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Abstract

We present MAMMOS, which maps the motions of multiple humans that nat-

urally interact with each other in 3D scene structure of choice. For the ultimate

metaverse, one needs to create multiple characters interacting in response to

the environment or other people. However, it is hard for an artist to generate

multiple characters in diverse 3D scenes or gather training data to train an

automated system that understands the entangled spatio-temporal contexts.

MAMMOS is a modular approach that successfully handles complex constraints

for realistic motion with nuances and intention. MAMMOS consumes a simple

text input and first places anchors in time and location for individual charac-

ters that avoid collisions yet enable necessary interactions. Then we generate

the spatio-temporal paths of multiple people within the scene and connect them

to perform diverse and natural motions. To the best of our knowledge, we are

the first to generate long-horizon motion sequences with multiple humans with

rich interactions such that we can automatically populate the 3D scenes with

realistic character motions.

Keywords: Motion Synthesis, Human-Scene Interaction, Metaverse

Student Number: 2021-24285
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Chapter 1

Introduction

Figure 1.1 MAMMOS generates multiple human motions sharing a given in-

door space. Generated virtual humans correctly understand the scene context

around them, and they are also able to interact with each other. Our system

automatically resolve the complex spatio-temporal constraints of the scene ge-

ometry and social interactions.

We consider the future of an interactive virtual world, where people in

different places can collaborate within a shared space. The space can be a

digital twin or a purely virtual asset. We aim to create an experience where the
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characters interact with each other and respect the spatial context (Figure 1.1).

Few works tackle the problem of generating diverse motions that consider both

the scene context and mutual interactions between humans. Most importantly,

it is hard to obtain training sequences for motions that interact with nearby

objects and humans. A few works suggest placing humans in the scenes in

either static poses for a given environment [18, 39, 41] or individual people

without interacting with each other [38, 37]. People in the background usually

perform a pre-defined sequence of motions created by an artist. This is one of

the fundamental bottlenecks to expanding realistic interactions of everyday life

to the virtual scene.

Our objectives are three-fold: input should be easy, and output should be

diverse yet natural. Instead of manually assigning the 3D configurations of body

joints in the scene, we would like to receive a simple high-level description of

motions as input, such as the number of people and their actions labels (sit,

stand, lie, and interact). All the subsequent complexities are automated, given

the 3D scene. We also aim for diverse output sequences given the semantic

orders. Instead of replaying the same sequence of previously computed motion,

we generate a rich set of plausible motion trajectories while they abide by the

high-level user input. Most of all, the motion has to be natural. There are

complex spatial and temporal constraints and intricate correlations between

multiple humans and scene objects. We need to jointly consider all of them and

make sure there is no penetration or violation of physical laws and still make

eye contact and avoid collisions.

To overcome the complexity of the problem, we design a modular approach

and utilize existing datasets for individual steps of the pipeline as shown in

Figure 3.1. Given the text input describing action labels of a number of char-

acters, our system first places anchors considering human-scene interaction or

2



human-human interaction. The anchors are placed in spatio-temporal domain

within the scene to best show the start and end of a given label of action and

yet avoid collisions. Then a neural mapper can instantiate a set of plausible

trajectories between the anchors from a diverse stochastic distribution. Follow-

ing the the trajectory, we generate detailed motions for individual characters,

where we can only consider local scene or interaction contexts assigned for the

intermediate way points of the assigned path. By detaching the holistic analy-

sis from detailed motion generation, we can utilize the prior works on motion

generation without exhaustively considering the context of multiple characters

within the scene.

In summary, MAMMOS is the first to generate motions of multiple humans

with mutual interactions within the scene context. The proposed pipeline is a

practical system with easy input, and diverse, yet natural output trained with

limited datasets and successfully creates multiple character motions adapted to

new, large-scale scenes. Our framework presents scalable interaction generation

that can create a realistic story in a shared virtual space.
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Chapter 2

Related Works

Motion Synthesis Creating the motion of the human body has been in-

vestigated in various contexts. Given a frame or a sequence of frames, several

works attempt to predict a subsequent sequence of motion [27, 13, 5, 3, 40].

In a practical aspect, many applications require generating natural motion be-

tween keyframes of static poses [8, 15]. Recent studies also suggest synthesizing

motion without any explicit pose information, but rather from language[1, 2,

11, 28, 29, 4] or music [36, 20, 21, 22]. While these methods generate plau-

sible motions without any skills for animating a character, they lack explicit

control of the synthesized sequence. Recent methods observe specific action la-

bels and generate a sequence of motion either with a recurrent unit [11] or a

transformer [28]. Petrovich et al. [29] and Athanasiou et al. [4] go beyond a

small set of action categories and generate diverse motions from free-form text.

None of the previous works, however, tackle long-term motion sequences with

action-label switches, scene interaction, and multiple human interactions.
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Human-Scene Interaction When generating human motions, the surround-

ing environment is another interesting context to consider. Starting from efforts

to place a posed static human in a 2D image [35] or 3D skeleton in RGB, RGB-

D, or depth image [12, 23], recent works provide means to place a full 3D mesh

of a human in a 3D scene utilizing high-quality parametric models [24, 32, 26].

Recent works utilize the 3D body model with expressive hands and faces [26]

and place them on 3D scenes. Zhang et al. [39] observes the local scene context

using explicit basis point sets (BPS) [30], while Hassan et al. [18] utilize contact

probability between human and motion. A more recent method [41] proposes

utilizing the distribution of the scene and poses using conditional variational

autoencoder (CVAE) [33] given a training set containing both scenes and hu-

man bodies. Our framework also creates static body poses of anchors tailored

to the given action labels and the scene but further connects them to generate a

smooth motion sequence. In part, the proposed method is similar to connecting

end poses of the human body [38] or synthesizing motions of a given action

label within the scene [37]. However, our approach jointly considers multiple

humans within the scene, which harmoniously interact with the environment

and other humans.

5



Chapter 3

Method

Given a scene S and a sequence of desired action labels with interaction A,

MAMMOS generates the sequence of human motion M: (S,A) → M. The

scene can be provided as a CAD model, a triangular mesh, or a point cloud

scan as long as we can estimate the distances. If the user wants to generate the

motion of N humans within the scene, the desired action sequences are pro-

vided as A = {A1, ..., AN}, where Ai indicates the sequence of discrete action

labels that ith person needs to perform. The actions consider both the geomet-

ric context and the mutual interaction between people in the scene. The action

sequences are composed of variable numbers of action labels paired with inter-

action indicators, Ai = {(ai1, ci1), (ai2, ci2)..., (aiMi
, ciMi

)}. Specifically, the action

label aij ∈ {stand, sit, lie} indicates the category of body pose in relation to

the scene context. The interaction indicator cij ∈ {0, . . . ,K} represents whether

the paired action aij is an independent action of the character (cij = 0) or has

to interact with another human doing action paired with the same indicator

value. We only allow two-person interaction, meaning there are exactly two

6



(a)Anchor Placement (b) Path Generation (c)Motion Completion
(+ Optimization)

Human A: Sit → Stand
Human B: Stand → StandInteraction

Figure 3.1 Overview of the pipeline. Our system consists of four stages: an-

chor placement, path generation, motion completion, and optimization. (a) The

anchor placement stage creates the characters’ poses corresponding to the input

action labels. For action pairs with specified interaction, the created anchors of

the two characters are in proximity, facing each other. (b) In the path genera-

tion stage, we create collision-free paths between consecutive anchors. We also

confirm the timeline of the waypoints such that interactions are synchronized.

(c) In the motion completion stage, we synthesize smooth scene-aware motions

that follow the created paths. The subsequent optimization stage refines the

motion to be physically correct and natural.

identical interaction indicator values (cij = k, k = 1, . . . ,K) within the set of

action sequences. Then MAMMOS automatically assigns the exact locations

and time windows for the actions to take place and creates smooth and natural

motion trajectories. The generated motion M = (M1, . . . ,MN ) is composed of

a sequence of motion parameters M i = {(ri0, ϕi
0, θ

i
0), . . . , (r

i
T , ϕ

i
T , θ

i
T )} derived

from the 3D parametric model of human body, where rit ∈ R3 is the global

translation of the root position, ϕi
t ∈ R6 is the global orientation in the 6D

continuous representation [43], and θit ∈ R32 represents the body pose in the

form of VPoser [26].

7



The overall pipeline is depicted in Figure 3.1. We resolve the complex spatio-

temporal constraints for motion generation by decomposing the problem into

four stages, and progressively generate finer motions. The first anchor place-

ment stage places N humans in their anchor poses corresponding to the sparse

input action labels within the scene (Section 3.1). The next stage is path gener-

ation, which finds collision-free paths on grid locations of the discretized scene

to connect the synthesized anchors (Section 3.2). The third stage of motion

completion then interpolates the paths on the grid to find full motion param-

eters of dense motion (Section 3.3). The last optimization stage improves the

motion quality and returns realistic and physically plausible sequence of mo-

tions (Section 3.4). At each stage, we jointly consider the other humans and

the spatial context at an appropriate resolution.

3.1 Anchor Placement

Given the scene S and the sequence of action labelsA, the anchor synthesis finds

the location and pose (rij , ϕ
i
j , θ

i
j) of N people in the scene that corresponds to

the action labels aij . If there is no interaction associated with the action (cij = 0),

we can individually generate a pose θij given the action label aij using a CVAE

architecture [37] and place the posed character in appropriate translation rij

and rotation ϕi
j with an existing method of scene-aware placement in [18]. To

briefly elaborate, we choose from a set of discrete candidate translations and

rotations: candidate translations are the cells of the grid uniformly dividing the

scene, and the candidate rotations are eight discrete orientations around the

vertical axis. We exhaustively test all the combinations and select the top ten

best-scoring positions in terms of affordance while avoiding penetration. The

top ten candidates are individually optimized to find the best final anchor. How-

8



Figure 3.2An example of interaction anchor placement. Considering each

human as a point on a 2D overhead map, interaction anchors are placed so that

the direction of the body does not deviate more than a threshold angle from

the virtual line connecting two humans (dotted line).

ever, existing methods do not consider multi-human scenarios within the scene.

MAMMOS additionally considers constraints provided as interaction labels and

the inter-human distances to avoid a collision.

3.1.1 Interaction Anchor Placement

Because the interaction anchors require additional inter-human constraints, we

first place interaction anchors (cij ̸= 0) and place the remaining ones using

existing methods. In addition to the spatial context considered for normal an-

chors, the pair of action anchors with the same interaction indicator number

(cij) should be in an appropriate distance and angle to face each other as shown

in Figure 3.2. We simplify the problem and find the anchor positions within the

2D overhead map of the scene. The constraints are defined in terms of the root

positions and face orientations, such that they are visible within the near and

middle peripheral vision of the human eye (around ±30 degrees) [10].

9



3.1.2 Anchor Occupation Rule

After we place the interaction anchors incrementally with the increasing indi-

cator numbers, we fill the remaining anchors to avoid obvious collisions. There

are two simple rules: we maintain sufficient distances between (1) temporally

adjacent anchors from the same human id; and (2) first or last anchors of differ-

ent people such that all starting positions are nicely spread from each other as

well as the ending positions. Basically, we sequentially generate non-interacting

anchors and avoid collisions against the aforementioned anchor positions if they

are already assigned. Other intermediate positions can be adjusted in the next

stage when we generate paths and regulate temporal precedence.

3.2 Path Generation

Path generation finalizes the coarse spatio-temporal context of the multiple

interacting humans within the scene. Given the anchor places with action la-

bels, we generate paths between the subsequent anchors such that there are

no collisions, and the interaction pairs are in sync in time. This is a very high-

dimensional optimization compared to recent approaches that only consider the

spatial constraints [38, 37, 16], and it is challenging to manually create natu-

ral motion considering the complex constraints. The paths are searched over

discretized slices of time intervals and a grid of the 2D projection of the input

scene. We first generate spatial paths for individual humans and add an appro-

priate amount of idle time to satisfy the temporal constraints. For interaction

anchors, we also allow a desired duration of stay at the anchor position to allow

time to naturally interact with the paired person (Section 3.3).
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Anchor

(b) Path Planning Example(a) Navigating 2D Grid Map

Figure 3.3 An example of the path planning process. (a) Navigating a

2D grid map with the proxy cylinder. Cyan points are passable grid points and

red points are non-passable grid points. (b) A sample created path. Anchor

positions are circled with yellow dotted lines.

3.2.1 Individual Path Planning

We generate diverse individual paths avoiding collision from the paths of other

humans on the 2D grid that is used in Section 3.1. The path planning process is

also illustrated in Figure 3.3. For each grid, we find the intersection between a

proxy cylinder and the scene to assess whether the grid cell is free for a human

to pass by. Starting from an anchor position, the path to the subsequent anchor

is incrementally generated by a modified A∗ algorithm [14]. We assign the cost

of a free grid point q as f(q) =

g(q) + h(q)︸ ︷︷ ︸
A∗

+ (1−m(p, q))︸ ︷︷ ︸
Neural Mapper [37]

+ C · 1collision(q, t+ 1)︸ ︷︷ ︸
Collision Avoidance (Ours)

, (3.1)

where q ∈ N (p) is a neighboring cell of the current position p. The cost function

is composed of three groups. The first group is the terms from the original

11



A∗ algorithm. g(q) measures the cost from the start point to q, and h(q) is a

heuristic function that estimates cost from q to the goal position, which indicates

the next anchor in our case.

Because the standard A∗ algorithm always creates a deterministic path,

Wang et al. [37] suggested generating diverse and realistic paths with addi-

tional stochasticity referred to as the Neural Mapper. m(p, q) is a probabilistic

feasibility score of moving from grid point p to q, estimated by trained neural

network.

The third group of the terms in Equation (3.1) is our modification to filter

out paths that incur collisions due to the temporal occupancy of other human

trajectories. Basically, we add an indicator function 1collision(q, t+1) that returns

1 if a collision occurs at q at the next timestep t + 1 else 0. C is a very large

constant and effectively adds an unacceptably high cost to f when a collision is

expected at the next timestep t+ 1 at q. Note that only the collision indicator

function is dependent on t. If the cost function g or h also depends on t, the

search space of the algorithm becomes prohibitive, and the path cannot be

created within a reasonable time.

3.2.2 Timeline Integration

Timeline integration aligns the temporal windows of interaction anchors with

the same indicator number. As individual path planning connects the generated

anchors, the lengths of the intermediate paths are different, and the number of

action labels is different to start with. As a result, the relative time steps of

the interaction anchors do not align. Timeline integration fixes the temporal

misalignments by adjusting the time stamps of the coarse grid paths. Specifi-

cally, we iterate to add necessary idle times to match the times for interaction

and to check possible new collisions as illustrated in Figure 3.4. By adding an

12



Idle Path

A

B

C

(a)

(b)

(c)

A

B

C

A

B

C

Moving Path Interaction Path Collision

Figure 3.4 Steps iterated for the timeline integration. (a) The initial time-

lines before timeline integration. Note that interactions (blue) are not synched

after independent path generation. To synchronize, the timeline of Human A

should be shifted by the timestep indicated by the blue dotted-arrow. (b) Time-

lines after timeline integration. Timelines are adjusted so that all interactions

are synced with their pair. By shifting timeline, we need to add idle time (gray)

to fill the added empty temporal window. (c) Checking collisions. After each

modification for the timeline integration, we check possible collisions for gen-

erated moving paths. Only subpaths with collision (red) are recreated, not the

entire path.

idle time, the trajectory stays at the same spatial grid to avoid a collision or

match the interaction time with another human subject. After every iteration,

we regenerate the problematic subpaths subject to collisions.
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3.3 Motion Completion

Motion completion creates frames of smooth motion that follows the discrete

paths in the grid. As the spatial-temporal context is already considered from

the path generation, the motion completion can focus on local generation as

suggested by hierarchical frameworks [38, 42]. There are three types of motions

to generate in our framework: the moving motion of the paths, the interaction

motion of the interaction anchors, and the idle motion derived from the timeline

integration.

3.3.1 Moving Motion

For motions moving between grid points, we define keyframes (rik, ϕ
i
k, θ

i
k) and

interpolate consecutive motion keyframes using neural networks. For anchors,

we already have target keyframe poses (Section 3.1). For intermediate grid

points in the paths between anchors, we assign the grid locations as the x, y

locations of the pelvis of the motion keyframes. We set the rotation ϕk to face

the next grid point. The pose parameters θk are derived from predefined set of

walking poses. We place alternating stable feet on the path and update the z

position to minimize the penetration loss and the contact loss for optimization

(Section 3.4).

Then we interpolate the keyframes by modifying the motion generation

of [38] to encode local scene context. While previous works [38, 37] generate

plausible motion and adapt to the scene context, their original works place one

person at a time which are trained with small rooms. On the other hand, we

handle larger scenes to place multiple people with interaction. We noticed that

the performance does not generalize to larger scenes when the neural network

process the entire scene as an input. Instead, we train a framework only with

14



Figure 3.5 An example of grid points where local SDF is retrieved.

Cube-shaped and human-centered grid points are used to encode local scene

context (fewer grid points are depicted than are actually used).

human-centered local information encoded as the signed distance field (SDF),

achieving much more stable performance in scenes of various scales. As shown in

Figure 3.5, we extract a grid position centered at the human pelvis and calculate

the local SDF information of neighboring positions. The motion interpolation

simply transfers the generated local motions into the global coordinate frame.

The moving motion is trained with the PROX dataset [17] which contains rich

interaction between human and scene.

3.3.2 Interaction Motion

When two people interact with each other, we enrich the poses with natural

interaction for a fixed duration. The initial anchor poses only consider the ac-

tion labels, either sitting or standing. While the moving motion interpolates the

intermediate poses of fixed intervals along the generated path, the interaction

motion needs to be a variable length of vibrant motions. To fit the purpose,

we use the CVAE architecture conditioned only on motion history and en-
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able different duration by employing RNN structure. Specifically, we employ

GRU-based CVAE architecture used in the marker predictor of the GAMMA

from [42]. It is trained with the TCD Hands dataset [25], which contains the

SMPL-X parameters [26] on hand gestures and finger motions in our daily life,

such as talking, waving, signing, etc. We extract the motion of the upper body

from the dataset with interacting motion and train the CVAE to generate di-

verse and natural interaction motion that seamlessly continues from the given

anchor.

3.3.3 Idle Motion

Lastly, we add subtle movement even when people stay still due to the idle mo-

ments introduced by the timeline integration. Without additional movement,

the idle people freeze in the anchor positions, which appears awkward and

unnatural. As a simple yet effective remedy, we introduce subtle posture vari-

ations by adding a small Gaussian noise ∼ N(0, σ) to the anchor pose in the

VPoser embedding space. The random variation is further smoothed out using

the smoothness loss during optimization (Section 3.4).

3.4 Optimization

The last optimization stage refines the created motions to be physically valid

and natural. Given the sequence of generated motion for each person M i, mo-

tion parameters (ri0:T , ϕ
i
0:T , θ

i
0:T ) are optimized based on physical constraints.

We adopt constraints from previous works to penalize physically impossible ar-

tifacts: foot location, penetration, contact, and smoothness constraints from [38]

and self-penetration constraints from [6]. The full loss is presented in the supple-

mentary material. Notably, we introduce novel eye contact optimization, which
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Before After

Figure 3.6 An example of eye contact optimization. Red arrows are the

estimated current eye directions and the blue ones are the target eye directions

to be matched to make eye contact.

plays a significant role in realism for natural interaction.

3.4.1 Eye Contact

While two people are interacting with each other, they need to make eye contact.

We add the eye contact optimization on the frames performing the interacting

motion. We define the energy function using the estimated eye direction derived

from the pre-fixed vertex topology of the SMPL-X body mesh as depicted in

Figure 3.6. Let’s denote a vertex on the center of the forehead as vkf and the

one on the back of the head as vkb for a human k. Assuming that human i and

j are interacting with each other, our eye contact loss can be defined as below,

Eeye = arccos
ei · wi

∥ei∥∥wi∥︸ ︷︷ ︸
angle between ei and wi

+ arccos
ej · wj

∥ej∥∥wj∥︸ ︷︷ ︸
angle between ej and wj

(3.2)

where ei = vif − vib is the current eye direction of human i and wi = vjf − vib

is the target eye direction of human i which is towards the eye of human j. ej
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and wj are obtained similarly. Minimizing Eeye ultimately makes human i and

j look into each other’s eyes.

Because what we want is to implement eye contact by minimal turning of

the head without changing any existing rest poses, our optimization variable

is not the VPoser embedded pose θ ∈ R32, but the relative rotation between

neck and head extracted from full body pose Θ ∈ R63. However, unfortunately,

direct optimization toward full body pose Θ may cause severe damage to the

body shape. We add the pose prior loss [26] to the optimization constraint to

avoid undesired deterioration and maintain valid body shapes.
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Chapter 4

Experiments

Figure 4.1 Qualitative results for multi-human motion. We show sample

results of multi-human motions with diverse interactions in different scenes.

Please refer to the accompanying videos for the sequence of motions.

We evaluate the quality of the generated motions using MAMMOS. When

we employ network architecture from previous studies, we mostly use the same

training settings as in their original papers. For moving motion completion

described in Section 3.3, we replace the original scene context feature by the

local SDF information. Correspondingly, we replaced the PointNet [31] in the

original architecture to fully-connected layers. They are trained and tested with
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Figure 4.2The effect of each technical component.MAMMOS implements

critical components to create natural and physically plausible interactions be-

tween people. Please refer to the accompanying videos for the sequence of mo-

tions.

the same split of PROX dataset [17] as in [38, 39, 41, 37]. We also evaluate the

generalization to larger scale 3D scenes with Replica dataset [34]. For interaction

motion of the upper body, we reduced the overall dimensions of the original

CVAE architecture [42] by half to adapt to the smaller dataset size. The exact

architectures and dimensions are explained in the supplementary material.

4.1 Multi-Human Motion

MAMMOS generates multi-human motion including natural interactions, which

has not been addressed in previous literature. Since there is no existing imple-

mentations for baseline comparison, we visually compare the effectiveness of

our approach with users’ assessment. Our approach is compared against ab-

lated versions that eliminate the key components of MAMMOS: collision-free

path generation (-C), interaction motion generation (-I), eye contact optimiza-

tion (-E). Users are asked to compare two versions of multi-human motions and
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Ablation Method Winning Percentage of ‘all’(%) ↑ Relative Score of ‘all’ ↑

all vs all - I 93.4 2.84 (1.21)

all vs all - E 86.8 2.77 (1.20)

all vs all - C 96.7 3.78 (1.13)

all vs all - I - E - C 95.6 3.64 (1.11)

Table 4.1 User study results of multi-human motions. We conducted an

ablation study on methods used to generate multi-human motions and collected

ratings on the naturalness of multi-human motions. The winning percentage of

‘all’ indicates the ratio of users who chose that the complete pipeline with all

components is more natural. The relative score of ‘all’ is the mean and standard

deviation of the scores that user provided in a scale from 1 to 5 (5 is more

natural).

choose a preferred one. They make total five binary comparisons. Two of them

are to choose the more natural one between the result of applying all methods

mentioned above (all) and the result of nothing applied (all-I-E-C). In the other

three questions, we ask users the same question, except the comparison target

is changed to an ablated version without one of the components.

The responses to the user study is summarized in Table 4.1. In all cases,

our proposed method received the majority of choices, which clearly demon-

strates that all of the proposed components are essential in realizing natural

human-human interaction. Although they are all critical, the physical viola-

tion of collision-free paths appears especially noticeable. Sample frames of our

multi-human motion are available in Figure 1.1 and 4.1, whereas the comparison

against ablated versions is in Figure 4.2. The full videos of motion sequences,

including the ones used for the user study, are available in the supplementary

material.
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Non-collision↑ Contact↑ Smoothness↑

Method PROX Replica PROX Replica PROX Replica

Long-term [38] 94.58 99.39 95.04 90.89 96.41 93.28

Ours 97.17 99.72 99.80 99.99 97.71 97.42

Table 4.2 Evaluation on the physical plausibility for single-human mo-

tions (without optimization). All scores are high when using our method

for both PROX and Replica scenes.

4.2 Single-Human Motion

While our main focus is generating multi-human motion, our pipeline also re-

sults in more natural single-human motion. Unlike multi-human cases, we can

also compare against previous works that create motions of a single human

within a scene context, namely long-term[38], and towards [37]. Both are

trained with the PROX dataset as ours, but the implementation is available

only for the long-term. We, therefore, include towards only for the visual com-

parison using the same scene.

We evaluate the quality of motion before optimization in Table 4.2. The

evaluation is presented in three metrics: the non-collision score, the contact

score, and the smoothness score. The non-collision score and contact score are

defined in [41, 38] to evaluate the physical plausibility. We sample 200 anchor

pairs and generate a motion sequence using these pairs to calculate the non-

collision score and contact score. Our method exhibits the best non-collision and

contact scores, generating physically plausible human motion in various scenes.

The smoothness score evaluates the smoothness of the synthesized motion, and
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(a) Ours (b) Long-term [35]

Figure 4.3 Comparison of single-human motion. Our approach produces

more natural and temporally smooth results without jittering artifacts. (The

brighter the color of a human, the more time has passed.)

is defined as:

scoresmooth = 1− 1

T

T∑
t=1

∥vt − vt−1∥2

where vt is the body vertices at frame t, and the jittering is measured by the

mean of l2 distances between the body vertices of consecutive frames. The

smoothness score does not differ significantly for the PROX dataset, but our

method shows much better results for the Replica dataset, which has a much

larger scale than the PROX dataset. It shows that our method is more scal-

able to other scenes. Figure 4.3 provides the qualitative comparison of motion

between ours and long-term in large-scale scenes. Note that highlighted region

shows that ours framework generate more smooth human motions with less

jittering.

We also provide the results of user study on the visual comparisons in Fig-

23



Figure 4.4 User study on naturalness of single-human motion. Our

method generates the most natural human motions.

ure 4.4. Similar to the multi-human motion, subjects are asked to choose the

most natural result. Each subject evaluates four different test scenes from the

PROX dataset. For each scene, three different motion sequences are presented

(ours, long-term, and towards) with the same action sequence in the same scene.

The results confirm that our method generates more natural motion than the

other methods for all test scenes. The videos of motion sequences are available

in the supplementary material.
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Chapter 5

Conclusion

In this paper, we present MAMMOS, the multi-human motion generation frame-

work that can populate natural and diverse virtual humans into a given scene

with a proper scene understanding. We simultaneously consider human-human

interaction and human-scene interaction, which have not been addressed in

other previous researches. With our framework, a user can easily create multi-

human motions in large scale scenes with a simple text guidance. Our frame-

work solves the complex spatio-temporal constraints in multi-human scenario

by gradually resolving them in each modularized stage. By introducing essen-

tial elements in multi-human situations such as collision-free path, interaction

motion, and eye contact, our framework can generate natural scenes where mul-

tiple people are interacting with each other in a given space. We improve the

motion quality of individual humans, and nicely generalize the performance in

a larger-scale scene by encoding the local scene context using SDF.
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Chapter 6

Supplementary

MAMMOS creates motions of multiple humans within a 3D scene by a modular

approach. In the supplementary material, we provide further details on how

each module is implemented (Section 6.1) and how the naturalness of motion is

evaluated (Section 6.2). Additionally, we also present more qualitative results

(Section 6.3).

6.1 Implementation Details

6.1.1 Interaction Anchor Placement

For natural interaction between two people, the interaction anchors need to be

close to each other, but at the same time should not be too close to collide. We

set the distance between two interaction anchors to a value between 0.75m and

1.29m. In order for the interaction anchors to face each other, at least one of

the following two conditions must be satisfied. The first condition is that the

angles of the facing directions of the interacting humans with respect to the
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line connecting the two interacting agents should be less than 30 degrees. The

second condition is that the two rays of eye directions of the two agents meet

at one point and the angles should be less than 60 degrees. The conditions are

visualized in Figure 3 of the main paper.

6.1.2 Individual Path generation

As described in Section 3.2, our path generation module uses a modified A∗

algorithm [14] where the scene-aware stochasticity and collision avoidance terms

are added to the cost of standard A∗ algorithm (Equation (1)).

For the scene-aware stochasticity, we identically implement CVAE model

refered as Neural Mapper [37], except that the moving direction in a horizontal

plane is encoded and decoded as below [19]

Encode: θ → (sin θ, cos θ)

Decode: (o1, o2) → arctan 2(o1, o2).

We use the sin/cos encoding to represent the orientation because it is continuous

around 2π and therefore has better reconstruction property over their original

[0, 1] encoding. As with the original one, our Neural Mapper also expects the

input of the moving direction and the local scene context to be encoded by

BPS [30]. To train the Neural Mapper, we extract motion sequences of 30

frames with sufficient horizontal movement of the pelvis (≥ 0.1m) from PROX

dataset [17], and obtain the moving direction and the local scene context for

each motion sequence. We set the moving direction as the direction from the

start position to the end position of the motion sequence, and acquire local scene

context by encoding scene vertices inside the 2m × 2m × 2m cube centered

at the starting point of motion sequence using BPS with 104 basis points.

Leveraging the trained Neural Mapper, we calculate feasiblility score m(p, q) of
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each neighbor grid q from current grid p as

m(p, q) = 1− α

π
,

where α (0 ≤ α ≤ π) is the shortest angle in radian between estimated moving

direction and the direction from p to q.

And for the collision-avoidance, we additionally added tiny congestion-avoidance

cost β
∑

k e
−dk to Equation (1), where dk is the horizontal distance between

the grid point q and human k’s position at timestep t+ 1 and β is a manually

set constant considering the interval between grids. We use 5 for the β. The

congestion-avoidance cost does not work as the main factor of our path find-

ing algorithm, but it makes our algorithm slightly prefer the direction that is

distant from other existing humans.

6.1.3 Timeline Integration

To reduce the complexity of timeline integration (Section 3.2), we gradually

align the temporal windows of interactions, focusing on one interaction pair at

each iteration. In every iteration, we find unmatched interaction pair with the

lowest indicator value, and shift the timeline that is earlier than the other by

adding idle paths in such a way as to avoid possible collisions. But sometimes,

there may be no possible cases to synchronize interaction without any collisions

no matter how the timeline is shifted. In that case, we just sync interaction first,

then regenerate the problematic subpaths in the shifted timeline as shown in

Figure 5-(c). Discordance of length between regenerated and previous subpath

can be handled by either augmenting the idle path or additional iteration. Such

process is repeated until all interaction pairs are synchronized and no collisions

occur along the entire paths.
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6.1.4 Moving Motion

When we create generalizable scene-aware moving motion in Section 3.3, we

leverage the local SDF as the human-centric local scene context. To acquire the

local SDF, we create a 30×30×30 cube-shaped grid centered at human’s pelvis

location, as shown in Figure 6, then gather the corresponding SDF value at each

grid point and concatenate them. As a network architecture, we use modify the

RouteNet R and PoseNet P proposed in [38]. Since we use the local SDF for

scene context instead of the global scene point cloud, we replace PointNet [31] in

R and P with fully-connected layers so that our local SDF is encoded through

the total 3 fully-connected layers with 512, 256, and 256 hidden dimensions.

Our modified R′ and P ′ are trained to interpolate moving motion in the local

space where the origin is fixed to the root position of the starting keyframe.

We use 30-frame motion sequences from the PROX dataset transformed to the

local space and the local SDF calcaulated based on the original human position

of the starting frame. Other omitted training details are the same as those of

the original paper [38].

6.1.5 Interaction Motion

For interaction, we generate the upper body motions and combined with any

sitting or standing anchors. As a dataset for upper body interaction motion, we

use the SMPL-X fitted TCDHands dataset [25]. We firstly filter out the action

sequences that are not interacting gestures; The final action sequences used are:

“bottle”, “counting”, “direction”, “finger”, “grasp”, “object”, “ok”, “pointing”,

“sign”, “talking”, “tposefinger”, and “v”. Then, we extract the upper body

motions from the filtered dataset according to the following equation obtained
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using the joint map of SMPL-X body model.

Θu = Θ6:9 ∥Θ15:18 ∥Θ24:27 ∥Θ33:63

In here, Θu is the upper body pose parameter, Θ ∈ R63 is the full body pose

parameter, ∥ is the concatenation operator, and the interval is expressed in

right-open form with 0-based indexing. As for a network, we use the GRU-based

CVAE architecture, the same architecture used with the Marker Predictor of

the GAMMA [42], but with the dimensions of layers reduced to adapt to the

smaller size of the TCDHands dataset and one additional 3-layer MLP inserted

to condition input path as same with GRU’s initial hidden state path. The

exact dimensions are listed in the Table 6.1 below.

Ours Marker Predictor [42]

GRU 128 256

MLP (encoder/decoder) [256, 256] [512, 256]

MLP (condition) [256, 256, 128] [512, 256, 256]

Latent z 32 128

Table 6.1 Comparison of the layer dimensions between ours and the

original Marker Predictor

We configure our interaction motion CVAE to take 2-frame motion his-

tory as condition, and output a 10-frame motion primitive that are smoothly

continuing from the conditioned motion history. We train the model with the

identical training loss and settings proposed in their original paper, but we

apply cyclical KL annealing [9] to the KL-divergence loss term instead of the

robust function [7] Ψ(s) =
√
1 + s2 − 1 since it was experimentally found that

the cyclical KL annealing produces more diverse motion outputs. For cyclical

30



KL annealing, we use cyclical cosine scheduling of total 2 cycles and half ratio

per cycle to increase the weight of KL-divergence loss.

6.1.6 Optimization

We provide the full implementation details on our understated optimization

losses here.

Foot Location Loss [38] We use the foot location loss to minimize foot

sliding when a human walks. The foot location loss is defined as below:

Efoot =
∑
s∈S

Et∈s(∥vft − vfs∥2)

where S is a set of subsequences [38] divided based on the stable foot when a

human walks, vft is the stable foot vertices at frame t and vfs is the mean stable

foot vertices of the subsequence s.

Penetration Loss [38] The penetration loss is defined as below:

Epene =

T∑
t=0

E(|Ψ−
sdf(vt)|)

where |Ψ−
sdf| returns the absolute SDF value of points with the negative SDF

values (points where penetration occured) and vt is the body vertices at frame

t.

Contact Loss [38] The contact loss is defined as below:

Econtact =
T∑
t=0

∑
vct∈vcontact

min
vs∈vscene

ρ(∥vct − vs∥2),

where vcontact is the predefined set of body vertices [17] where the contact

with the scene is encouraged, vscene is the set of scene vertices, and ρ is the
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Geman-McClure error function that reduces the weight of vct that are far from

vs.

Smoothness Loss [38] The smoothness loss is defined as below:

Esmooth =
T∑
t=1

∥vt − vt−1∥2,

where vt is the body vertices at frame t.

Self-Penetration Loss [6] We estimate the self-penetration of the upper

body during the interaction motion unlike previous works that consider the

entire body [6]. We approximate the occupied volumes of the two forearms and

thighs with individual cylinders that bound the volumes, which are in turn

approximated with a set of spheres. Specifically, the self-penetration loss is

defined as below:

Eself-pene = −
T∑
t=0

∑
i∈S

∑
j∈I(i)

exp

(
∥cit − cjt∥2
r2i + r2j

)

where S is a set of spheres approximating cylinders, I(k) is the set of spheres

overlapped with sphere k while belonging to another cylinder, ckt is the center

of sphere k at frame t, rk is the radius of sphere k.

Pose Prior Loss [17] In optimizing the eye contact, we additionally use

the pose prior loss to penalize impossible neck rotations. The pose prior loss is

defined as below:

Epose-prior =
T∑
t=0

∥θt∥2

where θt ∈ R32 is a VPoser embedded pose parameter at frame t.
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6.2 Naturalness Evaluation

We provide more details about the modified non-collision score, contact score,

and user study in this section.

6.2.1 Modified Non-collision Score and Contact Score

Unlike [41], we give a margin of 0.01 for a signed distance value of 0 for both

contact and non-collision. In our case, we take it as contact when the signed

distance value is less than 0.01 for the contact score and non-collision when the

signed distance value is greater than -0.01 for the non-collision score.

6.2.2 User Study

For single human motion, we give 3 examples (ours, long-term [38], towards [37])

with the same inputs and ask the users to choose the most natural and most

unnatural that interpolates motion between the start and end anchors. We

also ask users to rate on a scale of 1-5 on how much the most natural is more

natural than the second, and the same questions are asked about the unnatural.

Table 6.2 shows the comparison result of how much more natural each rank is.

For multi-human motion, using our method and using ablated versions, we ask

which one is more natural and ask to rate how much more natural it is on a

scale of 1 to 5.

6.3 Qualitative Results

6.3.1 Collision-free Path Generation

Two examples of collision-free path generation are presented in Figure 6.1

and 6.2. Our modified A∗ algorithm can generate plausible, yet collision-free

paths considering both spatial and temporal context.
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Rank(A>B>C) Natural(A-B) Unnatural(C-B) Number of samples

Ours>Towards>Long-term 3.41 3.59 220

Ours>Long-term>Towards 3.54 3.38 59

Towards>Ours>Long-term 2.57 3.53 49

Table 6.2 The table shows the scores(1-5) for how natural 1st place compared to

2nd place is(A-B), and how unnatural 3rd place is compared to 2nd place(C-B)

for users who select the corresponding rank. Only the rank selected by 10% or

more among all users are shown.

Figure 6.1 Collision-free path planning example. Our collision-avoidance

term (Equation (1)) enables A∗ algorithm to generate collision-free paths. The

leftmost figure shows the original path. Middle and right show the modified

paths (red) for the same anchors to avoid the standing human (blue).

𝑡 = 0 𝑡 = 3 𝑡 = 9

Figure 6.2 Another collision-free path planning example. When creating

a collision-free path, we consider both spatial and temporal contexts. Please

note that while the red and blue paths collide, if we only consider the spatial

context, but there is no collision when we jointly consider the temporal context.
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Figure 6.3 Interaction motion examples. Our framework generates an up-

per body interaction motion applicable to both sit and stand anchors. Various

interaction motions can be generated from the same anchor pose.

Figure 6.4 Qualitative result of multi-human motions in diverse scenes.

Our framework generates diverse scenarios where multiple human interact with

each other in various scenes.

6.3.2 Interaction Motion

Figure 6.3 shows sample frames of interaction motion derived from the stand

and sit anchor. Our framework is capable of generating various interaction mo-

tions from the same anchor pose and expresses plausible hand gestures that

would actually be seen when people are interacting with each other.

6.3.3 Results in Diverse Scenes

More sample frames of our final results from various scenes are presented in

Figure 6.4. As presented, our framework is capable of generating multi-human

motion with diverse scenarios in various scenes.
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초록

우리는주어진 3차원장면구조에서자연스럽게상호작용하는여러사람의움직임

을매핑하는프레임워크인MAMMOS를제시한다.궁극적인메타버스를위해서는

환경이나 다른 사람들에 반응하여 상호 작용하는 여러 캐릭터를 만들 수 있어야

한다. 그러나 아티스트가 다양한 3차원 장면에서 여러 캐릭터를 생성하거나 얽

힌 시공간적인 문맥을 이해하는 자동화 시스템을 훈련하기 위한 훈련 데이터를

수집하는 일에는 어려움이 따른다. MAMMOS는 뉘앙스와 의도가 있는 사실적

인 모션에 대한 복잡한 제약 조건을 성공적으로 처리하는 모듈식 접근 방식이다.

MAMMOS는 간단한 텍스트 입력으로 받아 개별 사람에 대하여 충돌을 피하면서

도 필요한 상호 작용을 가능하게 하는 시간과 위치에 앵커를 먼저 배치한다. 그런

다음 장면 내에서 여러 사람의 시공간 경로를 생성하고 연결하여 다양하고 자연

스러운 동작을 수행하게 한다. 우리가 아는 한, MAMMOS는 풍부한 상호작용을

갖는 여러 사람의 동작 시퀀스를 생성해 내는 최초의 프레임워크이다. MAMMOS

를 통해 3D 장면에 사실적인 여러 사람의 모션을 자동으로 채울수 있게 되었다.

주요어: 모션 합성, 사람-장면 상호작용, 메타버스

학번: 2021-24285
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