an accurate depth image to an agent. However, they added

noise to the depth image to make the simulation more realistic.

There are several issues when training an autonomous driving agent using
egocentric view image representation. First, an agent can see only a local part of
a road environment through an egocentric view image. Unlike a BEV image, an
egocentric view image cannot show the overall appearance of a road. Therefore,
it is difficult for an agent to recognize the structure or shape of a road through

an egocentric view image. When a driving agent determines a global path and

25

Chapter 2. Background

(c) (d)

Figure 2.6: An example of egocentric view images. (a) An egocentric RGB image
captured in the CARLA simulator. (b) A semantic segmentation result processed
from the RGB image. (c) An object detection result processed from the RGB

image. (d) A depth estimation result processed from the RGB image.

26 ; _
A& st

Chapter 2. Background

navigates in a real world environment, the entire structures and locations or
roads are needed to be known. However, since an egocentric view image can
only show a local part of a road, an agent cannot navigate a road only with
an egocentric view image. Therefore, a high-level command [19, 20] or a pre-
determined global path [23, 87] are required before an agent starts to drive.
Second, the performance of the agent may be sensitive to the sensor location
because the viewpoint of an egocentric view image varies depending on the sensor
location. For example, suppose that an agent is trained with data collected with a
single viewpoint. In this case, if data collected with a different viewpoint is given
as new input, the performance of the agent can be decreased. The performance
decrease by viewpoint change makes it difficult to reposition the sensor or apply
a pre-trained network to another vehicle of a different size. This kind of issue is

usually addressed by domain generalization [80)].

2.2.4 Sensor Fusion Based Representation

Sensor fusion refers to a method of combining multiple sensors to reduce uncer-
tainty and increase the performance of an agent. In recent years, many types of
sensors have been used for autonomous driving. One of the most widely used
sensors in the field of autonomous driving is LiDAR. LiDAR is a sensor that
can detect surface information of surrounding objects through a laser. Surface
information obtained through a LiDAR sensor is generally given through a data
structure named a point cloud, which records the locations of a set of points in a
3D coordinate. Figure 2.7 shows an example of LiDAR sensor data in the CARLA
simulator. In Figure 2.7, a LiDAR point cloud is projected on a 2D BEV image.
An agent in a simulator can obtain precise LIDAR sensor data. However, in a
real world environment, the quality of LiDAR sensor data varies depending on
the spec of a LIDAR sensor. For example, an object which is too far away cannot

be captured because a LiDAR sensor has a limitation in the detectable range.

27

Chapter 2. Background

Also, noise from a low-quality LIDAR sensor can prevent the recognition of an
object. Figure 2.8 shows a LiDAR sensor data captured from a vehicle in the real
world.

Several works have proposed a new framework which can fuse a camera image
with LiDAR sensor data. Xu et al. [84] suggested a 3D object detection framework
which uses an image and LiDAR sensor data. Because existing networks used for
image data [37, 66] cannot be directly applied to a point cloud data structure,
they used a pointnet architecture [63] to encode LiDAR sensor data before fusing
it. Similarly, Vora et al. [79] suggested a 3D semantic segmentation framework
which uses a sensor fusion method. Their architecture first obtains a semantic
segmentation image from input and then uses a projection method to fuse this
image with LiDAR data. Image and LiDAR sensor fusion method has also been
applied to train an imitation learning based driving agent. Prakash et al. [62]
proposed a fusion based framework for autonomous driving. In their work, LIDAR
point cloud data is projected into a BEV image. They fused this LIDAR BEV
image with a forward-facing camera image through the attention mechanism [78].

There are other sensors used for fusion, such as GPS, IMU, and speedometer
sensor sensors. These sensors are generally used to estimate the location of a
vehicle. The estimated location can be used to compute a high-level command

and fuse it with an image input [20, 11].

28

Chapter 2. Background

(a) (b)

Figure 2.7: An example of LiDAR sensor data in the CARLA simulator. (a) A
egocentric image from a camera. (b) LIDAR sensor data captured in the same

scene. The LiDAR point cloud is projected into BEV.

29 ; _
A& st

Chapter 2. Background

i .
&
———

(e
[/

Figure 2.8: An example of LiDAR sensor data in the real world. (Left) Camera
iamges. (Right) LiDAR sensor data captured in the same scene. The LiDAR point
clouds are projected into BEV.

30

Chapter 3

Road Graphical Neural
Networks for Autonomous

Driving

Along with increasing interests in autonomous driving, the investigation of re-
inforcement learning (RL) using the driving simulator has been actively carried
out by a number of researchers. However, most of the previous works cannot be
generalized to other driving environments. One of the most widely used examples
is the highway environment [17, 15], but their works are only limited to a sin-
gle one-way road. There are more complex environments, such as merging roads
[59, 54], intersections [45], or city streets [24]. The previous studies, however, use

only a simple and fixed road environment for training and testing.

One of the main reasons for the generalization difficulty is that it is difficult
to capture the generalized feature of the road environment. For example, [17]
and [15] use the relative speed and position of vehicles as inputs features, but
they cannot capture information about how vehicles move on a complex road.

Another example is the semantic top-view image, which includes road lines [41].

31

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

However, as shown in the recent studies [29, 52], it is not efficient to use images
for representing the topology of roads.

In this chapter, we propose a generalized autonomous driving framework to use
graphical representation of roads. The proposed graphical representation includes
the information about the structure of roads, and the positional relationship
between vehicles and the road. Unlike other works using the graph representation

[29, 52|, there are four distinctive features of the proposed framework.

e It is the first work which uses graph-based features to control vehicles to

the best of our knowledge.

e We do not focus on a simple environment such as highways or merging roads
but on various roundabout intersections, where the topology of the road is
more complicated and multiple vehicles can enter from multiple directions

simultaneously.

e The relationship between vehicles and the road is also considered when

calculating graph features

e We use long short-term memory (LSTM) [44] along with graph neural net-
works (GNN) [47] to capture the historical features of vehicles on the road
graph.

The proposed method uses a two-level controller: First, a low-level PID con-
troller follows a trajectory determined by a graph-based path planner. The path
planner perceives the road graph and finds a path based on the Dijkstra algo-
rithm. Second, a high-level controller determines the target speed of the vehicle
to follow the traffic flow. The high-level controller uses the encoded feature of the
road graph, which is extracted by a road graphical neural network (Road-GNN).
A Road-GNN compresses the graph features of the road into a latent feature used

for the high-level controller. We use the RL framework to train the network, and

32

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

it successfully controls the vehicle in various and complex unseen road environ-
ments. Figure 3.1 shows an overview of how Road-GNN works in training and
test phases.

We trained the network from a set of road environments and tested it on a dif-
ferent set to show the generalizability of Road-GNN. We have collected satellite
images of roundabouts for training and testing and applied them to our driving
simulator to simulate a realistic road environments and structures. Note that the
satellite images are only used to construct road models and get state representa-
tions, and we use a 3D simulator and a 3D dynamic model for the experiments.
The image data are collected from Google search and NAVER Maps [57], an
online mapping service. We have created road environments by pre-processing
and reconstructing the collected images. The simulator is implemented within
ROS Gazebo [76], and the 3D vehicle model we use is the ROS Prius model [27],
which has throttle, brake, and steering control similar to a real vehicle. In the
experiment, we show that our agent successfully drives in an unseen environment
by learning road graph features. The proposed method outperforms the other

methods, which use different features and networks.

3.1 Problem Setting

We consider a driving environment where multiple vehicles are moving on a road
and interacting with each other. In the environment, vehicles other than the ego-
vehicle, which is controlled by the agent, are controlled by a pre-defined controller.
Also, each simulated vehicle follows a pre-defined path. The goal of the agent
is to successfully follow the given path and make the ego-vehicle reaching the
goal position safely. To follow the traffic flow, the agent must regulate the speed
properly and know when and where to stop. This is only possible if the agent is

sufficiently trained to recognize the surrounding circumstance.

33

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

RL Policy
High-Level
Graph Features
(Observation)
Speed
PID
Control
(Throttle, Brake, Steering) Low-Level
] _
Roundabout Environment Controller
(Train)

Unseen Environments

(Test)

Figure 3.1: Overview of training a Road-GNN based controller and autonomous

driving using Road-GNN in unseen environments.

34

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

We formulate the problem by a Markov decision process (MDP). For every
time step t, the policy of the agent 7 observes the current state s and executes an
action a from the discrete action set. Then, the agent obtains a reward r and the
next state s’ from the environment as a result of the action a. We then optimize
the policy 7 to maximize the expected sum of the rewards with a discount factor
.

Ex[Y_~7'r(t)] (3.1)

In the remainder of this section, we describe state, action, and reward setup.
After that, we also explain how other vehicles move in the environment.
State. In our environment, the state s is represented by using a graph repre-
sentation. An example of the graph representation is shown in Figure 3.7. The
topology of the road can be expressed by both the point-level graph G, and the
segment-level graph Ggeq. First, the point-level graph G}, contains each point p;
as a node, and each p; represents a 2D point on the map M. The edge from the
point p; to the point p; is represented by e;_.;. The edges of G, are connected
along the direction in which vehicles are allowed to move. Second, the segment-
level graph G4 contains each segment seg, as a node, and each segment seg,
represents a set of the points. Depending on the position, each point p; belongs
to one of the segment seg;, in Gyey. Similar to G, the graph Gy is connected
in the direction of the traffic flow.

Each edge e;—,; and node p; of the graph G, has its own features that reflect the
vehicle and road conditions. For example, the edge feature of e;_,; is calculated

from the relative position between p; and p;.
Feature(e;_, ;) := Pos(p;) — Pos(p;) (3.2)

Here, Pos(p;) represents the 2D position vector of p; on the map M. If the edge
ei—; does not exist in the graph G, the edge feature is considered to be a zero

vector. The node feature of p; is calculated depending on the vehicle conditions

35

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

Figure 3.2: An example of a roundabout environment. (a) A part of the original
roundabout image data. (b) The 3D simulator used in the experiments. The
vehicle model we use is the ROS Prius model [27] whose dynamics is similar to a
real vehicle. The roads in the simulator are reconstructed based on the satellite
image data. (c) The point-level graph G, which is organized from the data. The
red dots are the nodes in), and the white arrows are the edges connecting the
nodes. (d) The segment-level graph Gc4. Each segment is colored with different
colors and tagged with the numbers. The white arrows are the connection between

the segments in Gegq.

36

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

such as position and velocity. Here, we assume that there are a total of N vehicles
including the ego-vehicle, and each vehicle is numbered as vg,--- ,vy_1. For a
vehicle vy, the node p; has the features of vy if the node p; is the nearest point to
the vehicle vy, on the graph G),. The feature includes the position and velocity of
vk, and an occupancy indicator, which is 1 if p; is the nearest point to the vehicle

v and 0 otherwise.
Feature(p;) := [F(vo), F(v1),--+ , F(vn-1)], (3.3)
where

f(ug), if p; = argmin,,_ d(v, p;
F(uv) =) w6y A0k 2i) (3.4)

0, otherwise
T
f(vg) = |Posg, (vk)T,Vele(vk)T, 1} (3.5)

Here, d(vg, pj) is the L2 distance between the vehicle v, and the point p;. Posg, (vx)
and Velg, (v) are the position and velocity vector of the vehicle vy, respectively,
which are relatively calculated from the nearest edge to the vehicle vy. When
€nearest;, 15 the nearest edge to the vehicle vy, ppearest, is the starting node of

€nearesty,, and 0y is the angle of the direction of ejeqrest,,, then

POSRk (Uk) = Rlzl [POS(Uk’) - Pos(pnearestk)] (3.6)
Velg, (vg) == R;, 'Vel(vy,), (3.7)
where
cosf —sinf
Ry, = ’ : (3.8)

sinf, cos6y

The matrix Ry, is the rotation matrix of 6.
The agent observes the state s, where the observation is a subset of graph G,

which includes the K nearest nodes to the ego-vehicle. The subset graph is given

37

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

to the agent in the form of the adjacency matrix A, the node feature matrix Ay,
and the edge feature matrix Ag. The node and edge feature matrix contain each
node and edge features as elements. Since there are K nodes in the subset graph
and N vehicles on the environment, A, Ap, Ay matrix have the size of (K x K),
(K x N x5),and (K x K x 2), respectively.
Action. For every time step, the agent controls the vehicle using a two-level
controller. The low-level controller adjusts both the throttle and steering through
PID control while the high-level controller determines the target speed of the
vehicle. The action is defined as the target speed given to the vehicle. Similarly
to other recent works which use an MDP formulation in driving [59, 58], we
discretize the actions as the set of target speeds Om/s, 3m/s, 6m/s, 9m/s, 12m/s.
The low-level controller is designed to follow a pre-determined path. For each
episode, the start and goal segments are chosen randomly and the path is set
to connect segments. The path is calculated from the entire graph representa-
tion and the Dijkstra algorithm. The detailed path finding process is as fol-
lows: First, the shortest path in the segment-level graph Gq is calculated using
the Dijkstra algorithm. Here, the weights for each edge is considered equal to
ones. From the segment-level path, the point-level path is constructed from the
points belonging to each segment. For example, when the segment-level path is

{segy, segy, -, seg, }, then the point-level path is defined as follows.
path = segy U - - - U seg,, (3.9)

Note that the segment seg; is an ordered set of the points p. When seg, =
{pf], e ,pffl}, seg; = {p%, e ,plc_l}, and the two segments are connected in

the direction of seg; — seg;, then the two sets are combined as follows:

path: { apéa"' apéi—lﬂpgv"' 7]717;,17"'} (310)

Here, [; is the number of points in the segment seg;. There can be cases where two

segments seg; and seg; have edges in both directions seg; — seg; and seg; —

38

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

seg;. The physical meaning of it is that each segment represents one of the two
lanes of a multi-lane road, and a vehicle can change the lanes between them. In
these cases, the two segments are combined at a random point when calculating
the path. For example, if a point pfnand is randomly selected from seg; and the
nearest point to piand in seg; is p%ear, then the two segments are combined as

follows:
path - { o 7p(i)7 e inand7pz7,ear7 e 7p‘lj]-_17 Tt } (311)

The low-level PID controller follows the point-level path by controlling both the
throttle and steering of the vehicle. First, the steering is controlled to minimize
the deviation of the vehicle from the path. The deviation is calculated by the
nearest edge e, which connects the two points in the point-level path. Here, we
define xps as the length of the line perpendicular from the vehicle to the nearest
edge e. xgirect 1S the difference of the angle between the direction of the vehicle
v and the nearest edge e. The steering PID controller minimizes the sum of
two values: Tpos + Tairect- Second, the throttle is controlled to set the speed of
the ego-vehicle to a given target speed. Using PID control, the throttle inputs
minimize the difference between the ego-vehicle speed and the target speed. Since
the throttle cannot take a negative input, the brake input is taken instead when
the speed is higher than the target speed.

For safety, there is also a collision-avoidance system in the controller. First,
the future position of each vehicle is estimated using a unicycle vehicle model.
The vehicle steps on the brake when a collision is expected. After the vehicle has
stopped completely, the system re-estimates the future positions assuming that
the vehicle can move at a low speed. If a collision is not expected, then the vehicle
moves again based on the agent and PID controller.

Reward. The goal of the agent is to make the vehicle moves from the start area to
the goal area. We set a positive reward of +1 when the agent successfully reaches

the goal area. The start and goal areas are pre-determined and randomly changed

39

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

before an episode starts. To prevent the ego-vehicle from being stationary in one
place, we also give a small negative reward of —0.01 for each time step before the

agent reaches the goal area or exceeds the time limit.

Other Vehicle Movements. There are several other vehicles that move in
the simulator. The simulator we use is a closed-loop system, which means that
the movements of other vehicles changes according to the movement of the ego-
vehicle. We use the same path planner and PID controller used in the ego-vehicle
to simulate the other vehicle movements. Each vehicle is set up to follow different
paths, which vary from episode to episode. Each controller for the simulated
vehicle and the ego-vehicle differs in two ways: First, the simulated vehicles only
move at the fixed target speed 9m/s while the ego-vehicle changes the target speed
according to input actions. Note that although the target speed is constant, the
speeds of the vehicles are not maintained due to the collision-avoidance system.
Second, the simulated vehicle is re-spawned in a new random starting position
when it reaches the goal area. This re-spawning repeatedly occurs until the ego-

vehicle finally reaches its goal area.

3.2 Proposed Method

We now explain our road graphical neural network (Road-GNN), which is used to
train the agent. Road-GNN processes a graph observation of the state and calcu-
lates the encoding used for the policy and value networks of the agent. Through
this networks, we train the RL agent and control the ego-vehicle. Road-GNN
takes three steps to encode the road graph: (1) node-and-edge-level encoding, (2)
graph-level encoding, and (3) time-level encoding. The overall process of Road-

GNN is illustrated in Figure 3.3.

40

Road Graphical Neural Networks for Autonomous

Chapter 3.

iving

Dr

"3UIpOOUd [9AT]

-owiL], (9) "Surpoous [pao]-yderr) (q) ‘SUIpoous [9AT-08pPH-PUR-0PON () "NN-PROY JO $s0001d [[RI0AO YT, :€'¢ 0INSI,;]

Surpoouy [oadT-awl] (9)

N a-1=9"% (0= Y 1
INLST
1010V JIOpOIUE
aImea J
[euL]
Surpoouq (oA T-dein (q) Surpoouy [9AdT-33pg-puy-opoN (&)
ZXYx N
ZXIxY N veto 4
wns Y Ju2
IXTX) ZXIx) XA+ | | zx @+ %y
I T T 0 0 0 : XN N
X NDD X NDD X X oos 205 5 o—®
ZXNXMN dys SXN
N

& Y SXN

so1ned, ydein

3
sarmeaf ydein

)

t

JUSWUOITAUT

ln.\ ’
—i

@B+
[2 4

41

]

1
T

 —

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

3.2.1 Node-and-Edge-Level Encoding

Since each node and edge feature have different units, we first regularize them
using the node and edge encoder networks, ¥,o4e and 1eqqe. If the graph observa-
tion at time t is G¢, and the number of the nodes in G, is K, then the networks

encoding for each node and edge are as follows:

ency, = Ynode(Feature(p;)), for 0 <i < K (3.12)

ence,_,; = Yedge(Feature(e;—;)), for 0 <id,j < K (3.13)

In the case of node features, encoding is processed individually for each vehicle

features.

ency, = Ynode(Feature(p;)) (3.14)

= [Yo(F(v0)), Yo (F(v1)), -+, ¥o(F(vn-1))] (3.15)

For the vehicle feature encoding network ,,, we use a simple fully-connected net-
work. Here, the network 1, is not shared among all the vehicles v;. To distinguish
the features of the ego-vehicle from the other vehicles, we use 14, for the ego
vehicle vego, and YPiper for all the other vehicles. The network tupe, is shared
among each vehicle v;, except for veg,. By encoding the elements in the feature
matrix Ay and A, we can get the encoded feature matrix Ay and Ag, which
have the size of (K x N x Z) and (K x K x Z) respectively, where Z is the size

of the encoded vector.

3.2.2 Graph-Level Encoding

After node-and-edge-level encoding, we use a GCN [47] based model for graph-
level encoding. First, Ayn and Ap are incorporated into a single matrix. The

edge encoding matrix Ag is summed up along starting node index, and then

42

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

concatenated with the node encoding matrix Ay.
sum(Ag) = Z eNCe; oy ,Z ence, , (3.16)
i i

Xy = concat(Ay, sum(Ag)), (3.17)

where concat is a concatenation operator. Starting from Xg, a GCN network
Ygraph iteratively calculates the next layer output X1 from Xj. The layers are

stacked H times, and the final output of GCN is Xp.

X1 = O’(D_l/QAD_l/2Xka + Bk), (318)
where
A=A+1 (3.19)
B S A, ifi=j
Dig=47"" (3.20)
0, otherwise

Here, A is the adjacency matrix, ¢ is a non-linear function, W is a weight, and
B is a bias. Only for the first layer GC N, the results of each vehicle channel in
Xo is added into one as like a 3D convolution layer.

N
X1 =0() D ?ADT'2X{W] + BY) (3.21)
j=0

3.2.3 Time-Level Encoding

Each graph observation G¢ at time t is encoded by the graph encoding network.
In Road-GNN, the network uses the historical memory of Gy with a time length
of T'. To deal with a historical data, we use a long short-term memory (LSTM)
[44] model. First, a readout layer t,¢qq converts the graph-level encoding of each
Gi—141, -+ ,Gy into a series of vectors. Each vector is entered into a LSTM
encoding network in the order of time. The final output of the LSTM network
becomes the final feature which is used for the policy and value network of the

RL agent.

43

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

3.2.4 Learning Algorithm

We train the agent using proximal policy optimization (PPO) [73], which is a
widely used reinforcement algorithm for many recent studies [70, 41]. In our PPO
implementation, the agent has the actor and critic networks, and each network

shares the common input features, as shown in Figure 3.3.

3.3 Experiments

In the experiment, we examined the generalizability of the proposed method. We
have tested the proposed method in various realistic scenarios. The tests were

performed on the roundabout environment we implemented.

3.3.1 Environment and Network Details

To implement the roundabout environment, we collected 30 satellite images of
roundabouts. As illustrated in Figure 3.4, the collected images have various road
structures. Each image is paired with a graph representation constructed from
the map structure. We generated the graph representation of a map in the fol-
lowing steps: First, we manually drew the possible trajectories and posed the
start and goal area on the map. The nodes of the graph are regularly sampled
from the trajectories and grouped into the segments. The grouping process is also
performed manually, and we divided the segments at the intersection points. The
edges between the nodes and the segments are connected depending on the map
structure and the road direction. When the graph is entered into Road-GNN,
some additional edges are added to make GNN features flow through the edges.
The edge is added if one of the following conditions is satisfied.

e The two nodes are close (< 2m).

e [t is possible to change the lane between the two nodes.

44

1 Neural Networks for Autonomous

1ca

Road Graph

Chapter 3.

iving

Dr

“J0ye[nUIIS € Ul sTeadde Jnoqepunol yoes MOl SMOYS UWMN]0d ISB[91], "SIUoW3os Usom)oq UOI}Iauu0d o) juasaidol
SMOLIR PaI PUR JUIWIZAS [0rS JO XopUI o1} Judsardal mof[eA Ul sioquuny ‘sydeid [9A9[-JUoUIZes SMOYS UWN[0D PII} YT,
's08po Juosordol SMoLIR 93 M puR ‘sopou juesordol sjop poy "soSewll mel wolj pajdeIxe syderd (ess-jurod smoys

UWN[0D PUOIS Y, "SINOQRPUNOI JO S9SeWT MBI SMOYS UWN[0D }SI o, "soSewr dewr pajoa[[oo jo sejdurexy :§°¢ 2SI

AN

Uorje[NuIIg deIs [oAs-yuowISog yde1d [eas[-yurog ogeuwrr mey

45

&k

-_'I'

"\.
1

i
i

, .H b

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

Table 3.1: Network Architecture Parameters

Network Value
Ynodes Vedge FC5x8 FC2x8
GCN | K,N,Z H 64, 8, 8, 3
History Length T’ 10
Vread FC 512 x 64
Actor FC64x8-FC8x8-FC8x5
Critic FC64x8-FC8x8-FC8x1
Non-Linear function Leaky-ReLU [55]

e The two nodes are occupied with vehicles.

The number of nodes, K, is selected considering the trade-off between the
computational cost and the road representability. Empirically, we found that
large K requires more computational time, while small K does not fully capture
road information. In the environment, the number of vehicles is kept to eight,
including the ego-vehicle. The PID controller of each vehicle is executed at 30Hz,
while the action and its target speed are updated at 6Hz. For RL training, we used
the implementation of [48] but converted it into a discrete version (PPO2) [73].
We implemented the encoder and readout networks, i.e., ¥node, Yedge; and ¥read,
using fully-connected networks. The LSTM encoding network has two stacked
hidden states with the size of 64 x 64. The details of the network architecture is
described in Table 3.1.

3.3.2 Experimental Results

In each experiment, we choose six different maps for training and three different
maps for testing. The agent cannot see maps used for testing during training.
We have trained the agent with three different random seeds and tested it with

100 episodes for each random seed. Each set of train and test maps is changed

46

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

depending on the random seed. We use five baseline methods for comparison.
Method A and B are not learning-based methods. Method A is a random con-
troller that selects the target speed randomly. Method B is the controller that
has the knowledge of the target speed of nearby and controls the ego-vehicle
with the same target speed as other vehicles. To show the representative power
of Road-GNN, we fix an RL algorithm and compare Road-GNN against other
widely used representations and network models. Both MLP and LSTM methods
use the history of all the vehicle features such as the velocity and positions, but
no traffic information is used. CNN method rasterizes images of the map as de-
scribed in [41]. The rasterized image channels include the road lines of the maps
and the history of the locations of the ego and other vehicles. The network model
in the CNN method perceives an area of 32m x 24m around the ego-vehicle with
resolution of 320 x 240. Figure 3.5 shows learning curves of different algorithms

we tested.

In the performance comparison experiment, we have first measured the mean
speed and cumulative reward of the ego-vehicle to test if the agent can select
a proper speed. As given in Table 3.2, the proposed method shows the highest
performance in terms of both the speed and cumulative reward. Meanwhile, the
other RL-based method, such as MLP, LSTM, and CNN methods, cannot reach
the performance of Road-GNN and failed to drive properly. They were even much
slower than not only Road-GNN but also Method B which uses the same controller
as other simulated vehicles. The proposed method is the only method that has
outperformed Method B in terms of both the speed and the cumulative reward.
Therefore, it can be said that the graph representation and Road-GNN is useful

for training an RL agent and for driving complicated road environments.

We also checked the number of parameters and flops of each network to test the
efficiency of Road-GNN. While the proposed method uses about the same number

of parameters as MLLP and LSTM, it shows better performance than all compared

47

Chapter 3. Road Graphical Neural Networks for Autonomous

Driving
E-
[
=
O 51
=8
i
T 4] —— MLP
E LSTM
— NN
3 —— Road-GMN
0 10 20 n 40 50 &0 70 80

[%5]
£ 05 - _——]
= S
E 0.4 4 — MLP
LSTM
031 —— CNN
02 - = Road-GNMN
0 10 20 0 40 50 60 70 80

epochs

Figure 3.5: Learning curve of RL algorithms. The shaded regions represent the

standard deviations of the results.

48
5 A= dslw

Chapter 3. Road Graphical Neural Networks for Autonomous

Driving
Table 3.2: Performance Comparison
Mean Speeds
Method Rewards | #Param Flops
[m/s]
Method A 3.035 0.407 - -
Method B 5.525 0.727 - -
MLP 5.009 0.582 0.104M 0.208M
LSTM 4.602 0.557 0.070M 1.396M
CNN [41] 4.747 0.641 11.528M | 163.380M
Road-GNN 5.838 0.743 0.101M 3.631M
Road-GNN
5.518 0.710 0.080M 2.369M
w/o LSTM

methods. However, it should be taken into account that MLP and LSTM methods
do not consider road structural information. Compared with CNN [41], which also
can consider road structures, Road-GNN shows a better performance than CNN
even though it uses fewer parameters and flops.

As an ablation study, we also trained Road-GNN without an encoder LSTM
[44] model which is described in Section 3.2.3. We instead encoded time-series
features by simple fully-connected layers. In the ablation study, Road-GNN was
more effective when it uses an LSTM model. The result shows that LSTM is
helpful for Road-GNN to encode time-series features although it requires more
parameters.

To show that the proposed method can be generally deployed in various driving
environments, we conducted an experiment on eight different maps that have
different driving difficulty levels. We tested each method 20 times per map. As
a metric of the difficulty, we measured the traffic density of each map, which
is defined by the number of vehicles divided by the area of the road. Figure
3.6 shows the results of the difficulty test. The speed of the vehicles tended to

49

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

Table 3.3: Experiment with aggressive drivers

Method Collision | Mean Speeds Rowards
Rates [%] [m/s]

Method A 48.3 2.749 0.031
Method B 19.3 5.175 0.488
MLP 18.0 4.838 0.395
LSTM 33.0 4.212 0.225
CNN [41] 22.3 4.547 0.436
Road-GNN 13.3 5.716 0.602

decrease as the traffic density increases. As shown in Figure 3.6, the proposed
method shows the highest performance evenly regardless of the driving difficulty
of the environment.

We conducted an additional experiment to test the stability of the proposed
method. We assume a more hazardous scenario where some drivers ignore the
safety rules. We changed the controllers of some simulated vehicles to move
more aggressively on the simulator. The target speed of two simulated vehicles
is changed to 12m/s, which is faster than the other vehicles. We also made them
ignore the collision-avoidance system. The result is shown in Table 3.3. The pro-
posed method shows the lowest collision rate and the highest performance, even
though it has been trained in a safe environment. In conclusion, Road-GNN is

stable and can drive more safely in hazardous environments.

3.3.3 Qualitative Results

We displayed simulation results to show how the proposed method drives a vehicle
in the simulator. Figure 3.8 and Figure 3.9 show snapshots of simulations in a
roundabout environment. The roundabout map used for each simulation is shown

in Figure 3.7(a) and Figure 3.7(b). The snapshots are arranged in the order

50

Chapter 3. Road Graphical Neural Networks for Autonomous

Driving
— MLP
531 o LSTM
LR
4 —&— CNN
9 55 — —eo~ Road-GNN
i
g 5.0
2 45
40 |
15
0.8 -
07 -
(%]
T 06 -
]
2 05 —o— MLP
.\._ —a— LSTM
0.4 - — l —o— CNN
T ol —&— Road-GNM
03 -
0.002 0.003 0.004 0.005 0.006

traffic density (car/fm?)

Figure 3.6: Experiment with various difficulty levels. Each dot represents a test

result in one map. Each method is tested 20 times per map.

o1

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

of time with regular time intervals. In the simulations, the white ego-vehicle is
controlled by a fully-trained Road-GNN. In Figure 3.8, the white ego-vehicle
enters to a roundabout, moves along a curved path, and successfully exits from
the roundabout. Because there is no interruption by other vehicles, the white-ego
vehicle drives at a relatively constant speed between 5.849m/s and 7.523m/s. In
Figure 3.9, the white ego-vehicle merges into a roundabout while there are already
two simulated vehicles turning around the roundabout. During the merge, the
white ego-vehicle slows down until the red vehicle passes completely. The white
ego-vehicle recovers its speed while moving between the red and blue vehicle.
The results show that the proposed method successfully trains an RL agent and

makes it to drive in a complex road environment.

We also displayed simulation results which compares the proposed method
with CNN [41]. Figure 3.10 and Figure 3.11 compares Road-GNN and CNN by
showing snapshots of simulations. The roundabout map used for each simulation
is shown in Figure 3.7(c) and Figure 3.7(d). For the comparison, we used the
same low-level controller but changed the types of networks and their inputs. In
Figure 3.10, Road-GNN selects a proper speed while merging the lanes. Road-
GNN increases the vehicle speed up to 6.300m/s after the merge. On the other
hand, CNN model requires relatively more time to merge and follow the lanes. In
specifically, CNN shows slower speeds than Road-GNN in all time steps. In Figure
3.11, the simulation shows a similar result. Road-GNN follows the vehicle in front
of it while maintaining its speed between 6.152m/s and 6.869m/s. On the other
hand, CNN model does not accelerate even though there is no vehicle in front of
it. The results show that Road-GNN can optimize the speed appropriately while
CNN model can not.

52

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

3.4 Chapter Summary

In this chapter, we have proposed a new autonomous driving framework, which
can be generalized to various road environments, using the GNN based structure
named Road-GNN and an RL based controller. The proposed network, Road-
GNN, is designed to perceive a graph representation of a road, which includes
the road connection and vehicle information. In the experiments, the proposed
method has outperformed the other methods which do not use the graph rep-
resentation. The results have shown that the proposed method can generalize
different road structures and the knowledge learned from roads in the training

set can be easily transferred to unseen road structures.

53

Chapter 3. Road Graphical Neural Networks for Autonomous
Driving

Figure 3.7: Roundabout environments used for showing qualitative results. (a)
The roundabout map for the simulation in Figure 3.8. (b) The roundabout map
for the simulation in Figure 3.9. (¢) The roundabout map for the simulation in

Figure 3.10. (d) The roundabout map for the simulation in Figure 3.11.

54
B

Road Graphical Neural Networks for Autonomous

Chapter 3.

iving

Dr

"NND-PeOY Jo }nsal uorjernuuis & jo sjoysdeug :8°¢ oS

(

SIQO) NND-Peoyq

s/wLT'9

s/weeg) s/wGp89

poadg

S0'v¢ =14

SO'8L =1? S09T =1

o,

(

smQO) NND-Peoy

s/wigg L

s/wmeze L s/w9LT L s/w.z9 9

peadg

S00T =1

S0 =1 S0°9 =1 SOV =1 S0°¢ =

o,

95

Road Graphical Neural Networks for Autonomous

Chapter 3.

iving

Dr

Time

t =4.0s t = 6.0s t = 8.0s

t = 10.0s

t =12.0s

Speed

6.780m/s 4.55Tm/s 1.410m/s

3.611m/s

5.474m/s

Road-GNN (Ours)

Time

t =18.0s t = 20.0s

t =22.0s

t =24.0s

Speed

6.194m/s 5.456m/s

5.899m/s

Road-GNN (Ours)

Figure 3.9: Snapshots of a simulation result of Road-GNN.

56

Road Graphical Neural Networks for Autonomous

Chapter 3.

iving

Dr

‘uostredwiod 10§ §Nsol uoryenus e jo sjoysdeug :07°¢ oS

[T7] NND

s/wghe'e

poadg

(smQ) NND-PeoY

s/Wz96°¥

poadg

SOve =1

o,

o7

Road Graphical Neural Networks for Autonomous

Chapter 3.

iving

Dr

Time

t =8.0s t=12.0s

t = 16.0s

Speed

4.277Tm/s 6.869m/s

6.152m/s

Road-GNN (Ours

)

Speed

1.618m/s 1.749m /s 1.934m/s

4.908m/s

5.827m/s

CNN [41]

Figure 3.11: Snapshots of a simulation

result for comparison.

o8

Chapter 4

Road Graph and Image
Attention Network for

Autonomous Driving

In recent years, vision-based object recognition algorithms have shown a dramatic
improvement in the field of autonomous driving. For example, pedestrian detec-
tion [35], lane detection [53], 3D object detection [89], and semantic segmentation
[86] have been developed and shown remarkable performance. However, applying
such vision-based methods to vehicle control is a challenging task. In most cases,
it is required to elaborately design a handcraft rule-based controller to use the

vision-based features.

There have been studies which applied vision-based features in a learning-based
controller. Previous methods have used image-based features [25, 20, 11], seman-
tic segmentation based features [75], or detection based features [3] to train an
imitation learning based autonomous driving controller. However, these works
have shown insufficient performance compared to commercialized handcraft con-

trollers.

99

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

One of the most critical problems when applying the vision-based approaches
to vehicle control is that the controller does not know which part of the image is
more important. Each object in the image has different importance according to
the scene context. For example, when a driver sees traffic lights at an intersection,
not all traffic lights are equally important. The driver should focus more on the
traffic lights at the front than the traffic lights at the crossroad. Likewise, drivers
usually pay more attention to pedestrians jaywalking on the road than pedestrians

walking on the sidewalk.

To compensate for such a problem, several works investigated the importance
of image features along with the LiDAR sensor data. Zhao et al. [88] proposed
a LiDAR and image fusion based 3D semantic segmentation method which can
be used to identify the scene context of objects. In addition, Prakash et al. [62]
used the attention mechanism [78] to capture the importance of the image fea-
ture according to the LiDAR sensor data. However, LIDAR-based attention is not
enough to fully understand the scene context for two reasons. (1) It is difficult
to directly extract meaningful information such as the road direction and con-
nection because the LiDAR data is a high-dimensional representation. (2) The
LiDAR data lack prior knowledge about the traffic (e.g., right-hand or left-hand
traffic), which is important for determining whether an object is moving in a safe
direction. As studied in previous works [29, 52], the vehicle movement is highly
influenced by the direction of the road. Therefore, a new type of state represen-
tation, which can reflect the road structural context of the scene, is required to

overcome the limitation of LiDAR-based attention.

In this chapter, we propose an autonomous driving framework named road
graph and image attention network (RIANet), which considers the importance of
object features according to the road structure. Figure 4.1 shows a brief expla-
nation of our idea. To reflect the graph information of the road, we represent the

road structure in the form of a graph which is called road graph. Unlike other

60

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

RGB Image Road Graph (2D BEV)

Figure 4.1: Illustration of our main idea. (Left) RGB camera image of the scene.
(Right) The corresponding road graph seen from the bird’s eye view (BEV). We
propose to use the attention mechanism to consider the importance of image

features according to the road graph features.

attention-based controllers, the proposed method leverages the road graphical
features along with visual features extracted from image and LiDAR sensors.
The attention mechanism allows the network to compute the scene context and
prioritize the importance of objects according to the road structure.

We use imitation learning to train the network. The evaluation and data col-
lection are conducted on a 3D urban scene driving simulator named CARLA [25].
The agent in the CARLA simulator is required to deal with dangerous situations
such as lane changing, unexpected obstacle avoidance, crossing intersection, and
unprotected turn. The experiment shows that the proposed method outperforms
the baseline methods in terms of all the suggested metrics. Our contributions are

summarized as follows:

e We propose a novel autonomous driving framework which considers the

importance of objects according to the road structure.

o We demonstrate that the road graph features can effectively reflect the road

61

- A2t 8l

o

TU

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

structural context of the scene

o We experimentally show that the driving performance can be improved by

fusing the road graph and the other sensor data features

4.1 Problem Setting

We first clarify our problem settings before explaining the proposed framework.
We consider an urban scene driving environment. The goal of the agent is to nav-
igate a given route while following traffic rules. The route is composed of multiple
goal locations in the road environment. At each time step ¢, the agent is given a
high-dimensional observation o; which consists of the following components.
Road Graph. The agent is given the topology information of the drivable road
in the form of a graph. A road graph Ggpa = (V, E) consists of nodes V' and
edges E. A node n; € V represents a point on the road and is distributed along
the centerline of the road segment. An edge e;—,; € E' connects the node n; and
the node n;. The direction of e;_,; represents the direction of the road segment.
We use the method in Chapter 3 to extract a road graph Ggpe; from a road. We
sample nodes on the road at intervals of 3m. We connect edges between nodes
depending on the direction and connection of the roads. In addition, we connect
two nodes if it is possible for a driver to change the lane along the edge. A node
n; contains a node feature f,, and an edge e;; contains an edge feature f., .,
respectively. In simulation and training, the agent only observes a subgraph Gy,
which consists of the nearest nodes to the ego-vehicle. The detailed explanations
about a road graph and subgraphs are described in Section 4.3.2.

Camera Image. The agent is given a front ego-view camera image which has
a resolution of 400 x 300 with a 100° FOV. To remove radial distortion [62], we
crop the image to 256 x 256 before entering the image into the feature encoder.

Additional Sensor Data. The agent is given LiDAR, GPS, IMU, and speedome-

62

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

ter sensor data. The LiDAR point cloud is pre-converted into a 2D BEV grid
image by the method in [62, 67]. A 2D BEV grid image contains 256 x 256 pixels
and covers a 32m x 32m area in front of the ego-vehicle. A 2D BEV grid image
has two channels: The first channel represents the points above the ground plane
while the second channel represents the points below the ground plane. There are
GPS, IMU, and speedometer sensor data as well. These sensor give the position
and speed data of the ego-vehicle to the agent. The position and direction of
the ego-vehicle are localized from the GPS and IMU sensor inputs. We use the

extended Kalman filter for localization.

4.2 Proposed Method

In this section, we explain the road graph and image attention network (RIANet),
which leverages the attention score [78] between a road graph and image features.
The proposed framework is divided into three modules: (1) a feature encoder, (2)
an attention network, and (3) a low-level controller. The feature encoder module
encodes a road graph, a camera image, and additional sensor data into features.
The attention network module takes these feature embeddings as inputs, applies
the attention mechanism to fuse features, and extracts the context feature of
the scene. The low-level controller module calculates the target speed from the

context feature and controls the ego-vehicle using a PID controller.

4.2.1 Feature Encoder

The feature encoder module takes an observation o, = {Gy, I}, S;} as an input
and encodes the road graph G;, the camera image I;, and the additional sensor
data S; into feature embeddings. The encoder for each component is a neural
network and we use a different network architecture for each encoder. The entire

network structure of the feature encoder module is shown in Figure 4.2.

63

iving

Road Graph and Image Attention Network for

Autonomous Dr

Chapter 4.

D ey

= =~ — Node — [BVIBY ——
S _ —
P y E---. e —
i 1 Edge ! —
- — BV —| s xH
Road-Graph fei. i S Graph Feature
X
i (@) 8
Pob —31
~ e — o~ et o ——
I .-
RGB Tmage I, Crop+ Mean i=1.d |,
[E—
t (d) —
“ b Feature
e —3 e Fusion
F
Bounding Boxes by, -+, by
3
(b) .D_wm___.a_cn__
[——
- =~ — ——3
LiDAR, Speed MLFP ohy; b
.ww (©) lidar: O speed

Figure 4.2: The structure of the feature encoder module. (a) Road graph encoder. (b) Camera image encoder. (c)

Additional feature encoder. (d) The encoding process of an object feature.

64

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

Road Graph Encoder. The road graph encoder extracts a feature embedding
of the road graph G; using graph convolutional network (GCN) [47]. Similar to
the graph encoding method in Section 3.2.1, we first regularize each node feature
Jn; and edge feature f,, using fully-connected networks to4e and tegge. We
then sum up the edge feature along the starting node index and concatenate it
with the node feature. If the number of nodes in G; is IV, the encoding process

is formulated as follows:

fni = ¢node(fm)a for1<i< N (41)

f~ei_,j - wedQE(fei_”')a fOI' 1 S Z?] S N (42)

fi = concat(fy,, Z for), for 1<i< N (4.3)
k

Here, concat is a concatenation operator. We get the embedded feature matrix
Xo € RN¥XZ by applying the encoding process to each element in Gy. The i-th
row of the Xy is the feature ﬁ € R?, where 7 is the feature size. We update the
feature matrix Xy using a H-layers GCN network [47]. The update process of the
k-th layer of GCN is formulated as follows:

X = J(Akalwk + Bk>, (44)

where A € RV s a normalized adjacency matrix of Gy with self-loops, o is a
leaky-ReLU [55], and W), and By, are the weight and bias of the k-th GCN layer.
We iteratively update Xy and obtains the final graph feature embedding X ;.

Camera Image Encoder. We expect the camera image encoder to capture some
important visual information such as traffic lights, pedestrians, and obstacles. To
capture and encode the object features, we use a ResNet [37] based feature map
and a Faster R-CNN [66]. The encoding process of an object feature is shown in
Figure 4.2(d). We first extract the feature map of the image I; using the ResNet
based network. The ResNet based feature map ¢op(1;) = I has the channel size of
C' and the same height and width as the input image I;. We then detect objects in

65

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

the image I; using Faster R-CNN and obtain a bounding box set {bi}?zl, where
b; is a bounding box and d is the number of the detected bounding boxes. d is
not a fixed value and can be changed according to the image I;. Bounding box
b; has the corresponding classification feature ¢; and positional feature p;. The
classification feature ¢; is a classification result of the i-th object and encoded in
a one-hot vector. The positional feature p; = (h, w, z,y) represents the positional
information of a bonding box b;, where h, w, =, and y represent the height,
the width, the x and y position of the center of the bounding box b; in the 2D
pixel space. For each bounding box b;, we crop the feature map I; according to
the size and location of the bounding box b;. We get the spatial mean of the
cropped feature map and incorporate it with ¢; and p; using MLP networks. For
a cropped feature map with the size of C' x h X w, the spatial mean has the size
of C'. The feature embedding for the i-th object is denoted as ob;. The object

feature encoding process is formulated as follows:

Iy = ¢op(1y) (4.5)

fimg = img(mean(crop(Iy; by))) (4.6)
frin = Wiin(concat(c;, p;)) (4.7)
ob; = Yop(concat(fimg, fiin))s (4.8)

where V;mg, Yiin, and ¥y, are MLP networks, crop is a crop operator, and mean
is a spatial mean operator.

In addition to each object feature embedding ob;, the camera image encoder
also encodes the global image feature embedding obg,pq to capture the global
feature of the image I;. The image I; is encoded into obgope; by the ResNet-based

network ¢giopar as follows:

Obglobal = ¢global (It)a (49)

where ob; and 0bgjpe are one-dimensional vectors and have the same feature size

66

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

of Z.

Additional Feature Encoder. The additional feature encoder take the addi-
tional sensor data S; as inputs. The S; contains LiDAR data fj;q. and speed
data fspeed. We encode each fiigqr and fspeeq into feature embedding. First, Li-
DAR data is encoded by a ResNet model ¢y;4q4-- As explained in Section 4.1, the
LiDAR data fj;qqr is a pre-processed 2D BEV grid image. The LiDAR data fi;qqr
is encoded into a feature objgar by @ridar- The speed data fgpeeq is also encoded
into a feature obgpecq by the MLP network 9specq. The encoding process of the

additional feature encoder is formulated as follows:

Oblidar = ¢lidar(flidar) (410)

Obspeed = wspeed (fspeed) (4 1 1)

4.2.2 Attention Network

The attention network module outputs the scene context by incorporating all
the encoded features from the feature encoder. To leverage the attention between
each feature, we use the transformer model [78] and compute the attention scores
between the features. The network architecture of the attention network module
is shown in Figure 4.3(a). We first integrate all the feature embeddings in Section

4.2.1 into the feature fusion F' as follows:

Fob = [Obh Tty Obd7 Obglobala Oblidara Obspeed] (412)
F = concat(Xg, Fop) (4.13)
The feature F,;, contains the object feature embeddings oby,--- ,0bg € R?, the

global image feature embedding obgiopar € RZ, the LiDAR feature embedding
oblidar € RZ, and the speed embedding Obspeed € RZ. Each feature has the same
size of Z and these features are stacked into the feature F,,. The feature Fy, €
R(@+3)XZ and the road graph feature Xz € RV*Z are concatenated into the

feature fusion F' € RW+d+3)xZ

67

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

We use the attention mechanism [78] to obtain the attention scores between

each feature in F'. The attention function Attn(:,-) is formulated as follows:

Attn(My, My) = concat(heady, - - - , head,)W©, (4.14)
KT
where head; = softmaX(Q % (4.15)
vVZ
Qi, Ki, Vi = MyWE, MoWHE My (4.16)

Here, M; and My are arbitrary inputs to the attention function, softmax is the
softmax function, n is the number of heads, WiQ, W,LK , VVZV € R*Z and Wy €
R("2)XZ are weight matrices. The transformer consists of an attention function, a

MLP network 9.4y, and a layer normalization LN. The transformer is formulated

as follows:

Transformer(M;, Ma) = LN (ttran (sub) + sub), (4.17)

where sub = LN(Attn(My, My) + M) (4.18)

The transformers are stacked L times and compose a total of L transformer layers.

Except for the last layer, the process of each layer is formulated as follows:
Fy, = Transformery (Fy_1, F—1), for 1 <k < L (4.19)

Starting from Fy = F, the fusion transformer module iteratively computes Fj.
The last transformer layer computes the scene context feature c¢ from Fj_1 €

RWV+d+3)XZ and F_; € RY™Z as follows:
¢ = Transformery, (Fp_1, F,_1), (4.20)

where Fy_; is the feature mean of F;_;. The size of the scene context feature

¢ € R™Z is invariant to the number of nodes N and the number of object features

d.

68

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

—— 7
—— 9 —> _, Context
—— 9 —r—[: c
Feature
Fusion x(L—1)
F
(a)
Context
Oré - - —{We}t=1 —Vtarget
Goal Location g; _ 1

(b)

Figure 4.3: The structure of the networks. (a) The attention network module. (b)

Waypoint prediction network.

4.2.3 Low-Level Controller

The low-level controller takes the scene context ¢ as an input and computes the
steering control value and the target speed for the ego-vehicle.

Steering. We compute the steering value which makes the ego-vehicle follow
the pre-defined path (. The path (is calculated through the following process.
Similar to [62], we assume that the goal is to navigate a given route v = {g;}!_,,

where g; is a goal location and [is the number of the goal locations. We first find

near

a node n™
gi

€ Gglobar Which is the nearest node to g;. We then use the Dijkstra
algorithm and calculate the shortest path in Gyope, Which visits all the nodes
{n;}f” é:l' The path ¢ is constructed after applying a line smoothing method
to the Dijkstra shortest path. The steer PID controller computes the deviation
between the current ego-vehicle position and the path ¢ and finds the steering
value which makes the ego-vehicle follow the path (.

Target Speed. We also compute the target speed of the ego-vehicle from the
future waypoints which is predicted from a waypoint prediction network [11,

62]. The network architecture of the waypoint prediction network is shown in

Figure 4.3(b). As demonstrated in [11, 62], we also empirically found that it is

69

&

| &1

1V

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

better to use the waypoint prediction network than to compute the target speed
directly. The waypoint prediction network takes the scene context ¢ as an input
and predicts the waypoints in the ego-vehicle coordinate frame. The scene context
c is first passed to the MLP network. The output of the MLP network is entered
to the GRU [16] as a hidden state. Starting from the initial input of wg = (0, 0),
the GRU iteratively outputs the differential waypoints dw;. During the iteration,
the GRU incorporates the current goal location g; in its inputs. The waypoints
wy are constructed as wy = Eizl dw, for the future time steps t =1,---,T and
we use T = 4. After the waypoints are predicted, we compute the target speed
Utarget = ||w1 — wo|y/6t, where 6t is the time interval between the waypoints. We
use a PID controller which has the same configuration as [11, 62] and provides
the throttle and brake values to the ego-vehicle, which make the ego-vehicle have

the target speed vigrget-

4.2.4 Learning Algorithm

We train our network using imitation learning [11, 62]. The output of the waypoint
prediction network is the waypoints {wt}thl. We use L loss between the predicted
waypoints w; and the expert waypoints wg;. Given the expert waypoints {wtgt}le,

the loss function is formulated as follows:
T
loss = Z ||we — wftH1 (4.21)
t=1

As mentioned in [62], the waypoints w; and wy; are different from the goal lo-
cations g; of the given route ~ or the nodes in the pre-defined path ¢ which the

ego-vehicle follows.

4.3 Experiments

In experiment, we use a widely-used driving simulator named CARLA [25]. We

train the proposed network with an expert dataset and compare the evaluation

70

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

results with the baseline methods. All data collection and experiments are con-

ducted in the CARLA environment.

4.3.1 Experimental Settings

We use the CARLA 0.9.10 version for the experiments. There are eight types of
maps in CARLA, and in each environment, the agent needs to complete the given
route while handling challenging situations such as lane changing, unexpected
obstacle avoidance, crossing intersection, and unprotected turn. We follow the
evaluation settings in [62] and use Town05 for evaluation. We use two different
types of scenarios: Town05 Short and Town05 Long. The scenarios in Town05
Short setting have 10 routes of 100-500m in length and the scenarios in Town05
Long setting have 10 routes of 1000-2000m in length.

4.3.2 Dataset

The training data is collected by a handcraft expert policy which uses privi-
leged information about the environment. The dataset is provided by [62] and
we especially use the ClearNoon dataset. In our setting, we do not use the data
from Town10 for training because CARLA 0.9.10 does not provide the HD-map of
Town10, which is required for constructing a road graph. We instead use Town01,
Town02, Town03, Town04, Town06, and Town07.

The road graph data is not contained in the dataset of [62]. Therefore, we
generate the road graph feature G; according to the vehicle position and rota-
tion in the dataset. We first construct the global graph Gyjopa using HD-map
data of each town. HD-map data in CARLA uses the OpenDRIVE format [1]
and provides border information for each lane of roads. We obtain the center
trajectory of each lane through borderline information and sample nodes from
the center trajectory at intervals of 3m, including the endpoint of each center

trajectory. HD-map also provides linkage information of lanes. We connect edges

71

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

so that nodes in the same lane can be sequentially linked. In addition, edges are
connected between end nodes of linked lanes. Inspired by the method in Chapter

3, we define node and edge features as follows:

fm- = (xnia Yn;s Lo, 1ir, 1oc, Loe - ’U) (422)

fei_>j - ($ei_>jvyei_>j)7 (423)

where (7n,,yn,) is the 2D position of the node n;, (ze,_,;,Ye,;_,;) is the 2D di-
rection of the edge e;;, v is the speed of the ego-vehicle, and 1, 14, 1, are
the indicators. 1is is the traffic signal indicator which is 1 if the node is on an
intersection and 0 otherwise. 1;. is the path indicator which is 1 if the node is
included in the pre-defined path (. 1,. is the occupancy indicator which is 1 if the
node is the nearest node to the current ego-vehicle position. The node position
(Tn;,Yn;) and edge direction (ze,_,;,Ye,_,;) are computed in the ego-vehicle coor-
dinate frame, where z-axis is parallel to the ego-vehicle direction. The position
of the ego-vehicle can be inversely calculated from the position of each node and
the occupancy indicator.

After constructing G gope1, We extract the graph presentation Gy. We first select
the K nearest nodes to the ego-vehicle position. We then select only the nodes
in front of the ego-vehicle with a small margin p. We use K = 96 and g = 10m
in our setting. The position and direction of the ego-vehicle are estimated by the
extended Kalman filter and used to compute the ego-vehicle coordinate frame.

The road graph is computed in real-time when evaluating the agent.

4.3.3 Implementation Details

In the road graph encoder, the MLP networks 1,04 and %cqge are constructed
by a fully-connected layer with the size of 6 x 32 and 2 x 32, respectively. We use
H = 3 for the number of GCN [47] layers. The weight of each GCN layer has the
size of 64 x 64 except for the last layer and the weight of the last GCN layer has

72

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

the size of 64 x 128.

We use a pre-trained ResNet-34 model [37] for the network ¢giopq1 to encode the
global image feature obgjopq;. The network ¢gopq is pre-trained on ImageNet [21]
data and the last layer of ¢giopq is changed to a 512 x 128 size fully-connected
layer. We use a ResNet-18 model for the network ¢j;qq- to encode the LiDAR
feature obyigq,. In contrast to @giopals Plidar is nOt pre-trained. The last layer of
Qlidar 18 also changed to a 512 x 128 size fully-connected layer. We use 1 x 64 and
64 x 128 size fully-connected layers for the network t,ceq to encode the speed
data feature embedding obgpecq. All the feature embeddings 0bgiopar, 0biidar, and

0Obgpeeq have the same feature size of Z = 128.

We use a Faster R-CNN model [66] which is reimplemented and pre-trained on
the CARLA dataset [26] . We use two separate networks for object detection: a
traffic light detector and an obstacle detector. The traffic light detector detects
the traffic light signal which can be labeled as Red, Yellow, Green, or Off. The
obstacle detector detects the obstacles which can be labeled as Pedestrian, Car,
Bicycle, or Motorcycle. The classification result of each detector is encoded as
a one-hot vector. The bounding boxes of the detected objects of two detectors
are combined into the bounding box set {bi}le. The feature map I is computed
from the ResNet-34 model ¢ [37] and we use the feature map from the first
convolution groups named convl. The ResNet-34 model ¢, shares the parameters
with the global image feature encoding network ¢g;opq- Before applying the crop
operation, the feature map from ¢, is upsampled to the size of the original
image I; with the bi-linear interpolation. The MLP networks ;g and 1, are
constructed by a fully-connected layer with the size of 64 x 128 and 8 x 128,
respectively. The MLP network v, is constructed by two fully-connected layers
which have the size of 256 x 128 and 128 x 128. We use two separate networks
for Yimg, Yiin, and 1., depending on whether the detected object belongs to a

traffic light or an obstacle. The speed data encoding network 9gpeeq is also an

73

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

MLP network and constructed by two fully-connected layers which have the size
of 1 x 64 and 64 x 128. All the MLP network uses the leaky-ReLU [55] for the
non-linear function.

We stack L = 5 transformer layers in the attention network module. Each
transformer in a layer has four heads. All the linear projection weights of each
transformer have the size of 128 x 128. The MLP network ¢, is constructed by
two fully-connected layers which have the size of 128 x 512 and 512 x 128. We use

the same network architecture as [11, 62| for the waypoint prediction network.

4.3.4 Baselines

We compare the proposed method with several baselines.

e CILRS [20]. CILRS is a conditional imitation learning method which uses
a single front camera image and a speedometer sensor data. The network
architecture of CILRS contains a conditional module which takes a naviga-

tional command as the condition.

e RBC [26]. RBC is a rule-based control which identifies the location of the
object through a Faster R-CNN [66] and controls the ego-vehicle based on
the hard-coded rules. We used a similar method with [26] but reimplemented
some rules to apply it to our setting. RBC detects traffic lights and obstacles
as the same as the proposed method. However, unlike the proposed method,
RBC estimates the 3D position of a detected object through LiDAR data.
In our implementation, RBC uses the following method to find the 3D
position of the detected object. First, the center points of the bounding
box of objects are projected into the normalized image coordinate using
the camera calibration matrix. Likewise, the 3D coordinates of the point
clouds obtained from LiDAR data are projected into the normalized image

coordinate. After that, the point cloud closest to the center point of the

74

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

object is selected on the normalized image coordinate. The 3D coordinate
of the selected point cloud is used as the 3D coordinate of the detected
object. Based on the estimated 3D coordinate, RBC finds the lane in which
the obstacle is currently located. If the obstacle is on the current lane and
the distance between the ego-vehicle and the obstacle is less than A\, RBC
stops the ego-vehicle. We have fine-tuned the parameter A\ and use the
best value for evaluation. The distance is computed according to the Frenet
coordinate frame of the lane. RBC also stops the vehicle if the traffic light
closest to the center of the image I; is detected as red or yellow. However,
if the ego-vehicle has already entered an intersection, the vehicle does not

stop according to the traffic light.

ATIM [62]. AIM uses only the camera image as an input. The image input
is encoded through ResNet [37] based networks. The encoded features are
entered into the waypoint prediction network. We test two type of low-
level controller to check the effect of changing low-level controller. Vanilla
AIM follows the waypoints predicted by the waypoint prediction network.
AIM+R follows the pre-defined path as the same as the proposed method.
In AIM~+R, the waypoint prediction network only decides the target speed

of the ego-vehicle.

Transfuser [62]. Transfuser uses a camera image and a LiDAR feature
as inputs. The image and LiDAR input are encoded through ResNet [37]
based networks and fused together through the attention mechanism. The
fused feature is then entered into the waypoint prediction network. Similar
to AIM, we test Transfuser which is the vanilla version and Transfuser-R

which uses a path-following low-level controller.

75

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

4.3.5 Comparison Results

We use three metrics in the evaluation: route completion, driving score, and in-
fractions per km. Route completion (RC) is the percentage of the completed route
length relative to the total route length. Driving score (DS) is the product be-
tween the route completion and the penalty weight. The penalty weight starts
from 1.0 and decreases when the agent commits an infraction. The types of infrac-
tions include the following events: collisions, running a red light, and running a
stop sign. There are also additional infractions which are not counted when com-
puting the penalty weight: off-road driving, route deviation, agent blocked, route
timeout. Instead of reducing the penalty weight, they affect the computation of
the route completion or terminate the simulation. Infractions per km (IpKm) is
the total number of infractions divided by the total distance in kilometers trav-
eled. To consider cases when a vehicle is stopped and the agent is blocked, we
count all types of infractions when computing IpKm. Higher is better in DS and
RC, and lower is better in IpKm. The detailed explanation of each metric can be
found from the CARLA official website [8].

We compare the proposed method with the other baselines. Each method is
trained and evaluated with five different random seeds. Table 4.1 shows the mean
and standard deviation of the result. We observe that the proposed method shows
the highest performances in all three metrics. Especially, the proposed method
shows higher performance than Transfuser which does not use the road graph
for the attention mechanism. The result demonstrates that the use of the road
graph feature can improve the performance of the autonomous driving controller.
To show the effect of changing the low-level controller, we tested AIM-R and
Transfuser-R which use the same low-level controller as RIANet. However, the
proposed method shows better performance than AIM-R and Transfuser-R even
they use the same low-level controller. In addition, the proposed method shows

better performance than RBC which uses the same object detector model. The

76

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

result shows that the proposed method leverages the detected object features

more effectively compared to RBC.

4.3.6 Attention Score Visualization

We visualized the attention score of the detected objects and the nodes of the
road graph. The attention score is measured from the first layer of the attention
network by taking the mean of the attention weights along the query features.
Figure 4.4 shows two examples on Town05. On the camera images, we marked the
object with the highest attention score among the objects in red and the other
objects in blue. The results show that the attention network tends to pay more
attention to important objects (e.g., a jaywalking pedestrian and a vehicle that
crosses the intersection) than other objects. We also visualized the relationship
between the image and node features. We estimated the 3D position of the object
with the highest attention score using the estimation method of RBC [26] and
plotted the position on the 2D coordinates. We also plotted the road graph on the
same figure. Interestingly, the object with the highest attention score (red boxes)
and the node with the highest attention score (red x marks) are distributed close
to each other on the 2D coordinates. From the result, we can infer that the
network considers the relationship between the road graph and the object when

calculating the attention scores.

4.3.7 Road Graph Feature Analysis

We investigated how the structure of the road graph affects the attention in
the image. Figure 4.5 shows an example scenario. We first fed a camera image
(Figure 4.5(a)) and the corresponding road graph input (Figure 4.5(b)) to the
network. In this case, the network assigned the highest attention score of 0.01256
to the jaywalking pedestrian (red box). We then fed a left-curved road graph

(Figure 4.5(c)) to the network, which is randomly sampled from the evaluation

77

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

Table 4.1: Performance Comparison

Town05 Short

Transfuser [62]
Transfuser+R [62]

64.495 + 7.840 70.915 £ 7.200

67.031 &+ 8.800 73.254 £ 9.837

Method
DSt RC 1 IpKm |
CILRS [20] 21.693 + 1.751 25.762 £ 0.807 98.141 + 14.164
RBC [26] 49.947 + 4.966 84.016 £+ 3.246 33.527 +£ 4.783
AIM [62] 69.917 4+ 15.104 73.106 + 19.000 10.315 + 2.489
AIM+R [62] 79.969 £+ 18.601 82.286 £ 19.714 8.592 + 7.382

12.059 £+ 2.835
10.881 + 2.481

RIANet (Ours) 87.469 £ 2.363 93.881 £ 3.827 6.319 £ 1.419
(a) Town05 Short
Town05 Long
Method
DS 1 RC 1 IpKm |

CILRS [20] 7.889 £+ 1.047 10.751 £ 0.358 17.020 £ 1.182
RBC [26] 14.692 £ 4.019 82.866 £ 7.282 6.669 + 0.490
AIM [62] 39.558 £ 5.056 83.018 £ 11.477 3.424 £ 0.248
AIM+R [62] 39.873 £ 5.005 80.251 £ 17.594 2.753 £ 0.325
Transfuser [62] 36.438 £ 8.412 96.650 £ 5.420 3.473 £ 0.452
Transfuser+R [62] | 37.283 £ 7.049 92.815 + 4.607 3.209 £ 0.613
RIANet (Ours) 44.719 £+ 2,513 96.934 £ 2.927 2.624 £ 0.163

(b) Town05 Long

78

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

0.0110

no1ne

00106

o104

0.0102

o100

0.0094

00092

0.0030

0.0088

00086

00064

Figure 4.4: Visualization of attention scores. (Left) Detected objects on camera
images. The object with the highest attention score is marked as red and the
other objects are marked as blue. (Right) Road graph of scenes in 2D BEV.
Green arrows indicate the position and direction of the ego-vehicle. Red boxes
represent the estimated 2D position of the object with the highest attention scores
and red x marks represent the 2D position of the node with the highest attention

scores.

79

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

(a) a camera image (b) a correct graph (c¢) a random graph

Figure 4.5: Road graph feature analysis. (a) A jaywalking pedestrian (red box)
and cars (blue and white boxes) are detected on a camera image. (b) A correct
road graph. (¢) A random road graph. Green arrows indicate the position and
direction of the ego-vehicle. Red boxes in (b) and (c) represent the estimated 2D
position of the pedestrian. Also, blue boxes in (b) and (c¢) represent the estimated
2D position of the car marked in blue. The car marked in white box is not plotted

in (b) and (c).

80
s et

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

dataset. Interestingly, the network assigned the highest attention score of 0.00932
to the car (blue box) and the second-highest attention score of 0.00925 to the
pedestrian (red box). It appears that the network pays less attention to the object
if the object is estimated to be far from the ego-vehicle lane on the road graph.
The result shows that the network can capture the structural feature of the road

graph.

4.3.8 Ablation Study

As an ablation study, we tested how each input feature affects the performance
of the agent. In the As an ablation study, we tested how each input feature
affects the performance of the agent. In the default configuration, we used all the
road graph, detected bounding boxes, global image, LiDAR, and speed features.
However, in each case of no-graph, no-detection, no-global-image, and no-LiDAR
setting, we ignored the corresponding feature embedding Xg, {obi}le, 0bgiobal s
and obyqqr, respectively. The feature fusion F' is computed without the ignored
feature. The network is trained once with each configuration and evaluated with
three different random seeds. As shown in Table 4.2, The default configuration
shows the highest DS and IpKm in both Town05 Short and Town05 Long settings.
The default configuration shows a lower performance (1.671% and 3.066%) in
RC but shows a higher performance in DS (3.885% and 12.757%) and IpKm
(14.312% and 13.543%) compared to no-road-graph. From this comparison, it
can be inferred that the agent drives more cautiously when using the road graph.
In addition, the average performance of no-road-graph, no-detection, and no-
LiDAR were higher than that of Transfuser in Table 4.1, because Transfuser does
not use both road-graph and detection features. As a result, the ablation study

shows that all the proposed feature inputs are essential for driving successfully.

81

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

Table 4.2: Ablation Study

Configure

Town05 Short

DS 1 RC 7t IpKm |
no-road-graph | 84.198 & 1.971 95.477 + 3.575 7.374 £ 2.358
no-detection 81.729 £ 6.503 90.729 £ 6.503 8.453 + 1.972
no-global-image | 60.681 £ 2.513 93.532 £ 6.832 23.750 £ 1.343
no-LiDAR 82.754 £ 2.694 93.166 £ 3.669 9.657 £ 1.121
Default 87.469 £ 2.363 93.881 + 3.827 6.319 £ 1.419

(a) Town05 Short

DS 1 RC 7t IpKm |
no-road-graph | 39.660 4+ 3.092 100.000 £ 0.000 3.035 &+ 0.203
no-detection 39.091 £ 2.055 98.592 + 1.991 2.997 £+ 0.245
no-global-image | 25.778 + 5.552 86.312 £ 4.694 4.563 + 0.370
no-LiDAR 39.139 £ 4.177 97.069 £ 4.146 2.976 + 0.265
Default 44.719 £ 2513 96.934 £ 2.927 2.624 £+ 0.163

(b) Town05 Long

82

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

4.3.9 Qualitative Results

We displayed simulation results of the proposed method in Figure 4.6 and Figure
4.7. In the simulations, the ego-vehicle was controlled by RIANet on CARLA
Town05 Short. The network model of RIANet is fully-trained before running a
simulation. We have captured the ego-vehicle in a third-person view (up) and
a bird-eye view (down). The snapshots are arranged in the order of time with
regular time intervals. In Figure 4.6, the ego-vehicle has stopped at the red light
signal (¢ = 3.0s). Note that turning right on red is prohibited in the CARLA
environment. After the signal turns green, the ego-vehicle has waited until the
frontal vehicle started to move (¢ = 6.0s). After the frontal vehicle started to
move, the ego-vehicle also started and has followed the frontal vehicle (¢ = 9.0s).
The right turn of the ego-vehicle was completed while the signal was green (¢ =
13.5s). As a result, the ego-vehicle successfully made a right turn without violating
traffic rules. Another example of a simulation result is shown in Figure 4.7. In
Figure 4.7, the ego-vehicle first has changed the lane (¢ = 3.0s). The ego-vehicle
then has turned left at the green light (¢t = 7.5s). The ego-vehicle did not violate
the traffic signal because the ego-vehicle passed the intersection before the signal
turned red. After passing the intersection, the ego-vehicle faced a jaywalking
pedestrian (t = 12.0s). To avoid a collision with the pedestrian, the ego-vehicle
has slowed down (¢ = 13.5s) and changed the lane (¢t = 15.0s). As a result, the
ego-vehicle succeeded to drive without any accidents or signal violations.

We compared the proposed method with RBC [26] and Transfuser [62] by
displaying simulation results. Figure 4.8 and Figure 4.9 shows snapshots of the
scenarios used for the comparison. In Figure 4.8, the ego-vehicle tries to cross
an intersection. RBC and RIANet successfully have driven the ego-vehicle and
crossed the intersection. Although the traffic lights became yellow before crossing
the intersection completely, the ego-vehicle did not violate the signal by making

the first start at the green light. On the other hand, Transfuser failed to cross

83

Chapter 4. Road Graph and Image Attention Network for
Autonomous Driving

the intersection without violating traffic sign. In the case of Transfuser, the ego-
vehicle stopped once in front of the intersection (¢ = 8.0s). When the traffic
signal turned red, the ego-vehicle suddenly started to move and violated the
traffic signal (¢ = 12.0s). In Figure 4.9, the ego-vehicle tries to turn right while
avoiding a collision with a jaywalking pedestrian. In this scenario, RBC failed
to recognize the signal properly and did not move in front of the intersection.
In the case of Transfuser, the ego-vehicle turned right on the intersection (¢ =
7.5s). However, the ego-vehicle turned right on the red, which is prohibited in
the CARLA environment. On the other hand, RTANet successfully drived the
ego-vehicle and finished turning before the traffic sign completely became red
(t = 7.58). In both cases of Transfuser and RIANet, the ego-vehicle faced a
jaywalking pedestrian after passing the intersection. The ego-vehicle successfully
avoided the pedestrian in each scenario. As a result, only RIANet succeeded to

complete the path without any infraction.

4.4 Chapter Summary

In this chapter, we have presented a new driving framework that leverages the
attention score between the road graph and image feature. We haved proposed
RIANet to capture relationship between sensed observations against the road
structure via a road graph. The proposed network computes the scene context by
incorporating a road graph, image, and additional features through the attention
mechanism. In the experiments, we have shown that the proposed method out-
performs the baseline methods in terms of all the metrics. Compared to the other
methods, the proposed method can effectively leverage the attention between the
road graph and image features. The results show that the use of the attention

score improves the performance in urban autonomous driving.

84

Road Graph and Image Attention Network for

Chapter 4.

Autonomous Driving

"OLIRUOOS URLIISOpod © PIoAR PUR JUSLI WINT, :9'§ oIN3I

IPNVIY
- - U99IK) U99Ix) ST O1fjedT,
SO'8T =1 SG9T =1 S0¢l =1 SG0T =1 QWILT,
PNVIY

TSI omgedy,

o,

85

Chapter 4. Road Graph and Image Attention Network for

Autonomous Driving

Time

Traffic light

RIANet
Time t =10.5s t=12.0s t = 18.0s
Traffic light Yellow - - -
RIANet

Figure 4.7: Turn left and avoid a pedestrian scenario.

86

Chapter 4. Road Graph and Image Attention Network for

Autonomous Driving

"OLTRUADS TOTPIISIYUT Ue JUISSOI)) :R°F 9INSI

(smQ) PNVIYH

[¢9] 1esmysurely,

l92] Dgu
pPoyg MOT[OA MOT[OX UODIN) U9IIN) U22.IX) ST ofgedy,
SO'GT = ¢ SO'0T = 7 SO’ =1 S0'9 =1 SOV =1 S0'c =1 QI T,

87

]
P

e- r_|'| '-:j} T

A -

Chapter 4. Road Graph and Image Attention Network for

Autonomous Driving

Time t=5.0s
Traffic light Yellow
RBC [26]

Transfuser [62]

RIANet (Ours)

Figure 4.9: Turn right and avoid a pedestrian scenario.

88

Chapter 5

Road Graph Change Detection

for Autonomous Driving

In the previous works, it is demonstrated that using a road graph representa-
tion has advantages over a feature-based representation [17, 18, 15, 71, 82], BEV
image representation [59, 41], or egocentric image based representation [19, 20].
In particular, using a road graph representation has two major advantages when
training a driving agent. First, a road graph can help an agent grasp the road
information. For example, a road graph can give information about road connec-
tions. Second, a road graph is efficient for representing a state of an environment.
A road graph has a smaller data size than an image-based input. It reduces the

time complexity required for data processing.

In Chapter 3 and Chapter 4, we have presented a driving framework using a
road graph representation. As a result, the road graph based controllers showed
improved performances than previous learning-based controllers. However, apply-
ing a road graph representation to the real world environment is still challenging
because of road change issues. The structure of roads in the real world can be

changed for several reasons such as road construction or temporary traffic control.

89

Chapter 5. Road Graph Change Detection for Autonomous Driving

For example, the location of the road can be changed after road construction, or
some of the road lanes can be blocked during a temporary traffic control. Because
road graphs for RIANet were loaded from a pre-constructed road database and
not constructed on the fly, our framework was vulnerable to these road change
issues. This made our prior frameworks perceive inaccurate and unreliable road
structural information, which resulted in performance degradation in the real

world environment.

Road change detection has been studied in the field of autonomous driving.
However, compared with the proposed method, there are the following differ-
ences in previous works. Pannen et al. [61] suggested a particle filter based lo-
calization system and road change detection algorithm. In their work, however,
they assumed that the accurate positions of landmarks, such as lane markings or
traffic signs, are provided to the ego-vehicle controller. Ding et al. [22] proposed
a LIDAR based localization system and appended a local road change detection
module to enhance their localization accuracy. However, their method cannot rec-
ognize visual road changes such as road marking or lane width changes because
their detection module only relies on a LiDAR sensor. Heo et al. [42] suggested
using deep metric learning to detect mislabeled road markings in an HD map.
Likewise, Lambert et al. [49] suggested several fusion-based network architectures
which can detect newly added road markings in an HD map. Unlike prior work,
the proposed framework focuses on detecting structural road changes such as lane

addition or lane width changes.

In this chapter, we focus on the unreliability problem of input road graphs,
which is caused by road changes. For this purpose, we introduce an improved
version of our framework named RIANet++. Unlike [33], which uses only a con-
troller module, RIANet++ uses a road change detection module as well. The road
change detection module detects a road change by checking the similarity score

between image sensor data and pre-constructed query road graph data. By detect-

90

Chapter 5. Road Graph Change Detection for Autonomous Driving

ing a road change, we are able to increase the worst-case performance of the agent
by filtering out unreliable road graph input. For the road change detection mod-
ule, we suggest two types of detection methods. The semantic matching method
converts the query road graph into a semantic image and measures the similar-
ity score in the semantic image domain. Likewise, the graph matching method
converts the image sensor data into a road graph and measures the similarity
score in the road graph domain. In the experiment, we show the effects of the
proposed detection methods on the robustness of the controller. The experiment
is performed in two driving environments: the CARLA urban driving simulator
[25] and the Future Mobility Technology Center (FMTC) real-world environment.
In both cases, the proposed method successfully detects road changes and shows
improved driving performance compared to other baselines, including our prior

work [33].

Our contributions are summarized as follows:

e We propose a driving framework which can consider the importance of

objects and the scene context by leveraging road graph data.

e To solve the unreliability issue of road graph data, we propose to combine
the controller with the road change detection module, which can find the

road graph error from an egocentric image and query road graph.

e The proposed detection methods successfully detect road changes and help
the overall framework outperform the other baselines in both detection and

driving performance.

e We also experimentally demonstrate that the proposed driving framework
can overcome the performance degradation issue, which occurs by unex-

pected road changes, through the road change detection module.

91

Chapter 5. Road Graph Change Detection for Autonomous Driving

5.1 Problem Setting

In this section, we first define the problem where the proposed framework is
applied. In our problem setting, the goal is to train an urban autonomous driving
agent to visit a sequence of goal locations while keeping traffic rules, such as
collision avoidance and stopping at a red light. We denote the goal location set
as {gi}ézl, where g; is a goal location and [is the number of the goal locations.
The agent needs to reach each goal location in the given order. The driving
vehicle is installed with several sensors such as cameras, LIDAR, GPS, IMU, and
a speedometer sensor. The agent observes its state from these sensor data at
every time step t. Also, the agent is given the position and direction of the ego-
vehicle from the localization system. The localization system uses GPS and IMU
sensor data and estimates the vehicle odometry using the extended Kalman filter.
The detailed specification of each sensor and environment setting is explained in

Section 5.3.

In addition to egocentric sensor data, the driving agent is also given road graph
data. A road graph is a graph which represents the topological information of a
local map. In this paper, we use a graph representation method, which is defined
in [32, 33]. The agent observes a road graph G, for every time step ¢. A road
graph Gy is a subgraph of a global graph Ggopa = (V, E). The nodes and edges
of this global graph Gy represent the topological information of the global
map data. A node n; € V represents a drivable point on the map. These points
are sampled along the centerline of road segments with an interval of 3m. An edge
ei—; represents the connection between the node n; and n;. This connection is
only valid if the ego-vehicle is allowed to drive from n; to n;. The position of node
n; and the direction of an edge e;_,; are stored in the database. During training or
test, the agent only observes a subgraph G, which contains K = 96 nearest nodes

from the agent’s position. These nearest nodes in G; are only selected among the

92

Chapter 5. Road Graph Change Detection for Autonomous Driving

nodes in front of the ego-vehicle with a small backward margin 4 = 10m. A
node feature fp,, and an edge feature f,, ,; in G; are calculated depending on the
ego-vehicle state and the topological structure of G;. In details, f,, and f., . are

defined as follows:

fni = (wnia Yn;s 1ts; 1t7‘7 1OC7 10(: : U) (51)

fel-_w' = (mei_)jayei_,j)a (52)

where (2, Yn,;) is the node position, (xe,_,,¥e, ,,) is the edge direction, v is the
ego-vehicle speed, and 1, 14, 1, are the scalar-valued binary indicators. 1y
is the traffic signal indicator meaning that the node is at an intersection. 1. is
the path indicator meaning that the node is a part of the pre-defined vehicle
path. 1, is the occupancy indicator meaning that the node is the closest node
to the ego-vehicle position. We use the ego-vehicle-centered coordinate frame to
compute the node position (y,,y»;) and edge direction (z, ,;, ¥e,_,;). The z-axis
of the coordinate frame is parallel to the orientation of the ego-vehicle.

The structure of roads in the real world can be changed due to road construction
or temporary traffic control. Therefore, in our problem setting, we assume that
some part of a global road graph G gjope; can contain a structural error due to those
road changes. Because G} is stored and loaded from a pre-constructed database
of G giobai, the structure of Gy could be different from the structure of the actual
road. In this paper, we assume that the road graph G; can be changed to G} by
road changes. The actual road graph of the environment is G}, but an agent can
only access to the pre-constructed road graph G;. Figure 5.1 explains how each
type of a road change can be applied to a road graph. In our problem setting, we

define six different types of road changes as follows:

e Lane Deviation (LD). A road can deviate in a perpendicular direction

to the road.

93

.

iving

Road Graph Change Detection for Autonomous Dr

Chapter 5.

(e) (h) (i)

Figure 5.1: An example of a road graph and road changes in the CARLA simulator. During test, an agent is met with the
actual road graph G} (left) but can only access to the pre-constructed road graph Gy (right). (a) A scene of a road during
test. (b) Corresponding BEV image. The position of the ego-vehicle is marked as a green arrow. (c) Corresponding actual
road graph G}. The nodes which are targets of changes are marked in red, and the other nodes are marked in black. (d)

Lane deviation. (e) Lane width change. (f) Lane removal. (g) Lane addition. (h) Node Missing. (i) Combination.

94

]

Chapter 5. Road Graph Change Detection for Autonomous Driving

e Lane Width Change (LWC). A lane width of a road is increased or

decreased.

¢ Lane Removal (LR). Compared with the road graph Gy, a road segment
in the actual road graph G} has fewer lanes. It means that the number of

lanes is decreased after the road change.

e Lane Addition (LA). Compared with the road graph Gy, a road segment
in the actual road graph G} has additional lanes. It means that the number

of lanes is increased after the road change.

e Node Missing (NM). A static object, such as traffic barriers, can hide a

part of the road. In this case, nodes of the road graph G; are missing.

e Combination (Comb). Some of the other road change types can be si-

multaneously applied to the road graph Gt.

During the evaluation, the agent is met with the actual road graph G} but can
access only the pre-constructed road graph G;. The detailed explanation of each

road change type is described in Section 5.3.1.

5.2 Proposed Method

In this section, we explain the proposed driving framework (RIANet++). Unlike
our prior framework in Chapter 4, the proposed framework assumes the unre-
liability of a road graph and focuses on handling it. To this end, we suggest
a detection module which can detect errors on the road graph caused by road
changes. The overall flow of the proposed framework is explained in Figure 5.2.
The road change detection module (Figure 5.2(a)) determines whether a road
change has occurred in the scene through the input camera image and the query

road graph. If a road change is not detected, the query road graph is considered

95

Chapter 5. Road Graph Change Detection for Autonomous Driving

Not Detected Controller Module 1 |-
()] (Road Graph Network)

Road Graph Data
(Unreliable)

Eo

(Not a Road Graph

Network)

Sensor Data

Figure 5.2: The structure of the proposed framework. (a) Road change detection
module. (b) Controller module for normal cases. (c¢) Controller module for road

change cases.

reliable. In this case, we use the same road graph based controller module as
RIANet (Figure 5.2(b)). However, if a road change is detected, the query road
graph is considered incorrect, and we use another controller module which ignores
this road graph data (Figure 5.2(c)). The details of the controller module and
road change detection module are explained in Section 5.2.1 and Section 5.2.2,

respectively.

5.2.1 Controller Module

As mentioned in Section 5.2, we use a road-graph controller module (Figure
5.2(b)) when a road change is not detected. However, if a road change is detected,
we use a no-road-graph controller module which is trained without road graph
data (Figure 5.2(c)).

Road-Graph Controller Module for Normal Cases. When a road change
is not detected, we use the same road graph based controller which is suggested
in Section 4.2 (road-graph controller module). The road-graph controller module

takes both road graph and ego-centric sensor data as inputs. As explained in Sec-

96

Chapter 5. Road Graph Change Detection for Autonomous Driving

tion 4.2, we use an attention network [78] for our controller module. We compute
the attention score between a road graph and image features and leverage it to
reflect the scene context. The controller module consists of three sub-modules
named a feature encoder, an attention network, and a low-level controller. First,
in the feature encoder module, each road graph and ego-enteric sensor data is en-
coded into each feature embedding. Second, in the attention network module, all
the feature embeddings are fused by the attention mechanism. Finally, the low-
level controller module computes the target speed of the ego-vehicle and controls

it with a PID controller.

No-Road-Graph Controller Module for Road Change Cases. When a
road change is detected, we control the vehicle using a different network trained
without road graph data (no-road-graph controller module). The differences be-
tween the road-graph and no-road-graph controller modules are as follows: First,
the no-road-graph controller module does not take a road graph as an input to
the network. Both road-graph and no-road-graph controller modules have similar
network structures. However, the no-road-graph controller module uses the fea-
ture fusion vector F' = Fy instead of (4.13). Second, for the steering control, the
no-road-graph controller module does not use the pre-defined path ¢ when deter-
mining the steering control value. As explained in Section 4.2.3, the road-graph
controller module uses path ¢ to determine the steering control value. However,
since the path (¢ is calculated from the road graph Ggpe, there is a concern
that a road change in G gope also occurs an inaccuracy in the path ¢. Therefore,
instead of following the path (, the no-road-graph controller module controls the
steering of the vehicle to follow the predicted waypoints {wt}thl. These waypoints
are predicted by the waypoint prediction network [11, 62] (Section 4.2.3) of the

no-road-graph controller module.

97

Chapter 5. Road Graph Change Detection for Autonomous Driving

5.2.2 Road Change Detection Module

In this section, we describe a road change detection module which is mentioned in
Section 5.2. The road change detection module uses a camera image to determine
whether the query road graph stored in the database matches with the road graph
of the current environment. In this paper, we suggest two types of matching
methods for our road change detection module: graph matching and semantic
matching. Figure 5.3 illustrates the difference between two detection methods.

Fach method has its own advantages depending on the environment.

Graph Matching Method. In the graph matching method, the detection mod-
ule first reconstructs a road graph of the current environment from a camera
image. The detection module then compares the reconstructed road graph with
the query road graph. To reconstruct the road graph, we use a method similar
to Sat2Graph [40]. First, we convert a given camera image into a 2D BEV im-
age which covers 32m x 32m area in front of the ego-vehicle with a resolution of
256 x 256. This 2D BEV image is entered into the deep layer aggregation (DLA)
[85] network and processed into a grid image of 19 channels. The first output
channel of DLA indicates the node existence probability for each pixel location
(Pz, py)- In addition, the (3¢ + 1)-th channel indicates the probability that there
exists the i-th edge in the corresponding node at (p,, py), and the (3i +2)-th and
(3¢ + 3)-th channels indicate the direction of the i-th edge. The DLA network
is trained from the dataset in a supervised learning manner. The road graph is
reconstructed from the output image of DLA. We set a threshold to determine
whether a node or edge exists in each pixel location. We use 0.1 as a threshold
for the node existence. If the probability of node existence does not exceed 0.1, it
is also determined that the edge does not exist in the node. If the probability of

node existence exceeds 0.1, we use the following distance function to determine

98

Chapter 5. Road Graph Change Detection for Autonomous Driving

‘poyjewt Suryojeut

oryuewag (q) ‘poyjewr Juryojewr yderr) (v) 'Sporyjewl U0I}0ajep a3uryD peol pasodord oY) Jo uUOIYRISN[[] :€'G 2INSI]

(Alanp)
aBew| Jnuewsas

(pa3Ipald)
agdew| o1puewas

(A1anD)
ydeuo peoy

«————
Ayejius
PREIVp)
(AuanD) (pa12onJisuoday)
ydeio peoy adew| A3g

ydelo peoy

o=
Aejwis
329YD

+EAqe|daaq [|

agew| esawe)

99

agdew| elawe)

Chapter 5. Road Graph Change Detection for Autonomous Driving

whether the i-th edge of the node w is connected to the surrounding nodes v.

dist; (u,v) = ||pu + Api, — vaQ (5.3)

+ - COSdiSt(Api; (Pu — Pw)),

where p,, and p, are the pixel locations of the nodes u and v, Ap!, is the predicted
direction of the i-th edge of the node u, cosg;s is the cosine distance between two
vectors, and « is the weight of the cosine distance. In the distance function,
the first term indicates how much the predicted position of the outgoing node
(pu + Apl,) matches with the node position (p,) and the second term indicates
how much the predicted edge direction (ApZ) matches with the edge direction
(py — pu)- In the implementation, we set a to 100. We connect the node u and v
if the i-th edge existence probability of the node u is larger than a threshold 0.1
and the distance function dist;(u,v) is smaller than a threshold 3.0.

To determine whether the reconstructed road graph matches the query road
graph, we check the similarity score between two road graphs. We use TOPO [6]
and APLS [77] as similarity scores because they are among the most widely used
metrics for checking graph similarity. To measure TOPO, we first find maximum
one-to-one matching between the nodes of two graphs (G; and Ga. In this case,
the distance between the matched nodes should not exceed 4m in the world

coordinate frame. TOPO is measured through the following equation:

2 M(G1,Go)
V(G1) +V(G2)’

TOPO(Gy, Gs) = (5.4)

where M (G1,G2) is the number of the matched nodes between G and G2, and
V(Gy) and V(G2) are the number of the nodes in Gy and G, respectively.

To measure APLS, we sample two nodes v and v in the graph G and find the
shortest path between u and v. We then find the nodes v/, v’ € G5 which are the

nearest nodes to u and v, respectively. APLS is measured through the following

100

Chapter 5. Road Graph Change Detection for Autonomous Driving

equation:

APLS(u,v) = 1 — min (1, L(“’”L)(;j()“/’”/”) : (5.5)

where L(u,v) is the shortest path length between the node u and v. If the path
between v’ and v’ does not exist, L(u',v") is considered as an infinite value. To
calculate APLS between two graphs, we sample all the valid node pairs in Gy
and use the mean value of APLS as the similarity score.

TOPO and APLS range between zero and one. Also, their values become higher

when the two graphs are more similar. Therefore, we can use both metrics to
compute the similarity score between two graphs. The graph matching based de-
tection module determines road changes when the similarity score between the
reconstructed road graph and the query road graph becomes below a detection
threshold. In the experiment, both metrics are evaluated under different condi-
tions.
Semantic Matching Method. In the semantic matching method, the detec-
tion module first predicts the camera-based semantic segmentation image using
a DeepLabv3+ [14] network. To ignore occlusions by obstacles and only consider
the road structure, we define four classification types: empty, driving area, yellow
line, and white line. During training and test, the DeepLabv3+ network ignores
occlusion and predicts the structural information of the road. In addition, the net-
work ignores the difference between a dotted line and a straight line and predicts
only the position of lines. The detection module also synthesizes the semantic
segmentation image from the query road graph. The synthesized semantic image
is compared with the semantic image predicted by DeepLabv3+. As a result, the
detection module discerns the road change through the similarity score between
two semantic images.

The process of synthesizing a semantic image from a query road graph is as

follows: First, we find the positions of the left and right boundaries for each lane

101

Chapter 5. Road Graph Change Detection for Autonomous Driving

in the graph. The width of the road is calculated from the width between the
side lane. For a one-way-one-lane road, we use a fixed lane width value of 3.5m
to find the boundaries. For a road with multiple lanes, we can find the center line
of the road from the leftmost boundary among the lanes. We draw a yellow line
along this road center line on the 2D plane. We also draw a white line for the rest
of the lane boundary positions. In the road environment setting we use, yellow
lines always take place in the center of the road, and there is no yellow line on
the edge of the road. Finally, the synthesized semantic image is transformed into
a given camera viewpoint.

To check the similarity score between the predicted semantic image and the
synthesized semantic image, we measure the mean average precision (mAP) and
mean intersection over union (mloU), which are widely used metrics for evalu-
ating the performance of semantic segmentation. The semantic matching based
detection module determines road changes when the similarity score between
two images becomes below a detection threshold. We also compare the detection

performance of both mAP and mloU in the experiments.

5.3 Experiments

In the experiments, we first show that the road graph based controller is effective
for urban autonomous driving. However, we also show that a road change in
the environment can harm the performance of the controller module. We then
demonstrate that this harmful effect can be reduced by the proposed road change

detection module in RTANet++.

5.3.1 Environments

We use two environments for our experiment: the CARLA simulator and FMTC

real-world driving environment. The CARLA simulator [25] is one of the most

102

Chapter 5. Road Graph Change Detection for Autonomous Driving

widely used urban simulators. CARLA contains various map environments from
Town01 to Town07 and includes complex scenarios such as pedestrian avoidance
and crossing intersections. To train the controller and road change detection mod-
ules, we use a dataset collected by [62]. We use Town05 for the evaluation to check
the performance of the controllers and detection modules. The Town05 environ-
ment is divided into Town05 Long and Town05 Short scenarios depending on the
length of the route distance. The road graph G gope is constructed from the HD-
map data [1] by following the method in [33]. Future Mobility Technology Center
(FMTC) is a real-world test driving facility for self-driving vehicles in Siheung,
Korea. FMTC includes urban driving scene components such as intersections,
crosswalks, and traffic lights. Figure 5.5 shows a snapshot of FMTC and the cor-
responding road graph we constructed. We collected expert data using our test
vehicle in FMTC. Figure 5.4 shows the vehicle platform and sensor configuration
we used for the experiment. The FMTC dataset includes four driving scenarios
which are illustrated in Figure 5.6. For the reality of the scenarios, each data is
collected by changing the driving lanes and allowing one or two other vehicles to
drive near the ego-vehicle. The collected dataset contains a total of 14,406 frames
with 0.5s time intervals. We take a satellite image of FMTC and manually draw
the centerline of the roads to extract a road graph from it. The positional infor-
mation in the driving dataset is also manually adjusted to reduce the localization
error. For all experiments, the networks of the controller and road change detec-
tion modules are trained once using the entire training dataset and evaluated for

each evaluation scenario.

5.3.2 Performance of Road Graph Based Controller Module

We first conduct the experiments in environments without road change conditions
to measure the performance of the road graph based controller module itself.

CARLA Environment. In the CARLA environment, we compare the proposed

103

Chapter 5. Road Graph Change Detection for Autonomous Driving

i
T

T
GPS/IMU |§:

LiDAR Sensorl

LiDAR
(Veladyns VLP-18 Hi-Res)

0.5m

GPB/IMU
(IN&-D Dual}
Helghi: 0.85m

= 0.81m
ry

Haight! 0.45m

(Velodyns VLP-18 Hi-Res)

(b)

Figure 5.4: Vehicle platform and sensor configuration. (a) Hyundai Ioniq platform
used for collecting the road graph and expert dataset. The vehicle is equipped
with a ZED camera, two Velodyne LiDARs, and a GPS+IMU based localization

system. (b) The illustration of the installed sensor configuration.

104

Chapter 5. Road Graph Change Detection for Autonomous Driving

"JULTIUOIIATS) TN 92 JO Jred v

(

q

) "DILIN Jo oSeuur dewr o1ryuo ot T,

(

15

)

‘ydersd peox Surpuodsor1o)) (0)

“JUOWUOIIATD) TJNA Jo joysdeug :g'g oms31,g

105

Chapter 5. Road Graph Change Detection for Autonomous Driving

(a) (b) (c) (d)

Figure 5.6: Illustrations of four real-world experience scenarios. Various types

of roads are used for each scenario. (a) Go straight on a straight road or an
intersection. (b) Turn right on an intersection. (c) Turn left on an intersection.

(d) Stop behind another vehicle.

controller module with the other baselines which do not use a road graph as an in-
put to the network. CILRS [20] is an imitation learning based method which uses
only a camera image, a speedometer sensor data, and a navigational command as
inputs to the network. AIM [62] is also an imitation learning based method, but
it uses LiDAR 2D BEV grid image as an additional input. Likewise, Transfuser
[62] takes the same input as AIM, but it uses the attention mechanism [78] to
fuse image and LiDAR inputs to consider the relationship between them. While
vanilla AIM and Transfuser directly follow the predicted waypoints, AIM+R and
Transfuser+R are designed to follow the pre-defined path (as done in the pro-
posed method. The predicted waypoints of AIM+R and Transfuser+R are only
used for calculating the target speed. RBC [26] is a rule-based controller which
uses a Faster R-CNN [66] to identify the locations of objects on the scene. The
details of the rules for RBC are described in Section 4.3.4.

We use three metrics for the comparison in the CARLA environment: Route
completion (RC) is the percentage of the completed route. Driving score (DS) is
the product of the route completion and the penalty weight. The penalty weights

range from 1.0 to 0.0 and decrease when the agent fails to follow the traffic rules.

106

Chapter 5. Road Graph Change Detection for Autonomous Driving

Infractions per km (IpKm) is the number of committed infractions divided by the
total traveling distance in kilometers. Examples of infractions include collisions,
running on red, and off-road driving. Higher is better in DS and RC, and lower is
better in IpKm. The details of each metric are described on the CARLA official
website [8].

Table 5.1 shows the performance comparison results between each baseline con-
troller module. Each method is tested with five different random seeds. In the
experiment, the proposed controller module shows the highest performance in all
cases. In particular, the proposed controller module shows higher performance
than Transfuser and AIM. Also, even though AIM+R and Transfuser+R follow
the same path (as the proposed controller module, they still show lower perfor-
mance. The results show that the proposed controller module outperforms the

other baseline methods by using the road graph data as an input to the network.

FMTC Real-World Driving Environment. We also compare the perfor-
mance of the controller modules in the FMTC real-world driving environment.
The results are shown in Table 5.2. Due to the limitations of our vehicle platform
and safety issues, we do not use the same comparison method as the CARLA ex-
periment. We instead compare the Ly norm between the waypoints predicted by
the waypoint prediction network [11, 62] and the expert waypoints in the evalua-
tion dataset. This Lo norm is noted in meters and shows how well each controller
network module is trained to imitate the expert’s action. Because only AIM and
Transfuser use the waypoint prediction network, we compare the proposed con-
troller module with these two baseline networks. In the result, we observe that
the proposed controller module shows the lowest Lo norm. It means that the
waypoints predicted by the proposed controller module are most similar to the
expert’s waypoints. Therefore, it can be said that the road graph network is most

effective for training urban driving controllers.

107

Chapter 5. Road Graph Change Detection for Autonomous Driving

Table 5.1: Performance comparison of controller module (CARLA)

Method

TownO05 Short

DS 1

RC 1

IpKm |

CILRS [20]
RBC [26]
AIM [62]

AIM+R [62]

Transfuser [62]
Transfuser+R [62]

21.693 £+ 1.751
49.947 + 4.966
69.917 £ 15.104
79.969 + 18.601
64.495 £+ 7.840
67.031 £ 8.800

25.762 £+ 0.807
84.016 £ 3.246
73.106 £ 19.000
82.286 £+ 19.714
70.915 £ 7.200
73.254 £ 9.837

98.141 £ 14.164
33.527 £+ 4.783
10.315 + 2.489
8.592 £ 7.382
12.059 £ 2.835
10.881 + 2.481

RIANet++ (Ours) | 87.469 + 2.363 93.881 + 3.827 6.319 + 1.419
(a) Town05 Short
Town05 Long
Method
DS 1 RC 7t IpKm |

CILRS [20] 7.889 £+ 1.047 10.751 £ 0.358 17.020 £ 1.182
RBC [26] 14.692 £ 4.019 82.866 + 7.282 6.669 £+ 0.490
AIM [62] 39.558 £ 5.056 83.018 4+ 11.477 3.424 4+ 0.248
AIM+R [62] 39.873 £ 5.005 80.251 £ 17.594 2.753 £ 0.325
Transfuser [62] 36.438 £ 8.412 96.650 £ 5.420 3.473 £+ 0.452
Transfuser+R [62] | 37.283 + 7.049 92.815 + 4.607 3.209 + 0.613
RIANet++ (Ours) | 44.719 + 2.513 96.934 + 2.927 2.624 + 0.163

(b) Town05 Long

Table 5.2: Average Lo norm in meters between the expert waypoints and the

waypoints calculated by controller module (FMTC Real-World)

Method Scenario 1 Scenario 2 Scenario 3 Scenario 4
AIM 1.026 0.674 0.640 0.362
Transfuser 0.745 0.499 0.272 0.375
RIANet++ (Ours) 0.349 0.285 0.231 0.156

108

Chapter 5. Road Graph Change Detection for Autonomous Driving

5.3.3 Performance of Road Change Detection Module

We now test the performance of the road change detection module through the
experiments. We measure the similarity score between the camera image and the
query road graph in each experiment. For positive samples, we use query road
graphs in which road change processes described in Section 5.1 are applied. On
the other hand, for negative samples, we use query road graphs in which the road
change processes are not applied. It means that the road graph in a negative
sample shows the accurate road graph of the scene. To validate the performance
of the road change detection module, we set a determining threshold for the
similarity score. We then obtain a precision-recall curve of the detection module
by changing this threshold. In each experiment, we show the average precision
computed from each precision-recall curve.

To compose training and evaluation data for road change detection, we apply
the road changes, which are described in Section 5.1, to the collected road graph
data. In the case of lane deviation change, each node in a road moves in a direction
perpendicular to the road’s tangent line. A road can deviate in both left or right
directions. The degree of a road deviation is randomly sampled from a uniform
distribution between 1.5m and 3.0m. In the case of lane width change, the degree
of a lane width change is randomly sampled from a uniform distribution between
1.0m and 1.5m. This lane width change is equally applied to all lanes on one
road segment. When a road has two or more lanes, the distance between the lane
center lines also is changed when the lane width is changed. In the case of lane
removal and lane addition, the number of lanes decreased or increased by one. In
the case of node missing, we assume that a road graph Gy can have a missing node
up to one compared with the actual road graph Gj. In the case of combination,
lane deviation and lane width change are applied to a road graph simultaneously.
In addition, one additional lane change type is randomly selected among lane

removal, lane addition, and node missing and then applied to the road graph.

109

Chapter 5. Road Graph Change Detection for Autonomous Driving

We validate two types of the proposed detection methods described in Section
5.2.2: graph matching and semantic matching. For the graph matching method,
we test TOPO [6] and APLS [77] as the similarity scores. For the semantic match-
ing method, we test mAP and mloU as the similarity scores. We also test two
baseline methods for comparison. ResNet discriminator [49] uses a ResNet-34 [37]
model and takes the camera image and the query semantic image as inputs. The
query semantic image is synthesized from the query road graph and stacked with
the camera image at a channel level. The ResNet-34 network is trained to predict
the probability of road change occurrence in the scene. By applying a threshold
on this probability, we calculate the average precision of the ResNet discrimina-
tor. Deep metric learning [42] also uses the camera image and the query semantic
image as inputs. However, in deep metric learning, two different networks encode
both camera image and query semantic image into the same feature space, and
the similarity score is calculated from the cosine similarity between the encoded
features. The encoder networks are trained with a triplet loss to make the seman-
tic image without road changes have higher cosine similarity than the semantic
image with road changes. We also calculate the average precision of the deep

metric learning method using the similarity score.

CARLA Environment. In Table 5.3, the mloU-based semantic matching method
outperforms the other methods in terms of average precision. In Town05 Short,
the semantic matching method shows the highest performance for all road changes.
In Town05 Long, the mloU-based semantic matching method also shows the high-
est performance except for lane deviation and node missing cases. However, even
in those two cases, the mloU-based semantic matching method shows no signif-
icant difference in performance from the method with the highest performance.
As a result, in the CARLA environment, we find that the proposed mloU-based
semantic matching method shows the highest performance at road change detec-

tion.

110

iving

Road Graph Change Detection for Autonomous Dr

Chapter 5.

Suo goumay, (q)

GE8°0 | LI6°'0 8P90 6€8°0 0940 S68°0 £56°0 | (Norw) Surmpiely opuwenog
L8L°0 | 9680 0,80 ¥E80 F090 0L80 6S96°0 | (dVw) Surpiepy snuewog
2090 | S09°0 L1650 2290 9950 G090 0190 | (STdV) Surpiely yder
609°0 | 2090 6850 8090 0190 €190 9290 | (OdOL) Surprey ydern
9GL°0 | 628°0 LL9°0 G690 8€9°0 FE80 LS80 | [gp] Suturee ooy deo
99%°0 | TLP°0 9SP°0 L8F0 9EF0 SLF0 89F°0 | [6F] IoreurmuLiosiq joNsoY
oferay | quoy | NN | VT T | OMT | a1
ainsygyuo))
3uorT goumoq,
10Yg ¢oumay, ()
8€8°0 | 0T6°0 S09°0 €I6°0 PEL'0 TI6°0 €S6°0 | (NOTW) Sumpiely opueudg
T6L0 | L88°0 €S0 TO60 08G0 2880 19670 | (dvur) Surypjely onurwog
I19°0 | 6090 SI9°0 9790 99¢°0 1090 9290 | (STIdV) Sumprey ydern
PRG'0 | F6S0 0260 9860 €L8°0 €650 8850 | (OJOL) Sumprey ydern
GL90 | €4L°0 8L5°0 LPL0 €950 IS0 ¢SS0 | [gv] Sutures otyely deeq
LEFO | €670 TIF0 @6F0 66€0 98P0 €SF0 | [6F] toreurmuiosiq joNsoy
ogeIoAy | quop | AN | VT T | OMT | aT
ainsyguo))
}OYS GOUMO,

(VTHVD) uorsmoald agetose A o[npoul UOI}9)0P 98URYD PROI JO UOSLIRdUIOD 90URULIOLIDJ (€'G 9[qR],

111

Chapter 5. Road Graph Change Detection for Autonomous Driving

FMTC Real-World Driving Environment. In Table 5.4, the mloU-based
semantic matching method also shows the highest performance in lane deviation
and lane width change cases. However, on average, the method with the highest
performance is the TOPO-based graph matching method. Even though it does not
shows the highest average precision, the mloU-based semantic matching method
still shows a higher performance compared with ResNet discriminator [49] and
deep metric learning [42] in average cases. We analyze the causes of degradation
in the semantic matching method in the FMTC environment. Compared with
the CARLA dataset, it is observed that the FMTC dataset contains more local-
ization errors. Even though we manually adjust the errors in the training data,
the errors are not adjusted for the evaluation data. The localization errors can
cause viewpoint discrepancy when synthesizing a semantic image from a query
road graph. Therefore, localization errors can result in the synthesis of the wrong
semantic images, which consequently interferes with accurate calculations of the

similarity score and the performance of the detection module.

5.3.4 Robustness of Controller under Road Change Condition

In this experiment, we verify that the road change detection module can actually
increase the robustness of the controller under the road change condition. The
proposed method (RIANet++) uses both the detection module and controller
module as described in Section 5.2 while RIANet uses only the controller module
and does not detect road changes.

CARLA Environment. In the CARLA environment, we randomly select three
road segments among the roads on the entire route and apply road changes. In
addition, the types of applied road changes are also randomly selected for each
scenario. For the road change detection module in RIANet++, we use the seman-
tic matching method in the CARLA environment. We use mloU as the similarity

score, and the detection threshold is set to 0.46. The results of the experiment

112

iving

Road Graph Change Detection for Autonomous Dr

Chapter 5.

969°0 | 98¢0 9690 STF0 FI90 0LL0 €S8°0 | (NOo[w) Surgpjey orjueog
7SO0 | 869°0 2GS0 F090 6FS0 90L0 TIS0 | (dvw) Sumpiepy onuewog
0S9°0 | €89°0 2g90 G990 0F90 6090 €890 | (STJV) Surpprey ydery

669°0 | €64°0 669°0 92L0 8¥9°0 T10L0 6990 | (OdOL) Suryorey yder)
LeV0 | 0870 €0V0 €EF0 ASF0 FEF0 PIF0 | [of) Surwres otnoy des(q
G9E'0 | €FE0 89¢°0 8FE0 80F0 L9€0 GSE0 | [6F] toyeurwnmsiq joNsOY
aferoay | quoy | AN | VT 1 | OMT | d1

ainsygyuo))
PIIOM -TedY DILINA

(PTIOAN-TRY DLINMA) uoisald odeiosr AQ 9[NPOU UOIID9JOP 9FURYD PROI JO UOSLIRAUWIOD 90URULIONO] F'G O[qR],

113

Chapter 5. Road Graph Change Detection for Autonomous Driving

are shown in Table 5.5. We observe that RIANet shows a performance degrada-
tion under the road change conditions, and it demonstrates that the performance
of the road graph based controller can be vulnerable to road changes. On the
other hand, RIANet++ shows robustness against road changes, and it shows
the performance which is similar to the case when there is no road change. The
result demonstrates that the road change detection module in RIANet++ can
relieve the controller module’s performance degradation which is caused by road
changes.

FMTC Real-World Driving Environment. We also conduct a similar exper-
iment in FMTC. We test RIANet and RIANet++ in both road change condition
cases and without road change condition cases. In the road change condition case,
road changes are applied to one randomly selected road on the route, and the type
of road change is also randomly selected. For the road change detection module in
RIANet++4, we use the graph matching method in the FMTC environment. We
use TOPO [6] as the similarity score, and the detection threshold is set to 0.49.
Similar to Section 5.3.2, we compare the Lo norm accuracy of the predicted way-
points between RIANet and RIANet++. We show the average experiment results
for each scenario in Table 5.6. In the results, RIANet and RIANet++ generally
show lower performance when road changes are applied. However, the errors of
RIANet are increased by 5.779% on average in the road change condition, while
the errors of RIANet++ are only increased by 2.411% increase on average. The
results show that the proposed RIANet++ is more robust to road changes and

shows more consistent performances than RIANet.

5.4 Chapter Summary

In this chapter, we have proposed a road graph based autonomous driving frame-

work which is robust to road changes. For urban driving, the proposed framework

114

iving

Road Graph Change Detection for Autonomous Dr

Chapter 5.

Suoy goumoy, (q)

88%°0- 878°¢- 886°T- do1(] @ouRULIOLID]
889°0 F ¢I€'€ 8TLV FTGT'96 9€¢’L F 92L'6¢ sok
++19NVIY
L2T’0 F ¥20'€ 0000 F 000°00T 886°€ F VILTIV ou
T1¢°1- 18T L1- G66'91- dox(] 9OURTLIOLId]
€80'T F CET'F ¥I€'9 F €996L VIGL F VeL'LT sok
PNVIY
€9T°0 F ¥29'C LT6'C F ¥€6'96 €19°C F 61LTF ou
T wdg Loy }sa soguey)
2Ins8ygyuo))
SuorT goumaq, peoyg
10Yg ¢oumay, ()
V81'C- 890°C- 90L°€- do1(] 9ouRULIOLID]
L8T°C F 1868 T196'€ F ¥96'76 LVS€ F 73T €8 soAk
++19NVIY
9T9'T F LEL'9 LG9°C F TE0'L6 096'¢ F 0€6'98 ou
069°6- 60G°¢- LGT €T~ dox(] 9OURTLIOLId]
eTL'T F 60091 9S6'F F TLE06 T06°€ F CT0TL sok
PNVIY
6I7'T F 619 LZS'E F I8RE6 €96°C F 69728 ou
T wydg Loy }sa soSuey)
aandyuo)
3107 GOUMOL, peoy

(VTHVD) SuorIpuod o3ueid peol 1opun ++39NVIY JO ADU0ISISUOD 90URULIONIO] GG 9[R],

115

iving

.

Road Graph Change Detection for Autonomous Dr

Chapter 5.

Table 5.6: Performance consistency of RIANet++ under road change conditions (FMTC Real-World)

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Average Ly Norm Increase

Road Changes | no yes no yes no yes no yes | Due To Road Changes (%)
RIANet 0.349 0.364 | 0.285 0.300 | 0.231 0.247 | 0.156 0.169 5.779
RIANet++ 0.393 0.392 | 0.209 0.226 | 0.210 0.211 | 0.142 0.148 2.411

116

Chapter 5. Road Graph Change Detection for Autonomous Driving

captures the scene context by fusing road graph image data through the attention
mechanism. In addition, we introduce road change detection methods to solve the
unreliability issue of road graphs. By measuring the similarity between the road
graph and image data, the proposed framework can consider the reliability of the
road graph when deciding the control output. We successfully applied it to driving
environments such as the CARLA simulator and the FMTC real-world driving
environment. In the experiments, we have shown that the detection module in
the proposed framework can successfully detect road changes in road graphs. As
a result, the proposed framework outperformed other baselines and showed stable

control performance even in conditions where the road graphs are inaccurate.

117

Chapter 5. Road Graph Change Detection for Autonomous Driving

118]
’;r“‘-'! 'k':l i 1—]

| &1

Chapter 6

Conclusion

In this dissertation, we have investigated several methods for utilizing road infor-
mation in autonomous driving. We have proposed a representation method which
provides road information in the form of a graph. We have also proposed effective
network architectures which can handle the proposed representation. In addition,
we have dealt with several issues which can arise when using a road graph in the

real world.

In Chapter 3, we have proposed an autonomous driving framework, named road
graphical neural network (Road-GNN), which can leverage road information for
driving. The road information is represented by a graph which includes the road
connection and vehicle features. In the experiment, we evaluated the baseline
methods in various roundabout environments. We experimentally demonstrated
that the proposed method outperforms the other non-road-graph-based methods.
The results have shown that representing the road environment state with a road

graph can be effective for autonomous driving.

In Chapter 4, we have improved Road-GNN and proposed a sensor fusion
based driving framework named road and image attention network (RIANet).

In RIANet, we have represented the road environment state by combining road

119

Chapter 6. Conclusion

information, camera image, and other sensor data. The proposed network fuses
the input data by attention mechanism [78]. Through the attention mechanism,
the proposed network is designed to consider the importance of objects according
to the road structure. In the experiment, we have demonstrated that the fusion-
based method can enhance driving performance. In addition, we have shown that
the proposed network can successfully attend to important features when driving
in a complex road environment.

In Chapter 5, we have proposed a method that can detect an error in a road
graph and thereby prevent performance degradation caused by the error. The
proposed method can detect a changed part of a road graph and ignore the road
graph when a road change is detected. We also have combined the proposed
detection method with RIANet. By combining the road change detection mod-
ule and the controller module, we have suggested a robust driving framework
named RIANet++4. In the experiment, we have shown that the proposed driving
framework can improve the worst-case performance of the controller by selecting

between a road-graph-based and non-road-graph-based network.

120

Appendices

121

2 A &8t

SECRIL WATCeAL LIMNVERSTY

Appendix A

Collected map images of

roundabout environment

Figure A.1 shows examples of roundabout images we collected.

123

Appendix A. Collected map images of roundabout environment

Figure A.1: Examples of collected map images.

124

Appendix B

Map image and road graph of
CARLA Town05

As explained in Section 4.3.2, a global road graph Ggpe is constructed from
HD-map data of a CARLA town. Figure B.1 shows an example of HD-map data
and the corresponding G giopar, which are from the CARLA Town05 [25].

A more detailed example of a road graph construction is shown in Figure
B.2. Figure B.2(a) visualizes a part of HD-map in the CARLA Town05. The
corresponding road graph is shown in Figure B.2(b). In the CARLA simulator,
the captured HD-map and road graph represent a four-way intersection. Figure

B.2(c) shows a BEV image of this intersection in the CARLA simulator.

125

Appendix B. Map image and road graph of CARLA Town05

(b)

Figure B.1: HD-map and global road graph of Town05. (a) HD-map. (b) Global
road graph.
126

Appendix B. Map image and road graph of CARLA Town05

1

(

Figure B.2: A part of Town05 map example (a) A part of HD-map. (b) Corre-
sponding road graph. (c) Corresponding BEV image of the road in the CARLA

simulator.

127

Appendix B. Map image and road graph of CARLA Town05

128

Appendix C

Details of CARLA evaluation

metrics

As described in Section 4.3.5, we use three metrics for evaluation in the CARLA
simulator: route completion (RC), driving score (DS), infractions per km (IpKm).
Here, we describe the details of the metrics. We follows the descriptions on the
CARLA official website [8].

Route completion (RC) is the percentage of the completed route length relative
to the total route length. The route completion of the i-th route is denoted as
R;.

Driving score (DS) is the product between the route completion and the penalty

weight. The driving score of i-th route is formulated as follows:
DS = R; P, (C.1)

where P; is the penalty weight of the i-th route. The penalty weight P; starts
from 1.0 and multiplied by a coefficient when the agent commits an infraction.

The penalty weight P; is formulated as follows:

Pi _ 1_[pj;ééinfractionsj7 (02)
J

129

Appendix C. Details of CARLA evaluation metrics

Table C.1: Infraction and corresponding coefficient

Infraction Coeflicient
Collisions with pedestrians 0.5
Collisions with other vehicles 0.60
Collisions with static elements 0.65
Running a red light 0.70
Running a stop sign 0.80

(a) Infraction with a coefficient

Infraction Coefficient

Off-road driving -

Route deviation -

Agent blocked -

Route timeout -

(b) Infraction without a coefficient

where j is the type of an infraction, p; is the corresponding coefficient of an infrac-
tion, and #infractions; is the number of an infraction committed. The types of
infractions and corresponding coefficients are shown in Table C.1. Here, a infrac-
tion without a coefficient is not counted when computing P;. Instead of reducing
the penalty weight, a infraction without a coefficient affects the computation of
the route completion (off-road driving) or terminates the simulation (route devi-
ation, agent blocked, and route timeout). If an agent causes an off-road driving
infraction, the distance traveled with off-road driving is not considered when com-
puting a route completion R;. In addition, if an agent causes a route deviation,

agent blocked, or route timeout infraction, the simulation is terminated.

Infractions per km (IpKm) is the total number of infractions divided by the

total distance traveled. All the infractions shown in Table C.1 are considered

130

Appendix C. Details of CARLA evaluation metrics

when computing the infractions per km regardless of whether a infraction has a

coefficient or not.

131

Appendix C. Details of CARLA evaluation metrics

132

Appendix D

Detailed results of CARLA

experiment in Chapter 4

We report details of the experiment results which are provided in Section 4.3.5 and
Section 4.3.8. As described in Section C, there are eight types of infractions in the
CARLA simulator: collisions with pedestrians (Ped), collisions with other vehicles
(Veh), collisions with static elements (Static), running a red light (Red), running
a stop sign (Stop), off-road driving (Off), route deviation (Dev), agent blocked
(Blocked), route timeout (TO). We report infractions per km for each type of
infraction (Ped pKm, Veh pKm, Static pKm, Red pKm, Stop pKm, Off pKm,
Dev pKm, Blocked pKm, TO pkm). The number of each infraction is divided
by the total distance in kilometers traveled. We also report the total distance
traveled (Distance), but Distance here is reported in meters. In Table D.1 and
D.2, we provide the mean and standard deviation of the results of the performance
comparison on Town05 Short and Town05 Long. Each method is trained and
evaluated with five different random seeds in the performance comparison. In
Table D.3 and D.4, we provide the mean and standard deviation of the results of

the ablation study on Town05 Short and Town05 Long. Each method is trained

133

Appendix D. Detailed results of CARLA experiment in Chapter 4

and evaluated with three different random seeds in the ablation study.

134

Appendix D. Detailed results of CARLA experiment in Chapter 4

90L°C F ¥#8¢99 0I8'T F¥< 9290 F €1£0 00070 F 0000 000°0 F 0000 | (SMQO) PNVIY
9669 F 86L°1S 060°C F 689°T ¢60°¢ F 9¥0°C 000°0 F 0000 0000 F 0000 | [¢9] Y+Iosnysuely,
160°C F #PT°0S 9%CC F €10°€ 625 F8¢9F 00000 F 0000 0000 F 0000 | [c9] wosnysuedy,
IP6°€T F G8I'8S G88'€ F 067'€ €10°C F S6¢'€ 00000 F 0000 0000 F 0000 [29] M+INIV
98T €T F ¥69°TC 968°¢ F €28°¢ GSZ€ F IFPRE 0000 F 0000 G96°0 F S9L°0 [c9] NIV
G62°¢ F 80F' 68 ¥G2'0 F €7L°9 0000 F 0000 0000 F 0000 0000 F 0000 l92] Dau
0L8°0 F LTIG'ST 9V0'€ F ¥¢861 0V9°C F 9ST'C 898°0 F GL¥'Le LSST F €6%°GT [0g] STHID
J () eouessi(y Twyd 01, T uyd poporg 1 wryd asg T uyd go POYIIA
000°0 F 0000 8160 F 666c 00000 F 0000 9950 F €820 000°0 F 0000 | (SMQO) PNVIY
000°0 F 0000 SLST FOFTF 0000 F 0000 0000 F 0000 0000 F 0000 | [c9] H+Iosnysuedy,
000°0 F 0000 99%'¢ F 60F'F 00000 F 0000 000°0 F 0000 00070 F 0000 | [c9] Tesnysuedy,
000°0 F 0000 LPL'0 F 0190 LGL°0 F 2860 8190 F 60£0 00070 F 0000 [29] M+INTV
000°0 F 0000 0€8'T FG9F'T 8190 F 60£°0 00070 F 0000 0000 F 0000 [c9] NIV
000°0 F 0000 €ET°€ F 92¢'8T 0000 F 0000 &L69 F 482’8 0000 F 00070 l9g] Day
0000 F 0000 ¥96'C F 9LLL 099F F 086:0% T1.L0F F 8€F'F 0000 F 0000 [0z] STUID
T uryd doyg T uryd pay T wrypd oryesg T uryd qap T uryd pag POUIRIN

MOYS GOUMQT, Uur uostredwo)) 90urWLIONDJ 1" (T 9[RBT

135

Appendix D. Detailed results of CARLA experiment in Chapter 4

Table D.2: Performance Comparison in Town05 Long

Method Ped pKm | Veh pKm | Static pKm | Red pKm | Stop pKm |
CIRLS [20] 0.000 &+ 0.000 2.356 £+ 1.258 0.895 + 0.030 2.846 £ 1.000 0.000 £ 0.000
RBC [26] 0.000 + 0.000 1.547 + 0.290 0.019 £ 0.039 3.550 £ 0.312 1.278 £+ 0.146
AIM [62] 0.000 = 0.000 0.426 £ 0.241 0.036 £ 0.072 1.194 £+ 0.381 1.102 £ 0.243
AIM+R [62] 0.000 + 0.000 0.301 £ 0.158 0.000 £ 0.000 0.945 + 0.427 1.020 £+ 0.361
Transfuser [62] 0.000 + 0.000 0.455 + 0.262 0.016 £ 0.032 1.446 £ 0.210 1.226 £ 0.202
Transfuser+R [62] | 0.000 £+ 0.000 0.482 + 0.287 0.000 £+ 0.000 1.594 + 0.345 0.989 £+ 0.183
RIANet (Ours) 0.000 £ 0.000 0.308 £ 0.202 0.000 £ 0.000 1.087 £ 0.196 1.178 £ 0.133
Method Off pKm | Dev pKm | Blocked pKm | TO pKm | Distance (m) 7
CIRLS [20] 1.971 £ 0.693 6.260 &£ 0.549 2.506 & 0.371 0.184 £ 0.369 111.853 £ 3.872
RBC [26] 0.000 £ 0.000 0.000 £ 0.000 0.255 £ 0.126 0.019 £ 0.038 991.296 £ 102.054
AIM [62] 0.281 + 0.071 0.017 £ 0.034 0.342 £ 0.288 0.024 £ 0.049 1005.030 £ 156.295
AIM+R [62] 0.000 £ 0.000 0.000 £ 0.000 0.456 £ 0.418 0.032 £ 0.063 961.508 £ 237.002
Transfuser [62] 0.236 =+ 0.141 0.000 £ 0.000 0.094 £ 0.107 0.000 £ 0.000 1149.862 + 92.545
Transfuser+R [62] | 0.000 = 0.000 0.000 £ 0.000 0.145 £ 0.077 0.000 £+ 0.000 1127.488 + 77.393
RIANet (Ours) 0.000 = 0.000 0.000 £+ 0.000 0.035 £ 0.040 0.000 £ 0.000 1188.881 + 44.585

136

Appendix D. Detailed results of CARLA experiment in Chapter 4

90L°C + ¥8€'99 OI8'T + ¥2Ll'C 9¢9°0 + €1€°0 0000 + 000°0 000°0 + 000°0 e
G6G°C + 64869 GE€I9'T F+ TIL'V 0000 + 000°0 0000 + 000°0 000°0 + 000°0 uvdar-ou
TE8V + LET'99 LPL0 F 670°1T 98G'T F IGT'T 0000 F 0000 000°0 F 000°0 | dFewI-[eqo[3-ou
66S7V + VG179 8010 + L9G°1 8¥S¢'T + A8T°¢ 0000 + 000°0 000°0 + 000°0 Uor3o939p-ou
8¢G'¢ + €19°L9 T10L°0 + G670 I€L°0 F L1S°0 0000 F 000°0 000°0 F 0000 | yders-peor-ou
J (wr) soueysiq T uwyd OL T wyd poyoorg T wyd as(T wyd go 2ansguo))
0000 + 000°0 8I6°0 + 666°C 0000 + 000°0 9990 + €8¢'0 0000 + 000°0 Hoepd
0000 + 000°0 LT19°0 + 9P9°S 0000 + 000°0 000°0 + 000°0 000°0 + 00070 uvdarr-ou
0000 F 0000 €6%'¢ F 1€5°02 0000 F 0000 L¥L'0 F 6¥V0'T 000°0 F 0000 | o8eur-[eqo[s-ou
000°0 + 0000 Pc€0 F 00LF 000°0 + 000°0 0000 + 0000 000°0 + 000°0 UOI3I93ep-ou
0000 + 000°0 Lev'¢ F+ ¢9¢'9 0000 F 000°0 000°0 F 000°0 000°0 F 0000 | ydeis-peor-ou
1 wryd dogg 1 wrypd pey 1 wyd oryesg 1 urypd oA 1 wrypd pag ainsyuo))

MOTUS GOUMOT, UT ApNI§ UONRIQY €' O[qBL,

137

Appendix D. Detailed results of CARLA experiment in Chapter 4

Table D.4: Ablation Study in Town05 Long

Configure Ped pKm | Veh pKm | Static pKm | Red pKm | Stop pKm |
no-road-graph | 0.000 + 0.000 0.515 + 0.167 0.000 + 0.000 1.382 + 0.230 1.138 £ 0.176
no-detection 0.000 4+ 0.000 0.490 + 0.112 0.000 4+ 0.000 1.226 4+ 0.058 1.253 £ 0.129
no-global-image | 0.000 £+ 0.000 0.434 + 0.177 0.000 + 0.000 2.854 + 0.379 1.030 £+ 0.279
no-LiDAR 0.000 + 0.000 0.268 £ 0.163 0.000 &+ 0.000 1.481 + 0.235 1.196 £ 0.075
Default 0.000 + 0.000 0.308 £ 0.202 0.000 4+ 0.000 1.087 + 0.196 1.178 £ 0.133
Configure Off pKm | Dev pKm | Blocked pKm | TO pKm | Distance (m) 1
no-road-graph | 0.000 £+ 0.000 0.000 + 0.000 0.000 £ 0.000 0.000 4+ 0.000 1230.079 + 0.000
no-detection 0.000 + 0.000 0.000 £ 0.000 0.028 + 0.039 0.000 £ 0.000 1222.604 + 10.571
no-global-image | 0.000 4+ 0.000 0.000 + 0.000 0.213 £+ 0.036 0.032 + 0.046 1092.108 + 43.847
no-LiDAR 0.000 + 0.000 0.000 £ 0.000 0.032 + 0.045 0.000 + 0.000 1168.486 + 87.105
Default 0.000 + 0.000 0.000 £ 0.000 0.035 & 0.040 0.000 £ 0.000 1188.881 =+ 44.585

138

Appendix E

Detailed results of CARLA

experiment in Chapter 5

We report details of the experiment results which are provided in Section 5.3.4.
We use the same metrics which are explained in Appendix D: Ped pKm, Veh
pKm, Static pKm, Red pKm, Stop pKm, Off pKm, Dev pKm, Blocked pKm,
TO pkm, and Distance. In Table E.1 and E.2, we provide the mean and standard
deviation of the results of the performance comparison on Town05 Short and
Town05 Long. Each method is trained and evaluated with five different random

seeds in the performance comparison.

139

Appendix E. Detailed results of CARLA experiment in Chapter 5

Table E.1: Performance consistency of RIANet++ under road change conditions (CARLA Town05 Short)

Configure | Road Changes | Ped pKm | Veh pKm | Static pKm | Red pKm | Stop pKm |
A no 0.000 £ 0.000 0.283 4+ 0.566 0.000 £+ 0.000 2.999 + 0.918 0.000 £ 0.000
RIANet
yes 0.000 + 0.000 3.058 + 1.505 0.316 + 0.631 6.311 + 2.201 0.000 + 0.000
no 0.000 4+ 0.000 0.301 + 0.602 0.000 + 0.000 5.260 + 1.492 0.000 + 0.000
RIANet++
yes 0.000 + 0.000 0.583 + 0.714 0.318 £ 0.635 5.302 + 2.096 0.000 + 0.000
Configure | Road Changes Off pKm | Dev pKm | Blocked pKm | TO pKm | Distance (m) 1
A no 0.000 4+ 0.000 0.000 + 0.000 0.313 + 0.626 2.724 + 1.810 66.384 + 2.706
RIANet
yes 1.536 + 1.396 0.342 + 0.684 0.000 4+ 0.000 4.447 4+ 1.411 63.903 + 3.504
no 0.000 4+ 0.000 0.000 + 0.000 0.300 + 0.600 0.875 + 0.715 68.612 + 1.879
RIANet++
yes 0.601 £ 0.738 0.000 4+ 0.000 0.000 £ 0.000 2.118 4+ 0.827 67.150 + 2.801

140

Appendix E. Detailed results of CARLA experiment in Chapter 5

98L°LYy + ¢80°¢6IT 000°0 + 0000 TL0°0 + €500 000°0 + 0000 8LO0 + S0€°0 sok
++INVIY
000°0 + 6£0°0€¢T 000°0 + 000°0 000°0 + 0000 000°0 + 000°0 €80°0 + €6¢°0 ou
00006 + ¢0€976 1S0°0 + ¢v0'0 G80°0 + LGC°0 8G0°0 + LVO'O LLT'O + 6C1°0 sok
PNVIYH
G8G'¥¥ + I88'88IT 0000 + 00000 0O¥0°0 + G€0°0 000°0 + 0000 000°0 + 000°0 ou
() eouessi(y Tuyd 01, tundpeporg funpdasq fuyd yo | seluey) peoy | aandguo)
9¢1'0 + 6211 86¢°0 + 6.LC'T T¥00 +7€0°0 G€C0 + ¢I14°0 000°0 + 000°0 sok
++INVIYH
0€¢’0 + 8ET'T 8LT°0 + 10€'T 0000 + 0000 §90°0 + €6¢°0 0000 + 000°0 ou
78¢°0 + 89C'1 LE¢0 F LvE'T €80°0 F 480°0 0290 + 0960 000°0 + 0000 sok
PNVIYH
€ET'0 + 8LT'T 961°0 + 280°'T 0000 + 0000 ¢0c'0 + 800 0000 + 000°0 ou
1 urypd dogg 1 urypd poy 1 uryd orgesg 1 wrypd e T wyd pog | seSuey) peoy | oan3guo))

(8uorT coumo], VIHV)) SUOIIPUOD 93URYD PROI I9PUN +-+JoN VY JO ADUSISISTOD 90URULIONSJ g H d[qR],

141

Appendix E. Detailed results of CARLA experiment in Chapter 5

142 y
’;r“‘-'! 'k':l i 1—]

| &1

Appendix F

Examples of FMTC real-world

dataset scenarios

We display examples of each FMTC real-world dataset scenario described in
Section 5.3.1 and Figure 5.6. Figure F.1 shows examples of the FMTC dataset
in scenario 1 (Go straight). Figure F.2 shows examples of the FMTC dataset
in scenario 2 (Turn right). Figure F.3 shows examples of the FMTC dataset
in scenario 3 (Turn left). Figure F.4 shows examples of the FMTC dataset in

scenario 4 (Stop behind another vehicle).

143

Appendix F. Examples of FMTC real-world dataset scenarios

Time

Scenario 1-1

Time

Scenario 1-1

Time

Scenario 1-2

Time

Scenario 1-2

Figure F.1: FMTC dataset example (Scenario 1: Go straight).

144

Appendix F. Examples of FMTC real-world dataset scenarios

(WSu wing, :g oureusdg) o[durexs jaseiep D LINA ¢’ d 2SI

¢-C OLIRUAOG

SOGL =17 SGEL =1 S0¢l =17 SG 0L =1

oL,

¢-C OLIRUAOG

ow,

1-g OLIRUdDG

SOGTL =1 SG L =1 S0¢l =1 SG 0T =1 506 =1

ou,

1-C OLIRUAOG

SG'L=1 09 =1 S¢y =1 S0'€ =1 S¢'T=1

o,

145

]

Appendix F. Examples of FMTC real-world dataset scenarios

Time

t=1.58 t =3.0s t =4.58 t =6.0s t="7.5s

Scenario 3-1

Time

t =12.0s t =13.5s t =15.0s

Scenario 3-1

Time

Scenario 3-2

Time

t = 13.5s t =15.0s

Scenario 3-2

Figure F.3: FMTC dataset example (Scenario 3: Turn left).

146

Appendix F. Examples of FMTC real-world dataset scenarios

“(oo1yeA

Iotjoue puryaq dojg :y OLIRULdg)

ordurexs jeseyep DIINA F o 2mS1q

i‘“

J“

¢~ OLIRUAOG

J_
SOGT =1 SGEL =1 s0¢cl =1 SG 0T =1 506 =1 ouILT,
¢-F oLreusog
L |
s¢'L=1 S0°9 =1 S¢yv =1 S0¢ =1 SGT=1 QuILT,

1-f OLIRUdOG

SO°GT =17

SGEL =1

S0¢cl =1

SG 0T =1

506 =1

ou,

1-% OLIBRUOOG

s¢'L=1

S09=1

S0'€ =1

o,

147

Appendix F. Examples of FMTC real-world dataset scenarios

148

Appendix G

Effect of localization error on

road change detection accuracy

We investigate the effect of localization error on road change detection accuracy.
Figure G.1 shows the detection module’s average precision according to the lo-
calization error in the CARLA environment. The average precision is calculated
as the mean of the average precision for all types of road changes. The exper-
iments are conducted in Town05 Short (Figure G.1(a) and Figure G.1(c)) and
Town05 Long (Figure G.1(b) and Figure G.1(d)) environments. To show the effect
of localization error, we add zero-mean Gaussian noise to the estimated vehicle
positions, which are used to synthesize the query road graph in Section 5.2.2.
Gaussian noise is added to each position value (Figure G.1(a) and Figure G.1(b))
and the yaw value (Figure G.1(c) and Figure G.1(d)), respectively. We change
the standard deviation of the noise to observe how the average precision of the

detection module is degraded according to the noise level.

In each experiment, RD stands for ResNet discriminator [49], and DML stands
for deep metric learning [42]. GM-TOPO and GM-APLS stand for the graph
matching methods, which use TOPO [6] and APLS [77] as similarity scores. Also,

149

Appendix G. Effect of localization error on road change detection
accuracy

SM-mAP and SM-mloU stand for the semantic matching methods, which use
mAP and mloU as similarity scores. In the experiments, the semantic matching
method shows the highest performance when there are zero noises. However,
as the noise level increases, the semantic matching method shows a significant
decrease in performance. On the other hand, the graph matching method is not
significantly affected by the noise level. The results show that the graph matching

method is more robust to localization errors than the semantic matching method.

150

Appendix G. Effect of localization error on road change detection

accuracy

Position Error (Town05 Short)

RD

DML
GM-TOPO
GM-APLS
SM-mAP
SM-mloU

IEERE

Mean AP

0 1 2 3 4 5
Standard Deviation of Gaussian Noise (m)

(a)

Yaw Error (Town05 Short)

Mean AP

6 5‘ 1‘0 1‘5 2‘0 25
Standard Deviation of Gaussian Noise (deg)

(c)

Mean AP

Mean AP

Position Error (Town05 Long)

0.85

0.80 1

0.75 4

0.70

0.65 4

0.60

0.55 7

0.50 4

0.45 -

1 2 3 3 5
Standard Deviation of Gaussian Noise (m)

o

(b)

Yaw Error (Town05 Short)

0.85

0.80 1

0.75 4

0.70 1

0.65 4

0.60

0.55 7

0.50 4

0.45 -

T T T
o] 5 10 15 20 25

Standard Deviation of Gaussian Noise (deg)

(d)

Figure G.1: Effect of localization error on road change detection accuracy. (a)

Effect of position error in Town05 Short. (b) Effect of position error in Town05

Long. (c) Effect of yaw error in Town05 Short. (d) Effect of yaw error in Town05

Long.

, .H _ 1_'.]'| &

]

1

n’

Appendix G. Effect of localization error on road change detection
accuracy

152

&

| &1

Appendix H

Analysis of detection accuracy
according to the degree of road

changes

We conduct a quantitative analysis of the detection accuracy according to the
degree of road changes. Figure H.1 shows the detection module’s average preci-
sion according to the degree of road changes in the CARLA environment. The
experiments are conducted in Town05 Short (Figure H.1(a) and Figure H.1(c))
and Town05 Long (Figure H.1(b) and Figure H.1(d)) environments. Figure H.1(a)
and Figure H.1(c) show how the detection accuracy is changed according to the
degree of lane deviation. Likewise, Figure H.1(b) and Figure H.1(d) show how
the detection accuracy is changed according to the degree of lane width change.

In each experiment, RD stands for ResNet discriminator [49], and DML stands
for deep metric learning [42]. GM-TOPO and GM-APLS stand for the graph
matching methods, which use TOPO [6] and APLS [77] as similarity scores.
Also, SM-mAP and SM-mloU stand for the semantic matching methods, which

use mAP and mloU as similarity scores. For both graph matching and semantic

153

Appendix H. Analysis of detection accuracy according to the degree
of road changes

matching methods, the average precision increases as the degree of lane deviation
increases. As the lane deviation increases, the difference between the accurate
and changed road graphs increases as well. For this reason, the accuracy of the
detection module that distinguishes the two differences between them seems to
increase. In lane width change cases, the accuracy of the graph matching method
increases as the degree of lane width change increases. However, the accuracy of
the semantic matching method does not show increases when the degree of the
width change becomes large. From this result, we can conclude that an increase
in the degree of road change generally increases the discriminating performance
of the detection module, but does not always increase depending on the type of

road change.

154

Appendix H. Analysis of detection accuracy according to the degree

of road changes

Lane Deviation (Town05 Short)

s Py Y
" * *—r—"RD"—%

SM-miloU

1 2 3 4 5
Deviation (m)

(a)

Lane Width Change (Town05 Short)

RD
0.9 1

\,:o—-emﬂem)
—e— GM (APLS)

0.8
SM (MAP)

—&— SM (mloU)
0.7 1

o
<
0.6 4 -
————eo— "
0.5
0.4 ///
T T T T T
05 10 15 2.0 2.5

Width Change (m)

(c)

AP

AP

Lane Deviation (Town05 Long)

0.9 1

0.8 1

0.71

0.6 1

0.5

o Py Py

b

SM (mloU)

0.9 1

0.8 1

0.7

0.6

0.5+

1 2 3 4 5
Deviation (m)
(b)
Lane Width Change (Town05 Long)
—— RD
—+— DML
PQ)
GM (APLS)
SM (mAP)

—&— SM (mlou)

05 1.0 15 2.0 25
Width Change (m)

(d)

Figure H.1: Analysis of detection accuracy according to the degree of road

changes. (a) Effect of lane deviation in Town05 Short. (b) Effect of lane devi-

ation in Town05 Long. (c) Effect of lane width change in Town05 Short. (d)

Effect of lane width change in Town05 Long.

, .H

; 1_'_” (o]

]

1

n’

Appendix H. Analysis of detection accuracy according to the degree
of road changes

156

Appendix 1

Ablation study about
performance consistency in

CARLA environment

For ablation studies, we compare the performance of Road-GNN (Chapter 3),
RIANet (Chapter 4), and RIANet++ (Chapter 5) in the CARLA simulator.
Similar to the experience in Section 5.3.4, we conduct each method both with
and without road change conditions. In Road-GNN, the controller follows the
pre-defined path as like RTANet and RIANet++. However, Road-GNN only takes
the road graph and vehicle speed as inputs to the controller and does not use
image and LiDAR sensor data. Instead of using a vanilla Road-GNN structure,
we use a network model which takes only a single time-step data. The structure
is similar to the network model explained in Section 4.3.8, which ignores other
sensor data and takes the road graph and vehicle speed as inputs. For RIANet
and RIANet++, we use the same results described in Section 5.3.4.

In Table I.1 and Table 1.2, we show the experiment results conducted in Town05

Short and Town05 Long, respectively. In Town05 Short (Table I.1), RIANet++

157

Appendix I. Ablation study about performance consistency in
CARLA environment

shows the lowest performance degradation for all the metrics. In Town05 Long
(Table 1.2), Road-GNN shows the lowest performance degradation for RC and
IpKm. However, compared to the other methods, Road-GNN also shows the low-
est performance for all the metrics. From this point of view, it can be said that
RIANet++ is the most effective controller for the CARLA environment under

road change conditions.

158

Appendix I. Ablation study about performance consistency in

CARLA environment

Table I.1: Ablation study in Town05 Short

Configure DS 1 RC 1 IpKm |

Road-GNN | 33.627 £ 2.960 54.033 £ 5.046 44.416 £ 7.577
RIANet 87.469 + 2.363 93.881 £ 3.827 6.319 £+ 1.419

RIANet++ | 86.930 £+ 3.960 97.032 £ 2.657 6.737 £ 1.616

(a) No road change condition

Configure DSt RC 71 IpKm |

Road-GNN | 25.045 £ 8.727 44.435 £+ 10.415 64.377 &+ 15.261
RIANet 74.012 £ 3.902 90.372 £ 4.956 16.009 £ 2.722

RIANet++ | 83.224 4+ 3.547 94.964 + 3.961 8.921 + 2.287

(b) Road change condition

Configure DS 7t RC 1 IpKm |

Road-GNN -8.582 -9.598 -19.961
RIANet -13.457 -3.509 -9.69

RIANet++ -3.706 -2.068 -2.184

(¢) Performance drop

159

Appendix I. Ablation study about performance consistency in
CARLA environment

Table 1.2: Ablation study in Town05 Long

Configure DSt RC 7t IpKm |

Road-GNN | 7.965 £+ 1.292 19.208 £ 6.554 12.857 £ 4.151
RIANet 44.719 £ 2,513 96.934 £ 2.927 2.624 £ 0.163
RIANet++ | 41.714 £+ 3.988 100.000 £ 0.000 3.024 £ 0.227

(a) No road change condition

Configure DS 1 RC 1 IpKm |

Road-GNN | 7.139 £ 0.627 18.571 £ 2.509 13.381 £ 1.289
RIANet 27.724 £ 7.514 79.653 £ 6.314 4.135 £ 1.083
RIANet+4 | 39.726 + 7.336 96.152 + 4.728 3.312 + 0.688

(b) Road change condition

Configure DSt RC 7t IpKm |

Road-GNN -0.826 -0.637 -0.524
RIANet -16.995 -17.281 -1.511

RIANet++ -1.988 -3.848 -0.288

(¢) Performance drop

160

Bibliography

1]

3]

[6]

Association for Standardization of Automation and Measuring Systems.

Opendrive. URL https://www.asam.net/standards/detail/opendrive/.

Ankan Bansal, Karan Sikka, Gaurav Sharma, Rama Chellappa, and Ajay
Divakaran. Zero-shot object detection. In Proceedings of the Furopean Con-

ference on Computer Vision (ECCV), pages 384-400, 2018.

Aseem Behl, Kashyap Chitta, Aditya Prakash, Eshed Ohn-Bar, and An-
dreas Geiger. Label efficient visual abstractions for autonomous driving.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2338-2345, 2020.

Shariq Farooq Bhat, Ibraheem Alhashim, and Peter Wonka. Adabins: Depth
estimation using adaptive bins. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 4009-4018,
2021.

Raunak P Bhattacharyya, Derek J Phillips, Blake Wulfe, Jeremy Morton,
Alex Kuefler, and Mykel J Kochenderfer. Multi-agent imitation learning for
driving simulation. In 2018 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 1534-1539. IEEE, 2018.

James Biagioni and Jakob Eriksson. Inferring road maps from global posi-

161

Bibliography

[11]

[12]

[13]

tioning system traces: Survey and comparative evaluation. Transportation

research record, 2291(1):61-71, 2012.

Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin
Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar
Beijbom. nuscenes: A multimodal dataset for autonomous driving. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 11621-11631, 2020.

CARLA. Carla autonomous driving leaderboard. URL https://

leaderboard.carla.org/.

Manfredo Perdigao do Carmo. Differential geometry of curves and surfaces.
Dover Publications, Inc., Mineola, New York, revised and updated 2nd edi-

tion edition, 2016.

Ming-Fang Chang, John Lambert, Patsorn Sangkloy, Jagjeet Singh, Sla-
womir Bak, Andrew Hartnett, De Wang, Peter Carr, Simon Lucey, Deva
Ramanan, et al. Argoverse: 3d tracking and forecasting with rich maps. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8748-8757, 2019.

Dian Chen, Brady Zhou, Vladlen Koltun, and Philipp Krédhenbiihl. Learning
by cheating. In Conference on Robot Learning (CoRL), 2019.

Liang-Chieh Chen, George Papandreou, lasonas Kokkinos, Kevin Murphy,
and Alan L Yuille. Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected crfs. IEEFE transactions

on pattern analysis and machine intelligence, 40(4):834-848, 2017.

Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam.

162

Bibliography

[14]

[15]

[16]

[17]

[18]

[19]

Rethinking atrous convolution for semantic image segmentation. arXiv

preprint arXiv:1706.05587, 2017.

Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and
Hartwig Adam. Encoder-decoder with atrous separable convolution for se-
mantic image segmentation. In Proceedings of the European Conference on

Computer Vision (ECCV), pages 801-818, 2018.

Kyunghoon Cho, Timothy Ha, Gunmin Lee, and Songhwai Oh. Deep pre-
dictive autonomous driving using multi-agent joint trajectory prediction and
traffic rules. In 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 2076-2081, 2019.

Kyunghyun Cho, Bart van Merriénboer, Caglar Gulcehre, Dzmitry Bah-
danau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning
phrase representations using RNN encoder—decoder for statistical machine
translation. In Proceedings of the Conference on Empirical Methods in Nat-

ural Language Processing (EMNLP), pages 1724-1734, 2014.

Sungjoon Choi, Kyungjae Lee, Sungbin Lim, and Songhwai Oh. Uncertainty-
aware learning from demonstration using mixture density networks with
sampling-free variance modeling. In IEEE International Conference on

Robotics and Automation (ICRA), pages 6915-6922, 2018.

Sungjoon Choi, Kyungjae Lee, and Songhwai Oh. Robust learning from
demonstrations with mixed qualities using leveraged gaussian processes.

IEEE Transactions on Robotics, 35(3):564-576, 2019.

Felipe Codevilla, Matthias Miiller, Antonio Lépez, Vladlen Koltun, and
Alexey Dosovitskiy. End-to-end driving via conditional imitation learning.

In IEEF international conference on robotics and automation (ICRA), pages

46934700, 2018.

163

Bibliography

[20]

[21]

[22]

[23]

[24]

Felipe Codevilla, Eder Santana, Antonio M Lépez, and Adrien Gaidon. Ex-
ploring the limitations of behavior cloning for autonomous driving. In Pro-
ceedings of the IEEE/CVFE International Conference on Computer Vision
(ICCV), pages 9329-9338, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Ima-
genet: A large-scale hierarchical image database. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 248-255, 20009.

Wendong Ding, Shenhua Hou, Hang Gao, Guowei Wan, and Shiyu Song.
Lidar inertial odometry aided robust lidar localization system in changing
city scenes. In IEEE International Conference on Robotics and Automation

(ICRA), pages 4322-4328, 2020.

Dmitri Dolgov, Sebastian Thrun, Michael Montemerlo, and James Diebel.
Practical search techniques in path planning for autonomous driving. AAAI

Workshop - Technical Report, 2008.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. CARLA: An open urban driving simulator. In Proceed-
ings of the 1st Annual Conference on Robot Learning (CoRL), pages 1-16,
2017.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. CARLA: An open urban driving simulator. In Proceed-
ings of Conference on Robot Learning (CoRL), pages 1-16, 2017.

ERDOS. Pylot. URL https://github.com/erdos-project/pylot.

Open Source Robotics Foundation. Demo of prius in ros/gazebo. https:

//github.com/osrf/car_demo, 2019.

164

Bibliography

[28]

[34]

Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Batmanghelich, and
Dacheng Tao. Deep ordinal regression network for monocular depth esti-
mation. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 2002-2011, 2018.

Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir Anguelov, Congcong
Li, and Cordelia Schmid. Vectornet: Encoding hd maps and agent dynamics
from vectorized representation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 11525-11533,
2020.

Clément Godard, Oisin Mac Aodha, Michael Firman, and Gabriel J Brostow.
Digging into self-supervised monocular depth estimation. In Proceedings
of the IEEE/CVF International Conference on Computer Vision (ICCV),
pages 3828-3838, 2019.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial nets. Advances in neural information processing systems (NeurlIPS,

27, 2014.

Timothy Ha, Gunmin Lee, Dohyeong Kim, and Songhwai Oh. Road graph-
ical neural networks for autonomous roundabout driving. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
162-167, 2021.

Timothy Ha, Jeongwoo Oh, Hojun Chung, Gunmin Lee, and Songhwai Oh.
Rianet: Road graph and image attention network for urban autonomous
driving. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2022.

John Halkias and James Colyar. Ngsim interstate 80 freeway dataset, 2006.

165

Bibliography

[35]

[37]

[39]

[40]

[41]

Irtiza Hasan, Shengcai Liao, Jinpeng Li, Saad Ullah Akram, and Ling Shao.
Generalizable pedestrian detection: The elephant in the room. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 11328-11337, 2021.

Jeffrey Hawke, Richard Shen, Corina Gurau, Siddharth Sharma, Daniele
Reda, Nikolay Nikolov, Przemystaw Mazur, Sean Micklethwaite, Nicolas
Griffiths, Amar Shah, et al. Urban driving with conditional imitation learn-
ing. In IEEFE International Conference on Robotics and Automation (ICRA),
pages 251-257, 2020.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 770778, 2016.

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn.
In Proceedings of the IEEE International Conference on Computer Vision

(ICCYV), pages 2961-2969, 2017.

Kaiming He, Ross Girshick, and Piotr Dollar. Rethinking imagenet pre-
training. In Proceedings of the IEEE/CVE International Conference on
Computer Vision (ICCV), pages 4918-4927, 2019.

Songtao He, Favyen Bastani, Satvat Jagwani, Mohammad Alizadeh, Hari
Balakrishnan, Sanjay Chawla, Mohamed M Elshrif, Samuel Madden, and
Mohammad Amin Sadeghi. Sat2graph: Road graph extraction through
graph-tensor encoding. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 51-67, 2020.

Mikael Henaff, Alfredo Canziani, and Yann LeCun. Model-predictive pol-
icy learning with uncertainty regularization for driving in dense traffic. In

International Conference on Learning Representations (ICLR), 2019.

166

Bibliography

[42]

[43]

[44]

[45]

[47]

[48]

[49]

Minhyeok Heo, Jiwon Kim, and Sujung Kim. Hd map change detection
with cross-domain deep metric learning. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 10218-10224.
TEEE, 2020.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning.

Advances in Neural Information Processing Systems (NeurlIPS), 29, 2016.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735-1780, 1997.

David Isele, Reza Rahimi, Akansel Cosgun, Kaushik Subramanian, and
Kikuo Fujimura. Navigating occluded intersections with autonomous ve-
hicles using deep reinforcement learning. In IEEFE International Conference

on Robotics and Automation (ICRA), pages 2034-2039, 2018.

Ajay Jain, Sergio Casas, Renjie Liao, Yuwen Xiong, Song Feng, Sean Segal,
and Raquel Urtasun. Discrete residual flow for probabilistic pedestrian be-
havior prediction. In Conference on Robot Learning (CoRL), pages 407-419,
2020.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. International Conference on Learning Representa-

tions (ICLR), 2017.

Ilya Kostrikov. Pytorch implementations of reinforce-
ment learning algorithms. https://github.com/ikostrikov/

pytorch-a2c-ppo-acktr-gail, 2018.

John Lambert and James Hays. Trust, but verify: Cross-modality fusion for
hd map change detection. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

167

Bibliography

[50]

[52]

[54]

[56]

Gunmin Lee, Dohyeong Kim, Wooseok Oh, Kyungjae Lee, and Songhwai Oh.
Mixgail: Autonomous driving using demonstrations with mixed qualities.
In IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5425-5430, 2020.

Buyu Li, Wanli Ouyang, Lu Sheng, Xingyu Zeng, and Xiaogang Wang. Gs3d:
An efficient 3d object detection framework for autonomous driving. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

Ming Liang, Bin Yang, Rui Hu, Yun Chen, Renjie Liao, Song Feng, and
Raquel Urtasun. Learning lane graph representations for motion forecasting.

In FEuropean Conference on Computer Vision (ECCYV), pages 541-556, 2020.

Lizhe Liu, Xiaohao Chen, Siyu Zhu, and Ping Tan. Condlanenet: a top-to-
down lane detection framework based on conditional convolution. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 3773-3782, 2021.

Yiwei Lyu, Chiyu Dong, and John M Dolan. Fg-gmm-based interactive be-
havior estimation for autonomous driving vehicles in ramp merging control.
In IEEE International Conference on Robotics and Automation (ICRA),
pages 1250-1255, 2020.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities
improve neural network acoustic models. In Proceedings of International

Conference on Machine Learning (ICML) Workshops, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, loannis
Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg,

168

Bibliography

[62]

and Demis Hassabis. Human-level control through deep reinforcement learn-

ing. Nature, 518(7540):529-533, 2015.
NAVER. Naver maps, 2020. URL https://map.naver.com/.

Kentaro Nishi and Masamichi Shimosaka. Fine-grained driving behavior
prediction via context-aware multi-task inverse reinforcement learning. In
IEEE International Conference on Robotics and Automation (ICRA), pages
2281-2287, 2020.

Ippei Nishitani, Hao Yang, Rui Guo, Shalini Keshavamurthy, and Kentaro
Oguchi. Deep merging: Vehicle merging controller based on deep reinforce-
ment learning with embedding network. In IEEE International Conference

on Robotics and Automation (ICRA), pages 216-221, 2020.

Blazej Osinski, Adam Jakubowski, Pawel Ziecina, Piotr Milo$, Christopher
Galias, Silviu Homoceanu, and Henryk Michalewski. Simulation-based rein-
forcement learning for real-world autonomous driving. In IEEE International

Conference on Robotics and Automation (ICRA), pages 6411-6418, 2020.

David Pannen, Martin Liebner, and Wolfram Burgard. Hd map change
detection with a boosted particle filter. In IEFEE International Conference
on Robotics and Automation (ICRA), pages 2561-2567, 2019.

Aditya Prakash, Kashyap Chitta, and Andreas Geiger. Multi-modal fu-
sion transformer for end-to-end autonomous driving. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 7077-7087, 2021.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation. In Proceedings

169

Bibliography

[64]

[65]

[67]

[68]

[69]

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 652-660, 2017.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only
look once: Unified, real-time object detection. In Proceedings of the IEEE

conference on cComputer Vision and Pattern Recognition (CVPR), pages

779-788, 2016.

Lennart Reiher, Bastian Lampe, and Lutz Eckstein. A sim2real deep learn-
ing approach for the transformation of images from multiple vehicle-mounted
cameras to a semantically segmented image in bird’s eye view. In IEFEE In-
ternational Conference on Intelligent Transportation Systems (ITSC), pages

1-7, 2020.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn:
Towards real-time object detection with region proposal networks. Advances

in Neural Information Processing Systems (NeurlIPS), 28:91-99, 2015.

Nicholas Rhinehart, Rowan McAllister, Kris Kitani, and Sergey Levine. Pre-
cog: Prediction conditioned on goals in visual multi-agent settings. In Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 28212830, 2019.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Conference
on Medical image computing and computer-assisted intervention, pages 234—

241. Springer, 2015.

Stephane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imi-
tation learning and structured prediction to no-regret online learning. In
Proceedings of the International Conference on Artificial Intelligence and

Statistics, pages 627-635, 2011.

170

Bibliography

[70]

[71]

[72]

Dhruv Mauria Saxena, Sangjae Bae, Alireza Nakhaei, Kikuo Fujimura, and
Maxim Likhachev. Driving in dense traffic with model-free reinforcement
learning. In IEFEE International Conference on Robotics and Automation

(ICRA), pages 5385-5392, 2020.

Edward Schmerling, Karen Leung, Wolf Vollprecht, and Marco Pavone. Mul-
timodal probabilistic model-based planning for human-robot interaction. In
IEEE International Conference on Robotics and Automation (ICRA), pages
3399-3406, 2018.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International Conference on

Machine Learning (ICML), pages 1889-1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint

arXi:1707.06347, 2017.

Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping Shi, Xiaogang
Wang, and Hongsheng Li. Pv-recnn: Point-voxel feature set abstraction for 3d
object detection. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 10529-10538, 2020.

Ibrahim Sobh, Loay Amin, Sherif Abdelkarim, Khaled Elmadawy, Mahmoud
Saeed, Omar Abdeltawab, Mostafa Gamal, and Ahmad El Sallab. End-to-
end multi-modal sensors fusion system for urban automated driving. In

Advances in Neural Information Processing Systems (NeurIPS) Workshops,
2018.

Stanford Artificial Intelligence Laboratory et al. Robotic operating system.
URL https://www.ros.org.

171

Bibliography

[77]

[79]

[81]

[83]

Adam Van Etten, Dave Lindenbaum, and Todd M Bacastow. Spacenet: A re-
mote sensing dataset and challenge series. arXiv preprint arXiv:1807.01232,

2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in Neural Information Processing Systems (NeurlIPS), 30,
2017.

Sourabh Vora, Alex H Lang, Bassam Helou, and Oscar Beijbom. Point-
painting: Sequential fusion for 3d object detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 4604-4612, 2020.

Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu,
Yigiang Chen, Wenjun Zeng, and Philip Yu. Generalizing to unseen domains:
A survey on domain generalization. IEEFE Transactions on Knowledge and

Data Engineering, 2022.

Yue Wang, Vitor Campagnolo Guizilini, Tianyuan Zhang, Yilun Wang, Hang
Zhao, and Justin Solomon. Detr3d: 3d object detection from multi-view
images via 3d-to-2d queries. In Proceedings of the Conference on Robot

Learning (CoRL), volume 164, pages 180-191, 2022.

Moritz Werling, Julius Ziegler, Séren Kammel, and Sebastian Thrun. Opti-
mal trajectory generation for dynamic street scenarios in a frenet frame. In
IEEE International Conference on Robotics and Automation (ICRA), pages
987-993, 2010.

Yi Xiao, Felipe Codevilla, Akhil Gurram, Onay Urfalioglu, and Antonio M
Lépez. Multimodal end-to-end autonomous driving. IEEE Transactions on

Intelligent Transportation Systems, 2020.

172

Bibliography

[84]

[36]

[87]

Danfei Xu, Dragomir Anguelov, and Ashesh Jain. Pointfusion: Deep sensor
fusion for 3d bounding box estimation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages
244-253, 2018.

Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Darrell. Deep layer
aggregation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2403-2412, 2018.

Yuhui Yuan, Xilin Chen, and Jingdong Wang. Object-contextual represen-
tations for semantic segmentation. In Furopean Conference on Computer

Vision (ECCYV), pages 173-190, 2020.

Yu Zhang, Huiyan Chen, Steven L Waslander, Jianwei Gong, Guangming
Xiong, Tian Yang, and Kai Liu. Hybrid trajectory planning for autonomous
driving in highly constrained environments. [FEE Access, 6:32800-32819,
2018.

Lin Zhao, Hui Zhou, Xinge Zhu, Xiao Song, Hongsheng Li, and Wenbing Tao.
Lif-seg: Lidar and camera image fusion for 3d lidar semantic segmentation.

arXiv preprint arXiw:2108.07511, 2021.

Wu Zheng, Weiliang Tang, Li Jiang, and Chi-Wing Fu. Se-ssd: Self-
ensembling single-stage object detector from point cloud. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14494-14503, 2021.

173

Bibliography

174

ylEAlold A4

ol7] E2gA oA

(¢}

i

)

1

—

1Al

)

Aol 2HeF

371 4l

5 O

Q.

]_

7lee dA 4

oA

o
o

]
~

S}

(<9

1 FR7F oS

54 %

o

17 =t oy

9

0_9_:[1'

=

AL a2t

5]

AzFa}) g

1_

=]
=

o

o

sped, Ty

£ olgstuzt

HNEEH

W

mm.o
=

W

ﬂmo

T
ToH

s
,_01_

ged.

i

tol A Al 7FA] SA]

o

A

o

oLo
o
H|

s}

T2

ToR

il

JH

45317} 975 B2l

f metg o

9|

wat 245 912 Arof o

g e vER A,

oF A o] EhE He A

=

1L

T2 e

=

=

AFEALY] 917 B

ToH

175

ot E2 Jejoi T2 o]

o o=

o

e A

o
==

o2 3

Eis

gujde

@

=
T

N =25

T
o

A=A

317] oleitt.

B2

EE=

2 L7

=
=

il Ak

]

MEzL YEHAT F=20f o

o

o =

£ njotel

SH

fed, o] =

o)

o 7]

HE dish HEv =& 217

AlolE w0l 25 AR B

I ¢
o] ol

= 52 I8

sto] AEEY

5

14 Fe7t wRE 471 Ak ol

2 A%s

i 5

L= ¥

HoPF E= e

HARE B2

o)

Mu-o

AlolEj o] 20f B

I ¢

1L

| o2 1]

2 9

A= o

o
HJ

o}, 1 stg)

1jo

B

o} WA, m2o] Wsta Al

s At

o =

I

—_—

Z

A A=, A)

3 | 2017-20972

176

AR 2

A HEotH

Bl

dofA 2] A9 4l o

ol ot

upRels

ko1 Ke)
I,

3

fls K= b g i

=
—

dHo=m

ek

]

P sl 9 hel A,

AT S
I A

]

ot A5

1jo

=
=

Z]A]

=
=

Al Al A A

T QFgtellM], ZE| Al FHofA o] A} ol

hi]

tei2te A7t

1} 5

w EOtEH, A5 A7l Solste Hiw

A5

o AFAE 4

=33
=

ol

5

EREREER

A

o Zo 7

R L ERCES-E K

H

Rl Alo] A=A T o417 2

e

]

A
=

|y

=
T

HotF A HAFEH U

=
=

A

o =2

o+

Al
™

177

1mh {1 w B 71
NEumm BB o P E TS Moy s
N 1]% wmoxe s g |\ NE o] ® W w9 wmod

F T 2o o D= iy ~ 5y
S o T Mo o1 1 o ' " 2 T o Ul iy NSRS X
T S H H o= o oA o o Ch oo BOE
Koo, B R m o M A X B
T T <M X < = BN T - % ply TEOW° pr WM
ﬁr%M_L_.%mam_uu}ﬂ%uﬂﬂu}Hﬂwnu.__oe
%Wxﬂﬁﬂolwurmﬁg%%xﬂuaoﬂﬂ
R S-S B L R == @ M R L)
T B ok 5 ° ol W o T T T o MR T oNp ok

U Io- = o I o M ulp T

0 B :.l i Z—E o :_E N E._ ,.__,._ = ,._,_NE)
SO S MmowmxﬂﬂuuiA_a 2
CHECENCEN o = X = X g W 2%

11_A| L= Mﬂ X = B Nluﬂ __o_l e} . En_ JHI ‘q X o E_E
unqwozufulm._WﬁHu.ﬂaomaﬁmMEEMXT
— — o) —
D;]@v__}oif*o_z_w;m N - T
1 o — ol ~ g o Jo = PR = pl = mR

I Ty T oW om IR O+ <0 5T o o
= o o_u OT.._ —_— _r_l — ~ fus z_ﬂ_ (TR ~ O_E
o 2 X R r 5 W T 5% N T TE oo
éﬂg_%%wwﬁ%ﬁdlﬂﬁﬁm.wﬁwﬂﬂEﬂﬁ&
ﬂnmn_iﬂ__o_ﬂfﬂ%o_eﬂwmmouumﬂﬂlmﬁﬂgolﬁ
@W@ﬁ%ﬂwiﬁﬂﬂﬂﬂ%ﬂ# B B B
ﬂoﬂwm_@wmao@} maﬁo%z,%w TRk
~ = BB o o) ol _,_m_ < @“_ o = B N = MM 100 e_]e
wzf_qwdﬂ_g%aﬂéux IR O
T eoE T HT%.lo_a_dﬁwfﬂ:_o%zﬂw%
m ooy oF uaﬂ__mommfnmu_mﬁqoaﬁaom. ﬂuEe o B
™R omm O N oo o o p O R
gy N %ﬁﬁ@ﬁﬂ%%%lﬂ%:_aﬂ%ﬁ@
(A m,m ¢ X E uﬂ o ﬂ% v B F B L B B W
e Koo o X BoxX0 ®E TE E a —
BRI E
©E oy T MY g S L T 5ot N
B Wooow oz i meaw LHRE gt w
..;O 1m,__m Nl ‘m_w L_.w.m ,”Aro LLI,._ ‘iE ™ 1ﬂ__| ;of Eu_ _’]_ ,W.A o) m on . .O_
GRS - SR N S =
w on o o ® <A B o ,__mu

19l

el

=
=

Al

=

=

St A+

[¢)

178

gk @
A dHAo g -

°

o1, Lt} 027l

SolFd AT AAG

ol

™
<F

v JA =

A= o]

Z+5

S|
.

]

SR

g A7) 3

[
°

o1t BMRR ¥HA| 2

fif

1)

il
mi

u
oF
T
il

B!

ol
.

of
—_

71g A, AFAlol A

olAajFe AE WolA TtEE A4 5.

=0

==
=

g3t 7}

A" B2

o
0

!
Tor

AR, 1A 6

S}
ol

TS WA Hu 49zl

<Jm
NI
=
U

—

o]
<
ol

o

T

o|AXH 1L A7} of

Ytk whtebs e, 1

ol &

olet] wr

ofell A A2

L =]
—Cvj—’ﬂ__

o

ke 4

)

J))
1jo
Nlo

o
ol

Al

o

£ sl

o] GI&UTh A7} BhARTY 71715t of] A7

il
il

A5k, A @Rk Hol

3N

O
2 =

A}

AFA=A, o2 A

A He sidle

5

APRA, Z2]A o] dur2

d}
=]

179

180

	1 Introduction
	1.1 Motivation
	1.2 Organization of the dissertation

	2 Background
	2.1 Learning Algorithm for Autonomous Driving
	2.1.1 Reinforcement Learning
	2.1.2 Imitation Learning

	2.2 State Representation for Autonomous Driving
	2.2.1 Feature-Based Representation
	2.2.2 Bird’s Eye View Image Representation
	2.2.3 Egocentric View Image Representation
	2.2.4 Sensor Fusion Based Representation

	3 Road Graphical Neural Networks for Autonomous Driving
	3.1 Problem Setting
	3.2 Proposed Method
	3.2.1 Node-and-Edge-Level Encoding
	3.2.2 Graph-Level Encoding
	3.2.3 Time-Level Encoding
	3.2.4 Learning Algorithm

	3.3 Experiments
	3.3.1 Environment and Network Details
	3.3.2 Experimental Results
	3.3.3 Qualitative Results

	3.4 Chapter Summary

	4 Road Graph and Image Attention Network for Autonomous Driving
	4.1 Problem Setting
	4.2 Proposed Method
	4.2.1 Feature Encoder
	4.2.2 Attention Network
	4.2.3 Low-Level Controller
	4.2.4 Learning Algorithm

	4.3 Experiments
	4.3.1 Experimental Settings
	4.3.2 Dataset
	4.3.3 Implementation Details
	4.3.4 Baselines
	4.3.5 Comparison Results
	4.3.6 Attention Score Visualization
	4.3.7 Road Graph Feature Analysis
	4.3.8 Ablation Study
	4.3.9 Qualitative Results

	4.4 Chapter Summary

	5 Road Graph Change Detection for Autonomous Driving
	5.1 Problem Setting
	5.2 Proposed Method
	5.2.1 Controller Module
	5.2.2 Road Change Detection Module

	5.3 Experiments
	5.3.1 Environments
	5.3.2 Performance of Road Graph Based Controller Module
	5.3.3 Performance of Road Change Detection Module
	5.3.4 Robustness of Controller under Road Change Condition

	5.4 Chapter Summary

	6 Conclusion
	Appendices
	A Collected map images of roundabout environment
	B Map image and road graph of CARLA Town05
	C Details of CARLA evaluation metrics
	D Detailed results of CARLA experiment in Chapter 4
	E Detailed results of CARLA experiment in Chapter 5
	F Examples of FMTC real-world dataset scenarios
	G Effect of localization error on road change detection accuracy
	H Analysis of detection accuracy according to the degree of road changes
	I Ablation study about performance consistency in CARLA environment

<startpage>20
1 Introduction 1
 1.1 Motivation 1
 1.2 Organization of the dissertation 3
2 Background 7
 2.1 Learning Algorithm for Autonomous Driving 7
 2.1.1 Reinforcement Learning 8
 2.1.2 Imitation Learning 11
 2.2 State Representation for Autonomous Driving 15
 2.2.1 Feature-Based Representation 15
 2.2.2 Bird’s Eye View Image Representation 21
 2.2.3 Egocentric View Image Representation 23
 2.2.4 Sensor Fusion Based Representation 27
3 Road Graphical Neural Networks for Autonomous Driving 31
 3.1 Problem Setting 33
 3.2 Proposed Method 40
 3.2.1 Node-and-Edge-Level Encoding 42
 3.2.2 Graph-Level Encoding 42
 3.2.3 Time-Level Encoding 43
 3.2.4 Learning Algorithm 44
 3.3 Experiments 44
 3.3.1 Environment and Network Details 44
 3.3.2 Experimental Results 46
 3.3.3 Qualitative Results 50
 3.4 Chapter Summary 53
4 Road Graph and Image Attention Network for Autonomous Driving 59
 4.1 Problem Setting 62
 4.2 Proposed Method 63
 4.2.1 Feature Encoder 63
 4.2.2 Attention Network 67
 4.2.3 Low-Level Controller 69
 4.2.4 Learning Algorithm 70
 4.3 Experiments 70
 4.3.1 Experimental Settings 71
 4.3.2 Dataset 71
 4.3.3 Implementation Details 72
 4.3.4 Baselines 74
 4.3.5 Comparison Results 76
 4.3.6 Attention Score Visualization 77
 4.3.7 Road Graph Feature Analysis 77
 4.3.8 Ablation Study 81
 4.3.9 Qualitative Results 83
 4.4 Chapter Summary 84
5 Road Graph Change Detection for Autonomous Driving 89
 5.1 Problem Setting 92
 5.2 Proposed Method 95
 5.2.1 Controller Module 96
 5.2.2 Road Change Detection Module 98
 5.3 Experiments 102
 5.3.1 Environments 102
 5.3.2 Performance of Road Graph Based Controller Module 103
 5.3.3 Performance of Road Change Detection Module 109
 5.3.4 Robustness of Controller under Road Change Condition 112
 5.4 Chapter Summary 114
6 Conclusion 119
Appendices 121
A Collected map images of roundabout environment 123
B Map image and road graph of CARLA Town05 125
C Details of CARLA evaluation metrics 129
D Detailed results of CARLA experiment in Chapter 4 133
E Detailed results of CARLA experiment in Chapter 5 139
F Examples of FMTC real-world dataset scenarios 143
G Effect of localization error on road change detection accuracy 149
H Analysis of detection accuracy according to the degree of road changes 153
I Ablation study about performance consistency in CARLA environment 157
</body>

